

OPTIMIZATION OF MAPPING ALGORITHM FOR MOBILE
ROBOT

SHARIFAH AIDA AFIQAH BINTI SYED ABD RAHMAN
ALZAWAWI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

OPTIMIZATION OF MAPPING ALGORITHM FOR MOBILE

ROBOT

SHARIFAH AIDA AFIQAH BINTI SYED ABD RAHMAN

ALZAWAWI

This report is submitted in partial fulfilment of the requirements

for the degree of Bachelor of Electronic Engineering with Honours

Faculty of Electronic and Computer Engineering

Universiti Teknikal Malaysia Melaka

2019/2020

DECLARATION

I declare that this report entitled “Optimization of Mapping Algorithm for Mobile

Robot” is the result of my own work except for quotes as cited in the references.

 Signature : …………………………………

 Author : Sharifah Aida Afiqah Bnti Syed Abd Rahman

 Alzawawi

 Date : 25 June 2020

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient

in terms of scope and quality for the award of Bachelor of Electronic Engineering with

Honours.

 Signature : …………………………………

 Supervisor name : Dr. Norhidayah Binti Mohamad Yatim

 Date : 25 June 2020

DEDICATION

To all my beloved family and friends, I couldn’t have done this without you. Thank

you for all of your support along the way.

i

ABSTRACT

Autonomous mobile robots can safely explore their environments without hit or

crashing with anything. Simultaneous localization and mapping (SLAM) helps the

robot to gain such independence by answering questions about how its environment

map looks like and also where is it location. Building maps is one of mobile robots’

most fundamental tasks. Actually, the robot can build maps from the information and

data collected by a mobile robot by applying a sensor like a laser sensor. The

autonomous mobile robots can be located and navigate in the practical environment

with the maps. The goal of this research is to investigate parameters such as grid size

of the occupancy grid map algorithm and to stimulate the mapping algorithm and

investigate performance based on map accuracy. Occupancy grid map is used as a map

representation in this study because it can generate a discrete grid representation. This

means, the robot can run on a given region in a grid to speed up the computation

process. In addition, Gmapping is the SLAM algorithm used in this research as it is

the most accurate method compared to other methods and it can provide a high quality

performance output map.

ii

ABSTRAK

Robot mudah alih autonomi boleh menjelajahi persekitarannya dengan selamat

tanpa bertembung dengan orang atau berlanggar dengan objek. Penyetempatan dan

pemetaan serentak (SLAM) membantu robot mencapai kebebasan tersebut dengan

menjawab persoalan tentang bagaimana ia kelihatan dan juga di mana ia berada..

Pemetaan bangunan adalah salah satu tugas paling penting robot mudah alih.

Sebenarnya, robot boleh membina peta daripada maklumat dan data yang dikumpul

oleh robot mudah alih dengan menggunakan sensor seperti sensor laser. Robot boleh

ditempatkan dan mengemudi dalam persekitaran praktikal dengan peta. Matlamat

penyelidikan ini adalah untuk mengkaji parameter seperti saiz grid algoritma peta

penghuni grid dan untuk merangsang algoritma pemetaan dan menyiasat prestasi

berdasarkan ketepatan peta. Peta grid penghunian digunakan sebagai perwakilan

peta dalam kajian ini kerana ia boleh menjana perwakilan grid diskret. Ini bermakna,

robot boleh berjalan di kawasan tertentu dalam grid untuk mempercepat proses

perhitungan. Di samping itu, Gmapping adalah algoritma SLAM yang digunakan

dalam penyelidikan ini kerana ia merupakan cara yang paling tepat berbanding

dengan kaedah lain dan ia dapat memberikan peta keluaran prestasi yang berkualiti

tinggi.

iii

ACKNOWLEDGEMENTS

I would like to thank Allah S.W.T. for his abundant blessings and unfailing love

for me. Here, I express my deepest appreciation for supporting me throughout my

degree study to several individuals and organizations. First of all, I wish to express my

sincere thanks to my supervisor, Dr. Norhidayah Binti Mohamad Yatim for her

patience, enthusiasm, insightful feedback, helpful suggestions useful information,

practical advice and unceasing ideas that have supported me tremendously in my

research and writing of this dissertation at all times. Her deep knowledge, vast

experience and professional expertise have enabled me to successfully complete this

research. I am truly thankful to her for the time and energy she has spent in guiding

me, answering my questions, correcting and improving my thesis report. This thesis

would not have been possible without her guidance and help. I never dreamed having

a great supervisor in my research.

Furthermore, a special thank you goes to the Universiti Teknikal Malaysia Melaka

(UTeM) for accepting me as a graduate. I am also deeply indebted to the Higher

Education Ministry, Malaysia for awarding me the JPA scholarship. This financial

support has allowed me to finish my degree study effectively. Besides, I would like to

extend my sincere thanks to Professor Dr Mohd Shakir Md Saat, Dean of the Faculty

iv

of Electronic and Computer Engineering (FKEKK), UTeM for his consistent

support and help in my undergraduate study. Next, I also appreciate the kindness,

hospitality and technical support of FKEKK's lecturers and staff. In addition, I

would like to acknowledge the FKEKK for organizing numerous seminars, which

led me to develop my ability to write the report of the thesis.

 Additionally, I also wish to express my deepest gratitude to my parents and

family. My source of strength is their unwavering support and encouragement. I

am also grateful to my friend, Husna. She's always there to take care of me,

cheering me up and standing by me through my life's peaks and valleys. Last but

not least, I give my thanks to all my friends for giving me their encouragement,

friendship, moral support and advice.

v

TABLE OF CONTENTS

Declaration i

Approval i

Dedication i

Abstract i

Abstrak ii

Acknowledgements iii

Table of Contents v

List of Figures x

List of Tables xiv

List of Graphs xvi

List of Symbols and Abbreviations xvii

List of Appendices xix

CHAPTER 1 INTRODUCTION 1

1.1 Background Studies 1

1.2 Problem Statements 4

1.3 Objectives 5

vi

1.4 Scope of Project 6

1.5 Environment and Sustainability 6

1.6 Project Outline 7

1.7 Summary 8

CHAPTER 2 BACKGROUND STUDY 9

2.1 Mapping Algorithm 9

2.1.1 Kalman Filter Approaches 13

2.1.1.1 Lu/Milios algorithms 15

2.1.1.2 Expectation Maximization (EM) algorithms 17

2.1.2 Hybrid Approaches 18

2.1.3 Occupancy Grid Map 21

2.2 Simultaneous Localization and Mapping (SLAM) Algorithm 23

2.3 TurtleBot 24

2.3.1 TurtleBot3 25

2.3.2 Dimension and Mass 27

2.3.3 Components 28

2.3.3.1 Single Board Computers (SBCs) 30

2.3.3.2 Sensor 31

2.3.3.3 Embedded board and actuator 31

2.4 Sensor Implementation for Grid Map 32

vii

2.4.1 Range sensor 32

2.4.2 Laser range finder 33

2.4.3 Light Detection and Ranging (LIDAR) 34

CHAPTER 3 METHODOLOGY 36

3.1 Introduction 36

3.2 Flowchart 37

3.3 Occupancy Grid Map Algorithm 39

3.3.1 Gmapping 39

3.4 Experiment Plattform 40

3.4.1 Ubuntu Operating System 40

3.4.2 Robot Operating System (ROS) 41

3.4.3 Gazebo 42

3.4.4 Turtlebot3 43

3.4.5 360 Laser Distance Sensor Lds-01 (LIDAR) 44

3.5 Experiment Setup 45

3.5.1 Simulation Command 46

3.5.1.1 Ros Visualization (Rviz) 46

3.5.1.2 Installing TurtleBot3 package 46

3.5.2 Test Environment 49

3.5.3 Robot Operation 50

viii

3.5.4 Evaluation Metrics 51

3.5.4.1 Occupancy binary random variable 51

3.5.4.2 Occupancy grid map 51

3.5.4.3 Fitness score 53

3.5.4.4 Occupied / free cells ratio 54

3.5.5 Run Gmapping Algorithm 54

CHAPTER 4 RESULTS AND DISCUSSION 56

4.1 Area for Free Grid Cell 56

4.2 Result and Calculation 61

4.2.1 Full Environment Map 61

4.2.2 Speed 0.5ms-1 at 20 Seconds 63

4.2.3 Speed 0.5ms-1 at 30 Seconds 65

4.2.4 Speed 0.5ms-1 at 40 Seconds 66

4.2.5 Speed 0.5ms-1 at 50 Seconds 67

4.2.6 Speed 0.5ms-1 at 60 Seconds 68

4.2.7 Speed 1.0ms-1 at 20 Seconds 69

4.2.8 Speed 1.0ms-1 at 30 Seconds 70

4.2.9 Speed 1.0ms-1 at 40 Seconds 71

4.2.10 Speed 1.0ms-1 at 50 Seconds 72

4.2.11 Speed 1.0ms-1 at 60 Seconds 73

ix

4.2.12 Comparison between Free and Occupied Ratio For Speed 0.5ms-1 74

4.2.13 Comparison between Free and Occupied Ratio For Speed 1.0ms-1 76

4.2.14 Comparison of Free Ratio between Speed 0.5ms-1 and Speed 0.5ms-1 77

4.2.15 Comparison of Occupied Ratio between Speed 0.5ms-1 and Speed

0.5ms-1 78

4.2.16 Comparison of Fitness Score between Speed 0.5ms-1 and Speed

0.5ms-1 79

4.2.17 Discussion 80

CHAPTER 5 CONCLUSION AND FUTURE WORKS 82

5.1 Conclusion 82

5.2 Future Works 83

REFERENCES 85

APPENDICES 89

x

LIST OF FIGURES

Figure 2.1 : Kalman Filter estimation of the vehicle pose and the map. 14

Figure 2.2 : (a) Landmarks map obtained in simulation. (b) A correlation

matrix after 278 iteration of Kalman Filter mapping. (c) The

same estimate's standardized inverse covariance matrix.

15

Figure 2.3 : (a) Raw range data of large museum hall. (b) Artificial but

indistinguishable information associated with Expectation

Maximization (EM). (c) Application of the Lu / Milios

algorithm to the pre-aligned data output.

16

Figure 2.4 : (a) Raw data with indistinguishable landmarks on a large-

scale cyclic environment. (b) Occupancy grid map using

sonar sensors built from raw data. (c) EM aligned map and

path, proving the potential of EM to solve problems of hard

correspondence. (d) Occupancy grid map create based on

the EM mapping algorithm result.

18

Figure 2.5 : Incremental mapping of maximum likelihood, the map is

developed at each stage by finding the most possible

continuation, this non-probabilistic approach works well in

19

xi

non-cyclical conditions but is usually unable to manage

cycles.

Figure 2.6 : Hybrid approach which retains a later approximation over

the poses of the robot, defined by a series of particles, these

samples are used when closing the loop to move the robot in

the map and correct the map accordingly.

19

Figure 2.7 : The initial robot poses, designed by three autonomous

robots are on the left as indicated by the letters A, B, and C.

21

Figure 2.8 : Dimension of TurtleBot3 Burger. 27

Figure 2.9 : Dimension of TurtleBot3 Waffle. 27

Figure 2.10 : Dimension of TurtleBot3 Waffle Pi. 28

Figure 2.11 : The TurtleBot3 Burger. 28

Figure 2.12 : The TurtleBot3 Waffle. 29

Figure 2.13 : The TurtleBot3 Waffle Pi. 29

Figure 2.14 : Ultrasonic and Infra-red Range Sensor. 32

Figure 2.15 : Ultrasonic Sensor’s Sensing Ranges. 33

Figure 2.16 : Rotational Laser Range Finder. 34

Figure 3.1 : Flowchart. 37

Figure 3.2 : Grid cell. 39

Figure 3.3 : Turtlebot3 (Burger). 43

Figure 3.4 : 360 Laser Distance Sensor Lds-01 (LIDAR). 44

xii

Figure 3.5 : ROS released packages command. 47

Figure 3.6 : Source packages command. 47

Figure 3.7 : Command for launch Gazebo. 48

Figure 3.8 : Command for TurtleBot3 movement. 48

Figure 3.9 : Command to execute Rviz. 48

Figure 3.10 : Command for launch Gmapping. 49

Figure 3.11 : Command for control TurtleBot3. 49

Figure 3.12 : Command for control the speed of TurtleBot3. 49

Figure 3.13 : Command for control the speed of TurtleBot3. 49

Figure 3.14 : Simulated environment in Gazebo platform. 50

Figure 3.15 : Mapping environment from the TurtleBot3. 55

Figure 3.16 : The save mapping environment using command. 55

Figure 4.1 : Environment map from the simulation. 57

Figure 4.2 : Small grid cell. 57

Figure 4.3 : Free small grid cell for part 1. 58

Figure 4.4 : Free small grid cell for part 2. 59

Figure 4.5 : Free small grid cell for part 3. 60

Figure 4.6 : Free small grid cell. 61

Figure 4.7 : Full environment map created. 61

xiii

Figure 4.8 : Environment map created for 20 seconds when speed is

0.5ms-1.

63

Figure 4.9 : Environment map created for 30 seconds when speed is

0.5ms-1.

65

Figure 4.10 : Environment map created for 40 seconds when speed is

0.5ms-1.

66

Figure 4.11 : Environment map created for 50 seconds when speed is

0.5ms-1.

67

Figure 4.12 : Environment map created for 60 seconds when speed is

0.5ms-1.

68

Figure 4.13 : Environment map created for 20 seconds when speed is

1.0ms-1.

69

Figure 4.14 : Environment map created for 30 seconds when speed is

1.0ms-1.

70

Figure 4.15 : Environment map created for 40 seconds when speed is

1.0ms-1.

71

Figure 4.16 : Environment map created for 50 seconds when speed is

1.0ms-1.

72

Figure 4.17 : Environment map created for 60 seconds when speed is

1.0ms-1.

73

xiv

LIST OF TABLES

Table 2.1 : Characteristics of the major mapping algorithms. 11

Table 2.2 : Comparison of occupancy grid mapping, topological

mapping and features map.

