
IMPLEMENTATION OF INTERNET OF THINGS(IOT) ON CAR
PLATE RECOGNITION SYSTEM WITH DATABASE FOR

SURVEILLANCE PURPOSE

ANTHONY LAI CHI AN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

IMPLEMENTATION OF INTERNET OF THINGS(IOT) ON CAR
PLATE RECOGNITION SYSTEM WITH DATABASE FOR

SURVEILLANCE PURPOSE

ANTHONY LAI CHI AN

This report is submitted in partial fulfillment of the requirements

for the degree of Bachelor of Electronic Engineering with Honours

Faculty of Electronic and Computer Engineering

Universiti Teknikal Malaysia Melaka

JUNE 2020

ii

DECLARATION

I declare that this report entitled “Implementation of Internet of Things on Car Plate

Recognition System For Surveillance Purpose” is the result of my own work except

for quotes as cited in the references.

Signature : …………………………………

Author : Anthony Lai Chi An

Date : …………………………………

 anthony

24 June 2020

APPROVAL

I hereby declare that I have read this thesis and in my opinion, this thesis is sufficient

in terms of scope and quality for the award of Bachelor of Electronic Engineering with

Honours.

Signature : …………………………………

Supervisor Name : …………………………………

Date : …………………………………

24 June 2020

i

DEDICATION

I would like to dedicate my work to my friends and my project supervisor. I also

feel great gratitude to my beloved parents, Lee Tin and Joo Kwang whose supportive

and always give me guided me while completing my thesis.

i

ABSTRACT

The project aims to develop an application to associate with car plate recognition to

check a vehicle validity on a database over the internet. Node.js as API is used to set

up the code environment, while MQTT is used to do message publishing and

subscribing. As for database checking, the time-series based Influx database is used.

One of the challenges in this research is lowering the cost of setting up this app and

the performance of the system over time. To decrease the cost of this project, only free

and open-sourced protocols and programs are used in this project. Some system might

have data congestion over time due to delay or loss of network connections that leads

to an overload of unprocessed data accumulating in a network. In this case, Test-

Driven Development (TDD) practice was implemented while programming to make

the code clearer, simpler for execution, and bug-free. Unit tests were implemented to

check the performance of the system to verify the consistency of this system over a

specified period. The unit test results are taken and put in into a graph of easier view

for descriptive analysis. The result shows that the program developed runs on zero

product costs and able to obtain consistent working performance for a test period of 2

months.

ii

ABSTRAK

Projek ini bertujuan untuk mengembangkan aplikasi untuk mengaitkan dengan

pengenalan plat kereta untuk memeriksa kesahan kenderaan di pangkalan data melalui

internet. Node.js sebagai API digunakan untuk mengatur lingkungan kod, sementara

MQTT digunakan untuk melakukan penerbitan pesan dan berlangganan. Untuk

pemeriksaan pangkalan data, pangkalan data Influx berdasarkan siri masa digunakan.

Salah satu cabaran dalam penyelidikan ini adalah menurunkan kos penyediaan aplikasi

ini dan prestasi sistem dari masa ke masa. Untuk mengurangkan kos projek ini, hanya

protokol dan program sumber terbuka yang digunakan dalam projek ini. Beberapa

sistem mungkin mengalami kesesakan data dari masa ke masa kerana kelewatan atau

kehilangan sambungan rangkaian yang menyebabkan kelebihan data yang belum

diproses terkumpul di dalam rangkaian. Dalam kes ini, praktik Pengujian Bergerak Uji

(TDD) dilaksanakan semasa pengaturcaraan untuk menjadikan kod lebih jelas, lebih

mudah untuk pelaksanaan dan bebas bug. Uji unit dilaksanakan untuk memeriksa

prestasi sistem untuk mengesahkan konsistensi sistem ini dalam jangka masa yang

ditentukan. Hasil ujian unit diambil dan dimasukkan ke dalam grafik pandangan yang

lebih mudah untuk analisis deskriptif. Hasilnya menunjukkan bahawa program yang

iii

dikembangkan berjalan pada kos produk secara percuma dan dapat memperoleh

prestasi kerja yang konsisten dalam jangka masa 2 bulan.

iv

ACKNOWLEDGMENTS

I would like to express my gratitude towards my research supervisor, Ir. Dr. Ridza Azri

Ramlee for continuous support and advice while writing the dissertation. His guidance

helped me in correcting grammar errors and wrong placement of contents. I learned

the basic confinement of writing an actual thesis.

v

TABLE OF CONTENTS

Declaration ii

Approval i

Dedication i

Abstract i

Abstrak ii, iii

Acknowledgments iv

Table of Contents v, vi, vii

List of Figures viii, ix

List of Tables x

List of Symbols and Abbreviations xi

List of Appendices xiii

CHAPTER 1 INTRODUCTION 1

1.1 Project Outcome 1

1.2 Problem Statement 2

1.3 Objective 2

1.4 Scope of Work 2

1.5 Report Organization 3

CHAPTER 2 BACKGROUND STUDY 5

2.1 Car plate Recognition 5

vi

2.1.1 Image Pre-processing 8

2.1.2 Pattern Matching Optical Character Recognition 10

2.1.3 Convolutional Neural Network (CNN) 12

 2.1.4 Comparison between CNN and Pattern matching 12

2.2 Internet of Things (IoT) in The Surveillance System 13

2.2,1 Application Program Interface (API) 14

2.2.2 Communication Protocol 14

2.2.3 Comparison Between Node.js and PHP 15

2.3 Database in The Surveillance System 15

2.3.1 Comparison Between InfluxDB and Firebase 16

CHAPTER 3 METHODOLOGY 18

3.1 Project Implementation Flowchart 18

3.2 Software Flowchart 21

3.3 Car Plate Recognition Part Methodology 23

3.4 IoT Part Methodology 24

3.4.1 Excel Format 24

3.4.2 Including Protocols 25

3.4.3 Setting Up a Broker 25

3.4.3.1 Error Setting Up Broker On Non-listening Port 27

3.4.4 Publishing Message – MQTT 27

3.4.5 Subscribing Message – MQTT 28

3.4.6 Correcting JSON Format 29

3.4.7 Extract Information From Database 29

3.4.7.1 Managing Plain Result From Database 30

3.4.7.2 Setting Up a Condition For Vehicle Check 30

vii

3.5 Database Part Methodology 31

3.5.1 Database Set Up 31

3.5.2 Writing Information Into Database 34

3.5.2.1 Duplicated Message 34

3.5.2.2 Influx Database Error Writing Data 35

3.5.2.3 Inserting Timestamp 36

3.6 Program Installation 36

CHAPTER 4 RESULTS AND DISCUSSION 38

4.1 Car Plate Recognition Part 38

4.1.1 Desired Car Plate Result 38

4.1.2 Simple Car Plate Recognition Test 40

4.1.3 Non-ideal Angle of Car Plate Recognition 40

4.1.3.1 Tilted Car Plate Image 41

4.1.3.2 Side Image of Car Plate Recognition 42

4.2 App Performance Test 43

4.2.1 First Part App Test 45

4.2.2 Second Part App Test 50

CHAPTER 5 CONCLUSION AND FUTURE WORKS 55

5.1 Conclusion 55

5.2 Future Work 56

REFERENCES 58

APPENDICES 61

viii

LIST OF FIGURES

Figure 2.0: Original Image(left) and Greyscale Image(right) 9

Figure 2.1: Greyscale Image(left) and Binary Image(right) 9

Figure 2.2: Binary Matrix of a Segmented Character 10

Figure 2.3: Pattern Matching Algorithm on Image 11

Figure 2.4: The Binarized Image and Detected Character on MATLAB 11

Figure 3.1: Project Implementation Flowchart 19

Figure 3.2: The Block Diagram of the Hardware System 20

Figure 3.3: Software Flowchart 21

Figure 3.4: Overview of Project 22

Figure 3.5: Original Image before Image Treatment 23

Figure 3.6: Output Image after Image Treatment 23

Figure 3.7: The recorded Data in Excel File 24

Figure 3.8: Error: xlsx Function is Not Defined 25

Figure 3.9: List of Port Connections 26

Figure 3.10: Terminal Message to Show Broker is Ready 27

Figure 3.11: Error Setting Up Broker 27

Figure 3.12: Terminal Message After Publishing Topic 28

Figure 3.13: Error while Extracting Information From Influx Database Using String

