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ABSTRACT 

Autonomous mobile robots can safely explore their environments without hit or 

crashing with anything. Simultaneous localization and mapping (SLAM) helps the 

robot to gain such independence by answering questions about how its environment 

map looks like and also where is it location. Building maps is one of mobile robots’ 

most fundamental tasks. Actually, the robot can build maps from the information and 

data collected by a mobile robot by applying a sensor like a laser sensor. The 

autonomous mobile robots can be located and navigate in the practical environment 

with the maps. The goal of this research is to investigate parameters such as grid size 

of the occupancy grid map algorithm and to stimulate the mapping algorithm and 

investigate performance based on map accuracy. Occupancy grid map is used as a map 

representation in this study because it can generate a discrete grid representation. This 

means, the robot can run on a given region in a grid to speed up the computation 

process. In addition, Gmapping is the SLAM algorithm used in this research as it is 

the most accurate method compared to other methods and it can provide a high quality 

performance output map. 
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ABSTRAK 

Robot mudah alih autonomi boleh menjelajahi persekitarannya dengan selamat 

tanpa bertembung dengan orang atau berlanggar dengan objek. Penyetempatan dan 

pemetaan serentak (SLAM) membantu robot mencapai kebebasan tersebut dengan 

menjawab persoalan tentang bagaimana ia kelihatan dan juga di mana ia berada.. 

Pemetaan bangunan adalah salah satu tugas paling penting robot mudah alih. 

Sebenarnya, robot boleh membina peta daripada maklumat dan data yang dikumpul 

oleh robot mudah alih dengan menggunakan sensor seperti sensor laser. Robot boleh 

ditempatkan dan mengemudi dalam persekitaran praktikal dengan peta. Matlamat 

penyelidikan ini adalah untuk mengkaji parameter seperti saiz grid algoritma peta 

penghuni grid dan untuk merangsang algoritma pemetaan dan menyiasat prestasi 

berdasarkan ketepatan peta. Peta grid penghunian digunakan sebagai perwakilan 

peta dalam kajian ini kerana ia boleh menjana perwakilan grid diskret. Ini bermakna, 

robot boleh berjalan di kawasan tertentu dalam grid untuk mempercepat proses 

perhitungan. Di samping itu, Gmapping adalah algoritma SLAM yang digunakan 

dalam penyelidikan ini kerana ia merupakan cara yang paling tepat berbanding 

dengan kaedah lain dan ia dapat memberikan peta keluaran prestasi yang berkualiti 

tinggi. 
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CHAPTER 1  

INTRODUCTION  

This chapter covers significant background studies, problem statements, goals, 

project scope and the environment and sustainability of the project. In this part, it also 

provides an outline of the chapter. 

 

1.1 Background Studies 

 

Autonomous robotics has been an area of interest for researchers for a long time. 

Autonomous robots have the potential to decide their own alternative and move 

properly. An autonomous robot is one that can observe its surroundings act based on 

what it sees and is programmed to identify and after that respond on a gesture or 

control in that situation. For example, by regard to flexibility, this decision is including 

acts but not bound to the specified element such as starting, stopping, and maneuvering 
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around obstacles in their path. It is highly desirable to have a programmable robot with 

the ability to multi-task and traverse difficult terrains where a human being would 

otherwise be risky to cross. A large number of accurate sensors installed by the robot 

will measure and process information in fractions of the time it would take a person 

to do. Over the past few decades, this has become an ambitious research area. 

As technology evolves, autonomous robots in the manufacturing, health care, 

security, military and similar sectors have become increasingly popular. The primary 

benefit of this technology is that, under certain circumstances, it can function without 

human intervention and still perform better. In other words, in activities that are risky, 

repetitive and require high levels of concentration over a long time, autonomous robots 

may replace humans. Unlike the robot for manual control, autonomous robot does not 

rely on live input commands. Autonomous robot makes decisions on its own based on 

inputs from sensors and pre-defined behaviors. It can therefore operate with minimal 

human oversight and correction. It therefore acts in its environment as an autonomous 

individual. 

Autonomous mobile robots (AMRs) are a type of automatic guided vehicles 

(AGVs) that can be deployed without supporting any framework such as markers, 

wires or magnets embedded in the ground or laser targets that are precisely located. 

There are two types of AMRs that depend on choosing optimization based on fleet 

management and systems. Usually, fleet management systems work with larger 

payloads and guide the robots to a location from a source. In addition, pick 

optimization robots combine machine and human movement into an operation 

progress designed to improve choosing input. Pick robots for optimization support the 

picking of cartons and totes and therefore have a small payload. 
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To move through an indoor environment, autonomous indoor mobile robots are 

required. In order to be considered independent of an indoor mobile robot, it must have 

at least the following capabilities. First, within the indoor environment, it should be 

able to locate itself. Second, in order to reach its destination, it should be able to plan 

its path and create the environmental map. Third, if it deviates from the intended 

course, it should be able to correct itself. Fourth, new obstacles should be found and 

avoided. An autonomous mobile robot also needs many other capabilities, depending 

on its function and how the designer defines the word 'autonomous'. Simultaneous 

Localization and Mapping (SLAM) is a method to determine their current position, 

direction and the map of robot’s environment. SLAM technology is well known, but 

still faces some limitations [1]. 

In this research project, the focus is about robotic mapping. This is because in the 

robotics and automation industries, robot mapping has develop actively to become an 

area of research [2]. Robotic mapping addresses the issue of using mobile robots to 

build spatial representations of physical environments. The problem of mapping is 

generally considered to be the most critical issues in pursuing the construction of 

autonomous mobile robots. It still presents great challenges, despite significant 

progress in this area. Currently, the robust methods for fixed, structured and narrow 

range mapping environments, mapping unstructured, dynamic, or large scale 

environments are the reasons why this problem become an area of research. 

Mapping the environment using mobile robot has been done previously by multiple 

researchers. In these works, three types of map representation are studied such as 

occupancy grid map, topological mapping and features map representation. 

Occupancy grid maps (OGM) divide the map into cells which each construct a grid 

with a binary random variable showing whether the cell is occupied or not [3]. The 
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benefit of OGM is that due to moving objects, it can function with dynamically 

changing environments and still allow accurate modelling of it. 

Feature maps use unique environmental features, each of which is marked by its 

position in the global map. To act as a landmark for the mapping process, these 

features must be static and distinguishable from the rest of the environment. This form 

of mapping makes localization effective but the data association process is not a 

simple job. 

Topological maps are capable of representing a compact form of the map using a 

series of nodes and arcs. It only showing the abstract model. Topological maps need 

less storage and computation time compared to metric or grid maps. However, 

topological maps are more difficult to construct and may not be valid for map 

matching and may suffer from perceptual aliasing in recognition of the same location. 

 

1.2 Problem Statements 

 

The first issue of robotic mapping is the acquisition of a spatial model of the 

environment of a robot [2]. The maps for robot navigation (localization) are widely 

used. Robots must have sensors to help them to see the farther world in order to earn 

its own map. Cameras, range finders using sonar, laser and infrared technology, radar, 

tactile sensors, compasses and Global Positioning System (GPS) are widely used for 

this mission. All of these sensors are the reason why the errors, occurs and called 

measuring noise. Besides, the sensors of the robot also the reasons to rigid limitations 

of the distance. For instance, light and sound cannot pass through the walls. Such 

limitations of the scope make it necessary for a robot to have a mapping algorithm. 
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The second complicated problem of robot mapping begin from the large 

dimensionality of the map that has been create [2]. The reader can assume the numbers 

that maybe will be used to explain the environment in order to understand the 

dimensionality of the problem. An exact 2-dimensional (2D) plan often requires 

thousands of numbers. However, a comprehensive 3-dimensional (3D) graphical map 

of a house can take large of numbers quickly. The problem of mapping can therefore 

be extremely high-dimensional. 

Third, the difficult robotic mapping problem is the issue of correspondence or 

known as the problem of data association [2]. The problem of correspondence is 

analyzing whether sensor measurements taken at various points in time correspond to 

the same physical object in the world. When the cycle is closed, the robot must find 

out where it is relative to its map that had been built before. 

 

1.3 Objectives  

 

This project focused on developing a mapping of the mobile robot's indoor 

environment to ensure that it can work well without any obstacles. This project's 

objective is as follows: 

 

1) To investigate the parameters of occupancy grid map algorithm such as 

grid size. 

2) To stimulate the mapping algorithm and investigate the performance 

based on map accuracy. 
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1.4 Scope of Project 

 

Limitation or scope is important for producing a good report to enable us to achieve 

the objectives that have been set. There are few criteria to be met in this project to 

ensure the project will be complete within stipulated time and resources. First, to 

model the map environment for mobile robot, this project uses Ubuntu and Robot 

Operating System (ROS) technology. The TurtleBot3 in the ROS software will be 

selected as the robot because this robot has a various function to use. In ROS code, 

the programming language is C++. 

Furthermore, as the method for mapping algorithms, this project focuses on an 

occupancy grid map because this method can produce a discrete representation. The 

robot will work in a grid on a selected region to speed up the process of computation. 

In this project, compared to a multi-robot, it will only focus on a single robot. This is 

because a single robot can increase productivity as it is programmed to accomplish the 

task by performing repetitive movements. Last but not least, only a static indoor 

setting was involved in this research. There is no use of the dynamic environment as 

it is a process that requires further steps to set up and deploy. 

 

1.5 Environment and Sustainability  

 

The autonomous mobile robot can be deployed anywhere like factory, hospital, and 

library that can help to reduce human jobs. This mobile robot, for instance, can move 

items from one location to another without following assembly line. 

This autonomous mobile robot can increase flexibility as it is primarily used to 

control on-board sensors, not wires or magnetic tape. It can automatically create their 
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own paths within a facility from one stage to another to help them avoid obstacles. 

This may not cause any problems for mobile robot if there are a changing occur in the 

environment as the mobile robot can adapt it easier.  

Besides, as we know, autonomous mobile robot is equipped with a sensor which 

will increase the safety. This help this mobile robot to perceive and understand its 

environment, allowing it to move effectively with any obstacles in collision. The robot 

also has the power to evaluate the steps to be done to perform a mission via a method 

of interpretation that helps it. It often includes a cognition unit or a control panel to 

manage all of the robot's subsystems. Autonomous mobile robots need to have a source 

of input information, a way of processing the information and a method of taking 

action to respond to an environment world including their own motion. 

 

1.6 Project Outline 

 

Chapter 1 shows how to generate ideas to carry out the project. A short introduction 

to the idea of autonomous mobile robot. Also included in this chapter are background 

studies and the problem that contributes to the project title proposal. In addition, the 

project's priorities are defined in order to determine the scope of the project. The 

significant of the project is also mentioned in this section.  

Chapter 2 includes a review of historical literature and basic information on an 

occupancy grid map, as well as a previous observation. This chapter is critical for 

obtaining information from the analysis being conducted. 

The methodology was the focus of Chapter 3. A set of research and flowcharts are 

included in this chapter. This chapter also discusses the steps to be taken in the 

simulation. 
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Chapter 4 explained more about the outcome and discussed the implementation of 

the software using software for Ubuntu and Robot Operating System (ROS). The 

simulation data sequence and analysis described in this part. 

Chapter 5 concludes the comprehensive finding of the proposals for research tasks 

and prospects. Recommendation is also intended for further studies or research. 

 

1.7 Summary  

 

Chapter 1 is the first step in the implementation of a study or research project 

history and objectives. The explanation of the issue with the title must be relevant and 

sufficient so that we can effectively achieve the goals. The following sections are 

about reviewing the literature and the cases for performing the entire case analysis. 



 

 

 

CHAPTER 2  

LITERATURE REVIEW 

This chapter deals with the review of literature. Reviewing literature is the act of 

reading, reviewing and summarizing specific topics picked. In this section, literature 

review can identify the project's benefits and disadvantages, identify discussions and 

assist with questions that require further research. This chapter will explore and 

analyze the study of mobile robot mapping algorithms. 

