
A COMPARATIVE STUDY OF ARDUINO UNO R3 AND
STM32F411RE SYSTEM PERFORMANCE IN DEVELOPING

WATER MONITORING SYSTEM

LIM MENG SHIN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

A COMPARATIVE STUDY OF ARDUINO UNO AND

STM32F411RE SYSTEM PERFORMANCE IN DEVELOPING

INTO WATER MONITORING SYSTEM

LIM MENG SHIN

This report is submitted in partial fulfilment of the requirements

for the degree of Bachelor of Electronic Engineering with Honours

Faculty of Electronics and Computer Engineering

Universiti Teknikal Malaysia Melaka

2020

ii

DECLARATION

I declare that this report entitled “A Comparative study of Arduino UNO and

STM32F411RE System Performance in Developing into Water monitoring System”

is the result of my own work except for quotes as cited in the references.

Signature : …………………………………

Author : …………………………………

Date : …………………………………

LIM MENG SHIN

27 JUNE 2020

APPROVAL

I hereby declare that I have read this thesis, and in my opinion, this thesis is sufficient

in terms of scope and quality for the award of Bachelor of Electronic Engineering with

Honours.

Signature : …………………………………

Supervisor Name : …………………………………

Date : …………………………………

• ignaru.re

Oat 27 June 2020

DEDICATION

To my family for supporting me with love and their dedicated partnership.

i

ABSTRACT

A microcontroller could be a computer that has been minimized and implement

into one metal-oxide-semiconductor (MOS) computer chip. In trending world, various

type of microcontroller has been introduced with progressively advanced CPUs

(Central Processing Units) well as associate degree integrated knowledge memory

(usually SRAM), a program memory (usually FLASH) and a spread of peripherals. In

this project, several experiments have been done through Arduino and STM 32

microcontrollers to compare and study these two different platform microcontrollers’

system performances. To keep up the trend of the Internet of Things (IoT), in this

project, the Arduino and STM32 board are developed and tested to a water monitoring

system which equipped with data transferred capabilities over a network without

requiring human-to-human or human-to-computer interaction. The result of study

references to students as well as to the public and industries related to significant

advances in microcontroller development.

ii

ABSTRAK

Mikropengawal boleh menjadi komputer yang telah meminimumkan dan

dilaksanakan menjadi satu cip komputer logam-oksida-semikonduktor (MOS). Di

dunia yang berkembang, pelbagai jenis mikropengawal telah diperkenalkan dengan

CPU maju (Unit Pemprosesan Pusat) dan juga ijazah bersekutu memori pengetahuan

bersepadu (biasanya SRAM), memori program (biasanya FLASH) dan penyebaran

peranti. Dalam projek ini, beberapa eksperimen telah dijalankan melalui

mikropengawal Arduino dan STM 32 untuk membandingkan dan mengkaji kedua-dua

platform sistem mikropengawal yang berbeza. Untuk mengekalkan trend Internet of

Things (IoT), dalam projek ini, papan Arduino dan STM32 telah dibangunkan dan

diuji kepada system pemantauan air yang dilengkapi dengan keupayaan pemindaan

data atas talian tanpa memerlukan interaksi manusia ke manusia dan manusia kepada

computer. Hsial kajian ini berfungsi sebagai rujukan kepada pelajar serta kepada orang

awam dan industry yang berkaitan dengan kemajuan dalam pembangunan

mikropengawal.

ACKNOWLEDGEMENTS

The work presented in this report could not have been completed without the help of

numerous people. First and foremost, I would like to convey my gratefulness to my final

year project supervisor, Dr. Sharatul Izah Bte Samsudin for giving me his guidance,

motivation and invaluable discussion throughout the project. Despite she is being

extraordinarily busy with his jobs and duties, she is still managed to guide me along.

Furthermore, I would also have to appreciate the guidance given by other

supervisor as well as the panels who share their expertise and recommendation during

the project presentation and give me a right direction toward completion of my project.

Besides, I wish to dedicate my deepest thanks and appreciation to my family,

girlfriend, and course-mates for their cooperation, encouragement, constructive

suggestion and full of support not only for the report completion but also for my entire

study in Universiti Teknikal Malaysia Melaka.

2

And finally, my sense of gratitude express to Universiti Teknikal Malaysia Melaka and

also my PA, Dr. Hazli Rafis Bin Abdul Rahim, for great commitment and cooperation

during my Final Year Project.

3

TABLE OF CONTENTS

Declaration ii

Approval i

Dedication i

Abstract i

Abstrak ii

Acknowledgements 1

Table of Contents 3

List of Figures 7

List of Tables 10

List of Symbols and Abbreviations 11

List of Appendices Error! Bookmark not defined.

CHAPTER 1 INTRODUCTION 12

1.1 Project Background 12

1.2 Problem Statement 13

1.3 The objective of the Research 15

1.4 Scopes of Work 15

4

1.5 Report Structure 16

CHAPTER 2 BACKGROUND STUDY 18

2.1 Microcontroller 18

2.1.1 Arduino UNO R3 19

2.1.1.1 Power 19

2.1.1.2 Memory 21

2.1.1.3 Input and Output 21

2.1.2 STM32F411RE 22

2.1.2.1 Features 23

2.1.2.2 Batch Acquisition Mode 24

2.1.2.3 Embedded Flash Memory 25

2.1.2.4 CRC (cyclic redundancy check) calculation unit. 25

2.1.2.5 Clock and Startup 26

2.1.3 Comparison of Microcontroller 26

2.1.3.1 Technical Features 28

2.1.3.2 Comparison of Minimum latency and timing of integer math

operations. 32

2.2 Water Monitoring System 34

2.2.1 pH meter (SKU: SEN0161) 35

2.2.2 DS18B20 (Temperature Sensor) 37

2.2.3 Water Quality Benchmark 38

5

2.2.3.1 Temperature 39

2.2.3.2 power of Hydrogen (pH) 40

2.2.4 Review of implementation Smart Water Monitoring System with the

Internet of Thing (IoT) 41

2.3 Wi-Fi Microcontroller 45

2.3.1 ESP8266 45

2.3.2 X-NUCLEO-IDW01M1 46

2.4 Internet of Things (IoT) 47

2.4.1 Definition of Internet of Things (IoT) 48

2.4.2 Components of Internet of Things (IoT) 49

CHAPTER 3 METHODOLOGY 52

3.1 Overview of the project 52

3.1.1 System Performance Implementation 54

3.1.1.1 Latency Test 54

3.1.1.2 Timings of the Operations of Integer Arithmetic Process 55

3.1.2 Implementation of Code (Speed Performance Test) 56

3.1.2.1 Minimum Latency Test 56

3.1.2.2 Timings of the Operations of Integer Arithmetic Process 59

3.1.3 Water Monitoring System (Internet of Things) 62

3.1.3.1 Arduino UNO R3 62

3.1.3.2 STM32F411RE 67

6

3.2 Analysis of Time Response 72

3.3 Description of Project Implementation 77

CHAPTER 4 RESULTS AND DISCUSSION 79

4.1 Minimum latency comparison 79

4.2 Integer arithmetic comparison 82

4.3 Wireless performance comparison 86

4.4 Development into the Internet of Things (IoT) device 97

4.4.1 Hardware implementation of the Water Monitoring system. 97

4.4.1.1 STM32F411RE 97

4. Temperature Sensor 97

4.4.1.2 Arduino UNO R3 98

4.4.2 Software implementation of the Water Monitoring System. 99

4.4.2.1 STM32F411RE 99

4.4.2.2 Arduino UNO R3 101

4.5 Water Monitoring System in ThingSpeak IoT platform. 103

CHAPTER 5 CONCLUSION AND FUTURE WORKS 108

5.1 Conclusion 108

5.2 Future Works 110

REFERENCES 111

file:///C:/Users/PC/Desktop/PSM/PSM%20II/A%20comparative%20study%20of%20Arduino%20and%20STM32%20system%20performance%20in%20developing%20smart%20water%20monitoring%20system.docx%23_Toc42442043

7

LIST OF FIGURES

Figure 2.1 Architecture structure of Arduino Uno. 19

Figure 2.2 Architecture structure of ST32F411RE. 22

Figure 2.3 STM NUCLEO Range.[14] 27

Figure 2.4 Result of minimum latency measurement[19]. 33

Figure 2.5 The result of integer math comparison[19]. 33

Figure 2.6 The output waveform of execution time 34

Figure 2.7 Analog pH Meter Kit SKU: SEN0161. 35

Figure 2.8 Analogue temperature sensor (DS18B20). 37

Figure 2.9 Universal pH indicator [28]. 41

Figure 2.10 ESP8266 Serial Wi-Fi Module. 45

Figure 2.11 X-CUCLEO-IDW01M1. 46

Figure 2.12: Various applications of IoT [37]. 48

Figure 2.13: Major components of IoT. 49

Figure 3.1 Block diagram of the project. 54

Figure 3.2 Arduino with Pure Wiring Functions code. 57

Figure 3.3 Arduino with Direct Manipulation of Port Register code. 57

Figure 3.4 STM32F411RE Latency Test Functions code. 58

Figure 3.5 Arduino UNO R3 integer arithmetic operations code. 60

file:///C:/Users/PC/Desktop/PSM/PSM%20II/A%20comparative%20study%20of%20Arduino%20and%20STM32%20system%20performance%20in%20developing%20smart%20water%20monitoring%20system.docx%23_Toc42442055
file:///C:/Users/PC/Desktop/PSM/PSM%20II/A%20comparative%20study%20of%20Arduino%20and%20STM32%20system%20performance%20in%20developing%20smart%20water%20monitoring%20system.docx%23_Toc42442061
file:///C:/Users/PC/Desktop/PSM/PSM%20II/A%20comparative%20study%20of%20Arduino%20and%20STM32%20system%20performance%20in%20developing%20smart%20water%20monitoring%20system.docx%23_Toc42442062
file:///C:/Users/PC/Desktop/PSM/PSM%20II/A%20comparative%20study%20of%20Arduino%20and%20STM32%20system%20performance%20in%20developing%20smart%20water%20monitoring%20system.docx%23_Toc42442065
file:///C:/Users/PC/Desktop/PSM/PSM%20II/A%20comparative%20study%20of%20Arduino%20and%20STM32%20system%20performance%20in%20developing%20smart%20water%20monitoring%20system.docx%23_Toc42442068

8

Figure 3.6 STM32F411RE integer arithmetic operations code. 61

Figure 3.7 Illustration of the variation of 𝒘𝒏𝒕𝒓 and the damping ratio, ζ. 77

Figure 3.8 Flow chart of the project. 78

Figure 4.1 Latency test with pure wiring (Arduino UNO) 80

Figure 4.2: Latency test with direct manipulation of the port register (Arduino

UNO) 80

Figure 4.3: Latency test (STM32F411RE) 81

Figure 4.4: Arduino UNO R3-Timing test 8bit 83

Figure 4.5: Arduino UNO R3-Timing test 16 bit 83

Figure 4.6: Arduino UNO R3-Timing test 32 bit 84

Figure 4.7: STM32F411RE-Timing test 32 bit 84

Figure 4.8 Graph of pH Value Against Time (STM32F411RE & Arduino UNO).

 87

Figure 4.9 Pole-zero diagram of STM32F411RE (Acid-to-Neutral). 90

Figure 4.10 Pole-zero diagram of Arduino UNO R3 (Acid-to-Neutral). 91

Figure 4.11 Pole-zero diagram of STM32F411RE (Neutral-to-Alkaline). 95

Figure 4.12 Pole-zero diagram of Arduino UNO R3 (Neutral-to-Alkaline). 95

Figure 4.13 Hardware components of the Water monitoring system on the

STM32F411RE microcontroller. 97

Figure 4.14 Hardware components of the Water monitoring system on Arduino

UNO R3 microcontroller. 98

Figure 4.15 The monitoring interface in Tera Term (setup). 100

Figure 4.16 The monitoring interface in Tera Term software along with

receiving, converting, and storing data in the cloud. 101

Figure 4.17 The monitoring interface in Serial Monitor (setup). 102

Figure 4.18 The monitoring interface in Serial Monitor 103

9

Figure 4.19 Graphical User Interface in ThingSpeak IoT platform (Arduino

UNO R3). 104

Figure 4.20 Graphical User Interface in ThingSpeak IoT platform

(STM32F411RE). 104

Figure 4.22 Tabulated sensor raw data in Microsoft Excel (STM32F411RE). 105

Figure 4.23 Tabulated sensor raw data in Microsoft Excel (Arduino UNO R3).

 106

10

LIST OF TABLES

Table 2.1 Comparison of NUCLEO and Arduino Boards [14]. 28

Table 2.2 pH Electrode Characteristics 36

Table 2.3 Temperature/Data Relationship 38

Table 2.4 Typical changes in pH for solutions due to temperature coefficient of

variation effects[27]. 40

Table 2.5: List of IoT cloud platform [38]. 50

Table 4.1: Overview of minimum latency 81

Table 4.2: Overview of integer math operation 85

Table 4.3 Time response analysis of STM32F411RE (Acid-to-Neutral). 88

Table 4.4 Time response analysis of Arduino UNO R3 (Acid-to-Neutral). 88

Table 4.5 Rise time and settling time (Acid-to-Alkaline) 89

Table 4.6 Percent Overshoot (Acid-to-Neutral) 91

Table 4.7 Damping ratio (Acid-to-Neutral) 92

Table 4.8 Time response analysis of STM32F411RE (Neutral-to-Alkaline). 92

Table 4.9 Time response analysis of Arduino UNO R3 (Neutral-to-Alkaline). 93

Table 4.10 Rise time and settling time (Neutral-to-Alkaline) 93

Table 4.11 Percent Overshoot (Neutral-to-Alkaline) 96

Table 4.7 Damping ratio (Acid-to-Neutral) 96

11

LIST OF SYMBOLS AND ABBREVIATIONS

Wi-Fi : Wireless Fidelity

RISC : Reduced Instruction Set Computer

CISC : Complex Instruction Set Computer

pH : Potential of Hydrogen

IoT : Internet of Things

12

CHAPTER 1

INTRODUCTION

This chapter described the background of the project. Besides, the problem

statement and objectives of this project briefly explained in this chapter. The scope

and structure of the report also included in this section.