12

Table 2.3 : Hardware Specifications of TurtleBot3. 26

Table 2.4 : Single Board Computers (SBCs) of the TurtleBot3. 30

Table 2.5 : Type of sensor used of the TurtleBot3. 31

Table 2.6 : Embedded board and actuator of the TurtleBot3. 32

Table 3.1 : Specifications of LDS-01. 45

Table 4.1 : Area of each grid cell for full environment map created. 62

Table 4.2 : Area of each grid cell for environment map created at 20

seconds when speed is 0.5ms-1.

63

Table 4.3 : Area of each grid cell for environment map created at 30

seconds when speed is 0.5ms-1.

66

Table 4.4 : Area of each grid cell for environment map created at 40

seconds when speed is 0.5ms-1.

67

xv

Table 4.5 : Area of each grid cell for environment map created at 50

seconds when speed is 0.5ms-1.

68

Table 4.6 : Area of each grid cell for environment map created at 60

seconds when speed is 0.5ms-1.

69

Table 4.7 : Area of each grid cell for environment map created at 20

seconds when speed is 1.0ms-1.

70

Table 4.8 : Area of each grid cell for environment map created at 30

seconds when speed is 1.0ms-1.

71

Table 4.9 : Area of each grid cell for environment map created at 40

seconds when speed is 1.0ms-1.

72

Table 4.10 : Area of each grid cell for environment map created at 50

seconds when speed is 1.0ms-1.

73

Table 4.11 : Area of each grid cell for environment map created at 60

seconds when speed is 1.0ms-1.

74

Table 4.12 : Free and occupied ratio for speed 0.5ms-1. 75

Table 4.13 : Free and occupied ratio for speed 1.0ms-1. 76

Table 4.14 : Free ratio between speed 0.5ms-1 and speed 1.0ms-1. 77

Table 4.15 : Occupied ratio between speed 0.5ms-1 and speed 1.0ms-1. 78

Table 4.16 : Fitness score between speed 0.5ms-1 and speed 1.0ms-1. 79

xvi

LIST OF GRAPHS

Graph 4.1 : Free and occupied ratio for speed 0.5ms-1. 75

Graph 4.2 : Free and occupied ratio for speed 1.0ms-1. 76

Graph 4.3 : Free ratio between speed 0.5ms-1 and speed 1.0ms-1. 77

Graph 4.4 : Occupied ratio between speed 0.5ms-1 and speed 1.0ms-1. 78

Graph 4.5 : Fitness score between speed 0.5ms-1 and speed 1.0ms-1. 79

xvii

LIST OF SYMBOLS AND ABBREVIATIONS

SLAM : Simultaneous Localization and Mapping

AMRs : Autonomous Mobile Robots

AGVs

OGM

:

:

Automatic Guided Vehicles

Occupancy grid maps

GPS : Global Positioning System

2-D : 2-Dimensional

3-D : 3-Dimensional

ROS : Robot Operating System

ML : Maximum Likelihood

EM : Expectation Maximization

KF : Kalman Filter

EKF : Extended Kalman Filter

SBCs : Single Board Computers

LIDAR : 360 Laser Distance Sensor Lds-01

LRF : Laser Range Finder

RADAR : Radio Detection And Ranging

xviii

PF : Particle Filter

RBPF : Rao-Blackwellized Particle Filter

IoTs : Internet of Technologies

UNIX : Uniplexed Information and Computer System

OS : Operating System

LISP : List Processing

RAM : Random Access Memory

Rviz : Ros Visualization

xix

LIST OF APPENDICES

Appendix A : Run roscore in ROS. 89

Appendix B : Launch TurtleBot Burger and simulation environment in

gazebo.

89

Appendix C : TurtleBot Burger in gazebo. 90

Appendix D : Simulation environment in gazebo. 90

Appendix E : Execute Rviz in ROS. 91

Appendix F : Rviz in ROS. 91

Appendix G : Run Gmapping SLAM in ROS. 92

Appendix H : Gmapping SLAM in ROS. 92

Appendix I : Run teleop key to control the keyboard for movement of

the TurtleBot Burger.

93

Appendix J : Run the teleop twist to control the speed of the TurtleBot

Burger.

93

Appendix K : Run map server to save the map. 94

Appendix L : The save map. 94

Appendix M : The calculation for speed 0.5ms-1 at 30 seconds. 95

xx

Appendix N : The calculation for speed 0.5ms-1 at 40 seconds. 96

Appendix O : The calculation for speed 0.5ms-1 at 50 seconds. 97

Appendix P : The calculation for speed 0.5ms-1 at 60 seconds. 98

Appendix Q : The calculation for speed 1.0ms-1 at 20 seconds. 99

Appendix R : The calculation for speed 1.0ms-1 at 30 seconds. 100

Appendix S : The calculation for speed 1.0ms-1 at 40 seconds. 101

Appendix T : The calculation for speed 1.0ms-1 at 50 seconds. 102

Appendix U : The calculation for speed 1.0ms-1 at 60 seconds. 103

CHAPTER 1

INTRODUCTION

This chapter covers significant background studies, problem statements, goals,

project scope and the environment and sustainability of the project. In this part, it also

provides an outline of the chapter.

1.1 Background Studies

Autonomous robotics has been an area of interest for researchers for a long time.

Autonomous robots have the potential to decide their own alternative and move

properly. An autonomous robot is one that can observe its surroundings act based on

what it sees and is programmed to identify and after that respond on a gesture or

control in that situation. For example, by regard to flexibility, this decision is including

acts but not bound to the specified element such as starting, stopping, and maneuvering

2

around obstacles in their path. It is highly desirable to have a programmable robot with

the ability to multi-task and traverse difficult terrains where a human being would

otherwise be risky to cross. A large number of accurate sensors installed by the robot

will measure and process information in fractions of the time it would take a person

to do. Over the past few decades, this has become an ambitious research area.

As technology evolves, autonomous robots in the manufacturing, health care,

security, military and similar sectors have become increasingly popular. The primary

benefit of this technology is that, under certain circumstances, it can function without

human intervention and still perform better. In other words, in activities that are risky,

repetitive and require high levels of concentration over a long time, autonomous robots

may replace humans. Unlike the robot for manual control, autonomous robot does not

rely on live input commands. Autonomous robot makes decisions on its own based on

inputs from sensors and pre-defined behaviors. It can therefore operate with minimal

human oversight and correction. It therefore acts in its environment as an autonomous

individual.

Autonomous mobile robots (AMRs) are a type of automatic guided vehicles

(AGVs) that can be deployed without supporting any framework such as markers,

wires or magnets embedded in the ground or laser targets that are precisely located.

There are two types of AMRs that depend on choosing optimization based on fleet

management and systems. Usually, fleet management systems work with larger

payloads and guide the robots to a location from a source. In addition, pick

optimization robots combine machine and human movement into an operation

progress designed to improve choosing input. Pick robots for optimization support the

picking of cartons and totes and therefore have a small payload.

3

To move through an indoor environment, autonomous indoor mobile robots are

required. In order to be considered independent of an indoor mobile robot, it must have

at least the following capabilities. First, within the indoor environment, it should be

able to locate itself. Second, in order to reach its destination, it should be able to plan

its path and create the environmental map. Third, if it deviates from the intended

course, it should be able to correct itself. Fourth, new obstacles should be found and

avoided. An autonomous mobile robot also needs many other capabilities, depending

on its function and how the designer defines the word 'autonomous'. Simultaneous

Localization and Mapping (SLAM) is a method to determine their current position,

direction and the map of robot’s environment. SLAM technology is well known, but

still faces some limitations [1].

In this research project, the focus is about robotic mapping. This is because in the

robotics and automation industries, robot mapping has develop actively to become an

area of research [2]. Robotic mapping addresses the issue of using mobile robots to

build spatial representations of physical environments. The problem of mapping is

generally considered to be the most critical issues in pursuing the construction of

autonomous mobile robots. It still presents great challenges, despite significant

progress in this area. Currently, the robust methods for fixed, structured and narrow

range mapping environments, mapping unstructured, dynamic, or large scale

environments are the reasons why this problem become an area of research.

Mapping the environment using mobile robot has been done previously by multiple

researchers. In these works, three types of map representation are studied such as

occupancy grid map, topological mapping and features map representation.

Occupancy grid maps (OGM) divide the map into cells which each construct a grid

with a binary random variable showing whether the cell is occupied or not [3]. The

4

benefit of OGM is that due to moving objects, it can function with dynamically

changing environments and still allow accurate modelling of it.

Feature maps use unique environmental features, each of which is marked by its

position in the global map. To act as a landmark for the mapping process, these

features must be static and distinguishable from the rest of the environment. This form

of mapping makes localization effective but the data association process is not a

simple job.

Topological maps are capable of representing a compact form of the map using a

series of nodes and arcs. It only showing the abstract model. Topological maps need

less storage and computation time compared to metric or grid maps. However,

topological maps are more difficult to construct and may not be valid for map

matching and may suffer from perceptual aliasing in recognition of the same location.

1.2 Problem Statements

The first issue of robotic mapping is the acquisition of a spatial model of the

environment of a robot [2]. The maps for robot navigation (localization) are widely

used. Robots must have sensors to help them to see the farther world in order to earn

its own map. Cameras, range finders using sonar, laser and infrared technology, radar,

tactile sensors, compasses and Global Positioning System (GPS) are widely used for

this mission. All of these sensors are the reason why the errors, occurs and called

measuring noise. Besides, the sensors of the robot also the reasons to rigid limitations

of the distance. For instance, light and sound cannot pass through the walls. Such

limitations of the scope make it necessary for a robot to have a mapping algorithm.

5

The second complicated problem of robot mapping begin from the large

dimensionality of the map that has been create [2]. The reader can assume the numbers

that maybe will be used to explain the environment in order to understand the

dimensionality of the problem. An exact 2-dimensional (2D) plan often requires

thousands of numbers. However, a comprehensive 3-dimensional (3D) graphical map

of a house can take large of numbers quickly. The problem of mapping can therefore

be extremely high-dimensional.

Third, the difficult robotic mapping problem is the issue of correspondence or

known as the problem of data association [2]. The problem of correspondence is

analyzing whether sensor measurements taken at various points in time correspond to

the same physical object in the world. When the cycle is closed, the robot must find

out where it is relative to its map that had been built before.

1.3 Objectives

This project focused on developing a mapping of the mobile robot's indoor

environment to ensure that it can work well without any obstacles. This project's

objective is as follows:

1) To investigate the parameters of occupancy grid map algorithm such as

grid size.

2) To stimulate the mapping algorithm and investigate the performance

based on map accuracy.

6

1.4 Scope of Project

Limitation or scope is important for producing a good report to enable us to achieve

the objectives that have been set. There are few criteria to be met in this project to

ensure the project will be complete within stipulated time and resources. First, to

model the map environment for mobile robot, this project uses Ubuntu and Robot

Operating System (ROS) technology. The TurtleBot3 in the ROS software will be

selected as the robot because this robot has a various function to use. In ROS code,

the programming language is C++.

Furthermore, as the method for mapping algorithms, this project focuses on an

occupancy grid map because this method can produce a discrete representation. The

robot will work in a grid on a selected region to speed up the process of computation.

In this project, compared to a multi-robot, it will only focus on a single robot. This is

because a single robot can increase productivity as it is programmed to accomplish the

task by performing repetitive movements. Last but not least, only a static indoor

setting was involved in this research. There is no use of the dynamic environment as

it is a process that requires further steps to set up and deploy.

1.5 Environment and Sustainability

The autonomous mobile robot can be deployed anywhere like factory, hospital, and

library that can help to reduce human jobs. This mobile robot, for instance, can move

items from one location to another without following assembly line.

This autonomous mobile robot can increase flexibility as it is primarily used to

control on-board sensors, not wires or magnetic tape. It can automatically create their

7

own paths within a facility from one stage to another to help them avoid obstacles.

This may not cause any problems for mobile robot if there are a changing occur in the

environment as the mobile robot can adapt it easier.

Besides, as we know, autonomous mobile robot is equipped with a sensor which

will increase the safety. This help this mobile robot to perceive and understand its

environment, allowing it to move effectively with any obstacles in collision. The robot

also has the power to evaluate the steps to be done to perform a mission via a method

of interpretation that helps it. It often includes a cognition unit or a control panel to

manage all of the robot's subsystems. Autonomous mobile robots need to have a source

of input information, a way of processing the information and a method of taking

action to respond to an environment world including their own motion.

1.6 Project Outline

Chapter 1 shows how to generate ideas to carry out the project. A short introduction

to the idea of autonomous mobile robot. Also included in this chapter are background

studies and the problem that contributes to the project title proposal. In addition, the

project's priorities are defined in order to determine the scope of the project. The

significant of the project is also mentioned in this section.

Chapter 2 includes a review of historical literature and basic information on an

occupancy grid map, as well as a previous observation. This chapter is critical for

obtaining information from the analysis being conducted.

The methodology was the focus of Chapter 3. A set of research and flowcharts are

included in this chapter. This chapter also discusses the steps to be taken in the

simulation.

8

Chapter 4 explained more about the outcome and discussed the implementation of

the software using software for Ubuntu and Robot Operating System (ROS). The

simulation data sequence and analysis described in this part.

Chapter 5 concludes the comprehensive finding of the proposals for research tasks

and prospects. Recommendation is also intended for further studies or research.

1.7 Summary

Chapter 1 is the first step in the implementation of a study or research project

history and objectives. The explanation of the issue with the title must be relevant and

sufficient so that we can effectively achieve the goals. The following sections are

about reviewing the literature and the cases for performing the entire case analysis.

CHAPTER 2

LITERATURE REVIEW

This chapter deals with the review of literature. Reviewing literature is the act of

reading, reviewing and summarizing specific topics picked. In this section, literature

review can identify the project's benefits and disadvantages, identify discussions and

assist with questions that require further research. This chapter will explore and

analyze the study of mobile robot mapping algorithms.

