

ACCELERATING THE CONVOLUTIONAL NEURAL
NETWORKS(CNN) USING FPGA

THAM WEI JIAN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ACCELERATING THE CONVOLUTIONAL NEURAL

NETWORKS(CNN) USING FPGA

THAM WEI JIAN

This report is submitted in partial fulfilment of the requirements

for the degree of Bachelor of Electronic Engineering with Honours

Faculty of Electronic and Computer Engineering

Universiti Teknikal Malaysia Melaka

2020

DECLARATION

I declare that this report entitled “Accelerating the Convolutional Neural Networks (CNN)

using FPGA” is the result of my own work except for quotes as cited in the references.

Signature : …………………………………

Author : Tham Wei Jian…………………

Date : 24 June 2020……………………

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in

terms of scope and quality for the award of Bachelor of Electronic Engineering with

Honours.

Signature : …………………………………

Supervisor Name : PM Dr. Wong Yan Chiew………

Date : ……30/06/2020………………

DEDICATION

I would like to dedicate my project report to my beloved family.

i

ABSTRACT

The convolutional neural network (CNN) is inspired by the behavior of optic

nerves in the living creatures and also has a huge application in video surveillance, mobile

robot vision, image search engine in database, etc. Besides, the rapid growth of CNN has

shown that the performance of CNN now surpasses of the other type of visual recognition

algorithms, and even beyond the human accuracy on certain conditions. In this work, the

FPGA platform is used to implement the CNNs of different application. This is because

FPGA has good performance, high energy efficiency, fast development round, and

capability of reconfiguration. We also set up two different platforms which are CPU-only

(Intel i5-4200M) and GPU-only (NVIDIA GTX-750Ti) to run the YOLOv2 so that the

data can be obtained and compared with the FPGAs. The results show that the YOLOv2

and ResNet50 on FPGA have achieved low power consumption and high-power

efficiency in this project. Besides, the accuracy of CNN on ZedBoard for digits

recognition is satisfactory and the power consumption is very low. For the BNN, the time

taken for hardware implementation to classify an image is faster than the software

implementation when using the PYNQ-Z2.

ii

ABSTRAK

Rangkaian saraf konvolusional (Convolutional Neural Network) inspirasi daripada saraf

optik manusia dan juga memiliki aplikasi besar dalam pengawasan video, penglihatan

robot bergerak, mesin pencari gambar dalam pangkalan data dan lain-lain. Selain itu,

pertumbuhan CNN yang rapat telah menunjukkan bahawa prestasi CNN kini melebihi

jenis algoritma pengenalan visual lain, dan juga melebihi ketepatan manusia pada

keadaan tertentu. Dalam projek ini, platform FPGA digunakan untuk melaksanakan CNN

aplikasi yang berbeza. Hal ini demikian kerana FPGA mempunyai prestasi yang baik,

kecekapan tenaga yang tinggi, putaran pengembangan yang cepat, dan kemampuan

konfigurasi ulang. Kami juga menyediakan dua platform berbeza yang hanya CPU (Intel

i5-4200M) dan hanya GPU (NVIDIA GTX-750Ti) untuk menjalankan YOLOv2 sehingga

data dapat diperolehi dan dibandingkan dengan FPGA. Hasil kajian menunjukkan

bahawa YOLOv2 dan ResNet50 pada FPGA telah mencapai penggunaan kuasa rendah

dan kecekapan kuasa tinggi dalam projek ini. Selain itu, ketepatan CNN pada ZedBoard

untuk pengecaman digit adalah memuaskan dan penggunaan kuasa sangat rendah. Bagi

BNN, masa yang diperlukan untuk pelaksanaan perkakasan untuk mengklasifikasikan

gambar lebih cepat daripada pelaksanaan perisian apabila kami menggunakan PYNQ-

Z2.

iii

ACKNOWLEGDEMENTS

I want to express my sincerest gratitude to my thesis supervisor, PM Dr. Wong

Yan Chiew, for allowing me to work on the topic and providing me with the knowledge

and information. PM Dr. Wong' s guidance allows me to understand the project better so

that I can advance the knowledge in this field to help my future work.

Moreover, I also want to thank the lab assistant of Universiti Teknikal Malaysia

Melaka (UTeM) who had lent me the FPGA board to complete my final year project.

Furthermore, I would like to appreciate to my thesis panels, Ir. Dr. Ranjit Singh

and Dr. Mai Mariam for their valuable comments to improve my thesis.

Finally, I would like to express my earnest gratitude to my parents, my family and

friends who directly and indirectly lend their hand for assisting me to accomplish this

project.

iv

TABLE OF CONTENTS

Declaration

Approval

Dedication

Abstract

i

Abstrak

ii

Acknowledgements

iii

Table of Contents

iv

List of Figures

viii

List of Tables

xii

List of Symbols and Abbreviations

xiii

List of Appendices

xiv

CHAPTER 1 INTRODUCTION

1

1.1 Introduction

1.2 Project Background

1.3 Problem Statement

1.4 Objectives

1.5 Scope of Project

1

1

3

4

4

v

1.6 Expected Outcome

1.7 Thesis Outline

5

5

CHAPTER 2 BACKGROUND STUDY

6

2.1 Convolutional Neural Networks

2.2 Caffe Framework

2.3 Existing Approach for Convolutional Neural Network

2.3.1 ResNet50

2.3.2 Binarized Neural Networks (BNNs)

2.3.2.1 CIFAR-10 Dataset

2.3.2.2 MNIST Dataset

2.3.3 You Only Look Once (YOLO)

2.3.3.1 YOLOv2

2.3.4 LeNet-5

2.4 Different types of Hardware Accelerating using for CNNs

2.4.1 Central Processing Units

2.4.2 Graphics Processing Units

2.4.3 Embedded System (NVIDIA Jetson)

2.4.4 Raspberry Pi

2.4.5 Field-Programmable Gate Arrays

2.4.5.1 ZedBoard

2.4.5.1.1 Deep Processing Unit

2.4.5.2 PYNQ-Z2

2.5 Benchmarking of Implementation CNNs on Different Platform

6

10

11

11

13

14

14

14

16

17

19

19

20

21

22

24

26

27

29

30

vi

2.6 Chapter Summary 33

CHPATER 3 METHODOLOGY

34

3.1 Introduction

3.2 Flow Chart

3.3 ZedBoard

3.3.1 Quantization and Compilation of pre-trained model

3.3.2 Create Inference Code and Deploy Code in C/C++

3.3.3 Run the Makefile and Demonstrate the Models

3.4 CNN on ZedBoard for Digits Recognition

3.4.1 Architecture of CNN on ZedBoard for Digits Recognition

3.4.2 Connection of OV7670 and Seven Segment Display LED

to ZedBoard

3.5 PYNQ-Z2

3.5.1 Operating System Installation

3.5.2 Run the Jupyter Notebook

3.5.3 Build Hardware and Software Design for BNN

3.5.4 Package Installation for BNN

3.5.5 Darknet Installation for YOLOv2

3.5.6 Create and Run the inference code in Python

3.6 Designing Block Design and HDL Files Generation

3.7 Data Flow of CNNs on FPGAs

3.7.1 Data Flow of ResNet50 and YOLOv2 on ZedBoard

3.7.2 Data Flow of BNN on PYNQ-Z2

34

35

37

37

38

39

40

42

43

46

46

47

47

48

49

50

52

54

54

55

vii

3.8 Chapter Summary 58

CHAPTER 4 RESULTS AND DISCUSSION

59

4.1 Introduction

4.2 Floating-point Operations Per Second and Execution Time

4.2.1 YOLOv2

4.2.2 ResNet50

4.3 Synthesized and Implementation Design

4.3.1 Resource Utilization

4.3.2 Power Usage

4.4 Experimental Environment

4.4.1 YOLOv2

4.4.2 CNN on ZedBoard for Digits Recognition

4.5 Evaluation of BNN

4.6 Analyzing Power Efficiency of CNNs on FPGA

4.7 Cost Estimation (MYR) Across Different Platforms

4.8 Chapter Summary

59

60

60

63

65

65

68

71

71

74

76

78

85

87

CHAPTER 5 CONCLUSION AND FUTURE WORKS 88

5.1 Introduction

5.2 Conclusion

5.3 Recommendation

88

88

91

REFERENCE

APPENDICES A

APPENDICES B

92

98

100

viii

LIST OF FIGURES

Figure 2.1: Biological Neuron [1] 7

Figure 2.2: Example of Neural Network 7

Figure 2.3: Example of standard convolutional neural network 8

Figure 2.4: Convolution layer 9

Figure 2.5: Example of max pooling and average pooling 9

Figure 2.6: Example of Fully-connected layer 10

Figure 2.7: A building block of residual learning 12

Figure 2.8: YOLO detection system [22] 15

Figure 2.9: YOLO network structure [22] 16

Figure 2.10: Bounding boxes with predicted dimension and its predicted

location [18]

17

Figure 2.11: Network architecture of LeNet-5 [36] 18

Figure 2.12: Intel i7 CPUs 20

Figure 2.13: GeForce GTX Titan X GPU 21

Figure 2.14: NVIDIA Jetson TX1 development kit 22

ix

Figure 2.15: Raspberry Pi 3B+ 23

Figure 2.16: Model FPGA chip 24

Figure 2.17: Overall view of ZedBoard 27

Figure 2.18: Deep Processing Unit (DPU) IP 28

Figure 2.19: Programming logic (PL) for DPU 28

Figure 2.20: Overall view of PYNQ-Z2 board 30

Figure 3.1: Flow Chart of ZedBoard for ResNet50 and YOLOv2 36

Figure 3.2: Files generated after quantization 38

Figure 3.3: Script to compile prototxt and caffemodel 38

Figure 3.4: ResNet50 coding (a)Load DPU kernel for ResNet50 (b)Create

DPU task for ResNet50

39

Figure 3.5: Export the ZedBoard output to host display 39

Figure 3.6: Flow Chart of CNN on ZedBoard for digit recognition 41

Figure 3.7: Architecture of CNN on ZedBoard for digit recognition 42

Figure 3.8: Layer of CNN for digits recognition 43

Figure 3.9: Connection of ZedBoard for digit recognition 44

Figure 3.10: Flow chart of PYNQ-Z2 46

Figure 3.11: Connect PYNQ-Z2 IP address to host PC 47

Figure 3.12: Command to build design of BNN (a) Hardware design (b)

Software design

48

Figure 3.13: Command of BNN package installation 49

Figure 3.14: Coding for Cifar10 (a)Using CNV classifier (b)10 Classes

classify by CIFAR-10

49

Figure 3.15: Coding for MNIST (a)Using LFC classifier (b)Digits classify

by MNIST

49

x

Figure 3.16: Coding applies the pre-trianed weights and bias 50

Figure 3.17: Import the YOLOv2 IP 51

Figure 3.18: Allocated the memory of PYNQ-Z2 51

Figure 3.19: Network structure of YOLOv2 52

Figure 3.20: Block Design of ResNet50 53

Figure 3.21: Block Design of YOLOv2 53

Figure 3.22: Operation and Data Flow for ZedBoard 55

Figure 3.23: Operation and Data Flow for PYNQ-Z2 56

Figure 3.24: ZedBoard setup 57

Figure 3.25: PYNQ-Z2 setup 57

Figure 4.1: Results of YOLOv2 on ZedBoard 61

Figure 4.2: Execution time for PYNQ-Z2 62

Figure 4.3: Results of YOLOv2 on PYNQ-Z2 63

Figure 4.4: Kernel information during compilation 64

Figure 4.5: Source code (a) Define the GOP value (b) Performance

calculation (GOP/s)

64

Figure 4.6: Results of ResNet50 on ZedBoard 65

Figure 4.7: Resource utilization (a) YOLOv2 on PYNQ-Z2 (b) YOLOv2 on

ZedBoard (c) ResNet50 on ZedBoard (d) CIFAR-10 on PYNQ-Z2 (e)

MNIST on ZedBoard (f)CNN on ZedBoard for digits recognition

68

Figure 4.8: Power Consumption (a)YOLOv2 on PYNQ-Z2 (b)YOLOv2 on

ZedBoard (c)ResNet50 on ZedBoard (d)CNN on ZedBoard for digits

recognition

70

Figure 4.9: Installation script (a)Enable GPU-only computation (b) Enable

CPU-only computation

72

Figure 4.10: Results of YOLOv2 for GPU-only 72

xi

Figure 4.11: Results of YOLOv2 for CPU-only 73

Figure 4.12: Results of recognition in this experiment (a) Digit number 1 (b)

Digit number 7 (c) Digit number 8

75

Figure 4.13: Results of BNN in hardware and software (a) CIFAR-10 (b)

MNIST for digit number 4 (c) MNIST for digit number 8

77

Figure 4.14: Graph of Power Consumption for YOLOv2 81

Figure 4.15: Graph of Power Efficiency for YOLOv2 82

Figure 4.16: Graph of Power Consumption for ResNet 84

Figure 4.17: Graph of Power Efficiency for ResNet 85

xii

LIST OF TABLES

Table 2.1: Comparison between original multiplication and XNOR 13

Table 2.2: Benchmark of the previous work 31

Table 2.3: The connection of FPGA pins to OV7670 camera 44

Table 2.4: The connection of FPGA pins to seven segment display LED 45

Table 4.1: Specification of experimental platforms 71

Table 4.2: Comparison of hardware and software implementation of

BNN on PYNQ-Z2

78

Table 4.3: Performance comparison for YOLOv2 81

Table 4.4 The cross-platform comparison data for mean average

precision(mAP) in this work

82

Table 4.5: Performance comparison with previous for ResNet 84

Table 4.6: The cost estimation across different platforms 86

xiii

LIST OF SYMBOLS AND ABBREVIATIONS

For example:

CNN : Convolutional Neural Network

BNN : Binarized Neural Network

YOLO : You Only Look Once

FPGA : Field-Programmable Gate Array

CPU : Central Processing Units

GPU : Graphic Processing Units

DPU : Deep Processing Unit

PS : Processing System

PL : Programmable Logic

xiv

LIST OF APPENDICES

Appendix A: ……………………………………………………………………... 98

Appendix B: ……………………………………………………………………... 100

1

CHPATER 1

INTRODUCTION

1.1 Introduction

This chapter will describe the details of the background and purpose of the project.