 29

ix

Figure 3.14: The Complete Output if Extracted Information is Not Managed 30

Figure 3.15: Desired Result from Influx Query 31

Figure 3.16: Influx Database Folder 32

Figure 3.17: Running “influx.exe” in Background 33

Figure 3.18: “influx.exe” First Impression 33

Figure 3.19: Error: Database is required. 34

Figure 3.20: Inserting Data into Database 34

Figure 3.21: Duplicated Feedback 35

Figure 3.22: Message Re-arranged 35

Figure 3.23: Error Inserting Data Without Value 35

Figure 3.24: Sample Query To Insert Specified Timestamp 36

Figure 4.0: Desired OCR Output 39

Figure 4.1: Undesired OCR Output 39

Figure 4.2: (a) Car Plate (b) OCR Test Result 40

Figure 4.3: (a) Tilted Car Plate (b) OCR Test Result 41

Figure 4.4: Top View Illustration of the Condition 42

Figure 4.5: (a) Side Image of Car Plate (b) OCR Result 42

x

LIST OF TABLES

Table 2.1: Comparison of Firebase and Influx Database 17

Table 4.1: First IoT Part Test (Initial – 28 days) 45

Table 4.2: First IoT Part Test (35 – 63 days) 47

Table 4.3: Second IoT Part Test (Initial – 28 days) 50

Table 4.4: Second IoT Part Test (35 – 63 days) 52

xi

LIST OF SYMBOLS AND ABBREVIATIONS

OCR : Optical Character Recognition

BoF : Bag of Features

CNN : Convolutional Neural Network

IoT : Internet of Things

API : Application Program Interfere

LAN : Local-area Network

JSON : JavaScript Object Notation

CCTV : Closed-circuit television

RGB : Red Green Blue

ALPR : Automated License Plate Recognition

TDD : Test-driven Development

GPU : Graphic Processing Unit

xii

LIST OF APPENDICES

Appendix A: MATLAB Face Recognition Source Code 61

Appendix B: Node.js First IoT Part Source Code 62

Appendix C: Node.js Second IoT Part Source Code 65

1

CHAPTER 1

INTRODUCTION

1.1 Project Overview

This project is about the development of a prototype to implement IoT on a car

plate recognition system for vehicle surveillance purposes. By using MATLAB

software, the prototype will detect the character on the car plate from an image and a

Node.js based application will communicate the result with a database for validity

checking over the internet.

2

1.2 Problem Statement

In this era, the number of vehicles is increasing fast, following the crime rate associated

with the vehicle. While the Internet of Things (IoT)-connected technologies are getting

famous drastically over the years to save human power, a low-cost and efficient IoT

associated vehicle surveillance system is favored.

According to the 2018 Node.js User Survey Report, developers have been

using Node.js mostly for front-end development (webpage design) and full-stack [15].

In this research, developing a product-cost free back-end program with IoT feature that

shows consistent performance will be focused. Only free protocols and programs are

used in the research. Unit test over 2 months will be implemented to check for its

system consistency.

1.3 Objective

(i) To develop a system that can detect car plate number using Optical Character

Recognition (OCR) in an ideal condition.

(ii) To develop an algorithm for extracting car plate owner’s information registered

in the database.

(iii)To establish a local-based database to check the authenticity of visitors entering

a premise.

1.4 Scope of Work

This project is focused on the development of an application that could associate with

a car plate recognition system to communicate with a database through the internet to

check for a vehicle’s owner information.

3

 A MATLAB built-in OCR model is used to recognize a manually segmented

Malaysia car plate. 10 samples of car plates are used to run the OCR application. 5 car

plates image taken from phone camera and the other 5 images taken from the internet.

 The program is built with the only cost-free products and cost-free protocols.

For the application’s performance test, a sample of 40 units test will be taken every 7

days for 2 months, on both subscribing and publishing part of the IoT application.

Average value will be calculated every 7 days and a graph will be plotted for

descriptive analysis. The program will be running continuously on the laptop during

the test period without running any other program other than this IoT program.

1.5 Report Organization

There are five chapters in this thesis. Chapter 1 introduces the summary of the car plate

recognition for surveillance purposes and mentioned the method together with the

software used. It also included problem statement, the scope of work, and objective of

this project.

Chapter 2 explains the background of this project and introduces MATLAB,

and OCR and Bag of Features. This chapter discusses methods of deep learning

approach and compares the method between OCR and CNN. Other than that, this

chapter also discusses application program interface (API), comparing the latest

Node.js with traditional PHP in terms of speed, function, and safety. Then a

background study about Node.js, JavaScript, Visual Studio Code, MQTT protocol, and

other software used in this project. The database to be used in the project is also

discussed later in Chapter 2. Chapter 2 compares Influx database and Firebase in terms

of its function, the way of data is saved and accessibility of the database from the

chosen API.

4

Chapter 3 discusses the method used in this project. Hardware and software

flowcharts are listed here. The implementation of software in this project is briefly

described. A software overview of this project is shown in this chapter to explain the

relationship between each software in this project. This chapter also includes steps of

troubleshooting the software. Other than that, the steps to do the installation of any

related software is listed in this chapter to make sure every protocol and documentation

that is required to make sure the source code works in this project is included.

Chapter 4 will show the result of this project, and at the same time discuss

problems met while building the app. This chapter will explain the meaning of some

source code and how some issue is solved using different protocols. This chapter will

also pinpoint some detail while running the app to prevent error or delay. This chapter

is divided into 3 main parts to make sure the discussion is in sequence and clear. The

parts are the IoT part, Car Plate Recognition Part, and Database part.

Chapter 5 summarizes the objectives achieved by this project and points out

some flaws in this project that can be improved in the future. Other than that, chapter

5 will suggest some fields or systems that could inherit this system capability.

5

CHAPTER 2

BACKGROUND STUDY

2.1 Car plate recognition in vehicle surveillance system

With the 4.0 industry revolution today, IT technology such as automation and artificial

intelligence has been developed rapidly. Several kinds of innovative devices had been

made for video surveillance under security purposes. For example, the well-known

closed-circuit television (CCTV), it uses video cameras to capture real-time recording

and transfer the recording to monitors. Earlier, the poor quality and high installation

cost have limited the development of its application. But the good news is now that

CCTV is improved, it has a better frame per second (FPS) rates, and higher video

resolution, more applications could be implemented. The famous creation recently is

the dashboard camera that can be installed in a car, it works as a continuously recording

camera or called loop recording to record mostly a front view of the car through

6

the windscreen. The dashboard cameras can provide strong evidence to be used in

court in case of any unwanted event like road accidents and vandalism. Therefore,

most car drivers opt to equip a dashboard camera in their vehicle. In some countries,

the installation of dashboard cameras was demanded especially on public

transportation.

The only difference between a CCTV and a regular dashboard camera is that

they have different mobility. For most of a time, a CCTV is set up in fixed areas that

needed high-security priority, such as gold shops, banks, colleges, and areas where

monitoring is needed. Therefore, its mobility is low and the coverage is low. As for a

car dashboard camera, it is set up in a car. The camera can make recording wherever

the car goes. In the case of CCTV, the advantage is that its hardware performance is

higher since it is fixed on a spot. The monitoring is relatively more efficient in terms

of detecting car movement in a specified area.

Numerous researches have been done to optimize the application of CCTV for

surveillance purposes. The car plate tracking system based on videos often suffers

from a similar problem, the accuracy and time taken to recognize the characters on car

plate, and how the detected character communicate with a database to determine

whether the vehicles are authorized to be in the area. To solve this issue, we propose

an OCR based system that could do a car plate recognition system from a video source,

that can check with a database from video source for availability of a vehicle in that

area. In this project, the system is developed to utilize CCTV, as the effectiveness of

car plate detecting depends on diverse information, different font, and arrangement of

plate characters. Fortunately, the development of the IT industry today can easily

process images using image treatment and machine learning techniques.

7

Our system can be implemented to handle previous surveillance works that are

both time-consuming and higher labor costs. For example, an automated gate can

determine the availability of a vehicle to enter the closed area by reading the car plate

through the CCTV. Human monitoring through CCTV and looking through the

database would require significant amounts of effort and time, not to mention human

error in case of health, mental, or other issues. In the case of our system, based on the

car plate number, we can quickly determine if a car is authorized to be in the area.

Besides, our system can improve the efficiency of crime detection, for example, a

stolen car, by speeding up the location tracking process through the CCTV.

However, despite the advantages of our proposed system, the system is not that

easy to be implemented. Firstly, the system should have large storage to store vehicle

and owner’s information and a very good processing speed to handle the big data

involved, imagine recording through a video device for 24 hours every day. The

volume of space or data consumed is very huge. Therefore, the system should be

capable of handling big data to avoid any delay inside the system else the system might

just stop. Secondly, the system might misrecognize a car plate due to light lamination,

different fonts of car, dirt covering characters on the car plate. Thirdly, a good

segmentation method should be developed to efficiently detect and extract the car plate

from the images.

8

2.1.1 Image Pre-processing

Image Processing Toolbox is used to do image pre-processing before running them

through OCR. This toolbox provides a comprehensive set of reference-standard

algorithms and workflow apps for image processing, analysis, visualization, and

algorithm development.[18] Basic and useful functions like, grey thresh conversion,

binarization conversion, and RGB conversion can be found in the toolbox. We can

perform image segmentation, image enhancement, noise reduction, geometric

transformations, image registration, and 3D image processing.[18]

This toolbox allows you to operate a basic image processing task.

