
 

 

DIGITAL IMPLEMENTATION OF BIO-INSPIRED SPIKING 
NEURAL NETWORK FOR ECG CLASSIFICATION 

 

 

 

 

 

CHEN DZE RYNN 

 

 

 

 

 
 
 
 
 

UNIVERSITI TEKNIKAL MALAYSIA MELAKA  
  
 



 

 

 

 

 

 

 

CHEN DZE RYNN 

 

 

This report is submitted in partial fulfilment of the requirements 
for the degree of Bachelor of Electronic Engineering with Honours 

 

 

Faculty of Electronic and Computer Engineering 
Universiti Teknikal Malaysia Melaka   

 
 
 
 

2022 



DECLARATION

Digital Implementation of Bio-Inspired Spiking 

Neural Network for ECG Classification

quotes as cited in the references. 

Signature :

Author :

Date :

Chen Dze Rynn

11 January 2022



APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient 

in terms of scope and quality for the award of Bachelor of Electronic Engineering with 

Honours.  

Signature :

Supervisor Name :

Date :

Assoc. Prof. Dr. Wong Yan Chiew

11 January 2022



 

 

 

DEDICATION 

For my late grandmother, whose strength continues to inspire me. 

 

 

 



i 

 

ABSTRACT 

Conventional techniques of off-chip processing for wearable devices cause higher 

hardware resource usage and power consumption. Hence, edge computing methods 

such as neuromorphic computing are considered the most promising modern 

technology to replace conventional processing. It is beneficial to employ 

neuromorphic processing in ECG classification, enabling engineers to overcome the 

constraints of hardware utilization. Thus, this work aims to investigate common 

building blocks in a spiking neural network (SNN), analyse the spike-based plasticity 

mechanism and implement ECG classification on a neuromorphic circuit.  The MIT-

BIH Arrhythmia database (MITDB) is used in this work, which is obtained from the 

Physionet website. The data is preprocessed in MATLAB, then used to train and test 

an SNN designed for field programmable gate arrays (FPGA), employing spike-based 

plasticity and Izhikevich neurons. The behaviour of spike timing dependent plasticity 

(STDP) in a neuromorphic circuit is also visualized in this work. The SNN classifies 

ECG data into two categories: normal and abnormal. The proposed digital design 

utilizes 1.058% of hardware resources on a Zedboard. Application-wise, this work 

provides a foundation for development of neuromorphic computing in wearable 

medical devices that perform continuous monitoring of ECG.  



ii 

 

ABSTRAK 

Teknik konvensional pemprosesan luar cip untuk peranti boleh pakai menyebabkan 

penggunaan sumber perkakasan yang lebih tinggi. Oleh itu, kaedah pengkomputeran 

neuromorfik dianggap sebagai teknologi moden yang paling berpotensi untuk 

menggantikan pemprosesan konvensional. Adalah berfaedah untuk menggunakan 

pemprosesan neuromorfik dalam klasifikasi ECG, membolehkan jurutera mengatasi 

kekangan penggunaan perkakasan. Oleh itu, projek ini bertujuan menyiasat teknik-

teknik dalam rangkaian neural spiking (SNN), menganalisis mekanisme keplastikan 

berasaskan spike dan melaksanakan klasifikasi ECG pada litar neuromorfik. MIT- 

BIH Arrhythmia Database (MITDB) digunakan yang diperoleh daripada laman web 

Physionet. Data tersebut dipraproses dalam MATLAB, kemudian digunakan untuk 

melatih dan menguji SNN yang direka bentuk untukfield programmable gate array 

(FPGA), menggunakan keplastikan berasaskan spike dan neuron Izhikevich. 

Keberfungsian spike timing dependent plasticity (STDP) dalam litar neuromorfik juga 

divisualisasikan dalam kerja ini. SNN mengklasifikasikan data ECG kepada dua 

kategori: normal dan tidak normal. Reka bentuk digital yang dicadangkan 

menggunakan 1.058% sumber perkakasan pada Zedboard. Dari segi aplikasi, kerja 

ini boleh digunakan dalam peranti boleh pakai untuk pemantauan berterusan ECG. 



iii 

 

ACKNOWLEDGEMENTS 

I would like to extend my sincere gratitude to my supervisor, Associate Professor 

Dr. Wong Yan Chiew. I am so honored to have been taken under her wing, receiving 

her invaluable input and patient guidance throughout the completion of this research 

project. I have learned so much from her and cultivated an interest in hardware 

implementation along the way, which I hope to continue to pursue in the years after 

graduation. 

I am deeply grateful as well to my parents, Mr Chen Thean Hock and Ms Chee 

Pooi Shan, for their unwavering support in the past year during which I have been 

working on this paper. All my life, they have believed in me more than I believed in 

myself. I would also like to offer special thanks to my extended family members. 

Without the support system they have provided, I would not be the person I am today. 

Last but not least, I cannot forget to acknowledge my university mates as well as 

childhood friends. While we have all had our own struggles during the COVID-19 

pandemic, they have never let me down when I needed a listening ear or a shoulder to 

cry on. 



iv

TABLE OF CONTENTS

Declaration i

Approval i

Dedication i

Abstract i

Abstrak ii

Acknowledgements iii

Table of Contents iv

List of Figures ix

List of Tables xiii

List of Symbols and Abbreviations xiv

INTRODUCTION 1

1.1 Overview 1

1.2 Background 1

1.3 Problem Statement 3

1.4 Objectives 4

1.5 Scope 4



v

1.6 Thesis Outline 5

1.7 Summary 5

BACKGROUND STUDY 7

2.1 Overview 7

2.2 Electrocardiogram 8

2.2.1 Noise in ECG Signals 9

2.2.2 Filtering of ECG Signals 10

2.2.2.1 Morphological Filtering 11

2.2.2.2 Spike Encoding 12

2.2.2.3 Discrete Wavelet Transform 13

2.3 Deep Learning and Artificial Neural Networks 14

2.4 The Spiking Neural Network 16

2.4.1 Convolutional Neural Network versus Spiking Neural Network 16

2.4.2 SNN Models 20

2.4.2.1 Hodgkin-Huxley Model 20

2.4.2.2 Izhikevich Model 22

2.4.2.3 Leaky Integrate-and-Fire Model 24

2.5 Neuromorphic Computing 25

2.5.1 Intel Loihi 27

2.5.2 IBM TrueNorth 29



vi

2.5.3 SpiNNaker 30

2.6 Design Implementation 31

2.6.1 Target Devices 32

2.6.2 FPGA Implementation in Previous Work 33

2.7 Summary 34

METHODOLOGY 35

3.1 Overview 35

3.2 Data Collection 35

3.3 Data Preprocessing 37

3.3.1 Discrete Wavelet Transform 38

3.3.2 Normalization 43

3.3.3 Binarization 44

3.4 Spiking Neural Network 45

3.4.1 Neuron Model 45

3.4.2 Training 47

3.4.2.1 Spike Timing-Dependent Plasticity in the SNN 48

3.4.3 Testing 51

3.5 Design Synthesis and Implementation 51

3.5.1 ZedBoard Zynq-7000 ARM/FPGA SoC Development Board 51

3.6 Summary 52



vii

RESULTS AND DISCUSSION 53

4.1 Overview 53

4.2 Building Blocks of a Neuromorphic Design 53

4.2.1 Preprocessing Block 54

4.2.2 Training Block 59

4.2.3 Testing Block 60

4.3 Analysis of Spike-based Plasticity 62

4.4 Implementation on a Neuromorphic Circuit 63

4.4.1 Synthesis 64

4.4.2 Hardware Resource Utilization 67

4.4.3 Power Report 68

4.5 Performance Comparison with Previous Research 70

4.6 Summary 71

CONCLUSION AND FUTURE WORKS 72

5.1 Overview 72

5.2 Conclusion 72

5.3 Future Works 74

5.3.1 Adaptive Peak Detection 74

5.3.2 Unified Power Format 75

5.3.3 Hardware Deployment 76



viii 

 

5.4 Lifelong Learning 77 

5.5 Summary 77 

REFERENCES 78 

  



ix 

 

LIST OF FIGURES 

Figure 2.1: General shape of an ECG waveform. 8 

Figure 2.2: Visual representation of an ECG signal corrupted by power line 
interference [18]. 10 

Figure 2.3: A typical deep ANN network. 15 

Figure 2.4: Neurons in the human brain whose operation is replicated in ANNs. 15 

Figure 2.5: Different filters in the CNN extract different features in the image    
being processed. 17 

Figure 2.6: An illustration of synaptic plasticity. 19 

Figure 2.7: Varying complexity of different neuron models. [54] 20 

Figure 2.8: Circuit representation of the HH model. 21 

Figure 2.9: Different types of neurons resulting from changes in the parameters. 23 

Figure 2.10: Schematic representation of the LIF model. 24 

Figure 2.11: Graphical representation of Moore's law. 25 

Figure 2.12: Relating various areas of study within neuromorphic computing. 26 

Figure 2.13: Classifications of neuromorphic hardware. 27 

Figure 2.14: Intel Loihi mesh operation enabling it to extend to other chips in      
four planar directions. 28 

Figure 2.15: Major architectural entities of the Loihi's computational route. 29 

Figure 2.16: Architecture of the TrueNorth neuromorphic chip. 30 



x 

 

Figure 2.17: Architecture of a SpiNNaker node. 31 

Figure 2.18: Various categories of design implementation 32 

Figure 2.19: Design process for a) an ASIC b) an FPGA 33 

Figure 3.1: Abnormal rhythm annotation (left) and normal rhythm annotation   
(right). 37 

Figure 3.2: Block diagram of the proposed ECG preprocessing process. 38 

Figure 3.3: DWT process. 39 

Figure 3.4: Filter bank trees for: (a) wavelet decomposition (b) wavelet 
reconstruction 39 

Figure 3.5: Down sampling of ECG signals using Daubechies wavelet. [86] 41 

Figure 3.6: Inputs of the DWT process. 42 

Figure 3.7: Comparison of the results of DWT with different vanishing moments. 43 

Figure 3.8: ECG signals before normalization (top row) and ECG signals after 
normalization (bottom row) 44 

Figure 3.9: A portion of the analog ECG data shown in the MATLAB workspace 
after going through DWT. 44 

Figure 3.10: Different threshold values are needed after the first round and      
second round of DWT respectively. 45 

Figure 3.11: High-level view of the adapted digital IZH neuron module. 46 

Figure 3.12: Internal block diagram of the module. 46 

Figure 3.13: Overall operation of adapted IZH neuron module. 47 

equation (below) in the equations shown in Chapter 2.4.2.2. 47 

Figure 3.15: STDP module modelled in the proposed SNN. 49 

Figure 3.16: Hierarchy of the design sources in Vivado, where each neuron has      
its own RAM. 49 

Figure 3.17: Internal block diagram of the STDP module. 50 



xi 

 

Figure 3.18: Block diagram of the Zedboard. 52 

Figure 4.1: Results of each preprocessing step performed in MATLAB for record 
105 (normal). 54 

Figure 4.2: Results of each preprocessing step performed in MATLAB for record 
201 (abnormal). 55 

Figure 4.3: The ECG signal for record 111 before any preprocessing. 56 

Figure 4.4: The ECG signal for record 111 after being filtered by the db6      
wavelet. 56 

Figure 4.5: The binarized ECG signal for record 111 after being filtered by the     
db6 wavelet. 57 

Figure 4.6: The ECG signal for record 111 after being filtered by the db6 and       
db2 wavelets. 57 

Figure 4.7: Peak detection in Record 115 with a threshold of 0.7. 58 

Figure 4.8: Peak detection in Record 111 with a threshold of 0.7. 58 

Figure 4.9: Pseudocode for insertion of multiple data. 60 

Figure 4.10: Pseudocode for increment of array pointer. 60 

Figure 4.11: Insertion of training data automated by the counters moving through  
the normal and abnormal data arrays. 60 

Figure 4.12: Neuron 37 spikes to classify record number 103 correctly as normal. 61 

Figure 4.13: Neuron 38 spikes to classify record number 217 correctly as    
abnormal. 61 

Figure 4.14: The incorrect output neuron randomly spikes while the correct      
output neuron is spiking. 61 

Figure 4.15: STDP when the pre-synaptic neuron fires before the post-synaptic 
neuron does. 62 

Figure 4.16: STDP when the pre-synaptic neuron fires after the post-synaptic  
neuron does. 63 

Figure 4.17: RTL schematic of the synthesized design. 64 



xii 

 

Figure 4.18: Close-up of gates in RTL schematic. 65 

Figure 4.19: Technology schematic of the synthesized design. 66 

Figure 4.20: Close-up of the Zedboard-specific elements shown in the technology 
schematic. 66 

Figure 4.21: Graphical representation of hardware resource utilization     
percentages. 67 