1.1 Project Background

Performance testing is a process to determine the rate of speed, responsiveness, and

reliability of a system, a network, a software program, or a workload unit.[1]

Microcontroller system performance is mostly affected by the complexity of

architectures (RISC & CISC), word size of the machine, the CPU speed, flash

memory[2][3]. Over the last decade, there is rapid growth in technologies which

approach to development and advancement of the system performance of

microcontroller. Past research focuses on classifying the number of bits, memory

devices, instruction sets, memory architecture[4]. Besides from organising method,

13

from the previous research, they also focused on developing an optical tomography

controller unit. They implemented the industry 4.0 feature which developed an IoT

controller unit to compare and study the system performance of two different

microcontroller boards.[5][6]

The project aims to study and compare the performance Arduino UNO R3 and

STM32F411RE microcontrollers. This experiment is purposely to test the speed and

responsiveness of both microcontrollers’ system. All the assigned parameters reading

will be recorded and analyzed to determine the most efficient and effective

microcontroller among Arduino and STM32. To further improve, this project will also

focus on the development of Arduino and STM32 microcontrollers board into a water

monitoring device with IoT features.

1.2 Problem Statement

With the vigorous and rapid development of the technologies, various types of

microcontrollers introduced with specific system performance. Therefore, to pick the

best hardware, it is crucial to acknowledge concepts relating to microcontrollers.[7]

The Arduino and STM32 microcontrollers have become a discussion all over the

world, especially engineers. Although they are almost similar or having some identical

specifications, still in some form factor, there will be slightly different, which will

affect the microcontroller’s system performance. Many studies had been carried out,

such as microcontroller platforms, programming language, instruction set, memory

architecture, and types of microcontrollers [4]. Since, the microcontroller is a very

powerful integrated circuit designed with memory, processor, and input/output (I/O)

14

peripherals on a single chip to carry out a specific operation in an embedded system

that abundantly identified with measurable data. By carrying out the reviews on the

system performance in four main performance test experiments, a better

comprehension comparative study of Arduino and STM32 development board in a

water quality monitoring system done

Besides, the microcontroller also gives a significant influence on our daily life

from the shadow from all aspects (washing machine, digital watch, Bluetooth

speakers, microwave, remote control)[3][8]. Especially at a tremendous rate of

population growth, the human community started to face the anger of water shortages.

They elevated by uncontrolled urbanization and industrialization, which pollute the

meagre quantity available for use. Today freshwater resource quality and availability

are the most pressing environmental challenges in the country[9]. Other than that

factor, on the market, there are many costly pool automation systems. A typical pool

system will cost up to R 25,000, and most of these systems only operate with saltwater

pools with chlorinators. The automation of swimming pools that control acid and

chlorine pools is even more costly[10]. Thus, the comparative study of Arduino and

STM32 development board in a water quality monitoring system is beneficial. Due to

the comparative study are more to compare the system performance of Arduino and

STM32 microcontrollers board. The result obtained is capable of providing useful

information to the community, especially to engineer when choosing their right and

suitable microcontroller that could meet their project requirement. Therefore, a

comparative study of Arduino and STM32 development board in water quality

monitoring system which is able to provide the overall system performance of Arduino

and STM32 will be the useful for the public citizens in selecting a proper and precise

microcontroller.

15

1.3 The objective of the Research

The purpose of this comparative study is to compare, study, design, and develop

the water quality monitoring system. The following objectives of the project

determined as:

i. To design the wireless connection stability and latency Arduino UNO R3

and STM32F411RE in the IoT water monitoring system.

ii. To analyze and compare the Arduino UNO R3 and STM32F411RE

microcontrollers’ speed responsiveness with RISC and CISC instruction

set.

1.4 Scopes of Work

In this project, two different platforms of microcontrollers which are Arduino UNO

R3 and STM32F411RE microcontrollers used to compare and study the system

performance of each microcontroller in developing smart water monitoring system.

Before that, both microcontrollers will be tested the system performance without

producing it into a water monitoring system. The purpose of doing so is to study the

actual capability of the system performance of the microcontroller itself by isolating

any other external peripheral that will affect towards system performance of the

microcontroller. Hence, the latency test and integer arithmetic process introduced.

After that, only both microcontrollers developed into the water monitoring system

16

which implemented the IoT feature. The aims are to test both microcontrollers by

applying them into a real-life application and determine the stability and latency of the

wireless performance of microcontrollers. Two parameters which are pH and

temperature, will be measured. The measured values will then be analyzed according

to time to determine the graph versus time. From there, the time response analysis

applied to determine the system performance of microcontrollers. The software that

used to program the Arduino UNO R3 and STM32F411RE is Arduino IDE and Mbed

compiler respectively. For time response analysis, the software that will apply in

Excel. Finally, both microcontrollers can support or operate up to 32-bit.

1.5 Report Structure

The thesis organized and separated into five major chapters. In chapter 1, the

overview of the comparative study of Arduino and STM32 development discussed in

the project background. Besides, the problem statement, objective, and scope of the

project will be outlined clearly in this section. In chapter 2, the past studies related to

the comparison of different microcontrollers are reviewed and criticized. The

background theory of the microcontroller and water monitoring system included in

this chapter. Detail discussed in chapter 3, all relevant experiments and techniques

used in the project. The flowchart for the smart water monitoring system design and

system performance experiment explained in this chapter. In chapter 4, the result of

the project will be recorded and interpreted in this section. The obtained and collected

data will be analyzed carefully to verify whether the objectives achieved in the last

17

chapter, a conclusion drawn from the project—besides, the recommendation for the

plan related to the project made in this section.

CHAPTER 2

BACKGROUND STUDY

This chapter will discuss the background studies or literature review on topics that

are related. The discussions in this chapter are supported by the knowledge that refers

to books, journals, articles, and papers.

2.1 Microcontroller

Nowadays, the development of technologies leads to the electronic gadgets which

getting to be smaller, adaptable, and modest that can do more capacity when contrasted

with their forerunners that happened to cover more space, turned out exorbitant with

the ability to perform fewer capabilities. The multiple manufacturers of hardware and

software that take place in the market today divided into two major categories. It

includes the development of products focusing on hobbyists, i.e. equipment and

libraries for the Integrated Development Environment (IDEs) developed for Arduino

19

or Arduino-like. The latter products compile code (mostly C language) and hardware,

designed to help engineers speed up the process of development[11].

2.1.1 Arduino UNO R3

The Arduino Uno is a microcontroller board dependent on the ATmega328 [12]. It

has 14 computerized input/yield pins (of which six utilized as PWM yields), six simple

sources of info, a 16 MHz clay resonator, a USB association, a power jack, an ICSP

header, and a reset catch. It contains everything expected to help the microcontroller;

basically, associate it to a PC with a USB link or power it with an AC-to-DC connector

or battery to begin. The Uno varies from every former board in that it doesn't utilize

the FTDI USB-to-sequential driver chip. Rather, it includes the Atmega16U2

(Atmega8U2 up to rendition R2) customized as a USB-to-sequential converter.

2.1.1.1 Power

The Arduino Uno can be driven with an external power supply or via a USB

connection. External (non-USB) control can come from either a wall-wart (AC-to-

Figure 2.1 Architecture structure of Arduino Uno.

... --
--·-----·----

---ac_

--,._

20

DC) or a battery adapter. The connector can be attached by plugging into the power

jack of the panel a 2.1 mm centre-positive plug. Battery leads can be placed in the

Control connector's GND and Vin pin headers.

The panel will work on a 6 to 20-volt external supply. Nevertheless, when filled

with less than 7V, the 5V pin would provide fewer than 5 volts, and the panel could

be volatile. The voltage regulator can overheat and damage the panel when using more

than 12V. The suggested range is between 7 and 12 volts. The panel will work on a 6

to 20-volt external supply. Nevertheless, when filled with less than 7V, the 5V pin

would provide fewer than 5 volts, and the panel could be volatile. The voltage

regulator can overheat and damage the panel when using more than 12V. The

suggested range is between 7 and 12 volts.

The power pins are:

• VIN. When using an external power source, the input voltage to the Arduino

board (as opposed to 5 volts from the USB connection or other controlled

power source). You may supply voltage through this button, and reach it

through this pin while supplying voltage through the control socket.

• 5V. This pin provides the board with a controlled 5V from the regulator. The

panel can be driven either from the board's DC power jack (7-12V), USB

connector (5V), or the board's VIN pin (7-12V). The flow of voltage through

the 5V and 3.3V pins bypasses the regulator and can destroy the panel. We're

not suggesting this.

• 3V3. The on-board regulator produces a 3.3-volt demand. The maximum

current draw is 50 mA.

• GND. Ground pins.

21

2.1.1.2 Memory

The ATmega328 has 32 KB (with the bootloader utilizing 0.5 Mb). It also has

SRAM of 2 KB and EEPROM of 1 KB

2.1.1.3 Input and Output

With pinMode (), digitalWrite(), and digitalRead(), each of the 14 digital pins on

the Uno can be used as an input or output. They're running at 5 volts. Can will supply

or receive up to 40 mA and has a 20-50 k Ohms internal pull-up resistor (default

disconnected). However, many pins have special features:

• Serial: from 0 (RX) to 1 (TX). Used to collect (RX) or serial information from

(TX) TTL. Such pins are wired to the ATmega8U2 USB-to-TTL Serial chip's

corresponding pins.

• Internal breakdown: 2 and 3. Such pins can be set to trigger a low-value

interrupt, a rising or falling rim, or a value switch.

• PWMs: 3, 5, 6, 9, 10, 11. Provide analogWrite() feature for 8-bit PWM

performance.

• SPI: 10 (SS), 11 (MOSI), 13 (SCK). Using the SPI catalogue, these pins enable

SPI interaction.

• LED: 13. It is a built-in LED that connected to digital pin 13. When the input

pin is HIGH, the LED is turn on, when the pin is LOW, it's turned off.

22

The Uno has six analogue inputs, numbered A0 through A5, each with a resolution of

10 bits (i.e. 1024 different values). By definition, they scale from the ground to 5 volts,

although the AREF pin and analogReference() feature which can be used to adjust the

upper end of their distance. However, many pins have special features:

• TWI: pin A4 or SDA and pin A5 or SCL. Join the Wire collection of TWI

contact.

There are a few other pins on the board:

• AREF: analogue input reference voltage. Used with analogReference().

• Reset: Bring this line LOW to reset the microcontroller. Usually used to add

shields with a reset button that blocks the one on the board.

2.1.2 STM32F411RE

The STM32F411xC/xE features high-speed integrated storage (up to 512 KB of

Flash memory, 128 KB of SRAM), and a wide range of upgraded I /Os and peripherals

attached to two APB buses, two AHB buses, and a 32-bit multi-AHB bus matrix.[13]

Figure 2.2 Architecture structure of ST32F411RE.

CN2
ST-LINl<Mudeo

,elecio,

CN4

swo""'""""

JP6100

LOJ
(Red LEO) -CN6

""'""" """'""'

CN8

""'""" """'""'
32KHZ

aystal(1)

CN1
ST-LINK use
11Y!i B connector

L01
(Red/Green LED)
CCM

B2
RESETbutlon

SB2
3.31/regulatotoutpul

L02
{Green LED)

CNS
AmulnoconnectOf

CN10
ST morpho connector

CN9
Ardumo conneclof

us
STM32
micmcontroller

23

Both systems are fitted with one 12-bit ADC, one low-power RTC, six 16-bit

general-purpose timers plus one motor control PWM timer, two 32-bit general-

purpose timers. These also have default and sophisticated frameworks for contact.

• Up to three I2Cs

• Five SPIs

• Five I2Ss out of which two are full-duplex. To achieve audio class accuracy,

the I2S peripherals can be clocked via a dedicated internal audio PLL or via

an external clock to allow synchronization.

• Three USARTs

• SDIO interface

• USB 2.0 OTG full speed interface

2.1.2.1 Features

• Dynamic Efficiency Line with BAM (Batch Acquisition Mode)

– 1.7 V to 3.6 V power supply

– - 40°C to 85/105/125 °C temperature range

• Core: Arm® 32-bit Cortex®-M4 CPU with FPU, Adaptive real-time

accelerator (ART Accelerator™) allowing 0-wait state execution from

Flash memory, frequency up to 100 MHz, memory protection unit, 125

DMIPS/1.25 DMIPS/MHz (Dhrystone 2.1), and DSP instructions.

• Memories

– Up to 512 Kbytes of Flash memory

24

– 128 Kbytes of SRAM

• Clock, reset and supply management

– 1.7 V to 3.6 V application supply and I/Os

– POR, PDR, PVD, and BOR

– 4-to-26 MHz crystal oscillator

– Internal 16 MHz factory-trimmed RC

– 32 kHz oscillator for RTC with calibration

– Internal 32 kHz RC with calibration

• Power consumption

– Run: 100 µA/MHz (peripheral off)

– Stop (Flash in Stop mode, fast wakeup time): 42 µA Typ @ 25C; 65

µA max @25 °C

– Stop (Flash in Deep power-down mode, slow wake-up time): down

to 9 µA @ 25 °C; 28 µA max @25 °C

– Standby: 1.8 µA @25 °C / 1.7 V without RTC; 11 µA @85 °C @1.7

V

– V_BAT supply for RTC: 1 µA @25 °C

2.1.2.2 Batch Acquisition Mode

Throughout software batching, the batch processing mode allows increased power

performance. This enables data acquisition directly to storage using the DMA through

any interaction peripherals in reduced power usage as well as data processing while

the rest of the system is in low power mode (including flash or ART). In an audio

system, for instance, a clever mix of PDM audio sample amplification and storage

25

directly from the I2S to RAM (memory or ARTTM stopped) with the DMA utilizing

BAM accompanied by some very fast flash processing enables the application's power

consumption to be drastically reduced.[13]

2.1.2.3 Embedded Flash Memory

Required for storing programs and files, the devices insert up to 512 Kbytes of

Flash memory. The Flash memory can also be turned off in Run and Sleep mode to

reduce power consumption. There are two modes available: Flash in Stop mode or

Deep Sleep mode (to switch off between power savings and start time).[13]

(a) One-time Programmable bytes

There is a one-time programmable area with 16 32-byte OTP blocks.