Segmentation of image, image data comparison, registration comparison techniques,

processing big image data. The visualization feature also consists of applications that

let you explore images, 3D volumes, and videos; adjust contrast; create histograms;

and manipulate regions of interest (ROIs).[18] In Salman’s research,[19] he concludes

that MATLAB is a very useful and easy-to-use platform, especially the image

processing toolbox he used in his research.

However, this project pinpoints on developing an IoT application instead of

enhancing the current OCR system. Therefore, the car plate area is manually

segmented and extracted from the original image before the image undergoes image

treatment. This treatment converts the true color image RGB to the grayscale image.

The process is to eliminate the hue and saturation information while retaining the

luminance. A formula of 30% Red, 60% Green and 10% Blue is used to convert the

original image to greyscale image.

9

Greyscale Image = (0.30*Red + 0.60*Green + 0.10*Blue) *(Original Image)

Figure 2.0 Original image(left) and greyscale image(right)

 After that the image is scaled from 0 to 1 according to their grey thresh value on each

pixel, gray threshold value less than 0.5 became 0 and the other becomes 1. The figure

below shows the comparison of a greyscale image and a binarized image.

Figure 2.1: Greyscale Image (left) and Binary Image (Right)

 Then according to 0 or 1, the image will be binarized while 0 equals white

and 1 equals black. The purpose of making the image black and white is to prepare the

image for the OCR process. It will increase the accuracy rate of the OCR process

because binarization simplified the input data.

10

2.1.2 Pattern Matching Optical Character Recognition

Originally Optical Character Recognition (OCR) is a method used to detect and “read”

a printed or in some case a handwritten text by recognizing each character inside an

image of physical documents scanned and form a document based on the physical

document.

The process of OCR is segmenting each character of a document and

translating the characters into a digital code through pattern matching that can be

processed using a computer, usually used to convert a hardcopy into PDF files in a

computer. After segmentation is made, a character is converted into its binary matrices,

white pixels to zero, black pixel to one. The image pre-processing is necessary.

Figure 2.2 Binary matrix of a segmented character

A circle of calculating the radius from origin to furthest point is created as

shown in the figure below. The black part of an alphabet A is labeled as 1, otherwise

0. The contrast will determine whether the area is 1 or 0.

11

Figure 2.3 Pattern matching algorithm on image

 At this point, the algorithm will compare every section of the matrices’ image

from the origin to the furthest radius with trained samples to find which character has

statistically the most common with the image. This is called pattern matching. Figure

below shows the binarized result and labeling from OCR in MATLAB.

Figure 2.4 The binarized image and detected character on MATLAB

12

2.1.3 Convolutional Neural Network (CNN)

CNN is a class of deep neural networks. CNN’s are comprised of neurons or multi-

layered neurons that self-optimize through learning. Every neuron will take in input

then operate to perform self-learning. The neurons from each layer are fully connected

to all the neurons in the next layer.

CNN’s perform deep learning by comparing images pixel by pixel by looking

into the images’ digital data. The similar pieces that CNN’s will be looking for are

called features. By looking forward to rough and similar feature matching in two

images, CNN’s get a lot better at finding tiny similarities than finding a match looking

at a whole image. Whole-image matching schemes are naïve and have low accuracy

because the decision is too quick and simple.

2.1.4 Comparison Between pattern matching and CNN

According to the article [2], the disadvantages of Convolutional Neural Network

(CNN) is it is expensive to be implemented, especially if a complex task is assigned,

a good Graphic Processing Unit (GPU) is required. Other than that, CNN requires a

lot of samples for training because it needs multiple passes through. On the other hand,

pattern matching by itself can recognize the car plate well by providing a low amount

of training samples, since the fonts of car plate characters will not differ much due to

traffic law enforcement of Malaysia.

Based on research by Kapadia [4], template matching method OCR is straight

forward and reliable. However, a small difference in font or tilt will affect the

recognition process. Therefore, to improve the accuracy, the segmentation process has

to include reducing tilt-ness but since Malaysia car plate’s fonts do not differ much, a

lesser training template is needed. Based on research by Ravendra [6], the simulation

13

results using OCR in MATLAB, which is the traditional template matching too, also

shows that the system could accurately detect and recognize the car plate of vehicle

under different light luminance as long as the training templates are clear enough with

less noise. It can be set up to be implemented on the guard house or guard house of

any restricted area. [6]

 As for neural network research conducted by Nagare[5], it is found to be more

accurate and at the same time relatively more tolerant of more fonts of character and

tilt. However, it requires high investment to do that on your own such as high GPU,

big amount of training images, high storage. Therefore, a high-performance based

hardware is required. Based on Kocer’s research [7], two separate ANN’s were used

for classification, which is for letters and numbers. The purpose is to increase the

correct detection rate of the recognition session of the car plate character. Some words

and letters have similar features. Using two separate ANN can prevent the mix up of

recognition, for example, “0” and “O”, “2” and “Z”, “8” and “B”.

2.2 Internet of Things (IoT) in the Surveillance System

For Application Program Interface (API) to build the application, Node.js is used for

coding environment and runs on JavaScript language. This API runs on JavaScript

language. JavaScript is invented in 1995 at Netscape Corporation. It is also known as

LiveScript.[14] Although it has Java keyword in JavaScript, it has nothing to do with

Java language. This language could build programs into the user’s web browser. They

can be written in any webpage’s HTML and update on its own as soon as the page

reloads.

14

2.2.1 Application Program Interface (API)

An application program interface is a set of routines, protocols, and tools for

building software applications and it determines how a programmer interacts with

software components. In this project, Node.js, a free open-sourced, cross-platform

JavaScript run-time environment.[15] This API allows developers to write instruction

code outside of a browser or webpage.

2.2.2 Communication Protocol

A communication protocol is a set of rules or systems that enable two or more entities

to communicate by transferring information. The protocols should be download and

included in the entity’s source code before using them after referring to their

documentation. Therefore, agreement upon parties involved is inevitable.

In this project, while for transferring messages between machines, MQTT, an

“Internet of Things” connectivity protocol is used. MQTT was invented by Dr. Andy

Stanford-Clark of IBM, and Arlen Nipper of Arcom in 1999 and is well implemented

in many industries around the globe.[16] This messaging protocol can do lightweight

message transferring very well. The advantage of using MQTT is it consumes less

power and has high efficiency of passing information to one or more receivers.[16]

Visual Studio Code is used to edit source code here. It is developed by

Microsoft company. This program supports debugging, intelligent code suggesting,

preferences, terminal running, and many other useful features. In the Stack Overflow

2019 Developer Survey [17], this program has been rated the most popular developer

environment tool. More than half of an approximate of 87,000 respondents claimed to

be using this program to edit source code.

15

2.2.3 Comparison between Node.js and PHP

Based on Lei’s research [8], Node.js performs much faster than traditional PHP in

handling large requests. Node.js is also an emerging technology and has many

advantages in the front end development, which is also a good API to build a dashboard

while enhancing this project in the future.

 Based on Bangare’s research [11], the advantage of Node.js over traditional

PHP is that all layers of the framework are written in JavaScript language only.

Therefore, the program is always well fit and synchronized. He also mentioned that

any database deployed on its own developer’s system, in this project it refers to Influx

Database deploying on Node.js, which has the advantage of a developer having full

control over the privacy and security of it.

Other than that, Node.js can be used to access many kinds of databases such as

NoSQL, MongoDB, and Firebase, said Bangare [11]. Therefore, Developers have

more choice of database to select.

2.3 Database in the Surveillance System

The database acts as a place to save data or memory. It can generally store data and

access it through a computer system. The database can be based on either a local or a

cloud server. A cloud server is remote, which you can access whenever you have

internet, mostly renting the space from the server owner. For the local server, the server

is what you own physically or have on-site with you. For this project, a local server is

used. The database used is Influx Database, which is time-based, whenever you save

data into the database, the time stamp will be recorded in the database as well.

16

In this project, the database serves as the data storage of the vehicle owner’s

information. Whenever a vehicle’s car plate is scanned and recognized, a request will

be sent from MATLAB to the app to extract data from the database. The database is

based in locally in this project.

According to Nasar [12], A time-series based database is specifically

developed to manage or record changes over time. Therefore, this database could allow

further improvement or enhancement of the surveillance system by doing vehicle data

analysis, tracking system performance.

2.3.1 Comparison between InfluxDB and Firebase

Firebase is a cloud-hosted document store, while Influx Database is a time

series-based database. Influx Database will provide a timestamp for any insert of data.

Other than that, Influx Database supports SQL-like query language to store or access

data while Firebase does not. The advantage of Influx Database is that it supports

JavaScript with Node.js and 15 other famous programming languages while Firebase

only supports 3 languages.[9][10] The table below shows the comparison of the

Firebase and Influx database.

17

Table 2.1: Comparison of Firebase and Influx Database

Name Firebase [9] Influx Database [10]

Database type Cloud-hosted Realtime

document store.

Time-series based.