Figure 4.22: The stages of power consumption in an FPGA. 68 

Figure 4.23: Post-synthesis power report. 69 

Figure 4.24: Post-implementation power report. 69 

Figure 4.25: Default switching activity settings in power estimation. 70 

Figure 5.1: A visual representation of how a chip is divided into different power 
domains for power-gating. 76 



xiii 

 

LIST OF TABLES 

Table 2.1: Past research using SNNs for ECG classification, without hardware 
implementation. 19 

Table 2.2: Benchmarking of previous research implementing ECG classification    
on FPGA 34 

Table 3.1: Meaning of beat annotations for the MIT-BIH Arrhythmia Database. 37 

Table 4.1: Arrangement of training data in arrays. 59 

Table 4.2: Hardware resource utilization report. 67 

Table 4.3: Comparison of proposed design with previous research. 71 

 



xiv 

 

LIST OF SYMBOLS AND ABBREVIATIONS 

 
ANN : Artificial neural network 

ASIC : Application-specific integrated circuit 

BSA :  

CNN : Convolutional neural network 

CVD : Cardiovascular disease 

DL : Deep learning 

DSP : Digital signal processors 

DWT : Discrete wavelet transform 

ECG : Electrocardiogram 

EDA : Electronic design automation 

EMG : Electromyography 

FPGA : Field-programmable gate array 

HDL : Hardware description language 

HH : Hodgkin-Huxley 

HSA : Hough Spiker Algorithm 

IDE : Integrated design environment 

IO : Bonded input/output 

IZH : Izhikevich 



xv 

 

LIF : Leaky Integrate-and-Fire 

mHSA : Modified Hough Spiker Algorithm 

MI : Myocardial infarction 

MITDB : MIT-BIH Arrhythmia Database 

MNIST : Modified National Institute of Standards and Technology 

NoC : Network-on-chip 

PL : Programmable logic 

PS : Processor subsystem 

RTL : Register transfer level 

SAIF : Simulation activity file 

SNN : Spiking neural network 

SNR : Signal-to-noise ratio 

SoC : System-on-chip 

STDP : Spike-timing dependent plasticity 

t-LTD : Timing-dependent long-term depression 

t-LTP : Timing-dependent long-term potentiation 

UPF : Unified Power Format 

WT : Wavelet transform 

 

 

 

 

 

 

  



INTRODUCTION

1.1 Overview

This chapter explains the key points of this work to provide some basic information 

about why this work was initiated. The topics covered include background in Section 

1.2, problem statement in Section 1.3, objectives in Section 1.4, scope in Section 1.5 

and thesis outline in Section 1.6.

1.2 Background

Cardiovascular diseases (CVDs) are a category of disorders in the human body 

involving the heart and blood vessels. According to the World Health Organization, 

CVDs are the number 1 cause of deaths globally, with around 17.9 million people 

losing their lives to CVDs in 2016. Since the COVID-19 pandemic in 2020, it has been 

proven that people with underlying CVDs are disproportionately attacked by COVID-



2 

 

19 [1]. Cardiac arrhythmias refer to the impairment of the electrical impulses 

coordinating human heartbeats and are used to identify the presence of CVDs. Due to 

the nature of arrhythmias that can reflect electrical activities in the heart, they can be 

detected by analyzing electrocardiogram (ECG) signals taken from the body [2]. To 

do this, the conventional way was for medical professionals to manually inspect results 

of an ECG test. However, arrhythmias occur intermittently, and thus are difficult to 

detect based solely on ECG tests. Therefore, continuous monitoring of ECGs is crucial 

in early detection of potential cardiovascular problems.  

With the invention of wearable personal devices such as smart watches, it is now 

possible to have continuous real-time ECG monitoring with the mechanism of 

artificial neural networks (ANNs) for ECG classification. Currently, convolutional 

neural networks (CNNs) are the most common form of neural networks used for 

recognition and classification tasks. Previous research has proven the effectiveness of 

CNN for ECG classification [3]. However, the discrete approximation method 

frequently replaces the precise convolution process itself in CNN [4] to calculate the 

dot product of overlapping areas between different layers. Due to this, the CNN 

consumes relatively high computational power [5] and methods to reduce power 

consumption for CNN such as the fast Fourier transform will drastically increase the 

cost. It was found in Ref. [6] that the higher the accuracy of the CNN, the higher its 

power consumption. 

Thus, in recent years, researchers have been looking into alternative ANNs to 

CNNs to find a fair power-accuracy trade-off  [7] in classification applications. 

Spiking neural networks (SNNs) have become a strong contender in these researches, 

such as in [8] which found that the power consumed by the algorithm that was 



3 

 

converted from a trained convolutional neural network into a spiking neural network 

was only 0.74% of that of the convolutional neural network. Employing bio-inspired 

neural networks in processors is an emerging area of research, which is neuromorphic 

computing. Neuromorphic computing essentially models neurobiology in its 

operation, replicating structures of the human brain to enable the system to learn on 

its own [9]. 

1.3 Problem Statement 

The current norm for processing techniques used in wearable devices is employing 

Von Neumann architectures. Throughout the years, continuous research and progress 

has improved the sensitivity and resolution of wearable devices. However, these 

devices are still limited due to high volume of data transmission. In status quo, most 

wearable devices employ the mechanism of collecting data, then transmitting it to 

external servers which perform off-chip processing [10].  There are several problems 

with this. 

Firstly, conventional techniques of using remote servers and signal processing 

requires intensive computation and processing, causing higher hardware resource 

usage. Due to this, edge computing and other new computing methods or have become 

popular areas of research. Particularly, neuromorphic circuits are considered the most 

promising modern technology beyond Von Neumann processing [11]. SNNs used in 

neuromorphic computing do not employ the fetch-and-execute cycle of Von Neumann 

architectures but rather process data in the form of event-driven spikes, with an 

emerging learning mechanism which is spike-based plasticity.  In applications such as 

ECG classification, it is beneficial to employ processing techniques that are able to 

overcome the constraints of hardware utilization, allowing further development of this 



4 

 

technology in the future. However, a jarring downside of neuromorphic circuits is that 

they are not general-purpose, but rather need to be designed specifically, or 

customized for their applications. The customization of neuromorphic circuits for the 

purpose of ECG classification on FPGAs is an area that lacks research, thus this work  

aims to fill that gap. 

1.4 Objectives 

a) To investigate common building blocks and techniques used for a 

neuromorphic circuit based on an SNN. 

b) To analyze spike-based plasticity mechanism in neuromorphic circuit. 

c) To implement ECG classification on a neuromorphic circuit. 

1.5 Scope 

This work aims to propose a digital design for implementation of neuromorphic 

computing on an FPGA. An SNN algorithm is developed for the purpose of ECG 

classification which employs spike-based plasticity to train neurons. Using electronic 

design automation (EDA) tools which are Vivado as well as MATLAB, raw ECG data 

is obtained from the MIT-BIH Arrhythmia database (MITDB), which is obtained via 

Physionet. The database contains 48 ECG records taken on two leads, which are the 

MLII lead and V5 lead. Only the data from the MLII lead is used, which accurately 

depicts the overall condition of the ECG record. In this work, the duration of records 

taken is 10 seconds long containing 3500 samples. This may present limitations due 

to the short length of the records, however it ensures that the preprocessing step does 

not over compress the data. This scope may be widened in future works as the design 

is very much portable and can be used on a much bigger scale. The raw ECG data 



5 

 

undergoes preprocessing in MATLAB and is compressed into 35-bit binary stream so 

that it can be fed into the SNN. 

The SNN algorithm is developed based on adaptations of methods used in past 

research on developing SNNs. With 35 normal records and 13 abnormal records for 

the 10-second-long MITDB records, the algorithm is trained to identify normal and 

abnormal heartbeat rhythms by using 10 records for training and 3 records for testing 

in each category. The algorithm is developed in a hardware description language 

(HDL) which is VHDL, so that it can be synthesized and optimized for the target field 

programmable gate array (FPGA) which is Zedboard. No actual hardware is used in 

this research. The design is represented in the form of a neuromorphic circuit, which 

is then analyzed in terms of hardware resource utilization.  

1.6 Thesis Outline 

The remainder of this thesis is structured as follows. Chapter 2 will cover the 

literature review of past research related to ECG classification, SNNs and 

neuromorphic hardware. Chapter 3 will highlight the methodology applied to achieve 

the objectives mentioned in Chapter 1. Chapter 4 will lay out the results and findings 

of the research performed, and the algorithm developed. Finally, Chapter 5 will 

conclude the findings of this research and elaborate on potential future work. 

1.7 Summary 

This work was initiated to address the research gap in designing neuromorphic 

circuit customized for ECG classification. The problem lies in the unsustainability of 

off-chip processing used in the Von Neumann architecture in wearable devices when 

it comes to hardware resource usage. This paper aims to investigate common building 

blocks and techniques used for a neuromorphic circuit based on SNN, analyze spike-



6 

 

based plasticity mechanism in neuromorphic circuit, and implement ECG 

classification on a neuromorphic circuit. The neuromorphic design created is 

synthesized for implementation on a Zedboard and analyzed in terms of hardware 

resource utilization.



BACKGROUND STUDY

2.1 Overview

This chapter details the footprints that have been left in the area of research by 

previous authors, highlighting the main elements that will be adopted in this work.

Section 2.2 describes the ECG as well as its need to be preprocessed and the 

preprocessing methods. Section 2.3 and Section 2.4 outline deep learning and SNN 

respectively, with the latter describing neuron models that have been used in previous 

works. Section 2.5 discusses neuromorphic computing in the electronics industry, 

while Section 2.6 compares previous papers that have performed ECG classification 

on FPGAs.



8 

 

2.2 Electrocardiogram 

ECGs allow medical professionals to observe the state of human heart, and thus are 

a common diagnostic method used in the medical field to identify heart diseases in 

patients. ECGs are measured by attaching electrodes to the surface o

electrodes. The ECG is basically a graphical representation of the potential difference 

[12] detected between the electrodes. ECGs are periodic waveforms consisting of a P 

wave, a QRS complex, a T wave, and a U wave as shown in Figure 2.1. The shape of 

these signals enables a medical professional to obtain important information about the 

[13]. 

 

Figure 2.1: General shape of an ECG waveform. 

In recent years, researchers have begun to pursue developing computer-aided 

systems to automatically diagnose ECG [14], [15] where the goal is to automatically 

detect cardiac arrhythmia which leads to myocardial infarction (MI), also known as a 

heart attack, caused by the inability of the heart muscles to contract normally. 



9 

 

With the intended application of the SNN for classifying ECG data, several 

methods are explored in order to enable the SNN to read the ECG data. This includes 

preprocessing steps to obtain a clean ECG signal, as well as spike encoding which is 

a method specifically needed for SNNs.  

2.2.1 Noise in ECG Signals 

As with any signal, ECG signals are prone to the presence of noise, which are 

additional unwanted information present in a recorded signal.  Several noise sources 

are common [16] in ECG signals, such as power line interference, electromyography 

(EMG) interference, and baseline drift noise. 

Power line interference is characterized by sinusoidal signals [17] between 50 to 

60Hz, depending on the power line frequency in different countries. These cause a 

low-amplitude interference in ECG signals, and thus affect the visual representation 

of ECG data. Due to this, power line interferences tend to interfere with automatic 

segmentation processes that take place for ECG signal processing. An example pf 

power line interference is observed in Figure 2.2, where it is difficult to identify the 

regions of P-waves and T-waves. 



10 

 

 

Figure 2.2: Visual representation of an ECG signal corrupted by power line 
interference [18] 

Baseline wander in ECG signals is a low-frequency noise artifact. It can be caused 

by respiration, body movement, or electrically charged electrodes and have a varying 

electrical isoline [19]. The removal of baseline wander is usually one of the first steps 

in preprocessing ECG signals. It is important not only for automatic ECG 

classification algorithms, but also in manual visual diagnosis. This is because drastic 

fluctuations in the ST segment, be it elevation or depression, are telling factors in an 

ECG signal when dealing with acute coronary syndrome caused by ischemia or 

myocardial infarction [20].  

2.2.2 Filtering of ECG Signals 

In using raw ECG data, it is important to put the data through some form of 

preprocessing to remove any impurities or discrepancies that could affect the 

usefulness of the data. Traditionally, preprocessing ECG signals can be done by 

applying high-pass or low-pass filters to them [21] depending on the type of noise that 



11 

 

is being targeted. For example, baseline wander is usually a very low frequency noise, 

in which a high-pass filter would be applied to the ECG signal to filter it out. However, 

recent works have explored more conventional ways of denoising ECG signals, mainly 

due to the fact that the high- and low-pass filters have very specific cut-off frequencies, 

which often result in the input signal being distorted above or below a certain 

frequency. These options will be explored further in this section. To make the ECG 

signal usable in an SNN, the preprocessing stage also requires a step to ensure the 

ECG signal is in a form that is readable by the network. 