2.1.2.4 CRC (cyclic redundancy check) calculation unit.

The computation system of the CRC (cyclic redundancy check) is used to acquire

a CRC code from a 32-bit information term and a fixed polynomial generator. CRC-

based techniques are used, among other applications, to verify data transmission or

storage integrity. These provide a way for checking the reliability of the Flash memory

in the context of the EN / IEC 60335-1 specification. The CRC calculation system

helps measure a code signature during runtime, compared to a link-time produced

reference signature and stored at a specified memory position.[13]

26

2.1.2.5 Clock and Startup

The central CPU clock is chosen when the 16 MHz internal RC oscillator is reset.

The 16 MHz internal RC oscillator is factory-controlled to provide a precision of 1

percent at 25 ° C. Then the program may pick either the RC oscillator or an internal

clock origin of 4-26 MHz as the device clock. For malfunction, this clock can be

tracked. The system automatically switches back to the internal RC oscillator when a

failure is identified and a program interrupt (if enabled) is created. The output of the

clock is fed into a PLL allowing the frequency to be increased up to 100 MHz.

Similarly, full PLL clock entry interrupts management is available when necessary

(e.g. if an external oscillator used indirectly fails).

The specification of the two AHB buses, the high-speed APB (APB2), and the low-

speed APB (APB1) domains are achievable through several pre-scalers. The two AHB

buses ' maximum frequency is 100 MHz while the high-speed APB domains '

maximum frequency is 100 MHz. The total allowed low-speed APB domain frequency

is 50 MHz. The tools have a dedicated PLL (PLLI2S) which enables the quality of the

audio group to be accomplished.[13]

2.1.3 Comparison of Microcontroller

Recently, there are several competitive microcontroller boards have been

introduced and offering something unique and some clone brands. ST Microcontroller

is one of the newly introduced microcontrollers that is very popular nowadays.

27

NUCLEO development boards where the processing is much faster and more memory

provided.[14]

The features about NUCLEO boards:

• Mbed compatible.

• Compatible to Arduino as the pins configure provided full access to all

Arduino shields.

• The ability to remove the board's programming and debugging area

There are three versions of ST NUCLEO boards, which are Nucleo-32, Nucleo-64,

and Nucleo-144. Each of these boards provides different system performance as they

consist of varying flash size (bytes) memory.

Figure 2.3 STM NUCLEO Range.[14]

Rash ll,t (l>yleaj

ZM

1 M

512K

. :···
,
l foil.lb§ ...

256 K

1112 K

: '
f • ill'l"J-9£11kGi

.......... : ""--""-- .!H' ~.'.l'iifi@•)'-·····. ,~!~~~ ••••••••• !!' ••

64 K

16 K

Nucleo-32
(I'
~

Ltge,ul:

■ Ma~Milll
■ U11m-lOWi)0Y•!r

■ Hlg.performance

f W141 -,:,
: I - I I 'PfU'l'Ht •

. . .. ~.!!i'Jwumwi_,,,11,mnuu : @
~ 1rnzn,1¥fHM .. : ♦-

: V 11su,!#1k tJ·i.i "' , ; ' " ... ' ' ... ''2'i'3fi'ti'·I ' -•

NHM l f

28

Although there are three different versions of the NUCLEO board, there are based

on ARM Cortex-M, adopting a 32-bit RISC architecture. On the board, two double

strips of male connect externally used in other STM dev boards known as "Morpho"

pinout headers. Some of the morpho pin headers mapped the same as the Arduino

female headers to allow the NUCLEO boards to debug when using shields. After

programmed, the debugger can be pulled off and have a very compact

microcontroller board. Then, the board can be programmed and debugged by

attaching external cables back to the NUCLEO panel from the debugging PCB

board.

In the ARM Cortex-M microcontroller community, the Serial Wire Debug

protocol is entirely new. Instead of regular five-wire JTAG, which is more common

on other boards, it only needed two wires.[14]

2.1.3.1 Technical Features

Table 2.1 Comparison of NUCLEO and Arduino Boards [14].

 NUCLEO F411RE ARDUINO UNO

MICROCONTROLLER STM32F411RE 32-bit ATMega 328 8-bit

FAMILY ARM Cortex M4 AVR

CLOCK FREQUENCY 84 MHz 16 MHz

FLASH MEMORY 512 Kb 32 Kb

SRAM 96 Kb 2 Kb

EEPROM MEMORY - 1 Kb

PWM 10 6

ANALOG INPUTS 16 6

DIGITAL PIN 47 14

I2C MODULES 3 1

USART MODULES 3 1

SPI MODULES 4 1

29

TIMER 10 3

FLOATING POINT

UNIT

One N/A

VOLTAGE (MAX) 5V 5V

USB OTG One N/A

DIMENSIONS 68x80mm 53x68mm

PRICE $14 $25

From the table above, Arduino Uno and Nucleo Boards have a significant

difference in performance, quality, input/output, and debugging options available in

the market nowadays. However, the Nucleo board does not build-in internal

EEPROM, which does not allow the permanent store of the variables in case the

system is a reboot. The Arduino has a build-in EEPROM that allows the system to

store the variables even when the system is a reboot.

In terms of performance, it surely can be observed that the NUCLEO processed

with more complex algorithms. Furthermore, the C compiler in just a few instructions

that allow faster execution and a distinct increase in performance. [14]

From the paper written by a student from the Department of Electronics and

Communication Engineering, Gujarat Technological University, Ahmedabad, India,

who is L. Louis, described the operating theory and implementations of the Arduino

board[15]. Besides, he provides guidelines on how to apply Arduino as a tool for study

and research purposes in this paper. This paper gives an insight into the form of

Arduino boards, operating principles, implementation of code, and their applications.

From this paper, I have studied the working principle of Arduino, its

hardware/software features and applications, and where everything used at this

moment. I have also learned how to write Arduino sketches in our IDE (software).

30

From the paper written by C. Rajan, B. Megala, A. Nandhini, et al. with the title of

‘A Review: Comparative Analysis of Arduino Micro Controllers in Robotic Car.’ It

described that they did the operation of a mobile phone-controlled robotic car

(remotely operated vehicle) that controlled by mobile phone (communicate over vast

distances, even from various cities). The individual makes a telephone call to his

mobile phone. When the call pressed, a tone corresponding to the pressed button is

heard at the other end of the request if the button pressed. This tone is called the

multiple frequencies of dual-tone DTMF. With the help of the phone stacked in the

car, the car recognizes this DTMF ton. Arduino's microcontroller processes the

received tone. The microcontroller is programmed to decide for any specific input and

react towards the data given by either control the direction forward or backward or left

or right direction. The mobile phone calling the cell phone in the car is functioning as

a remote device. From this paper, I had learned the advantages of using the Arduino

board, which are: Arduino Leonardo eliminates the necessity of secondary processor

and Arduino Due used in complex projects without being easily replaceable. Arduino

micro-supports quicker prototyping, wearable, and electronic materials. Lily pad

Arduino, Arduino ESPRO-is equipped with joysticks, microphone, input side sensors,

and output bumper, Arduino Yun -support cloud-based services, Arduino robots

support our hardware parts. This study offers an extensive description of Arduino

processors; many robot researchers will find it helpful.

To have an idea to enchase the methodology in this project, I have also researched

the comparative study of a different microcontroller. The paper, which title of

‘Overview and Comparative Study of Different Microcontrollers’ that written by R.

Khadse, N. Gawai, and B. M. Faruk, described the essential information and

comparative study of 8051 Microcontroller, ARM Microcontroller, PIC

31

Microcontroller, AVR Microcontroller. The method that they used classified as the

number of bits according to the microcontroller, architecture of instruction set,

memory device last but not least, the classification of memory architecture[4]. From

this classification, they form a method to identify the suitable comparison analysis

study for them to determine which microcontroller is the best in performance.

Besides that, for me to have an idea on what suitable parameters that can be a

standard benchmark for me to determine the system performance of a microcontroller,

I had researched a paper which title is ‘An evaluation of energy-efficient

microcontrollers’ that written by I. Tsekoura, G. Rebel, P. Glosekotter, and M.

Berekovic[16]. In this paper, the writer described that in many projects, such as the

Internet of Things, state-of-the-art technological developments need highly influential

solutions. The low current power of the microcontrollers used to implement these

solutions. However, it is harder than it seems to be to select the right microcontroller.

The data sheets provide inadequate information to prevent fair comparisons between

the different microcontrollers. This work attempts to solve this issue by using their

laboratory's set of low-power microcontrollers and a range of benchmarks that perform

common tasks. In terms of time, energy consumption, and energy consumption, they

presented the results of a comparison among these microcontrollers in the performance

of benchmarks. From this paper, I learned that as the operating frequency increases,

power consumption increases, and the 32-bit microcontrollers have higher power

consumption than 8-bit and 16-bit. Z8 Encore! Z8 Encore! XP has unusual behavior,

as the microcontrollers in our List have the most significant energy consumption. But

the MSP430 consumes less energy than the STM32F at smaller frequencies, an

outstanding response for a 16-bit microcontroller. Lastly, the microcontrollers EFM32

32

and STM32F were the most efficient on our list about the computing performance per

Joule.

2.1.3.2 Comparison of Minimum latency and timing of integer math operations.

From the paper that wrote by A. Ng, J. Lepinski, D. Wigdor, S. Sanders, and

P. Dietz, with the title “Designing for Low-Latency Direct-Touch Input.” He described

that latency is the period between the user's action and the device's reaction to that

activity is inherent in every microcontroller; input sensors should be measured,

computed, graphics produced, and displays modified. Existing company touch-screen

applications have latencies ranging from 50 to 200 𝑚𝑠[17]. Ideally, device designers

should retain this delay beneath. Threshold detectable by the human visual system,

making the experience indistinguishable from a system that is genuinely latency-free.

However, despite massive improvements in the efficiency of computer systems,

latency remains an ever-present blemish on user experience[18]. According to the

research of timing of integer, math operation is considered as an operation with

purposely to determine the speed responsiveness of microcontroller to perform the

arithmetic operations. With the research study, the author uses the microcontrollers

Arduino UNO and ST NUCLEO L152RE to complete the survey. The study aims to

compare the performance of these microcontrollers. Two experiments were conducted

by the author, which are minimum latency measurement and integer math comparison.

For the minimum latency measurement, the author determined that the ST NUCLEO

L152RE (5.23𝜇𝑠) have the fastest speed than the Arduino UNO (6.38𝜇𝑠). The result

is show in Figure 2.4 below:

33

Figure 2.4 Result of minimum latency measurement[19].

 While for the integer math comparison, the author used the exactly similar integer

math operations even with the same sequences math operations, the result has shown

that the ST NUCLEO L152RE faster than the Arduino UNO. The result is shown in

Figure 2.5 below:

Figure 2.5 The result of integer math comparison[19].

The author used the oscilloscope to determine the time measurement for the whole

experiment—each rising and falling edges of the waveform considered as the

beginning and the end of the operations. Hence, measurement is taken at the rising and

falling edges of the waveform. Thus, this method is much more exact or accurate to

measure the time responsiveness towards these two experiments. Figure 2.6 below

show the output waveform and the measurement of execution of time during the

performance of integer math comparison by the author.

1 Arciu1no wnh Wning 14 . 35µs
2 Ard.uino w1th direct; port rr.a n1pulat1.on 6 . 38µs
3 ST Nucle o 5 . 23µs

;..ddit.10:i. 156. OOns
,;.. Sub-crac"tio n 156. OOns
,j Mul 'tl.plica :.1cn 156. 00ns
. Ci v i~ic:i. 2~0 . OOns

34

Figure 2.6 The output waveform of execution time

(integer math operation).

2.2 Water Monitoring System

For the protection of lives, water is a crucial element. Almost 70% of the world's

surface water, but only about 2% of the total volume is freshwater for use and

consumption. While population growth has risen at an unprecedented rate, the global

community has only started to deal with the brunt of water shortages. It has only been

heightened by unchecked urbanization and industrialization Currently. Freshwater

resource quality and availability represent the most significant global problems of the

world.[9]

35

The conditions of the swimming pool are directly dependent upon the control of its

chemical characteristics [10]. The analysis of specific samples includes more rigorous

testing is carried out manually by a human being. Therefore, the implementation of a

sensor network that can manage these tests properly and accurately is necessary. The

proposed system, the main objective is to automatically regulate and monitor

swimming pools, the machine space condition, and the surrounding water quality. It

designed to enhance its daytime maintenance rather than manually examine its water

properties (pH, chlorine, water level, temperature).[20]

In this project, I will develop the smart water monitoring system to present a

measurement that verifies and monitor the water quality with the given water sample

using the wireless sensor network. Besides, it focuses primarily on the monitoring and

data collection from node sensors, data storage to PMS databases, and display of

historical and real-time data.

2.2.1 pH meter (SKU: SEN0161)

Figure 2.7 Analog pH Meter Kit SKU: SEN0161.

36

The DFRobot Gravity: Analog pH Meter Kit SKU: SEN0161 is to measure the

water/solution pH level and deflect the acidity and alkalinity. They widely used in

applications such as aquaponics, aquaculture, and environmental water monitoring

system. It is compatible with Arduino and STM32 microcontroller boards. It has a

built-in simple, convenient, and practical connection and features. Besides, LED is

an indicator for Power indicator, a BNC connector, and a PH2.0 sensor interface. It

is also simple to be installed and used by simply connect the pH sensor with BNC

connector, and plug the PH2.0 interface into any analog input on a microcontroller to

read pH value.[21]

Table 2.2 pH Electrode Characteristics

Voltage(mV) pH Value Voltage(mV) pH Value

414.12 0.00 -414.12 14.00

4354.96 1.00 -354.96 13.00

295.80 2.00 -295.80 12.00

236.64 3.00 -236.64 11.00

177.48 4.00 -177.48 10.00

118.32 5.00 -118.32 9.00

59.16 6.00 -59.16 8.00

0.00 7.00 0.00 7.00

37

2.2.2 DS18B20 (Temperature Sensor)

The Electronic Temperature Sensor DS18B20 is fitted with a 9-bit to 12-bit

temperature measurement and has an indicator feature with the upper and lower trigger

points that used non-volatile. The DS18B20 communicates through a 1-wire bus that

includes a single data line (and base) for interaction with a central microprocessor by

default. The DS18B20 can also draw electricity directly from the data line and

eliminate the need for an external power supply.