Structured Query

Language (SQL)

No SQL-like query language

Supported

Language

Java, JavaScript, and

Objective-C only

16 languages including

JavaScript (Node.js), Java,

PHP and Python

Furthermore, Balis’ research[13] said that Influx database has an advantage of

having a feature that could group data by time, allowing users to request data within a

range, this allows the project to further enhance the surveillance system by monitoring

and analyze vehicles that go through the camera. The number of vehicles could be

analyzed by grouping them by week, month, or year to provide analytical service in

the future.

18

CHAPTER 3

METHODOLOGY

3.1 Project Implementation Flowchart

To ensure that the process of developing the project can be done smoothly and

systematically, a project implementation flowchart with seven parts as shown in Figure

3.1 was created. Firstly, for the background of this study, past research papers will be

referred for the project. The technique and platform of the researches will be recorded

19

and compared to find the best method. Next, the hardware used in this project are a

laptop of 8 gigabytes RAM and a mobile phone with a camera.

Figure 3.1 Project Implementation Flowchart

 For the software and program design, the programming language that

involves in this project is C, JavaScript, and query. C language will be used to operate

and run the optical character recognition on MATLAB. After the phone camera is

connected to a laptop, it will send a real-time recording to MATLAB via Bluetooth

and to process through OCR. The result of the OCR will be saved into an excel file

(xlsx format).

Start

End

Background Study

Securing Hardware

Software/Program Design

Prototype Testing

System

running as

intended?

Finalize the prototype

Yes

No

20

 The crucial part of program designing is the app. It is designed using Node.js

as API, and JavaScript as a programming language. The app extracts the data from the

excel file.

Based on the block diagram as shown in Figure 3.2, a photo will be taken on

a mobile phone camera, the phone will send the image of the vehicle passing by to a

laptop to be processed by MATLAB.

Figure 3.2: The block diagram of the hardware system

After the software and program design had been done, the prototype will be

tested, and troubleshooting will be done if required. After confirming that the system

running as intended, the prototype will be used to test the functionality and efficiency

of the overall prototype.

Camera Laptop

21

3.2 Software Flowchart

Figure 3.3: Software Flowchart

The software is categorized into 3 main parts. The image processing part, which

involves MATLAB to do image treatment and OCR. This part is likely to enhance the

recorded image so it can improve OCR performance.

The second part is the IoT part, where the app will extract information from

MATLAB and Database. This part involves MQTT for publishing and subscribing

purposes. This app can be separated into two working folders, by means, it can operate

on two different computers. Note that this can only work if both of the computers are

Start

Image pre-processing

Record

OCR

IoT publisher

IoT subscriber

Show result in terminal

Car Plate

tally with

database?

End

Yes/No

Exit

Local-area Network

22

connecting to the same local-area network (LAN). One is to extract information from

MATLAB through an excel file, then publish them on the broker. Another one is to

subscribe to the message and request information from the database according to the

message.

The third part is the database part. Registered vehicle’s information will have

to be stored inside the database to enable future extraction. This can be done by using

Influx query in influx.exe.

The methodology of doing the parts mentioned above will be mentioned in

detail along with possible errors faced during the setup process in the following

paragraph. The image below shows the overview of the project.

Figure 3.4: Overview of Project

23

3.3 Car Plate Recognition Part Methodology

A mobile phone camera is connected to a laptop via Bluetooth. Then, by using

MATLAB the recording sent from the phone is snapped and undergoes image

treatment before sending it to OCR.

The first step is converting the image from RGB to gray color using

‘rgb2gray(I)’ function. Then, extract the gray thresh information from the converted

image using ‘graythresh(I)’, where the gray color is given value from 0 to 1. 0 stands

for white and 1 stands for black. The next step is binarization, which is converting the

gray image into a black and white image using ‘~imbinarize (I, threshold)’ function.

In this case, the ‘~’ sign in front of the function stands for negative, which means

according to grayscale from 0 to 1, 0 to 0.49 will become black while 0.5 to 1 will be

turned into white. This process is to ease the OCR process by making the characters

black and significant. Figures below show the comparison between the original image

and the image that is ready to go for the OCR process.

Figure 3.5: Original Image before Image Treatment

Figure 3.6: Output Image after Image Treatment

24

 The image will then go through an OCR process by using the ‘ocr’ function

in MATLAB. The result will be converted into text and saved in a Microsoft Excel

file (xlsx format).

3.4 IoT Part Methodology

IoT part is the main part of this project as we are implementing this system on ALPR.

So, message transferring and good communication between two or more entities are

very crucial.

3.4.1 Excel Format

In this project, an approach to upload the result of OCR to Thing Speak IoT platform

before but the platform itself can only allow transferring message that contains number

only, which is not ideal for uploading car plate characters because car plate usually

consists of the alphabet too. It is designed for data aggregation and analytic, therefore

it is not suitable for this project. There are no current available IoT tools that can work

with MATLAB to send a message through the internet, therefore another alternative is

used, which is through xlsx format.

An app is created using Node.js to read the data from the excel file. This excel

file will update every 3 seconds to ensure the data is up to date in case the MATLAB

OCR recognized any character from the camera. This xlsx folder cannot be opened

while the MATLAB is writing data. The image below shows the recorded result saved

from MATLAB and stored in an excel file.

Image 3.7: The recorded data in excel file

25

3.4.2 Including Protocols

To enable xlsx-node protocol, the documentation had to be downloaded by opening a

terminal in the working folder. Then, including the functions or protocols in the source

code, else the app cannot extract data from the excel folder because xlsx function will

become an error. The API will show an error while debugging because this program

does not recognize the function if the protocol or documentation is not included. The

image below shows the result of running the app to extract data from excel without

calling the function.

Image 3.8: Error: xlsx function is not defined

 Therefore, to enable communication between Influx database, the app, and

MATLAB, different functions had to be included in the source code after downloading

them in command prompt. We also need to include ‘Mosca’ protocol for broker set up

purpose, MQTT for publishing and subscribing messages, Influx-node for operating

database and xlsx-node for extracting information from excel file to the app

3.4.3 Setting up a broker

A broker is set up before performing message transferring. Without the broker, MQTT

alone will not work because there is no server to perform subscribing and publishing

messages. In this project, the broker is set up on a localhost, which is on the laptop’s

IP address, in this case, it is 192.168.0.162.

26

After a port is used to set up the broker on this laptop. A computer port act as

an interface between computer and computer or computer with external devices. If a

port is not available, it cannot be used to set up the broker. Therefore, to check a broker,

one can open a terminal and type in ‘ipconfig’. Afterward, type “netstat -a”. A list of

port numbers will come out along with their current state. The figure below shows the

list of port numbers after executing the command on the laptop. Referring to the figure

below, the port number will be shown at the end of the ‘Local Address’. For example,

the port in the first line is 135, following by 445, 5040, and so on.

Figure 3.9: List of Port Connection

According to the MQTT official website [16], the broker can only be set up on

5 ports, 1883 (unencrypted), 8883 (encrypted), 8884 (encrypted but client certificate

required), 8080 (on WebSockets, unencrypted), 8081 (on WebSockets, encrypted). In

this case, the ‘Mosca’ server was set up on port 1883.

27

After the broker is set up, the application will show “ready” in the terminal to

verify that the broker is ready for subscribing and publishing tasks. Figure below

shows the terminal message after a broker is set up and ready after running the

program.

Figure 3.10: Terminal Message to Show Broker is Ready

3.4.3.1 Error Setting Up Broker on Non-listening Port

If a port on a non-listening state, the broker could not be set up on this port. Else the

application will show an error. Figure below shows error if a broker is set up on a non-

listening port. In this case, the application could not detect port 8086 because it is not

listening. The port is not available or already in use.

Figure 3.11: Error Setting Up Broker

3.4.4 Publishing Message - MQTT

After extracting OCR result from excel to the app, the app rearranged the characters

from [‘P’,’G’,’C’,‘ ’,’6’,’6’,’9’,’3’,‘ ’,’ ‘] into [‘PGC6693’]. The excel-folder has to

be closed on any tab of the computer else it cannot be read to the app. The characters

are combined into a single string. Spaces or unwanted signs are eliminated to match

the format of car plate characters saved in the database. The string is then published

28

with a topic, in this project the topic name is ‘myTopic’. A terminal message is set to

inform the user the message is published. The purpose of showing the result in the

terminal is to inform the user that the published message is sent, else the user would

not be informed. The message will be directed to ‘{string_final}’ in the code, as an

object to make it dynamic. This will cause the result in terminal changes according to

extracted data from excel.

To make sure the message published is correct, an instruction is written to

show the published message on the terminal. Image below shows the result in the

command prompt or terminal after the app is running in the working folder.

Figure 3.12: Terminal Message after Publishing Topic

3.4.5 Subscribing Message – MQTT

This app will publish a message to the broker so on the other side, the app will

subscribe to the message by directing through the topic. The subscribed message will

then be used to extract information from Influx Database. When the topic is subscribed,

a terminal message “subscribed to alpr.js”, will be shown to verify the subscription

towards the topic. Please refer to Figure XX: Terminal Message to Show Broker is

Ready.