 

2.1 Mapping Algorithm  

 

The primary properties of some of the most popular algorithms are summarized in 

Table 2.1. In the field representation, the map representation is summarized and was 

defined clearly in depth discussion for each of the algorithms. In Table 2.1, it states 

how the resulting map shows uncertainty. The map is characterized by a Bayesian 
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posterior including its uncertainty. Since an estimate of Maximum Likelihood (ML) 

develop only one map, so it is fewer of an informative.  

The convergence mention what is understood, under reasonable assumptions and 

the algorithm’s convergence properties. For each method, it has a different properties 

of convergence. The convergence’s notion in Expectation Maximization (EM) in 

particular is a basic one. A locally optimal map could be characterized by the resulting 

solution. A weak convergence in the table is to differentiate it from good results 

regarding the estimate's optimality. 

In the next row, it is specified algorithm is subject to local minima or not. The field 

of incremental show if the maps able to created incremental or need multiple data 

passes. Incrementality is generally a logic property, particularly for robots to explore 

and built a map autonomously. It's an important field that requires poses. Only a subset 

of mapping algorithms where the robot poses are unknown, attack the complete 

mapping problem above. Other algorithms require information on the exact posture. 

The type of the sensor noise is recorded as the map’s dimensionality can be 

generated in practical implementation. The correspondence item function to determine 

whether an algorithm can cope with unknown correspondence issues and can 

accommodate similar looking features in the situation. Next, raw data represent the 

requirement in realistic implementations data pre-processing and filtering. An 

algorithm may create maps from the data of raw sensor. Calculated maps often have 

more information from raw sensor data. Lastly, the dynamic environments show the 

approach to dynamic environments is acceptable or not because there are approaches 

that can accommodate limited types of dynamics as indicated which was been stated 

as ‘limited’ in the table. 
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Table 2.1: Characteristics of the major mapping algorithms [2]. 

 

 Kalman Filter 

(KF) 

Hybrid Occupancy 

Grids 

Representation Landmark 

locations 

Point obstacles Occupancy 

grids 

Uncertainty Posterior poses 

And map 

Maximum 

Likelihood map 

Posterior map 

Convergence Strong No Strong 

Local Minima No Yes No 

Incremental Yes Yes Yes 

Requires Poses No No Yes 

Sensor Noise Gaussian Any Any 

Can map cycles Yes Yes, but not 

nested 

N/a 

Map dimensionality ∼ 103
 Unlimited Unlimited 

Correspondence No Yes Yes 

Handles raw data No Yes Yes 

Dynamic environment Limited No Limited 

 

 

Besides, Table 2.2 summarizes the advantages and disadvantages of occupancy 

grid map, topological mapping and features map. From Table 2.2, it can be concluded 

that an occupancy grid map is the best method to be used as the mobile robot mapping 

algorithm due to its flexibility to make no assumption about the environmental feature 

[4]. Therefore, in the application, the mapping algorithm can be used such as 

inspection where the actual environmental condition is needed for evaluation. 
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Table 2.2: Comparison of occupancy grid mapping, topological mapping and 

features map. 

Map 

representation 

Advantages Disadvantages 

 

 

 

 

 

 

Occupancy grid 

mapping 

 Can be used to map effectively. 

It is possible to label the cell in an 

occupancy grid with the total 

distance to the goal.  

 A discrete representation of a 

grid. The robot will work in a 

grid on a selected region to 

incease the speed process of 

computation.  

 The mapping algorithm 

termination criterion is explicitly 

defined as each grid cell having a 

certain state assigned to it.  

 The histogram of the vector 

field can be used on the 

occupancy grid to avoid 

obstacles. 

 The method is only 

suitable for mapping the 

local environment. The 

robot sensor's maximum 

range must be considered. 

 The map’s scale in the 

memory of the robot 

increases with the 

exploration of the 

surroundings. 

 

 

Topological 

mapping 

 Topological mapping requires a 

small amount of memory space 

compared to a more complex 

map.  

 It is easy to combine two or 

more topological maps to 

construct a more complete map. 

 Only good for a narrow 

area of utilization at the real 

world when geometry is not 

required.  

 Over-specified in the path 

planner perspective and with 

difficulty in finding the 

shortest route. 

 

 

Features map 

 Features map provides a means 

to assess both location and 

orientation of the robot.  

 Features map can be deployed 

in the environment or an agent 

can map features to improve 

navigation. 

 The target must have the 

same appearance and the 

robot must be conscious of 

that appearance.  

 Map recognition among 

other information acquired 

is a challenging problem due 

to random object noisy 

perception. 
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2.1.1 Kalman Filter (KF) Approaches 

 

A conventional method to map generation is based on filters from Kalman [2]. This 

technique was introduced by Smith, Self, and Cheeseman, who create a mathematical 

version of the approach, which is commonly used today. This method was further 

explored by a number of researchers in the following years. KF based mapping 

algorithms are used in the literature as Simultaneous Localization and Mapping 

(SLAM). SLAM is a concept which closely associated with the algorithms that use 

KF to estimate the map and robot location. 

KF is one of Bayes filters which is most common implementations. There are two 

distinct phases of the KF such as prediction and update [5]. The phase of prediction 

estimates the state space from a previous iteration, while in the update phase the 

estimated state is combined with sensor observations. The outcome of the update 

phase is called posterior. The Extended Kalman Filter (EKF), which arises from the 

KF's prior development, solves the nonlinearity issue in the pose model of the robot. 

KF represent the Bayes filters covering posteriors p(st,m | zt, ut) with Gaussians. In 

Gaussians, a small number of parameters can represent in a compact way because it is 

unimodal distributions. The Gaussian model is the full state vector x in the context of 

the robotic mapping problem, which includes the pose s of the robot and the map m: 

 

                                                            xt = (st, m)T                                             (2-1) 

 

In the equation above, T is assign to a vector or matrix being transposed. The 

location of the robot, s was modeled by three variables for robots operating. Let's 

denote these coordinates, respectively, by sx, sy and sθ. The Cartesian coordinates of 
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feature sets are usually expressed by maps in the KF method. Appropriate feature in 

the environment may be landmarks, distinguishing objects or forms. The 

corresponding vector status given as 2K+3-dimensional vector, indicating the number 

in the map by K: 

 

        xt = (sx,t, sy,t, sθ,t, m1,x,t,m1,y,t,m2,x,t,m2,y,t, . . . , mK,x,t, mK,y,t)
T        (2-2) 

 

Figure 2.1 displays a map picture obtained using the KF method. The route of an 

area measurements using a pencil sonar are shown in this image. The map itself is 

made up of fourteen point features which has been extracted from the data of the sonar 

and five of that features are thin and vertical artificial landmarks. Besides, the other 

corresponds to reflective objects in the environment. The covariance matrix Σ, has 

define the ellipses around these landmarks by shown the remaining of the residual 

uncertainty after mapping. The ellipses which of a single Gaussian (𝜇, Σ) show the 

posterior joint over all landmark locations and the pose of the robot. Multiple dots in 

Figure 2.1 which highlight theories about the position of multiple landmarks whose 

proof is too poor to be included in the map. 

Figure 2.1: Kalman Filter estimation of the vehicle pose and the map [2]. 
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Figure 2.2 illustrates the result from the example of simulation after successful 

mapping. In Figure 2.2b, the correlation (normalized covariance matrix) between the 

three-dimensional pose of the robot and the two-dimensional location of all 20 

landmarks, is of great importance. The presence of the checkerboard indicates that 

there are strong correlations between the x-dimensions and y-dimensions of all 

position estimates [2]. The measurements only transmit data about the robot's 

proximity to landmarks and through integration among the landmarks. The absolute 

coordinates do not include in this measurement. The final result of the map is still 

ambiguous as shown in Figure 2.2a. 

 

 

Figure 2.2: (a) Landmarks map obtained in simulation. (b) A correlation matrix after 

278 iteration of Kalman Filter mapping. (c) The same estimate's standardized inverse 

covariance matrix. 

 

2.1.1.1 Lu/Milios algorithms 

 

The Lu / Milios algorithm is known as a recent extension of the basic paradigm [2]. 

Gutmann has successfully implemented this algorithm. The laser range data is 

somewhat specific to the Lu / Milios algorithm. This incorporates two simple phases 

of estimation, a phase in which Kalman Filters (KF) are used to quantify posteriors 

over charts and a phase in which distance measurements are combined with each other 

in multiple range scans. 
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The correspondence is obtained through the association of maximum probability 

data, example is the algorithm simply pairs up measurements nearby. However, the 

correspondence is calculated repeatedly by iterating both phases, allowing the 

approach to recover from incorrect correspondence. 

In action, this method is capable of mapping unknown communication from raw 

data. Nevertheless, the fact that it uses the maximum likelihood of 'guess' 

correspondence rather than estimating the full back over correspondence and maps 

creates significant limitations. In reality, the initial pose of error measurements are 

low (less than 2 meters) the algorithm works incredibly well. It is not possible to 

accommodate larger poses errors, such as usually found when mapping a cyclic 

environment. This method is not an algorithm in real time as its need multiple passes 

through the data. Figure 2.3c shows a map generated from the range data. The final 

map is very precise and shows a detailed structure with more details.  

For the Lu / Milios algorithm, the raw data is too inaccurate as shown in Figure 

2.3a. it is from the robot's odometry for pose estimation. The phase’s failure of the 

Maximum Likelihood (ML) when using Kalman Filtering, in turn leads to wrong 

maps. This result illustrates the basic approach's strength and weakness. Note that 

Figure 2.3a to Figure 2.3b pre-alignment was performed using an algorithm. 

 

Figure 2.3: (a) Raw range data of large museum hall. (b) Artificial but 

indistinguishable information associated with Expectation Maximization (EM). (c) 

Application of the Lu / Milios algorithm to the pre-aligned data output. 
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2.1.1.2 Expectation Maximization (EM) algorithms 

 

Expectation Maximization (EM) is a statistical algorithm developed by Dempster, 

Laird and Rubin [2]. A recent book on this subject reveals the abundance of literature 

on the EM algorithm that currently exists. The EM algorithm applied to the problem 

of robotic mapping has quite orthogonal features. EM algorithms used to solve the 

problem of mapping correspondence. In particular, EM algorithms function is to 

generate a consistent maps of a large-scale cyclic environment even cannot be 

perceptually distinguished. Indeed, EM algorithms cannot complete a concept of 

uncertainty. Alternatively, to find the most possible map, they conduct hill climbing 

in the space of all charts. To do so, multiple processing of the data is required. 

Therefore, maps cannot be created incrementally by EM algorithms. 

EM aim is to determining a map and it is relatively simple if the robot’s direction 

is known. EM includes two main steps. First step is the expectation or an E-step in 

which the posterior over robot poses are measured and second step is the maximization 

or an M-step in which EM calculates similar map provided these assumption of the 

pose. The outcome is an increasingly detailed sequence of maps, m[0], m[1],m[2]. An 

empty map is the initial map, m[0]. 

The data set that has been mapped by using EM is shown in Figure 2.4a. The robot 

tests about 28 landmarks which correspond to corners, intersections and distinctive 

locations. However, no perceptual information is given to the robot for exercising 

mapping with unknown communication that would help disambiguate them. The error 

is too high in the pose calculation using odometry. So it is not suitable to use when 

traversing the wide loop in the field to solve the problem of correspondence. It is 

understood that such wide loops are difficult to chart. The consequence of applying 
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EM to this data set is shown in Figure 2.4c. The map and path that results a 

topologically right. To demonstrate the map's accuracy, Figures 2.4b and Figure 2.4d 

display occupancy grid maps based on sonar range measurements without and with 

poses calculated by EM of the raw range data. 