Each DS18B20 has a specific 64-bit serial protocol to operate on the same single1-

wire bus. So, it is easy to use a microprocessor for controlling a considerable number

of DS18B20s.

The implementations benefiting from this functionality include HVAC

environmental control, within buildings, facilities, or machine tools, temperature

control systems, and process surveillance and control systems[22].

Figure 2.8 Analogue temperature sensor (DS18B20).

38

Table 2.3 Temperature/Data Relationship

TEMPERATURE (°C) DIGITAL OUTPUT

(BINARY)

DIGITAL OUTPUT

(HEX)

+125 0000 0111 1101 0000 07D0h

+85 0000 0101 0101 0000 0550h

+25.0625 0000 0001 1001 0001 0191h

+10.125 0000 0000 1010 0010 00A2h

+0.5 0000 0000 0000 1000 0008h

0 0000 0000 0000 0000 0000h

-0.5 1111 1111 1111 1000 FFF8h

-10.125 1111 1111 0101 1110 FF5Eh

-25.0625 1111 1110 0110 1111 FE6Fh

-55 1111 1100 1001 0000 FC90h

2.2.3 Water Quality Benchmark

Water quality chooses the ‘goodness’ of water for specific purposes. Water quality

tests will provide data around the well-being of the conduit. By testing water over a

while, the changes interior the quality of the stream seen. Parameters that endeavored

connect temperature, pH, turbidity, saltiness, nitrates, and phosphates. An appraisal of

the sea-going macro-invertebrates can identify other than provide a sign of water

quality[23]. Besides, Water quality chose by the physical, chemical, and

microbiological properties of water. These water quality characteristics all through the

world characterized by wide changeability. Along these lines, the quality of

conventional water sources utilized for specific purposes needs to build up in terms of

39

the particular water-quality parameters that most impact the conceivable use of

water[24].

2.2.3.1 Temperature

The temperature of a conduit is essential since it impacts the total of broken-down

oxygen interior the water. The whole of oxygen that will break up in water increases

as temperature reduces. Water at 0℃ will hold up to 14.6 𝑚𝑔 of oxygen per liter,

while at 30℃, it'll hold since it was up to 7.6 𝑚𝑔/𝐿. Life cycles of sea-going life

shapes are as frequently as conceivable related to changes in temperature. Temperature

ranges for plants and animals influenced by artificial structures such as dams and weirs

and releases of water from them[23].

When the precise estimation is required, we ought to continuously consider the

temperature—the increment in temperature of water increments the ionization rate. As

a result, the result appeared at 10°C is distinctive than at 25°C with the same esteem

of pH and turbidity. Temperature plays a crucial part when measuring water quality.

For case, pH esteem, as well as turbidity, changes with the alter in Temperature. pH

is temperature subordinate, when the temperature goes up, the rate of ionization

increments and bad habit versa. As an increase in temperature in arrangements, it

causes diminish thickness and increment in the portability of particles in that

arrangement. Since temperature is a fundamental portion of the changes in the values

of materials within the water, the temperature sensor utilized. Detecting the

temperature is basic. Heat is a critical component for deciding many other applications

for water quality investigation[25][26].

Speed and response of the pH anode can different from the modify in temperature.

Temperature can as well have impacts on the Calibration isothermal point, thermal

40

equilibrium, analytical balance, etc. At the common operations with the change in

temperature, the result may adjust a little in the Acid region, while it can be significant

in the Alkaline area.

Table 2.4 Typical changes in pH for solutions due to temperature coefficient

of variation effects[27].

pH Range

Temperature

0℃ 25℃ 60℃

Acid pH 0.99 pH 1.0 pH 1.01

Neutral pH 7.47 pH 7.00 pH 6.51

Alkaline pH 14.94 pH 14.00 pH 13.02

Table 2.4 appears up the collections of pH respect with the alter in temperature.

Acid incorporates a slight combination interior the pH connection as the temperature

changes to 25℃ and 60℃ than at 0℃. At the fair-minded respect of pH, it has got to

a few degrees more assortments as compared to the Acid. Though bases, it wraps an

extraordinary collection with adjust in temperature between 0℃, 25℃, and 60℃ with

the alter of pH respect of around 2.

2.2.3.2 power of Hydrogen (pH)

PH is a measure of water acidity or alkaline. It is usually test-with decreased acidity

or alkalinity with the color paper varies. Thanks to photosynthesis, pH typically

fluctuates throughout streams. There are several explanations about why water may

have strong pH values[23]. The pH value measured on a scale of 0 to 14, whereas non-

water solutions will have a value of more or less than this. Neutral water has a pH

value of 7.0 at ambient temperature of25℃, whereas solutions with a pH value of less

41

than 7 are acidic and solutions with a pH value of more than 7 are alkaline. The

logarithmic pH scale used to monitor and represent a broad spectrum of ion

activity[26].

Figure 2.9 Universal pH indicator [28].

Figure 2.6 indicates the thickness of the standard pH unit. Litmus paper is well

known to be the most widely used form of necessary pH testing. Figure 2.6 shows the

disparity in the color of litmus paper at various pH levels. The proper natural water

pH level should be between 6.5 and 8.5, whereas the pH range for groundwater

structures should be between 6 and 8.5.

2.2.4 Review of implementation Smart Water Monitoring System with the

Internet of Thing (IoT)

Form the paper that wrote by J. Gowthamy, C. R. Reddy, P. Meher, S. Shrivastava,

and G. Kumar with the title “Smart Water Monitoring System using IoT [29]. He

described that they did the research is due to assure secure water for various purposes

such as agricultural consumption and usable water; the water regulated. According to

this paper, the researcher had introduced a prototype of a minimal-cost water quality

and water quantity monitoring system for IoT (internet of things). As a controller, the

Universal pH value color scale (universal indicator}

0 2

,-----J-2, I h~loticacid I
--~."" r ... t.. I ... :.,~ Col3 rrii: i'ltes tinal juiee

soor rrii:, 11W1eral water
(with carbonic acid)

blltteiyacid
gastricjuice

table Yne11ar distilled

•= ...

10 11 12 13

~·· I """""'
alffl'IOflill, dlJte sodium

hydrolOOesolJ! ion

14

from: hitps://www.hochsauer1andwasser.de/wasser-wissen/swi mmi ng-pool/ph-wert e/ (20 15)

42

Arduino model used. Finally, the sensor data sent through WI-FI via the internet. The

data saving and review designed to include a cloud database so that these data used in

future research and development.

Besides, written by K. Karimi and K. Salah-ddine and the title is “a Comparative

Study of the Implementations Design for Smart Homes / Smart Phones Systems [30].

In this paper, it described that in reality, most people are using intelligent home

technology to change home comfort and quality of life. Yet the option of the right one

can be frustrating, given the numerous technical components. This paper provides a

comparative study of critical elements such as communication protocols (Bluetooth,

Wi-fi, Zigbee, and UWB), and the microcontrollers (Arduino and Pi Raspberry) and

equipment of a Smart Home + smartphone network. It also outlines its main features

and performances, such as power consumption, transmission time, and complexity.

Paper with the title “Water quality testing and monitoring system” written by N.

Thirupathi Rao, D. Bhattacharyya, V. Madhusudhan Rao, and T. H. Kim [31]. They

had described specimens that can be checked manually at the laboratory by using

conventional methodologies for drinking water quality parameters, such as turbidity,

pH, conductivity, temperature, etc. It solved by an attempt to develop the smart, low-

cost IoT platform in the current article. Temperature, turbidity, pH, conduction are the

criteria to determine water quality. The sensed sensor data transferred to the Raspberry

Pi Unit, and the parameters then compared to the generic Raspberry Pi unit values.

Link to data from IoT (cloud) in Raspberry Pi. If a change has occurred in the generic

values, notification, or email sent via Wi-Fi to the smartphone, samples of water

collected for water pureness tests in the current work, the different particles contained

in the liquid also need to be tested. The current model will identify the particles

43

existing in the liquid and even the scale of pureness in the water. The findings

presented in the form of numerical values at the display unit, which fitted to the IoT

unit. Besides, the sensors used for testing water purity.

Last but not least, to further deepen understanding of a water monitoring system

that implemented in my project, paper that wrote by M. Kumar Jha, R. Kumari Sah,

M. S. Rashmitha, R. Sinha, B. Sujatha, and K. V. Suma. Title is “Smart Water

Monitoring System for Real-Time Water Quality and Usage Monitoring,” which has

studied [9]. From this paper, I learned how to develop of the SWMS in the area of in-

house water quality control and use monitoring in real-time. From there, it inspired

the ideas on improving the monitoring system in my project. There are two parts:

Smart Water Quantity meter and Smart Water Quality Measurement. The goal,

reporting this to the customer and authority by tracking the quantity of water

consumed by a household and is the development of Smart Water Quantity Meter. A

billing system of three plates produces bills of sale according to consumed amounts.

By measuring five qualitative parameters, the Smart Water Quality meter verifies the

purity of mobile water the consumer receives. By pH, temperature, turbidity, oxygen,

and conductivity dissolved. The system ensures that any health hazards or possible

threats caused by unintended leakage or discharge into portable water avoided. The

Cloud data is supplied in real-time by an online surveillance system. Any violations

of the use limit or water quality shall immediately be notified by SMS and a system-

generated alert signal to the customer and authority.

Paper that wrote by A. N. Prasad, K. A. Mamun, F. R. Islam, and H. Haqva which

title is “Smart water quality monitoring system,” has presented a smart water quality

monitoring system for Fiji, using IoT and remote sensing technology[32]. The author

44

simultaneously tested four different water samples to determine the parameters for

each water sample. The process of the project carried within the indoor ambient

temperature. It took 12 hours to complete the project with every 1-hour interval, and

the readings recorded. To minimize or eliminate the error that could be affected by the

project, the author kept the collected water samples and tested it in a safe, controlled

environment. The water samples were changed every hour to keep the consistency

readings. The result of this project matched the expected results obtained through their

research. They also did succeed in implementing the sensors of potential Hydrogen

(pH), temperature, GSM, conductivity and Oxidation, and Reduction Potential (ORP).

From the result, the relation of temperature with pH and conductivity observed.

Finally, all the results they obtained analyzed in the form of Neural Network

Analysis[33].

The paper that wrote by S. Geetha and S. Gouthami, with the title of “Internet of

things enabled real-time water quality monitoring system,” had comprehensively

described their project works in the field of water quality monitoring. Their research

had also involved in power efficiency, solution for in-pipe water quality monitoring

based on Internet of Things (IoT) technology[34]. They had developed a prototype

that could determine and collect the water parameters, included the readings, and

upload them to the cloud. The readings are then analyzed. Based on the analyzed

result, the device alerted the remote user when there are any changes occurred, which

differ from the pre-defined set of standard values. From this paper, it mentioned the

proper way to test the water sample which all the sensors placed in the water. Then

the sensors converted the physical parameters into a measurable electrical quantity,

which given as input to the controller through an optional wireless communication

device[34]. The whole project is used as a controller to read the data from the sensor,

45

process it, and sent the data to the application via communication technology. The

parameters and communication devices can choose to monitored, which depends on

the requirement of the use. This paper shows the proper methods (step-by-step) to

develop the prototype and also the techniques to implement it into applications as well

as the communication technology and Internet of Things (IoT-Ubidots). This paper

used five parameters, which are conductivity, pH, turbidity, temperature, and water

level. The IoT platform that used is Ubidots. The measured results compared with

drinking water quality standards defined by WHO[34]. In conclusion form, this paper

provides a comprehensive survey on the tools and methods implemented in existing

smart water quality monitoring systems. It also provides techniques on how sensors

communicate online to provides real-time online data to the user.

2.3 Wi-Fi Microcontroller

Wi-Fi microcontrollers allow Wi-Fi for devices to transmit and receive data and

take orders. As a result, Wi-Fi microcontrollers used to carry ordinary appliances into

the Internet.

2.3.1 ESP8266

Figure 2.10 ESP8266 Serial Wi-Fi Module.

46

ESP8266EX is a highly integrated Wi-Fi SoC system designed to meet the

continuous demands of consumers for efficient power usage, lightweight architecture

and robust quality in the Internet of Things industry. For complete and self-contained

Wi-Fi networking capabilities, ESP8266EX can function either as a standalone

program or as a slave to the MCU host. When the program is powered by ESP8266EX,

it will quickly boot up from the disk. The built-in high-speed cache helps increase

system performance and maximize machine storage. ESP8266EX can also be added

to any microcontroller model as a Wi-Fi adapter via SPI / SDIO or UART interfaces.

The ESP8266EX incorporates antenna switches, RF Balun, control amplifier and low

noise receives amplifier and filters, as well as power management modules.[35]

2.3.2 X-NUCLEO-IDW01M1

The STM32 Nucleo boards expanded through the X-NUCLEO-IDW01M1 Wi-Fi

evaluation board based on the SPWF01SA unit. STM32 MCU, Wi-Fi, and an SoC

with integrated power amplifier and control as well as an SMD antenna are all

Figure 2.11 X-CUCLEO-IDW01M1.

47

included in the SPWF01SA certified CE, IC, and FCC unit. SPWF01SA also has an

optional FLASH unit for software over-the-air upgrade (FOTA) of one MegaByte.

The firmware has a full application IP stack that allows up to eight TCP / UDP ports,

as well as the flexible SSI webpages to communicate with the device, and a REST

API to pass data from/to the cloud server. The device will function as a socket server

and socket user at the same time. The firmware supports stable TLS / SSL security

sockets to allow safe end-to-end contact with or without authentication with the

network. The unit used as STA, IBSS, or mini AP consumer (up to 5 STA

customers). X-NUCLEO-IDW01M1 users can access the stack functions with the

AT command on the STM32 Nucleo deck. It simplified via the UART serial

connection. The ST morpho and the Arduino UNO R3 connector configuration are

compliant with X-NUCLEO-IDW01M1.[36]

2.4 Internet of Things (IoT)

The internet is a global network system that uses satellite, database, mobile,

network, and wireless network tools, and protocols, to allow communications between

electronic devices. Two electronic gadgets can transmit data in many ways, such as

document, voice, image, chart, and software, when linked via the internet.