In this case, the topic name is simply “myTopic”, but it had to be exactly the

same as the published topic, considering spaces, symbols, and big or small letters.

29

After subscribing, the app receives a line of string. Note that only string or array could

be sent through MQTT.

3.4.6 Correcting JSON format

The subscribed topic will be parsed into an object from string. The purpose of turning

this message into a JSON object is to ease the use of Influx Database’s query function

inside the app. A string format of the message will be rejected. Image below shows

the result shown in the terminal if the message is not in the right format to extract data

from Influx database.

Figure 3.13: Error while extracting Information from Influx Database Using String

3.4.7 Extract Information From Database

After parsing the received message into a JSON object, the app selects and reads

specific information from Influx Database. By doing this the extracted message is

dynamic. Any changes at the subscribed message will change the requested

information from the database.

Influx query protocols enable this app to access Influx database from this app

internally by using Influx’s query language. Note that Influx.exe has run in the

background to enable the accessing of the database. The extracted information from

the database is then changed into string so that it can be printed out on the terminal to

be verified.

30

3.4.7.1 Managing Plain Result from Database

Influx database is a time-series database, in this case, the data insert time for the vehicle

will be extracted along when a car plate information is requested. If the vehicle is

recorded twice in the database, the output will show two messages. To avoid this, the

app will rearrange them and only take in the first registered information. Image below

shows the sole output if the information extracted is not managed. This information

cannot be rearranged or used in other functions inside the app because this information

is not changed into a JSON object.

Figure 3.14: The Complete Output if extracted information is not Managed

3.4.7.2 Setting up a condition for vehicle check

If the car plate number and its information is not stored in database, the app will give

an output of empty arrays on the terminal which is unclear for the user. To make the

result clear while the app is checking for availability, a condition is programmed. If

the database gives an empty array as feedback, then it means the vehicle is not

registered, the terminal will show a line of the message, “Warning! The vehicle is not

recorded in database.” Else the app will show registered vehicle’s information. In this

case, the shown information is vehicle owner’s name and vehicle type. “console.log”

function is to determine what to be shown inside the terminal or command prompt

31

area. Image below shows the source code of setting a condition to differentiate if a

vehicle is registered inside the database.

The source code is crucial to make the terminal output clear. In this project, it

will select important information only and rearrange them into clear and simple

sentences to be shown in the terminal. The coding without parsing the extracted data

and rearranging will give output in a relatively more complicated format. Image below

shows the result on the terminal.

Figure 3.15: Desired Result from Influx Query

3.5 Database Part Methodology

The database is set up to store vehicle information for this project. A database could

be based on local or cloud. In this project, the database is based on the laptop, which

is local.

3.5.1 Database Set Up

The way to write data into the database is through “influx.exe” application. The

program is created while installing Influx database on the computer. Image below

shows how the folder looks like. The first application is the influx.exe.

32

Figure 3.16: Influx database folder

Another alternative to access Influx database through Node.js. The ‘influx-

node’ protocol could be installed. It allows users to write data through ‘influx.query’

function or set up a database through running a source code instead of giving sets of

instruction using the influx-query protocol.

This alternative is not convenient because every time a user wanted to insert

data, value, and information need to be changed here and re-run the source code again.

It is not user friendly for an administrator who does not know much about the coding.

33

Other than that, before accessing through “influx.exe”. The database needs to

be running in the background. In this case, it is “influxd.exe”. Afterward, instructions

are executed through the Influx-query language inside of “influx.exe”. Without

running the database in the background, or the influxd.exe, “influx.exe” will crash or

close the window on its own. This program has to be running in the background when

Node.js is running, else the database will not be accessed. Image below shows how

influxd.exe looks like while running.

Figure 3.17: Running “influxd.exe” in Background

Meanwhile, after you open “influx.exe”, you can write or read from this

database. Image below shows the first impression of the window after running

influx.exe. The version of Influx Database is shown and ready to run instruction.

Figure 3.18: “influx.exe” first impression.

34

A database named “Vehicle_check” is built for this project. Writing any data

will not work unless a database is chosen to access it. Image below shows the error if

a data is inserted without setting a database.

Figure 3.19: Error: database is required.

3.5.2 Writing Information Into Database

After setting a database, data could be inserted into the database. In this project,

important criteria to record while registering a vehicle is the owner’s name, vehicle

type and, car plate number. Image below shows a sample data is inserted into the

database.

Figure 3.20: Inserting Data into database

 Note that there will be no message or notification to notify that this line of

query is executed. The data will be written into the database after executed.

3.5.2.1 Duplicated Messages

If the same query is executed mistakenly again, the record will duplicate, which means

there will be two similar information inside the database. Or in the other hand, the

same vehicle information is registered more than once or updated again. In this case,

35

whenever the vehicle’s information is requested, the original result feedback given by

the database is duplicated too.

To resolve this issue, feedback from the database had to be re-arranged again.

This again pinpointed the importance of re-arranging database feedback results. This

means if two or more messages are given through database feedback, the program only

takes in the first feedback message to be withdrawn and show in the terminal as the

desired message. Refer to Figure 3.15: Desired Result from Influx Query. Figure

below shows the terminal message when there is duplicated information of a sample

vehicle and the next shows how the app re-arrange the message and only shows the

first one as output.

Figure 3.21: Duplicated feedback

Figure 3.22: Message Re-arranged

3.5.2.2 Influx Database Error Writing Data

The reason for setting value equals 1 in the end of the query is because Influx database

does not allow inserting “null” or empty value for its parameter. Image below shows

error inserting data if the value is empty or not mentioned. Refer to Figure 3.20:

Inserting Data Into Database for the differences.

36

Figure 3.23: Error inserting data without value

3.5.2.3 Inserting Timestamp

There will be times that the system is not available or in maintenance. A specific

timestamp needed to be inserted manually to make sure the registration time is

accurate. Since Influx Database is a time-series based database, any information

inserted will be given a current timestamp. If the desired timestamp is needed to be

inserted manually, it must be separated from the field(s) by a space. Other than that, it

must be in Unix time and are assumed to be in nanoseconds.[10] The figure below

shows the sample query to insert a data with specified timestamp in Unix format. The

timestamp is highlighted with a black rectangular box.

Figure 3.24: Sample Query To Insert Specified Timestamp

3.6 Program Installation

MATLAB Installation

1. Download the product to your computer, then locate and click the setup.exe.

2. Select ‘Get Add-ons’ from the ‘Add-ons’ drop-down menu from the

MATLAB desktop. The Add-on files are in the “MathWorks Features” section.

Visual Studio Code Installation

1. Download the product to your computer, then locate and click the setup.exe.

Node.js and protocol Installation

37

1. Download Node.js from its official website, then locate and click the

setup.exe. Afterward, open a command prompt then enter “node -v” to verify

if Node.js is installed inside the working folder you wanted to do the project.

2. Open a command terminal on your working folder. Then type ‘npm install

mosca –save’ and wait for the download to complete. Then type ‘npm install

mqtt –save’ and wait for the download to complete.

3. Open a command terminal on your working folder. Then type ‘npm install –

save influx’ and wait for the download to complete.

4. Open a command terminal on your working folder. The type ‘npm install -g

json’ and wait for the download to complete.

5. Open a command terminal on your working folder. Then type ‘npm install

exceljs’ and wait for the download to complete.

Microsoft Excel Installation

1. Login to you student email account on the device you wish to install Microsoft

Office.

2. Navigate to Office 365 screen.

3. Click ‘install’ under the Install Office session. If requested to sign in after

installation, use your student email to login instead of inserting a license key.

Influx Database Installation

1. Download the product to your computer

2. Locate and click the “setup.exe”. In the influx folder

3. Double click the “influxd.exe” to run the database

4. Double click the “influx.exe” to insert command.

38

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Car Plate Recognition Part

In this project, OCR only process image but not recording, a snapshot function is used

to snap a moment from the recording. Then the image snapped will go through image

pre-processing before OCR to improve the result. Since this project does not include

segmentation, the pre-processing is much simpler because the region of interest is

focused while setting up a camera.

4.1.1 Desired Car Plate Result

The result of OCR is only accurate given that the alphabets and numbers are in a

standard format. Sometimes the detection of character is correct but not in the correct

order, this will also affect the result because the app created later only takes in one

format. The image below shows an example of the desired format and an undesired

format of an OCR result in MATLAB terminal.

39

Figure 4.0: Desired OCR output

Figure 4.1: Undesired OCR output

The difference between the two of the OCR output sample shown is that the

undesired OCR output has too many unwanted spaces. It will write spaces while saving

into excel file in the process.

Any result of OCR is turned into text and saved into an excel file, which is xlsx

format. The results are written into the excel file from the slot ‘A1’ to ‘K1’. The

process will repeat itself after 3 seconds. A new OCR result will be updated into the

excel file every 3 seconds. The purpose of updating the excel file every 3 seconds is

to keep the data update time-to-time for checking purposes.