2.1 Mapping Algorithm

The primary properties of some of the most popular algorithms are summarized in

Table 2.1. In the field representation, the map representation is summarized and was

defined clearly in depth discussion for each of the algorithms. In Table 2.1, it states

how the resulting map shows uncertainty. The map is characterized by a Bayesian

10

posterior including its uncertainty. Since an estimate of Maximum Likelihood (ML)

develop only one map, so it is fewer of an informative.

The convergence mention what is understood, under reasonable assumptions and

the algorithm’s convergence properties. For each method, it has a different properties

of convergence. The convergence’s notion in Expectation Maximization (EM) in

particular is a basic one. A locally optimal map could be characterized by the resulting

solution. A weak convergence in the table is to differentiate it from good results

regarding the estimate's optimality.

In the next row, it is specified algorithm is subject to local minima or not. The field

of incremental show if the maps able to created incremental or need multiple data

passes. Incrementality is generally a logic property, particularly for robots to explore

and built a map autonomously. It's an important field that requires poses. Only a subset

of mapping algorithms where the robot poses are unknown, attack the complete

mapping problem above. Other algorithms require information on the exact posture.

The type of the sensor noise is recorded as the map’s dimensionality can be

generated in practical implementation. The correspondence item function to determine

whether an algorithm can cope with unknown correspondence issues and can

accommodate similar looking features in the situation. Next, raw data represent the

requirement in realistic implementations data pre-processing and filtering. An

algorithm may create maps from the data of raw sensor. Calculated maps often have

more information from raw sensor data. Lastly, the dynamic environments show the

approach to dynamic environments is acceptable or not because there are approaches

that can accommodate limited types of dynamics as indicated which was been stated

as ‘limited’ in the table.

11

Table 2.1: Characteristics of the major mapping algorithms [2].

 Kalman Filter

(KF)

Hybrid Occupancy

Grids

Representation Landmark

locations

Point obstacles Occupancy

grids

Uncertainty Posterior poses

And map

Maximum

Likelihood map

Posterior map

Convergence Strong No Strong

Local Minima No Yes No

Incremental Yes Yes Yes

Requires Poses No No Yes

Sensor Noise Gaussian Any Any

Can map cycles Yes Yes, but not

nested

N/a

Map dimensionality ∼ 103
 Unlimited Unlimited

Correspondence No Yes Yes

Handles raw data No Yes Yes

Dynamic environment Limited No Limited

Besides, Table 2.2 summarizes the advantages and disadvantages of occupancy

grid map, topological mapping and features map. From Table 2.2, it can be concluded

that an occupancy grid map is the best method to be used as the mobile robot mapping

algorithm due to its flexibility to make no assumption about the environmental feature

[4]. Therefore, in the application, the mapping algorithm can be used such as

inspection where the actual environmental condition is needed for evaluation.

12

Table 2.2: Comparison of occupancy grid mapping, topological mapping and

features map.

Map

representation

Advantages Disadvantages

Occupancy grid

mapping

 Can be used to map effectively.

It is possible to label the cell in an

occupancy grid with the total

distance to the goal.

 A discrete representation of a

grid. The robot will work in a

grid on a selected region to

incease the speed process of

computation.

 The mapping algorithm

termination criterion is explicitly

defined as each grid cell having a

certain state assigned to it.

 The histogram of the vector

field can be used on the

occupancy grid to avoid

obstacles.

 The method is only

suitable for mapping the

local environment. The

robot sensor's maximum

range must be considered.

 The map’s scale in the

memory of the robot

increases with the

exploration of the

surroundings.

Topological

mapping

 Topological mapping requires a

small amount of memory space

compared to a more complex

map.

 It is easy to combine two or

more topological maps to

construct a more complete map.

 Only good for a narrow

area of utilization at the real

world when geometry is not

required.

 Over-specified in the path

planner perspective and with

difficulty in finding the

shortest route.

Features map

 Features map provides a means

to assess both location and

orientation of the robot.

 Features map can be deployed

in the environment or an agent

can map features to improve

navigation.

 The target must have the

same appearance and the

robot must be conscious of

that appearance.

 Map recognition among

other information acquired

is a challenging problem due

to random object noisy

perception.

13

2.1.1 Kalman Filter (KF) Approaches

A conventional method to map generation is based on filters from Kalman [2]. This

technique was introduced by Smith, Self, and Cheeseman, who create a mathematical

version of the approach, which is commonly used today. This method was further

explored by a number of researchers in the following years. KF based mapping

algorithms are used in the literature as Simultaneous Localization and Mapping

(SLAM). SLAM is a concept which closely associated with the algorithms that use

KF to estimate the map and robot location.

KF is one of Bayes filters which is most common implementations. There are two

distinct phases of the KF such as prediction and update [5]. The phase of prediction

estimates the state space from a previous iteration, while in the update phase the

estimated state is combined with sensor observations. The outcome of the update

phase is called posterior. The Extended Kalman Filter (EKF), which arises from the

KF's prior development, solves the nonlinearity issue in the pose model of the robot.

KF represent the Bayes filters covering posteriors p(st,m | zt, ut) with Gaussians. In

Gaussians, a small number of parameters can represent in a compact way because it is

unimodal distributions. The Gaussian model is the full state vector x in the context of

the robotic mapping problem, which includes the pose s of the robot and the map m:

 xt = (st, m)T (2-1)

In the equation above, T is assign to a vector or matrix being transposed. The

location of the robot, s was modeled by three variables for robots operating. Let's

denote these coordinates, respectively, by sx, sy and sθ. The Cartesian coordinates of

14

feature sets are usually expressed by maps in the KF method. Appropriate feature in

the environment may be landmarks, distinguishing objects or forms. The

corresponding vector status given as 2K+3-dimensional vector, indicating the number

in the map by K:

 xt = (sx,t, sy,t, sθ,t, m1,x,t,m1,y,t,m2,x,t,m2,y,t, . . . , mK,x,t, mK,y,t)
T (2-2)

Figure 2.1 displays a map picture obtained using the KF method. The route of an

area measurements using a pencil sonar are shown in this image. The map itself is

made up of fourteen point features which has been extracted from the data of the sonar

and five of that features are thin and vertical artificial landmarks. Besides, the other

corresponds to reflective objects in the environment. The covariance matrix Σ, has

define the ellipses around these landmarks by shown the remaining of the residual

uncertainty after mapping. The ellipses which of a single Gaussian (𝜇, Σ) show the

posterior joint over all landmark locations and the pose of the robot. Multiple dots in

Figure 2.1 which highlight theories about the position of multiple landmarks whose

proof is too poor to be included in the map.

Figure 2.1: Kalman Filter estimation of the vehicle pose and the map [2].

15

Figure 2.2 illustrates the result from the example of simulation after successful

mapping. In Figure 2.2b, the correlation (normalized covariance matrix) between the

three-dimensional pose of the robot and the two-dimensional location of all 20

landmarks, is of great importance. The presence of the checkerboard indicates that

there are strong correlations between the x-dimensions and y-dimensions of all

position estimates [2]. The measurements only transmit data about the robot's

proximity to landmarks and through integration among the landmarks. The absolute

coordinates do not include in this measurement. The final result of the map is still

ambiguous as shown in Figure 2.2a.

Figure 2.2: (a) Landmarks map obtained in simulation. (b) A correlation matrix after

278 iteration of Kalman Filter mapping. (c) The same estimate's standardized inverse

covariance matrix.

2.1.1.1 Lu/Milios algorithms

The Lu / Milios algorithm is known as a recent extension of the basic paradigm [2].

Gutmann has successfully implemented this algorithm. The laser range data is

somewhat specific to the Lu / Milios algorithm. This incorporates two simple phases

of estimation, a phase in which Kalman Filters (KF) are used to quantify posteriors

over charts and a phase in which distance measurements are combined with each other

in multiple range scans.

16

The correspondence is obtained through the association of maximum probability

data, example is the algorithm simply pairs up measurements nearby. However, the

correspondence is calculated repeatedly by iterating both phases, allowing the

approach to recover from incorrect correspondence.

In action, this method is capable of mapping unknown communication from raw

data. Nevertheless, the fact that it uses the maximum likelihood of 'guess'

correspondence rather than estimating the full back over correspondence and maps

creates significant limitations. In reality, the initial pose of error measurements are

low (less than 2 meters) the algorithm works incredibly well. It is not possible to

accommodate larger poses errors, such as usually found when mapping a cyclic

environment. This method is not an algorithm in real time as its need multiple passes

through the data. Figure 2.3c shows a map generated from the range data. The final

map is very precise and shows a detailed structure with more details.

For the Lu / Milios algorithm, the raw data is too inaccurate as shown in Figure

2.3a. it is from the robot's odometry for pose estimation. The phase’s failure of the

Maximum Likelihood (ML) when using Kalman Filtering, in turn leads to wrong

maps. This result illustrates the basic approach's strength and weakness. Note that

Figure 2.3a to Figure 2.3b pre-alignment was performed using an algorithm.

Figure 2.3: (a) Raw range data of large museum hall. (b) Artificial but

indistinguishable information associated with Expectation Maximization (EM). (c)

Application of the Lu / Milios algorithm to the pre-aligned data output.

17

2.1.1.2 Expectation Maximization (EM) algorithms

Expectation Maximization (EM) is a statistical algorithm developed by Dempster,

Laird and Rubin [2]. A recent book on this subject reveals the abundance of literature

on the EM algorithm that currently exists. The EM algorithm applied to the problem

of robotic mapping has quite orthogonal features. EM algorithms used to solve the

problem of mapping correspondence. In particular, EM algorithms function is to

generate a consistent maps of a large-scale cyclic environment even cannot be

perceptually distinguished. Indeed, EM algorithms cannot complete a concept of

uncertainty. Alternatively, to find the most possible map, they conduct hill climbing

in the space of all charts. To do so, multiple processing of the data is required.

Therefore, maps cannot be created incrementally by EM algorithms.

EM aim is to determining a map and it is relatively simple if the robot’s direction

is known. EM includes two main steps. First step is the expectation or an E-step in

which the posterior over robot poses are measured and second step is the maximization

or an M-step in which EM calculates similar map provided these assumption of the

pose. The outcome is an increasingly detailed sequence of maps, m[0], m[1],m[2]. An

empty map is the initial map, m[0].

The data set that has been mapped by using EM is shown in Figure 2.4a. The robot

tests about 28 landmarks which correspond to corners, intersections and distinctive

locations. However, no perceptual information is given to the robot for exercising

mapping with unknown communication that would help disambiguate them. The error

is too high in the pose calculation using odometry. So it is not suitable to use when

traversing the wide loop in the field to solve the problem of correspondence. It is

understood that such wide loops are difficult to chart. The consequence of applying

18

EM to this data set is shown in Figure 2.4c. The map and path that results a

topologically right. To demonstrate the map's accuracy, Figures 2.4b and Figure 2.4d

display occupancy grid maps based on sonar range measurements without and with

poses calculated by EM of the raw range data.

Figure 2.4 (a) Raw data with indistinguishable landmarks on a large-scale cyclic

environment. (b) Occupancy grid map using sonar sensors built from raw data. (c)

EM aligned map and path, proving the potential of EM to solve problems of hard

correspondence. (d) Occupancy grid map create based on the EM mapping algorithm

result.

2.1.2 Hybrid Approaches

Hybrid methods is the example of the famous approaches. It is the incremental

Maximum Likelihood (ML) model from a statistical point of view inferior to both

Kalman Filters and EM [2]. The purpose of this method is to build a single map

incrementally when the data’s sensor arrives without monitoring any residual

uncertainty. A technique without an E-step can be interpreted as an M-step in EM.

This framework has the advantage of being plain, which accounts for its popularity.

19

Figure 2.5 shows an example to map a cyclic system using the incremental ML

method, including the equipment of the robot such as 2-Dimensional (2D) laser range

finder. When the map is reasonably consistent until closing the loop, the large residual

error contributes to discrepancies that the maximum incremental probability method

cannot overcome. The weakness of this algorithms is it do not recognize ambiguity

when constructing maps and it also do not have a method for using future information

to change past decisions.

Figure 2.5: Incremental mapping of maximum likelihood, the map is developed at

each stage by finding the most possible continuation, this non-probabilistic approach

works well in non-cyclical conditions but is usually unable to manage cycles [2].

Figure 2.6: Hybrid approach which retains a later approximation over the poses of

the robot, defined by a series of particles, these samples are used when closing the

loop to move the robot in the map and correct the map accordingly [2].

20

For the same data used to produce Figure 2.5, Figure 2.6 displays a series of step

for map estimation by using Hybrid. The pose posterior approximation p(st,m | zt, ut)

is implemented using particle filters, which is a sample representing variant of the

Bayes filter. Figure 2.6 displays the specimens in all the diagrams. If the robot moves

through a cyclic area, the samples is used to locate itself in the created map. It

transmitted the error result when throughout this process in the map after the high

probability of pose has been calculated. As a result, the solution still only retains a

single map which has the benefit in calculation. This method is different from

incremental Maximum Likelihood (ML) methods because when there is an error, it

able to correct the map back. Mathematically, the differences are observed. Hybrid

algorithm is simplistic approximation with EM algorithm which represent the E-step

and the M-step.

However, the hybrid approach has many drawbacks. Firstly, and foremost, it can

lead to catastrophic failure if it is incorrect and if want to reverse the map in time is a

discrete. In addition, the complex ambiguities cannot be solved by this method. The

example of it disadvantage is the uncertainty that arises while the robot passes through

multiple nested cycles. Next, the hybrid approach is not real time algorithm because

the time that it will takes to fix a loop is according on the loop’s size. Nonetheless,

when used in office-building style settings, practical implementation seems to work

well in real time. The hybrid mapping algorithm was expanded to manage several

robots obtaining a single map together. Figure 2.7 shows a map that was obtained by

three autonomous robots, coordinating their exploration activities during the creation

of the map.

21

Figure 2.7: The initial robot poses, designed by three autonomous robots are on the

left as indicated by the letters A, B, and C [2].

2.1.3 Occupancy Grid Map

Another of the mapping algorithms known as occupancy grid maps developed in

the mid-eighties by Elfes and Moravec enjoyed considerable popularity [2]. A variety

of autonomous robots use this algorithm, usually in conjunction with one of the above-

mentioned algorithms. The central issue this method tackle is how the generating a

reliable metric map from noisy or incomplete data’s sensor. If the poses of the robot

are identified because of ambiguities in the sensor data, it is sometimes difficult to say

that a position is occupied in the area or not.