In terms of its transmission rate, transmission approach, and implementation,

Internet's capacity to develop and evolve is unprecedented. The rapid growth of the

Internet and the evolution of information have intensified the need to implement new

and innovative approaches that are accessible to meet customer needs. The Internet

used to seek answers to existing problems or increasing current product features. This

48

principle used by the Internet of Things (IoT) and has demonstrated tremendous

success in a variety of applications such as consumer, commercial, industrial, and

infrastructure sectors.

Figure 2.12: Various applications of IoT [37].

2.4.1 Definition of Internet of Things (IoT)

The Internet of Things has no specific meaning, which is justifiable to

community users worldwide. The term characterized by a wide range of groups,

including academics, analysts, experts, researchers, technicians, and business persons.

In 1999, Kevin Ashton, a specialist in digital innovation, created the earlier use of such

a term "Internet of Things"[26]. He did not state the concept at that time but gave a

clear view of IoT.

The same word or principle applies to many of the IoT meanings. The

fundamental concept of the IoT is the interaction between two entities, which made

up of a physical object and the internet. In a list below, the past studies show a

particular IoT definition.

49

1. In a journal paper on the concept, challenges, and recent IoT studies, the

researchers claimed that IoT is an inter-operable and autonomous, globally

dynamic network structure. The authors also noted, however, that the meaning

of IoT may differ depending on the context or listener [27].

2. S. Leminen et al. defined IoT as the ability to connect the Internet to all of the

objects that surround us to allow everyone to access the data at any time and

anywhere [28].

3. D. Singh et al. identified IoT as ' the Internet's things ' for offering and

obtaining all data in the real world [29].

2.4.2 Components of Internet of Things (IoT)

IoT network consists of interconnecting parts such as sensors/devices,

gateways, cloud, analysis, and user interfaces. The idea of the IoT is to communicate

multiple devices and objects that are capable of transferring information and of making

the necessary decisions that eliminate interactions between humans and human beings.

Figure 2.13: Major components of IoT.

The first phase in the IoT network is a collection of data. Sensors or devices

have been used in first structures to continuously capture live data from the

Cloud User Interface

50

surroundings and transfer to the next processing step. Sensors and tools can vary with

various IoT applications. Analog pH meter, temperature, etc. are the most often used

sensors or devices. This project uses the water monitoring system to retrieve data from

the water sample that provided.

The second element stage of the IoT system is the gateway for information

processing and monitoring placed. IoT Gateway handles network data moves from the

protocol to the network. Furthermore, it functions as a middle layer among both

sensors and the cloud. In this venture, Arduino UNO R3 and STM32F411RE served

as a gateway in the IoT network.

In IoT, massive amounts of data from sensors or computers can be processed

and analyzed. Cloud has a significant role to play in the collection, analysis, and

storage of large amounts of IoT information in real-time. End users or consumers can

reach this information only with internet access online at every location. Many IoT

Cloud Platforms, as well as for open-source and paid, were designed to address IoT's

enormous growth in various industries. Table 2.4 below shows some examples of IoT

cloud platform and their vendor.

Table 2.5: List of IoT cloud platform [38].

Vendor Platform Open Source

or Paid?

Recognition and compliance

ioBridge ThingSpeak Open Source -

CyberVision Kaa Open Source -

 DeviceHive Open Source -

Particle.io Particle Open Source -

Microsoft Azure Open Source -

51

TheThings.io TheThings Paid Forbes

Aeris Aercloud Paid Forrester, SimplyHome wins

Telehealth 2015 award

Ayla Networks Ayla Networks Paid Gartner Cool Vendor 2015,

Forbes

IBM Bluemix Paid Forrester

LogMeIn.Inc Xively Paid Forbes, Forrester, 6+ awards

including World’s top 10

innovative IoT company by

Fast Company in 2014

PTC ThingsWorx Paid 10+ awards including Gartner

cool vendor 2014, Safe Harbor

Certified

Temboo.Inc Temboo Paid Forbes

Analytics means that multiple analog information from sensors and devices

converted into an information-analysis format. The IoT platform introduced to work

on real-time data analytics and respond to unusual events. The IoT system's analysis

process is beneficial to users by showcasing the potential pattern based on the retrieved

machine learning. It can also forecast outcomes on a trend-based basis so that users

can take a step further. Therefore, ThingSpeak chose as the IoT platform in this

project. Data analytics applied to the data from the water monitoring system. This

water monitoring system will collect the data from the water sample that provided. It

will upload the data to the cloud to the IoT platform to display the reading in the

ThingSpeak IoT platform’s dashboard. From there, the microcontrollers’ system

performance will be determined and analyzed.

CHAPTER 3

METHODOLOGY

This chapter explained the methods used and steps taken in gathering

information, collecting data, and result evaluation to accomplish the objectives of this

project. The system block diagram shows an overview of the project functionality. A

flow chart illustrates the procedure flow from the beginning of the project until the

end of it. The descriptions of each stage in the project flow chat are described clearly

in this section. Methodology acts as a guideline in project management to ensure that

all the works executed on the right track.

3.1 Overview of the project

According to the block diagram and flowchart, as shown in Figure 3.1 and Figure

3.2 respectively, the knowledge about the system performance test should be studied

53

deeply to conduct and carry out experiments to test the system performance of the

Arduino Uno and STM32F411RE microcontrollers board. After obtained the result,

the microcontroller developed into a water monitoring system.

Speed performance tests, both of the microcontrollers (Arduino Uno and

STM32F411RE), will be undergoing a speed test performance. This speed

performance test divided into two experiments. These two experiments aim to test the

minimum latency and the timings of the operations of the integer arithmetic process.

The same and exact arithmetic operation sequences with RISC instruction set

architecture will be used. The time to execute each of the instructions will be recorded

then analyzed.

Finally, after obtained the speed performance test result, both of the

microcontrollers will be developed into the smart water monitoring system. To ensure

the objectivity to be achieved, both microcontrollers will be programmed by using

RISC instructions set, same and exact with no other operations, and the same sensors

used. The aim of this development of the Smart Water Monitoring System is firstly to

compare and study the performance system of both different microcontrollers in

different platforms. Secondly, to achieve the objective of this project and thirdly is to

implement both microcontrollers into nowadays trending feature, which is the Industry

Revolution 4.0 (IR4.0). Besides, the priority of this development is to choose the best

and compatible sensors so both different platform microcontroller could use it. Hence,

the SKU SEN0161 (analog PH meter) and DS18B20 (analog Temperature) chose in

this project to measure the temperature and pH value reading.

54

3.1.1 System Performance Implementation

3.1.1.1 Latency Test

Latency is an associate expression of what proportion time it takes for an

information packet to transfer from one selected purpose to a different. Ideally, latency

is going to be as about to zero as potential. For the experiment to test the minimum

latency measurement, I set up an input pin as well as an output pin. The two pins are

linked together via a wire, and an oscilloscope is attached—the input pin connected to

an interrupt handler reacting with every edge. The aim is to set the output pin to the

reverse pin value. Because the output is linked back to the input, which refers to an

infinite collection of value changes generating a square wave of twice the minimum

Microcontrollers

Speed test performance

Water monitoring
system

CISC &
RISC

Record
time

taken.

Capture and
analyze the
waveform.

Data
Storing

Data

Analysis

pH

&

temperature

sensor

Figure 3.1 Block diagram of the project.

55

latency. With the square wave that generated, it observed from the oscilloscope. The

start-stop time of the waveform measured as the time response of the microcontroller

to react towards interrupt, which called latency.

Since both of the microcontrollers using a different platform, which means even

though both are microcontroller but using slightly different program software,

language, and syntax. Hence, in this test, different language and syntax codes to

implement will be used to execute the same and exact operation, at the same time,

achieve the objective that set in Chapter 1.

3.1.1.2 Timings of the Operations of Integer Arithmetic Process

The integer arithmetic provided if the expression includes all the numbers, there

will be no problem of subtraction, addition, multiplication, and exponentiation. With

actual values, though, the integer division is very different from the usual division.

The Integer division ignores the fractional portion. They're truncating both decimal

marks. In this project, the system performance of both microcontrollers tested with the

timely completion of the operation of the Integer Arithmetic Process. The oscilloscope

will capture the waveform of the operation in this process. The start-stop of the

waveform indicated as the begin and end of each arithmetic operations (addition,

subtraction, multiplication, and division).

To measure the integer arithmetic process time, I configured both of the

microcontrollers one pin as an output pin and increased the output before the operation

and then lowered it. It will provide a burst for each operation, and the pulse length

56

corresponds to the integer arithmetic process time, considering the time necessary for

increasing and growing the output. The integer arithmetic operation was skipped in

the first signal to offset for the time to raise and lower the output. The first pulse,

therefore, provides the time to remove it from the other pulses to get the pure integer

arithmetic process time. The successive pulses contain addition, subtraction,

multiplication, and division.

3.1.2 Implementation of Code (Speed Performance Test)

3.1.2.1 Minimum Latency Test

A project to measure and test the minimum latency and integer math

operation, one of the pins from the microcontroller, chose as input and another as an

output. A wire linked both pins, and between the connection, the oscilloscope attached

to this connection. Attached to the input pin was an interrupt handler that reacts on

each edge. It intends to set an output pin to input pin's inverse value. It leads to an

infinite sequence of value changes as the output is connected back to the origin,

thereby producing a square wave with a period that is double the typical latency.

(a) Arduino UNO R3

Since the output is related to the origin, this results in a continuous series of

shifts in frequency, producing a square wave with a period that is double the usual

duration. The input and the output set to pin two and pin three, respectively. The

functionality of the wiring framework, as described on the Arduino website are used

in this edition and is probably the best way most users of Arduino use it.

57

Figure 3.2 Arduino with Pure Wiring Functions code.

Since there is an alternative way to implement the interrupt handler, which directly

manipulates the port register that allows saving a lot of time, but it mostly used by

advanced users.

Figure 3.3 Arduino with Direct Manipulation of Port Register code.

File Edit Sketch Tools Help

static const int PIN_ IN = 2 ;
static const int PIN_OUT = 3;

void l oop{)

(

}

/ 1 start interrupt loop: 1 /

d i g i ta l Wri te (PIN_OUT , HIGH) ;

while (l) ;

~oid set up ()

(

p i nMocle (PIN_ IN, INPUT) ;

p i nMocle (PIN_OUT , OUTPUT) ;

attachl nterrupt (0 , pi n_i n_on_change, CHANGE) :

static void pi n_ i n_on_change ()
(

d i g i ta l Wri te (PIN_OUT , !d i g i tal Read (PIN_ IN)) ;

File Edit Sketch Tools Help

static const int PIN_ IN = 2 ;
static const int PIN_OUT = 3 ;

void l oop{)

(

/ 1 start interrupt loop: 1 /

d i g i ta l Wri te (PIN_OUT , HIGH) ;

while (l) ;

void set up ()

@
p i nMocle (PIN_ IN, INPUT) ;

p i nMocle (PIN_OUT , OUTPUT) ;

attachl nterrupt: (O, pi n i n on change, CHANGE) ;
11 - - -

static void pi n_ i n_on_change ()
{

PORTO A = ((--PORTO) « l) & 0x08 ;

58

The second iteration is a much efficient way to execute the interrupt handler, which

only been used by more advanced people. The port register is directly regulated here,

thus saving a lot of time. From there, the waveform measured and obtained through

the oscilloscope.

(b) STM32F411RE

With STM32F411RE, the configuration pin of this board is almost similar to

Arduino UNO R3. Hence, to make it standardize, the same pin that declared or used

in Arduino UNO R3 in the same test will be used in STM32F411RE. Pin 6 and 7 used

as input and output, respectively. The same equipment (oscilloscope) used to measure

and obtained the waveform generated. Next, to identify the time is taken, and the

period of the execution time required, analysis of that waveform done.

Figure 3.4 STM32F411RE Latency Test Functions code.

3 Inte r=upt in d7_ i n (D7) ;
4 Digit a lOUt d6_out (D6) ;
5
6 sca-: i c vo i d d7_on_change ()
7 {
8 d6_out !d7_ i n;
9

10
11 i n~ ma in ()
12 {
13 d7_ i n . r ise (d7_on_cha nge) ;
14 d7_ i n .fa l l (d7_on_cha nge) ;
15
16 / * star t
17 d6 out
1e 11 -

inte rrupt l oop: */
1;

59

3.1.2.2 Timings of the Operations of Integer Arithmetic Process

For testing the timing of the timings of the Operations of Integer Arithmetic

Process, I had set the pin three as an output pin for both microcontrollers. To observe

the significant difference of timings of the Operations of Integer Arithmetic Process,

at first, I run the test by using the Arduino UNO R3 with the 8-bit arithmetic operation

and obtained the time taken for each operation. Then, I increased the number of bits

to became 16 and 32 bits. Hence, every waveform captured, and the time is taken or a

period of execution of each arithmetic operation recorded.

(a) Arduino UNO R3

For Arduino arithmetic integer code, pin three assigned as the output pin, which

will produce the output signal waveform into the waveform. To perform the

arithmetic integer, a, b, c, d, e, and f assigned, which will begin with 8-bits, then

increase to 16-bits and finally 32-bits. Initially, the ‘a’ and ‘b’ attached with 0, every

looping, the ‘a’ and ‘b’ will increment by 1. The direct port assigned is being used.

At first, the pin 3 (port D) will produce a high signal (1) which perform ‘OR’ gate

operation. Then, pin three will become 0 that this time assigned to perform the

‘XOR’ gate operation. Hence, the square wave produced.

~tatic const int PI N_OUT : 3 ;

static volatile uintS_ t a , b , c , d , e , f ;

void setup ()

p i nMode (PI N_OUT , OUTPUT) ;

a : O;

b = O;

60

For this, each arithmetic integer operation assigned the pin three as High output

signal (1) then, after completed each of this arithmetic integer operation instruction,

the pin three will be assigned to become the low output signal (0). Which indicated,

the completed of the arithmetic integer operation. The output signal produced from

the Arduino UNO R3 is then connected directly to the oscilloscope. Figure 3.4 in the

below is the waveform produced by the microcontroller Arduino UNO R3 that

implemented the arithmetic integer operation.

Figure 3.5 Arduino UNO R3 integer arithmetic operations code.