It also includes the problem statement and the scope of the project will be covered.

1.2 Project Background

An artificial neural network develops the deep learning architecture that we called

convolutional neural network (CNN). The convolutional neural network (CNN) has a

huge application in video surveillance, mobile robot vision, image search engine in

database, etc. The data processing of CNN with multiple layers of neural connections

2

is inspired by the behavior of optic nerves in the living creatures to achieve high

accuracy in image recognition. Moreover, the development of deep learning

algorithms has enhanced the research on deep convolutional neural network [13].

Besides, the CNN can use to recognize the human gestures in video. This is

because CNN was efficiently captured both relevant shape information and detailed

spatiotemporal variation of the gestures and solved the environmental issues such as

complex background, occlusion, lighting conditions and so on [1]. Moreover, the

CNN also being applied for detecting and recognizing East Asian characters and this

project has achieved average end-to-end accuracies of 98.2% and 98.3% on 40 videos

in Simplified Chinese and 40 videos in Traditional Chinese respectively. This

breakthrough results have narrowed the gap between human cognitive ability and

state-of-the-art algorithms used for a similar project [4]. Furthermore, the CNN also

implemented to reduce the road traffic problems in the city. The researchers

mentioned that they adopted the CNN method on CCTV camera to detect the

congestion of traffic. The research result shows that CNN has an average classification

accuracy of 89.50% on their project [1]. Due to the rapid growth of CNN have shown

that the performance of CNN now surpasses of the other type of visual recognition

algorithms, and even beyond the human accuracy on certain conditions.

In recent years, many researchers have designed to implement GPU-based, ASIC

and FPGA-based accelerators to implement CNN algorithms to improve the

performance of CNN designs. This is because the general-purpose processor cannot

3

meet the specific calculation mode of CNN, which makes the performance of CNN

difficult to meet the design requirements. In contrast，field-programmable grid arrays

(FPGAs) have great potential for applying the CNN. FPGAs have the advantages of

good performance, high energy efficiency, fast development cycles, and

reconfigurability, which have attracted researchers to focus on this area. In addition,

the combination of low-precision arithmetic and small memory footprint is also an

advantage of FPGAs.

In deep learning, the GPU has the best performance in computational efficiency.

Although the GPU has excellent performance in terms of computational efficiency in

deep learning, it is expensive and consumes a lot of power have prompting researchers

to change their choices and focus on FPGAs. Moreover, GPU is very expensive and

high-power consumption compared to the FPGA and even GPU is not very stable in

large-scale deployment and operation platforms. The advantage of using the FPGA is

because it is reprogrammable and has a short design cycle [3].

1.3 Problem Statement

The CNN based on the GPU and ASIC are high power consumption and cost

expensive compared to FPGA during the same performance. Besides, CNN is

computationally intensive and implementation of high performance depends on the

computing platform. So, the traditional CPUs is inappropriate in accelerating CNN.

Therefore, FPGA is the better choice used as an accelerator of CNN because the

4

FPGA has good performance, high energy efficiency, fast development round, and

capability of reconfiguration.

1.4 Objectives

The objectives of this project are:

i. To investigate the method used to accelerate CNN on FPGA development

board.

ii. To optimize and analyze an accelerated CNN on FPGA development board.

iii. To evaluate the performance of the developed system on FPGA board.

1.5 Scope of Project

The scope of the project will cover how to apply CNN to FPGAs without involving

an ASIC. The FPGA board model used is the Zedboard Zynq-7000 development

board and PYNQ-Z2. The software covered is Jupyter Notebook, Vivado and

Petalinux. The programming types used in this project are python, C/C++ and Verilog.

The approaches CNN apply in this project are ResNet50, YOLOv2, BNN and CNN

for digits recognition. The application of CNNs implement in this project are image

classification, object detection, and digit classification. This project will use the IP

integrator to accelerate the hardware implementation of CNNs for the Zedboard and

PYNQ-Z2 and the Overlay method to accelerate the BNN on PYNQ-Z2.

5

1.6 Expected Outcome

The expected outcome of the project is an accelerated CNN developed on the

FPGA board with different approaches such as ResNet50, YOLOv2, BNN and CNN

for digits recognition. The CNNs application such as image classification, object

detection and digits recognition will be applied on ZedBoard and PYNQ-Z2. The

expected time taken to implement the CNNs will be faster and the power consumption

of ZedBoard and PYNQ-Z2 will be lower compare with another platform such as GPU

and CPU.

1.7 Thesis Outline

This thesis is divided into five chapters. Chapter 1 introduces the project and

describes the project's overview, background, objectives, problem statements,

expected outcome and scope of work. Chapter 2 introduces the background study

about CNN models and each of the hardware accelerator. This chapter also shows the

benchmarking for each of the platform used to implement the CNNs. In Chapter 3,

the flow chart is described for each board, including the data flow in FPGA to

accelerate the CNNs and how quantization and compilation of pre-trained CNN data

and implement it on ZedBoard. Chapter 4 is the discussion of the results of CNNs on

ZedBoard and PYNQ-Z2. Finally, Chapter 5 gives the conclusions and the

recommendation of the project for the evaluation of future works.

6

CHAPTER 2

BACKGROUND STUDY

2.1 Convolutional Neural Networks

The biological brain system inspired researchers to develop neural networks as a

computational architecture. There are approximately 85 billion neurons in our human

brain that are used to receive the signals and give respond. The part of the neuron as the

input signal is called dendrites and the axon is the part that produces the output signal.

However, there is another called synapse that connects the branches of the dendrites to

connect the other neurons. Synapse is the part that affects the input and output and even

suppress the transmission of signals. The connection of ten billion neurons have formed

the neural network of our human brain so that humans can think, remember, analyze,

understand, dream and other reaction that related to the human brain [1].

7

Figure 2.1: Biological Neuron. (Image adopted from [1])

Figure 2.2: Example of Neural Network

The special of neural networks is they can improve performance through self-

learning processes and it will make their performance become better. A neural network

consists of several layers of nodes that are connected in layers and those layers are divided

into input layer, output layer and middle layer (also known as hidden layer). The output

of each node is determined by the specific values of weights and biases. So, the weight

and bias values in each iteration will update for every training network [2].

8

Convolutional neural network (CNN) also called ConvNet popularly used for

analyzing images although image analysis has been the most widespread use of CNN.

They can also be used for other data analysis or classification problem as well. Most

generally we can think of a CNN as an artificial neural network that has some type of

specialization for being able to pick out or detect the patterns. In a typical CNN, CNN

layers are mainly classified into convolution layers，pooling layers, and fully connected

layers [8]. The following will explain all the layer types used in convolutional neural

networks.

Figure 2.3: Example of standard convolutional neural network

1) Convolution Layer:

Convolution layer usually is the first layer for CNN where CNN convolves

the images or data using a filter or kernel. Filters are small units that multiply

across the data through the sliding window. The depth of the filter is same as the

input. For example, the color image whose RGB values give the value of depth is

3, so a filter with depth 3 would be applied in the convolve. The convolution

operation taking the element-wise product of filters in the image and then

9

summing the values for every sliding action. The output of the convolution of the

3D filter with a color image is a 2D matrix.

Figure 2.4: Convolution layer.

2) Pooling Layer

The pooling layer involved the down sampling of features by summarizing

the multiple input pixels to a single pixel. There are 2 popular used of pooling

layers are max pooling and average pooling [1]. Max pooling is a max filter returns

the maximum value among the features in the region. For the average pooling, an

average filter which returns the average values of features in the region.

Figure 2.5: Example of max pooling and average pooling.

10

3) Fully Connected Layer

 The fully connected layer is the last layer of the CNN. The fully connected

layer usually used to calculate the category score for image classification. While

the input image reaches this layer, the dimension of the image will become 1 x 1

and the fully connected layer will constitute the majority of the weights in the

CNN [1].

Figure 2.6: Example of Fully-connected layer.

2.2 Caffe Framework

Caffe is a deep learning framework developed by Berkeley AI Research (BAIR)

and community contributors. Jia Yangqing created the project during his Ph.D. at the

University of California at Berkeley. Also, Caffe's language library is written in C++ and

implemented in Matlab and python languages. Caffe has multiple hidden layers that give

this framework has the ability to recognize images and speech as well as natural language

processing. It is often used for research and development because the code has modular

capabilities and the network definition is completely separate from the actual

implementation. Therefore, the optimization does not require coding to complete the

11

setting file. Since Caffe's processing speed is extremely fast, it can effectively handle the

image classification problem of millions of images [4].

According to previous research work in [6], the authors used the MNIST dataset

of the Caffe framework as the neural network model for handwritten font recognition.

Moreover, the research results indicate that the accuracy of the MNIST model of the Caffe

framework is 99.93%. The researchers mentioned that the reason they used Caffe as a

deep learning library is because its operating speed is an advantage and also Caffe

supports CUDA, if necessary, the operating system can be converted from CPU to GPU,

and even CPU and GPU both compatible.

2.3 Existing Approach for Convolutional Neural Network

2.3.1 ResNet50

ResNet50 means there are 50 layers Residual Network. ResNet was proposed in

2015 and won first place in the classification competition of the ImageNet test set because

it is simple and practical. After that, there are many types of classification neural network

approaches were built based on the concept of ResNet50 and ResNet101 such as detection,

segmentation and recognition. K. He et al. [14] discovered that as the networks going to

become deeper, the accuracy of the training set will decrease and caused the degradation

problem happens. The author determined that this is not caused by the overfitting;

therefore, the author proposed a new network for solved this problem, called a deep

residual network (ResNet) which allows the networks to deepen as much as possible. The

12

ResNet provides two options, namely identity mapping and residual mapping for the

problem of accuracy decreases as the network deepens. If the identity mapping has

reached the optimal level, the residual mapping will be pushed as zero and left identity

mapping only. This allows the network is always staying in an optimal state, and the

performance of the network will not decrease as the depth is increasing.

Figure 2.7: A building block of residual learning.

Y. Zhao et al. [15] proposed a new idea to deal with the fully-connected layers to

improve the ResNet50 acceleration framework on FPGA. The experimental results

showed that the FPGA has good performance and high energy efficiency ratio when

compared with NVIDIA’s M4 GPU because the FPGA has low latency and low energy

consumption. The performance of Intel’s FPGA has achieved 54 images per second and

36.7W pictures processed per second per Watt when implemented the ResNet50.

13

2.3.2 Binarized Neural Networks (BNNs)

The concept of BNNs is to reduce the memory size and computation requirement

to improve the power efficiency by binarized both activation and weight values to single-

bit values. In BNNs, the Boolean value of 0 is representing the binary values -1 in these

single-bit values. The XNOR and popcount also used to compute the sum of

multiplication between input activations and weight parameters, ∑ 𝑥𝑖𝑤𝑖𝑖 [14]. The reason

applied the XNOR to replace the binary multiplication between +1 and −1 is the outputs

of binary multiplication values are the same as XNOR's truth table.

Table 2.1: Comparison between original multiplication and XNOR.

Original Multiplication Affine transformed

𝑥<−1,1> 𝑤<−1,1> 𝑥. 𝑤<−1,1> 𝑥<0,1> 𝑤<0,1> 𝑥. 𝑤<0,1>

1 1 1 1 1 1

1 -1 -1 1 0 0

-1 1 -1 0 1 0

-1 -1 1 0 0 1

Y. Umuroglu et al. [15] proposed that the binary input activations, binary synapse

weights and binary output activations are contained in binarized neural network. There

are two types of binarization for neural network which are full binarization and partial

binarization. Full binarization means all these three components are binary while partial

binarization means either one or two components are binary. In paper Rastegari. M et al.

14

[17], author implemented the BNNs on ImageNet dataset and successfully achieved top-

1 accuracy of 51.2% for full binarization and 65.5% for partial binarization.

2.3.2.1 CIFAR-10 Dataset

The CIFAR-10 database is composed of 60,000 32 x 32 colored pictures into 10

different classes of objects. The types of objects include airplane, automobile, bird, cat,

deer, frog, dog, horse, ship and truck. Regarding the Y. Umuroglu et al. [15], one of the

BNN topology called CNV has successfully achieved 80.1% accuracy for images

classification by using CIFAR-10 dataset.