40

4.1.2 Simple Car Plate Recognition Test

Since the car plate recognition system in this project does not include segmentation.

Manual cropping is used. Figure below shows an original car plate will its test result

after OCR.

(a) (b)

Figure 4.2: (a) Car Plate (b) OCR Test Result

This car plate image is taken by camera from a range of 20cm with good light

illumination and the front of the car with an upright angle. Also, the car plate is in a

single row. Therefore, the condition is ideal. The test results in (b) shows that the OCR

operates and updates its result every 3 seconds. The results are consistent and accurate

in this case.

4.1.3 Non-ideal Angle of Car Plate Recognition

A good system should be able to operate well in any kind of condition. For the car

plate recognition part, the accuracy of OCR is a very important criteria in ALPR. If

this system were to be put to use, the accuracy of this car plate recognition part has to

be optimized. Yet, this is not an easy task. There are various non-ideal conditions to

be considered while running ALPR such as light illumination, different car plate fonts,

rainy day, mud or dirt covering part of the car plate and angle of the camera.

41

 Therefore, a small test is carried out to test the capability of this OCR. The

OCR is used to recognize a tilted car plate and to recognize a car plate from a 45○ side

angle.

4.1.3.1 Tilted Car Plate Image

To test the accuracy of the car plate recognition system in a non-ideal situation. An

image of a car plate with 15○ tilt angles is tested. The image is also taken by the same

camera from a range of 20cm with good light illumination and from the front of the

car plate. Figure below shows the original image and its test result.

(a) (b)

Figure 4.3: (a) Tilted Car Plate (b) OCR test result

The result is that the OCR could not detect any of the characters on the

image. Although this project is not focusing on image pre-processing, this could be

improved in the future to enhance the system.

42

4.1.3.2 Side Image of Car Plate Recognition

 To test the accuracy of car plate recognition in another non-ideal condition.

The camera is placed from the side with an angle of 45○ from the right front. Figure

below shows the illustration of the condition from a top view.

Figure 4.4: Top View Illustration of The Condition

 The result of this condition is consistent but not accurate. Only 5 characters

out of 7 are recognized correctly. The result is counted a fail if any of the characters

are not recognized. More pre-processing and model training needed to overcome this

issue. Figure below shows the car plate image from the side with its result.

 (a) (b)

Figure 4.5: (a) Side Image of Car Plate (b) OCR Result

43

4.2 App Performance Test

This part tests the performance of the app by testing the executing time taken for each

cycle of the app. This test is carried out on 3 parts. The IoT part itself is divided into 2

parts while the last one is the OCR part. According to Node.js’s documentation [15],

two functions of ‘console.time()’ and ‘console.timeEnd()’ can be used in a JavaScript

code to set timer in order to test executing time, it is called unit testing. This test is

important because in most cases, developers will do the unit tests before adding new

code to make sure the coding meets a defined requirement. If the unit test does not

pass, then no new coding shall be added. This method is called test-driven

development (TDD).

A total of 10 sets of 40 sample data of unit tests were taken for each part of the

app. A set for the app to run initially, a set after 7 days of continuous running, a set

after 14 days, and a set after 7 days up to 63 days (approximately 2 months). Then an

average of result is calculated to plot graph. This is to test the consistency of the

performance of the application. The purpose of the test is to see if the app has any

network congestion that might cause decreasing in performance through time.

IoT part has 2 parts. The first part includes a broker set up, subscriber, and

database communication while the other part manages data extracted from excel and

publish them into the broker. These 2 parts could be running from 2 different devices

as long as they are connecting to the same LAN, but in this research, both were running

in the same laptop.

For the OCR part, it is programmed to run on one demo image repeatedly for

7 days. The OCR cycle is programmed to wait for 3 seconds after one loop of

44

recognition to ease the burden on the computer. A loop is ranged from the image

processing part until saving OCR results into an excel file.

45

4.2.1 First Part App Test (Publisher, broker and, OCR communication)

Table 4.1 First IoT Part Test (Initial – 28 days)

Test No. Run-Time

per cycle

(initially)

Run-Time

per cycle

 (7 Days)

Run-Time

per cycle

 (14 Days)

Run-Time

per cycle

 (21 Days)

Run-Time

per cycle

(28 Days)

1 646.763ms 670.147ms 631.487ms 687.416ms 668.911ms

2 639.418ms 673.547ms 645.782ms 673.547ms 681.348ms

3 704.379ms 689.723ms 661.497ms 679.723ms 673.547ms

4 651.417ms 647.841ms 700.348ms 672.841ms 699.723ms

5 700.339ms 653.536ms 673.547ms 653.536ms 647.841ms

6 635.508ms 683.448ms 699.723ms 678.348ms 673.536ms

7 661.731ms 703.547ms 647.841ms 659.121ms 668.110ms

8 659.121ms 686.417ms 653.536ms 661.497ms 641.197ms

9 661.497ms 639.467ms 647.586ms 701.516ms 643.526ms

10 645.793ms 689.371ms 673.512ms 673.547ms 689.741ms

11 661.586ms 672.597ms 654.027ms 699.723ms 648.357ms

12 743.358ms 732.168ms 648.110ms 647.841ms 661.586ms

13 637.871ms 663.536ms 661.497ms 653.536ms 673.547ms

14 653.027ms 688.721ms 683.536ms 646.824ms 699.723ms

15 648.110ms 684.325ms 689.741ms 650.107ms 647.841ms

16 633.714ms 641.682ms 673.547ms 648.110ms 653.536ms

17 651.438ms 731.421ms 699.723ms 673.547ms 691.586ms

18 702.301ms 645.793ms 727.841ms 689.723ms 723.870ms

19 649.181ms 691.586ms 653.536ms 677.841ms 655.824ms

20 712.840ms 728.110ms 722.643ms 693.536ms 698.515ms

46

Test No. Run-Time

per cycle

(initially)

Run-Time

per cycle

 (7 Days)

Run-Time

per cycle

 (14 Days)

Run-Time

per cycle

 (21 Days)

Run-Time

per cycle

(28 Days)

21 669.734ms 657.824ms 648.468ms 720.318ms 659.367ms

22 720.114ms 669.714ms 676.984ms 655.824ms 721.235ms

23 639.376ms 625.834ms 653.027ms 703.870ms 659.121ms

24 680.455ms 693.356ms 678.110ms 701.642ms 661.497ms

25 673.547ms 679.534ms 688.715ms 659.121ms 703.870ms

26 699.723ms 647.527ms 653.536ms 661.497ms 644.815ms

27 647.841ms 723.315ms 689.741ms 680.455ms 648.975ms

28 653.536ms 644.121ms 698.375ms 673.547ms 661.586ms

29 689.741ms 632.457ms 703.648ms 693.685ms 655.639ms

30 698.375ms 713.820ms 680.455ms 659.121ms 680.455ms

31 701.356ms 704.132ms 647.841ms 661.497ms 673.547ms

32 655.824ms 655.824ms 723.870ms 693.651ms 679.548ms

33 674.545ms 703.870ms 684.815ms 635.922ms 710.495ms

34 640.453ms 644.815ms 647.841ms 680.455ms 659.121ms

35 687.232ms 713.870ms 655.824ms 643.572ms 661.497ms

36 703.870ms 647.841ms 710.226ms 723.841ms 703.874ms

37 644.815ms 708.870ms 669.121ms 674.815ms 679.355ms

38 658.312ms 687.738ms 661.497ms 653.536ms 663.532ms

39 684.192ms 692.671ms 655.824ms 689.741ms 675.824ms

40 647.988ms 660.437ms 703.870ms 668.375ms 698.186ms

Average 669.261ms 678.464ms 675.221ms 674.959ms 674.985ms

47

Table 4.2 First IoT Part Test (35 – 63 days)

Test No. Run-Time

per cycle

(35 Days)

Run-Time

per cycle

 (42 Days)

Run-Time

per cycle

 (49 Days)

Run-Time

per cycle

 (56 Days)

Run-Time

per cycle

(63 Days)

1 658.103ms 667.715ms 692.840ms 652.315ms 678.813ms

2 662.206ms 670.636ms 704.123ms 703.795ms 698.346ms

3 683.396ms 655.468ms 658.689ms 685.259ms 647.568ms

4 695.948ms 670.318ms 657.678ms 663.366ms 681.916ms

5 643.689ms 676.867ms 664.756ms 650.714ms 657.346ms

6 674.187ms 660.349ms 658.619ms 735.585ms 649.989ms

7 681.994ms 659.186ms 650.678ms 658.398ms 652.961ms

8 670.198ms 655.198ms 623.446ms 714.593ms 700.131ms

9 642.896ms 648.674ms 668.634ms 658.357ms 673.256ms

10 633.256ms 646.544ms 645.763ms 697.189ms 638.831ms

11 657.917ms 692.714ms 635.274ms 716.123ms 656.966ms

12 681.267ms 618.385ms 674.773ms 661.957ms 620.189ms

13 643.721ms 688.766ms 643.633ms 625.561ms 628.190ms

14 654.543ms 623.423ms 721.568ms 644.633ms 619.816ms

15 700.002ms 654.168ms 638.296ms 658.883ms 636.185ms

16 702.803ms 707.136ms 702.714ms 612.395ms 703.532ms

17 689.684ms 633.358ms 730.001ms 687.755ms 645.362ms

18 655.348ms 645.517ms 648.468ms 700.124ms 651.736ms

19 693.915ms 647.756ms 644.203ms 692.599ms 661.416ms

20 700.846ms 689.233ms 623.706ms 633.186ms 660.597ms

48

Test No. Run-Time

per cycle

(35 Days)