 Occupancy grid maps are robot ecosystems' spatial representations. We describe

environments that indicate the occupation of the system by fine-grained, metric grids

22

of variables. It also can allow the function’s key that mobile robot navigation need.

Example are position, path planning, avoidance of collisions and finding people [6].

An occupancy grid map used a block of cells to describe the environment. There

are two conditions that has been mention in this method. First, the block cell is

occupied so that the robot is unable to pass through it. Second, the block cell is

unoccupied which mean that the robot can move through it [7]. Even if the world is

entirely composed of cubes, maps of the occupancy grid cannot be absolutely accurate.

However, it can provide the data by selecting a small enough cell volume. Grid cells

status is done without comparing it to any map that uses sensors.

By generating probabilistics maps, the occupancy grid maps can solve this

problems. Occupancy grid maps are defined by two- dimensional (2D) grid but also

able to occupy the three-dimensional (3D). The regular occupancy grid mapping

algorithm, like any other popular mapping algorithm, is a variant of Bayes filters.

The posterior over each grid cell's occupancy is measure by Bayes filters. The (x, y)

is assume to be a grid cell's co-ordinates and mx,y is its occupancy of the grid cell. It

is a binary variable. It also can occupy the cell or they are free. Therefore, the problem

is to measure a posterior over a collection of binary variables, which is a single

numerical likelihood p(mx,y ⎸zt, xt). Bayes filters also function to measure the basis

for this posteriors. Odds are often used to write the binary Bayes filter. The probability

p(x) odds of an event x is defined as
p(x)

1−p(x)
. In odds notation, the binary Bayes filter

works as follows for a static map and with known poses, st:

p(mx,y ⎸zt,st)

1−p(mx,y ⎸zt,st)
= [

p(mx,y ⎸zt, st)

1−p(mx,y ⎸zt, st)
] [

1−p(mx,y)

p(mx,y)
] [

p(mx,y ⎸zt−1, st−1)

1−p(mx,y ⎸zt−1, st−1)
] (2-3)

23

The simple update formula is often logarithmically applied, which is useful in

mathematical terms and prevents statistical instabilities that occur when probabilities

are nearest to zero:

log
p(mx,y ⎸zt,st)

1−p(mx,y ⎸zt,st)
= log [

p(mx,y ⎸zt, st)

1−p(mx,y ⎸zt, st)
] + log [

1−p(mx,y)

p(mx,y)
] +

 log [
p(mx,y ⎸zt−1, st−1)

1−p(mx,y ⎸zt−1, st−1)
] (2-4)

It is straightforward to see that the representation of the log odds can be recover the

probability of occupancy. In addition, this method is recursive, enabling the individual

grid cells to be incrementally updated when the new data sensor is arrives. Lastly,

occupancy grid maps need two densities of probability, p(mx,y ⎸z
t, st) and p(mx,y).

2.2 Simultaneous Localization and Mapping (SLAM) Algorithm

The Robot Operating System (ROS) is a rapidly growing platform for the

development of smart robotic applications. Its function is to support the sensors and

efficient implementation for various SLAM, route planning and image processing

algorithms [8]. ROS provides many SLAM algorithms such as:

 HectorSLAM

 Gmapping

 KartoSLAM

 CoreSLAM

 LagoSLAM

24

KartoSLAM, HectorSLAM and Gmapping establish the best algorithm to use

because it has high accuracy according to the findings of [5]. All this three algorithms

are in fact conceptually different. The similarity for this three algorithms is about the

performance from the view’s point of map accuracy. HectorSLAM is based on

Extended Kalman Filter (EKF). However, Gmapping and KartoSLAM are depend on

occupancy grid mapping and graph mapping based on Rao-Blackwellized Particle

Filter (RBPF). HectorSLAM uses an inertial sensing platform to combine a 2D SLAM

system based on rigorous scan matching and a 3D navigation technique [5].

KartoSLAM is one of a graph-based SLAM solution. Then, Robot Operating

System (ROS) has been applied it by using highly optimized and non-iterative

cholesky matrix decomposition. Its function as a solver for sparse linear systems.

CoreSLAM is a ROS replacement for the previous 200-line-of-code [9]. A simple

SLAM algorithm is designed to be clear and to understand with reduced performance

loss easily.

The function of nonlinear non-convex cost function is to origin of graph-based

SLAM algorithms. Specifically, in order to update the configuration of the map initial,

the problem at each iteration need to be solve first. It will happen until the cost function

is reached at a local minimum. Indeed, this optimization process depends heavily on

an initial assumption of convergence. Carlone et al. have introduced a new method

called LagoSLAM in which there is no initial guess for the optimization process.

2.3 TurtleBot

TurtleBot is a wheeled robot [10] and a regular robot on the ROS system. Turtle

comes from the robot Turtle, which was motivated in 1967 by the language of

25

education computer programming Logo. However, the turtlesim node appears in the

Robot Operating System (ROS) basic tutorial. It is a program which mimics the Logo

Turtle program's command system. It can also be used as representation of ROS to

build the Turtle logo. The nine dots in the logo of ROS represent the turtle's back shell.

TurtleBot is derived by the Turtle of Logo which has a function to introduce that ROS

can be used easily by using TurtleBot and to teach people about the computer

programming language by using Logo.

2.3.1 TurtleBot3

There are three iterations of the series TurtleBot.TurtleBot1 was created by Tully

and Melonee. It was created in 2010 and since 2011 has been on sale. In 2012, Yujin

Robot built TurtleBot2 based on iClebo Kobuki. Then in 2017, TurtleBot3 was built

with capabilities to balance its predecessor's lack of usability and user needs.

ROBOTIS smart actuator (Dynamixel) is function to drive by the TurtleBot3.

TurtleBot3 is a compact, inexpensive, programmable, ROS-based robot which can be

used in learning, testing and product’s prototyping. TurtleBot3's can reduce the

platform's size and lower the price without losing its usability and reliability while

providing expandability at the same time.

SLAM, navigation and manipulation are the core technology of the TurtleBot3.

This making it suitable to function as home service robots. The TurtleBot3 can run

SLAM algorithms in order to create a map and to move in their environment. Besides,

this robot can be remotely controlled from any gadget. Example are laptop, joypad or

Android-based smart phone. When a person walk in the environment, the TurtleBot3

can also follow the legs that person.

26

A single board computers is used for both TurtleBot3 models (Burger and Waffle)

to keep costs down in existing TurtleBot versions. Both models of this TurtleBot3 can

run the new Ubuntu Linux (16.04.2 LTS) and ROS (Kinetic) versions. Both models

has 360°. Hence, it allowing the TurtleBot3 to do SLAM and navigate autonomously.

In addition, the single-board computer communicates with a control board in both

versions, driven by an ARM Cortex-M7, linking the servos and the battery. With the

Arduino software development environment, this board is a programmable and called

OpenCR. The additional behaviors can be program using Arduino's C / C++ functions

and libraries. ROS also can be used to command the robot. The contrast between the

TurtleBot3 Burger, Waffle and Waffle Pi were listed in Table 2.3.

 Table 2.3: Hardware Specifications of TurtleBot3.

Items Burger Waffle Waffle Pi

Maximum

translationa

velocity

0.22 m/s 0.26 m/s 0.26 m/s

Maximum

rotational velocity

2.84 rad/s

(162.72 deg/s)

1.82 rad/s

(104.27 deg/s)

1.82 rad/s

(104.27 deg/s)

Maximum

payload

15kg 30kg 30kg

Dynamixel

ports

5V / 4A 5V / 4A 5V / 4A

Programmable

LEDs

GPIO 18 pins GPIO 18 pins GPIO 18 pins

Buttons and

Switches

UART x3,

CAN x1, SPI x1,

I2C x1, ADC x5,

5pin OLLO x4

UART x3,

CAN x1, SPI x1,

I2C x1, ADC x5,

5pin OLLO x4

UART x3,

CAN x1, SPI x1,

I2C x1, ADC x5,

5pin OLLO x4

Battery RS485 x 3,

TTL x 3

RS485 x 3,

TTL x 3

RS485 x 3,

TTL x 3

27

2.3.2 Dimension and Mass

Figure 2.8: Dimension of TurtleBot3 Burger.

Figure 2.9: Dimension of TurtleBot3 Waffle.

28

Figure 2.10: Dimension of TurtleBot3 Waffle Pi.

2.3.3 Components

Figure 2.11: The TurtleBot3 Burger.

29

Figure 2.12: The TurtleBot3 Waffle.

Figure 2.13: The TurtleBot3 Waffle Pi.

30

2.3.3.1 Single Board Computers (SBCs)

The main computer of TurtleBot3 is Raspberry Pi 3 which is for TurtleBot3 Burger

and Waffle Pi, while the Intel ® JouleTM 570x is for TurtleBot3 Waffle. These

SBCs are sufficient to utilize TurtleBot3's basic features, but users need to increase

CPU performance, use GPU or add RAM size for other uses. In order to keep the costs

down, both TurtleBot3 models (Burger and Waffle) use SBCs rather than netbooks

which has been used in previous TurtleBot versions. Then, all of these TurtleBot3 run

the new Ubuntu Linux (16.04.2 LTS) and ROS (Kinetic).

The TurtleBot3 Waffle is a larger and substantially better computing of an Intel ®

JouleTM 570x instead of a Raspberry Pi 3 Model B, more sensing of an Intel

RealSense 3D sensor and high powerful Dynamixel servos to drive the wheels and

handle more payload. The SBCs for each TurtleBot3 are summarized in Table 2.4.

Table 2.4: Single Board Computers (SBCs) of the TurtleBot3.

TurtleBot3 Single Board Computers (SBCs)

TurtleBot3

Burger

 Raspberry Pi 3 Model B

 Raspberry Pi 3 Model B+

TurtleBot3

Waffle

 Intel® Joule™ 570x

TurtleBot3

Waffle Pi

 Raspberry Pi 3 Model B

 Raspberry Pi 3 Model B+ (Applied from products

shipped in 2019)

31

2.3.3.2 Sensor

TurtleBot3 Burger uses 360 ° LIDAR, 9-Axis Inertial Measurement Unit and

accurate encoder for research and development. Besides, TurtleBot3 Waffle also

comes with an identical 360 ° LIDAR but also offers a powerful Intel ® RealSenseTM

with the software development kit recognition. TurtleBot3 Waffle Pi uses Raspberry

Pi Camera which is used widely. This will be the best hardware solution for making a

mobile robot. Table 2.5 shows the sensor that has been used for each TurtleBot3.

Table 2.5: Type of sensor used of the TurtleBot3.

TurtleBot3 Sensor

TurtleBot3 Burger  360 Laser Distance Sensor LDS-01

TurtleBot3 Waffle  360 Laser Distance Sensor LDS-01

 Intel® RealSense™ R200

TurtleBot3 Waffle Pi  360 Laser Distance Sensor LDS-01

 The Raspberry Pi Camera Module v2.1

2.3.3.3 Embedded board and actuator

The SBCs interfaces with a control board, operated by an ARM Cortex-M7 that

links the servos and battery are used for both TurtleBot3 (Burger and Waffle). This

board was called OpenCR which has been developed by Robotis. It is a programmable

with the development environment for the Arduino software. Besides using ROS, the

program additional behaviors using Arduino’s C/C++ functions and libraries also can

32

be used to control the robot. Table 2.6 summarize the embedded board and the actuator

for each TurtleBot3.

Table 2.6: Embedded board and actuator of the TurtleBot3.

TurtleBot3 Embedded board Actuator

TurtleBot3 Burger OpenCR1.0 Dynamixel XL430

TurtleBot3 Waffle OpenCR1.0 Dynamixel XL430

TurtleBot3 Waffle Pi OpenCR1.0 Dynamixel XL430

2.4 Sensor Implementation for Grid Map

2.4.1 Range Sensor

Autonomous mobile robots are not a new development and they have introduced

several types of scope sensors. Beginning from the most basic level, inexpensive

ultrasonic and infrared distance sensors can be used. Mobile robots can figure out the

distance between themselves and the obstacle in front of one dimension.

Figure 2.14: Ultrasonic and Infra-red Range Sensor.

33

These sensors are quite simple and straightforward to construct, but in some respect

they have poor performance. The infra-red range sensor has weak sensing area

whereas the ultrasonic range sensor has wide sensing but limited resolution of the

room. Both are appropriate for educational purposes for beginners and are not suitable

for advance autonomous mobile robot in precise space measurement.

Figure 2.15: Ultrasonic Sensor’s Sensing Ranges.

2.4.2 Laser Range Finder

Laser range finders and flight time cameras are probably the highest distance

measurement accuracy sensors [11]. Typically, they are used in autonomous mobile

robots or vehicles that need accurate measurement of the distance to facilitate

algorithms such as position and mapping. Under certain conditions, stereo vision

performance may be as good as laser range finders, but the computational power

required to execute stereo algorithms is significant [12]. In other meanings, the data

of the laser range finder does not require another step of matching process and

34

therefore, besides its accuracy, its sensing speed is another advantage. Certain range

sensors are typically some order of magnitude quite costly than other range sensors

due to their high performance.

Laser range finder was widely used in the field of robotic growth. Due to its speed

and accuracy of data, holds the crown among other navigator devices. This is a popular

way for obtaining 3D data and creating local maps. To create a 3D map, a 2D laser

range finder was deployed on an autonomous robot [13].Their solution is to rotate with

horizontal axis of rotation the 2D laser range finder. Thus, a 3D range finder with a

servo motor is built based on a 2D range finder. The rotation offers vertical scanning

and repels the need to upgrade the sensor. The accuracy of the map produced is

therefore largely dependent on the resolution of the servo motor.

Figure 2.16: Rotational Laser Range Finder.