2.2.2.1 Morphological Filtering 

Morphological filtering is a non-linear method of signal processing. In denoising 

ECG signals, non-linear methods are preferred [22] over linear methods because the 

ECG signal itself is non-linear. The main advantage of this method is that it is able to 

decently maintain the shape information of the input signal [23]. This is because the 

concept of mathematical morphology is set-theoretic, which means that it is able to 

quantitate the geometrical properties of a signal or image being analyzed.  Structuring 

elements are a key unit in mathematical morphology. They are designed specifically 

for the signal of interest, depending on the shape characteristics to be extracted from 

the signal [24]. The structuring element is used to analyze how its shape fits or does 

not fit the shape of the signal, thus extracting the shape information. 

There are two operators used in morphological filtering, which are erosion and 

dilation. ECG signals are one-dimensional.  Thus, based on the erosion and dilation 

operators, the opening operator is used to suppress peaks, and the closing operation is 

to suppress pits. The morphological filtering is performed by combining both the 

opening and closing operations [23].  Specific peaks and pits of the ECG signal can 



12 

 

peaks and the closing operator across the pits of the ECG signal, giving the result of 

the highest peaks reached by the opening operator and lowest pits reached by the 

closing operator [22]. The width of the structural element needs to be wider than the 

noise waveform and narrower than the signal waveform. Thus, morphological filtering 

is commonly used for removing baseline wander from ECG signals, which are very 

low frequency waveforms. 

2.2.2.2 Spike Encoding 

Most real-world signals are analog in nature. Typically, ANNs use matrix-vector 

operations within their networks to process a set of input and produce an output. This 

means that they are able to operate directly on the numerical forms that the input data 

is in. However, SNNs are not able to do this. Thus, the input values need to be 

converted into the form of spikes or spike events [25] in the process called spike 

encoding. This process considerably compresses the size of the input data, since the 

train of spikes allows for faster processing in the SNN [26]. Spike encoding can be 

done based on instantaneous average firing rate, population rank, or temporal coding. 

The two main methods of spike encoding are temporal coding and rate coding. Rate 

coding converts the input into spike trains with frequency proportional to the values, 

while temporal coding converts it into precise spike times [27]. Temporal coding is a 

widely used mechanism in deep learning algorithms, especially those employing 

spike-timing dependent plasticity (STDP) [28].  

In general, existing temporal coding methods can be categorized into two types, 

which are temporal contrast and stimulus estimation. The theory applied in temporal 

contrast is that every change in signal value is compared with a specific threshold 



13 

 

value, and the encoded spike is generated accordingly [29]. The temporal contrast 

algorithm is inspired by the human retina. As for stimulus estimation, the focus is 

generating a spike train that best approximates the original input when it is 

reconstructed. Common implementation methods for this reversal or deconvolution 

process are the Hough Spiker Algorithm (HSA) [30], the modified HSA (mHSA) and 

[31]. In Ref. [31], the function for the signal-to-noise 

ratio (SNR) against threshold of the BSA is smoother than in the case of HSA, which 

shows that the optimal threshold is stable and does not fluctuate with a change in test 

signals. 

2.2.2.3 Discrete Wavelet Transform 

The theory of using wavelets encapsulates various independently developed 

techniques for ECG preprocessing. Recently, many wavelet transform (WT)-based 

methods have been proposed for signal processing, especially for non-stationary 

signals like ECG because it is more efficient in preserving important information in 

the signal. With a continuous input signal such as ECG, it is common practice to 

discretize it [32] before processing because it is computationally impossible to analyze 

a continuous signal using all wavelet coefficients. Recent studies [33], [34] have 

shown the effectiveness of the DWT. Unlike the Fourier transform, the DWT domain 

is able to describe both frequency and time representation. Another way to interpret 

the process of performing WT is as a tool for signal decomposition. In Ref. [35] and 

[36] , the DWT is used to decompose the noisy ECG signal, before removing the noisy 

elements and reconstructing it. 

There are several wavelet families that are available in the DWT method, namely 

the Daubechies family, Coiflet family, Haar family, Biorthogonal family and Symmlet 



14 

 

family. Several papers have studied all five wavelet families in relation to the optimum 

wavelet to be used for ECG processing. According to Ref. [37], the nominal wavelet 

for MIT-BIH database is the Daubechies wavelet family. Ref. [38] found that 

Daubechies wavelet to be able to accurately filter ECG signals with its ability to 

retrieve lost data, reducing distortion of the compressed ECG data. Based on its 

simplicity and lack of distortion, the DWT method is employed for preprocessing of 

ECG data in this work. 

2.3 Deep Learning and Artificial Neural Networks 

Deep learning (DL) is an umbrella term covering a research field that studies the 

process of extracting knowledge or data, and forecasting or making predictions by 

recognizing patterns and trends in a set of training data [13]. With this identification 

of trends and patterns in DL, the significant steps in conventional techniques for 

machine learning such as feature extraction, feature selection, and classification are 

somewhat applied, but there is not as clear a distinction in the steps [39], as the DL 

-

name suggests, are complex networks that attempt to replicate the mechanism used by 

the human brain to transmit and process information from one neuron to another, 

demonstrated by the architecture in Figure 2.3. In the brain, this is done through a lot 

of connected processors called neurons as shown in Figure 2.4.   



15 

 

 

Figure 2.3: A typical deep ANN network 

 

Figure 2.4: Neurons in the human brain whose operation is replicated in 
ANNs. 

The features of neurons that are emulated are mainly the cell body that drives 

cellular activity, the dendrites that receive impulses and the axon which sends 

impulses to the next neuron. Biologically, the vital characteristic of neurons that makes 

them utilizable are their ability to conduct electrical impulses and receive and send 

information through these signals [40]. In NNs, input neurons receive data from the 

surrounding environment and activate the consecutive neurons connected to it through 



16 

 

weighted connections. Recently, more modern NN models are being innovated and 

researched [41], especially machine and deep learning methods such as CNN. 

2.4 The Spiking Neural Network 

In modelling an SNN, multiple factors contribute to the distinction of the network 

itself from other SNNs that have been developed over the years. In designing an SNN 

that can efficiently accomplish the task of classifying ECG data, each of these factors 

are thoroughly analyzed to choose the best combination of features to incorporate into 

the design. 

2.4.1 Convolutional Neural Network versus Spiking Neural Network 

CNNs are one of the most popular deep neural learning architectures [42]. CNNs 

apply the mathematical convolution operation and consist of many consecutive layers 

convolutional, normalization and pooling layers used for feature extracting, and the 

fully-connected layer for classification of data [43]. Every single one of these layers 

can be utilized for different 

features to be extracted as shown in Figure 2.5.  

 



17

Figure 2.5: Different filters in the CNN extract different features in the 
image being processed.

The application of convolution in this NN technique allows it to recognize images 

that are not spatially dependent [42]. To reduce connection size when connecting all 

the neurons, neurons in the inner layers only receive data from the corresponding part 

able to detect patterns, for example, faces, in any position in a given image.

According to Ref. [44], the main disadvantage of existing NNs up to CNNs is that 

they do not seem to be quite similar enough to biological neural networks in that 

biological neural networks represent information by a series of instantaneous spikes, 

where the value carried by the information is proportional to the frequency of the 

spikes. With the success of emulating features of biological neural networks, naturally 

researchers started moving into the emulation of the spiking behavior. In applications 

such as the one proposed in this paper, which is for wearable devices, the key is for an 

algorithm to be power-efficient due to the size and portability of the device. In Ref.  

[45], CNNs were found to consume up to 96.82% more power than an SNN in 

supervised learning applications. 



18 

 

SNNs are considered the third generation of ANNs [46], after McCulloch-Pitts 

neurons and continuous activation. SNNs were originally modeled as a means of 

biological signal processing in the human brain, where data and information are passed 

around through neurons via spikes. However, all the spikes in spiking neural networks 

are the same. Thus, the spikes themselves do not carry any information but it is the 

parameters surrounding it, which are the number and timing of their occurences that 

contain information in them. There are various SNN models such as the leaky 

integrate-and-fire (LIF), Hodgkin-Huxley (HH) and Izhikevich (IZH) models. 

Information processing in SNN depends on the timing of the spikes [47], which will 

influence the weights of the synapse connection in transmitting the information to 

other neurons.  

SNNs employ STDP to operate and carry out pattern recognition and computation. 

The transfer and storing of signals are determined by the strength of the connection of 

the synapses, also known as the synaptic plasticity. Modifications of this synaptic 

connectivity based on activity is the core of the human bra [48] 

as well as memory. A lot of the research done on synaptic plasticity was pioneered by 

Donald Hebb and proven by more recent research [49] that repetitive simulation of a 

presynaptic cell immediately before spikes occur in a postsynaptic cell will cause 

synaptic strengthening called timing-dependent long-term potentiation (t-LTP). Vice 

versa, experiments also hypothesize that repetitive simulation of a presynaptic cell 

immediately after a spike occurs in a postsynaptic cell will result in timing-dependent 

long-term depression (t-LTD). Together, these synaptic phenomena are collectively 

recognized as spike-timing-dependent plasticity [49] as shown in Figure 2.6. 



19 

 

 

Figure 2.6: An illustration of synaptic plasticity. 

Due to the nature of the spikes which are only generated when a threshold of 

potential is exceeded, the SNN provides a low-power operation [50] compared to other 

ANN techniques, making it suitable for this application. In fact, the use of SNNs for 

electrocardiogram classification has been explored in multiple research papers as of 

late, as listed in Table 2.1. 

Table 2.1: Past research using SNNs for ECG classification, without 
hardware implementation. 

Paper ANN type SNN 
model 

Preprocessing Training 
database 

Abnormal 
categories 

Yan et al. [8] 
(2021) 

SNN, 
CNN 

LIF 
 

Spike rate 
encoding 

MIT-BIH 
Arrhythmia 

Database 

4 

Rana et al. 
[13] (2021) 

SNN LIF 

 

Probabilistic 
encoding 

PTB 
Diagnostic 

ECG 
Database 

1 

Bauer et al. 
[51] (2019) 

RNN - Sigma-delta 
encoding 

MIT-BIH 
Arrhythmia 

Database 

5 

Amirshahi et 
al. [52] (2019) 

SNN LIF Gaussian layer MIT-BIH 
Arrhythmia 

Database 

1 

[53] (2018) 
SNN LSM Gaussian layer MIT-BIH 

Arrhythmia 
Database 

16 



20 

 

2.4.2 SNN Models 

Fundamentally, information processing in SNN depends on the timing and 

synchronization of the spikes. However, there are several neural models to be 

considered in modelling the neuronal behavior in an SNN. These models vary in 

complexity depending on how closely they are modelled to resemble the human brain 

activity. Three of the most often used models are highlighted which are the Hodgkin-

Huxley, Izhikevich, Wilson, Fitzhugh-Nagumo, and Leaky Integrate-and-Fire models. 

In this section, each neural model will be reviewed theoretically as well as in terms of 

their mathematical behavior and computational cost. 

 

Figure 2.7: Varying complexity of different neuron models. [54] 

2.4.2.1 Hodgkin-Huxley Model  

The HH model was the first biologically relevant mathematical neuron model to be 

introduced in 1952 by Hodgkin and Huxley [55] while investigating the ionic 

excitation on the axon of a squid. Among all neural models that have been developed 

since then, the HH model is still considered to be one of the most accurate 

representations of electrophysiological neuronal activity [56]. Most of the other neural 



21 

 

models were developed as simplified versions or extensions of the HH model. The 

schematic representation of the HH model is shown in Figure 2.8. 

 

Figure 2.8: Circuit representation of the HH model. 

The HH model describes the semi-permeable membrane of the neuron as a 

capacitor which stores charge, due to the difference in ion concentration within the 

neuron and in the extracellular fluid outside it. The idea is that the membrane 

conserves charge during the transport of ions across the membrane. Thus, Eq. 2.1 is 

derived, equating the total applied current to a neuron, to the summation of the 

capacitive current in the membrane and current from presynaptic neurons. 

      Eq. 2.1 

Applying the general equation of capacitance in Eq. 2.2, the variable u symbolizes 

the total current across the membrane. Thus, the overall equation of Hodgkin and 

2.3 [47] where ENa, EK and EL are reversal 

potentials, and gNam3h, gKn4 and gL are channel conductance. 

       Eq. 2.2 

 Eq. 2.3 



22 

 

Hardware implementation of the HH model are rare [57], due to its high 

computational cost. While recent studies [58] have attempted to dispute this, the 

hardware implementations they have proposed are based on simplified versions of the 

HH model, and only model the behavior of a single neuron [57], not an entire SNN. 