Run-Time

per cycle

 (42 Days)

Run-Time

per cycle

 (49 Days)

Run-Time

per cycle

 (56 Days)

Run-Time

per cycle

(63 Days)

21 638.831ms 671.925ms 634.545ms 680.209ms 689.224ms

22 656.966ms 661.497ms 641.124ms 634.040ms 656.317ms

23 699.818ms 655.824ms 661.416ms 659.172ms 611.818ms

24 683.132ms 714.593ms 660.597ms 644.330ms 661.416ms

25 692.599ms 658.357ms 656.966ms 681.994ms 660.597ms

26 633.186ms 697.189ms 661.416ms 670.198ms 656.966ms

27 661.416ms 681.994ms 660.597ms 642.896ms 661.497ms

28 660.597ms 670.198ms 681.818ms 692.599ms 655.824ms

29 651.736ms 642.896ms 714.593ms 633.186ms 645.362ms

30 702.714ms 702.050ms 658.357ms 624.494ms 651.736ms

31 638.296ms 661.416ms 697.189ms 684.693ms 637.622ms

32 661.497ms 660.597ms 702.714ms 661.416ms 714.593ms

33 655.824ms 651.736ms 730.001ms 660.597ms 658.357ms

34 730.001ms 652.396ms 681.994ms 702.714ms 697.189ms

35 647.062ms 737.504ms 670.198ms 730.001ms 623.708ms

36 685.181ms 661.497ms 692.896ms 659.822ms 661.416ms

37 626.713ms 655.824ms 673.654ms 714.593ms 660.597ms

38 714.593ms 645.362ms 681.497ms 658.357ms 638.296ms

39 658.357ms 651.736ms 675.824ms 697.189ms 702.714ms

40 697.189ms 643.587ms 623.548ms 689.231ms 730.001ms

Average 672.291ms 666.840ms 671.170ms 674.663ms 664.110ms

49

Graph 4.0 Line Graph of Unit Test for First IoT Part

Referring to the graph above, the graph does not show a uniform pattern. The system shows no constant dropping in performance through this

period of approximately 2 months. From the first day of running the system until the 63rd days of continuous running, the execution time of the

program differs within a small range of 11.624ms. The mean from these average execution times is 665.664ms which is 0.665 seconds. By dividing

the differing range by the mean, the percentage different is 1.75%. According to Friansa’s research [22], their system of extracting data from the

IoT system to their battery monitoring system takes 1.04±0.66 seconds. Despite different IoT features and data were implemented, this project has

a relatively lower average execution time compared to the IoT system in their research.

669.261

678.464
675.221 674.959

679.985

672.291
666.84

671.17
674.663

664.11

650

660

670

680

690

Initially 7 14 21 28 35 42 49 56 63

Ex
ec

u
ti

o
n

 t
im

e(
m

s)

Days

Unit Test

50

4.2.2 Second Part App Test (Subscriber and Database Communication)

Table 4.3 First IoT Part Test (Initial – 28 days)

Test No. Run-Time

per cycle

(initially)

Run-Time

per cycle

 (7 Days)

Run-Time

per cycle

 (14 Days)

Run-Time

per cycle

 (21 Days)

Run-Time

per cycle

(28 Days)

1 314.170ms 291.369ms 324.837ms 294.241ms 319.661ms

2 300.461ms 321.604ms 322.334ms 300.514ms 311.078ms

3 318.483ms 297.720ms 301.501ms 296.989ms 301.851ms

4 321.181ms 301.464ms 318.483ms 303.917ms 310.849ms

5 299.671ms 294.715ms 321.181ms 308.122ms 305.910ms

6 295.822ms 293.698ms 299.671ms 294.663ms 325.153ms

7 316.519ms 313.546ms 296.933ms 308.939ms 308.721ms

8 300.885ms 295.319ms 324.837ms 299.614ms 316.472ms

9 308.151ms 303.144ms 317.720ms 293.660ms 324.625ms

10 305.466ms 321.661ms 313.628ms 318.483ms 293.663ms

11 303.819ms 299.793ms 301.151ms 321.181ms 309.842ms

12 308.987ms 290.362ms 315.164ms 299.671ms 302.608ms

13 305.273ms 318.483ms 301.540ms 290.463ms 302.799ms

14 327.223ms 321.181ms 329.711ms 289.650ms 304.650ms

15 316.961ms 299.671ms 322.334ms 311.783ms 315.195ms

16 293.724ms 301.177ms 318.393ms 302.346ms 292.020ms

17 303.467ms 307.859ms 303.542ms 316.624ms 318.483ms

18 304.831ms 323.104ms 326.307ms 328.493ms 321.181ms

19 301.796ms 290.727ms 312.993ms 300.651ms 299.671ms

20 310.124ms 293.534ms 308.295ms 299.187ms 313.604ms

51

Test No. Run-Time

per cycle

(initially)

Run-Time

per cycle

 (7 Days)

Run-Time

per cycle

 (14 Days)

Run-Time

per cycle

 (21 Days)

Run-Time

per cycle

(28 Days)

21 299.871ms 321.661ms 277.618ms 284.958ms 269.184ms

22 302.187ms 299.793ms 318.483ms 290.463ms 290.463ms

23 320.233ms 290.727ms 312.993ms 289.650ms 289.650ms

24 317.810ms 290.727ms 299.671ms 311.783ms 311.783ms

25 306.191ms 293.534ms 299.671ms 312.993ms 300.651ms

26 296.624ms 322.334ms 311.783ms 315.195ms 321.181ms

27 301.447ms 316.961ms 299.671ms 326.307ms 299.671ms

28 306.283ms 289.677ms 299.793ms 292.993ms 318.483ms

29 317.123ms 316.624ms 318.483ms 328.493ms 321.181ms

30 304.881ms 328.493ms 311.181ms 291.783ms 315.195ms

31 289.174ms 290.727ms 293.727ms 312.993ms 300.651ms

32 300.243ms 293.534ms 308.939ms 308.721ms 290.727ms

33 311.423ms 321.181ms 299.614ms 316.472ms 308.939ms

34 306.061ms 299.671ms 296.624ms 318.483ms 299.614ms

35 283.414ms 322.334ms 328.393ms 321.181ms 293.534ms

36 306.487ms 308.939ms 308.721ms 326.307ms 278.433ms

37 304.831ms 289.614ms 316.472ms 312.993ms 308.721ms

38 300.729ms 317.203ms 301.181ms 269.614ms 316.472ms

39 310.124ms 326.307ms 308.939ms 308.721ms 299.793ms

40 289.431ms 312.993ms 299.614ms 306.472ms 287.659m

Average 305.790ms 306.179ms 310.503ms 306.694ms 306.901ms

52

Table 4.4 Second IoT Part Test (35 – 63 days)

Test No. Run-Time

per cycle

(35 Days)

Run-Time

per cycle

 (42 Days)

Run-Time

per cycle

 (49 Days)

Run-Time

per cycle

 (56 Days)

Run-Time

per cycle

(63 Days)

1 290.745ms 305.917ms 292.717ms 294.498ms 322.146ms

2 307.805ms 293.347ms 307.838ms 318.685ms 328.725ms

3 291.606ms 295.804ms 306.918ms 328.779ms 304.554ms

4 310.773ms 328.192ms 292.023ms 313.375ms 297.205ms

5 313.198ms 329.700ms 307.543ms 305.617ms 296.262ms

6 298.451ms 321.937ms 306.263ms 308.340ms 326.612ms

7 292.539ms 309.948ms 294.164ms 313.602ms 300.974ms

8 298.672ms 301.704ms 328.425ms 307.947ms 290.517ms

9 310.516ms 304.597ms 291.098ms 312.328ms 295.330ms

10 307.270ms 296.133ms 315.017ms 325.544ms 315.159ms

11 301.122ms 298.892ms 292.119ms 307.593ms 297.025ms

12 294.745ms 325.988ms 324.918ms 326.388ms 311.725ms

13 307.226ms 320.253ms 305.241ms 309.863ms 302.116ms

14 297.477ms 290.652ms 293.275ms 316.573ms 314.084ms

15 300.141ms 299.903ms 312.564ms 303.545ms 314.181ms

16 290.913ms 316.416ms 292.023ms 304.711ms 315.223ms

17 298.512ms 325.774ms 320.293ms 303.545ms 290.574ms

18 318.670ms 307.323ms 295.526ms 315.169ms 312.855ms

19 319.216ms 291.059ms 325.139ms 327.535ms 298.408ms

20 305.753ms 299.656ms 310.898ms 300.028ms 307.602ms

53

Test No. Run-Time

per cycle

(35 Days)