(b) STM32F411RE

For STM32F411RE arithmetic integer code, pin six assigned as the output pin,

which will produce the output signal waveform into the waveform. To perform the

arithmetic integer, a, b, c, d, e, and f appointed, which will begin with 8-bits, then

increase to 16-bits and finally 32-bits. Initially, the ‘a’ and ‘b’ assigned with 0, every

looping, the ‘a’ and ‘b’ will increment by 1. The direct port assigned is being used.

void l oop ()

I
a ++ ;
b-- ;

/ A empty pulse :
PORTO I = Ox 08 :

PORT O " = Ox 08 ;

/ 1 addition:

PORT O I = Ox 08 ;

C = a +b;

PORT O " = Ox 08 ;

/ 1 subtraction:

PORT O I = Ox 08 ;

d = a-b ;

PORT O " = Ox 08 ;

/ 1 multiplication: A/

PORT O I = Ox 08 ;

e = a Ab ;

PORT O " = Ox 08 ;

/ 1 division: •/

PORT O I = Ox 08 ;

f = a / b ;

PORT O " = Ox 08 ;

d ela y {lOO) ;

61

At first, the pin 3 (port D) will produce a high signal (1) which perform ‘OR’ gate

operation. Then, pin three will become 0 that this time assigned to perform the

‘XOR’ gate operation. Hence, the square wave produced.

For this, each arithmetic integer operation assigned the pin three as High output

signal (1) then, after completed each of this arithmetic integer operation instruction,

the pin three will be assigned to become the low output signal (0). Which indicated,

the completed of the arithmetic integer operation. The output signal produced from

the STM32F411RE is then connected directly to the oscilloscope. Figure 3.5 in the

below is the waveform produced by the microcontroller STM32F411RE that

implemented the arithmetic integer operation.

Figure 3.6 STM32F411RE integer arithmetic operations code.

~ main.cpp x
1 , : nclude "' .. =•·•••d•.•n"'".------------
2 Digit a lOUt d 6_o u e(D6) ;
3 Digit a lOUt l ed (LEDl) ;
4 sca-: ic volacile int32_ -: a, b, c , d , e , f ;
5 vo i d s e ,;up ()
6 {
7 a = O;
S b = O;
9 }

1 O voi d l oop ()
11 {
12 CT i';

13 b- - ;
14
15 d 6 _out

16 d 6_out
17
19 d 6 _ou<

- 1 •
o,

1 ·

19 C = a + b ;
20 d 6_out o,
21
22 d 6_out 1 :
23 d = a - b ;
24 d 6_out o,
25
26 d 6_out 1 :
27 • = a ' b ;
28 d 6_out o,
29
30 d 6_out 1 :
31 f = a I b ;
32 d 6_out = o,
33
34 wa :.t (O, lf) :

35 }
36
;j H !': ma:.n ()
38 {
39 s e cu-p () ;
4iJ w:n l e (l) l oop () ;

41 J

62

3.1.3 Water Monitoring System (Internet of Things)

For the implementation of the Water Monitoring System, I have written the

code for assigned the two pins, which are A0 and A1 for the analog pH sensor and

temperature sensor, respectively. A complete system by combining pH sensor,

temperature sensor, and Wi-Fi module functions into the main function loop to extract

solution data and send it to the cloud at the same time. The data request and data

collection of the two parameters used in this project will proceed first. These data

sensors will be further process by the mathematical formula based on the parameter,

and data bytes received. After acquiring all sensor data, it sent to the cloud server via

a Wi-Fi module. A delay of 15 seconds implemented at the end of the function loop

because ThingSpeak requires 15 seconds of interval for the data update to its cloud

server.

3.1.3.1 Arduino UNO R3

Firstly, pin A0 and A1 are declared as receiver of pH sensor and temperature.

To program these two sensors, I used OneWire.h and DallasTemperature.h libraries

for the temperature sensor (DS18B20). While for the analog pH sensor (SEN0161),

DFRobot_PH.h, and EEPROM.h libraries. By using these libraries, all the

functionality declared in .cpp and .h file. Code to program both sensors is coded in

pH() and temperature() function for reading the pH value and temperature value,

respectively. The figure below shows the code to program pH and temperature sensors.

63

The function of the coding below shows the setup functions of the whole

system. The system will start up the system by setup the system baud rate to 9600 for

the Serial monitor, ESP8266, pH sensor as well as the temperature sensors. To enable

the Arduino UNO R3 to communicate with ESP8266, AT command is created to allow

the communication. Command also includes the authority to connect to the Wi-Fi

network. Once the connection has connected, it will print the “Connected” and “Water

Monitoring System Demo” in the Serial monitor.

void pH(void)//ontop of main()

{

 static unsigned long timepoint = millis();

 if(millis()-timepoint>1000U) //time interval: 1s

 {

 timepoint = millis();

 voltage = analogRead(PH_PIN)/1024.0*5000; // read the voltage

 float temp = 0;

 phValue = ph.readPH(voltage,temp); // convert voltage to pH with temperature

compensation

 Serial.print("^C pH:");

 Serial.println(phValue,6);

 }

}

void temperature()

{

 sensors.requestTemperatures(); //request the temperature

 Celcius=sensors.getTempCByIndex(0);

 Serial.print(" C ");

 Serial.print(Celcius);

}

64

The figure below shows to send the data to ESP8266; function send_command

created. The params that used are purposely: command - the data/command to send;

timeout - the time to wait for a response; debug - print to Serial monitor? (true = yes,

false = no); Returns: The response from the ESP8266 (if there is a response).

To upload the real-time data, update data() created. In this function, this is to ensure

all the new data uploaded into the IoT platform by using an HTTP request. In this

project, field one and field two used to upload the pH level data and temperature data,

respectively. The figure below shows the coding to upload the data into ThingSpeak.

void setup()

{

 Serial.begin(9600);

 esp.begin(9600);

 ph.begin();

 sensors.begin();

 send_command("AT+RST\r\n", 2000, DEBUG); //reset module

 send_command("AT+CWMODE=1\r\n", 1000, DEBUG); //set station mode

 send_command("AT+CWJAP=\"terry1\",\"123456789\"\r\n", 2000, DEBUG); //connect wifi

network

while(!esp.find("OK"))

 { //wait for connection

 Serial.println("Connected/n");

 Serial.println("Water Monitoring System Demo/n");

 }

}

String send_command(String command, const int timeout, boolean debug)

{

 String response = "";

 esp.print(command); // send the read character to the esp8266
 long int time = millis();

 while ((time + timeout) > millis())

 {

 while (esp.available())

{

 // The esp has data so display its output to the serial window

 char c = esp.read();// read the next character.

 response += c;

 }

 }

 if (debug)

 {

 Serial.print(response);

 }

 return response;

}

void updatedata()

{

 String command = "AT+CIPSTART=\"TCP\",\"";

 command += IP;

 command += "\",80";

 Serial.println(command);

 esp.println(command);

 Serial.print(" Requesting temperatures & pH...");

 Serial.print(" Temp Celcius: ");

 Serial.print(Celcius,2);

 Serial.print(" pH value: ");

 Serial.println(phValue,6);

65

After successfully implement the Arduino code of each function block, a

complete Arduino coding by combining these sensors’ functions block and ESP8266

functions block into the main function loop to extract the sensor data and send it to the

cloud at the same time. The complete coding below shown that the data request and

data collection of two parameters used in this project will proceed first. These data

will be further process by the mathematical formula based on the parameter, and data

bytes received. After acquiring sensor data, it sent to the cloud server via ESP8266. A

delay of 15 seconds implemented at the end of the function loop because ThingSpeak

requires 15 seconds of interval for the data update to its cloud server.

#include <SoftwareSerial.h>

#include <OneWire.h>

#include <DallasTemperature.h>

#include "DFRobot_PH.h"

#include <EEPROM.h>

////////////////////ESP8266/////////////////////

SoftwareSerial esp(2,3);

///////////////////PH///////////////////////////

#define PH_PIN A0

float voltage,phValue;

DFRobot_PH ph;

//////////////////Temperature////////////////////

#define tempSensor A1

OneWire oneWire(tempSensor);

DallasTemperature sensors(&oneWire);

float Celcius=0;

///////////////////Thingspeak////////////////////

#define DEBUG true

#define IP "184.106.153.149"// thingspeak.com ip

String Api_key = "GET /update?key=K1MN6S459Y4HL56K"; //change it with your api key like "GET

/update?key=Your Api Key"

int error;

void setup()

{

 if(esp.find("Error"))

 {

 return;

 }

 command

 command = Api_key ;

 command += "&field1=";

 command += phValue;

 command += "\r\n";

 command += "&field2=";

 command += Celcius;

 command += "\r\n";

 Serial.print("AT+CIPSEND=");

 esp.print("AT+CIPSEND=");

 Serial.println(command.length());

 esp.println(command.length());

 if(esp.find(">"))

 {

 Serial.print(command);

 esp.print(command);

 }

 else

 {

 Serial.println("AT+CIPCLOSE");

 esp.println("AT+CIPCLOSE");

 //Resend...

 error=1;

 }

 }

66

float Celcius=0;

///////////////////Thingspeak////////////////////

#define DEBUG true

#define IP "184.106.153.149"// thingspeak.com ip

String Api_key = "GET /update?key=K1MN6S459Y4HL56K"; //change it with your api key like "GET

/update?key=Your Api Key"

int error;

void setup()

{

 Serial.begin(9600);

 esp.begin(9600);

 ph.begin();

 sensors.begin();

 send_command("AT+RST\r\n", 2000, DEBUG); //reset module

 send_command("AT+CWMODE=1\r\n", 1000, DEBUG); //set station mode

 send_command("AT+CWJAP=\"terry1\",\"123456789\"\r\n", 2000, DEBUG); //connect wifi

network

 while(!esp.find("OK"))

 { //wait for connection

 Serial.println("Connected/n");

 Serial.println("Water Monitoring System Demo/n");

 }

}

void pH(void)//ontop of main()

{

 static unsigned long timepoint = millis();

 if(millis()-timepoint>1000U) //time interval: 1s

 {

 timepoint = millis();

 voltage = analogRead(PH_PIN)/1024.0*5000; // read the voltage

 float temp = 0; // read your temperature sensor to execute temperature compensation

 phValue = ph.readPH(voltage,temp); // convert voltage to pH with temperature

compensation

 Serial.print("^C pH:");

 Serial.println(phValue,6);

 }

}

void temperature()

{

 sensors.requestTemperatures();

 Celcius=sensors.getTempCByIndex(0);

 Serial.print(" C ");

 Serial.print(Celcius);

}

void loop()

{

 pH();

 temperature();

 start: //label

 error=0;

 updatedata();

 if (error==1)

 {

 goto start; //go to label "start"

 }

 delay(1000);

}

void updatedata()

{

 String command = "AT+CIPSTART=\"TCP\",\"";

 command += IP;

 command += "\",80";

 Serial.println(command);

 esp.println(command);

 Serial.print(" Requesting temperatures & pH...");

 Serial.print(" Temp Celcius: ");

 Serial.print(Celcius,2);

 Serial.print(" pH value: ");

 Serial.println(phValue,6);

 if(esp.find("Error"))

 {

 return;

 }

 command = Api_key ;

 command += "&field1=";

 command += phValue;

 command += "\r\n";

 command += "&field2=";

 command += Celcius;

 command += "\r\n";

67

3.1.3.2 STM32F411RE

Firstly, pin A0 and A1 are declared as receiver of pH sensor and temperature.

To program these two sensors, I used DS1820.h libraries for the temperature sensor

(DS18B20). While for the analog pH sensor (SEN0161), SEN0161.h libraries. By

using these libraries, all the functionality declared in .cpp and .h file. Code to program

both sensors is coded inside the main() functions block. The figure below shows the

code written to program the sensors.

As the mbed compiler has the different coding format and syntax, the setup functions

which usually wrote in the Arduino IDE compiler is now become the main() functions

 Serial.print("AT+CIPSEND=");

 esp.print("AT+CIPSEND=");

 Serial.println(command.length());

 esp.println(command.length());

 if(esp.find(">"))

 {

 Serial.print(command);

 esp.print(command);

 }

 else

 {

 Serial.println("AT+CIPCLOSE");

 esp.println("AT+CIPCLOSE");

 //Resend...

 error=1;

 }

 }

String send_command(String command, const int timeout, boolean debug)

{

 String response = "";

 esp.print(command);

 long int time = millis();

 while ((time + timeout) > millis())

 {

 while (esp.available())

 {

 char c = esp.read();

 response += c;

 }

 }

 if (debug)

 {

 Serial.print(response);

 }

 return response;

}

 float voltage=sensor.get_pH();

 float pH=-6*voltage+16;

 printf("\n\r PH is %f\n", pH);

 //float voltage= (sensor.get_pH())/3.5f;

 //printf("\n\r mV is %f\n", voltage);

 ds1820.startConversion(); // start temperature conversion

 float temp=ds1820.read();

 printf("\n\r temp = %3.1f\r\n", temp); // read temperature

68

block. In this main() features block, the system begins with the setup of the Wi-Fi

module. It provides with the Wi-Fi information, SSID, and password. If the module

succeeds in connecting to the Wi-Fi, then the microcontroller will print the result

“connected” else it will print “error connecting.” Once it is connected, the IP and Mac

address of the Wi-Fi connection and microcontroller device’s address will be display

on the Tera Term. The figure below shows the setup of the whole system in the mbed

compiler.

To send the data to update the real-time data that obtained or captured by the sensors

to the IoT platform, in the main() functions to block the code written as shown in the

figure below to ensure each new data uploaded into the IoT platform.

After update newly data, the data sent to the cloud via the IDW01M1 Wi-Fi module.