2.4.2.2 Izhikevich Model 

With the main drawback of the HH model being that it is computationally 

expensive and thus cannot be practically implemented on a larger scale, the IZH model 

[59] was developed for precisely this purpose. Combining the biological veracity of 

neurons in the HH model and the computational advantages of LIF neurons, the 

author, Eugene Izhikevich aimed to enable the simulation of tens of thousands of IZH 

neurons using a desktop PC.  Theoretically, the behavior of an IZH neuron adopts an 

-or-  

potential when they arrive. This then introduces two possible outcomes. The first is if 

the total presynaptic currents arriving at the membrane are not sufficient to cause the 

neuron to spike, then the membrane voltage is reset to its original value before any of 

the currents arrived. The second possibility is if the total presynaptic currents do in 

fact suffice to cause a spike, then the membrane voltage, v and the recovery variable, 

u are reset.  

Mathematically, the IZH model is much simpler, consisting of Eqs. 2.4, 2.5 and 2.6 

where v and u are dimensionless variables and a, b, c and d are dimensionless 

parameters. Parameter a (typical value = 0.02) is related to the recovery of the variable 

u in terms of time. Parameter b (typical value = 0.2) shows the sensitivity of variable 

u to the subthreshold changes in variable v. Parameter c (typical value = -65mV) 



23 

 

describes the post-spike reset value of v. Parameter d (typical value = 8) shows the 

post-spike reset value of u. The effects of these parameters and variables are illustrated 

in Figure 2.9 [47]. 

     Eq. 2.4 

        Eq. 2.5 

     Eq. 2.6 

 

Figure 2.9: Different types of neurons resulting from changes in the 
parameters. 

Recent studies [60],[61] show successful low-power implementations of the 

Izhikevich model on hardware, proving that the Izhikevich model is indeed practical 

for complex hardware implementation as intended by Izhikevich himself. 



24 

 

2.4.2.3 Leaky Integrate-and-Fire Model 

In 1907, Louis Lapicque conducted a [62] based on the excitability of nerves by 

electrical impulses. Based on these findings, the LIF model was proposed in the 1960s 

[63]. The LIF is easily one of the simplest established neural models. The LIF model 

describes the behavior 

increases with time when current arrives at it. The voltage at the membrane keeps 

increasing with the arrival of current until the membrane voltage reaches a threshold 

value, at which the neuron spikes then resets to the original value. This is 

mathematically described in Eq. 2.7 where I(t) is the current arriving at the membrane, 

Cm is the membrane capacitance and Vm(t) is the membrane potential. Figure 2.10 

shows the schematic representation of the LIF model, where a so-called leaky resistor 

(conductance, gleak) and a capacitor are connected in parallel and iinject represents I(t) 

in Eq. 2.7. 

 

Figure 2.10: Schematic representation of the LIF model. 

 

        Eq. 2.7 



25 

 

The jarring disadvantage of the LIF model is that while it is simple to implement, 

biological behavior of neurons. This is because the membrane voltage keeps 

increasing, even when the arriving current at any given time does not cause the 

membrane voltage to achieve the threshold voltage. The LIF model has become more 

of a tool for studying SNN mechanisms at the network level [63]. 

2.5 Neuromorphic Computing 

[64] was introduced, stating that the number of transistors 

able to fit on a chip doubles every two years as illustrated in Figure 2.11. Since then, 

it has been a defining rule pertaining to the scaling of transistor size. However, as of 

late, the process of shrinking transistors has been replaced by newer technologies and 

computing methods such as analog computing and stochastic computing [65].  

 

Figure 2.11: Graphical representation of Moore's law. 



26 

 

Neuromorphic computing is one of the more advanced techniques being explored. 

behavior to complete tasks. It is typically employed in tasks involving cognitive 

abilities such as recognition and classification using algorithms to replicate neuronal 

behavior in the human brain. Neuromorphic computing sends information through 

networks of synapses

an arithmetic function of its synapses [66]. Various areas of study exist within the 

scope of neuromorphic computing, as illustrated in Figure 2.12 [54] closely tying it to 

biological studies.  

 

Figure 2.12: Relating various areas of study within neuromorphic 
computing. 

Neuromorphic hardware can be divided into two types as shown in Figure 2.13 

[67], where ANNs and brain-inspired neural networks are placed in different 

categories. While ANNs are also inspired by human brain activity in terms of their 

working principle, the main difference between ANNs and brain-inspired networks is 

the training methodology, where the latter employs learning mechanisms that are also 

derived from neurobiological systems, such as STDP discussed in Section 2.3.1. On 



27 

 

the other hand, training methods for the ANN use algorithms not modeled after 

neurobiological systems. 

 

Figure 2.13: Classifications of neuromorphic hardware. 

The rise of neuromorphic hardware in recent years is drastic, although the field of 

study has been around for over a decade now. Major semiconductor companies such 

as Intel and IBM have produced their own versions of neuromorphic chips, namely 

[68] [69]. Smaller-scale neuromorphic chips 

exist as well and are widely used within their field of study, such as the SpiNNaker 

chip and the DYNAP-SE. 

2.5.1 Intel Loihi 

The Loihi chip is a 60mm2 neuromorphic chip with a manycore mesh [68]. It 

contains 128 neuromorphic cores and three processor cores, and the mesh is able to be 

extended to other chips in all four directions as shown in Figure 2.14. The Loihi chip 



28

operates on SNN with a learning block that is programmable, and its logic is fully 

digital. 

Figure 2.14: Intel Loihi mesh operation enabling it to extend to other chips in 
four planar directions.

The computational route of the Loihi is summed up in Figure 2.15 [70] where each 

dashed line outlines independent asynchronous blocks and the solid boxes are the 

states and configuration registers. Each neurocore is arranged in an asynchronous 

network-on-chip (NoC).



29 

 

 

Figure 2.15: Major architectural entities of the Loihi's computational route. 

2.5.2 IBM TrueNorth 

The TrueNorth processor is an application-specific integrated circuit (ASIC) 

neuromorphic chip, released by IBM [71]. It contains 5.4 billion transistors with a 

million programmable spiking neurons, and 256 million synapses. The chip is energy-

efficient due to its methodology of data and calculation division across the entire chip, 

so that the information does not have to travel long distances over the chip. In 

applications where power supply is scarce, the TrueNorth chip thrives as it processes 

and transfers data asynchronously, only as required. This feature is similar to how the 

human brain functions. 



30 

 

 

Figure 2.16: Architecture of the TrueNorth neuromorphic chip. 

The architecture of the TrueNorth chip divides its panels into core, chip and multi-

chip rows as well as neuroscience inspiration, physical, functional and structural 

columns as shown in Figure 2.16 [72]. Due to its performance, the TrueNorth is 

suitable to be used for research in neuroscience modeling. It has the potential and 

ability to develop neuromorphic simulators, allowing researchers to deeper study and 

understand the human brain.  

2.5.3 SpiNNaker 

SpiNNaker stands for Spiking Neural Network Architecture, which is a piece of 

neuromorphic hardware meant for simulating large volumes of neurons [73]. It is 

based on the acknowledgement of the fact that the form of communication used by the 

human brain has heavy computational requirements. Thus, the SpiNNaker architecture 

introduces a form of infrastructure for communication, the fundamental principle of 

which is carrying large volumes of very small packets of singular spike events [74]. 

The packets consist of a 32-bit AER identifier and 8 management bits. 



31 

 

 

Figure 2.17: Architecture of a SpiNNaker node. 

Overall, the SpiNNaker hardware is a homogenous 2D multiple data array 

consisting of processing nodes. The essential components of a singular node in the 

SpiNNaker architecture are illustrated in Figure 2.17. The implementation of each of 

these nodes is done on a 19mm2 300 ball grid array package. The packet-routing 

mechanism in the chip is a key innovation based on conventional AER, where the 

packet router in every node checks the neural event packets and routes them depending 

on their source.  

2.6 Design Implementation 

Generally, neuromorphic algorithms can be implemented to investigate their 

functionality and analyze their performance [75]. On the integrated design 

environment (IDE), the SNN design can be synthesized and implemented. This allows 



32 

 

the designer to evaluate the design on a high level, as well as analyze the necessary 

parameters such as hardware utilization, layout density and power consumption before 

proceeding with hardware implementation on open-source FPGAs or custom 

fabricated chips. When it comes to implementation of a design, there are typically 

three categories as shown in Figure 2.18. 

 

Figure 2.18: Various categories of design implementation 

2.6.1 Target Devices 

The design in this work is meant for implementation on the Zynq-7000 FPGA, so 

the design would be ready for hardware after it passes the analysis at the 

implementation stage, as the implementation is directly performed based on the 

constraints file for the board which is included in the design. However, the process 

would be different for implementation on an ASIC. The comparison for both processes 

are shown in Figures 2.19. 



33 

 

 

Figure 2.19: Design process for a) an ASIC b) an FPGA 

2.6.2 FPGA Implementation in Previous Work 

Table 2.2 shows previous research papers that have studied the implementation of 

ECG classification on an FPGA. The hardware resource utilization on the FPGA is 



34 

 

tabulated for each of these papers, consisting of the lookup tables, RAM, slice 

registers, digital signal processors (DSPs) and bonded input/output (IO). The power 

consumption for research that studied this parameter are also included. The results of 

the proposed design will be compared to these benchmarks, comparing the hardware 

resource usage of neuromorphic circuits compared to conventional circuits for ECG 

classification as well as power consumption. 

Table 2.2: Benchmarking of previous research implementing ECG 
classification on FPGA 

Publication Classification 
method 

Lookup 
tables  

RAM  Slice 
registers  

DSP  IO 

Gu et al. 
[76] (2016) 

Association-
rule mining 

10116 91 3433 20 - 

Zhai et al. 
[77] (2017) 

Principle 
component 

analysis 

16133 17 11797 12 - 

Madiraju et 
al. [78] 
(2018) 

Time domain 
analysis 

4324 - 1540 125 30 

2.7 Summary  

In summary, previous research has proven that raw ECG data needs to go through 

some form of preprocessing before it can be used.  Various preprocessing methods 

have been   suggested such as DWT, morphological filtering and spike encoding. 

Previous research has also shown the various methods in which neurons in SNNs can 

be modelled, such as the HH, IZH and LIF neuron models. Neuromorphic computing 

is proven to be an emerging form of technology eyed by multiple industry giants, and 

its implementation on FPGAs  is compared.



METHODOLOGY 

3.1 Overview

This chapter describes the methods applied in this work to achieve the objectives 

outlined in Chapter 1. This is done chronologically, from data collection to data 

preprocessing, emulating the SNN and implementing the digital design. Section 3.2 

outlines the data collection method. Section 3.3 discusses the steps involved in the 

preprocessing of the ECG data. Section 3.4 highlights the SNN and the methods used 

to model, train and test it, while the techniques used for implementation of the digital 

design are detailed in Section 3.5.

3.2 Data Collection

As shown in Table 2.1, there is no specific standard for data collection in ECG 

classification methods. Different datasets, encoding methods and SNN models are 



36 

 

used by different authors in their papers, so it is difficult to make a fair comparison 

between their results. However, a clear pattern in the training and testing datasets 

employed is that the MIT-BIH Arrhythmia Database is the most commonly used one 

as its data. In Ref. [80], datasets are compared based on four criterion which are 

sources, number of leads, duration and annotations. The two common sources from 

which ECG data is acquired are medical devices and healthcare devices, where data 

from medical devices contain more diagnostic information and is thus more 

informative than data collected via healthcare devices. The number of leads can range 

from one to 15 leads or more, differentiated by their ability to detect certain 

abnormalities. The duration of ECG data is classified into long-term data and short-

term data, where long-term data collects data from patients over a prolonged period of 

time to monitor intermittent or underlying symptoms that may be missed in short-term 

data collection. Annotations refer to labels that describe a signal at specific points 

along the signal. For ECG data, this includes ECG measurement annotations, beat-

level annotations and rhythm-level annotations. Annotation requires huge effort by 

medical experts. 

The dataset from the MIT-BIH Arrhythmia Database [81] is obtained through 

Physionet [82]. The data was collected by the Massachusetts Institute of Technology 

in collaboration with the Beth Israel Hospital and consists of 48 30-minute-long 

excerpts of two-channel ECG recordings from 47 patients. The dataset includes 

normal ECG readings as well as abnormal ECG readings from 18 different anomalies.  

Based on the annotations on the Physionet website, the condition of each ECG 

1. Table 3.1 shows 

the heart conditions represented by each of the annotations. In total, 36 records show 



37 

 

normal conditions while 12 show abnormal conditions. Thus, for each category, nine 

records are chosen for training and validation, while three are used for testing. 

 

Figure 3.1: Abnormal rhythm annotation (left) and normal rhythm 
annotation (right) 

Table 3.1: Meaning of beat annotations for the MIT-BIH Arrhythmia 
Database. 