Run-Time

per cycle

 (42 Days)

Run-Time

per cycle

 (49 Days)

Run-Time

per cycle

 (56 Days)

Run-Time

per cycle

(63 Days)

21 298.892ms 314.474ms 287.732ms 283.101ms 288.754ms

22 325.988ms 306.552ms 293.646ms 293.337ms 314.204ms

23 320.253ms 306.994ms 283.847ms 291.846ms 303.463ms

24 290.652ms 292.483ms 294.329ms 300.687ms 290.277ms

25 307.602ms 307.643ms 312.616ms 297.715ms 314.298ms

26 277.345ms 282.444ms 312.545ms 284.446ms 305.599ms

27 307.925ms 287.853ms 312.306ms 314.729ms 292.794ms

28 324.781ms 307.133ms 290.937ms 288.139ms 283.513ms

29 293.545ms 281.373ms 295.279ms 282.991ms 299.579ms

30 305.166ms 301.738ms 290.475ms 294.068ms 285.177ms

31 327.538ms 294.997ms 312.359ms 313.735ms 306.788ms

32 300.718ms 299.332ms 299.023ms 296.299ms 290.546ms

33 303.565ms 293.170ms 305.966ms 303.302ms 285.297ms

34 304.711ms 289.802ms 285.006ms 297.026ms 293.345ms

35 315.908ms 307.133ms 308.649ms 314.367ms 283.614ms

36 302.453ms 288.783ms 308.411ms 292.369ms 307.049ms

37 298.716ms 302.986ms 289.773ms 284.221ms 317.281ms

38 309.308ms 313.815ms 296.741ms 303.216ms 288.674ms

39 301.443ms 296.429ms 300.432ms 301.398ms 305.527ms

40 309.631ms 319.498ms 302.933ms 281.221ms 311.609ms

Average 306.287ms 306.046ms 304.875ms 306.847ms 305.867ms

54

Graph 4.1 Line Graph of Unit Test for Second IoT Part

Referring to the graph above, the graph does not show a uniform pattern. The system shows no constant dropping in performance through this

period of approximately 2 months. From the first day of running the system until the 63rd days of continuous running, the execution time of the

program differs within a small range of 5.628ms. The mean from these average execution times is 306.599ms or 0.306 seconds. By dividing the

differing range by the mean, the percentage difference is 1.84%. According to Friansa’s research [22], their system of extracting data from the IoT

system to their battery monitoring system takes 8.71±12.12 seconds. Despite different database and data were used, this project has a relatively

lower average execution time compared to the IoT system in their research.

305.753 306.179

310.503

306.694 306.901
306.287 306.046

304.875

306.847
305.867

302

304

306

308

310

312

Initially 7 14 21 28 35 42 49 56 63

Ex
ec

u
ti

o
n

 t
im

e(
m

s)

Days

Unit Test

55

CHAPTER 5

CONCLUSION AND FUTURE WORKS

5.1 Conclusion

For this thesis, we addressed the issue faced while setting up a simple IoT system that

could work with car plate recognition. One of the main contributions of my work is to

achieve the task with a very low cost. The developed prototype serves a purpose to do

surveillance tasks less expensively, also the system does not drop in performance after

working continuously over a great period.

To conclude, this system has achieved the objectives. It can recognize simple

car plate character and turn an image into a digital data in computer and communicate

with a database to verify a vehicle.

56

Other than that, this prototype is a simple cost-effective system that could save

money, time, and increase efficiency. On top of that, the proposed API and software

performed well in sending messages, extracting information from the database.

This work could be implemented and inherited in many other applications such

as automatic mail sorting system, student/employee identification system, door and

gate entry system, community automated parking management, traffic statistic,

stock/inventory management system, internal plagiarism system, and highway

automated tolling.

5.2 Future Work

One of the most crucial parts of this system is the car plate recognition system.

Therefore, this part should be enhanced and improved to optimize accuracy. To

increase accuracy, more image pre-processing should be done. Issues like light

illumination, noises, segmentation error, recognizing on a rainy day, and different font

of car plate character should be considered in the future. If we could overcome these

objectives, this project could be improved.

 In terms of user friendly, a dashboard or webpage could be built to enable easy

access to the system. The current system only shows result in a terminal, it will be

difficult for people to understand how to start or run the system without coding

knowledge. A clear and effective front-end dashboard could improve user experience.

A dashboard could provide relevant information in order by just taking simple input

from the user.

 In terms of security, a password could be customized into the database and the

excel-folder. This could improve the security of the system by preventing intruders

57

changing the car plate number from the excel file in the beginning or adding

information on their own in the database.

 As for the database, it could be set up to the cloud. A cloud database could

release the administrative burden. If a database gets larger, it requires more space, this

increases the demand towards the hardware. More frequent maintenance needed to

sustain the database. Other than that, using a cloud database could improve security,

because the company that provides cloud services who needs to work on the security

system. This leaves fewer issue for the administrator to concern.

 In terms of performance solely on the IoT part, many test-code that is inserted

during the building of the prototype could be removed to reduce the execution time.

Other than that, different protocols and databases could be used to replace the current

ones in this project to try reducing execution time.

58

REFERENCES

[1] Kavitha, H., Singh, M., Rai, S. K., & Biradar, S. (2017). Smart Suspect Vehicle

Surveillance System. Communication and Power Engineering, 186.

[2] Hosseini, H., Xiao, B., Jaiswal, M., & Poovendran, R. (2017, December). On the

limitation of convolutional neural networks in recognizing negative images. In 2017

16th IEEE International Conference on Machine Learning and Applications

(ICMLA) (pp. 352-358). IEEE.

[3] Simin, N., & Mei, F. C. C. (2013). Automatic car-plate detection and recognition

system. EURECA, 113-114.

[4] Kapadia, P. S. (2011). Car license plate recognition using template matching

algorithm.

[5] Nagare, A. P. (2011). License plate character recognition system using neural

network. International Journal of Computer Applications, 25(10), 36-39.

[6] Ravendra Ratan Singh Rinky Sharma (2015) Automatic License Plate Recognition.

Volume IV, Issue XI, November 2015. IJLTEMAS.

[7] Kocer, H. E., & Cevik, K. K. (2011). Artificial neural network-based vehicle

license plate recognition. Procedia Computer Science, 3, 1033-1037.

59

[8] Lei, K., Ma, Y., & Tan, Z. (2014, December). Performance comparison and

evaluation of web development technologies in php, python, and node. js. In 2014

IEEE 17th international conference on computational science and engineering (pp.

661-668). IEEE.

[9] Official website of Firebase Database. Website:

firebase.google.com/products/realtime-database

[10] Official website of Influx Database. Website:

www.influxdata.com/products/-influxdb-overview

[11] Bangare, S. L., Gupta, S., Dalal, M., & Inamdar, A. (2016, March). Using Node.

Js to build high speed and scalable backend database server. In Proc. NCPCI. Conf (p.

19).

[12] Nasar, M., & Kausar, M. A. (2019). Suitability Of Influxdb Database For Iot

Applications. International Journal of Innovative Technology and Exploring

Engineering, 8(10), 1850-1857.

[13] Balis, B., Bubak, M., Harezlak, D., Nowakowski, P., Pawlik, M., & Wilk, B.

(2017, January). Towards an operational database for real-time environmental

monitoring and early warning systems. In ICCS (pp. 2250-2259).

[14] Official website of JavaScript. Website: https://javascript.info/intro

[15] Official website of Node.js. Website: https://nodejs.dev/

[16] Official website of MQTT. Website: http://mqtt.org/

60

[17] Developer Survey Result 2019. Website:

https://insights.stackoverflow.com/survey/2019

[18] Official website of MATLAB. Website:

https://www.mathworks.com/discovery/what-is-matlab.html

[19] Salman, N. H., & Hadi, G. M. (2013). Integrated image processing functions

using MATLAB GUI. Journal of advanced computer science and technology

research, 3(1), 31-38.

[20] Ivo, A. A., Guerra, E. M., Porto, S. M., Choma, J., & Quiles, M. G. (2018). An

approach for applying Test-Driven Development (TDD) in the development of

randomized algorithms. Journal of Software Engineering Research and

Development, 6(1), 9.

[21] Khanam, Z., & Ahsan, M. N. (2017). Evaluating the effectiveness of test driven

development: advantages and pitfalls. Int. J. Appl. Eng. Res, 12(18), 7705-7716.

[22] Friansa, K., Haq, I. N., Santi, B. M., Kurniadi, D., Leksono, E., & Yuliarto, B. (2017).

Development of battery monitoring system in smart microgrid based on internet of things

(IoT). Procedia engineering, 170, 482-487.

61

APPENDICES

APPENDIX A

62

APPENDIX B

63

64

APPENDIX C

65