2.3.2.2 MNIST Dataset

MNIST is a dataset of handwritten digits which consist of 60,000 28 x 28

grayscale handwritten digits from 0 to 9. Y. Umuroglu et al. [15] mentioned that the BNN

topology used to classify the handwritten digits is called LFC which is a three-layer fully

connected network and also achieved 98.4% accuracy on FPGA.

2.3.3 You Only Look Once (YOLO)

YOLO [16] stands for You Only Look Once. YOLO algorithm uses a single CNN

model to achieve end-to-end on object detection. Compared to the R-CNN algorithm,

YOLO is a unified framework which is faster compared to R-CNN.

15

Figure 2.8: YOLO detection system (Image adopted from [22]).

Firstly, YOLO will resize the input image to 448x448, then send it to the CNN

network layers to obtain the prediction results of the object detection. Secondly, YOLO

would divide the input picture into N × N grids and then each of the grid cells is

responsible for detecting the targets whose fall within the grid by using the cell center

points. Each grid cell predicts the N bounding boxes and confidence score of these

bounding boxes. As we known, the confidence scores will affect the accuracy of YOLO

detection. Once the bounding box contains the target, the Pr (object)= 1 while the

bounding box is the background means it does not contain any target, then Pr (object) =

0. The size and position of the bounding box can be characterized by 4 values: (x, y, w,

h), where (x, y) is the center coordinate of the bounding box, and w and h are the width

and height of the bounding box. Each cell needs to predict as an (N ∗ 5 + C) values. If the

input image is divided into S × S grid, then the final prediction value with the size of the

image is N × N × (B ∗ 5 + C) [22]. The following network structure described the

distribution of the predicted value of each cell.

16

Figure 2.9: YOLO network structure (Image adopted from [22])

2.3.3.1 YOLOv2

J. Redmon et .al [18] applied the concept of anchor box from Faster RCNN into

YOLOv2, so that the YOLOv2 can improve the positioning accuracy and also replace the

YOLOv1. The YOLOv1 includes the fully connected layers, so it can directly predict the

coordinates of bounding boxes in an image. However, the fully-connected layer and the

last pooling layer of YOLOv2 removed from the original network, so that the last

convolutional layer can have higher resolution features. The input size of YOLOv2 also

replaced the original 448 * 448 with a 416 * 416. Therefore, the output of YOLOv2 can

obtain a 13 * 13 feature map when the input size instead of 418. The author investigated

that directly using the anchor box method caused the YOLOv2 model unstable, so the

author combined the YOLOv1's algorithm into YOLOv2 to predict the coordinate

17

position relative to the grid cell. The five variable values predict in each bounding box

are tx, ty, tw, th, and to. The range of tx and ty after sigmoid function processing fall

between 0 and 1. This normalization process also makes the model training more stable;

cx and cy is representing the offset of a cell from the upper left corner of the image while

pw and ph are representing the width and height of the bounding box respectively. Then,

the bx and by are the anchors near the grid cell of cx and cy to predict the results obtained

by tx and ty.

Figure 2.10: Bounding boxes with predicted dimension and its predicted location

(Image adopted from [18])

2.3.4 LeNet-5

The main use of LeNet-5 is to classify the 0 to 9-digit numbers. The LeNet-5

architecture has a total of 7 layers, including three convolutional layers (C1, C3 and C5),

two pooling layers or subsampling layers (S2 and S4), and the two fully-connected layers

(F6 and output layer), but the input layer is not included. Y. Lecun et al.[36] mentioned

that the input image size used by LeNet-5 is 32x32 pixels, which is larger than the input

18

size required by other types of CNN. First, LeNet-5 will use the 5x5 sized of convolution

kernel to perform the first convolution operation on the input image and form to six-

channel of 28x28 feature maps to achieve the C1. Then, the layer S2 will down sample

the output of C1 image become 6 channels of 14x14 feature map, and the size of the

convolutional kernel used is 2x2. Then followed by another convolution layer, C3 which

reduced the output of layer S2 feature map to 10x10 feature map with 16 channels. The

resolution of the image gets halved again by average pooling at S4 become 16 channels

of 5x5 feature map. Since the size of the layer S4 is 5x5, which is the same as the size of

the convolution kernel at C5, the size of the feature map formed after the convolution is

1x1 pixel and line up become a fully-connected layer. This is followed by the layer F6

contains 84 units and it is fully-connected to C5. The Output layer is also a fully-

connected layer. There are 10 units in the output layer, representing the numbers 0 to 9,

and if the value of unit 𝑖 is 0, the result of network identification is the number 𝑖.

Figure 2.11: Network architecture of LeNet-5 (Image adopted from [36])

 D. Rongshi et al. [37] purposed the researchers implemented the LeNet-5 on Zybo

Z7 FPGA. This is because general processor cannot meet the performance requirement

and the performance efficiency is low. Therefore, the researchers replaced the traditional

19

processor by FPGA to optimize the convolution operation, data throughput and energy

efficiency of traditional processors. They found that the data throughput of FPGA is

higher than traditional processors and the power consumption of FPGA is lower than

traditional processors [37].

2.4 Different types of Hardware Acceleration using for CNNs

2.4.1 Central Processing Units

The central processing unit (CPU) is the processor core in the electronic devices

and it is widely used in desktops, laptops and smartphones. There are different types of

processors available on the market for embedded systems, but different trade-offs are

depending on speed and power requirements. D. Gschwend et al.[1] investigated that the

CPU computes the results sequentially, so it is not suitable for convolutional neural

network implementation. The advantage of the CPU is that it supports any programming

framework such as C / C ++, Scala, Java, Python or any other new language so that the

developers can program by using those supported languages. However, when the CPU

involves machine learning training, it is only suitable for small and straight forward

models with short training time. The CPU will be forbidden the total execution time of

machine learning training when it is running large models and large data sets.

20

Figure 2.12: Intel i7 CPUs.

In research work by A. Mohanty et al.[16], he investigated that the combination

of CPU and FPGA has achieved a speed up 30x compared to a CPU implementation for

face detection. When using a CPU for a face detection algorithm, the face detection

execution time is 7.284s. In contrast, the face detection execution time for combined CPU

and FPGA only used 0.2378 for implements the face detection algorithm.

2.4.2 Graphics Processing Units

A graphics processing unit (GPU) is a multi-core processor dedicated to images

and video processing. GPUs can host a large number of cores so that it is suitable for the

applications that require to process data in parallel. Besides, the GPU supports the

OpenCL and CUDA programming frameworks, which enables it to compute the

algorithm of deep learning efficiently. Still, its flexibility is also limited compared to the

CPU. D. Gschwend et al.[1] proposed two different models of GPUs which suitable for

implementing the CNNs, called GeForce GTX Titan X and NVidia Tegra X1. The reason

21

these two GPUs are ideal for deep learning is that they have high memory bandwidth,

which leads to these two GPUs having a breakneck computing speed for deep learning.

Therefore, the specification of memory bandwidth of GPU is the core reference require

to refer while choosing a GPU as a hardware accelerator for CNN. However, M.Zhu et al.

[29] stated that the GDDR memory of the graphics card increases the frequency to obtain

a higher bandwidth, which causes excessive power consumption. Also, the more GDDR

memory, the higher the price of GPU.

Figure 2.13: GeForce GTX Titan X GPU.

2.4.3 Embedded System (NVIDIA Jetson)

The embedded system often used by developers to develop artificial intelligence

and deep learning is the NVIDIA Jetson series. Y. Han et al. [11] claimed that NVIDIA

Jetson TX1 is a supercomputer module. NVIDIA's development tools provide the

NVIDIA Jetson TX1 with a Linux environment as a development system for artificial

intelligence and deep learning. Moreover, the specifications of NVIDIA Jetson TX1 also

meet the basic requirements of standard CNNs. It has included MaxwellTM architecture,

22

which provides for 256 NVIDIA cores and 64-bit ARM CPU cores, so it has excellent

power efficiency and performance. Therefore, NVIDIA Jetson's embedded system is

regarded as the ideal artificial intelligence development system. Besides, NVIDIA Jetson

also includes a variety of standard hardware interfaces that provide a highly flexible and

scalable platform to developers. Nevertheless, the embedded system cannot adequately

perform the original code to achieve specific tasks. S. Aldegheri et al. [30] stated that the

Jetson TX2 unable to meet real-time performance while direct using the original source

code which, run on desktop computers. Real-time performance only can be achieved in

embedded systems when the original code has modified.

Figure 2.14: NVIDIA Jetson TX1 development kit.

2.4.4 Raspberry Pi

Raspberry Pi is a microcomputer that contains a Linux system, and it supports

Scratch and Python language programming. Besides, it can do everything a desktop can

23

do such as browsing the Internet and playing high-definition videos, word processing, and

playing games. However, Raspberry Pi is not the first choice in the field of deep learning

to become a hardware accelerator and even implements the CNNs. The reason is that CNN

required a large number of calculations. To achieve high accuracy, CNN is too large to fit

into mobile devices or small devices such as Raspberry Pi. And also, the runtime memory

(RAM) required to run these CNN models is even more substantial which is challenging

to find in Raspberry Pi [12].

Figure 2.15: Raspberry Pi 3B+.

To solve these problems, Z. Jiao et al. [12] proposed a lightweight convolutional

neural network that can run fluently on Raspberry Pi 3B+. The design of lightweight CNN

is based on the depthwise separable convolution and the improved Linear Bottlenecks

block. The experimental results have shown that the Raspberry Pi 3B+ achieved 91%

accuracy and the average speed to recognize the image is about 176ms by using the

lightweight CNN. Although the lightweight CNN can implement on Raspberry Pi,

unfortunately, the shallower CNNs do not achieve human-level accuracy.

24

2.4.5 Field-Programmable Gate Arrays

Field-programmable gate array（FPGA） is a programmable logic device that

contains ten thousand to more than a million logic gates connected with programmable

interconnects. The feature of the Field Programmable Gate Array (FPGA) is that FPGA

provides the user with the ability to reprogrammable and available to connect the logic

blocks inside the FPGA through editable connections so that the data flow can be

reconfigured. The primary language used to program the FPGA and construct the FPGA

model is HDL (i.e., Verilog and VHDL), which can implement the logic synthesis and

the model layout. When the programming process is completed, you need to use a

software compiler to verify the function and error and then flash it to the FPGA for testing.

During this process, a bitstream file will be created. The bitstream file contains the wiring

information of the FPGA components and users need to download the file to the FPGA

board via a USB data cable [2].

Figure 2.16: Model FPGA chip.

25

The reason why FPGA can attract developers' focus to research it is that FPGA

only takes a short time from the design process to the functional chip, and FPGA does

not involve any physical manufacturing procedure. Besides, FPGAs consume less power

than ASICs, so it is very friendly to the users [35].

D. Gschwend et al. [1] mentioned that, the significant difference between FPGAs

and General-Purpose Processors is that FPGAs can program logic blocks freely, which

cannot be achieved by GPU and traditional processors. The advantages of FPGAs can be

used as highly specialized accelerators to accomplish a particular task, thereby increasing

the processing speed of the system and saving energy in the system. Although FPGAs

have such advantages to developers, the trade-off is the designers need to consider the

available hardware resources during the development process carefully. This reduces the

development of agility and increased design complexity. Moreover, the difference

between FPGA and Application-Specific Integrated Circuit (ASIC) is that ASIC is

customized for a specific purpose, so it is not affected by any area or timing overhead of

configuration logic and general-purpose interconnect. Therefore, ASIC usually has the

smallest, fastest and most energy-saving effect. However, the manufacturing process of

ASIC is very complicated, which leads to a long development cycle and a very high cost

for manufactured. So, ASIC is generally given to mass-produced products, so that these

products can cover the manufacturing costs with each other. Due to the programmability

of FPGAs, it is more suitable for prototyping and shorter development cycles.

D. Danopoulos et al. [5] has implemented the DNN on FPGAs and used Caffe as

a framework. Researchers have mentioned that hardware acceleration can help to improve

the performance and efficacy of deep learning. Their research has proved that the

26

implementation of CNN on FPGA is feasible, and they list FPGA as the preferred

platform for CNN accelerator.

2.4.5.1 Zedboard

ZedBoard is a low-cost development board developed by Avnet using Xilinx

Zynq-7000 All Programmable SoC. This board combines the Zynq-7000 AP SoC's ARM

processor with seven series programmable logic so that the single silicon chip can be used

to implement the functionality of the entire system on ZedBoard rather than several

different physical chips is required. This combination has proved to be flexible and forms

a compelling platform for a wide variety of applications. This SoC solution enables faster

and more secure data transfer between the various system elements that have high overall

system speed and low power consumption. Designers also can implement their design in

different based platforms such as Windows, Linux, and Android on this development

board. The target applications of ZedBoard usually for video processing, motor control,

software acceleration, different OS development, embedded ARM processing and general

Zynq-7000 AP SoC prototyping.

27

Figure 2.17: Overall view of ZedBoard.