Beat annotation Meaning 

(N Normal sinus rhythm 
(AB Atrial bigeminy 

(AFIB Atrial fibrillation 
(AFL Atrial flutter 

(B Ventricular bigeminy 

(BII 2° heart block 

(IVR Idioventricular rhythm 
(NOD Nodal (A-V junctional) rhythm 

(P Paced rhythm 
(PREX Pre-excitation (WPW) 
(SBR Sinus bradycardia 

(SVTA Supraventricular tachyarrhythmia 
(T Ventricular trigeminy 

(VFL Ventricular flutter 
(VT Ventricular tachycardia 

 

3.3 Data Preprocessing 

In designing neuromorphic circuits customized for ECG classification, the 

preprocessing step of ECG data is highly important. Traditionally, preprocessing ECG 

signals can be done by applying high-pass or low-pass filters to them [21] depending 

on the type of noise that is being targeted. For example, baseline wander is usually a 

very low frequency noise, in which a high-pass filter would be applied to the ECG 



38

signal to filter it out. However, recent works have explored more conventional ways 

of denoising ECG signals, mainly due to the fact that the high- and low-pass filters 

have very specific cut-off frequencies, which often result in the input signal being 

distorted above or below a certain frequency To make the ECG signal usable in an

SNN, the preprocessing stage also requires a step to ensure the ECG signal is in a 

digitized form that is readable by the network. The ECG preprocessing steps are 

performed using the MATLAB software before moving the digitized data into the 

SNN in Vivado. The proposed preprocessing algorithm is illustrated in Figure 3.2 and

consists of two techniques which are DWT and binarization.

Figure 3.2: Block diagram of the proposed ECG preprocessing process.

3.3.1 Discrete Wavelet Transform

The input ECG signal is decomposed into several basic functions [32] that are 

referred to as the wavelets. These wavelets are obtained from a single mother wavelet, 

which stretches and shifts according to the ECG signal being processed. The filter 

bank tree for the decomposition and reconstruction stages are shown in Figure 3.4. In 

Figure 3.4, the approximation coefficients, aj, are linked to the lower frequency 

components in the ECG signal, while detail coefficients, dj, enable the shape of the 

signal to be preserved during the reconstruction stage in Figure 3.3. 



39 

 

 

Figure 3.3: DWT process. 

 

Figure 3.4: Filter bank trees for: (a) wavelet decomposition (b) wavelet 
reconstruction 

In DWT, there is a finite-length oscillating waveform, from which scaled and 

translated copies are created. The oscillating waveform is often referred to as the 

, while the decomposed frequency components are the child 

wavelets. The wavelet coefficients of the discrete set of child wavelets are computed. 

For the DWT, the mother wavelet is shifted and scaled dyadically as shown in Eq. 3.1, 

where m controls the wavelet scaling and n controls the wavelet translation. 

       Eq. 3.1 

The thresholding step serves to remove some coefficients from the child wavelets. 

A filter is applied here, using 

wavelets with a bandpass filter, removing low-amplitude noise below a certain 

frequency. The Donoho algorithm [83] performs thresholding on most of the detail 

coefficients. The value of the threshold, ided based on the level of 



40 

 

decomposition performed. Two methods of thresholding are soft and hard decisions 

as shown in Eq. 3.2 [84], which differentiate whether a specific noise component is 

pure noise or coefficient plus noise. In the hard decision, coefficients are only 

preserved if they are higher than the threshold value, while the soft decision considers 

all coefficients with noise. Donoho also proposed a formula to approximate the ideal 

value of Eq. 3.3), where M is the number of coefficients. 

Soft:  
Hard:                Eq. 3.2 

 

        Eq. 3.3 

The proposed DWT serves to compress the data by down sampling it using 

Daubechies wavelet, adapting the methodology used in Ref. [85]. The DWT process 

compresses the data so that it is in a lower frequency than the original signal, as shown 

in Figure 3.5. In this process, the peak of the ECG signal which is the QRS complex 

is still preserved. 



41 

 

 

Figure 3.5: Down sampling of ECG signals using Daubechies wavelet. [85] 

Applying DWT in MATLAB returns detail coefficients as well as approximation 

coefficients. Detail coefficients of a signal after DWT are basically the noise removed 

from the signal, plotted onto finer scales while the approximation coefficient is the 

approximated signal after being filtered, shown in a coarser scale [86] which 

inherently compressing it to a lower sampling rate. 



42

Figure 3.6: Inputs of the DWT process.

In the proposed method, DWT is applied to the signal twice. A clearer illustration 

of this is shown in Figure 3.6, where signal A is the input for the first DWT and signal 

b is the input for the second. While the purpose of transforming signal A is mainly for 

denoising and compressing the signal, the discrete wavelet transformation on signal B 

is mainly for compressing the signal only, to simplify the system so that the size of the 

input to the SNN is smaller.

Daubechies wavelet family and N refers to the order of the wavelets used. The number 

of orders corresponds to the number of vanishing moments. Generally, the approach 

in selecting the vanishing moments is  that when the vanishing moments are lower, 

more signal detail is lost, leading to more distortion of the original signal [87]. This 

theory is demonstrated in Figure 3.7. In this work, db6 is used for the first round of 

DWT and db2 for the second round. This is to minimize distortion of the signal while 

at the same time ensuring the size of the ECG signal fitted into the SNN is large enough 

for detail.



43 

 

 

Figure 3.7: Comparison of the results of DWT with different vanishing 
moments. 

3.3.2 Normalization 

The normalization process rescales data so that its maximum amplitude is 1 while 

its minimum is 0. This is done so that the data and its changes can be easily observed 

throughout the preprocessing steps. This is illustrated in Figure 3.8, where the original 

and filtered ECG signals in the second row are easier to compare visually after 

normalization. 



44 

 

 

Figure 3.8: ECG signals before normalization (top row) and ECG signals 
after normalization (bottom row) 

3.3.3 Binarization 

In a digital system, data is processed in a digital form. As observed from the output 

of the DWT, the transformed ECG signal is still in analog form as shown in Figure 

3.9. Thus, the data has to go through that can 

be processed by the SNN. 

 

Figure 3.9: A portion of the analog ECG data shown in the MATLAB 
workspace after going through DWT. 

In image binarization, values are assigned to each pixel based on their luminance. 

Thus, any pixel whose greyscale value exceeds the threshold is binarized into a 1, 

while any pixel below the threshold value is binarized to a 0. For ECG data, the same 



45 

 

technique is applied in MATLAB. The threshold values are selected based on the 

amplitude of the normalized R peaks, which are generally between 0.6 to 0.7 (60% to 

50%) after the second round of DWT. This can be seen in Figure 3.10. 

 

Figure 3.10: Different threshold values are needed after the first round and 
second round of DWT respectively. 

3.4 Spiking Neural Network 

In this work, an adaptation of the SNN model designed in Ref. [47] is used, where 

the network is modified to classify ECG readings instead of Modified National 

Institute of Standards and Technology (MNIST) handwritten digits as in the original 

design. The neuromorphic circuit is designed at register transfer level (RTL) before 

proceeding to implementation. 

3.4.1 Neuron Model 

The neuron model emulated in this work is the IZH neuron. Based on the equations 

in Section 2.4.2.2, a neuron module is adapted from Ref. [47] that is a digital model 



46 

 

of the IZH neuron to simplify computations. This architecture is shown in Figure 3.11, 

where the CLK signal provides pace and coordination, the EN signal for neuron 

activation, the WE signal for Write Enable, Addr signal for the neuron addresses, 

AER_Bus signal which is the input carrying information about which neuron spiked 

previously, and an output signal labelled Spike_out to show whether or not the neuron 

spiked. Figure 3.12 shows the internal block diagram of the module in the RTL design. 

 

Figure 3.11: High-level view of the adapted digital IZH neuron module. 

 

Figure 3.12: Internal block diagram of the module. 

The overall operation of the neuron module is explained in Figure 3.13. If more 

than one neuron spiked simultaneously, the AER bus halts all operations in the neuron 

because it can only transmit one spike at any given time. The Input Align block limits 



47

the -140mV to avoid spikes being generated when 

it is not supposed to. The combinational blocks perform the equations shown in 

Section 2.4.2.2. This is illustrated in Figure 3.14.

Figure 3.13: Overall operation of adapted IZH neuron module.

Figure 3.14
equation (below) in the equations shown in Section 2.4.2.2.

3.4.2 Training

Training methods for SNNs generally are based around the STDP rule, where the 

timing of a neuron firing is crucial in the learning process. In Ref. [47], three 

conditions are satisfied in regards to the neurons before any training starts. First, the 

input layer of the SNN is simulated for some time with a particular frequency, intended 



48 

 

to return all the neurons to their initial state. Next, all the synapses that exist in the 

network connecting the input layer to the output layer is initialized to 0 to ensure the 

output neurons stay in the resting state, even if the input layer is simulated. Lastly, the 

STDP training module of the output neurons are connected to their corresponding 

training neuron. Only when these conditions are fulfilled can the training begin. 

Training the SNN involves manually firing the neurons in such timing so that the 

network correctly associates the input stimulus. This can be done in two ways. First, 

the training neuron that is linked to the correct output neuron is fired after the input 

data has been introduced not the network. Second, all training neurons except the 

correct one are fired right before introducing the data into the network. According to 

the STDP rule, synapses are strengthened between neurons if the pre-synaptic neuron 

contributes to the firing of a post-synaptic neuron. This is to say that the post-synaptic 

neuron should fire after the arrival of the pre-synaptic neuron to prove the contribution 

of the pre-synaptic neuron.  

3.4.2.1 Spike Timing-Dependent Plasticity in the SNN 

In Ref. [88], the STDP learning mechanism is modelled with digital logic. Adapting 

this approach in Ref. [47], the digital block in Figure 3.15 is modelled to represent the 

STDP module. The block has six inputs and three outputs. 



49 

 

 

Figure 3.15: STDP module modelled in the proposed SNN. 

The figure shows that the six inputs are CLK, EN, EN_Addr, Pre_Spikes, 

Post_Spike and RST while the outputs are WE, Addr and Weight. The three outputs 

write to the RAM of the neurons, where each neuron has its own RAM as shown in 

the Vivado hierarchy in Figure 3.16. The CLK input is for the clock signal, which 

signal which activates the learning process, and EN_Addr changes the neuron 

connections accordingly while applying the STDP rule. Pre_Spikes reads the spikes 

of the previous neuron, and Post_Spike of the next neuron. The inner architecture of 

these inputs and outputs is shown in Figure 3.17. 

 

Figure 3.16: Hierarchy of the design sources in Vivado, where each neuron 
has its own RAM. 



50 

 

 

Figure 3.17: Internal block diagram of the STDP module. 

The internal architecture of the STDP module consists of three main blocks which 

are the Addr cnt, I/D Sel and Weight cnt. If there is a spike from the previous neurons 

connected to the module read on the Pre_Spikes input, the I/D Sel block decides 

whether the weight counter needs to increase or decrease the synaptic weight of 

connections and indicates this by activating the respective output signal accordingly. 

The spike activates the pre_gate signal, and the post_gate signal is activated if the 

training neuron module spikes. With these gate signals being activated, plus an 

Increase signal indicated by the I/D Sel block, an increment pulse is generated for the 

synaptic weight counter. The value by which the weight of the synaptic connection 

increases depending on how long this pulse lasts. Then, the WE signal is activated to 

update the neuron RAM with the weights. This module overall models the STDP 

learning rule with the coordination of the impulses. 



51 

 

3.4.3 Testing  

A testbench script is used for testing the functionality of the network. The testbench 

manipulates 

observed and verified. For this design, the test data is input to the system via the 

testbench file. Since there are two neurons in the hidden and output layer respectively 

for the two classifications and 35 neurons in the input layer for the 35-bit ECG data, 

there are a total of 39 neurons in the network, from neuron 0 to neuron 38. One ECG 

record is fed into the SNN at a time, and the corresponding neuron trained to recognize 

the particular category is observed. In this case, neuron 37 is trained to fire for normal 

data while neuron 38 should fire for abnormal data. 

3.5 Design Synthesis and Implementation 

After the behavioral simulation has confirmed that the system is functioning as 

desired, RTL analysis can be performed in Vivado where the design is converted into 

an RTL circuit. RTL is an abstraction layer [89] where data transfer between registers 

is modelled. The coding that is done is considered RTL design, while RTL analysis is 

done on the schematic that shows the connection of registers throughout which data 

moves. Subsequently, synthesis is a process that shows the RTL design as a network 

of logic gates. Lastly, implementation of the design can be done, where the chip layout 

is adjusted. 

3.5.1 ZedBoard Zynq-7000 ARM/FPGA SoC Development Board 

The Zedboard is the development board for the Xilinx Zynq®-7000 system-on-chip 

device is commonly used for implementation of hardware algorithms, including 

neuromorphic system designs [75]. For implementation, the constraints file of the 



52 

 

Zedboard is needed in the design, which also suffices for implementation on the IDE. 