 

 

Figure 2.4 (a) Raw data with indistinguishable landmarks on a large-scale cyclic 

environment. (b) Occupancy grid map using sonar sensors built from raw data. (c) 

EM aligned map and path, proving the potential of EM to solve problems of hard 

correspondence. (d) Occupancy grid map create based on the EM mapping algorithm 

result. 

 

2.1.2 Hybrid Approaches 

 

Hybrid methods is the example of the famous approaches. It is the incremental 

Maximum Likelihood (ML) model from a statistical point of view inferior to both 

Kalman Filters and EM [2]. The purpose of this method is to build a single map 

incrementally when the data’s sensor arrives without monitoring any residual 

uncertainty. A technique without an E-step can be interpreted as an M-step in EM. 

This framework has the advantage of being plain, which accounts for its popularity. 
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Figure 2.5 shows an example to map a cyclic system using the incremental ML 

method, including the equipment of the robot such as 2-Dimensional (2D) laser range 

finder. When the map is reasonably consistent until closing the loop, the large residual 

error contributes to discrepancies that the maximum incremental probability method 

cannot overcome. The weakness of this algorithms is it do not recognize ambiguity 

when constructing maps and it also do not have a method for using future information 

to change past decisions. 

 

 

Figure 2.5: Incremental mapping of maximum likelihood, the map is developed at 

each stage by finding the most possible continuation, this non-probabilistic approach 

works well in non-cyclical conditions but is usually unable to manage cycles [2]. 

 

 

Figure 2.6: Hybrid approach which retains a later approximation over the poses of 

the robot, defined by a series of particles, these samples are used when closing the 

loop to move the robot in the map and correct the map accordingly [2]. 
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For the same data used to produce Figure 2.5, Figure 2.6 displays a series of step 

for map estimation by using Hybrid. The pose posterior approximation p(st,m | zt, ut) 

is implemented using particle filters, which is a sample representing variant of the 

Bayes filter. Figure 2.6 displays the specimens in all the diagrams. If the robot moves 

through a cyclic area, the samples is used to locate itself in the created map. It 

transmitted the error result when throughout this process in the map after the high 

probability of pose has been calculated. As a result, the solution still only retains a 

single map which has the benefit in calculation. This method is different from 

incremental Maximum Likelihood (ML) methods because when there is an error, it 

able to correct the map back. Mathematically, the differences are observed. Hybrid 

algorithm is simplistic approximation with EM algorithm which represent the E-step 

and the M-step. 

However, the hybrid approach has many drawbacks. Firstly, and foremost, it can 

lead to catastrophic failure if it is incorrect and if want to reverse the map in time is a 

discrete. In addition, the complex ambiguities cannot be solved by this method. The 

example of it disadvantage is the uncertainty that arises while the robot passes through 

multiple nested cycles. Next, the hybrid approach is not real time algorithm because 

the time that it will takes to fix a loop is according on the loop’s size. Nonetheless, 

when used in office-building style settings, practical implementation seems to work 

well in real time. The hybrid mapping algorithm was expanded to manage several 

robots obtaining a single map together. Figure 2.7 shows a map that was obtained by 

three autonomous robots, coordinating their exploration activities during the creation 

of the map. 
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Figure 2.7: The initial robot poses, designed by three autonomous robots are on the 

left as indicated by the letters A, B, and C [2]. 

 

2.1.3 Occupancy Grid Map 

 

Another of the mapping algorithms known as occupancy grid maps developed in 

the mid-eighties by Elfes and Moravec enjoyed considerable popularity [2]. A variety 

of autonomous robots use this algorithm, usually in conjunction with one of the above- 

mentioned algorithms. The central issue this method tackle is how the generating a 

reliable metric map from noisy or incomplete data’s sensor. If the poses of the robot 

are identified because of ambiguities in the sensor data, it is sometimes difficult to say 

that a position is occupied in the area or not. 

 Occupancy grid maps are robot ecosystems' spatial representations. We describe 

environments that indicate the occupation of the system by fine-grained, metric grids 
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of variables. It also can allow the function’s key that mobile robot navigation need. 

Example are position, path planning, avoidance of collisions and finding people [6]. 

An occupancy grid map used a block of cells to describe the environment. There 

are two conditions that has been mention in this method. First, the block cell is 

occupied so that the robot is unable to pass through it. Second, the block cell is 

unoccupied which mean that the robot can move through it [7]. Even if the world is 

entirely composed of cubes, maps of the occupancy grid cannot be absolutely accurate. 

However, it can provide the data by selecting a small enough cell volume. Grid cells 

status is done without comparing it to any map that uses sensors. 

By generating probabilistics maps, the occupancy grid maps can solve this 

problems. Occupancy grid maps are defined by two- dimensional (2D) grid but also 

able to occupy the three-dimensional (3D). The regular occupancy grid mapping 

algorithm, like any other popular mapping algorithm, is a variant of Bayes filters. 

The posterior over each grid cell's occupancy is measure by Bayes filters. The (x, y) 

is assume to be a grid cell's co-ordinates and mx,y is its occupancy of the grid cell. It 

is a binary variable. It also can occupy the cell or they are free. Therefore, the problem 

is to measure a posterior over a collection of binary variables, which is a single 

numerical likelihood p(mx,y ⎸zt, xt). Bayes filters also function to measure the basis 

for this posteriors. Odds are often used to write the binary Bayes filter. The probability 

p(x) odds of an event x is defined as 
p(x)

1−p(x)
. In odds notation, the binary Bayes filter 

works as follows for a static map and with known poses, st: 

 

  
p(mx,y ⎸zt,st) 

1−p(mx,y ⎸zt,st) 
= [

p(mx,y ⎸zt, st)  

1−p(mx,y ⎸zt, st)  
] [

1−p(mx,y)

p(mx,y)
] [

p(mx,y ⎸zt−1, st−1)

1−p(mx,y ⎸zt−1, st−1)
]    (2-3) 
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The simple update formula is often logarithmically applied, which is useful in 

mathematical terms and prevents statistical instabilities that occur when probabilities 

are nearest to zero: 

 

log
p(mx,y ⎸zt,st) 

1−p(mx,y ⎸zt,st) 
=  log [

p(mx,y ⎸zt, st) 

1−p(mx,y ⎸zt, st)
] + log [

1−p(mx,y)

p(mx,y)
] +

                                            log [
p(mx,y ⎸zt−1, st−1)

1−p(mx,y ⎸zt−1, st−1)
]                                       (2-4) 

 

It is straightforward to see that the representation of the log odds can be recover the 

probability of occupancy. In addition, this method is recursive, enabling the individual 

grid cells to be incrementally updated when the new data sensor is arrives. Lastly, 

occupancy grid maps need two densities of probability, p(mx,y ⎸z
t, st) and p(mx,y).  

 

2.2 Simultaneous Localization and Mapping (SLAM) Algorithm 

 

The Robot Operating System (ROS) is a rapidly growing platform for the 

development of smart robotic applications. Its function is to support the sensors and 

efficient implementation for various SLAM, route planning and image processing 

algorithms [8]. ROS provides many SLAM algorithms such as: 

 HectorSLAM 

 Gmapping 

 KartoSLAM 

 CoreSLAM 

 LagoSLAM 
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KartoSLAM, HectorSLAM and Gmapping establish the best algorithm to use 

because it has high accuracy according to the findings of [5]. All this three algorithms 

are in fact conceptually different. The similarity for this three algorithms is about the 

performance from the view’s point of map accuracy. HectorSLAM is based on 

Extended Kalman Filter (EKF). However, Gmapping and KartoSLAM are depend on 

occupancy grid mapping and graph mapping based on Rao-Blackwellized Particle 

Filter (RBPF). HectorSLAM uses an inertial sensing platform to combine a 2D SLAM 

system based on rigorous scan matching and a 3D navigation technique [5]. 

KartoSLAM is one of a graph-based SLAM solution. Then, Robot Operating 

System (ROS) has been applied it by using highly optimized and non-iterative 

cholesky matrix decomposition. Its function as a solver for sparse linear systems. 

CoreSLAM is a ROS replacement for the previous 200-line-of-code [9]. A simple 

SLAM algorithm is designed to be clear and to understand with reduced performance 

loss easily. 

The function of nonlinear non-convex cost function is to origin of graph-based 

SLAM algorithms. Specifically, in order to update the configuration of the map initial, 

the problem at each iteration need to be solve first. It will happen until the cost function 

is reached at a local minimum. Indeed, this optimization process depends heavily on 

an initial assumption of convergence. Carlone et al. have introduced a new method 

called LagoSLAM in which there is no initial guess for the optimization process. 

 

2.3 TurtleBot 

 

TurtleBot is a wheeled robot [10] and a regular robot on the ROS system. Turtle 

comes from the robot Turtle, which was motivated in 1967 by the language of 
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education computer programming Logo. However, the turtlesim node appears in the 

Robot Operating System (ROS) basic tutorial. It is a program which mimics the Logo 

Turtle program's command system. It can also be used as representation of ROS to 

build the Turtle logo. The nine dots in the logo of ROS represent the turtle's back shell. 

TurtleBot is derived by the Turtle of Logo which has a function to introduce that ROS 

can be used easily by using TurtleBot and to teach people about the computer 

programming language by using Logo. 

 

2.3.1 TurtleBot3 

 

There are three iterations of the series TurtleBot.TurtleBot1 was created by Tully 

and Melonee. It was created in 2010 and since 2011 has been on sale. In 2012, Yujin 

Robot built TurtleBot2 based on iClebo Kobuki. Then in 2017, TurtleBot3 was built 

with capabilities to balance its predecessor's lack of usability and user needs. 

ROBOTIS smart actuator (Dynamixel) is function to drive by the TurtleBot3. 

TurtleBot3 is a compact, inexpensive, programmable, ROS-based robot which can be 

used in learning, testing and product’s prototyping. TurtleBot3's can reduce the 

platform's size and lower the price without losing its usability and reliability while 

providing expandability at the same time. 

SLAM, navigation and manipulation are the core technology of the TurtleBot3. 

This making it suitable to function as home service robots. The TurtleBot3 can run 

SLAM algorithms in order to create a map and to move in their environment. Besides, 

this robot can be remotely controlled from any gadget. Example are laptop, joypad or 

Android-based smart phone. When a person walk in the environment, the TurtleBot3 

can also follow the legs that person.  
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A single board computers is used for both TurtleBot3 models (Burger and Waffle) 

to keep costs down in existing TurtleBot versions. Both models of this TurtleBot3 can 

run the new Ubuntu Linux (16.04.2 LTS) and ROS (Kinetic) versions. Both models 

has 360°. Hence, it allowing the TurtleBot3 to do SLAM and navigate autonomously. 

In addition, the single-board computer communicates with a control board in both 

versions, driven by an ARM Cortex-M7, linking the servos and the battery. With the 

Arduino software development environment, this board is a programmable and called 

OpenCR. The additional behaviors can be program using Arduino's C / C++ functions 

and libraries. ROS also can be used to command the robot. The contrast between the 

TurtleBot3 Burger, Waffle and Waffle Pi were listed in Table 2.3. 

 

            Table 2.3: Hardware Specifications of TurtleBot3. 