2.4.5.1.1 Deep Processing Unit

Deep Processing Unit (DPU) is a processing engine for the convolutional neural

network (CNN) running on Xilinx Zynq-based SoC. DPU IP integrated as a block in the

programmable logic (PL) with a direct connection to the processing system (PS). Besides,

the DPU IP is designed to be efficient, low latency and scalable for various edge AI

applications. DPU IP commonly used as a hardware accelerator to takes full advantage of

the Xilinx FPGA architecture to achieve the tradeoff between latency, power and cost.

The DPU IP has specialized in the instruction set to work efficiency for CNNs.

28

Figure 2.18: Deep Processing Unit (DPU) IP.

The DPU IP mainly contains three parts which are convolution computing module,

a configuration module, and a data controller module. The convolution computing module

includes a processing engine (PE) that performs all the primary convolution calculations.

The configuration module provides user-configurable parameters to optimize the

resources for all the support from different features. Lastly, the data controller module

schedules the all flow in the DPU IP.

Figure 2:19: Programmable logic (PL) for DPU.

29

The DPU IP is scalable and configurable means that it is available in different

sizes to fit into different FPGAs. For example, the DPU configuration can set as B1024

and B4096. For B1024 DPU configuration targets smaller Zynq devices, smaller

configurations and lower parallelism. In contrast, B4096 DPU configuration is for more

extensive configuration, higher parallelism, and larger Zynq devices.

2.4.5.2 PYNQ-Z2

PYNQ is a development board embedded with Xilinx Zynq SoC. PYNQ supports

the Python language and libraries which allows the developers to implement PYNQ's

programmable logic functions directly from Python applications. These libraries that can

take advantage of the Zynq SoC's heterogeneous hardware architecture are also called

hardware libraries or overlays. The PYNQ is more flexible than other platforms because

it has a 12-pin PMOD connector, Arduino and Raspberry Pi compatible interfaces and

audio/video I/O pins [13]. Unlike Zedboard, the PYNQ development board does not

require any additional software for programming. Xilinx provided PYNQ a Python

application called Jupyter Notebook as an online programming tool. Jupyter notebook is

a web-based development environment and it supports various workflows in data science,

scientific computing, and machine learning. Moreover, Jupyter notebook supports more

than 40 programming languages which including the Python.

30

Figure 2.20: Overall view of PYNQ-Z2 board.

2.5 Benchmarking of Implementation CNNs on Different Platform

Table 2.2 shows the benchmarks of previous work during the implementation of

CNN on different platforms. Power consumption is essential for systems that rely on plug-

in power. If the power consumption is too high, the cost of electricity will increase, and

the system will overheat when a large amount of energy is consumed. The frame per

second will affect the viewing experience of a video, and the high frame rate can make

the video played smoothly. The standard of frame rate for a video is 30fps, which is

proposed by H. Nakahara et al. [20].

31

Table 2.2: Benchmark of the previous work.

Author Year Approach Related Work Platform Devices FPS

Power

Consumption

(W)

Application

C. Zhang et al. [9] 2019 VGG16

Utilizing the FPGA to

implement the CNNs and

show the comparative

performance between CPU,

GPU and FPGA to accelerate

the CNNs.

CPU E5-2609 - 150

Image

Classification

CPU

+GPU

E5-2609 +

K40
- 250

CPU

+FPGA

E5-2609 +

VX690t
- 26

Y. Tu et al. [10] 2019 DNN

Utilizing DNNs on FPGA and

embedded systems and

compared the experimental

results with previous works

from C. Zhang et al. paper [9].

Embedded

System

+FPGA

Jetson TX2

+ A7-100T
- 3.7

H. Nakahara et al.

[31]
2017

VGG-11

(CIFAR-10)

Utilizing the binarized VGG-

11 on the CIFAR-10 dataset

for images classification using

the FPGA.

FPGA ZedBoard - 2.3

Y. Umuroglu et

al. [15]
2017

BNN

(MNIST)

Utilizing the BNN inference

accelerators on FPGA for

classifying the MNIST dataset

based on FINN framework.

FPGA

ZC706

Evaluation

Kit

- 8.7

32

K.

Rungsuptaweekoon

et al. [19]

2017 YOLO

Utilizing the object detection

with YOLO on the embedded

systems and compared with

Tesla P40 for implemented the

object detection with YOLO.

Then, using the LPIRC system

to obtain the energy, but the

fps is computed by fps

counter.

Embedded

System
Jetson TX1 3 10

Object

Detection

Embedded

System
Jetson TX2 5 7.5

GPU Tesla P40 42 250

H. Nakahara et al.

[20]
2018 YOLOv2

Utilizing the FPGA (Zynq

Ultrascale+ MPSoC) to

implement the YOLOv2 and

compared with embedded

CPU and GPU.

Embedded

CPU

ARM

Cortex-

A57

0.23 4

Embedded

GPU

Pascal

GPU
2 7

FPGA
Zynq Ultra

MPSoC
35.71 4.5

33

By referring to Table 2.2, for the application of image classification, the

combination of CPU and GPU has the highest power consumption compared with FPGAs.

Besides, the combination of embedded systems and FPGA achieved lower power

consumption, which is closed to FPGA. For the application of object detection, the GPU

platform achieved the highest frame per second (fps) during the implementation of YOLO.

Although the GPU has the best performance of fps, the embedded system is the most

suitable choice to implement the YOLO with high accuracy and low power consumption

which is suggested by K. Rungsuptaweekoon et al. [19]. Moreover, Nakahara et al. [20]

proposed the frame rate of FPGA is 35fps, which meets the standard frame rate of video

and also higher than the fps of embedded CPU and embedded GPU.

2.6 Chapter Summary

This chapter summarized the characteristic, advantages and disadvantages of each

platform for CNNs implementation. In addition, CNN's network structure has been

discussed in detail. The ResNet50, YOLOv2, BNN and LeNet-5 are introduced and

discussed the network architecture, respectively. Lastly, the benchmark of previous work

for the power consumption and frames rate of each platform is evaluated and analyzed to

determine the suitable platform to accelerate the CNNs in order to meet the requirements

of low power consumption and high accuracy at the same time.

34

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter will present the methodology to create the IP subsystems with the custom

IP core to accelerate the YOLOv2 and ResNet50 model on FPGAs. This process

performed using Vivado Development Tools. For Zedboard, the block design is validated

correctly, then we move on to build the application templates for CNNs by using

PetaLinux so that we can easily compile and install the applications into the root file

system. Next, the hardware connection to implement the CNN on ZedBoard for digits

35

recognition will explain in this chapter. For PYNQ-Z2, the installation of Linux OS is

required in order to implement the YOLOv2 and BNN. Moreover, the environmental

setup to implement the CNNs on FPGAs has provided in this chapter and the explanation

operation data flow on FPGAs will be covered also.

3.2 Flow Chart

Figure 3.1 shows the flow chart of ZedBoard from the beginning to the end for the

implementation of ResNet50 and YOLOv2. Firstly, the Vivado HLS software used to

export the YOLOv2 IP by using the code in C language, while the DPU IP is provided

inside the DNNDK [33]. Secondly, the target IP needs to import to the repository of

Vivado software for further development. Then, start to connect the ResNet50 or

YOLOv2 block design by referring the Figure 3.20 and Figure 3.21 respectively and valid

the block diagram to ensure there is no error in the design. Once the block design is

validated, generate the HDL file of the design and copy to the Petalinux’s project directory.

Lastly, we can configure the rootfs file and BOOT.bin file by using the PetaLinux and

copy both files to the SD card.

36

Start

Import the DPU/YOLO IP

to Repository

Create Block Diagram of

CNNs

Generate HDL Files

Valid the Block

Design

Configure the System by

using PetaLinux

Install the CNNs

application

Collect the Results

End

Test Run

Figure 3.1: Flow Chart of ZedBoard for ResNet50 and YOLOv2

Yes

Yes

No

No

37

3.3 ZedBoard

3.3.1 Quantization and Compilation of pre-trained model

In this project, the pre-trained model for ResNet50 will be used to

demonstrate the CNNs application. There is no allow the original pre-trained

model of CNN directly implement on ZedBoard due to the large bandwidth and

bits number of the weight file. To solve this problem, the quantization and

compilation is required to apply for the pre-trained model of ResNet50.

Quantization is playing an important role to reduce the bandwidth or the

bits number so that the ZedBoard can meet the requirement to implement the

CNNs computation. This is because the original source files of CNNs are huge

and consist of 32-bit of floating-point. The quantization process is able to

minimize the number of bits to 8-bit, so CNN's computation demands can be

reduced and increased the power efficiency on the FPGA board. However, the

quantization of CNN models will not incur a significant loss in accuracy. Xilinx

has provided an AI Edge Toolkit called DNNDK to allow users to quantize and

compile the models of CNN before implementing CNNs on ZedBoard.

After quantized the CNN models, the process of compilation required to

take part so that the ZedBoard can run the compiled CNN model in SD card. In

this process, the elf file will be generated by the DNNDK toolkit after compiled

the CNN models by using the DNNDK toolkit[33]. The elf file is the same as

compressed CNN’s file. While demonstrating the CNN models on ZedBoard, the

elf file will temporarily export all CNN’s usage files such as libraries, frameworks,

coding, etc.

38

Figure 3.2: Files generated after quantization.

Figure 3.3: Script to compile prototxt and caffemodel

3.3.2 Create Inference Code and Deploy Code in C/C++

The inference codes for the ZedBoard use to run image classification in

this project. The programming language required to create the inference code is

C/C++ programming. For the ResNet model, the size of the input needs to set as

640 x 480 pixels and set the ethernet IP address the same as the subnet of the host

computer. This is because the output will export to the host display from ZedBoard

by following the IP address through the ethernet cable. Next, the directory of the

input image needs to indicate at the function, so that the ResNet50 can detect the

images and classify those images.

In this project, the DPU IP is an accelerator to accelerate the CNN in

ZedBoard. Therefore, the DPU kernel for running ResNet50 is required to define

in the inference code in C/C++. The CNN models of ResNet50 will compute

through the hardware implementation, but not the software implementation.

Besides, the inference code files must be renamed as main.cc(file in C/C++).

39

(a)

(b)

Figure 3.4: ResNet50 coding(a)Load DPU kernel for ResNet50(b)Create

DPU task for ResNet50

Figure 3.5: Export the ZedBoard output to host display.

3.3.3 Run the Makefile and Demostarte the Models

Makefile is a file that used to install or build the defined packages in the

system. In this project, makefile is used to install the created inference code in the

Zedboard operating system. The name of the model and directory file needed to

indicate inside the makefile. When executing the makefile on a Zedboard requires

Linux instructions to make it install the CNN model. After the terminal shows the

main.o file has built, the installation of the CNN model on Zedboard has

completed. To demonstrate the CNN models in the SD card, the Linux command

to execute the CNN model is needed to implement by using the Linux terminal

regarding the path directory. After run the command, the model of ResNet50 will

begin.

40

3.4 CNN on ZedBoard for Digits Recognition

This CNN is designed based on LeNet-5 architecture for the implementation of real-

time digits recognition on ZedBoard. Also, this design is a simplified version of the

LeNet-5 model. As mention in Chapter 2, the LeNet-5 architecture contains three

convolutional layers and two fully-connected layers, but there are only three

convolutional layers and one fully-connected layer in this CNN for digits recognition and

it is only using maximum pooling layer. Besides, the steps to run this CNN on ZedBoard

to achieve digit recognition is also very simple. Once connected the ZedBoard to the

personal computer via the USB cable, then start using the Vivado software to deploy the

structure network of the CNN with Verilog. After that, start running the synthesis and

implementation design to check whether the codes have errors or not. After complete

synthesis and implementation design, generate the bitstream file and upload to the PL part

of ZedBoard via the data cable. Lastly, connect the ZedBoard to the monitor with VGA

port and begin to implement the digit recognition. Figure 3.6 shows the flow chart of CNN

on ZedBoard for digits recognition.

41

Start

Create Design Source

Design the CNN in

Verilog

Generate bitstream

Run Synthesis and

Implementation Design

Program to ZedBoard

End

Figure 3.6: Flow Chart of CNN on ZedBoard for Digit Recognition

No

Yes

Add constraints file

42

3.4.1 Architecture of CNN on ZedBoard for Digits Recognition

As mention in Section 3.4, this network architecture is the simplified

version of LeNet-5. It only contains three convolutional layers and one fully-

connected layer in this design. The input image of the CNN for digits recognition

is a resized grayscale image of 32x32. The size of the convolution kernel in the

first convolution layer, Conv_1 is 5x5. The maximum pooling layer S2 performs

downsampling with 2x2 and stride two followed by a Sigmoid activation function

for non-linear processing. Next, the size of the convolution kernel of the second

convolutional layer, Conv_2 is 5x5 and the maximum pooling layer of the second

convolutional layer S4 same as the S2 downsampling with 2x2 and stride two. The

third convolutional layer, Conv_3 is used 5x5 convolution kernel which is same

as the size of the input third layer, so the output of the third convolutional layer

becomes a fully-connected layer. Figure 3.7 shows the network architecture of

CNN on ZedBoard for digit recognition.