The Zedboard architecture consists of two fundamental sections which are the 

processor subsystem (PS) and the programmable logic (PL).  The PL section is 

optimum for the implementation of high-speed  logic,  arithmetic  and  data  flow  

subsystems,  while  the  PS   supports   software   routines   and operating systems 

[90]. This is illustrated in Figure 3.18. 

 

Figure 3.18: Block diagram of the Zedboard. 

3.6 Summary 

The methods proposed in this work involve DWT and binarization to preprocess 

the raw ECG data into a binary input for the SNN. In the SNN itself, STDP is 

employed as the training mechanism for ECG classification.  Implementation of the 

RTL design is then performed for the Zedboard with a constraints file. 



RESULTS AND DISCUSSION

4.1 Overview

In this chapter, the findings of this work are presented and discussed. This is 

arranged according to the corresponding objective, first being to investigate the 

building blocks of a neuromorphic design, which is detailed in Section 4.2. The 

findings fulfilling the second objective are presented in Section 4.3, from analyzing 

spike-based plasticity. Section 4.4 discusses the results from implementation on a 

neuromorphic circuit, while Section 4.5 compares the findings with findings by other 

authors.

4.2 Building Blocks of a Neuromorphic Design

This work contributes the processes and techniques involved in designing a 

neuromorphic circuit customized for ECG classification. In doing this, several SNN 



54 

 

building blocks that make up a neuromorphic design were studied and implemented. 

This refers to the steps involved in enabling neuromorphic computing, such as 

preprocessing the input data, training the network and testing the network for 

classification functionality. These building blocks come together to form a complete 

neuromorphic design that employs SNN for classification. 

4.2.1 Preprocessing Block 

For digital implementation of an SNN such as in this work, the data is processed 

by the network digitally [47], [91]. When the data being used is not in digital or binary 

form, it requires preprocessing [92],[93],[94] before being fed into the network as 

input. The DWT is applied to the ECG data obtained from the MIT-BIH arrhythmia 

database (MITDB). Figures 4.1 and 4.2 show the results of each individual step of 

preprocessing performed on normal and abnormal ECG signals respectively. 

 

Figure 4.1: Results of each preprocessing step performed in MATLAB for 
record 105 (normal). 



55 

 

 

Figure 4.2: Results of each preprocessing step performed in MATLAB for 
record 201 (abnormal). 

 

The preprocessing step applied to the ECG data is mainly the DWT. The first round 

of DWT uses Daubechies db6 wavelet to filter the original ECG signal by removing 

the high- and low-frequency elements in the signal [95], resulting in the differences in 

the ECG signal shown in Figure 4.3 and Figure 4.4. Due to the R peaks in the ECG 

signal still being prominent after the first round of DWT as shown in the figure, the 

peaks are preserved before the second round of DWT by binarizing the signal at this 

point. By doing this, it is observed in Figure 4.5 

s. 



56 

 

 

Figure 4.3: The ECG signal for record 111 before any preprocessing. 

 

Figure 4.4: The ECG signal for record 111 after being filtered by the db6 
wavelet. 



57 

 

  

Figure 4.5: The binarized ECG signal for record 111 after being filtered by 
the db6 wavelet. 

The second round of DWT is performed 

compresses the signal by down sampling it [96], resulting in a 35-bit representation of 

the signal as shown in Figure 4.6. It can be seen at this point that the R peaks observed 

in the earlier stages of preprocessing are still preserved and can be easily seen. This is 

binarized to get a 35-bit binary representation of the ECG signal.  

 

Figure 4.6: The ECG signal for record 111 after being filtered by the db6 
and db2 wavelets. 



58 

 

One particular downside of the preprocessing method used in this work is that 

threshold value used at the binarization stages. This is illustrated in Figures 4.7 and 

4.8, where a threshold value of 0.7 is used for both. This indicates that the points with 

amplitude higher than 0.7 in the normalized ECG signal after the first round of DWT 

will be binarized to 1, while the rest are binarized as 0. 

 

Figure 4.7: Peak detection in Record 115 with a threshold of 0.7. 

 

Figure 4.8: Peak detection in Record 111 with a threshold of 0.7. 

For record 111, the shape of the original ECG signal is still preserved, but the R 

peaks have different amplitudes. When 0.7 is used as the threshold value, most of the 

lower amplitude that is below 0.7. 



59 

 

4.2.2 Training Block 

With the 35-bit binary ECG data, the SNN in Ref.[47] can be adapted to classify 

the data. For training, the data is arranged in an array in the Top script and fed into the 

network via the Digit signal. The pseudocode for feeding the data into the network is 

shown in Figure 4.9, where the switching of data is controlled by the signal 

Image_Signal which is two bits, Image_Signal(0) and Image_Signal(1). To achieve 

this, the training data is arranged in an array as shown in Table 4.1. 

Table 4.1: Arrangement of training data in arrays. 

Normal data array 
(normalSequence) 

Abnormal data array 
(abnormalSequence) 

Position in array ECG record no. Position in array ECG record no. 
0 100 0 102 
1 105 1 107 
2 106 2 200 
3 112 3 201 
4 114 4 203 
5 121 5 207 
6 205 6 210 
7 222 7 221 
8 223 8 232 

 

Two counter variables are introduced, n_counter for normal data and a_counter for 

abnormal data. The mechanism used is to increment each counter by one whenever 

the Image_Signal control signal changes. In this case, the normal data is inserted when 

Image_Signal(0) is 1, otherwise abnormal data is inserted if Image_Signal(1) is 1. The 

pseudocode for increment of array pointer is shown in Figure 4.10, and the result 

showing insertion of multiple ECG records for training is shown in Figure 4.11.  



60 

 

 

Figure 4.9: Pseudocode for insertion of multiple data. 

 

Figure 4.10: Pseudocode for increment of array pointer. 

 

Figure 4.11: Insertion of training data automated by the counters moving 
through the normal and abnormal data arrays. 

4.2.3 Testing Block 

For testing the network, three ECG records are used for each category. The test data 

is inserted into the Digit_Noise signal, which is modified through the testbench of the 

Top script. The output of the SNN is observed at neurons 37 and 38, which are the 

output neurons for normal and abnormal categories respectively. When normal data is 

inserted into the network via Digit_Noise, neuron 37 spikes as shown in Figure 4.12. 

On the other hand, if abnormal data is inserted into the network via Digit_Noise, 

neuron 38 spikes as shown in Figure 4.13. 



61 

 

 

Figure 4.12: Neuron 37 spikes to classify record number 103 correctly as 
normal. 

 

Figure 4.13: Neuron 38 spikes to classify record number 217 correctly as 
abnormal. 

The accuracy of this classification is generally correct, although the exact figure for 

accuracy percentage is unable to be determined based on the behavioral simulation 

purely

In this situation, there is a rare instance of both neurons spiking at the same time as 

shown in Figure 4.14, which cannot be quantified. With the observation of the neurons 

spiking mostly correctly at this stage, the design process is continued. 

 

Figure 4.14: The incorrect output neuron randomly spikes while the correct 
output neuron is spiking. 



62 

 

4.3 Analysis of Spike-based Plasticity 

Adapting the SNN architecture proposed in [47] as detailed in Section 3.3.2, the 

mechanism and working principle of STDP is visually represented in Figure 4.15. The 

simulation shows a neuron connected to a previous layer of three neurons. The 

Pre_Spike signal contains three binary numbers representing the synapses of that 

previous layer of neurons. The Post_Spike signal goes high when the neuron fires, 

telling the observer that the neuron has fired. 

 

Figure 4.15: STDP when the pre-synaptic neuron fires before the post-
synaptic neuron does. 

In Figure 4.15, one of the synapses on Pre_Spike signal spikes at around 20ns. At 

150ns, the Post_Spike signal goes high to indicate that the post-synaptic neuron has 

fired. The theory applied here is that due to the neuron firing after the pre_synaptic 

neuron fired, it is assumed that the pre-synaptic neuron contributed to the firing of the 

neuron by increasing the voltage at the membrane of the neuron, making it closer to 

the threshold value. From this theory, the weight of the synapse between the post-

synaptic neuron and the first pore-synaptic neuron is increased from 0 to 1, indicating 

that the synapse has strengthened.  



63 

 

 

Figure 4.16: STDP when the pre-synaptic neuron fires after the post-synaptic 
neuron does. 

Figure 4.16 shows the opposite scenario of Figure 4.15, where the Post_Spike 

signal goes high before the Pre_Spike signal does. According to the STDP rule, it is 

assumed that the synapse between the first pre-synaptic neuron and the post-synaptic 

neuron are less significant, thus the weight of that synapse is decreased from 0 to -2. 

In this work, STDP rule is applied to train the neurons, where neurons 37 and 38 are 

the neurons in the output layer trained to recognize normal and abnormal ECG data 

respectively.  

4.4 Implementation on a Neuromorphic Circuit 

After the neuromorphic RTL design is completed and behavioral simulation shows 

the desired result, it can then proceed to the implementation stage. The implementation 

in this work is targeted for an FPGA which is Zedboard, detailed in Section 2.5.1. 

Several steps are involved in this process, which are performed in the Vivado 

environment. 



64 

 

4.4.1 Synthesis 

The completed RTL design is synthesized, which is a step where the design is 

converted into a netlist and can be viewed as gate-level circuits [97]. The synthesis 

tool will not be executed if it detects errors in the construct of the RTL code, such as 

syntax errors and synthesis errors. Synthesis errors may come from RTL constructs or 

structures used in the code which can be simulated behaviorally but cannot be logically 

converted into gates for the FPGA implementation. Thus, successful synthesis ensures 

that the VHDL code is synthesizable. It produces two schematic circuits, which are 

the RTL schematic and technology schematic.  

 

Figure 4.17: RTL schematic of the synthesized design. 



65 

 

 

Figure 4.18: Close-up of gates in RTL schematic. 

The RTL schematic is the design shown at earlier stages of the synthesis step, prior 

to completion of the technology mapping. This schematic is shown to be the closest 

possible graphical representation goal of the RTL design that has been coded [97]. The 

RTL schematics in Figures 4.17 and 4.18 show a pre-advanced layout in terms of more 

conventional blocks such as adders, counters and multipliers, as well as logic gates for 

combinatorial logic, according to the Xilinx RTL and Technology Schematic Viewers 

Tutorial (UG685). 



66 

 

 

Figure 4.19: Technology schematic of the synthesized design. 

 

Figure 4.20: Close-up of the Zedboard-specific elements shown in the 
technology schematic. 

The technology schematic in Figures 4.19 and 4.20  shows more detailed 

information of the actual elements used in the target FPGA after the synthesis process 

finishes the optimization and technology targeting stage [98]. Thus, this schematic 

represents logic elements such as LUTs and I/O buffers which are specific to and 

already optimized to the Zedboard FPGA.  



67 

 

4.4.2 Hardware Resource Utilization 

The hardware utilization on the target FPGA can be calculated by Vivado, where a 

utilization report is generated after implementation. The utilization report shows the 

amount of hardware resources [99] on the Zedboard that would be used by this design 

implementation. The utilization of this design is tabulated in Table 4.2 and graphically 

represented in Figure 4.21. 

Table 4.2: Hardware resource utilization report. 

Resource Available Utilized Utilization percentage (%) 
LUT 53200 908 1.71 

LUTRAM 17400 38 0.22 
FF 106400 919 0.86 

DSP 220 2 0.91 
IO 200 10 5.00 

 

 

Figure 4.21: Graphical representation of hardware resource utilization 
percentages. 

From the table, it is observed that the proposed design occupies 908 out of 53200 

look up tables, 919 out of 106400 slice registers and 10 out of 200 bonded input 

outputs of the Zedboard. In total, approximately 1.058% of the Zedboard FPGA 

resources are utilized by the design. This indicates that less hardware is needed in the 

implementation of this design [100], making it more cost-effective for hardware 

implementation.  



68 

 

4.4.3 Power Report 

The Vivado tool allows power reports to be generated at two points in the design 

process, which are post-synthesis and post-implementation. There are also two modes 

in which the power report may be generated, which are vector-based and vectorless. 

The main difference between them is that vector-based mode requires a simulation 

activity file [101], or a SAIF file. The role of the SAIF file is to provide information 

on the switching activity for each individual register and net in the design. However, 

in this work, the power reports are based on vectorless mode, where the power usage 

is estimated without the simulation activity file. The power reports generated by 

Vivado show the power consumption when the device is in static mode and dynamic 

mode [102], which are shown in Figure 4.22.  

 

Figure 4.22: The stages of power consumption in an FPGA. 