2.4.3 Light Detection and Ranging (LIDAR)

Light Detection and Ranging (LIDAR) is a sensor that utilize Laser Range Finder

(LRF) [14]. This sensor have a characteristic reliable and has been used for many

35

researches which is related to robotics. LRF sensor is essential to supporting process

reading environment, as an eye to robot. For example, LIDAR has been apply in

household appliances such as vacuum to move automatically and can clear the house

without human control.

To measure the distance from sensor to target, LIDAR will operates with emitting

laser beam. After that, by using a delay, LIDAR will calculates the distance between

laser emitting and laser bouncing back to sensor. LIDAR operating frequency is higher

compared to Radio Detection and Ranging (RADAR). This is because LIDAR has

hundreds of Tera Hertz (light pulse) while RADAR only has Giga Hertz (electronic

waves) [15].

Data generated by LIDAR are usually stored in binary form, consisting of 2D/3D

coordinate and laser intensity. Due to the LIDAR data burst, the file size that was

produced has an impact. Ying research has found that 3D mapping area in rural

locations as large as 2.79 square kilometers generates 7 million 3D point [16], which

is caused by LIDAR data being highly precision. The number of LIDAR data produced

can increase the map forest area with more complex object.

CHAPTER 3

METHODOLOGY

This part's aim is to evaluate the project's techniques. This chapter clarified the

approach used in this research involving the cover system throughout the entire study

context. The description in this chapter is the design flowchart structure from the start

to the end of the project.

3.1 Introduction

There are four stages in the technique or procedure. The first stage is the

preliminary study. In this step, all the research about the problems and methods which

related to this project was studied. Then, the second stage is the installation of the

software. For this project, ROS was installed in Ubuntu operating system because all

37

the commands will be run in this platform. The next stage is the development of the

environment. The simulation environment for the robot was created in the Gazebo.

The last stage is the examination of the algorithm performance and the analysis of the

data. The accuracy of the map by using Gmapping technique was measured in order

to know which speed has a better performance and suitable to be used for the mobile

robot. Figure 3.1 shows the flowchart for this project.

3.2 Flowchart

Figure 3.1: Flowchart.

Stage 1

Stage 3

Stage 2

Stage 4

38

This project is to create the simulation of the mapping algorithm for mobile

robot by using Ubuntu and Robot Operating System (ROS) software. First of all,

to start this project, the details about the mapping problems that the mobile robot

faced nowadays need to study clearly.In order to understand about this, the

researches from others paper and journal which are related to this topic was done.

After doing a research, the next step which is installing the Ubuntu and Robot

Operating System (ROS) sofware in the laptop. This takes about one week to

finish because of the internet limitation and the performance of the laptop. The

laptop’s RAM was upgraded to support this two software. Ubuntu is one of the

open source operating system (OS) based on the Linux distribution. In Ubuntu,

ROS is used because of it is a flexible framework for writing a robot system.

Then, after the software was succesfully installed, the map environment in

the simulation was developed. In this case, Gazebo is used in ROS to create the

mapping environment. Besides, Gmapping SLAM algorithm was applied in Rviz

simulation. This is because, Gmapping algorithm is the best method to use for

the calculate of accurancy map. In this step, the performances of the mobile robot

based on map accuracy ware measured. Two different speed which are 0.5ms-1

and 1.0ms-1 was used for this mission. For each speed, the performances of the

mobile robot at five different times was recorded. Then, if the accuracy of the

map is accepted, so the data analysis will be proceeded. If not, the relevent

parameter need to be modified until its success.

For data analysis, the details of the calculation as in Chapter 4 has been done.

The comparision between speed 0.5ms-1 and 1.0ms-1 was shown clearly. Not

only that, the ratio of free space and ocupied space also been calculated. Besides,

the fitness score also be measured in order to know the accuracy of the map.

39

3.3 Occupancy Grid Map Algorithm

By producing a probabilistic map, the problem can be solved by residential grid

maps. Occupancy grid maps are characterized by 2D grids, but some of them have 3D

space. Just like any other main mapping algorithm, a Bayesian filter version is the

regular occupancy grid mapping algorithm. The posterior above the occupancy of each

grid cell can be calculated by using Bayes filter.

Figure 3.2: Grid cell.

3.3.1 Gmapping

Gmapping is a SLAM algorithm based on a range sensor. It always been used as

SLAM program in robotics fields. This algorithm is a Rao-Blackwellized Particle

Filter SLAM solution proposed by Grisetti et al. The algorithm Particle Filter (PF)

family usually need a large number of particles to achieve good performance. This can

increases the difficulty of its computation. The depletion problem associated with the

process of PF resampling also reduces the accuracy of the algorithm. This happen due

40

to the significance of particle weights can become insignificant. The algorithm

requires a limited particles’ number to describe the posterior SLAM. It also can

reduces the effort to resample and create a precise maps successfully. The Gmapping

provides the easier way to optimize the mapping process by adjusting certain mapping

parameters. The example of mapping parameter are the particle’s number used by

Rao-Blackwellized Particle Filter (RBPF), the displacement stage for processing new

scanning and the resampling threshold to match the application specific needs.

3.4 Experiment Platform

3.4.1 Ubuntu Operating System

Ubuntu is a free and open-source operating system developed by Canonical Ltd.

based on the Linux distribution and Debian operating system that is similar to

Uniplexed Information and Computer Systems (UNIX) [17]. It is available on three

versions which are the desktop, server, and core format. It runs on personal computers,

server or cloud computing platforms, and Internet of Technologies (IoTs).

Ubuntu is one of the Linux operating systems for great and complete desktops. It

has community and professional support and is freely available. The Ubuntu

community is focused on the principles expressed in the Ubuntu Manifesto that the

software must be freely available, that the software must be open to users in their local

language even if disabled and that individuals are free to adjust their software and

change it in whatever way they think fit. "Ubuntu" is inspired by a traditional African

term, meaning "humanity to others" Ubuntu distribution carries Ubuntu's spirit to the

world of technology.

41

The Ubuntu's benefits is its being a free-to-download and open-source operating

system. Unlike Microsoft Windows and Apple's macOS, the people and organizations

can own and keep personal devices without the need to pay for software licenses or

buy exclusive devices. Another strength of Ubuntu is that it can compete fairly against

Windows and macOS, especially in offering a complete desktop computing

experience for users. For instance, the Desktop version comes with applications for

office productivity from LibreOffice. Additionally, Ubuntu can be installed in

multiple devices such as Windows and Mac computers. It operates via a virtual

machine or containers on network servers, IoTs devices and robots, and in emulated

or virtualized computer environments.

Ubuntu Operating System is a software system which has been operating for a

number of years and is capable of performing well to minimize and increase the rate

of failure caused by constantly increasing error conditions that can cause the system

to fail. This is the software aging phenomenon. Critical security programs are stated

to be age-related failures as the aging assets of the technology can be concealed in

multiple layers of complex software systems, from the Operating System (OS) to the

user device level. Ubuntu in the latest version is more than two million lines of code

and is not planned and managed as much as most industrial computer processes due

to its development model.

3.4.2 Robot Operating System (ROS)

Robotics Operating System or ROS, is an open-source robot software writing

framework [18]. ROS is an operating system identical to Windows or Linux but is an

open source operating system for robots that includes of a library and a platform for

42

controlling robots, including drivers of different devices and algorithms. ROS used to

build complex robot systems on a large scale. The SLAM approach is used by the ROS

survey robot to guide the robot. Also, ROS can allow researchers to do work more

quickly. Research teams can also use ROS to conduct simulations and experiments in

the real world. However, ROS is known for its modular and decentralized architecture.

ROS supports C++, Python, Octave, and List Processing (LISP) languages [18].

Ubuntu Linux is better used because it includes a range of open- source software.

Requirement of vast amounts of open source software.

The ROS framework has several aims. The first is thin. ROS is built to be as

lightweight as possible, such that ROS-written code can be combined with other

implementations of robot software. A benefit of this is that ROS can be conveniently

combined with other robot program frameworks. OpenRAVE, Orocos, and Player

have already incorporated with ROS. Next, write ROS-agnostic libraries with clean

functional interfaces is the reason of preferred development model. In modern

programming language, the ROS framework is easy to accomplish. It is already

implemented in Python, C++, Lisp and for the experimental library are Java and Lua.

In addition, the ROS is easy to test. This is because ROS has a builtin unit or

integration test framework named rostest which makes it simpler for test fixtures to be

brought up and ripped down. For scaling, ROS is suitable for large runtime systems

and for huge development processes.

3.4.3 Gazebo

Gazebo is a simulator that can be used to model a robot. In a three-dimensional

world, Gazebo effectively simulate and imagine robotic acts [10]. Robot simulation in

43

indoor and outdoor settings using various types of robot models is necessary in

Gazebo. Gazebo allows robotic and sensor systems to be replicated in 3D indoor and

outdoor environments. It has a server or client design and has an interprocess

communication model based on the subject Publish or Subscribe.

Besides native interface, Gazebo also has a regular player interface [19]. Gazebo

clients can use a shared memory to access their data. That Gazebo simulation object

able to connect with more than one controllers that process the object control

commands and generate the object's state. The controller generated data is released in

the shared memory using Gazebo interfaces (Ifaces). A simple simulator environment

has been developed in Gazebo. This simulator tests the proposed algorithm.

3.4.4 TurtleBot3

Turtlebot3 is a redesign of the original Turtlebot, an open-ended hardware built by

Willow Garage in 2010 and operating on a motorized wheelbase [18]. Figure 3.3

shows the list of components for TurtleBot3 Burger.

Figure 3.3: Turtlebot3 (Burger).

44

This robot has many features, such as low-cost [20], personal robot package with

open-source software, and it is lightweight, portable and customizable. The TurtleBot3

package is composed of a mobile platform, a 2D/3D distance sensor (Microsoft’s

Kinect), a Single Board Computer (Raspberry Pi), microcontrollers (Arduino UNO),

sensors (ultrasonic and accelerometer gyroscope) and components to allow to move.

TurtleBot3 is simple to purchase, build and install from regular materials, utilizing

shelf market goods and parts that can be quickly made. It also utilized the most

common ROS platform in the world.

3.4.5 360 Laser Distance Sensor LDS-01 (LIDAR)

 LIDAR is a remote optical sensing technology that measures distance and angle

between the sensor and the target [21]. The LIDAR sensors provide autonomous

ground robots with navigation and localization. The distance from the sensor to the

target is determined by calculating the time period between the transmitted laser pulse

and the reflected pulse receipt [15]. It system allows the creation of high-resolution

maps for various applications. One major application is SLAM, in which the purpose

is to create a map of an unknown environment while at the same time keeping track

of the location of the robot. Figure 3.4 shows the LDS-01 Laser Distance Sensor.

Figure 3.4: 360 Laser Distance Sensor LDS-01 (LIDAR).

45

The LDS-01 is a 2D laser scanner sensors that measure 360 degrees that collects

data around the robot for Simultaneous Localization and Mapping (SLAM)

applications. It support the USB interface and can be easily installed on a PC. The

specifications of LDS-01 Requirements are listed in Table 3.1.

Table 3.1: Specifications of LDS-01.

Items Specifications

Operating supply voltage 5V DC ±5%

Light source Semiconductor Laser Diode (λ=785nm)

Distance Range 120 ~ 3,500mm

Angular Range 360°

Angular Resolution 1°

Current consumption 400mA or less (Rush current 1A)

Interface 3.3V USART (230,400 bps) 42bytes per 6 degrees,

Full Duplex option

Ambient Light Resistance 10,000 lux or less

Sampling Rate 1.8kHz

Dimensions 69.5(W) X 95.5(D) X 39.5(H)mm

Mass Under 125g

3.5 Experiment Setup

The code was tested on a 2.4GHz i5-core laptop with Ubuntu and Robot Operating

System (ROS) Kinetic edition running 10GB Random Access Memory (RAM). The

simulation environment has been referred to as the Turtlebot3 World which available

in Gazebo models. The robot is running the SLAM Gmapping approaches. The

detector used was the Lds-01 (LIDAR) laser distance sensor with 360° and 30m range.

46

To evaluate Gmapping, the simulation was run on the test environment. Then, the

robot need to discover and captured the map environment in that simulation to

determine either the performance is accurate or not.

3.5.1 Simulation Command

3.5.1.1 Ros Visualization (Rviz)

Ros Visualization (Rviz) is a 3D visualization tool for Robot Operating System

(ROS). Rviz will allows the user to simulate robot model, log sensor information from

the robot's sensors and to replay the logged sensor information. If an actual robot is

communicating with a workstation that is running Rviz, Rviz will display the robot's

current configuration on the virtual robot model.

3.5.1.2 Installing TurtleBot3 package

The packages installed to run the simulation are shown in Figure 3.5. The sudo

command lets programs run with another's security privileges. It requests an individual

password and approves a request to perform a command by testing a script, named

sudoers that is set up by the system administrator. By using the sudoers folder, system

administrators may provide access to any or all commands to other users without

needing to remember the root password for certain accounts. It often records all

commands and statements such that a database of who used it for what and when is

accessible.

47

Figure 3.5: ROS released packages command.

A source package collects the program code and fixes the way they were at the time

of creation. Source packages are highly helpful to programs and libraries for

debugging problems and regenerating binary packages. It also functions to change

current programs and incorporate extra monitoring and to check that a particular

security patch has been added to the source or not. A catkin workspace (catkin ws) is

a file in which current catkin packages are generated or updated. The catkin

arrangement makes the cycle of constructing and installing your ROS packages easier.

Figure 3.6 shows the source packages command.