To do so, code to program the IDW01M1 created in the http_demo() functions

block, which shown in the figure below.

int main()

{

 int err;

 char * ssid = "terry1";

 char * seckey = "123456789";

 pc.printf("\r\nNucleo F411RE + WiFi + Thingspeak\r\n");

pc.printf("\r\nconnecting to AP\r\n");

 if(spwf.connect(ssid, seckey, NSAPI_SECURITY_WPA2)) {

 pc.printf("\r\nnow connected\r\n");

 } else {

 pc.printf("\r\nerror connecting to AP.\r\n");

 return -1;

 }

 const char *ip = spwf.get_ip_address();

 const char *mac = spwf.get_mac_address();

 pc.printf("\r\nIP Address is: %s\r\n", (ip) ? ip : "No IP");

pc.printf("\r\nMAC Address is: %s\r\n", (mac) ? mac : "No MAC");

pc.printf("\r\n--Starting--\r\n");

 while(1)

 {

 wait(1.0);

 myled = !myled;

 }

}

int err=http_demo(pH,temp);

 if(err==0)

 pc.printf("Thingspeak update completed successfully\r\n");

 else

 pc.printf("Error occurred %d\r\n",err);

69

After successfully implementing the STM32F411RE code of each function

block, a complete coding by combining these sensors’ functions block and

IDW01M1 functions block into the main function loop to extract the sensor data and

send it to the cloud at the same time. In this project, the complete coding below

shown that the data request and data collection of the two parameters used will

proceed first. These data will be further process by the mathematical formula based

on the parameter, and data bytes received. After acquiring sensor data, it sent to the

cloud server via IDW01M1. A delay of 15 seconds implemented at the end of the

function loop because ThingSpeak requires 15 seconds of interval for the data update

to its cloud server.

int http_demo(long pH, long temp)

{

 TCPSocket socket(&spwf);

 char buffer[512];

 char message[80];

 int err;

 printf("Sending HTTP Data to thingspeak...\r\n");

 // Open a socket on the network interface, and create a TCP connection to thingspeak

 //socket.open(&spwf);

 err=socket.connect(IP,80); // connecting to thingspeak

 if(err!=0) {

 pc.printf("\r\nCould not connect to Socket, err = %d!!\r\n", err);

 return -1;

 }

 else

 pc.printf("\r\nconnected to host server\r\n");

 // Send a simple http request

 sprintf(message,"field1=%d&field2=%d,pH,temp);

 printf("Message Length=%d\r\n",(int)strlen(message));

 sprintf(buffer,"POST /update HTTP/1.1\r\nHost: api.thingspeak.com\r\nConnection:

close\r\nX-THINGSPEAKAPIKEY: %s\r\nContent-Type: application/x-www-form-

urlencoded\r\nContent-Length: %d\r\n\r\n%s",thingSpeakKey,(int)strlen(message),message);

 pc.printf("Request to %s\r\n", buffer);

 //char sbuffer[] = "GET / HTTP/1.1\r\nHost: www.arm.com\r\n\r\n";

 int scount = socket.send(buffer, (int)strlen(buffer));

 printf("sent %d [%.*s]\r\n", scount, strstr(buffer, "\r\n")-buffer, buffer);

 // Recieve a simple http response and print out the response line

 char rbuffer[64];

 int rcount = socket.recv(rbuffer, sizeof rbuffer);

 printf("recv %d [%.*s]\r\n", rcount, strstr(rbuffer, "\r\n")-rbuffer, rbuffer);

 // Close the socket to return its memory and bring down the network interface

 socket.close();

 return 0;

}

70

#include "mbed.h"

#include "SpwfInterface.h"

#include "TCPSocket.h"

#include "SEN0161.h"

#include "DS1820.h"

#define PORT 1234

#define MAX_PENDING 1

#define IP "184.106.153.149"

char* thingSpeakUrl = "http://api.thingspeak.com/update";

char* thingSpeakKey = "Z9HN57T63DBWIW2D";

SEN0161 sensor(A0);

DS1820 ds1820(A1); // substitute D8 with the actual pin name connected to the 1-wire

bus

DigitalOut myled(LED1);

int cnt=0;

Serial pc(USBTX, USBRX);

volatile long pH=0;

volatile long voltage=0;

volatile long temp=0;

volatile long volt=0;

SpwfSAInterface spwf(D8, D2, false);

int http_demo(long pH, long temp)

{

 TCPSocket socket(&spwf);

 char buffer[512];

 char message[80];

 int err;

 printf("Sending HTTP Data to thingspeak...\r\n");

 // Open a socket on the network interface, and create a TCP connection to thingspeak

 //socket.open(&spwf);

 err=socket.connect(IP,80); // connecting to thingspeak

 if(err!=0) {

 pc.printf("\r\nCould not connect to Socket, err = %d!!\r\n", err);

 return -1;

 }

 else

 pc.printf("\r\nconnected to host server\r\n");

 // Send a simple http request

 sprintf(message,"field1=%d&field2=%d,pH,temp);

 printf("Message Length=%d\r\n",(int)strlen(message));

 sprintf(buffer,"POST /update HTTP/1.1\r\nHost: api.thingspeak.com\r\nConnection:

close\r\nX-THINGSPEAKAPIKEY: %s\r\nContent-Type: application/x-www-form-

urlencoded\r\nContent-Length: %d\r\n\r\n%s",thingSpeakKey,(int)strlen(message),message);

 pc.printf("Request to %s\r\n", buffer);

 //char sbuffer[] = "GET / HTTP/1.1\r\nHost: www.arm.com\r\n\r\n";

 int scount = socket.send(buffer, (int)strlen(buffer));

 printf("sent %d [%.*s]\r\n", scount, strstr(buffer, "\r\n")-buffer, buffer);

 // Recieve a simple http response and print out the response line

 char rbuffer[64];

 int rcount = socket.recv(rbuffer, sizeof rbuffer);

 printf("recv %d [%.*s]\r\n", rcount, strstr(rbuffer, "\r\n")-rbuffer, rbuffer);

 // Close the socket to return its memory and bring down the network interface

 socket.close();

 return 0;

}

int main()

{

 int err;

 char * ssid = "terry1";

 char * seckey = "123456789";

 pc.printf("\r\nNucleo F411RE + WiFi + Thingspeak\r\n");

 pc.printf("\r\nconnecting to AP\r\n");

 if(spwf.connect(ssid, seckey, NSAPI_SECURITY_WPA2)) {

 pc.printf("\r\nnow connected\r\n");

 } else {

 pc.printf("\r\nerror connecting to AP.\r\n");

 return -1;

 }

 const char *ip = spwf.get_ip_address();

 const char *mac = spwf.get_mac_address();

 pc.printf("\r\nIP Address is: %s\r\n", (ip) ? ip : "No IP");

 pc.printf("\r\nMAC Address is: %s\r\n", (mac) ? mac : "No MAC");

 pc.printf("\r\n--Starting--\r\n");

 if(ds1820.begin())

 {

 while(1)

 {

71

 const char *mac = spwf.get_mac_address();

 pc.printf("\r\nIP Address is: %s\r\n", (ip) ? ip : "No IP");

 pc.printf("\r\nMAC Address is: %s\r\n", (mac) ? mac : "No MAC");

 pc.printf("\r\n--Starting--\r\n");

 if(ds1820.begin())

 {

 while(1)

 {

 wait(1.0);

 myled = !myled;

 pc.printf("----------------\r\n");

 float voltage=sensor.get_pH();

 float pH=-6*voltage+16;

 printf("\n\r PH is %f\n", pH);

 //float voltage= (sensor.get_pH())/3.5f;

 //printf("\n\r mV is %f\n", voltage);

 ds1820.startConversion(); // start temperature conversion

 float temp=ds1820.read();

 printf("\n\r temp = %3.1f\r\n", temp); // read temperature =

 int err=http_demo(pH,voltage,temp,volt);

 if(err==0)

 pc.printf("Thingspeak update completed successfully\r\n");

 else

 pc.printf("Error occurred %d\r\n",err);

 }

 }

 else

 printf("No DS1820 sensor found!\r\n");

}

72

3.1.3.3 Implementation of Water Monitoring System (Offline)

After the implementation, hardware and software are done. The prototype is

tested by measure three different water samples solution with varying values

of ph (acid, neutral, and alkaline). The figure below shows the pH buffer

powder used in this project as a benchmark or standard reference for the

parameter’s pH values. Throughout this buffer powder, three different pH

water samples solution is made—the instructions and the details of the pH

value that corresponds to the temperature values are stated too. The

microcontrollers measured the parameter pH values and computed the result

to determine the exact pH value from the water samples solution.

Besides, to further make the benchmark to be more accurate, the ethanol

solution is used in this project as shown in the figure below. It acts as the litmus

paper, where four drops of ethanol solution will drop into each of these pH

buffer solutions, and the pH of the water samples solution is determined

according to the color changes. It does prove the pH of the solution.

Figure 3.7 Three different pH Buffer Powder.

73

Unfortunately, this only gives a rough guess towards the pH value. It is not

strong enough to convince the pH value that the microcontroller obtained

either is correct or not.

Figure 3.8 Ethanol Solution and Litmus Paper.

Hence, another device has been purchased and used, which is the analytical

instruments that can measure the pH, conductivity (EC), total dissolved solids

(TDS), and temperature. With this instrument, the problem of getting a

reference pH benchmark parameter reading is solved. Figures below show the

water samples solution mixed with the ethanol solution and tested with the

analytic device to ensure and set all the reference parameters reading before

the solutions are tested with the water monitoring system.

Figure 3.9 pH Buffer solution tested with ethanol solution and analytical

instruments.

I
I -

Universal pH value col or scale (universal indicator}

0 2 3 4 5 0 B 9 10 11 12 13 14

~ r-1 l r
t

l
t

sourcrout salrva seawater soap
mon, diute Cola milk iltestl'lal juice sokJOOn
octlloric acid sour mlk, mineral water

(wltl c.arbonic acid)
battery acid table vinegar distiled arrmonia, dilute sodium
gastric juice lemonade water hydroxide sokltion

from: https://www.hochsauerlandwasser.de/wasser-wissen/swimming-pool/ph-werte/ (2015)

74

3.2 Analysis of Time Response

A second-order system exhibits a wide range of responses that must be analyzed

and described. Varying a first-order system’s parameter simply changes the speed of

the reaction; changes in the parameters of a second-order system can change the form

of the response. For example, a second-order system can display characteristics much

like a first-order system or, depending on component values, display damped or pure

oscillations for its transient response. The term in the numerator is simply a scale or

input-multiplying factor that can take on any amount without affecting the form of

derived results.

By assigning appropriate values to parameters a and b, we can show all possible

second-order transient responses. The unit step response than can be found using

𝐶(𝑠) = 𝑅(𝑠) 𝐺(𝑠), where 𝑅(𝑠) =
1

𝑠
, followed by a partial-fraction expansion and

the inverse Laplace transform.

Overdamped responses:

Poles: Two real at −𝜎1, 𝜎2.

Natural response: Two exponentials with time constants equal to the reciprocal of

the pole locations, or

𝑐𝑛(𝑡) = 𝐾1𝑒−𝜎1𝑡 + 𝐾2𝑒−𝜎2𝑡 3.1

Underdamped responses:

Poles: Two complexes at −𝜎𝑑 , 𝑗𝜔𝑑.

75

Natural response: Damped sinusoid with an exponential envelope whose time

constant is equal to the reciprocal of the pole’s real part. The radian frequency of

sinusoid, the damped frequency of oscillation, is similar to the imaginary part of

the poles, or

𝑐𝑛(𝑡) = 𝐴𝑒−𝜎𝑑𝑡𝑐𝑜𝑠 𝜔𝑑𝑡 − 𝜙 3.2

Undamped responses:

Poles: Two imaginary at ±𝑗 𝜔1

Natural response: Undamped sinusoid with radian frequency equal to the imaginary

part of the poles, or

𝑐𝑛(𝑡) = 𝐴 𝑐𝑜𝑠 (𝜔1𝑡 − 𝜙) 3.3

Evaluation of 𝑇𝑝

𝑇𝑝 =
𝜋

𝜔𝑛√1 − 𝜁2
 3.4

Evaluation of %𝑂𝑆

%𝑂𝑆 =
𝐶𝑚𝑎𝑥 − 𝐶𝑓𝑖𝑛𝑎𝑙

𝐶𝑓𝑖𝑛𝑎𝑙
× 100 = 𝑒

−(
𝜁𝜋

√1−𝜁2
)

× 100

𝑤ℎ𝑒𝑟𝑒

 3.4

76

𝐶𝑚𝑎𝑥 = 1 + 𝑒
−(

𝜁𝜋

√1−𝜁2
)

𝑎𝑛𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑢𝑛𝑖𝑡 𝑠𝑡𝑒𝑝 𝑢𝑠𝑒𝑑;

𝐶𝑓𝑖𝑛𝑎𝑙 = 1

𝑡ℎ𝑒 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑜𝑓 𝑡ℎ𝑖𝑠 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑎𝑙𝑙𝑜𝑤𝑠 𝑡𝑜 𝑠𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝜁 𝑏𝑦:

𝜁 =
−ln (%𝑂𝑆/100)

√𝜋2 + [ln (%
𝑂𝑆
100)]2

Evaluation of 𝑇𝑠

𝐹𝑜𝑟 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 ± 2%,

𝑇𝑠 =
4

𝜁𝜔𝑛

𝐹𝑜𝑟 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 ± 5%,

3.5

𝑇𝑠 =
4

𝜁𝜔𝑛

3.6

Evaluation of 𝑇𝑟

A precise analytical relationship between rising time and damping ratio, ζ cannot

be found. However, we can see the rise time using a computer. Figure 3.6 illustrates

the resulting curve obtained relating the variation of 𝑤𝑛𝑡𝑟 and the damping ratio, ζ

77

Figure 3.10 Illustration of the variation of 𝒘𝒏𝒕𝒓 and the damping ratio, ζ.

3.3 Description of Project Implementation

To obtain the result for further analysis, project testing based on the developed

project prototype produced. Besides, the functionality of the system tested to ensure

that the expected result coherence with the project objective achieved. Figure 3.3.1

and Table 3.3.1 below show the flowchart and Gantt chart of the overall project

implementation, respectively.

Damping Normalized
ratio rise time

3.0 0.1 1.104

,-. 2.8
0.2 1.203

" 0.3 1.321
~ 2.6 0.4 1.463
C' 0.5 1.638 ~ 2.4

0.6 1.854
e 21 0.7 2.126 ;,
c 0.8 2.467 Z 2.0
X 0.9 2.883
" E 1.8

~ 1.6
0:

1.4

1.2

1.0
0.1 01 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Damping ratio

78

Figure 3.11 Flow chart of the project.

Measure and record the pH and temperature. Upload into

the Thing-Speak platform and analyse the result obtained.

Yes

End

Develop Arduino Uno and STM32F411RE into water monitoring system.

Expected

result obtain?

Start

Study about Arduino Uno and STM32F411RE and system performance test.

Design and conduct experiments based on system performance test.

Speed

Performance

Test

No

Compile the project with final

report and the prototype of project

Yes

No

Expected

result obtain?