The power reports generated for post-synthesis and post-implementation in this 

work are shown in Figures 4.23 and 4.24 respectively. It is observed that the estimated 

power consumption after synthesis is 12.618W, 92% of which is dynamic power while 

the estimated power consumption after implementation is 9.558W, 89% of which is 

dynamic power. 



69 

 

 

Figure 4.23: Post-synthesis power report. 

 

Figure 4.24: Post-implementation power report. 

Comparing the power reports post-synthesis and post-implementation, it can be 

seen that the overall power estimation decreases after implementation. The post-

implementation power estimation of 9.558W for a non-Von Neumann processor is 

comparatively lower than conventional Von Neumann processors, which can consume 

up to 100W [103]. Furthermore, as aforementioned, these figures are based on 

vectorless estimation, where the tool calculates the probability of switching rate, 

which may be inaccurately optimized, as the default values are used in this estimation. 

High switching activity prediction would cause an increase in dynamic power 

consumption. Thus, dynamic power consumption could still be further reduced by 



70 

 

optimizing the design to reduce switching rates. The switching rates should be 

determined based on the ECG classification function of the design, involving further 

simulation to generate a SAIF file.  

 

Figure 4.25: Default switching activity settings in power estimation. 

4.5 Performance Comparison with Previous Research 

Previous research implementing ECG classification on an FPGA is tabulated in 

Table 4.3, including the outcome of the proposed design. It is observed that in terms 

of hardware resource utilization, the proposed design is rather on par with results of 

previous research, where conventional computing is employed on the FPGA for ECG 

classification. In the area of power, there is high potential for further development in 

future work, as described in Chapter 5. 

 



71 

 

Table 4.3: Comparison of proposed design with previous research. 

Publication Lookup 
tables  

RAM  Slice 
registers  

DSP  IO Total 

Gu et al. 
[76] (2016) 

10116 91 3433 20 - 13660 

Zhai et al. 
[77] (2017) 

16133 17 11797 12 - 27959 

Madiraju et 
al. [78] 
(2018) 

4324 - 1540 125 30 6019 

Proposed 908 38 919 2 10 1877 

 

4.6 Summary 

The main contribution of this work which investigates building blocks and 

techniques to design a neuromorphic circuit customized for ECG classification is 

detailed in this chapter. The building blocks of a neuromorphic design are investigated, 

which are preprocessing the input data, training the SNN with it, and testing the SNN. 

The STDP mechanism is also analyzed by performing behavioral simulation to 

observe the behavior of the STDP module. The implementation of the design on a 

neuromorphic circuit is performed, returning a hardware resource utilization 

percentage of about <2% overall.



CONCLUSION AND FUTURE WORKS

5.1 Overview

This chapter concludes the findings and objectives achieved throughout this work

in Section 5.2. In Section 5.3, future works for improvement of this work are 

suggested. The lifelong learning gained from the completion of this work is also 

outlined in Section 5.4.

5.2 Conclusion

In this work, each of the objectives have been achieved. Overall, the main 

contribution of this work is the methods required to design a neuromorphic circuit on 

FPGA employing SNN to classify ECG data. This fulfills the research gap discussed 

in Section 1.3, which is on the implementation of neuromorphic circuits for ECG 

classification using FPGAs.



73 

 

To achieve the first objective, the common building blocks and techniques used for 

a neuromorphic circuit based on SNN were investigated. The common building blocks 

include pre-processing, training and testing of the network. These are considered the 

main building blocks because they are the three high-level phases in the process of 

designing an SNN for neuromorphic implementation and are explored in detail in 

Section 4.2. The preprocessing block in this work takes an analog ECG signal and 

For the 

training block, the technique applied is the spike-based plasticity mechanism. Since 

the ECG data has two classifications which are normal data and abnormal data, the 

network has two training neurons, each trained to recognize one type of data. As for 

the testing block, the result is observed at the output neurons linked to their respective 

training neurons for each category. The output neurons spike accordingly, whether 

normal or abnormal data is inserted for testing. 

For the second objective, spike-based plasticity mechanism in neuromorphic circuit 

is also analyzed. STDP is applied here, whereby synapses between neurons are 

strengthened when the pre-synaptic neuron spikes before the post-synaptic neuron 

does, assuming that the pre-synaptic spike contributed to the post-synaptic spike. In a 

neuromorphic circuit, a digital representation of this mechanism has to be 

implemented. The model is shown in Figure 3.15, where the STDP module has six 

input signals, and three output signals that write to the RAM of the corresponding 

neurons whether the weights are increased or decreased. The results of behavioral 

simulation are shown in Section 4.3, to visually represent the behavior of the STDP 

module. 



74 

 

Lastly, the third objective involves ECG implementation on a neuromorphic circuit, 

which has been achieved is performed in this work as well, where the design process 

is executed from the RTL design to synthesis and implementation. After successful 

behavioral simulation of ECG classification in the RTL design, the design is 

synthesized to ensure all elements in the design are synthesizable on an FPGA. This 

step outputs a gate-level netlist of the RTL design as described in Section 4.4.1. Then, 

the implementation stage maps the netlist onto the resources of the target FPGA 

according to the constraints file provided, which in this case is the Zedboard. Sections 

4.4.2, 4.4.3 and 4.5 analyze the hardware resource utilization of the design and 

benchmark it with other papers published in the same area. 

5.3 Future Works 

Due to timing and resource constraints during the development of this work, several 

aspects of improvement were not able to be explored. These aspects are detailed in the 

following subtopics. 

5.3.1 Adaptive Peak Detection 

In this work, DWT is used in the preprocessing stage to filter out the R peaks in the 

ECG signals and encode them as binary highs. In the binarizing process, there is a 

thresholding step that enables the peaks to be encoded by converting points higher 

This poses an issue when 

the same threshold value is unable to detect peaks for all ECG signals. This is 

illustrated in Figures 4.7 and 4.8, where a threshold value of 0.7 would be able to filter 

out the peaks in Record 115 (Figure 4.7) but not in Record 111 (Figure 4.8). As a 

result, a threshold of 0.7 is used but with manual correction for extreme cases where 

the thresholding value is unable to accurately detect the peaks. 



75 

 

In future works, adaptive thresholding could be implemented into the preprocessing 

system designed, where the shape of the ECG signal is viewed as a whole and the 

peaks, which are a small percentage of the signal that have higher amplitude than the 

others, can be visually detected, adaptively adjusting the threshold values applied. 

5.3.2 Unified Power Format 

In this work, the power estimation is performed using Vivado tools in vectorless 

mode. This means that the switching activity is only an estimate, and not modelled 

based on the application of the system for ECG classification. While the power 

consumption could be improved with a more accurate SAIF file, a better method 

would be applying the Unified Power Format (UPF). 

 UPF is the IEEE 1801 Standard for Design and Verification of Low Power 

Integrated Circuits, which is a collective group of commands for specifying the design 

intent of multi-voltage electronic systems. Using UPF, various aspects of power 

management can be specified using one set of power design specification commands 

throughout the design flow, from RTL design up to implementation. An effective 

technique used in UPF is power-gating, where the chip layout is divided into different 

power domains as illustrated in Figure 5.1. This is so that if a domain of the chip is 

inactive, it can be powered off to reduce power consumption. 



76 

 

 

Figure 5.1: A visual representation of how a chip is divided into different 
power domains for power-gating. 

While UPF is typically applied in the designing of ASICs, the technique can also 

be adopted for FPGA designs [104]. In future works, the inclusion of UPF in this 

design could potentially lower the power consumption drastically, further stretching 

the benefits of neuromorphic computing. 

5.3.3 Hardware Deployment 

With fine-tuning and design improvements made to the proposed design in this 

work, the design could be deployed to hardware in future works. This could be done 

on the Zedboard, which is the target device this design was developed for. Besides 

hardware deployment being the next step after implementation of the design, it would 

classification, the hardware would be a platform for the user to observe which singular 

category the data is classified into, rather than observing the spiking neurons. This 

also goes for the power consumption, as bench measurement [105] is the most accurate 

way to measure power consumption. 



77 

 

5.4 Lifelong Learning 

The lifelong learning aspects obtained from this work comprise of technical skills 

as well as academic and personal development skills. In terms of technical skills, 

several skills applied in this work were self-taught based on online learning materials, 

such as coding in VHDL, which is the HDL used for RTL design in this work. The 

overall process of neuromorphic circuit design and analysis in this work was also part 

of the technical skills that were self-taught and independently researched. This has led 

to the academic skills obtained throughout the completion of this work, where 

continuous research and reading has been done for every step of the way, instilling the 

ability to compare and cross-reference different materials to ensure the correct 

information is applied. Lastly, personal skills were developed during the completion 

of this work as well. This includes responsibility, self-discipline, and self-motivation 

to continuously progress throughout the many stages of this project. 

5.5 Summary 

In conclusion, the three objectives of this work have been achieved. Some future 

works that could bring this work to its full potential include using adaptive peak 

detection in the preprocessing stage, writing UPF for the design, as well as deploying 

it on hardware. Several lifelong learning is also gained from this work which are 

technical, academic and personal development skills.   

 



78 

 

REFERENCES  

[1] - Diabetes Metab. Syndr. 

Clin. Res. Rev., vol. 14, no. 3, pp. 247 250, 2020, doi: 

10.1016/j.dsx.2020.03.013. 

[2] S. Parvaneh, J. Rubin, S. Babaeizadeh, and M. Xu-

J. Electrocardiol., vol. 57, pp. S70

S74, 2019, doi: 10.1016/j.jelectrocard.2019.08.004. 

[3] U. R. Acharya, H. Fujita, O. S. Lih, Y. Hagiwara, J. H. Tan, and M. Adam, 

Inf. Sci. (Ny)., vol. 405, pp. 

81 90, 2017, doi: 10.1016/j.ins.2017.04.012. 

[4] W. Damelin, S. B., & Miller Jr, The mathematics of signal processing (No. 48). 

Cambridge University Press, 2012. 

[5] 

Design and Architectures for Digital Signal Processing, InTech, 2013, pp. 179

209. 



79 

 

[6] 

THE POWER CONSUMPTION OF CONVOLUTIONAL NEURAL 

NETWORKS FOR KEYWORD SPOTTING Raphael Tang Weijie Wang 

Jimmy Lin David R . Cheriton School of Computer Science University of 

2018 IEEE Int. Conf. Acoust. Speech Signal Process., pp. 5479

5483, 2018. 

[7] -

accuracy trade-

J. Low Power Electron., vol. 14, no. 4, pp. 508 519, 2018, doi: 

10.1166/jolpe.2018.1582. 

[8] 

Biomed. Signal Process. Control, vol. 63, no. May 

2020, p. 102170, 2021, doi: 10.1016/j.bspc.2020.102170. 

[9] J. Upadhyay, N. K., Jiang, H., Wang, Z., Asapu, S., Xia, Q., & Joshua Yang, 

Adv. Mater. 

Technol., vol. 4, no. 4, 2019. 

[10] W. Covi, E., Donati, E., Liang, X., Kappel, D., Heidari, H., Payvand, M., & 

Front. 

Neurosci., vol. 15, 2021. 

[11] M. F. Chen, W. H., Khwa, W. S., Li, J. Y., Lin, W. Y., Lin, H. T., Liu, Y., ... & 

cations using emerging 

2017 18th Int. 

Symp. Qual. Electron. Des., no. 23 28. 



80 

 

[12] 

Electrocardiogram Using Adaptive Filtering Based on Skin-Potential Variation 

EAI International Conference on Body Area Networks, pp. 

465 472. 

[13] 

J. Sens. Sci. Technol., vol. 30, no. 1, pp. 20 24, 2021, doi: 

10.46670/jsst.2021.30.1.20. 

[14] 

Comput. Biol. Med., vol. 48, pp. 133 149, 

2014. 

[15]  various machine 

J. Med. Syst., vol. 42, no. 12, pp. 1 11, 2018. 

[16] 

IEEE Trans. Instrum. Meas., vol. 50, no. 3, pp. 808

812, 2001. 

[17] P. R. F. do Vale Madeiro, J. P., Cortez, P. C., da Silva Monteiro Filho, J. M., & 

Dev. Appl. ECG Signal Process., pp. 53 87, 2019. 

[18] etic algorithm with local search 

as modified swine influenza model-based optimization and its use in ECG 

J. Optim., 2014. 

[19] 



81 

 

baseline wander removal techniques considering the preservation of ST 

Comput. Math. Methods 

Med., 2017. 

[20] J. P. Antman, E. M., Anbe, D. T., Armstrong, P. W., Bates, E. R., Green, L. A., 

ement of patients 

with ST-elevation myocardial infarction: a report of the American College of 

Cardiology/American Heart Association Task Force on Practice Guidelines 

J. Am. Coll. 

Cardiol., vol. 44, no. 3, pp. 1 211, 2004. 

[21] 

algorithm for pre- Proceedings 

of the Fourth International Conference on Signal and Image Processing 2012 

(ICSIP 2012), 2013, pp. 193 201. 