Figure 3.6: Source packages command.

sudo apt-get install ros-kinetic-joy ros-kinetic-teleop-twist-joy roskinetic-teleop-

twist-keyboard ros-kinetic-laser-proc ros-kinetic-rgbdlaunch ros-kinetic-

depthimage-to-laserscan ros-kinetic-rosserialarduino ros-kinetic-rosserial-python

ros-kinetic-rosserial-server roskinetic-rosserial-client ros-kinetic-rosserial-msgs

ros-kinetic-amcl ros-kinetic-map-server ros-kinetic-move-base ros-kinetic-urdf

roskinetic-xacro ros-kinetic-compressed-image-transport ros-kinetic-rqtimage-

view ros-kinetic-gmapping ros-kinetic-navigation ros-kineticinteractive-markers

cd ~/catkin_ws/src/

git clone https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git

git clone https://github.com/ROBOTIS-GIT/turtlebot3.git

git clone https://github.com/ROBOTIS-GIT/turtlebot3_simulations.git

cd ~/catkin_ws && catkin_make

https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git
https://github.com/ROBOTIS-GIT/turtlebot3.git
https://github.com/ROBOTIS-GIT/turtlebot3_simulations.git

48

A new terminal window needs to be opened to start Gazebo for the first time. Then,

the command as in Figure 3.7 was typed. Launching for the first time probably takes

long time. By running this command, the Gazebo will be open and ready to use. In

Gazebo, the environment map will be created.

Figure 3.7: Command for launch Gazebo.

Figure 3.8 until Figure 3.13 shows the commands that were used to run the

simulation, to control the mobile robot and to save the environment map. Each of the

command was run in different terminal in ROS. For movement, the mobile robot able

to move automatically or it can be controlled manually by using the keyboard. To

adjust the speed of the robot, it also needs to press the keyboard. By running these

commands, the simulation was successful done because the mobile robot able to build

its own map by using Gmapping algorithm.

Figure 3.8: Command for TurtleBot3 movement.

Figure 3.9: Command to execute Rviz.

~/catkin_ws/src/turtlebot3_simulations/turtlebot3_gazebo/launch

export TURTLEBOT3_MODEL=burger

roslaunch turtlebot3_gazebo turtlebot3_empty_world.launch

export TURTLEBOT3_MODEL=burger

roslaunch turtlebot3_gazebo turtlebot3_gazebo_rviz.launch

roslaunch turtlebot3_gazebo turtlebot3_simulation.launch

49

 Figure 3.10: Command for launch Gmapping.

Figure 3.11: Command for control TurtleBot3.

Figure 3.12: Command for control the speed of TurtleBot3.

Figure 3.13: Command for control the speed of TurtleBot3.

3.5.2 Test Environment

To test the performance of the robot in narrow and flat area, the simulated

environment was simulated. The simulation environment used in Robot Operating

System (ROS) is TurtleBot3 World. The simulated environment’s area is 25m2. Figure

3.14 shows the ROS mapping environment.

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

export TURTLEBOT3_MODEL=burger

roslaunch turtlebot3_slam turtlebot3_slam.launch slam_methods:=gmapping

sudo apt-get install ros-kinetic-teleop-twist-keyboard

rosrun teleop_twist_keyboard teleop_twist_keyboard.py

rosrun map_server map_saver -f ~/map

50

 Figure 3.14: Simulated environment in Gazebo platform.

3.5.3 Robot Operation

The robot’s exploration operation consists of two parts. First part is the computer

keyboard system control process that controls the robot to build map through the user.

The laser detector scans the objects or obstacles that surround the robot in the

simulation. Then, the Ros Visualization (Rviz) software in the Robot Operating

System (ROS) was used to build a map, also known as the SLAM which controls the

keyboard of the computer.

51

3.5.4 Evaluation Metrics

3.5.4.1 Occupancy binary random variable

In occupancy binary random variable, there are two conditions which are first when

the grid cell is in a free space and second is when the grid cell is in an occupied space.

Free space means there are no obstacle in the grid cell and the robot able to pass

through it while occupied space means there are an obstacle in the grid cell and the

robot unable to pass through it [7]. The value for free space is one and the value for

occupied space is zero. The equation for an occupancy binary random variable is:

 mx,y : (free, occupied) → (1, 0) (3-1)

3.5.4.2 Occupancy grid map

In order to calculate the occupancy grid map, the Bayes’ Rule equation was used.

First, the odd equation needs to be derived. Then, the log for the odd equation was

calculated by using the previous equation. The equations and derivations are shown

below.

 p(mx,y|z) =
p(z|mx,y)p(mx,y)

p(z)
 (3-2)

Odd[(mx,y = 1)given z] =
p(x)

p(x′)

 = [
p(mx,y = 1|z)

p(mx,y = 0|z)
]

52

 =

[

p(z|mx,y = 1)p(mx,y = 1)

p(z)

p(z|mx,y = 0)p(mx,y = 0)

p(z)

]

 = [
p(z|mx,y=1)p(mx,y=1)

p(z|mx,y=0)p(mx,y=0)
] (3-3)

log odd = log [
p(mx,y = 1|z)

p(mx,y = 0|z)
]

 = log [
p(z|mx,y = 1)p(mx,y = 1)

p(z|mx,y = 0)p(mx,y = 0)
]

 = log [
p(z|mx,y=1)

p(z|mx,y=0)
] + log [

p(mx,y=1)

p(mx,y=0)
] (3-4)

There are two conditions in this case. First when z is zero, the equation is:

 log odd ↓ occ = log [
p(z=0|mx,y=0)

p(z=0|mx,y=1)
] (3-5)

Second when z is one, the equation is:

 log odd ↓ free = log [
p(z=1|mx,y=1)

p(z=1|mx,y=0)
] (3-6)

For constant measurement model, the values for free space and occupied space are:

log odd ↓ free = 0.9 (3-7)

log odd ↓ occ = 0.7 (3-8)

53

At initial map, the log odd is always zero as state in equation below.

 log odd = 0 for all (x,y) (3-9)

Then, for condition one is equal to zero, the value is 0.5 as shown in equation below.

 p(mx,y = 1) = p(mx,y = 0) = 0.5 (3-10)

3.5.4.3 Fitness score

Fitness score focuses on comparing the performance that integrates with the

occupancy grid map algorithm [4]. The value of the cell at position (x, y) in test map

of the simulation environment are compared with the value of the cell at position (x,y)

in reference map of the simulation environment. The sum of difference is divided by

the number of cell used in test map, m. The most accurate map will obtain a score of

1 while a less accurate map will result in a score of 0. The fitness score is determined

by the following equation:

 f(m, n) =)1 −
Ʃmx,y∈m|nx,y− mx,y|

N
 (3-11)

Where:

 mx,y = value of the cell at position (x,y) in test map.

 nx,y = value of the cell at position (x,y) in reference map.

 N = number of cell used in test map,m.

54

3.5.4.4 Occupied / free cells ratio

The occupied or free cell ratio is when the map was examined with the occupied

and free cells in the ground truth map respectively using a very intuitive method in the

generated graph. The nearest value of free cells ratio to 1, the better performances will

obtain. The equations to find the ratios are:

 Free Cells Ratio =
∑(mx,y,free,true)

∑(nx,y,free)
 (3-12)

 Occupied Cells Ratio =
∑(mx,y,occ,true)

∑(nx,y,occ)
 (3-13)

3.5.5 Run Gmapping Algorithms

To measure the accuracy of map performance, the simulation environment

map needs to be built. Figure 3.15 shows the environment map created in the

simulation by using Gmapping algorithm. From this map, it is shown that the

total numbers of grid cell that has been used in this simulation are 25. In this

simulation, only a single robot and static indoor environment are involved. The

green line in the figure below shows the laser range finder from the TurtleBot3

Burger, which function to detect the obstacle while create its own map. Figure

3.16 shows the save mapping environment by using the command.

55

Figure 3.15: Mapping environment from the TurtleBot3.

Figure 3.16: The save mapping environment using command.

CHAPTER 4

RESULTS AND DISCUSSION

This chapter discusses the collected details, the outcomes of the statistical research

carried out, and the explanation of the findings for the research problem regarding map

accuracy by using a Gmapping SLAM algorithm. All the results are presented in tables

and graphs.

4.1 Area for Free Grid Cell

The simulation environment was created in ROS by using Gmapping SLAM

algorithm. The total numbers of grid cell that has been used in this simulation are 25.

For each grid cell, the area is 1m2. Then, to calculate the total area of this environment

map, the area for each grid cell (1m2) need to be multiplied with the total numbers of

57

grid cell that has been used the simulation (25). So the value of the area for this

environment map is 25m2. Figure 4.1 shows the environment map from the simulation.

Figure 4.1: Environment map from the simulation.

Next, to calculate the area for each grid cell of mapped environment, the grid cell

was divided into 100 small grid cells as shown in Figure 4.2. The area of each small

grid cell is 0.01m2. This is because as stated before, the area for each grid cell is 1m2,

so to know the area of this small grid cell, it need to be divided into 100.

Figure 4.2: Small grid cell.

58

For example, one of the grid cell was taken from the environment map to calculate

its area. First, this grid cell was divided into 100 small grid cells. The total number of

free small grid cell was calculated and the value is 70. Then, to calculate the area of

the free small grid cell, the total number of free small grid cell

(70) was multiplied with the area of each small grid cell (0.01m2) and the result is

0.7m2. Figure 4.3 shows the free small grid cell for part 1.

Figure 4.3: Free small grid cell for part 1.

Next, the area for the balance free small grid cell was calculated. In this step, only

nine small grid cell was involved. The area of each small grid cell is 0.01m2. First, the

small grid cell was divided into 25. Then, to calculate the area of each free small grid

59

cell, the value of 0.01m2 has been multiplied with 25, so the answer is 0.0004m2. As

shown in Figure 4.4, the numbers of free small grid cell are 20. So, to know the total

numbers of free small grid cell, 20 need to multiply with 9. The result is 180. Lastly,

to calculate the area of the free small grid cell, the total numbers of free small grid cell

(180) were multiplied with the area of each free small grid cell (0.0004m2) and the

value is 0.072m2. Figure 4.4 shows the free small grid cell for part 2.

Figure 4.4: Free small grid cell for part 2.

Besides, in this step, only one small grid cell was involved. The area of small grid

cell is 0.01m2. The small grid cell was divided into 25. Then, to calculate the area of

the free small grid cell, 0.01m2 was multiplied with 25, so the answer is 0.0004m2. As

shown in Figure 4.5, the numbers of free small grid cell are 18. Lastly, to calculate the

60

area of the free small grid cell, the numbers of free small grid cell (18) were multiplied

with the area of each free small grid cell (0.0004m2) and the value is 0.0072m2. Figure

4.5 shows the free small grid cell for part 3.

Figure 4.5: Free small grid cell for part 3.

Lastly, to obtain the area of this grid cell, all the calculated values of free small grid

cell from the previous step was added together. The total area of this free grid cell is

0.7792m2 and was rounded off to 0.78m2 (0.7m2 + 0.072m2 + 0.0072m2). Then, the

same steps were repeated to calculate the area for each free grid cell. Figure 4.6 shows

the free small grid cell.

61

Figure 4.6: Free small grid cell.

4.2 Result and Calculation

4.2.1 Full Environment Map

The full environment for the simulation was shown in Figure 4.7. The area for each

grid cell was calculated by using the same method which has been explained in 4.1.

Table 4.1 was summarized all the areas of each grid cell for the environment map as

shown in Figure 4.7.

Figure 4.7: Full environment map created.

62

Table 4.1: Area of each grid cell for full environment map created.

0.75 0.80 0.75 0.78 0.76

0.80 0.98 0.96 0.90 0.90

0.80 0.95 0.85 0.98 0.80

0.80 0.95 0.90 1.00 0.90

0.80 0.90 0.80 0.80 0.80

The total of cell nx,y, free and nx,y, occupied were calculated for this environment

map. For nx,y, free, the value was multiplied with the log odd for free space which is

0.9 while for nx,y, occupied, the value was multiplied with the log odd occupied space

which is 0.7. The equation used for these calculations are:

Total number of cell nx,y, free = log odd ↓ free x total area of the environment

 = 0.9 x (0.75 + 0.80 + 0.75 + 0.78 + 0.76 + 0.80 + 0.98

 + 0.96 + 0.90 + 0.90 + 0.80 + 0.95 + 0.85 + 0.98 +

 0.80 + 0.80 + 0.98 + 0.90 + 1.00 + 0.90 + 0.80 + 0.90

 + 0.80 + 0.80 + 0.80)

 = 0.9 x 21.41

 = 19.269

Total number of cell nx,y, occ = log odd ↓ occ x (total area − total area of the

 environment)

= 0.7 x [25 − (0.75 + 0.80 + 0.75 + 0.80 + 0.75 + 0.80

 + 0.98 + 0.95 + 0.90 + 0.90 + 0.80 + 0.95 + 0.85 +

 0.98 + 0.80 + 0.80 + 0.98 + 0.90 + 1.00 + 0.90 +

 0.80 + 0.90 + 0.80 + 0.80 + 0.80)]

= 0.7 x 3.59

 = 2.513

63

4.2.2 Speed 0.5ms-1 at 20 Seconds

Figure 4.8 shows the environment map created for 20 seconds when speed is 0.5ms-

1. The area for each grid cell was calculated by using the same method as stated in 4.1.

Table 4.2 was recorded all the areas of each grid cell for the environment map as

shown in Figure 4.8.

Figure 4.8: Environment map created for 20 seconds when speed is 0.5ms-1.

Table 4.2: Area of each grid cell for environment map created at 20 seconds when

speed is 0.5ms-1.

0.10 0.20 0 0 0

0.60 0.65 0 0.05 0.20

0.80 0.90 0.60 0.95 0.75

0.15 0.95 0.90 1.00 0.90

0.15 0.90 0 0.50 0.05

Same as 4.2.1, the total of cell nx,y, free and nx,y, occupied were calculated for

environment map created at 20 seconds when speed is 0.5ms-1. The value was

64

multiplied with the log odd for free space which is 0.9 for nx,y, free while for nx,y,

occupied, the value was multiplied with the log odd occupied space which is 0.7. The

equations used for these calculations are:

Total number of cell mx,y, free = log odd ↓ free x total area of the environment

 = 0.9 x (0.10 + 0.20 + 0.60 + 0.65 + 0.05 + 0.20 + 0.80

 + 0.90 + 0.60 + 0.95 + 0.75 + 0.15 + 0.95 + 0.90 +

 1.00 + 0.90 + 0.15 + 0.90 + 0.50 + 0.05)

 = 0.9 x 11.3

 = 10.17

Total number of cell mx,y, occ = log odd ↓ occ x (total area − total area of the

 environment)

 = 0.7 x [25 − (0.10 + 0.20 + 0.60 + 0.65 + 0.05 + 0.20

 + 0.80 + 0.90 + 0.60 + 0.95 + 0.75 + 0.15 + 0.95 +

 0.90 + 1.00 + 0.90 + 0.15 + 0.90 + 0.50 + 0.05)]

 = 0.7 x 13.7

 = 9.59

Then, the free and occupied ratios were calculated by using the equation below.