Items Burger Waffle Waffle Pi 

Maximum 

translationa 

velocity 

0.22 m/s 0.26 m/s 0.26 m/s 

Maximum 

rotational velocity 

2.84 rad/s 

(162.72 deg/s) 

1.82 rad/s 

(104.27 deg/s) 

1.82 rad/s 

(104.27 deg/s) 

Maximum 

payload 

15kg 30kg 30kg 

Dynamixel 

ports 

5V / 4A 5V / 4A 5V / 4A 

Programmable 

LEDs 

GPIO 18 pins GPIO 18 pins GPIO 18 pins 

Buttons and 

Switches 

UART x3, 

CAN x1, SPI x1, 

I2C x1, ADC x5, 

5pin OLLO x4 

UART x3, 

CAN x1, SPI x1, 

I2C x1, ADC x5, 

5pin OLLO x4 

UART x3, 

CAN x1, SPI x1, 

I2C x1, ADC x5, 

5pin OLLO x4 

Battery RS485 x 3, 

TTL x 3 

RS485 x 3, 

TTL x 3 

RS485 x 3, 

TTL x 3 
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2.3.2 Dimension and Mass 

 

Figure 2.8: Dimension of TurtleBot3 Burger. 

 

Figure 2.9: Dimension of TurtleBot3 Waffle. 
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Figure 2.10: Dimension of TurtleBot3 Waffle Pi. 

 

2.3.3 Components 

 

Figure 2.11: The TurtleBot3 Burger. 
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Figure 2.12: The TurtleBot3 Waffle. 

 

 

 

 

 

 

Figure 2.13: The TurtleBot3 Waffle Pi. 
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2.3.3.1 Single Board Computers (SBCs) 

 

The main computer of TurtleBot3 is Raspberry Pi 3 which is for TurtleBot3 Burger 

and Waffle Pi, while the Intel ® JouleTM 570x is for TurtleBot3 Waffle. These 

SBCs are sufficient to utilize TurtleBot3's basic features, but users need to increase 

CPU performance, use GPU or add RAM size for other uses. In order to keep the costs 

down, both TurtleBot3 models (Burger and Waffle) use SBCs rather than netbooks 

which has been used in previous TurtleBot versions. Then, all of these TurtleBot3 run 

the new Ubuntu Linux (16.04.2 LTS) and ROS (Kinetic). 

The TurtleBot3 Waffle is a larger and substantially better computing of an Intel ® 

JouleTM 570x instead of a Raspberry Pi 3 Model B, more sensing of an Intel 

RealSense 3D sensor and high powerful Dynamixel servos to drive the wheels and 

handle more payload. The SBCs for each TurtleBot3 are summarized in Table 2.4. 

 

Table 2.4: Single Board Computers (SBCs) of the TurtleBot3. 

TurtleBot3 Single Board Computers (SBCs) 

TurtleBot3 

Burger 

 Raspberry Pi 3 Model B  

 Raspberry Pi 3 Model B+ 

TurtleBot3 

Waffle 

 Intel® Joule™ 570x 

TurtleBot3 

Waffle Pi 

 Raspberry Pi 3 Model B  

 Raspberry Pi 3 Model B+ (Applied from products 

shipped in 2019) 
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2.3.3.2 Sensor  

 

TurtleBot3 Burger uses 360 ° LIDAR, 9-Axis Inertial Measurement Unit and 

accurate encoder for research and development. Besides, TurtleBot3 Waffle also 

comes with an identical 360 ° LIDAR but also offers a powerful Intel ® RealSenseTM 

with the software development kit recognition. TurtleBot3 Waffle Pi uses Raspberry 

Pi Camera which is used widely. This will be the best hardware solution for making a 

mobile robot. Table 2.5 shows the sensor that has been used for each TurtleBot3. 

 

Table 2.5: Type of sensor used of the TurtleBot3. 

TurtleBot3 Sensor 

TurtleBot3 Burger  360 Laser Distance Sensor LDS-01 

TurtleBot3 Waffle  360 Laser Distance Sensor LDS-01  

 Intel® RealSense™ R200 

TurtleBot3 Waffle Pi  360 Laser Distance Sensor LDS-01  

 The Raspberry Pi Camera Module v2.1 

 

 

2.3.3.3 Embedded board and actuator  

 

The SBCs interfaces with a control board, operated by an ARM Cortex-M7 that 

links the servos and battery are used for both TurtleBot3 (Burger and Waffle). This 

board was called OpenCR which has been developed by Robotis. It is a programmable 

with the development environment for the Arduino software. Besides using ROS, the 

program additional behaviors using Arduino’s C/C++ functions and libraries also can 
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be used to control the robot. Table 2.6 summarize the embedded board and the actuator 

for each TurtleBot3. 

 

Table 2.6: Embedded board and actuator of the TurtleBot3. 

TurtleBot3 Embedded board Actuator 

TurtleBot3 Burger OpenCR1.0 Dynamixel XL430 

TurtleBot3 Waffle OpenCR1.0 Dynamixel XL430 

TurtleBot3 Waffle Pi OpenCR1.0 Dynamixel XL430 

 

 

2.4 Sensor Implementation for Grid Map 

 

2.4.1 Range Sensor 

 

Autonomous mobile robots are not a new development and they have introduced 

several types of scope sensors. Beginning from the most basic level, inexpensive 

ultrasonic and infrared distance sensors can be used. Mobile robots can figure out the 

distance between themselves and the obstacle in front of one dimension. 

 

 

Figure 2.14: Ultrasonic and Infra-red Range Sensor. 
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These sensors are quite simple and straightforward to construct, but in some respect 

they have poor performance. The infra-red range sensor has weak sensing area 

whereas the ultrasonic range sensor has wide sensing but limited resolution of the 

room. Both are appropriate for educational purposes for beginners and are not suitable 

for advance autonomous mobile robot in precise space measurement. 

 

Figure 2.15: Ultrasonic Sensor’s Sensing Ranges. 

 

2.4.2 Laser Range Finder 

 

Laser range finders and flight time cameras are probably the highest distance 

measurement accuracy sensors [11]. Typically, they are used in autonomous mobile 

robots or vehicles that need accurate measurement of the distance to facilitate 

algorithms such as position and mapping. Under certain conditions, stereo vision 

performance may be as good as laser range finders, but the computational power 

required to execute stereo algorithms is significant [12]. In other meanings, the data 

of the laser range finder does not require another step of matching process and 
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therefore, besides its accuracy, its sensing speed is another advantage. Certain range 

sensors are typically some order of magnitude quite costly than other range sensors 

due to their high performance. 

Laser range finder was widely used in the field of robotic growth. Due to its speed 

and accuracy of data, holds the crown among other navigator devices. This is a popular 

way for obtaining 3D data and creating local maps. To create a 3D map, a 2D laser 

range finder was deployed on an autonomous robot [13].Their solution is to rotate with 

horizontal axis of rotation the 2D laser range finder. Thus, a 3D range finder with a 

servo motor is built based on a 2D range finder. The rotation offers vertical scanning 

and repels the need to upgrade the sensor. The accuracy of the map produced is 

therefore largely dependent on the resolution of the servo motor. 

 

 

Figure 2.16: Rotational Laser Range Finder. 

 

2.4.3 Light Detection and Ranging (LIDAR) 

 

Light Detection and Ranging (LIDAR) is a sensor that utilize Laser Range Finder 

(LRF) [14]. This sensor have a characteristic reliable and has been used for many 



35 

 

researches which is related to robotics. LRF sensor is essential to supporting process 

reading environment, as an eye to robot. For example, LIDAR has been apply in 

household appliances such as vacuum to move automatically and can clear the house 

without human control.  

To measure the distance from sensor to target, LIDAR will operates with emitting 

laser beam. After that, by using a delay, LIDAR will calculates the distance between 

laser emitting and laser bouncing back to sensor. LIDAR operating frequency is higher 

compared to Radio Detection and Ranging (RADAR). This is because LIDAR has 

hundreds of Tera Hertz (light pulse) while RADAR only has Giga Hertz (electronic 

waves) [15]. 

Data generated by LIDAR are usually stored in binary form, consisting of 2D/3D 

coordinate and laser intensity. Due to the LIDAR data burst, the file size that was 

produced has an impact. Ying research has found that 3D mapping area in rural 

locations as large as 2.79 square kilometers generates 7 million 3D point [16], which 

is caused by LIDAR data being highly precision. The number of LIDAR data produced 

can increase the map forest area with more complex object.



 

 

 

CHAPTER 3  

METHODOLOGY  

This part's aim is to evaluate the project's techniques. This chapter clarified the 

approach used in this research involving the cover system throughout the entire study 

context. The description in this chapter is the design flowchart structure from the start 

to the end of the project. 

 

3.1 Introduction  

 

There are four stages in the technique or procedure. The first stage is the 

preliminary study. In this step, all the research about the problems and methods which 

related to this project was studied. Then, the second stage is the installation of the 

software. For this project, ROS was installed in Ubuntu operating system because all 
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the commands will be run in this platform. The next stage is the development of the 

environment. The simulation environment for the robot was created in the Gazebo. 

The last stage is the examination of the algorithm performance and the analysis of the 

data. The accuracy of the map by using Gmapping technique was measured in order 

to know which speed has a better performance and suitable to be used for the mobile 

robot. Figure 3.1 shows the flowchart for this project. 

 

3.2 Flowchart  

Figure 3.1: Flowchart. 

Stage 1 

Stage 3 

Stage 2 

Stage 4 
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This project is to create the simulation of the mapping algorithm for mobile 

robot by using Ubuntu and Robot Operating System (ROS) software. First of all, 

to start this project, the details about the mapping problems that the mobile robot 

faced nowadays need to study clearly.In order to understand about this, the 

researches from others paper and journal which are related to this topic was done. 

After doing a research, the next step which is installing the Ubuntu and Robot 

Operating System (ROS) sofware in the laptop. This takes about one week to 

finish because of the internet limitation and the performance of the laptop. The 

laptop’s RAM was upgraded to support this two software. Ubuntu is one of the 

open source operating system (OS) based on the Linux distribution. In Ubuntu, 

ROS is used because of it is a flexible framework for writing a robot system. 

Then, after the software was succesfully installed, the  map environment in 

the simulation was developed. In this case, Gazebo is used in ROS to create the 

mapping environment. Besides, Gmapping SLAM algorithm was applied in Rviz 

simulation. This is because, Gmapping algorithm is the best method to use for 

the calculate of accurancy map. In this step, the performances of the mobile robot 

based on map accuracy ware measured. Two different speed which are 0.5ms-1 

and 1.0ms-1 was used for this mission. For each speed, the performances of the 

mobile robot at five different times was recorded. Then, if the accuracy of the 

map is accepted, so the data analysis will be proceeded. If not, the relevent 

parameter  need to be modified until its success. 

For data analysis, the details of the calculation as in Chapter 4 has been done. 

The comparision between speed 0.5ms-1 and 1.0ms-1 was shown clearly. Not 

only that, the ratio of free space and ocupied space also been calculated. Besides, 

the fitness score also be measured in order to know the accuracy of the map.  
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3.3 Occupancy Grid Map Algorithm 

 

By producing a probabilistic map, the problem can be solved by residential grid 

maps. Occupancy grid maps are characterized by 2D grids, but some of them have 3D 

space. Just like any other main mapping algorithm, a Bayesian filter version is the 

regular occupancy grid mapping algorithm. The posterior above the occupancy of each 

grid cell can be calculated by using Bayes filter. 

 

 

Figure 3.2: Grid cell. 

 

3.3.1 Gmapping   

 

Gmapping is a SLAM algorithm based on a range sensor. It always been used as 

SLAM program in robotics fields. This algorithm is a Rao-Blackwellized Particle 

Filter SLAM solution proposed by Grisetti et al. The algorithm Particle Filter (PF) 

family usually need a large number of particles to achieve good performance. This can 

increases the difficulty of its computation. The depletion problem associated with the 

process of PF resampling also reduces the accuracy of the algorithm. This happen due 
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to the significance of particle weights can become insignificant. The algorithm 

requires a limited particles’ number to describe the posterior SLAM. It also can 

reduces the effort to resample and create a precise maps successfully. The Gmapping 

provides the easier way to optimize the mapping process by adjusting certain mapping 

parameters. The example of mapping parameter are the particle’s number used by 

Rao-Blackwellized Particle Filter (RBPF), the displacement stage for processing new 

scanning and the resampling threshold to match the application specific needs. 