Figure 3.7: Architecture of CNN on ZedBoard for digit recognition

43

Figure 3.8: Layer of CNN for digits recognition

3.4.2 Connection of OV7670 and Seven Segment Display LED to ZedBoard

For the implementation of this CNN, the output of digit recognition will appear

on the seven segment display LED while the OV7670 camera is used to capture the

patterns of a digit number as an input. Therefore, the components needed for this

implementation are seven segment display LED, OV7670 camera, and some jumper

wires. Figure 3.9 shows the method to connect the ZedBoard with those components,

44

and Table 2.3 and Table 2.4 shows the net names of the FPGA pins and the

connections to camera and seven segment display respectively.

Figure 3.9: Connection of ZedBoard for digit recognition

Table 2.3: The connection of FPGA pins to OV7670 camera

Pmod Signal Name ZedBoard Pin OV7670 Pin

JA1

JA1 Y11 PWDN

JA2 AA11 D0

JA3 Y10 D2

JA4 AA9 D4

JA7 AB11 RST

JA8 AB10 D1

JA9 AB9 D3

JA10 AA8 D5

JB1

JB1 W12 D6

JB2 W11 XCLK

JB3 V10 HRE

45

JB4 W8 SDA

JB7 V12 D7

JB8 W10 PCLK

JB9 V9 VSY

JB10 V8 SCL

Table 2.4:The connection of FPGA pins to seven segment display LED

Pmod Signal Name ZedBoard Pin Seven Segment

Diplay Led Pin

JC1

Differential

JC1_N AB6 e

JC1_P AB7 d

JC2_N AA4 c

JC2_P Y4 dp

JC3_N T6 f

JC3_P R6 g

JC4_N U4 a

JC4_P T4 b

46

3.5 PYNQ-Z2

Figure 3.10 shows the flow chart of PYNQ-Z2 for the implementation of BNN.

Compared with Figure 3.1, the flow chart of PYNQ-Z2 is simpler than ZedBoard

when implementing the CNN.This is because the PYNQ-Z2 is supported by the

Python libraries and framework, so that it able PYNQ-Z2 develop the CNN with

Python language. Firstly, the operating system required to download from the official

[32] and flash it on an SD card. The most important step is to connect the IP address

of the host computer as 192.168.2.99 which is the default IP address of PYNQ-Z2.

Once the PYNQ-Z2 is connected with the host computer, then go to the browser and

load to the IP address of PYNQ-Z2. So, we can download the BNN framework and

install the BNN package through a command on the console shown in Figure 3.13.

Figure 3.10: Flow chart of PYNQ-Z2.

3.5.1 Operating System Installation

To implement the Convolution Neural Networks on FPGA, there is

required to burn the img file of the PYNQ-Z2[32] to SD card as the operating

system for the boards. This is because the img files for the PYNQ-Z2 which

contain the Linux framework and environment. The Linux operating system is an

47

open-source operating system and suitable to implement CNNs on the FPGA

board because it is supported the Python libraries so that the CNNs framework

able to operate in this system.

3.5.2 Run the Jupyter Notebook

Jupyter Notebook is an online programming tool that allows users to

execute the coding directly. Due to the supported Jupyter Notebook in the PYNQ-

Z2, the flow chart in Figure 3.10 shows the implementation of the CNNs on

PYNQ-Z2 is very efficient than ZedBoard. This means that the PYNQ-Z2 only

takes a short cycle to implement CNNs applications such as image classification,

and YOLOv2. The advantages of Jupyter Notebook has helped the PYNQ-Z2 does

not require the extra softwares or tools to achieve the quantization and compilation

of CNN models. To run the Jupyter Notebook, the IP address of PYNQ-Z2 must

be the same as the host computer so that the host computer can display the files

and Jupyter Notebook from PYNQ-Z2 through the ethernet cable.

Figure 3.11: Connect PYNQ-Z2 IP address to host PC.

3.5.3 Build Hardware and Software Design for BNN

Vivado Design Suite is the main software used to build the hardware and

software design of BNN. Xilinx provided the repository of BNN to allow users to

design their tasks on the Linux machine. Besides, the repository included two

different networks topologies which are LFC network (Three-Layer Fully

48

Connected network) topology and CNV network (Convolution Network) topology.

In paper Y. Umuroglu et al. [15], the LFC network is used to classify the MNIST

dataset while CNV network is used to classify CIFAR-10 dataset. In this project,

the 1-bit weights and 1-bit activation (W1A1) for CNV and LFC used to build the

BNN model. Launch the shell script make-hw.sh and make-sw.sh with passing

parameters for the target network and the target platform with the command and

the output report will be generated in a text file.

(a)

(b)

Figure 3.12: Command to build design of BNN (a) Hardware design

(b) Software design

3.5.4 Package Installation for BNN

In order to run the BNN model in PYNQ-Z2, the BNN package is required

to install through the Linux terminal on PYNQ-Z2. The purpose to the package is

to build the framework of FINN for BNN. There are some source files contains

in BNN package such as FINN libraries, LFC and CNV classifier, bitstreams for

PYNQ-Z2 and pre-trained MNIST and Cifar10 dataset.

49

Figure 3.13: Command of BNN package installation.

(a)

(b)

Figure 3.14: Coding for Cifar10(a)Using CNV classifier(b)10 Classes

classify by CIFAR-10.

(a)

(b)

Figure 3.15:Coding for MNIST(a)Using LFC classifier(b)Digits

classify by MNIST.

3.5.5 Darknet Installation for YOLOv2

In this project, the framework of YOLOv2 used for object detection called

Darknet[34]. Darknet is an open-source and serves for YOLO usually Darknet

uses to train the neural network for the object detection. The repository of Darknet

contains some pre-trained weights (Yolov2.weight) and configuration

50

(Yolov2.cfg) files which trained on different architectures. The dataset used to

train the YOLOv2 model is COCO dataset and there are 80 classess availabe to

classify by YOLOv2.

Figure 3.16: Coding applies the pre-trianed weights and bias.

3.5.6 Create and Run the inference code in Python.

Most of the machine learning and deep learning are developed based on

Python. Therefore, the Jupyter Notebook is able directly to create and run the CNN

models in Python. In this project, the inference codes of YOLOv2 and Cifar10 are

created in Python, so that the inference codes can execute in the Jupyter Notebook.

For the YOLOv2, the Vivado software required to use to generate the bin

file and tcl file. The bin file contains the block design of YOLO IP core with

PYNQ Processor, while the tcl file is the declaration of the I/O pins for the IP

integrator. To implement the YOLOv2, these two files are crucial because the bin

file is allowing the FPGA computes the YOLOv2 algorithm through the hardware

implementation. The input size of images is not permitted to exceed 760 x 480

51

pixels. This is because the very high definition of images will cause the PYNQ-

Z2 has ran out of its memory.

For the BNNs models, the bin file does not require to include inside the

coding. According to the [15], the binarized CNNs have good performance and

high efficiency allows the small model of devices to implement CNNs without

reducing the accuracy of CNN performance. Therefore, minimize the weights and

floating-points of CNNs is one of the approaches to accelerate the CNN on FPGA.

Figure 3.17: Import the YOLOv2 IP.

Figure 3.18: Allocated the memory of PYNQ-Z2.

52

Figure 3.19: Network structure of YOLOv2

3.6 Designing Block Design and HDL Files Generation

After successfully importing IP into the IP repository, we are going to start

creating the block design by using the Vivado Tools. Figure 3.5 and Figure 3.6 show

the block design mapping of ResNet50 and YOLOv2, respectively.

53

Figure 3.20: Block Design of ResNet50.

Figure 3.21: Block Design of YOLOv2.

The ARM core processing_system7_0 is the processing system related to Zynq-

7000 SoC. Then, we added the clocking wizard into our module and set the output

clock as 150MHz for both designs. Once the connection is complete, we required to

validate the block design to check the connection error. Next, we can launch the

synthesis and implementation run if there are no warning messages shown in the

terminal. The results of post-synthesis and post-implementation utilization resources

54

and power consumption will show in graphical view where we can see in Chapter 4

later. Lastly, we exported the bitstream file and HDL file to the Vivado Tools directory

path and built the application template for RedsNet50 and YOLOv2.

3.7 Data Flow of CNNs on FPGAs

3.7.1 Data Flow of ResNet50 and YOLOv2 on ZedBoard

The inference operations perform using the DPU and YOLO IP have three states.

The three states are image pre-processing, compute and image post-processing. Image

processing the process that occurred on each image or frame before it is fed to the network.

In the deep learning, each neural network is required the pre-processing. For the compute

state, this is the processing in the IP integrator to accelerate the elements of the neural

network graph in the Zynq device’s programmable logic using the DPU IP and YOLO IP

core. For the image post-processing state, this is the process that occurred following the

inference.

Firstly, the ARM processor on the processing system (PS) side of the Zynq device

reads the image files from the SD card or resolution video from webcam and then loads

the frames into PS DDR. After this, the ARM processor scales the frame size according

to the input specification of the YOLOv2 or ResNet50 and stores back to the PS DDR.

For the ResNet50, the ARM processor writes the Configuration Module to set up DPU

for image processing and starts execution. The IP uses the DMA from the data controller

module to fetch the image or video frame from PS DDR. The IP runs the inference on the

frame using the local memory such as Block RAM(BRAM) or Ultra RAM(URAM).

55

Lastly, the IP writes the output activations back to PS DDR and the ARM processor will

read the results from PS DDR and display the results of detection or classification.

Figure 3.22: Operation and Data Flow for ZedBoard.

3.7.2 Data Flow of BNN on PYNQ-Z2

For the BNN in PYNQ-Z2, there are two different types of implementation called

hardware implementation and software implementation. Although these two types of

implementation are running on PYNQ-Z2, the operation flows and requirements are very

different. For the hardware implementation, the computation of BNN is more rely upon

PL on PYNQ-Z2. Besides, there is a function called overlays, or hardware libraries used

to accelerate the software application in PYNQ-Z2. The theoretical of hardware

implementation to provide acceleration is because of the image processing functions on

the FPGA fabric in PL controlled from Python running in PS. Firstly, the input image in

SD card passed into the PL and the image classification performed. Then, the Python

IP Core

56

application programming interface (API) will be responsible for resizing the input image

to the format required by CIFAR-10 and MNIST networks and transferring the image

between the hardware and software. For the software implementation, the BNN is purely

using the embedded arm processor Cortex-A9 in PS to implement the image classification

with Python libraries and framework. As a comparison, the same input image can be

classified using a software implementation of the algorithm on PYNQ-Z2.

Figure 3.23: Operation and Data Flow for PYNQ-Z2.

PS

PL

ARM

Cortex-A9

Accelerator

Peripheral

Memory

Interface

Fixed

Peripherals

1. USB

2. I2C

3. UART

4. GPIO

1. Display

2. PCIe

3. Interface N

4. Memory

57

Figure 3.24: ZedBoard Setup.

Figure 3.25: PYNQ-Z2 setup.

58

3.8 Chapter Summary

In this project, the ResNet50 and YOLOv2 applied on ZedBoard while the BNN and

YOLOv2 applied on PYNQ-Z2. The flowchart of this project for implementation of

CNNs on FPGAs and the significant steps have discussed respectively in this chapter in

order to accelerate the CNNs on FPGA to allow image classification and object detection.

Besides, the data flow of each CNN operated on FPGA explained in Section 3.7.

59

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

This chapter presents the collected results from YOLOv2, ResNet50 and BNN

(CIFAR-10 and MNIST) on ZedBoard and PYNQ-Z2. As stated earlier, the objectives of

this work were successfully achieved by using two FPGA boards which are ZedBoard

and PYNQ-Z2. The results of accelerated the CNN on FPGA boards will be shown in

Section 4.2. The power consumption, execution time, performances and efficiency of each

networks will be presented in Section 4.6.

60

4.2 Floating-point Operations Per Second and Execution Time

4.2.1 YOLOv2

For the YOLOv2 on ZedBoard, we evaluate the performance of FPGA running

CNNs through the simulation test. The convolutional neural network of each layer has a

FLOPS value whether it is running Resnet50 or YOLOv2. FLOPS stand for floating-point

operations per second which is using to determine the FPGA performances in each

convolutional layer. At the same time, the program would make the time of execution for

each layer after completed its execution. Besides, the time taken to predict an image is the

sum of execution time for each layer. Therefore, the performance of ZedBoard is the

accumulative of FLOPS values from each convolutional layer divided by the total

execution time for each layer.

𝐺𝑂𝑃 = ∑ 𝐹𝐿𝑂𝑃𝑆

𝑁

𝑁=0

𝑇𝑍𝑒𝑑 = ∑ 𝑇𝐸

𝑁

𝑁=0

𝐺𝑂𝑃 /𝑠 =
𝐺𝑂𝑃

𝑇𝑍𝑒𝑑

Where:

GOP = Sum of floating-point operations

FLOPS = Floating-point operations per second for each layer

GOP /s = Performance of FPGA

61

𝑇𝐸 = Execution time for each layer

𝑇𝑍𝑒𝑑= Sum of 𝑇𝐸 on ZedBoard

N = Number of layers

Figure 4.1: Results of YOLOv2 on ZedBoard

For YOLOv2 on PYNQ-Z2, we can obtain the FLOPS values from the Xilinx

Vivado HLS simulation which is the same as ZedBoard. So, the GOP of YOLOv2 on

PYNQ-Z2 is also 29.464 GOP same as ZedBoard. However, according to the source code

of YOLOv2 for PYNQ-Z2, the execution time for each layer on PYNQ-Z2 is the time

taken by FPGA to process the object detection. Therefore, the performance of PYNQ-Z2

62

is the accumulative of FLOPS values from each convolutional layer divided by the FPGA

processing time the object detection.