Free Cells Ratio =
∑(mx,y, free, true)

∑(nx,y, free)

=
10.17

19.269

= 0.5278

Occupied Cells Ratio =
∑(mx,y, occ, true)

∑(nx,y, occ)

 =
9.59

2.513

 = 3.8162

65

For fitness score, f(m, n), the equation is:

f(m, n) = 1 −
Ʃmx,y∈m|nx,y − mx,y|

N

f(m, n) = 1 −

Ʃ
|
|

(0.75 − 0.10) + (0.80 − 0.20) + (0.75 − 0) + (0.78 − 0) + (0.76 − 0) +
(0.80 − 0.60) + (0.98 − 0.65) + (0.96 − 0) + (0.90 − 0.05) + (0.90 − 0.20) +

(0.80 − 0.80) + (0.95 − 0.90) + (0.85 − 0.60) + (0.98 − 0.95) + (0.80 − 0.75) +
(0.80 − 0.15) + (0.95 − 0.95) + (0.90 − 0.90) + (1.00 − 1.00) + (0.90 − 0.90) +

(0.80 − 0.15) + (0.90 − 0.90) + (0.80 − 0) + (0.80 − 0.50) + (0.80 − 0.05)

|
|

20

f(m, n) = 1 −
10.11

20

f(m, n) = 1 − 0.5055

f(m, n) = 0.4945

4.2.3 Speed 0.5ms-1 at 30 Seconds

Figure 4.9 shows the environment map created for 30 seconds when speed is 0.5ms-

1. The area for each grid cell was calculated and was recorded in Table 4.3. All of the

values for each equation were state below and the details of the calculations were

shown in Appendix M.

Figure 4.9: Environment map created for 30 seconds when speed is 0.5ms-1.

66

Table 4.3: Area of each grid cell for environment map created at 30 seconds when

speed is 0.5ms-1.

0.10 0.80 0.20 0.10 0

0.60 0.98 0.80 0.20 0.25

0.80 0.95 0.75 0.95 0.75

0.80 0.95 0.90 1.00 0.90

0.80 0.90 0.10 0.50 0.05

Total number of cell mx,y, free = 13.617

Total number of cell mx,y, occ = 6.909

Free cells ratio = 0.7067

Occupied cells ratio = 2.7493

Fitness score, f(m, n) = 0.7383

4.2.4 Speed 0.5ms-1 at 40 Seconds

Figure 4.10 shows the environment map created for 40 seconds when speed is

0.5ms-1. The area for each grid cell was calculated and was recorded in Table 4.4. All

of the values for each equation were state below and the details of the calculations

were shown in Appendix N.

Figure 4.10: Environment map created for 40 seconds when speed is 0.5ms-1.

67

Table 4.4: Area of each grid cell for environment map created at 40 seconds when

speed is 0.5ms-1.

0.10 0.80 0.20 0.10 0

0.60 0.98 0.80 0.20 0.25

0.80 0.95 0.75 0.95 0.75

0.80 0.95 0.90 1.00 0.90

0.80 0.90 0.80 0.80 0.05

Total number of cell mx,y, free = 14.517

Total number of cell mx,y, occ = 6.209

Free cells ratio = 0.7534

Occupied cells ratio = 2.4708

Fitness Score, f(m, n) = 0.78

4.2.5 Speed 0.5ms-1 at 50 Seconds

Figure 4.11 shows the environment map created for 50 seconds when speed is

0.5ms-1. The area for each grid cell was calculated and was recorded in Table 4.5. All

of the values for each equation were state below and the details of the calculations

were shown in Appendix O.

Figure 4.11: Environment map created for 50 seconds when speed is 0.5ms-1.

68

Table 4.5: Area of each grid cell for environment map created at 50 seconds when

speed is 0.5ms-1.

0.10 0.80 0.65 0.10 0.10

0.60 0.98 0.95 0.60 0.70

0.80 0.95 0.80 0.98 0.75

0.80 0.95 0.90 1.00 0.90

0.80 0.90 0.80 0.80 0.80

Total number of cell mx,y, free = 16.659

Total number of cell mx,y, occ = 4.543

Free cells ratio = 0.8645

Occupied cells ratio = 1.8078

Fitness Score, f(m, n) = 0.8844

4.2.6 Speed 0.5ms-1 at 60 Seconds

Figure 4.12 shows the environment map created for 60 seconds when speed is

0.5ms-1. The area for each grid cell was calculated and was recorded in Table 4.6. All

of the values for each equation were state below and the details of the calculations

were shown in Appendix P.

Figure 4.12: Environment map created for 60 seconds when speed is 0.5ms-1.

69

Table 4.6: Area of each grid cell for environment map created at 60 seconds when

speed is 0.5ms-1.

0.10 0.80 0.75 0.80 0.75

0.75 0.98 0.95 0.90 0.90

0.80 0.95 0.85 0.98 0.80

0.80 0.95 0.90 1.00 0.90

0.80 0.90 0.80 0.80 0.80

Total number of cell mx,y, free = 18.639

Total number of cell mx,y, occ = 3.003

Free cells ratio = 0.9673

Occupied cells ratio = 1.1950

Fitness Score, f(m, n) = 0.9684

4.2.7 Speed 1.0ms-1 at 20 Seconds

Figure 4.13 shows the environment map created for 20 seconds when speed is

1.0ms-1. The area for each grid cell was calculated and was recorded in Table 4.7. All

of the values for each equation were state below and the details of the calculations

were shown in Appendix Q.

Figure 4.13: Environment map created for 20 seconds when speed is 1.0ms-1.

70

Table 4.7: Area of each grid cell for environment map created at 20 seconds when

speed is 1.0ms-1.

0.10 0.15 0 0 0

0.50 0.50 0 0.10 0.25

0.75 0.85 0.60 0.85 0.60

0.15 0.90 0.90 0.98 0.85

0.15 0.85 0 0.40 0.05

Total number of cell mx,y, free = 9.432

Total number of cell mx,y, occ = 10.164

Free cells ratio = 0.4895

Occupied cells ratio = 4.0446

Fitness Score, f(m, n) = 0.4535

4.2.8 Speed 1.0ms-1 at 30 Seconds

Figure 4.14 shows the environment map created for 30 seconds when speed is

1.0ms-1. The area for each grid cell was calculated and was recorded in Table 4.8. All

of the values for each equation were state below and the details of the calculations

were shown in Appendix R.

Figure 4.14: Environment map created for 30 seconds when speed is 1.0ms-1.

71

Table 4.8: Area of each grid cell for environment map created at 30 seconds when

speed is 1.0ms-1.

0.10 0.80 0.40 0.05 0

0.55 0.98 0.45 0.10 0.30

0.80 0.90 0.60 0.85 0.70

0.35 0.90 0.90 1.00 0.88

0.20 0.88 0.10 0.50 0.10

Total number of cell mx,y, free = 12.051

Total number of cell mx,y, occ = 8.127

Free cells ratio = 0.6254

Occupied cells ratio = 3.2340

Fitness Score, f(m, n) = 0.6658

4.2.9 Speed 1.0ms-1 at 40 Seconds

Figure 4.15 shows the environment map created for 40 seconds when speed is

1.0ms-1. The area for each grid cell was calculated and was recorded in Table 4.9. All

of the values for each equation were state below and the details of the calculations

were shown in Appendix S.

Figure 4.15: Environment map created for 40 seconds when speed is 1.0ms-1.

72

Table 4.9: Area of each grid cell for environment map created at 40 seconds when

speed is 1.0ms-1.

0.10 0.80 0.50 0.65 0.05

0.55 0.98 0.92 0.55 0.35

0.80 0.95 0.85 0.98 0.75

0.45 0.90 0.90 1.00 0.88

0.20 0.88 0.10 0.50 0.10

Total number of cell mx,y, free = 14.121

Total number of cell mx,y, occ = 6.517

Free cells ratio = 0.7328

Occupied cells ratio = 2.5933

Fitness Score, f(m, n) = 0.7752

4.2.10 Speed 1.0ms-1 at 50 Seconds

Figure 4.16 shows the environment map created for 50 seconds when speed is

1.0ms-1. The area for each grid cell was calculated and was recorded in Table 4.10.

All of the values for each equation were state below and the details of the calculations

were shown in Appendix T.

Figure 4.16: Environment map created for 50 seconds when speed is 1.0ms-1.

73

Table 4.10: Area of each grid cell for environment map created at 50 seconds when

speed is 1.0ms-1.

0.65 0.80 0.65 0.70 0.65

0.70 0.98 0.95 0.80 0.90

0.80 0.95 0.85 0.98 0.80

0.50 0.90 0.90 1.00 0.88

0.20 0.88 0.20 0.65 0.15

Total number of cell mx,y, free = 16.578

Total number of cell mx,y, occ = 4.606

Free cells ratio = 0.8603

Occupied cells ratio = 1.8329

Fitness Score, f(m, n) = 0.8804

4.2.11 Speed 1.0ms-1 at 60 Seconds

Figure 4.17 shows the environment map created for 60 seconds when speed is

1.0ms-1. The area for each grid cell was calculated and was recorded in Table 4.11.

All of the values for each equation were state below and the details of the calculations

were shown in Appendix U.

Figure 4.17: Environment map created for 60 seconds when speed is 1.0ms-1.

74

Table 4.11: Area of each grid cell for environment map created at 60 seconds when

speed is 1.0ms-1.

0.70 0.80 0.70 0.78 0.76

0.70 0.98 0.96 0.80 0.90

0.80 0.95 0.85 0.98 0.80

0.50 0.90 0.90 1.00 0.90

0.20 0.88 0.50 0.70 0.80

Total number of cell mx,y, free = 17.766

Total number of cell mx,y, occ = 3.682

Free cells ratio = 0.9220

Occupied cells ratio = 1.4652

Fitness Score, f(m, n) = 0.9332

4.2.12 Comparison between Free and Occupied Ratio for Speed 0.5ms-1

The comparison between free and occupied ratio for speed 0.5ms-1 was recorded in

Table 4.12. All the results were obtained from the previous calculations. Then, from

the table, the Graph 4.1 was created. In the graph, its shown that the values of free

ratio at each seconds are higher compared to the occupied ratio for speed 0.5ms-1.

Based on the graph, it can be concluded that, if the free ratio is higher, so the occupied

ratio will be lower.

75

Table 4.12: Free and occupied ratio for speed 0.5ms-1.

Time

(seconds)

Speed 0.5ms-1

Free ratio Occupied ratio

20 10.170 9.590

30 13.617 6.909

40 14.517 6.209

50 16.659 4.543

60 18.639 3.003

Graph 4.1: Free and occupied ratio for speed 0.5ms-1.

0

2

4

6

8

10

12

14

16

18

20

20s 30s 40s 50s 60s

R
at

io

Time (seconds)

Free and occupied ratio for speed 0.5ms-1

Free ratio Occupied ratio

76

4.2.13 Comparison between Free and Occupied Ratio for Speed 1.0ms-1

Besides, Table 4.13 shows the comparison between free and occupied ratio for

speed 1.0ms-1. Graph 4.2 was designed from the values in the Table 4.13. For speed

1.0ms-1, the values of free ratio is also higher compared to the occupied ratio except

for 20 seconds which the free ratio has a lower value compared to the occupied ratio.

These can be seen clearly in the Graph 4.2.

Table 4.13: Free and occupied ratio for speed 1.0ms-1.

Time

(seconds)

Speed 1.0ms-1

Free ratio Occupied ratio

20 9.432 10.164

30 12.051 8.127

40 14.121 6.517

50 16.578 4.606

60 17.766 3.682

Graph 4.2: Free and occupied ratio for speed 1.0ms-1.

0

2

4

6

8

10

12

14

16

18

20

20s 30s 40s 50s 60s

R
at

io

Time (seconds)

Free and occupied ratio for speed 1.0ms-1

Free ratio Occupied ratio

77

4.2.14 Comparison of Free Ratio between Speed 0.5ms-1 and 1.0ms-1

Next, the comparison of free ratio between speed 0.5ms-1 and speed 1.0ms-1 was

summarized in Table 4.14 and the Graph 4.3 was constructed based on this table. From

the graph, it can be concluded that the free ratio for speed 0.5ms-1 is higher compared

to speed 1.0ms-1. In other word, the speed 0.5ms-1 was detected less obstacle in the

grid cell compared to speed 1.0ms-1.

Table 4.14: Free ratio between speed 0.5ms-1 and speed 1.0ms-1.

Time

(seconds)

Free ratio for each speed

Speed 0.5ms-1 Speed 1.0ms-1

20 10.170 9.432

30 13.617 12.051

40 14.517 14.121

50 16.659 16.578

60 18.639 17.766

Graph 4.3: Free ratio between speed 0.5ms-1 and speed 1.0ms-1.

0

2

4

6

8

10

12

14

16

18

20

20s 30s 40s 50s 60s

R
at

io

Time (seconds)

Free ratio between speed 0.5ms-1 and speed 1.0ms-1

Speed 0.5m/s Speed 1.0m/s

78

4.2.15 Comparison of Occupied Ratio between Speed 0.5ms-1 and 1.0ms-1

Then, Table 4.15 was recorded the comparison of the occupied ratio between speed

0.5ms-1 and speed 1.0ms-1. The Graph 4.4 also was built from Table 4.15. Otherwise

from the comparison in 4.2.6, the occupied ratio for speed 0.5ms-1 is lower compared

to speed 1.0ms-1. In this case, the speed 1.0ms-1 was detected more obstacle in the grid

cell compared to speed 0.5ms-1.

Table 4.15: Occupied ratio between speed 0.5ms-1 and speed 1.0ms-1.