 

3.4 Experiment Platform 

 

3.4.1 Ubuntu Operating System 

 

Ubuntu is a free and open-source operating system developed by Canonical Ltd. 

based on the Linux distribution and Debian operating system that is similar to   

Uniplexed Information and Computer Systems (UNIX) [17]. It is available on three 

versions which are the desktop, server, and core format.  It runs on personal computers, 

server or cloud computing platforms, and Internet of Technologies (IoTs).  

Ubuntu is one of the Linux operating systems for great and complete desktops. It 

has community and professional support and is freely available. The Ubuntu 

community is focused on the principles expressed in the Ubuntu Manifesto that the 

software must be freely available, that the software must be open to users in their local 

language even if disabled and that individuals are free to adjust their software and 

change it in whatever way they think fit. "Ubuntu" is inspired by a traditional African 

term, meaning "humanity to others" Ubuntu distribution carries Ubuntu's spirit to the 

world of technology. 
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The Ubuntu's benefits is its being a free-to-download and open-source operating 

system. Unlike Microsoft Windows and Apple's macOS, the people and organizations 

can own and keep personal devices without the need to pay for software licenses or 

buy exclusive devices. Another strength of Ubuntu is that it can compete fairly against 

Windows and macOS, especially in offering a complete desktop computing 

experience for users. For instance, the Desktop version comes with applications for 

office productivity from LibreOffice. Additionally, Ubuntu can be installed in 

multiple devices such as Windows and Mac computers. It operates via a virtual 

machine or containers on network servers, IoTs devices and robots, and in emulated 

or virtualized computer environments. 

Ubuntu Operating System is a software system which has been operating for a 

number of years and is capable of performing well to minimize and increase the rate 

of failure caused by constantly increasing error conditions that can cause the system 

to fail. This is the software aging phenomenon. Critical security programs are stated 

to be age-related failures as the aging assets of the technology can be concealed in 

multiple layers of complex software systems, from the Operating System (OS) to the 

user device level. Ubuntu in the latest version is more than two million lines of code 

and is not planned and managed as much as most industrial computer processes due 

to its development model. 

 

3.4.2 Robot Operating System (ROS) 

 

Robotics Operating System or ROS, is an open-source robot software writing 

framework [18]. ROS is an operating system identical to Windows or Linux but is an 

open source operating system for robots that includes of a library and a platform for 
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controlling robots, including drivers of different devices and algorithms. ROS used to 

build complex robot systems on a large scale. The SLAM approach is used by the ROS 

survey robot to guide the robot. Also, ROS can allow researchers to do work more 

quickly. Research teams can also use ROS to conduct simulations and experiments in 

the real world. However, ROS is known for its modular and decentralized architecture. 

ROS supports C++, Python, Octave, and List Processing (LISP) languages [18]. 

Ubuntu Linux is better used because it includes a range of open- source software. 

Requirement of vast amounts of open source software. 

The ROS framework has several aims. The first is thin. ROS is built to be as 

lightweight as possible, such that ROS-written code can be combined with other 

implementations of robot software. A benefit of this is that ROS can be conveniently 

combined with other robot program frameworks. OpenRAVE, Orocos, and Player 

have already incorporated with ROS. Next, write ROS-agnostic libraries with clean 

functional interfaces is the reason of preferred development model. In modern 

programming language, the ROS framework is easy to accomplish. It is already 

implemented in Python, C++, Lisp and for the experimental library are Java and Lua. 

In addition, the ROS is easy to test. This is because ROS has a builtin unit or 

integration test framework named rostest which makes it simpler for test fixtures to be 

brought up and ripped down. For scaling, ROS is suitable for large runtime systems 

and for huge development processes. 

 

3.4.3 Gazebo 

 

Gazebo is a simulator that can be used to model a robot. In a three-dimensional 

world, Gazebo effectively simulate and imagine robotic acts [10]. Robot simulation in 
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indoor and outdoor settings using various types of robot models is necessary in 

Gazebo. Gazebo allows robotic and sensor systems to be replicated in 3D indoor and 

outdoor environments. It has a server or client design and has an interprocess 

communication model based on the subject Publish or Subscribe. 

Besides native interface, Gazebo also has a regular player interface [19]. Gazebo 

clients can use a shared memory to access their data. That Gazebo simulation object 

able to connect with more than one controllers that process the object control 

commands and generate the object's state. The controller generated data is released in 

the shared memory using Gazebo interfaces (Ifaces). A simple simulator environment 

has been developed in Gazebo. This simulator tests the proposed algorithm. 

 

3.4.4 TurtleBot3 

 

Turtlebot3 is a redesign of the original Turtlebot, an open-ended hardware built by 

Willow Garage in 2010 and operating on a motorized wheelbase [18]. Figure 3.3 

shows the list of components for TurtleBot3 Burger. 

 

Figure 3.3: Turtlebot3 (Burger). 
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This robot has many features, such as low-cost [20], personal robot package with 

open-source software, and it is lightweight, portable and customizable. The TurtleBot3 

package is composed of a mobile platform, a 2D/3D distance sensor (Microsoft’s 

Kinect), a Single Board Computer (Raspberry Pi), microcontrollers (Arduino UNO), 

sensors (ultrasonic and accelerometer gyroscope) and components to allow to move. 

TurtleBot3 is simple to purchase, build and install from regular materials, utilizing 

shelf market goods and parts that can be quickly made. It also utilized the most 

common ROS platform in the world. 

 

3.4.5 360 Laser Distance Sensor LDS-01 (LIDAR) 

 

 LIDAR is a remote optical sensing technology that measures distance and angle 

between the sensor and the target [21]. The LIDAR sensors provide autonomous 

ground robots with navigation and localization. The distance from the sensor to the 

target is determined by calculating the time period between the transmitted laser pulse 

and the reflected pulse receipt [15]. It system allows the creation of high-resolution 

maps for various applications. One major application is SLAM, in which the purpose 

is to create a map of an unknown environment while at the same time keeping track 

of the location of the robot. Figure 3.4 shows the LDS-01 Laser Distance Sensor. 

 

Figure 3.4: 360 Laser Distance Sensor LDS-01 (LIDAR). 
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The LDS-01 is a 2D laser scanner sensors that measure 360 degrees that collects 

data around the robot for Simultaneous Localization and Mapping (SLAM) 

applications. It support the USB interface and can be easily installed on a PC. The 

specifications of LDS-01 Requirements are listed in Table 3.1. 

 

Table 3.1: Specifications of LDS-01. 

Items Specifications 

Operating supply voltage 5V DC ±5% 

Light source Semiconductor Laser Diode (λ=785nm) 

Distance Range 120 ~ 3,500mm 

Angular Range 360° 

Angular Resolution 1° 

Current consumption 400mA or less (Rush current 1A) 

Interface 3.3V USART (230,400 bps) 42bytes per 6 degrees, 

Full Duplex option 

Ambient Light Resistance 10,000 lux or less 

Sampling Rate 1.8kHz 

Dimensions 69.5(W) X 95.5(D) X 39.5(H)mm 

Mass Under 125g 

 

3.5 Experiment Setup 

 

The code was tested on a 2.4GHz i5-core laptop with Ubuntu and Robot Operating 

System (ROS) Kinetic edition running 10GB Random Access Memory (RAM). The 

simulation environment has been referred to as the Turtlebot3 World which available 

in Gazebo models. The robot is running the SLAM Gmapping approaches. The 

detector used was the Lds-01 (LIDAR) laser distance sensor with 360° and 30m range. 
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To evaluate Gmapping, the simulation was run on the test environment. Then, the 

robot need to discover and captured the map environment in that simulation to 

determine either the performance is accurate or not. 

 

3.5.1 Simulation Command 

 

3.5.1.1 Ros Visualization (Rviz) 

 

Ros Visualization (Rviz) is a 3D visualization tool for Robot Operating System 

(ROS). Rviz will allows the user to simulate robot model, log sensor information from 

the robot's sensors and to replay the logged sensor information. If an actual robot is 

communicating with a workstation that is running Rviz, Rviz will display the robot's 

current configuration on the virtual robot model.  

 

3.5.1.2 Installing TurtleBot3 package 

 

The packages installed to run the simulation are shown in Figure 3.5. The sudo 

command lets programs run with another's security privileges. It requests an individual 

password and approves a request to perform a command by testing a script, named 

sudoers that is set up by the system administrator. By using the sudoers folder, system 

administrators may provide access to any or all commands to other users without 

needing to remember the root password for certain accounts. It often records all 

commands and statements such that a database of who used it for what and when is 

accessible. 
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Figure 3.5: ROS released packages command. 

 

A source package collects the program code and fixes the way they were at the time 

of creation. Source packages are highly helpful to programs and libraries for 

debugging problems and regenerating binary packages. It also functions to change 

current programs and incorporate extra monitoring and to check that a particular 

security patch has been added to the source or not. A catkin workspace (catkin ws) is 

a file in which current catkin packages are generated or updated. The catkin 

arrangement makes the cycle of constructing and installing your ROS packages easier. 

Figure 3.6 shows the source packages command. 

 

 

 

 

 

Figure 3.6: Source packages command. 

 

sudo apt-get install ros-kinetic-joy ros-kinetic-teleop-twist-joy roskinetic-teleop-

twist-keyboard ros-kinetic-laser-proc ros-kinetic-rgbdlaunch ros-kinetic-

depthimage-to-laserscan ros-kinetic-rosserialarduino ros-kinetic-rosserial-python 

ros-kinetic-rosserial-server roskinetic-rosserial-client ros-kinetic-rosserial-msgs 

ros-kinetic-amcl ros-kinetic-map-server ros-kinetic-move-base ros-kinetic-urdf 

roskinetic-xacro ros-kinetic-compressed-image-transport ros-kinetic-rqtimage-

view ros-kinetic-gmapping ros-kinetic-navigation ros-kineticinteractive-markers 

cd ~/catkin_ws/src/  

git clone https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git  

git clone https://github.com/ROBOTIS-GIT/turtlebot3.git  

git clone https://github.com/ROBOTIS-GIT/turtlebot3_simulations.git  

cd ~/catkin_ws && catkin_make 

https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git
https://github.com/ROBOTIS-GIT/turtlebot3.git
https://github.com/ROBOTIS-GIT/turtlebot3_simulations.git
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A new terminal window needs to be opened to start Gazebo for the first time. Then, 

the command as in Figure 3.7 was typed. Launching for the first time probably takes 

long time. By running this command, the Gazebo will be open and ready to use. In 

Gazebo, the environment map will be created. 

 

 

 

 

Figure 3.7: Command for launch Gazebo. 

 

Figure 3.8 until Figure 3.13 shows the commands that were used to run the 

simulation, to control the mobile robot and to save the environment map. Each of the 

command was run in different terminal in ROS. For movement, the mobile robot able 

to move automatically or it can be controlled manually by using the keyboard. To 

adjust the speed of the robot, it also needs to press the keyboard. By running these 

commands, the simulation was successful done because the mobile robot able to build 

its own map by using Gmapping algorithm. 

  

Figure 3.8: Command for TurtleBot3 movement. 

 

 

 

Figure 3.9: Command to execute Rviz. 

~/catkin_ws/src/turtlebot3_simulations/turtlebot3_gazebo/launch 

export TURTLEBOT3_MODEL=burger 

roslaunch turtlebot3_gazebo turtlebot3_empty_world.launch 

export TURTLEBOT3_MODEL=burger 

roslaunch turtlebot3_gazebo turtlebot3_gazebo_rviz.launch 

roslaunch turtlebot3_gazebo turtlebot3_simulation.launch 
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                          Figure 3.10: Command for launch Gmapping. 

 

 

Figure 3.11: Command for control TurtleBot3. 