𝐺𝑂𝑃 /𝑠 =
𝐺𝑂𝑃

𝑇𝑃𝑌𝑁𝑄

Where:

𝑇𝑃𝑌𝑁𝑄= Time taken of FPGA to process the object detection on PYNQ-Z2

Figure 4.2: Execution time for PYNQ-Z2

63

Figure 4.3: Results of YOLOv2 on PYNQ-Z2

4.2.2 ResNet50

By using DNNC tools developed by Xilinx, we compile the network model of

ResNet50. After the compilation is successful, the DNNC tool will generate the ELF

object files and kernel information. The function of the ELF file is the files for driving the

ResNet50 model on ZedBoard. Moreover, the kernel information has also included a total

of FLOPS values so that we enable to calculate the performance, GOP/s of ResNet50 on

ZedBoard. The ResNet50’s source code has defined the values of GOP which is the sum

64

of FLOPS for each layer as 7.71 GOP. Besides, the performance, GOP/s of ZedBoard

running the Resnet50 is equal to GOP divided by the execution time.

Figure 4.4: Kernel information during compilation

(a)

(b)

Figure 4.5: Source code (a) Define the GOP value (b) Performance

calculation (GOP/s)

65

Figure 4.6: Results of ResNet50 on ZedBoard.

4.3 Synthesized and Implemented Design

The design was synthesized and implemented by using the Xilinx Vivado

development tools. This tool will be summed up all the design summary of the bit file.

4.3.1 Resource Utilization

Figure 4.7 shows the summary of resource utilization of YOLOv2 on PYNQ-Z2

and ZedBoard respectively. The resource utilization of these two FPGA boards is the same

because both are same Zynq-7000 family of SoC. The YOLOv2 is using about 71% of

the FPGA Look-up Tables for PYNQ-Z2 and 70% of the FPGA Look-up Tables for

ZedBoard. Besides, the PYNQ used 34% of flip-flop and ZedBoard used 33% of the flip-

flops. Next, PYNQ-Z2 and ZedBoard both have used 63% of the Block RAM. Lastly, this

design also used about 70% of DSPs on PYNQ-Z2 and ZedBoard.

66

The ResNet50 design currently used only 57% of the FPGA Look-up Tables, 55%

of the flip-flops and 83% of the Block RAM. Furthermore, the design of ResNet50 has

used 88% of DSPs on ZedBoard.

For the BNN on PYNQ-Z2, the CIFAR-10 and MNIST design have used 45.86%

and 43.11% LUTs respectively. Besides, the CIFAR-10 used 36.19% of flip-flops on

PYNQ-Z2 while the MNIST only used 25.47% flip-flops on PYNQ-Z2.

Next, the design of CNN on ZedBoard for digit recognition currently used only

43.73% of the FPGA Look-up Tables, 25.16% of the flip-flops and 74.29% of the Block

RAM. Furthermore, this design has used 41.36% of DSPs on ZedBoard.

(a)

67

(b)

(c)

(d)

68

(e)

(f)

`

Figure 4.7: Resource utilization (a) YOLOv2 for PYNQ-Z2 (b) YOLOv2 for

ZedBoard (c) ResNet50 for ZedBoard (d) CIFAR-10 for PYNQ-Z2 (e)

MNIST for ZedBoard (f)CNN on ZedBoard for digits recognition

4.3.2 Power Usage

As shown in Figure 4.8, the YOLOv2 consumes 1.689W of dynamic power and

0.140W of static power on PYNQ-Z2. Therefore, the total power consumption of

YOLOv2 on PYNQ-Z2 is 1.829W. Then, the total power consumption of YOLOv2 on

ZedBoard is 3.032W with 2.830W of dynamic power and 0.202W of static power. Next,

the ResNet50 currently consumes 3.008W of dynamic power and 0.217W of static power

69

with a total power consumption of 3.225W on ZedBoard. Moreover, the total power

consumption of CNN on ZedBoard for digits recognition is 1.911W with 1.750W

dynamic power and 0.161W static power.

(a)

(b)

70

(c)

(d)

Figure 4.8: Power Consumption (a)YOLOv2 on PYNQ-Z2 (b)YOLOv2 on

ZedBoard (c)ResNet50 on ZedBoard (d)CNN on ZedBoard for digits

recognition

71

4.4 Experimental Environment

4.4.1 YOLOv2

To analyze the power efficiency and power consumption of FPGAs running CNNs.

We set up two different platforms which are CPU-only and GPU-only to run the YOLOv2

so that the data can be obtained and compared with the FPGAs and the object detection

tested by using the pre-trained model. Table 4.1 shows the specification of the platforms.

We have installed the drivers for graphics cards (CUDA and cuDNN) to implement the

object detection of YOLOv2. To ensure that the GPU-only used during the computation

for object detection in this experiment, we have set the GPU and cuDNN option to ‘1’

in the script and the other set to ‘0’ before implementing the installation. Conversely，

to enable CPU-only used in this experiment，we have set the OpenCV option in the script

to "1" and the other option set to "0". This means that we should install the OpenCV

library before the start of the installation.

Table 4.1: Specification of experimental platforms

 Personal Computer

OS Ubuntu 16.04 LTS Ubuntu 16.04 LTS

CPU AMD Fx-8300 @ 3.4 GHz Intel i5-4200M @ 2.5GHz

GPU
Geforce GTX 750Ti

(2GB RAM)
-

RAM 8GB 8GB

Storage Apecer 240GB SSD Apecer 240GB SSD

72

(a)

(b)

Figure 4.9: Installation script (a)Enable GPU-only computation (b) Enable

CPU-only computation

Figure 4.10: Results of YOLOv2 for GPU-only

73

In this work, we install a GPU monitoring software called ‘nvtop’ on the personal

computer to enable us to monitor the functionality of GPU during executing the object

detection. Based on Figure 4.10, we clearly to see that the platform is using the graphic

card of device slot 0 named GPU0 for this object detection and the used of graphic card’s

memories (MEM) is achieved 75%. That means the GPU is working during implement

the YOLOv2 on the personal computer.

Figure 4.11: Results of YOLOv2 for CPU-only

For the ResNet model, we compare our implementations with the other platforms.

Therefore, we can observe the performance and power efficiency by referring to the

74

benchmarks of previous research to show our work has achieved high performance and

efficiency.

To evaluate BNN on PYNQ, we compare both CIFAR-10 and MNIST with

software implementation on PYNQ-Z2 to show that the accelerate BNNs inference on

FPGA. In this experiment, we will examine the inferred time and classification rate of

FPGA implementation and software implementation as an accelerated evaluation.

4.4.2 CNN on ZedBoard for Digits Recognition

In order to test the accuracy of CNN on ZedBoard for digits recognition, the first

things need to prepare is some digit images for OV7670 camera to capture as an input.

When the camera detects the input images, the detected image will be exported to the

monitor directly to achieve real-time detection. In this experiment, we prepared several

digital images and copied to the tablet. Once the camera detects the digits, it starts the

convolutional operation and finally displays the predicted digits on the seven-segment

display LED. Figure 4.12 shows the results of recognition in this experiment. Obviously,

the accuracy of the CNN recognition number on ZedBoard is satisfactory.

75

(a)

(b)

(c)

Figure 4.12: Results of recognition in this experiment (a) Digit number 1 (b) Digit

number 7 (c) Digit number 8

76

4.5 Evaluation of BNN

In this section, we test the CIFAR-10 and MNIST dataset to run image

classification and handwriting digits recognition respectively on PYNQ-Z2 to achieve the

hardware and software implementation of BNN. We select a deer image and two

handwritten digits, which are '4' and '8' become the input of BNN in this experiment. By

changing the 'hw' and 'sw' in classification command, we can target the types of

implementation which we want to execute. Once the classification completed, the output

of image classification will show the inference took means the time taken to predict an

image in a microsecond and rate of classification means the number of images classifies

per second.

(a)

(b)

77

(c)

Figure 4.13: Results of BNN in hardware and software (a) CIFAR-10 (b) MNIST

for digit number 4 (c) MNIST for digit number 8

Based on the results in Table 4.2, we observed that both CIFAR-10 and MNIST

of BNN running in hardware are accelerated. The parameters of evaluation in this

experiment are inference took and the classification rate. For the CIFAR-10, the inference

took 1.697 milliseconds and the classification rate is 589 images per second during the

hardware implementation while software implementation inference took 1588.3

milliseconds and only 0.63 images per second. For the MNIST, the inference took of

handwritten digit number 4 is 0.024 milliseconds and the classification rate is about 41700

images per second, which are the same as the handwritten digit 8 during the hardware

implementation. As for software implementation of MNIST, the inference took to classify

the handwritten digit 4 and handwritten digit 8 is 79.77 milliseconds and 81.68

milliseconds respectively. Besides, the classification rate of handwritten digit 4 is only

12.54 images per second and the classification rate of handwritten digit 8 is 12.24 images

per second.

78

Table 4.2: Comparison of hardware and software implementation of BNN

on PYNQ-Z2

Dataset CIFAR-10 MNIST MNIST

Input image Deer Handwritten digit 4 Handwritten digit 8

Implementation Hardware Software Hardware Software Hardware Software

Inference took

(ms)
1.697 1588.3 0.024 79.77 0.024 81.68

Classification

rate (image per

second)

589.28 0.63 41666.67 12.54 41666.67 12.24

4.6 Analyzing Power Efficiency of CNNs on FPGA

In this project, the power efficiency is also one of the critical criteria through the

experiments on the FPGAs. As mentioned above, the objective of these experiments is to

measure and analyze the computational performance and efficiency of running CNNs on

personal computer and FPGAs. Therefore, we can know whether the power consumption

of the FPGAs is too large by comparing the power efficiency of the personal computer.

Since we have obtained the performance and power of the FPGAs to run different CNNs,

we can use the data of performance divided by the power to evaluate the power efficiency.

𝑃𝑜𝑤𝑒𝑟 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦, 𝐺𝑂𝑃 /𝑠 / 𝑊 =
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒, 𝐺𝑂𝑃 /𝑠

𝑃𝑜𝑤𝑒𝑟, 𝑊

79

Based on Table 4.3, we improve the power efficiency on PYNQ-Z2 and ZedBoard

running YOLOv2 from 0.133GOP/s/W to 14.765GOP/s/W and 0.133GOP/s/W to

5.613GOP/s/W respectively. However，the power efficiency of ZedBoard still cannot

higher than the power efficiency of the graphics card because the graphics card has the

support of CUDA to improve the graphics card's ability to compute the floating-point.

Hence, the graphics card can achieve object detection in just 0.12 seconds which is faster

than both FPGAs. It is worth making special mention that the FPGAs only uses 3.032W

and 1.829W to implement the YOLOv2. This result shows the power consumption to run

YOLOv2 on FPGA is low. Besides, we compared with previous works and observed that

the power efficiency of PYNQ-Z2 in this work is also improved from 0.05GOP/s /W to

14.765GOP/s /W and 8.89GOP/s /W to 14.765GOP/s /W for CPU and GPU respectively.

The reason YOLOv2 has good performance on Zedboard and PYNQ-Z2 is that we use

Vivado HLS to pack the RTL into the IP block. First of all, we need to import Darknet's

YOLOv2 source code to Vivado HLS and perform the compilation, simulation and

debugging of the corresponding C language code. After that, the Vivado HLS will

integrate the C algorithm into RTL implementation and generate a comprehensive

analysis report and analyze our design. Finally, we can package the RTL into the IP block

and connect it with Zynq-7000 Soc IP in the Vivado. Besides, Vivado HLS can determine

which steps performed in each clock cycle, and then predict the number of LUTs, registers,

BRAM, and DSP48 use when running YOLOv2. In the resource utilization of YOLOv2,

we know that YOLOv2 uses about 70% of the DSP, which shows that the DSP almost

completely used. The DSP is mainly used for the adder and multiplier in the CNN, so

Zedboard and PYNQ-Z2 have achieved good performance in calculating delay and power

80

efficiency. Although the computing ability of Zedboard and Pynq-Z2 is not higher than

the GPU platform, the high-power consumption of the graphic card causes the power

efficiency of the graphics card is inefficient.

 By referring to Table 4.4, we can observe that in this cross-platform experiment

running YOLOv2, the mean average accuracy (mAP) value of PYNQ-Z2 is the lowest,

although PYNQ-Z2 has good efficiency. This shows that running YOLOv2 on PYNQ-Z2

must trade-offs under power efficiency and accuracy. Therefore, it is better to run

YOLOv2 on the ZedBoard. Although the performance of running YOLOv2 on Zedboard

is not as good as the graphics card (GTX750Ti), we can observe that the mean average

precision (mAP) value of Zedboard is the same as the CPU and GPU. In addition, the

power consumption of Zedboard only needs 5.6W which is lower than the graphics card

(GTX750Ti). Therefore, in this cross-platform experiment, we can conclude that

Zedboard is the most suitable for running yolov2 to achieve object detection.