[22] J. X. Wan, X. K., Wu, H., Qiao, F., Li, F. C., Li, Y., Yan, Y. W., & Wei, 

morphological and wavelet transformation- Comput. Math. 

Methods Med., 2019. 

[23] 

2011 5th International Conference on Bioinformatics and 

Biomedical Engineering, pp. 1 4. 

[24] S. M. Sun, Y., Chan, K. L., & Krishnan, 

Comput. Biol. Med., vol. 32, no. 6, pp. 465 479, 2002. 



82 

 

[25] -Traditional Input 

Proc. Int. Jt. Conf. 

Neural Networks, vol. 2019-July, 2019, doi: 10.1109/IJCNN.2019.8852139. 

[26] N. Sengupta, N., & Kasabov -time encoding as a data compression 

Inf. Sci. (Ny)., vol. 406, pp. 

133 145, 2017. 

[27] 

by spiking neurons with stdp Procedia Comput. Sci., vol. 

23, pp. 494-500., 2018. 

[28] 

Adv. Neural Inf. Process. Syst., pp. 75 82, 2006. 

[29] R. M. Petro, B., Kasabov, N., & K

IEEE Trans. neural 

networks Learn. Syst., vol. 31, no. 2, pp. 358 370, 2019. 

[30] 

Analog 

(cam- nternational Conf. Robot. Artif. life (Vol. 92). Citeseer. 

[31] 

encoding scheme. In . (Vol. Proceedings of the International 

Joint Conference on Neural Networks, 2003, pp. 2825 2830. 

[32] 

Arrhythmia Auto- Classification and Biometric Recognition Systems Using 



83 

 

 

[33] X. Zhang, D., Wang, S., Li, F., Wang, J., Sangaiah, A. K., Sheng, V. S., & Ding, 

-noising approach based on wavelet energy and sub-band 

Appl. Sci., vol. 9, no. 22, p. 4968, 2019. 

[34] A. Daqrouq, K., Ajour, M., Al-

wavelet transform based electrocardiographic baseline wander reduction 

J. Med. Imaging Heal. Informatics, vol. 8, 

no. 8, pp. 1590 1597, 2018. 

[35] 

Int. J. Online Eng., vol. 13, no. 9, 2017. 

[36] 

discrete wavel 2016 IEEE International Conference on 

Engineering and Technology (ICETECH), 2016, pp. 713 718. 

[37] 

Type of Wavelet Filter for De-  

[38] 

2019 2nd International 

Conference on Power and Embedded Drive Control (ICPEDC), 2019, pp. 122

128. 

[39] R. Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., Adam, M., Gertych, A., 

Comput. Biol. Med., vol. 89, pp. 389 396, 2017. 



84 

 

[40] n 

Noba Textbook Series: Psychology, DEF Publishers, 

Champaign, 2019. 

[41] D. Ghosal, N. Majumder, S. Poria, N. Chhaya, and A. Gelbukh, 

EMNLP-IJCNLP 2019 - 2019 Conf. Empir. Methods Nat. 

Lang. Process. 9th Int. Jt. Conf. Nat. Lang. Process. Proc. Conf., vol. 2, pp. 

154 164, 2020, doi: 10.18653/v1/d19-1015. 

[42] S. Albawi, S., Mohammed, T. A., & Al-

2017 International Conference on 

Engineering and Technology (ICET), pp. 1 6. 

[43] 

2017 IEEE 2nd International Conference on Big Data 

Analysis (ICBDA), pp. 721 724. 

[44] 

International Conference on 

Information Processing and Management of Uncertainty in Knowledge-Based 

Systems, pp. 59 69. 

[45] 

Proc. - 2019 Int. Conf. Comput. Commun. 

Intell. Syst. ICCCIS 2019, vol. 2019-Janua, no. 1, pp. 15 19, 2019, doi: 

10.1109/ICCCIS48478.2019.8974507. 



85 

 

[46]  - A Field-Programable Custom 

Computing Machine for Extreme-Scale Real-Time Neural Network 

2012 IEEE 20th International Symposium on Field-

Programmable Custom Computing Machines, 2012, pp. 133 140. 

[47] 

 

[48] J. C. Bittner, K. C., Milstein, A. D., Grienberger, C., Romani, S., & Magee, 

Science 

(80-. )., vol. 357, no. 6355, pp. 1033 1036, 2017. 

[49] pike-Timing-

Neuron, vol. 103, no. 4, pp. 

563 581, 2019. 

[50] 

Data Sci. Mach. Learn., 2010. 

[51] G. Bauer, F. C., Muir, D. R., & I -time ultra-low power ECG 

anomaly detection using an event- IEEE 

Trans. Biomed. Circuits Syst., vol. 13, no. 6, pp. 1575 1582, 2019. 

[52] 

and R-STDP Neural Networks for Real-Time Monitoring on Ultra Low-Power 

IEEE Trans. Biomed. Circuits Syst., vol. 13, no. 

6, pp. 1483 1493, 2019, doi: 10.1109/TBCAS.2019.2948920. 

[53] -Lead ECG 



86 

 

uuid:3b7de584-23c6-4d46-b32a-0fe57c4f8dbd. 

[54] J. S. Schuman, C. D., Potok, T. E., Patton, R. M., Birdwell, J. D., Dean, M. E., 

Rose, G. S., & Plank, A survey of neuromorphic computing and neural networks 

in hardware. 2017. 

[55] 

current and its application t J. Physiol., 

vol. 117, no. 4, pp. 500 544, 1952. 

[56] -

19, 2021. 

[57] Y. Levi, T., Khoyratee, F., Saïghi, S., 

Hodgkin Artif. Life 

Robot., vol. 23, no. 1, pp. 10 14, 2018. 

[58] 

IEEE Trans. neural networks Learn. Syst., vol. 25, no. 8, pp. 

1474 1483, 2013. 

[59] IEEE Trans. neural 

networks Learn. Syst., vol. 14, no. 6, pp. 1569 1572, 2003. 

[60] H. Elnabawy, A., Abdelmohsen, H., Moustafa, M., Elbediwy, M., Helmy, A., 

-based hardware implementation of 

2018 16th IEEE International New Circuits and 

Systems Conference (NEWCAS), pp. 130 133. 



87 

 

[61] H. Ismail, A. A., Shaheen, Z. A., R

Low Power Hardware Implementation of Izhikevich Neuron using Stochastic 

2018 30th International Conference on Microelectronics 

(ICM), 2018, pp. 315 318. 

[62] Soc Biol, vol. 77, pp. 

280 283, 1909. 

[63] 

integrate-and- Biol. Cybern., vol. 97, no. 5, pp. 337 339, 2007. 

[64] Electronics Magazine 38(8), p. 114, 1965. 

[65] 

Proceedings of the IEEE, vol. 102, no. 5, pp. 860 880. 

[66] ent in 

Bull. Math. Biophys., vol. 5, pp. 115 133, 1943. 

[67] 

Nanotechnology, vol. 31, no. 9, 2019. 

[68] -Chip 

Lea IEEE Micro, vol. 38, no. 1, pp. 82 99. 

[69] IEEE Spectr., vol. 51, no. 10, pp. 17 19, 

2014. 

[70] H. Lin, C. K., Wild, A., Chinya, G. N., Cao, Y., Davies, M., Lavery, D. M., & 

Computer 



88 

 

(Long. Beach. Calif)., vol. 51, no. 3, pp. 52 61, 2018. 

[71] M. V. D. J. Sawada, F. Akopyan, A S. Cassidy, B. Taba and R. A. P. Datta, R. 

Alvarez-

for Brain-

2016. 

[72] D. S. Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, 

-neuron integrated circuit with 

a scalable communi Science (80-. )., vol. 345, no. 

6197, pp. 668 673, 2014. 

[73] -evolution of spiking 

2016 IEEE Symp. 

Ser. Comput. Intell., pp. 1 6. 

[74] 

in Proceedings of the IEEE, vol. 102, no. 5, pp. 652 665. 

[75] A. Valancius, S., Richter, E., Purdy, R., Rockowitz, K., Inouye, M., Mack, J., 

A Based Emulation Environment for Neuromorphic 

2020 IEEE International Parallel and Distributed 

Processing Symposium Workshops (IPDPSW), 2020, pp. 90 97. 

[76] -time FPGA-

based accelerator for ECG analysis and diagnosis using association-rule 

ACM Trans. Embed. Comput. Syst., vol. 15, no. 2, pp. 1 23, 2016. 

[77] 



89 

 

identification based security solution on the Zynq SoC for connected health 

J. Parallel Distrib. Comput., vol. 106, pp. 143 152, 2017. 

[78] 

 

[79] 

Circuits, Syst. Signal 

Process., pp. 1 16, 2020. 

[80]  and challenges 

Comput. Biol. Med., vol. 122, no. December 2019, p. 103801, 2020, doi: 

10.1016/j.compbiomed.2020.103801. 

[81] - 92. 

https://physionet.org/physiobank/database/mitdb/ (accessed May 02, 2021). 

[82]  and H. E. S. A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. 

C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-

PhysioToolkit, and PhysioNet: Components of a new research resource for 

Circulation, vol. 101, no. 23, pp. 215 220. 

[83] 

J. Am. Stat. Assoc., vol. 90, no. 432, p. 1200. 

[84] T. Ogden, Essential Wavelets for Statistical Applications and Data Analysis. 

Birkhäuser, 1996. 



90 

 

[85] 

Int. J. Comput. Appl., vol. 96, no. 12, pp. 

36 41, 2014, doi: 10.5120/16850-6712. 

[86] Bioelectrical signal 

processing in cardiac and neurological applications (Vol. 8), Academic Press, 

2005, pp. 181 336. 

[87] 

of multichannel MCG data by the combination of EEMD and ICA and its effect 

Biomed. Signal Process. Control, vol. 18, 

pp. 204 213, 2015. 

[88] A. Goodfellow, I., Bengio, Y., & Courville, Deep learning. MIT press., 2016. 

[89] J. A. Thomas, D. E., Lagnese, E. D., Walker, R. A., Rajan, J. V., Blackburn, R. 

L., & Nestor, Algorithmic and Register-Transfer Level Synthesis: The System 

, 85th ed. Springer 

Science & Business, 1989. 

[90] M. A. Tambara, L. A., Kastensmidt, F. L., Medina, N. H., Added, N., Aguiar, 

testing of the 28 nm xilinx zynq- 2015 IEEE 

Radiat. Eff. Data Work., pp. 1 6. 

[91] M. Bobin, C., Bichler, O., Lourenço, V., Thiam, C -time 

-emitter mixtures based on spiking neural 

Appl. Radiat. Isot., vol. 109, pp. 405 409, 2016. 



91 

 

[92] F. Corradi et al. -based Heartbeat Classification in Neuromorphic 

Proc. Int. Jt. Conf. Neural Networks, vol. 2019-July, no. July, pp. 

1 8, 2019, doi: 10.1109/IJCNN.2019.8852279. 

[93] 

MIT- 2018 Int. Conf. Comput. Approach Smart Syst. 

Des. Appl. ICASSDA 2018, 2018, doi: 10.1109/ICASSDA.2018.8477620. 

[94] 

no. 0926401. 

[95] D. Sundararajan, Discrete wavelet transform: a signal processing approach. 

John Wiley & Sons, 2016. 

[96] 

J. Adv. Navig. Technol., vol. 

20, no. 6, pp. 539 543, 2016. 

[97] n of low 

Microprocess. Microsyst., vol. 79, 2020. 

[98] V. Taraate, VHDL Design and RTL Tweaks. Springer, 2020. 

[99] cation 

2018 International Conference on Advances in 

Computing, Communications and Informatics (ICACCI), 2018, pp. 1499 1504. 

[100] 



92 

 

synthesize and performance analysis of intelligent transportation using canny 

Int. J. Eng. Manuf.(IJEM), vol. 11, pp. 22 32, 2021. 

[101] -

PSC: Automated power side-channel leakage assessment at register-transfer 

2019 IEEE 37th VLSI Test Symp., pp. 1 6. 

[102] R. Seeram, S. S. S. G., Polireddi, S. N. N., Somanathan, G. R., & 

Combining Mentor Graphics HDL Designer and Xilinx VIVADO FPGA 

2020 Int. Conf. Commun. Signal Process., pp. 738 742. 

[103] -

Based Artificially Intelligence Complementing the von Neumann 

SICE J. Control. Meas. Syst. Integr., vol. 10, no. 6, pp. 544 550, 

2017. 

[104] -management specification to FPGA-

2016 International Conference on Emerging eLearning 

Technologies and Applications (ICETA), 2016, pp. 199 204. 

[105] 

FPGA-based Real-time Spatial Harmonics Model of a PMSM Considering Iron 

IEEE Trans. Transp. Electrif., 2021. 

 