 

 

 

Figure 3.12: Command for control the speed of TurtleBot3. 

 

 

Figure 3.13: Command for control the speed of TurtleBot3. 

 

3.5.2 Test Environment 

 

To test the performance of the robot in narrow and flat area, the simulated 

environment was simulated. The simulation environment used in Robot Operating 

System (ROS) is TurtleBot3 World. The simulated environment’s area is 25m2. Figure 

3.14 shows the ROS mapping environment. 

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch 

export TURTLEBOT3_MODEL=burger 

roslaunch turtlebot3_slam turtlebot3_slam.launch slam_methods:=gmapping 

sudo apt-get install ros-kinetic-teleop-twist-keyboard 

rosrun teleop_twist_keyboard teleop_twist_keyboard.py 

rosrun map_server map_saver -f ~/map 
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                     Figure 3.14: Simulated environment in Gazebo platform. 

 

3.5.3 Robot Operation 

 

The robot’s exploration operation consists of two parts. First part is the computer 

keyboard system control process that controls the robot to build map through the user. 

The laser detector scans the objects or obstacles that surround the robot in the 

simulation. Then, the Ros Visualization (Rviz) software in the Robot Operating 

System (ROS) was used to build a map, also known as the SLAM which controls the 

keyboard of the computer. 
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3.5.4 Evaluation Metrics 

 

3.5.4.1 Occupancy binary random variable 

 

In occupancy binary random variable, there are two conditions which are first when 

the grid cell is in a free space and second is when the grid cell is in an occupied space. 

Free space means there are no obstacle in the grid cell and the robot able to pass 

through it while occupied space means there are an obstacle in the grid cell and the 

robot unable to pass through it [7]. The value for free space is one and the value for 

occupied space is zero. The equation for an occupancy binary random variable is: 

                                            mx,y : (free, occupied) → (1, 0)                                  (3-1) 

 

3.5.4.2 Occupancy grid map 

 

In order to calculate the occupancy grid map, the Bayes’ Rule equation was used. 

First, the odd equation needs to be derived. Then, the log for the odd equation was 

calculated by using the previous equation. The equations and derivations are shown 

below. 

 

                 p(mx,y|z) =
p(z|mx,y)p(mx,y)

p(z)
                 (3-2) 

 

Odd[(mx,y = 1)given z]  =
p(x)

p(x′)
 

                                                = [
p(mx,y = 1|z) 

p(mx,y = 0|z) 
] 
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                                                =

[
 
 
 
p(z|mx,y = 1)p(mx,y = 1)

p(z)

p(z|mx,y = 0)p(mx,y = 0)

p(z)
 
]
 
 
 
 

                                   = [
p(z|mx,y=1)p(mx,y=1) 

p(z|mx,y=0)p(mx,y=0)
]                                    (3-3) 

 

 

log odd = log [
p(mx,y = 1|z) 

p(mx,y = 0|z) 
] 

                = log [
p(z|mx,y = 1)p(mx,y = 1) 

p(z|mx,y = 0)p(mx,y = 0)
] 

            = log [
p(z|mx,y=1) 

p(z|mx,y=0)
] + log [

p(mx,y=1) 

p(mx,y=0)
]                                                (3-4) 

 

There are two conditions in this case. First when z is zero, the equation is: 

 

                                  log odd ↓ occ = log [
p(z=0|mx,y=0) 

p(z=0|mx,y=1)
]                    (3-5) 

 

Second when z is one, the equation is: 

 

                                log odd ↓ free = log [
p(z=1|mx,y=1) 

p(z=1|mx,y=0)
]                      (3-6) 

 

For constant measurement model, the values for free space and occupied space are: 

 

log odd ↓ free = 0.9           (3-7) 

log odd ↓ occ = 0.7                      (3-8) 
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At initial map, the log odd is always zero as state in equation below. 

 

        log odd = 0 for all (x,y)                         (3-9) 

 

Then, for condition one is equal to zero, the value is 0.5 as shown in equation below. 

  

    p(mx,y = 1) = p(mx,y = 0) = 0.5           (3-10) 

 

3.5.4.3 Fitness score 

 

Fitness score focuses on comparing the performance that integrates with the 

occupancy grid map algorithm [4]. The value of the cell at position (x, y) in test map 

of the simulation environment are compared with the value of the cell at position (x,y) 

in reference map of the simulation environment. The sum of difference is divided by 

the number of cell used in test map, m. The most accurate map will obtain a score of 

1 while a less accurate map will result in a score of 0.  The fitness score is determined 

by the following equation: 

 

                                        f(m, n) =)1 −
Ʃmx,y∈m|nx,y− mx,y| 

N
                         (3-11) 

Where: 

 mx,y = value of the cell at position (x,y) in test map. 

 nx,y = value of the cell at position (x,y) in reference map. 

 N = number of cell used in test map,m. 
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3.5.4.4 Occupied / free cells ratio 

 

The occupied or free cell ratio is when the map was examined with the occupied 

and free cells in the ground truth map respectively using a very intuitive method in the 

generated graph. The nearest value of free cells ratio to 1, the better performances will 

obtain. The equations to find the ratios are: 

 

                                  Free Cells Ratio  =  
∑(mx,y,free,true)

∑(nx,y,free)
                         (3-12)                        

                           Occupied Cells Ratio =  
∑(mx,y,occ,true)

∑(nx,y,occ)
                    (3-13) 

 

3.5.5 Run Gmapping Algorithms 

 

To measure the accuracy of map performance, the simulation environment 

map needs to be built. Figure 3.15 shows the environment map created in the 

simulation by using Gmapping algorithm. From this map, it is shown that the 

total numbers of grid cell that has been used in this simulation are 25. In this 

simulation, only a single robot and static indoor environment are involved. The 

green line in the figure below shows the laser range finder from the TurtleBot3 

Burger, which function to detect the obstacle while create its own map. Figure 

3.16 shows the save mapping environment by using the command.  
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Figure 3.15: Mapping environment from the TurtleBot3. 

 

Figure 3.16: The save mapping environment using command. 



 

 

 

CHAPTER 4  

RESULTS AND DISCUSSION 

This chapter discusses the collected details, the outcomes of the statistical research 

carried out, and the explanation of the findings for the research problem regarding map 

accuracy by using a Gmapping SLAM algorithm. All the results are presented in tables 

and graphs. 

  

4.1 Area for Free Grid Cell 

 

The simulation environment was created in ROS by using Gmapping SLAM 

algorithm. The total numbers of grid cell that has been used in this simulation are 25. 

For each grid cell, the area is 1m2. Then, to calculate the total area of this environment 

map, the area for each grid cell (1m2) need to be multiplied with the total numbers of 
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grid cell that has been used the simulation (25). So the value of the area for this 

environment map is 25m2. Figure 4.1 shows the environment map from the simulation. 

 

 

Figure 4.1: Environment map from the simulation. 

 

Next, to calculate the area for each grid cell of mapped environment, the grid cell 

was divided into 100 small grid cells as shown in Figure 4.2. The area of each small 

grid cell is 0.01m2. This is because as stated before, the area for each grid cell is 1m2, 

so to know the area of this small grid cell, it need to be divided into 100. 

 

       

Figure 4.2: Small grid cell. 
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For example, one of the grid cell was taken from the environment map to calculate 

its area. First, this grid cell was divided into 100 small grid cells. The total number of 

free small grid cell was calculated and the value is 70. Then, to calculate the area of 

the free small grid cell, the total number of free small grid cell  

(70) was multiplied with the area of each small grid cell (0.01m2) and the result is 

0.7m2. Figure 4.3 shows the free small grid cell for part 1. 

 

    

 

 

Figure 4.3: Free small grid cell for part 1. 

 

Next, the area for the balance free small grid cell was calculated. In this step, only 

nine small grid cell was involved. The area of each small grid cell is 0.01m2. First, the 

small grid cell was divided into 25. Then, to calculate the area of each free small grid 
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cell, the value of 0.01m2 has been multiplied with 25, so the answer is 0.0004m2. As 

shown in Figure 4.4, the numbers of free small grid cell are 20. So, to know the total 

numbers of free small grid cell, 20 need to multiply with 9. The result is 180. Lastly, 

to calculate the area of the free small grid cell, the total numbers of free small grid cell 

(180) were multiplied with the area of each free small grid cell (0.0004m2) and the 

value is 0.072m2. Figure 4.4 shows the free small grid cell for part 2. 

 

 

 

 

                            

Figure 4.4: Free small grid cell for part 2. 

 

Besides, in this step, only one small grid cell was involved. The area of small grid 

cell is 0.01m2. The small grid cell was divided into 25. Then, to calculate the area of 

the free small grid cell, 0.01m2 was multiplied with 25, so the answer is 0.0004m2. As 

shown in Figure 4.5, the numbers of free small grid cell are 18. Lastly, to calculate the 
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area of the free small grid cell, the numbers of free small grid cell (18) were multiplied 

with the area of each free small grid cell (0.0004m2) and the value is 0.0072m2. Figure 

4.5 shows the free small grid cell for part 3. 

 

     

 

 

                            

Figure 4.5: Free small grid cell for part 3. 

 

Lastly, to obtain the area of this grid cell, all the calculated values of free small grid 

cell from the previous step was added together. The total area of this free grid cell is 

0.7792m2 and was rounded off to 0.78m2 (0.7m2 + 0.072m2 + 0.0072m2). Then, the 

same steps were repeated to calculate the area for each free grid cell. Figure 4.6 shows 

the free small grid cell. 
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Figure 4.6: Free small grid cell. 

 

4.2 Result and Calculation  

 

4.2.1 Full Environment Map  

  

The full environment for the simulation was shown in Figure 4.7. The area for each 

grid cell was calculated by using the same method which has been explained in 4.1. 

Table 4.1 was summarized all the areas of each grid cell for the environment map as 

shown in Figure 4.7. 

 

 

Figure 4.7: Full environment map created. 
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Table 4.1: Area of each grid cell for full environment map created. 

0.75 0.80 0.75 0.78 0.76 

0.80 0.98 0.96 0.90 0.90 

0.80 0.95 0.85 0.98 0.80 

0.80 0.95 0.90 1.00 0.90 

0.80 0.90 0.80 0.80 0.80 

 

The total of cell nx,y, free and nx,y, occupied were calculated for this environment 

map. For nx,y, free, the value was multiplied with the log odd for free space which is 

0.9 while for nx,y, occupied, the value was multiplied with the log odd occupied space 

which is 0.7. The equation used for these calculations are: 

 

Total number of cell nx,y, free = log odd ↓ free x total area of the environment 

 = 0.9 x (0.75 + 0.80 + 0.75 + 0.78 + 0.76 + 0.80 + 0.98  

    + 0.96 + 0.90 + 0.90 + 0.80 + 0.95 + 0.85 + 0.98 +  

    0.80 + 0.80 + 0.98 + 0.90 + 1.00 + 0.90 + 0.80 + 0.90  

    + 0.80 + 0.80 + 0.80) 

     = 0.9 x 21.41 

 = 19.269 

 

Total number of cell nx,y, occ = log odd ↓ occ x (total area − total area of the  

                                                   environment) 

= 0.7 x [25 − (0.75 + 0.80 + 0.75 + 0.80 + 0.75 + 0.80  

   + 0.98 + 0.95 + 0.90 + 0.90 + 0.80 + 0.95 + 0.85 +   

   0.98 + 0.80 + 0.80 + 0.98 + 0.90 + 1.00 + 0.90 +  

   0.80 + 0.90 + 0.80 + 0.80 + 0.80)] 

= 0.7 x 3.59 

            = 2.513 
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4.2.2 Speed 0.5ms-1 at 20 Seconds 

 

Figure 4.8 shows the environment map created for 20 seconds when speed is 0.5ms-

1. The area for each grid cell was calculated by using the same method as stated in 4.1. 

Table 4.2 was recorded all the areas of each grid cell for the environment map as 

shown in Figure 4.8. 