81

Table 4.3: Performance comparison for YOLOv2

 [18] [23] This works

Devices
GTX

Titan X
E5-2620v4

i5-4200M

@2.5GHz
GTX750Ti ZedBoard

PYNQ-

Z2

CNN
Sim-

YOLOv2
YOLOv2 YOLOv2 YOLOv2 YOLOv2 YOLOv2

Platform GPU CPU CPU GPU FPGA FPGA

Execution

time, s
N/A N/A 13.550 0.118 1.7311 1.091

Operations,

GOP
17.18 N/A 62.944 62.944 29.464 29.464

Power, W 170 85 35 60 3.032 1.829

Performance,

GOP/s
1512 4.11 4.645 533.424 17.020 27.006

Power

Efficiency,

GOP /s/W

8.89 0.05 0.133 8.890 5.613 14.765

Figure 4.14: Graph of Power Consumption for YOLOv2

170

85

35

60

3.032 1.829
0

20

40

60

80

100

120

140

160

180

Power

Power Consumption, W

GPU(GTX Titan X) CPU(E5-2620v4) CPU(i5-4200M)

GPU(GTX750Ti) FPGA(ZedBoard) FPGA(PYNQ-Z2)

82

Figure 4.15: Graph of Power Efficiency for YOLOv2

Table 4.4 The cross-platform comparison data for mean average precision(mAP)

in this work

 Platform

Classes
CPU

(i5-4200M)

GPU

(GTX750Ti)

FPGA

(ZedBoard)

FPGA

(PYNQ-Z2)

Dog

0.89 0.89 0.89 0.67

Cat

0.71 0.71 0.65 0.55

Person

0.83 0.83 0.90 0.90

Mean Average Precision

(mAP)

0.81 0.81 0.81 0.71

8.89

0.05 0.133

8.89

5.613

14.765

0

2

4

6

8

10

12

14

16

Power Efficiency

Power Efficiency, GOP/s / W

GPU(GTX Titan X) CPU(E5-2620v4) CPU(i5-4200M)

GPU(GTX750Ti) FPGA(ZedBoard) FPGA(PYNQ-Z2)

83

By referring the Table 4.5, we observed that the power efficiency of running the

ResNet model on ZedBoard is 23.7GOP/s/W which is the highest efficiency on all

platforms. We improve the power efficiency of ResNet from 0.63GOP/s/W to

23.7GOP/s/W. In addition, the power consumption of running ResNet on ZedBoard is

only 3.225W which is the lowest on all platforms that we tested. The reason of ResNe-50

can achieve such high-power efficiency on Zedboard is that we use the DNNDK

framework developed by Xilinx and this resource is public to Xilinx user. As we know

that the process of CNNs requires intensive calculations and high memory bandwidth.

Therefore, a tool called Decent (Deep Compression Tool) in DNNDK is used to quantify

the trained data of the ResNet-50 model and weight distribution to address in order to

achieve high performance and energy efficiency. After the ResNet-50 model is quantized,

we use a compilation tool called DNNC (Deep Neural Network Compiler) to compile the

quantized files. DNNC is a special compiler designed by Xilinx for DPU IP. It enables

DPU to balance computing workload and memory access to maximize the DPU resources

utilization. When the compilation is completed, an elf file will be generated and copied to

the root file of the SD card. The Elf file is like a driver which is used to drive the DPU on

ZedBoard to run the ResNet-50 model.

84

Table 4.5: Performance comparison with previous for ResNet

 [25] [26] [27] [28] This work

Devices
Xeon E5-

2650v2

GTX

TITAN

X

GSMD5
Arria

10

Zynq

Z7045
ZedBoard

Platform CPU GPU FPGA FPGA FPGA FPGA

Model Res-152 Res-152 Res-50 Res-50 Res-50 Res-50

Operations, GOP N/A N/A N/A 7.74 N/A 7.71

Power, W 95 250 25 45 9.61 3.225

Performance,

GOP/s
119 1661 226.47 619.13 128 76.434

Power Efficiency,

GOP /s/W
0.63 6.64 9.06 13.76 13.32 23.70

Figure 4.16: Graph of Power Consumption for ResNet

95

250

25
45

9.61 3.225

0

50

100

150

200

250

300

Power

Power Consumption, W

CPU(E5-2650) GPU(TITAN X) FPGA(GSMD5) FPGA(Arria 10) FPGA(Z7045) FPGA(ZedBoard)

85

Figure 4.17: Graph of Power Efficiency for ResNet

4.7 Cost Estimation (MYR) Across Different Platforms

Another interesting section worth exploring in this project is about cost estimation.

The reason is when we want to implement a detection or monitoring system, we cannot

ignore the cost required to set up the system. In this section, we will compare all the

platform appeared and referred in our project to accelerate the CNNs. Table 4.6 shows

the price of that hardware in 2020. These estimated prices are provided by the Internet

and those are converted in Malaysian ringgit units.

0.63

6.64

9.06

13.76 13.32

23.7

0

5

10

15

20

25

Power Efficiency

Power Efficiency, GOP/s / W

CPU(E5-2650) GPU(TITAN X) FPGA(GSMD5) FPGA(Arria 10) FPGA(Z7045) FPGA(ZedBoard)

86

Table 4.6: The cost estimation across different platforms.

Hardware Platform Cost /unit (MYR)

NVIDIA GTX750Ti GPU 650

NVIDIA GTX TITAN X GPU 4,300

Intel i5-4200M CPU 970

Intel Xeon E5-2620v2 CPU 750

Digilent ZedBoard Dev Kit FPGA 1,900

TUL PYNQ-Z2 Dev Kit FPGA 510

Intel Arria 10 GX 1150 Dev Kit FPGA 20,000

NVIDIA Jetson TX2 Embedded System 3,500

In order to enable the GPU and CPU platform to be fully functional, it must be

equipped with a high-configuration RAM, power supply, motherboard and hard drive to

build a computer. Therefore, the total price of the computer far exceeds the price shown

in Table 4.6. On the contrary, the FPGA platforms do not require any additional hardware

to speed up the operation. This is because the FPGA platforms are already a complete

development board, developers can directly implement CNNs on it. As we know that

every extra penny deserves its value. The price of Arria 10 is higher than Zedboard and

PYNQ-Z2 because of its categories as high configuration board. For that reason, Arria 10

can further design the CNNs application such as real-time object detection or face

detection compared with ZedBoard and PYNQ-Z2.

87

4.8 Chapter Summary

 In the first part of this chapter, the ResNet50 and YOLOv2 models are

implemented on ZedBoard while BNN and YOLOv2 models are implemented on PYNQ-

Z2. The pre-trained model of BNN is trained from the CIFAR-10 dataset for image

classification and the MNIST dataset for handwriting recognition. In the second part of

this chapter, the FLOPs and execution time of the CNNs are determined to evaluate the

power efficiency and power consumption of the FPGAs. Moreover, the resource

utilization and power usage of CNNs on FPGAs also obtained respectively through the

Vivado software. The ResNet-50 and YOLOv2 results are compared with the previous

research so that the accelerated performances are able to observe. Besides, the BNN

model trained with CIFAR-10 and MNIST dataset are compared to the hardware and

software implementation to observe CNN is accelerated on FPGA. Lastly, the cost

estimation across the different platforms is also compared in MYR.

88

CHAPTER 5

CONCLUSION AND FUTURE WORKS

5.1 Introduction

This chapter will summarize the research results and conclude all the works of this

project. Next, the recommendation for the future work and the enhancements of this

project are suggested in this chapter so that the quality of the project can be improve.

5.2 Conclusion

The convolutional neural network (CNN) has huge applications in this modern

world such as the video surveillance system, mobile robot vision, image search engine in

the database, etc. The rapid growth of CNN has shown that the performance of CNN now

surpasses the other type of visual recognition algorithms, and even beyond the human

accuracy on certain conditions. However, CNN is computationally intensive and

89

implementation of high performance depends on the computing platform. Many

researchers have tried to accelerate the computation of CNN on different platforms such

as CPU, GPU, ASIC, embedded system and FPGA in order to improve the performance

of CNN.

Until now, GPUs still have the best performance of computation in deep learning.

Due to the GPUs have high-performance computing ability, the electricity cost, power

consumption, and price of GPUs are the highest among all the platforms. Therefore, most

of the researchers have been attracted by the flexibility of FPGAs and turned to develop

the FPGAs to achieve CNN acceleration on FPGAs. Compared with the graphics card,

FPGA has a short development cycle and it can be reprogrammed, so that FPGA is easier

to achieve the target of high performance with low power consumption.

Although the CPU platform supports the different programming frameworks, it is

not the main choice for designers to select as the CNN accelerator. This is because CPU

is only suitable for simple and small CNN models with short training time and the CPU

will be forbidden the total execution time machine learning training when it is running a

large model and large dataset. For embedded systems such as NVIDIA Jetson TX2, it

cannot effectively perform the original code to achieve real-time performance even the

embedded systems have the advantage of low power consumption like the FPGA. This

means the embedded system only can execute the modified code to achieve real-time

performance. Obviously, FPGA has great potential to be applied to CNN.

In Chapter 4, the power consumption and performance of ResNet50, YOLOv2

and BNN are analyzed and evaluated. By referring to the prediction results of YOLOv2

on the ZedBoard board, the accuracy of object recognition will not be affected by

90

changing the platform, and it still achieved the similar prediction results compared with

the graphics card results. Compared with other platforms of the previous research, CNN's

performance on ZedBoard and PYNQ-Z2 has improved. However, the power efficiency

of ZedBoard in YOLOv2 still cannot be higher than GTX TITAN X because the resource

utilization in ZedBoard has not achieved maxima.

For the ResNet50, the power consumption of ZedBoard is less than both CPU

(Xeon E5-2650) and GPU (GTX TITAN X) platform about x29 times and x78 times

respectively. Then, the power efficiency of ZedBoard is increased about x38 times

compared with CPU (Xeon E5-2650) and x4 times compared with GPU (GTX TITAN

X). For the YOLOv2, the power consumption of ZedBoard is less than CPU (i5-4200M)

and GPU (GTX 750Ti) about x12 times and x19 times respectively, while the power

consumption of PYNQ-Z2 is less than CPU (i5-4200M) and GPU (GTX 750Ti) about

x19 times and x33 times respectively. Next, the power efficiency of PYNQ-Z2 is better

than CPU (i5-4200M) and GPU (GTX 750Ti) about x111 times and x2 times respectively.

Besides, the time taken of ZedBoard and PYNQ-Z2 to predict the image is x4 times and

x6 times respectively faster compared with CPU (i5-4200M). For the BNN trained with

CIFAR-10 dataset, the time taken for hardware implementation to classify an image is

about x936 times faster than the software implementation. For the BNN trained with

MNIST dataset, the time taken for hardware implementation to classify a digit number is

about x3403 times faster than the software implementation.

 Finally, we have succeeded to achieve the objectives of this project as mention in

Chapter 1. We investigated a few methods and selected the most suitable methods to

accelerate CNN. Besides, we optimized and analyzed the accelerated CNNs on ZedBoard

91

and PYNQ-Z2 to achieve low power consumption and high-power efficiency. Next, we

evaluated the performance of ZedBoard and PYNQ-Z2 compared with previous

researches and concluded that FPGA is the best platform to accelerate CNN.

5.3 Recommendation

To enable the CNNs to achieve the most effective performance in FPGA, there

are still have some areas required to be enhanced for future work.

Since there are only 70% of DSPs usage in FPGAs used for YOLOv2. To improve

the power efficiency of YOLOv2 in this project, one of the methods is to increase the DSP

usage of FPGA. The function of DSP can improve the ability of FPGA to compute CNN

and it also will provide more channels to be processed at a given time. More channels

mean that the number of memory transactions decreases and the performance capability

of each layer in neural network increase.

 Next, the other method can use to improve the precision results of YOLOv2 on

PYNQ-Z2 is replacing the default pre-trained file with the large training dataset. When

more images used as the labelled dataset would improve the training results and get high

accuracy precision results.

Another possible way of improving performance would be to optimize the already

existing logic and block design. Due to the reconfiguration characteristic of FPGA, the

optimization of design can allow it to achieve high-speed processing and high-power

efficiency.

92

REFERENCES

[1] D. Gschwend, “ZynqNet: An FPGA-Accelerated Embedded Convolutional

Neural Network,” no. August 2016, pp. 1–102, 2016.

[2] “Classification of Road Side Material Using Convolutional Neural Network and

a Proposed Implementation of the Network Through Zedboard Zynq 7000 Fpga,”

no. December, 2017.

[3] L. Huang, Y. Yang, Y. Deng, and Y. Yu, “DenseBox: Unifying Landmark

Localization with End to End Object Detection,” pp. 1–13, 2015.

[4] E. Cengil, A. Çinar, and E. Özbay, “Image classification with caffe deep learning

framework,” 2nd Int. Conf. Comput. Sci. Eng. UBMK 2017, pp. 440–444, 2017.