Time

(seconds)

Occupied ratio for each speed

Speed 0.5ms-1 Speed 1.0ms-1

20 9.590 10.164

30 6.909 8.127

40 6.209 6.517

50 4.543 4.606

60 3.003 3.682

Graph 4.4: Occupied ratio between speed 0.5ms-1 and speed 1.0ms-1.

0

2

4

6

8

10

12

20s 30s 40s 50s 60s

R
at

io

Time (seconds)

Occupied ratio between speed 0.5ms-1 and speed
1.0ms-1

Speed 0.5m/s Speed 1.0m/s

79

4.2.16 Comparison of Fitness Score between Speed 0.5ms-1 and 1.0ms-1

Lastly, the contrast of fitness score between speed 0.5ms-1 and 1.0ms-1 listed in

Table 4.16. Then, the Graph 4.5 was generated. From the graph, the values of fitness

score for speed 0.5ms-1 is higher compared to speed 1.0ms-1. So, based on the result

obtained from the graph, it proved that speed 0.5ms-1 has a better accuracy of the map

as it fitness value is nearer to one.

Table 4.16: Fitness score between speed 0.5ms-1 and speed 1.0ms-1.

Time

(seconds)

Fitness score for each speed

Speed 0.5ms-1 Speed 1.0ms-1

20 0.4945 0.4535

30 0.7383 0.6658

40 0.7800 0.7752

50 0.8844 0.8804

60 0.9684 0.9332

Graph 4.5: Fitness score between speed 0.5ms-1 and speed 1.0ms-1.

0

0.2

0.4

0.6

0.8

1

1.2

20s 30s 40s 50s 60s

R
at

io

Time (seconds)

Fitness score between speed 0.5ms-1 and speed 1.0ms-

1

Speed 0.5m/s Speed 1.0m/s

80

4.2.17 Discussion

Based on the study that has been carried out, it can be concluded that the robot's

speed must be slow in order to achieve a good result in terms of mapping accuracy. It

was found that the speed at which the robot is moving affects the precision of the

mapping. In other words, the robot has to be performed slowly to detect the corners.

However, it can be operated faster when at a straight direction. An adaptive speed

control technique can be built to integrate these findings to vary the speed

automatically and thus reduce the overall mapping time.

 The results that obtained showed the lower speed (0.5ms-1) is more suitable for

Turtlebot3 to undergo mapping process and create a more accurate and perfect map

compare with the higher speed (1.0ms-1). This simulation analysed the accuracy of G-

mapping at two different speed. From the simulation, it proved that the differences of

the Turtlebot3 speed can influence the accuracy of the SLAM mapping.

The ratio of free and occupied space in the created environment has been calculated

for every speed. By using speed 0.5ms-1, the ratio of free space was 18.639 and it

occupied space was 3.003. Whereas the free space for speed 1.0ms-1 was 17.766 while

it occupied space was 3.682.

Besides, from the fitness score calculation, it also shown that the speed 0.5ms-1 is

more accurate compared to speed 1.0ms-1 as it value was 0.9684 and 0.9332

respectively. This is because, as we know the accuracy of the fitness score is better if

it value is nearest to 1. Below shown the equation used to calculate the percent of map

accurate for speed 0.5ms-1:

percent of the map accuracy =
fitness score for speed 0.5ms−1 − fitness score for speed 1.0ms−1

fitness score for speed 1.0ms−1 × 100%

81

From the equation above, to calculate the percent of map accuracy for speed 0.5ms-

1, the value of 0.9684 has to be minus with 0.9332 and then divided by 0.9332. After

that, the answer need to be multiplied with 100% and the result of this calculation is

3.77%. This mean, by using speed 0.5ms-1, the accuracy increase by 3.77%.

Based on the result from the calculation, it can be summarize that the highest free

space, the lowest occupied space and the highest fitness score will obtain the better

accuracy of mapping process. Therefore, the speed 0.5ms-1 is much more suitable to

use as the speed for Turtlebot3 to carry out the mapping process for the mapping

simulation.

CHAPTER 5

CONCLUSION AND FUTURE WORKS

5.1 Conclusion

The aim of this project was to investigate the occupancy grid map algorithm

parameters, such as grid size. In addition, the final objective of this project was to

stimulate the mapping algorithm and investigate the performance based on the

accuracy of the maps. In this project, the Ubuntu Operating System was used to present

a successful implementation of the ROS robotic platform. By using the commands,

the Gazebo and Turtlebot3 Burger were launched. ROS and Gazebo software were

function to create a suitable environment for simulating and controlling the mobile

robots. It has been shown that after properly designing the robot platform models and

83

their environments, the device used in the simulation can be used effectively to handle

the real robots.

Then, to achieve the project’s objectives, the Gmapping SLAM algorithm was

launched in Rviz by running the command in ROS. Gmapping is the method that has

been used to build the environment map for this project. During the process of creating

the map, the robot also able to detect the obstacle in the environment as it is already

attached with the sensor. To measure the performance based on the map accuracy, the

robot was set into two different speeds which are 0.5ms-1 and 1.0ms-1. For each speed,

the observation of creating the map was taken at five different seconds (20, 30, 40, 50

and 60 seconds). All of the related calculations for each speed were calculated clearly.

In the calculation, the occupancy grid map parameter was used to calculate the total

number of cell mx,y, free and the total number of cell mx,y, occupied. Lastly, to know

which speed created the most accurate map, the details of the comparison between

these two speeds were also being recorded. From the calculation, it can be concluded

that the slower the speed, the better the performance of map accuracy. In other word,

for this project, the best speed of mobile robot to build the better map accuracy is

0.5ms-1.

5.2 Future Works

The benefits of the occupancy grid mapping technique are that the forward models

are more realistic than the inverse models. This is because forward models define the

physical processes that underlie the generation of data. Next, this method yields more

accurate maps, since it is based on fewer assumptions of freedom. However, this

technique also has its own drawbacks, such as an obvious increased sensitivity to

84

changes in the environment and a more times need to go through the data which

inhibits its real-time application. The extension of this algorithm into an algorithm

online is the subject of future research.

A further potential for future research comes from the fact that surroundings have

structure. In this occupancy grid mapping method, the prior probability assumes

independence between various grid cells. This is only a simplistic approximation, in

real life. Surroundings are typically composed of wider items such as furniture and

wall. However, acquiring adequate priors which characterize indoor environments is

mainly a range of experiments. This approach focuses on an option way to build maps

with mobile robots regardless of this barriers.

85

 REFERENCES

[1] P. Kim, J. Chen, and Y. K. Cho, “Autonomous mobile robot localization and mapping for

unknown construction environments,” Constr. Res. Congr. 2018 Constr. Inf. Technol. -

Sel. Pap. from Constr. Res. Congr. 2018, vol. 2018-April, pp. 147–156, 2018, doi:

10.1061/9780784481264.015.

[2] S. Thrun, “Robotic Mapping: A Survey,” Science (80-.)., vol. 298, no. February, pp. 1–

35, 2002, doi: 10.1126/science.298.5594.699f.

[3] S. Seong, C. Lee, and J. Kim, Multi-robot SLAM: An Overview and Quantitative

Evaluation of MRGS ROS Framework for MR-SLAM, no. January. Springer International

Publishing, 2019.

[4] N. M. Yatim and N. Buniyamin, “Indoor mapping with machine learning algorithm using

Khepera III mobile robot,” J. Telecommun. Electron. Comput. Eng., vol. 8, no. 9, pp. 61–

66, 2016.

[5] J. M. Santos, D. Portugal, and R. P. Rocha, “An evaluation of 2D SLAM techniques

available in Robot Operating System,” 2013 IEEE Int. Symp. Safety, Secur. Rescue Robot.

SSRR 2013, 2013, doi: 10.1109/SSRR.2013.6719348.

[6] S. Thrun, “Learning occupancy grid maps with forward sensor models,” Auton. Robots,

86

vol. 15, no. 2, pp. 111–127, 2003, doi: 10.1023/A:1025584807625.

[7] M. Drahansky et al., “Occupancy Grid Maps for Localization and Mapping,” Intech, vol.

i, no. tourism, p. 13, 2016, doi: http://dx.doi.org/10.5772/57353.

[8] Y. Abdelrasoul, A. B. S. H. Saman, and P. Sebastian, “A quantitative study of tuning ROS

gmapping parameters and their effect on performing indoor 2D SLAM,” 2016 2nd IEEE

Int. Symp. Robot. Manuf. Autom. ROMA 2016, 2017, doi: 10.1109/ROMA.2016.7847825.

[9] B. Steux and O. El Hamzaoui, “tinySLAM: A SLAM algorithm in less than 200 lines C-

language program,” 11th Int. Conf. Control. Autom. Robot. Vision, ICARCV 2010, no.

December, pp. 1975–1979, 2010, doi: 10.1109/ICARCV.2010.5707402.

[10] N. Kumar, Z. Vamossy, and Z. M. Szabo-Resch, “Robot obstacle avoidance using bumper

event,” SACI 2016 - 11th IEEE Int. Symp. Appl. Comput. Intell. Informatics, Proc., pp.

485–490, 2016, doi: 10.1109/SACI.2016.7507426.

[11] A. Stoyanov, T Louloudi, A Andreasson, H Lilienthal, “Comparative evaluation of range

sensor accuracy in indoor environments,” Proc. 5th Eur. Conf. Mob. Robot. ECMR 2011,

pp. 19–24, 2011.

[12] M. Antunes, J. P. Barreto, C. Premebida, and U. Nunes, “Can stereo vision replace a Laser

Rangefinder?,” IEEE Int. Conf. Intell. Robot. Syst., pp. 5183–5190, 2012, doi:

10.1109/IROS.2012.6385844.

[13] H. Surmann, K. Lingemann, a. Nüchter, and J. Hertzberg, “A 3D laser range finder for

autonomous mobile robots,” Proc. 32nd ISR (International Symp. Robot., vol. 19, no. 21,

pp. 153–158, 2001.

[14] H. A. Sidharta, S. Sidharta, and W. P. Sari, “2D Mapping and boundary detection using

87

2D LIDAR sensor for prototyping Autonomous PETIS (Programable Vehicle with

Integrated Sensor),” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron.

Control, vol. 4, no. 2, pp. 107–114, 2019, doi: 10.22219/kinetik.v4i2.731.

[15] G. Adamo and A. Busacca, “Time of Flight measurements via two LiDAR systems with

SiPM and APD,” AEIT 2016 - Int. Annu. Conf. Sustain. Dev. Mediterr. Area, Energy ICT

Networks Futur., 2016, doi: 10.23919/AEIT.2016.7892802.

[16] D. Lv, X. Ying, Y. Cui, J. Song, K. Qian, and M. Li, “Research on the technology of

LIDAR data processing,” 1st Int. Conf. Electron. Instrum. Inf. Syst. EIIS 2017, vol. 2018-

Janua, pp. 1–5, 2018, doi: 10.1109/EIIS.2017.8298694.

[17] B. Al Housani, B. Mutrib, and H. Jaradi, “The Linux review - Ubuntu desktop edition -

Version 8.10,” Proc. 2009 Int. Conf. Curr. Trends Inf. Technol. CTIT 2009, pp. 67–72,

2009, doi: 10.1109/CTIT.2009.5423142.

[18] D. Singh, E. Trivedi, Y. Sharma, and V. Niranjan, “TurtleBot: Design and hardware

component selection,” 2018 Int. Conf. Comput. Power Commun. Technol. GUCON 2018,

pp. 805–809, 2019, doi: 10.1109/GUCON.2018.8675050.

[19] K. Takaya, T. Asai, V. Kroumov, and F. Smarandache, “Simulation environment for

mobile robots testing using ROS and Gazebo,” 2016 20th Int. Conf. Syst. Theory, Control

Comput. ICSTCC 2016 - Jt. Conf. SINTES 20, SACCS 16, SIMSIS 20 - Proc., pp. 96–101,

2016, doi: 10.1109/ICSTCC.2016.7790647.

[20] H. Aagela, M. Al-Nesf, and V. Holmes, “An Asus-xtion-probased indoor MAPPING using

a Raspberry Pi with Turtlebot robot Turtlebot robot,” ICAC 2017 - 2017 23rd IEEE Int.

Conf. Autom. Comput. Addressing Glob. Challenges through Autom. Comput., no.

September, pp. 7–8, 2017, doi: 10.23919/IConAC.2017.8082023.

88

[21] H. Deilamsalehy and T. C. Havens, “Sensor fused three-dimensional localization using

IMU, camera and LiDAR,” Proc. IEEE Sensors, pp. 7–9, 2017, doi:

10.1109/ICSENS.2016.7808523.

89

APPENDIX A

Run roscore in ROS.

APPENDIX B

Launch TurtleBot Burger and simulation environment in gazebo.

90

APPENDIX C

TurtleBot Burger in gazebo.

APPENDIX D

Simulation environment in gazebo.

91

APPENDIX E

Execute Rviz in ROS.

APPENDIX F

Rviz in ROS.

92

APPENDIX G

Run Gmapping SLAM in ROS.

APPENDIX H

Gmapping SLAM in ROS.

93

APPENDIX I

Run teleop key to control the keyboard for movement of the TurtleBot Burger.

APPENDIX J

Run the teleop twist to control the speed of the TurtleBot Burger.

94

APPENDIX K

Run map server to save the map.

APPENDIX L

The save map.

95

APPENDIX M

The calculation for speed 0.5ms-1 at 30 seconds.

96

APPENDIX N

The calculation for speed 0.5ms-1 at 40 seconds.

97

APPENDIX O

The calculation for speed 0.5ms-1 at 50 seconds.

98

APPENDIX P

The calculation for speed 0.5ms-1 at 60 seconds.

99

APPENDIX Q

The calculation for speed 1.0ms-1 at 20 seconds.

100

APPENDIX R

The calculation for speed 1.0ms-1 at 30 seconds.

101

APPENDIX S

The calculation for speed 1.0ms-1 at 40 seconds.

102

APPENDIX T

The calculation for speed 1.0ms-1 at 50 seconds.

103

APPENDIX U

The calculation for speed 1.0ms-1 at 60 seconds.