 

 

 

Figure 4.8: Environment map created for 20 seconds when speed is 0.5ms-1. 

 

Table 4.2: Area of each grid cell for environment map created at 20 seconds when 

speed is 0.5ms-1. 

0.10 0.20 0 0 0 

0.60 0.65 0 0.05 0.20 

0.80 0.90 0.60 0.95 0.75 

0.15 0.95 0.90 1.00 0.90 

0.15 0.90 0 0.50 0.05 

 

Same as 4.2.1, the total of cell nx,y, free and nx,y, occupied were calculated for 

environment map created at 20 seconds when speed is 0.5ms-1. The value was 
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multiplied with the log odd for free space which is 0.9 for nx,y, free while for nx,y, 

occupied,  the value was multiplied with the log odd occupied space which is 0.7. The 

equations used for these calculations are: 

 

Total number of cell mx,y, free = log odd ↓ free x total area of the environment 

  = 0.9 x (0.10 + 0.20 + 0.60 + 0.65 + 0.05 + 0.20 + 0.80  

     + 0.90 + 0.60 + 0.95 + 0.75 + 0.15 + 0.95 + 0.90 +  

     1.00 + 0.90 + 0.15 + 0.90 + 0.50 + 0.05) 

  = 0.9 x 11.3 

  = 10.17 

 

Total number of cell mx,y, occ = log odd ↓ occ x (total area − total area of the  

                       environment) 

 = 0.7 x [25 − (0.10 + 0.20 + 0.60 + 0.65 + 0.05 + 0.20  

    + 0.80 + 0.90 + 0.60 + 0.95 + 0.75 + 0.15 + 0.95 +  

    0.90 + 1.00 + 0.90 + 0.15 + 0.90 + 0.50 + 0.05)] 

 = 0.7 x 13.7 

 = 9.59 

Then, the free and occupied ratios were calculated by using the equation below. 

 

Free Cells Ratio   =  
∑(mx,y, free, true)

∑(nx,y, free)
 

=
10.17

19.269
 

= 0.5278 

 

Occupied Cells Ratio =  
∑(mx,y, occ, true)

∑(nx,y, occ)
 

                    =  
9.59

2.513
 

                      = 3.8162 
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For fitness score, f(m, n), the equation is: 

 

f(m, n) = 1 −
Ʃmx,y∈m|nx,y − mx,y|  

N
 

f(m, n) = 1 −

Ʃ
|
|

(0.75 − 0.10) + (0.80 − 0.20) + (0.75 − 0) + (0.78 − 0) + (0.76 − 0) +
(0.80 − 0.60) + (0.98 − 0.65) + (0.96 − 0) + (0.90 − 0.05) + (0.90 − 0.20) +

(0.80 − 0.80) + (0.95 − 0.90) + (0.85 − 0.60) + (0.98 − 0.95) + (0.80 − 0.75) +
(0.80 − 0.15) + (0.95 − 0.95) + (0.90 − 0.90) + (1.00 − 1.00) + (0.90 − 0.90) +

(0.80 − 0.15) + (0.90 − 0.90) + (0.80 − 0) + (0.80 − 0.50) + (0.80 − 0.05)

|
|

20
 

f(m, n) = 1 −
10.11 

20
 

f(m, n) = 1 − 0.5055  

f(m, n) = 0.4945 

 

4.2.3 Speed 0.5ms-1 at 30 Seconds 

 

Figure 4.9 shows the environment map created for 30 seconds when speed is 0.5ms-

1. The area for each grid cell was calculated and was recorded in Table 4.3. All of the 

values for each equation were state below and the details of the calculations were 

shown in Appendix M. 

 

Figure 4.9: Environment map created for 30 seconds when speed is 0.5ms-1. 
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Table 4.3: Area of each grid cell for environment map created at 30 seconds when 

speed is 0.5ms-1. 

0.10 0.80 0.20 0.10 0 

0.60 0.98 0.80 0.20 0.25 

0.80 0.95 0.75 0.95 0.75 

0.80 0.95 0.90 1.00 0.90 

0.80 0.90 0.10 0.50 0.05 

 

Total number of cell mx,y, free = 13.617 

Total number of cell mx,y, occ = 6.909 

Free cells ratio = 0.7067 

Occupied cells ratio = 2.7493 

Fitness score, f(m, n) = 0.7383  

 

4.2.4 Speed 0.5ms-1 at 40 Seconds 

 

Figure 4.10 shows the environment map created for 40 seconds when speed is 

0.5ms-1. The area for each grid cell was calculated and was recorded in Table 4.4. All 

of the values for each equation were state below and the details of the calculations 

were shown in Appendix N. 

 

Figure 4.10: Environment map created for 40 seconds when speed is 0.5ms-1. 
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Table 4.4: Area of each grid cell for environment map created at 40 seconds when 

speed is 0.5ms-1. 

0.10 0.80 0.20 0.10 0 

0.60 0.98 0.80 0.20 0.25 

0.80 0.95 0.75 0.95 0.75 

0.80 0.95 0.90 1.00 0.90 

0.80 0.90 0.80 0.80 0.05 

Total number of cell mx,y, free = 14.517 

Total number of cell mx,y, occ  = 6.209 

Free cells ratio = 0.7534 

Occupied cells ratio = 2.4708 

Fitness Score, f(m, n) = 0.78 

 

4.2.5 Speed 0.5ms-1 at 50 Seconds 

 

Figure 4.11 shows the environment map created for 50 seconds when speed is 

0.5ms-1. The area for each grid cell was calculated and was recorded in Table 4.5. All 

of the values for each equation were state below and the details of the calculations 

were shown in Appendix O. 

 

Figure 4.11: Environment map created for 50 seconds when speed is 0.5ms-1. 
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Table 4.5: Area of each grid cell for environment map created at 50 seconds when 

speed is 0.5ms-1. 

0.10 0.80 0.65 0.10 0.10 

0.60 0.98 0.95 0.60 0.70 

0.80 0.95 0.80 0.98 0.75 

0.80 0.95 0.90 1.00 0.90 

0.80 0.90 0.80 0.80 0.80 

 

Total number of cell mx,y, free = 16.659 

Total number of cell mx,y, occ = 4.543 

Free cells ratio = 0.8645 

Occupied cells ratio = 1.8078 

Fitness Score, f(m, n) = 0.8844 

 

4.2.6 Speed 0.5ms-1 at 60 Seconds 

 

Figure 4.12 shows the environment map created for 60 seconds when speed is 

0.5ms-1. The area for each grid cell was calculated and was recorded in Table 4.6. All 

of the values for each equation were state below and the details of the calculations 

were shown in Appendix P. 

 

Figure 4.12: Environment map created for 60 seconds when speed is 0.5ms-1. 
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Table 4.6: Area of each grid cell for environment map created at 60 seconds when 

speed is 0.5ms-1. 

0.10 0.80 0.75 0.80 0.75 

0.75 0.98 0.95 0.90 0.90 

0.80 0.95 0.85 0.98 0.80 

0.80 0.95 0.90 1.00 0.90 

0.80 0.90 0.80 0.80 0.80 

 

Total number of cell mx,y, free = 18.639 

Total number of cell mx,y, occ = 3.003 

Free cells ratio = 0.9673 

Occupied cells ratio = 1.1950 

Fitness Score, f(m, n) = 0.9684 

 

4.2.7 Speed 1.0ms-1 at 20 Seconds 

 

Figure 4.13 shows the environment map created for 20 seconds when speed is 

1.0ms-1. The area for each grid cell was calculated and was recorded in Table 4.7. All 

of the values for each equation were state below and the details of the calculations 

were shown in Appendix Q. 

 

Figure 4.13: Environment map created for 20 seconds when speed is 1.0ms-1. 
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Table 4.7: Area of each grid cell for environment map created at 20 seconds when 

speed is 1.0ms-1. 

0.10 0.15 0 0 0 

0.50 0.50 0 0.10 0.25 

0.75 0.85 0.60 0.85 0.60 

0.15 0.90 0.90 0.98 0.85 

0.15 0.85 0 0.40 0.05 

 

Total number of cell mx,y, free = 9.432 

Total number of cell mx,y, occ = 10.164 

Free cells ratio = 0.4895 

Occupied cells ratio = 4.0446 

Fitness Score, f(m, n) = 0.4535 

 

4.2.8 Speed 1.0ms-1 at 30 Seconds 

 

Figure 4.14 shows the environment map created for 30 seconds when speed is 

1.0ms-1. The area for each grid cell was calculated and was recorded in Table 4.8. All 

of the values for each equation were state below and the details of the calculations 

were shown in Appendix R. 

 

Figure 4.14: Environment map created for 30 seconds when speed is 1.0ms-1. 
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Table 4.8: Area of each grid cell for environment map created at 30 seconds when 

speed is 1.0ms-1. 

0.10 0.80 0.40 0.05 0 

0.55 0.98 0.45 0.10 0.30 

0.80 0.90 0.60 0.85 0.70 

0.35 0.90 0.90 1.00 0.88 

0.20 0.88 0.10 0.50 0.10 

 

Total number of cell mx,y, free = 12.051 

Total number of cell mx,y, occ = 8.127 

Free cells ratio = 0.6254 

Occupied cells ratio = 3.2340 

Fitness Score, f(m, n) = 0.6658 

 

4.2.9 Speed 1.0ms-1 at 40 Seconds 

 

Figure 4.15 shows the environment map created for 40 seconds when speed is 

1.0ms-1. The area for each grid cell was calculated and was recorded in Table 4.9. All 

of the values for each equation were state below and the details of the calculations 

were shown in Appendix S. 

 

Figure 4.15: Environment map created for 40 seconds when speed is 1.0ms-1. 
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Table 4.9: Area of each grid cell for environment map created at 40 seconds when 

speed is 1.0ms-1. 

0.10 0.80 0.50 0.65 0.05 

0.55 0.98 0.92 0.55 0.35 

0.80 0.95 0.85 0.98 0.75 

0.45 0.90 0.90 1.00 0.88 

0.20 0.88 0.10 0.50 0.10 

 

Total number of cell mx,y, free = 14.121 

Total number of cell mx,y, occ = 6.517 

Free cells ratio = 0.7328 

Occupied cells ratio = 2.5933 

Fitness Score, f(m, n) = 0.7752 

 

4.2.10 Speed 1.0ms-1 at 50 Seconds 

 

Figure 4.16 shows the environment map created for 50 seconds when speed is 

1.0ms-1. The area for each grid cell was calculated and was recorded in Table 4.10. 

All of the values for each equation were state below and the details of the calculations 

were shown in Appendix T. 

 

Figure 4.16: Environment map created for 50 seconds when speed is 1.0ms-1. 
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Table 4.10: Area of each grid cell for environment map created at 50 seconds when 

speed is 1.0ms-1. 

0.65 0.80 0.65 0.70 0.65 

0.70 0.98 0.95 0.80 0.90 

0.80 0.95 0.85 0.98 0.80 

0.50 0.90 0.90 1.00 0.88 

0.20 0.88 0.20 0.65 0.15 

 

Total number of cell mx,y, free = 16.578 

Total number of cell mx,y, occ = 4.606 

Free cells ratio = 0.8603 

Occupied cells ratio = 1.8329 

Fitness Score, f(m, n) = 0.8804 

 

4.2.11 Speed 1.0ms-1 at 60 Seconds 

 

Figure 4.17 shows the environment map created for 60 seconds when speed is 

1.0ms-1. The area for each grid cell was calculated and was recorded in Table 4.11. 

All of the values for each equation were state below and the details of the calculations 

were shown in Appendix U. 

 

Figure 4.17: Environment map created for 60 seconds when speed is 1.0ms-1. 
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Table 4.11: Area of each grid cell for environment map created at 60 seconds when 

speed is 1.0ms-1. 