[5] D. Danopoulos, C. Kachris, and D. Soudris, “Acceleration of image classification

with Caffe framework using FPGA,” 2018 7th Int. Conf. Mod. Circuits Syst.

Technol. MOCAST 2018, pp. 1–4, 2018.

[6] M. Komar, P. Yakobchuk, V. Golovko, V. Dorosh, and A. Sachenko, “Deep

Neural Network for Image Recognition Based on the Caffe Framework,” Proc.

93

2018 IEEE 2nd Int. Conf. Data Stream Min. Process. DSMP 2018, pp. 102–106,

2018.

[7] B. Liu, D. Zou, L. Feng, S. Feng, P. Fu, and J. Li, “An FPGA-based CNN

accelerator integrating depthwise separable convolution,” Electron., vol. 8, no. 3,

2019.

[8] Z. Ren, S. Yang, F. Zou, F. Yang, C. Luan, and K. Li, “A face tracking framework

based on convolutional neural networks and Kalman filter,” Proc. IEEE Int. Conf.

Softw. Eng. Serv. Sci. ICSESS, vol. 2017-Novem, pp. 410–413, 2018.

[9] C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine: Toward

uniformed representation and acceleration for deep convolutional neural

networks,” IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. 38, no. 11, pp.

2072–2085, 2019.

[10] Y. Tu, S. Sadiq, Y. Tao, M. L. Shyu, and S. C. Chen, “A power efficient neural

network implementation on heterogeneous FPGA and GPU Devices,” Proc. -

2019 IEEE 20th Int. Conf. Inf. Reuse Integr. Data Sci. IRI 2019, pp. 193–199,

2019.

[11] Y. Han and E. Oruklu, “Traffic sign recognition based on the NVIDIA Jetson TX1

embedded system using convolutional neural networks,” Midwest Symp. Circuits

Syst., vol. 2017-Augus, pp. 184–187, 2017.

[12] Z. Jiao, Y. Yang, H. Zhu, and F. Ren, “Realization and Improvement of Object

Recognition System on Raspberry Pi 3B+,” Proc. 2018 5th IEEE Int. Conf. Cloud

Comput. Intell. Syst. CCIS 2018, pp. 465–469, 2019.

[13] L. Stornaiuolo, M. Santambrogio, and D. Sciuto, “On how to efficiently

94

implement deep learning algorithms on PYNQ Platform,” Proc. IEEE Comput.

Soc. Annu. Symp. VLSI, ISVLSI, vol. 2018-July, pp. 587–590, 2018.

[14] J. H. Kim, J. Lee, and J. Anderson, “FPGA Architecture Enhancements for

Efficient BNN Implementation,” Proc. - 2018 Int. Conf. Field-Programmable

Technol. FPT 2018, pp. 217–224, 2018.

[15] Y. Umuroglu et al., “FINN: A framework for fast, scalable binarized neural

network inference,” FPGA 2017 - Proc. 2017 ACM/SIGDA Int. Symp. Field-

Programmable Gate Arrays, no. February, pp. 65–74, 2017.

[16] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once :

Unified , Real-Time Object Detection,” 2016.

[17] B. Leibe, J. Matas, N. Sebe, and M. Welling, “XNOR-Net: ImageNet

Classification Using Binary Convolutional Neural Networks,” Lect. Notes

Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 9906 LNCS, pp. VII–IX, 2016.

[18] J. Redmon and A. Farhadi, “YOLO9000: Better , Faster , Stronger,” Comput. Vis

Pattern Recognitt. (CVPR), 2017 IEEE Conf., pp. 6517-6525, 2017.

[19] K. Rungsuptaweekoon, V. Visoottiviseth, and R. Takano, “Evaluating the power

efficiency of deep learning inference on embedded GPU systems,” Proceeding

2017 2nd Int. Conf. Inf. Technol. INCIT 2017, vol. 2018-Janua, pp. 1–5, 2017.

[20] H. Nakahara, M. Shimoda, and S. Sato, “A demonstration of FPGA-based you

only look once version2 (YOLOv2),” Proc. - 2018 Int. Conf. Field-Programmable

Log. Appl. FPL 2018, vol. 2, pp. 457–458, 2018.

[21] X. Liu, M. Che, “A Parallel Architecture of AdaBoost-Based Face Detection for

95

Gaze Estimation,” 2011 International Conference on Multimedia Technology,

ICMT ,2011.

[22] C. Zheng, M. Yang, and C. Wang, “A Real-Time Face Detector Based on an End-

to-End CNN,” Proc. - 2017 10th Int. Symp. Comput. Intell. Des. Isc. 2017, vol.

2018-Janua, pp. 393–397, 2018.

[23] C. Chen, ZL. Chai, and J. Xia, “Design and implementation of YOLOv2

accelerator based on Zynq FPGA heterogeous platform”, Journal of Frontiers of

Coputer Science and Technology, 2019.

[24] Z. Ruizhe, N. Xinyu and W. Yajie, “Optimizing CNN-Based Object Detection

Algorithms on Embedded FPGA Platforms”, Springer International Publishing

AG, ARC 2017, LNCS 10216, pp. 225-26, 2017.

[25] Y. Guan, H. Liang, N. Xu, W. Wang, and S. Shi, “FP-DNN : An Automated

Framework for Mapping Deep Neural Networks onto FPGAs with RTL-HLS

Hybrid Templates,” Proceedings - IEEE 25th Annual International Symposium on

Field-Programmable Custom Computing Machines, FCCM, 2017.

[26] D. Wu, J. Chen, and A. W. Algorithm, “A Novel Low-Communication Energy-

Efficient Reconfigurable CNN Acceleration Architecture,” Proceedings - 2018

International Conference on Field-Programmable Logic and Applications, FPL,

no. 2, pp. 64–67, 2018.

[27] Y. Ma, Y. Cao, S. Vrudhula, and J. Seo, “An Automatic RTL Compiler for High-

Throughput FPGA Implementation of Diverse Deep Convolutional Neural

Networks.” 2017 27th International Conference on Field Programmable Logic and

Applications, FPL, 2017

96

[28] V. Gokhale, A. Zaidy, A. Xian, M. Chang, and E. Culurciello, “Snowflake : A

Model Agnostic Accelerator for Deep Convolutional Neural Networks.”, 2017

[29] M. Zhu, Y. Zhuo, C. Wang, W. Chen, Y. Xie, and S. Barbara, “Performance

Evaluation and Optimization of HBM-Enabled GPU for Data-intensive

Applications,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, no. 1, pp. 1245–1248, 2018.

[30] S. Aldegheri, N. Bombieri, D. D. Bloisi, and A. Farinelli, “Data Flow ORB-SLAM

for Real-time Performance on Embedded GPU Boards,” IEEE International

Conference on Intelligent Robots and Systems, pp. 5370–5375, 2019.

[31] H. Nakahara, T. Fujii, and S. Sato, ”A fully connected layer elimination for a

binarizec convolutional neural network on an FPGA”, 2017 27th International

Conference on Field Programmable Logic and Applications, FPL, 2017.

[32] Digilent, "Python productivity for Zynq," [Online]. Available:

http://www.pynq.io/board.html

[33] Xilinx, "AI Developer Hub," Xilinx, [Online]. Available:

https://www.xilinx.com/products/design-tools/ai-inference/ai-developer-

hub.html

[34] J. Redmon, "YOLO: Real-Time Object Detection," [Online]. Available:

https://pjreddie.com/darknet/yolov2/

[35] I. Kuon, and J. Rose, “Measuring the Gap Between FPGAs and ASICs”, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp.

203-215, 2007.

[36] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied

https://www.xilinx.com/products/design-tools/ai-inference/ai-developer-hub.html
https://www.xilinx.com/products/design-tools/ai-inference/ai-developer-hub.html
https://pjreddie.com/darknet/yolov2/

97

to document recognition”, Proceedings of the IEEE, 1998.

[37] D. Rongshi, and T. Yongming, “ Accelerator Implementation of Lenet-5

Convolution Neural Network Based on FPGA with HLS”, 2019 3rd International

Conference on Circuits, System and Simulation (ICCSS), 2019.

98

APPENDICES A

import bnn

print(bnn.available_params(bnn.NETWORK_CNVW1A1))

hw_classifier = bnn.CnvClassifier(bnn.NETWORK_CNVW1A1,'cifar10',bnn.RUNTIME_HW)

sw_classifier = bnn.CnvClassifier(bnn.NETWORK_CNVW1A1,'cifar10',bnn.RUNTIME_SW)

print(hw_classifier.classes)

from PIL import Image

import numpy as np

im = Image.open('/home/xilinx/jupyter_notebooks/bnn/pictures/deer.jpg')

im

99

class_out=hw_classifier.classify_image(im)

print("Class number: {0}".format(class_out))

print("Class name: {0}".format(hw_classifier.class_name(class_out)))

class_out = sw_classifier.classify_image(im)

print("Class number: {0}".format(class_out))

print("Class name: {0}".format(sw_classifier.class_name(class_out)))

from pynq import Xlnk

xlnk = Xlnk()

xlnk.xlnk_reset()

100

APPENDICES B

import bnn

print(bnn.available_params(bnn.NETWORK_LFCW1A1))

hw_classifier = bnn.LfcClassifier(bnn.NETWORK_LFCW1A1,"mnist",bnn.RUNTIME_HW)

sw_classifier = bnn.LfcClassifier(bnn.NETWORK_LFCW1A1,"mnist",bnn.RUNTIME_SW)

print(hw_classifier.classes)

import cv2

from PIL import Image as PIL_Image

from PIL import ImageEnhance

from PIL import ImageOps

says we capture an image from a webcam

101

cap = cv2.VideoCapture(0)

_ , cv2_im = cap.read()

cv2_im = cv2.cvtColor(cv2_im,cv2.COLOR_BGR2RGB)

img = PIL_Image.fromarray(cv2_im).convert("L")

#original captured image

#orig_img_path = '/home/xilinx/jupyter_notebooks/bnn/pictures/webcam_image_mnist.jpg'

#img = PIL_Image.open(orig_img_path).convert("L")

#Image enhancement

contr = ImageEnhance.Contrast(img)

img = contr.enhance(3)

The enhancement values (contrast and brightness)

bright = ImageEnhance.Brightness(img)

depends on backgroud, external lights etc

img = bright.enhance(4.0)

#img = img.rotate(180)

#Rotate the image (depending on camera orientation)

#Adding a border for future cropping

102

img = ImageOps.expand(img,border=80,fill='white')

img

from PIL import Image as PIL_Image

import numpy as np

import math

from scipy import misc

#Find bounding box

inverted = ImageOps.invert(img)

box = inverted.getbbox()

img_new = img.crop(box)

width, height = img_new.size

ratio = min((28./height), (28./width))

background = PIL_Image.new('RGB', (28,28), (255,255,255))

if(height == width):

 img_new = img_new.resize((28,28))

elif(height>width):

 img_new = img_new.resize((int(width*ratio),28))

 background.paste(img_new, (int((28-img_new.size[0])/2),int((28-img_new.size[1])/2)))

103

else:

 img_new = img_new.resize((28, int(height*ratio)))

 background.paste(img_new, (int((28-img_new.size[0])/2),int((28-img_new.size[1])/2)))

background

img_data=np.asarray(background)

img_data = img_data[:,:,0]

misc.imsave('/home/xilinx/img_webcam_mnist.png', img_data)

from array import *

from PIL import Image as PIL_Image

from PIL import ImageOps

img_load = PIL_Image.open('/home/xilinx/img_webcam_mnist.png').convert("L")

Convert to BNN input format

The image is resized to comply with the MNIST standard. The image is resized at 28x28

pixels and the colors inverted.

#Resize the image and invert it (white on black)

smallimg = ImageOps.invert(img_load)

smallimg = smallimg.rotate(0)

104

data_image = array('B')

pixel = smallimg.load()

for x in range(0,28):

 for y in range(0,28):

 if(pixel[y,x] == 255):

 data_image.append(255)

 else:

 data_image.append(1)

Setting up the header of the MNIST format file - Required as the hardware is designed for

MNIST dataset

hexval = "{0:#0{1}x}".format(1,6)

header = array('B')

header.extend([0,0,8,1,0,0])

header.append(int('0x'+hexval[2:][:2],16))

header.append(int('0x'+hexval[2:][2:],16))

header.extend([0,0,0,28,0,0,0,28])

header[3] = 3 # Changing MSB for image data (0x00000803)

105

data_image = header + data_image

output_file = open('/home/xilinx/img_webcam_mnist_processed', 'wb')

data_image.tofile(output_file)

output_file.close()

smallimg

class_out = hw_classifier.classify_mnist("/home/xilinx/img_webcam_mnist_processed")

print("Class number: {0}".format(class_out))

print("Class name: {0}".format(hw_classifier.class_name(class_out)))

class_out=sw_classifier.classify_mnist("/home/xilinx/img_webcam_mnist_processed")

print("Class number: {0}".format(class_out))

print("Class name: {0}".format(hw_classifier.class_name(class_out)))

from pynq import Xlnk

xlnk = Xlnk()

xlnk.xlnk_reset()