0.70 0.80 0.70 0.78 0.76 

0.70 0.98 0.96 0.80 0.90 

0.80 0.95 0.85 0.98 0.80 

0.50 0.90 0.90 1.00 0.90 

0.20 0.88 0.50 0.70 0.80 

 

Total number of cell mx,y, free = 17.766 

Total number of cell mx,y, occ = 3.682 

Free cells ratio = 0.9220 

Occupied cells ratio = 1.4652 

Fitness Score, f(m, n) = 0.9332 

 

4.2.12 Comparison between Free and Occupied Ratio for Speed 0.5ms-1 

 

The comparison between free and occupied ratio for speed 0.5ms-1 was recorded in 

Table 4.12. All the results were obtained from the previous calculations. Then, from 

the table, the Graph 4.1 was created. In the graph, its shown that the values of free 

ratio at each seconds are higher compared to the occupied ratio for speed 0.5ms-1. 

Based on the graph, it can be concluded that, if the free ratio is higher, so the occupied 

ratio will be lower. 
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Table 4.12: Free and occupied ratio for speed 0.5ms-1. 

Time 

(seconds) 
 

Speed 0.5ms-1 

Free ratio Occupied ratio 

20 10.170 9.590 

30 13.617 6.909 

40 14.517 6.209 

50 16.659 4.543 

60 18.639 3.003 

 

 

 

Graph 4.1: Free and occupied ratio for speed 0.5ms-1. 
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4.2.13 Comparison between Free and Occupied Ratio for Speed 1.0ms-1 

 

Besides, Table 4.13 shows the comparison between free and occupied ratio for 

speed 1.0ms-1. Graph 4.2 was designed from the values in the Table 4.13. For speed 

1.0ms-1, the values of free ratio is also higher compared to the occupied ratio except 

for 20 seconds which the free ratio has a lower value compared to the occupied ratio. 

These can be seen clearly in the Graph 4.2. 

Table 4.13: Free and occupied ratio for speed 1.0ms-1. 

Time 

(seconds) 
 

Speed 1.0ms-1 

Free ratio Occupied ratio 

20 9.432 10.164 

30 12.051 8.127 

40 14.121 6.517 

50 16.578 4.606 

60 17.766 3.682 

 

 

Graph 4.2: Free and occupied ratio for speed 1.0ms-1. 
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4.2.14 Comparison of Free Ratio between Speed 0.5ms-1 and 1.0ms-1 

 

Next, the comparison of free ratio between speed 0.5ms-1 and speed 1.0ms-1 was 

summarized in Table 4.14 and the Graph 4.3 was constructed based on this table. From 

the graph, it can be concluded that the free ratio for speed 0.5ms-1 is higher compared 

to speed 1.0ms-1. In other word, the speed 0.5ms-1 was detected less obstacle in the 

grid cell compared to speed 1.0ms-1.    

Table 4.14: Free ratio between speed 0.5ms-1 and speed 1.0ms-1. 

Time 

(seconds) 
 

Free ratio for each speed 

Speed 0.5ms-1 Speed 1.0ms-1 

20 10.170 9.432 

30 13.617 12.051 

40 14.517 14.121 

50 16.659 16.578 

60 18.639 17.766 

 

 

Graph 4.3: Free ratio between speed 0.5ms-1 and speed 1.0ms-1. 
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4.2.15 Comparison of Occupied Ratio between Speed 0.5ms-1 and 1.0ms-1 

 

Then, Table 4.15 was recorded the comparison of the occupied ratio between speed 

0.5ms-1 and speed 1.0ms-1. The Graph 4.4 also was built from Table 4.15. Otherwise 

from the comparison in 4.2.6, the occupied ratio for speed 0.5ms-1 is lower compared 

to speed 1.0ms-1. In this case, the speed 1.0ms-1 was detected more obstacle in the grid 

cell compared to speed 0.5ms-1.  

Table 4.15: Occupied ratio between speed 0.5ms-1 and speed 1.0ms-1. 

Time 

(seconds) 
 

Occupied ratio for each speed 

Speed 0.5ms-1 Speed 1.0ms-1 

20 9.590 10.164 

30 6.909 8.127 

40 6.209 6.517 

50 4.543 4.606 

60 3.003 3.682 

 

Graph 4.4: Occupied ratio between speed 0.5ms-1 and speed 1.0ms-1. 
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4.2.16 Comparison of Fitness Score between Speed 0.5ms-1 and 1.0ms-1 

 

Lastly, the contrast of fitness score between speed 0.5ms-1 and 1.0ms-1 listed in 

Table 4.16. Then, the Graph 4.5 was generated. From the graph, the values of fitness 

score for speed 0.5ms-1 is higher compared to speed 1.0ms-1. So, based on the result 

obtained from the graph, it proved that speed 0.5ms-1 has a better accuracy of the map 

as it fitness value is nearer to one. 

Table 4.16: Fitness score between speed 0.5ms-1 and speed 1.0ms-1. 

Time 

(seconds) 
 

Fitness score for each speed 

Speed 0.5ms-1 Speed 1.0ms-1 

20 0.4945 0.4535 

30 0.7383 0.6658 

40 0.7800 0.7752 

50 0.8844 0.8804 

60 0.9684 0.9332 

 

Graph 4.5: Fitness score between speed 0.5ms-1 and speed 1.0ms-1. 
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4.2.17 Discussion 

 

Based on the study that has been carried out, it can be concluded that the robot's 

speed must be slow in order to achieve a good result in terms of mapping accuracy. It 

was found that the speed at which the robot is moving affects the precision of the 

mapping. In other words, the robot has to be performed slowly to detect the corners. 

However, it can be operated faster when at a straight direction. An adaptive speed 

control technique can be built to integrate these findings to vary the speed 

automatically and thus reduce the overall mapping time. 

 The results that obtained showed the lower speed (0.5ms-1) is more suitable for 

Turtlebot3 to undergo mapping process and create a more accurate and perfect map 

compare with the higher speed (1.0ms-1). This simulation analysed the accuracy of G-

mapping at two different speed. From the simulation, it proved that the differences of 

the Turtlebot3 speed can influence the accuracy of the SLAM mapping.  

The ratio of free and occupied space in the created environment has been calculated 

for every speed. By using speed 0.5ms-1, the ratio of free space was 18.639 and it 

occupied space was 3.003. Whereas the free space for speed 1.0ms-1 was 17.766 while 

it occupied space was 3.682.  

Besides, from the fitness score calculation, it also shown that the speed 0.5ms-1 is 

more accurate compared to speed 1.0ms-1 as it value was 0.9684 and 0.9332 

respectively. This is because, as we know the accuracy of the fitness score is better if 

it value is nearest to 1. Below shown the equation used to calculate the percent of map 

accurate for speed 0.5ms-1: 

percent of the map accuracy =
fitness score for speed 0.5ms−1 − fitness score for speed 1.0ms−1

fitness score for speed 1.0ms−1 × 100% 
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From the equation above, to calculate the percent of map accuracy for speed 0.5ms-

1, the value of 0.9684 has to be minus with 0.9332 and then divided by 0.9332. After 

that, the answer need to be multiplied with 100% and the result of this calculation is 

3.77%. This mean, by using speed 0.5ms-1, the accuracy increase by 3.77%. 

Based on the result from the calculation, it can be summarize that the highest free 

space, the lowest occupied space and the highest fitness score will obtain the better 

accuracy of mapping process. Therefore, the speed 0.5ms-1 is much more suitable to 

use as the speed for Turtlebot3 to carry out the mapping process for the mapping 

simulation. 



 

 

 

CHAPTER 5  

CONCLUSION AND FUTURE WORKS 

5.1 Conclusion 

 

The aim of this project was to investigate the occupancy grid map algorithm 

parameters, such as grid size. In addition, the final objective of this project was to 

stimulate the mapping algorithm and investigate the performance based on the 

accuracy of the maps. In this project, the Ubuntu Operating System was used to present 

a successful implementation of the ROS robotic platform. By using the commands, 

the Gazebo and Turtlebot3 Burger were launched. ROS and Gazebo software were 

function to create a suitable environment for simulating and controlling the mobile 

robots. It has been shown that after properly designing the robot platform models and 
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their environments, the device used in the simulation can be used effectively to handle 

the real robots.  

Then, to achieve the project’s objectives, the Gmapping SLAM algorithm was 

launched in Rviz by running the command in ROS. Gmapping is the method that has 

been used to build the environment map for this project. During the process of creating 

the map, the robot also able to detect the obstacle in the environment as it is already 

attached with the sensor. To measure the performance based on the map accuracy, the 

robot was set into two different speeds which are 0.5ms-1 and 1.0ms-1. For each speed, 

the observation of creating the map was taken at five different seconds (20, 30, 40, 50 

and 60 seconds). All of the related calculations for each speed were calculated clearly. 

In the calculation, the occupancy grid map parameter was used to calculate the total 

number of cell mx,y, free and the total number of cell mx,y, occupied. Lastly, to know 

which speed created the most accurate map, the details of the comparison between 

these two speeds were also being recorded. From the calculation, it can be concluded 

that the slower the speed, the better the performance of map accuracy. In other word, 

for this project, the best speed of mobile robot to build the better map accuracy is 

0.5ms-1.  

 

5.2 Future Works 

 

The benefits of the occupancy grid mapping technique are that the forward models 

are more realistic than the inverse models. This is because forward models define the 

physical processes that underlie the generation of data. Next, this method yields more 

accurate maps, since it is based on fewer assumptions of freedom. However, this 

technique also has its own drawbacks, such as an obvious increased sensitivity to 
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changes in the environment and a more times need to go through the data which 

inhibits its real-time application. The extension of this algorithm into an algorithm 

online is the subject of future research. 

A further potential for future research comes from the fact that surroundings have 

structure. In this occupancy grid mapping method, the prior probability assumes 

independence between various grid cells. This is only a simplistic approximation, in 

real life. Surroundings are typically composed of wider items such as furniture and 

wall. However, acquiring adequate priors which characterize indoor environments is 

mainly a range of experiments. This approach focuses on an option way to build maps 

with mobile robots regardless of this barriers. 
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APPENDIX A 

Run roscore in ROS. 

 

APPENDIX B 

Launch TurtleBot Burger and simulation environment in gazebo. 
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APPENDIX C 

TurtleBot Burger in gazebo. 

 

APPENDIX D 

Simulation environment in gazebo. 

 



91 

 

APPENDIX E 

Execute Rviz in ROS. 

 

APPENDIX F 

Rviz in ROS.
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APPENDIX G 

Run Gmapping SLAM in ROS. 

 

APPENDIX H 

Gmapping SLAM in ROS.
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APPENDIX I 

Run teleop key to control the keyboard for movement of the TurtleBot Burger. 

 

APPENDIX J 

Run the teleop twist to control the speed of the TurtleBot Burger. 
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APPENDIX K 

Run map server to save the map. 

 

APPENDIX L 

The save map. 
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APPENDIX M 

The calculation for speed 0.5ms-1 at 30 seconds. 
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APPENDIX N 

 

The calculation for speed 0.5ms-1 at 40 seconds. 
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APPENDIX O 

The calculation for speed 0.5ms-1 at 50 seconds. 
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APPENDIX P 

 

 

The calculation for speed 0.5ms-1 at 60 seconds. 
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APPENDIX Q 

The calculation for speed 1.0ms-1 at 20 seconds. 
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APPENDIX R 

The calculation for speed 1.0ms-1 at 30 seconds. 
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APPENDIX S 

The calculation for speed 1.0ms-1 at 40 seconds. 
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APPENDIX T 

The calculation for speed 1.0ms-1 at 50 seconds. 
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APPENDIX U 

The calculation for speed 1.0ms-1 at 60 seconds. 

 