CHAPTER 4

RESULTS AND DISCUSSION

This chapter will discuss the outcome of this project from the previous

methodology. The product of hardware and software implementation on both

microcontrollers, Arduino UNO and STM32F411RE with water monitoring system,

will be displayed in the form of a picture. The collected data will be shown in a

graphical and tabulated form so that it is user friendly. The findings of this section

used to review the objective of this project.

4.1 Minimum latency comparison

To execute minimum latency measurement, one of the pins from the

microcontroller chose as input and another as an output. A wire linked both pins, and

between the connection, the oscilloscope attached to this connection. Attached to the

80

input pin was an interrupt handler that reacts on each edge. It intends to set an output

pin to input pin's inverse value. It leads to an infinite sequence of value changes as the

output is connected back to the origin, thereby producing a square wave with a period

that is double the typical latency.

After implementing the code that wrote in the previous chapter, the waveform

and the data obtained. Figure 4.4, Figure 4.5, and Figure 4.6 below show the

waveform, which generated as the changes of the signal of the output pin towards the

input pin as the interrupt handler as it attached to the input pin.

Figure 4.1 Latency test with pure wiring (Arduino UNO)

Figure 4.2: Latency test with direct manipulation of the port register

(Arduino UNO)

DSO-X2012A Mi54410251 Ti,,IJ€.::(0 16:32:592019

DSO-X 2012A Mi54410251: Ti,,0€.::C0 16:33:4B 21119

81

Figure 4.3: Latency test (STM32F411RE)

From the waveform generated by the oscilloscope, the time taken for the

microcontrollers to respond or to change towards the input interrupt handler’s signal

is much clearer to be seen. Table 4.1 below shows an overview of the comparative

latency result.

Table 4.1: Overview of minimum latency

From these data, it can be clearly state that the Arduino UNO latency is much higher

than the STM32F411RE. The controller STM32F411RE latency is 1.88𝜇𝑠. While for

the Arduino UNO, even though it has two types of level coding, it still having a higher

latency rate than STM32F411RE, which is 5.9𝜇𝑠 (advance). Arduino UNO has three

times higher latency than STM32F411RE. The higher the latency, the longer the time

Types of

microcontroller

Level of Coding Latency

Arduino UNO Advance
5.9𝜇𝑠

STM32F411RE Advance
1.88𝜇𝑠

Cffi.X2012A. MY544102i1: Tue Decm 15:43:232019

82

taken/ interval between the stimulation and response. It also indicates that the Arduino

UNO is slower than the STM32F411RE. It is because the STM32F411RE only

requires only 1.88𝜇𝑠 to react towards each of the interrupt signals. While for the

Arduino UNO R3, it requires 5.9𝜇𝑠 to respond to each of the interrupt signals.

Besides, this also means that the STM32F411RE has a higher response rate as

compared to Arduino UNO R3 that can fast enough to react towards a signal given

and response to an event. As to strengthen the results obtained, the data compared with

researched the data. Therefore, from this result, it has answered/ proved that the

STM32F411RE is faster than the Arduino UNO in the latency test.

4.2 Integer arithmetic comparison

I programmed one pin as an output pin to measure the execution time of the

mathematical procedures, and raised the output before the operation and then lowered

it. The pulse produced by each phase and the length of the pulse is equivalent to the

math procedure execution period plus the time needed to increase the output and

decrease it. In the first pulse, the calculation process missed to compensate for the

period to move, and the score reduced. The first pulse thus represents the time that

must be subtracted from the other pulses to have a pure length of the math operation.

Addition, subtraction, multiplication, and division encapsulated in the corresponding

pulses.

83

The coding for the integer math operation code, which wrote in the previous

chapter, uploaded into both microcontrollers, Arduino UNO and STM32F411RE.

Figure 4.4, Figure 4.5, Figure 4.6, waveforms generated.

Figure 4.4: Arduino UNO R3-Timing test 8bit

Figure 4.5: Arduino UNO R3-Timing test 16 bit

Dro-X3112A, Ml'54410.SIT11110.Cml63i!il3119 t:IDXJJ12,\M15'4!0.S1 T1111Decm16:1tCIIJJ19

Dro-XJJ12"M5441Cl251 T.e0ecll3 16C.WJJ19 tmXJJ12't.ft544;Ml251 r.0ecm1s4421 201s

84

Figure 4.6: Arduino UNO R3-Timing test 32 bit

Figure 4.7: STM32F411RE-Timing test 32 bit

From these generated waveforms, all of the time taken for each integer math

operation tabulated in table 4.2 below.

1:ro-X!l12AMl'S441'I251 TUl!IOecCD 1&47·$aJ19 1:ro-Xal12.,\M'l544!11251 Ti.eD,dl3 !641t21!l19

85

Table 4.2: Overview of integer math operation

Types of

Microcontrollers

Data Bit

Width

Types Arithmetic

Operation

Time Taken for

Execution

Arduino UNO R3

8

Additional 636n𝑠

Subtraction 636n𝑠

Multiplication 812n𝑠

Division 5.56𝜇𝑠

16

Additional 1.056𝜇𝑠

Subtraction 1.06𝜇𝑠

Multiplication 1.56𝜇𝑠

Division 13.28𝜇𝑠

32

Additional 1.94𝜇𝑠

Subtraction 1.93𝜇𝑠

Multiplication 6.24𝜇𝑠

Division 37.6𝜇𝑠

STM32F411RE 32

Additional 138n𝑠

Subtraction 137.6n𝑠

Multiplication 138.4n𝑠

Division 178n𝑠

From these results, the STM32F411RE has a significant high performance than

Arduino UNO R3. This is because STM32F411RE in 32-bit integer math operations

86

additional is 138n𝑠 , Subtraction 137.6n𝑠 , Multiplication 138.4n𝑠 and Division is

178n𝜇𝑠. While for the Arduino UNO with 32 bits, the integer operation for additional

is 1.94𝜇𝑠 , Subtraction 1.93𝜇𝑠 , Multiplication 6.24𝜇𝑠 and Division is 37.6𝜇𝑠 . It

indicates that the STM32F411RE microcontroller has a faster arithmetic calculation

process than the Arduino UNO R3, which faster enough to do the arithmetic math

operation in a short time (Additional, Subtraction, Multiplication, and Division). The

system performance of STM32F411RE is much faster than the Arduino UNO R3. The

result obtained is then compared with the result published in the research paper.

Hence, the result got once again proved that the STM32F411RE is faster than Arduino

UNO in integer math operation.

4.3 Wireless performance comparison

By uploading the code in the previous chapter, both microcontrollers are able

to integrate with the sensors to collect the data and upload it into the ThingSpeak IoT

platform. The uploaded data is then downloaded and transfer into Microsoft Office

Excel for further interpretation or analysis. From the data, the pH data have the

apparent potential to be analyzed while the temperature data is slightly constant and

stable reading for each sample; this is due to the data collected in the same temperature

condition. Hence, it analyzed the pH data collected by both microcontrollers. The time

response analyzed by converting the data into a graph, as shown in Figure 4.13 below.

F
ig

u
re 4

.8
 G

ra
p

h
 o

f p
H

 V
a
lu

e A
g
a
in

st T
im

e (S
T

M
3
2
F

4
1
1
R

E
 &

 A
rd

u
in

o
 U

N
O

).

0 2 4 6 8

1
0

1
2

1
2

3
4

5
6

7
8

91
01

11
21

31
41

51
61

71
81

92
02

12
22

32
42

52
62

72
82

93
03

13
23

33
43

53
63

73
83

94
04

14
24

34
44

54
64

74
84

95
05

15
25

35
45

55
65

75
85

96
06

16
26

36
46

56
66

76
86

97
07

17
27

37
47

57
67

77
87

98
08

18
28

38
48

58
68

7

pH

Tim
e (s)

G
rap

h
 o

f p
H

 V
alu

e again
t tim

e (STM
3

2
 A

gain
st A

rd
u

in
o

 U
N

O
)

STM
3

2
F4

1
1

R
E

U
N

O
 R

3

~ ~

~ +
~ +
~ +

~
~ +
~ +
~ +
~ +
~ +
~ +
~ +
~ +
~ +
~ +

~
~ +

t---

t---

t---

t---

t---
"t--.[~ +

~

t---
+ ,> ~ +

~ +
t---

~ +
~ +
~ +
~ +
~ +
~ +
~ +
~ +
~ +
~ +
~ +
~ +
~ +
~ +
~ +
~ +
~ +

i:= ~ +

~ +
t---

~ +
t---

+ -t---
J- ~ +

t---

t---
~ -- > +

+
t---

+
t---

+

'
+
+
+
+
+
+
+
+
+
+
+
+
+ • +
+
+

i:= +

t ~ I +

I I

From the graph, time response analyzed by determining the peak time, percent

overshoot, rise time, and settling time, etc. The system divided into two analysis which

is Acid-to-Neutral and Neutral-to-Alkaline. The data calculated and tabulated, as

shown in Table 4.3 and Table 4.4 below (Acid-to-Neutral).

Table 4.3 Time response analysis of STM32F411RE (Acid-to-Neutral).

STM32F411RE

 Mean

acid 3.963743033

neutral 6.9294178

alkaline 9.258266633

Acid to Neutral

 Time minus 27s 𝐶𝑚𝑎𝑥 𝐶𝑓𝑖𝑛𝑎𝑙

Peak time, 𝑇𝑝 31𝑠 4𝑠 6.940512 6.9294178
Percent Overshoot,
%𝑂𝑆 0.160102917

Damping ratio, ζ 0.898683729

Natural Frequency, 𝑤𝑛 1.790704678

 Refer to table

Normalized rise time 2.883

Rise Time, 𝑇𝑟 1.609980716 28.60998072

Settling Time, 𝑇𝑠 2.485588006 29.48558801

Characteristics of Response

0<ζ <1 Underdamped Response

𝐺1(𝑠)
3.2066

𝑠2 + 3.2186𝑠 + 3.2066

poles −1.6093 ± 0.7853𝑖
zeros -

Table 4.4 Time response analysis of Arduino UNO R3 (Acid-to-Neutral).

Arduino UNO R3

 Mean

acid 4.110517517

neutral 6.834200225

alkaline 9.233890407

Acid to Neutral

 seconds minus 29s 𝐶𝑚𝑎𝑥 𝐶𝑓𝑖𝑛𝑎𝑙 I I I

89

Peak time, 𝑇𝑝 31 4 7.268541 6.922752587
Percent Overshoot,
%𝑂𝑆 4.994955526

Damping ratio, ζ 0.690228489

Natural Frequency, 𝑤𝑛 1.085416541

 Refer to table

Normalized rise time 2.1601

Rise Time, 𝑇𝑟 1.990111555 30.99011155

Settling Time, 𝑇𝑠 5.339132205 34.3391322

Characteristics of Response

0<ζ <1 Underdamped Response

𝐺1(𝑠)
1.1781

𝑠2 + 1.4984 + 1.1781

poles −0.7492 ± 0.7854𝑖
zeros -

From the tabulated result, analyzed Acid-to-Neutral of time response. The

system is said to be a fast system performance where a system has a low rising time

or a system that has a little settling time.

Table 4.5 Rise time and settling time (Acid-to-Neutral)

Microcontroller Rise time Settling time

STM32F411RE 1.61𝑠 2.49𝑠

Arduino UNO R3 1.99𝑠 5.33𝑠

From the table, Acid-to-Neutral time response analysis, the STM32F411RE

has the rise time at 1.61𝑠, and the Arduino UNO R3 has the rise time at 1.99𝑠. From

this result, the STM32F411RE has slightly higher rise time compared to the Arduino

UNO R3 microcontroller for about 0.38𝑠. It means that the Arduino UNO R3 has a

short delay of 0.38𝑠 in uploading the data compared to Arduino UNO R3. For the

settling time, the STM32F411RE has settling time at 2.49𝑠, whereas the Arduino

I I

90

UNO R3 has the settling time at 5.33𝑠. For this time, the STM32F411RE became

faster to settling down the reading compared to Arduino UNO R3. It indicates that the

STM32F411RE is faster than Arduino UNO R3 about 2.84𝑠 for the transient’s

damped oscillations to reach and stay within ±2% of the steady state value. So, for

the overall, the Arduino UNO R3 requires 3.34𝑠 for the system to response towards

the changes (waveform to go from 0.1 to 0.9 of its final value) and maintain the

transient’s damped oscillation at ±2% of the steady state value. While for the

STM32F411RE, it requires 0.88𝑠 . Which means that STM32F411RE system

performance is faster to compute towards the input signal and produce the output data

than Arduino UNO R3. As it requires only a short time to respond to any changes at

the parameters and maintain the reading rapidly, which only requires 0.88𝑠.

Figure 4.9 Pole-zero diagram of STM32F411RE (Acid-to-Neutral).

-1

-0.5

0

0.5

1

-2.2 -1.2 -0.2 0.8 1.8Im
(s

)

Re(s)

Poles-Zero Diagram

T • t

I I
•

91

Figure 4.10 Pole-zero diagram of Arduino UNO R3 (Acid-to-Neutral).

Besides, from the analysis of time response, the transfer function of both

systems is formed. From the transfer function, the poles and zeros were able to be

determined to plot the pole-zero diagram, as shown in Figure 4.14 and Figure 4.15.

From these pole-zero diagrams, both of the systems do not have any zero, but both

methods have two poles, and they are in the left half-plane. Hence, the system is said

to be a stable closed-loop system.

Table 4.6 Percent Overshoot (Acid-to-Neutral)

Microcontroller Overshoot Percent

STM32F411RE 0.18%

Arduino UNO R3 1.91%

Furthermore, the STM32F411RE has an overshoot percent of 0.18%, while

the Arduino UMO R3 has an overshoot percent of 1.91%. Hence, the STM32F411RE

is said to be more stable, static, and consistent compared to Arduino UNO R3. From

-1

-0.5

0

0.5

1

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8Im
(s

)

Re(s)

Poles-Zero Diagram

•

•

92

these analysis results, the STM32F411RE is slightly faster and durable than the

Arduino UNO R3 for the time response type of Acid-to-Neutral.

Table 4.7 Damping ratio (Acid-to-Neutral)

Microcontroller Damping ratio, ζ

STM32F411RE 0.4166

Arduino UNO R3 0.7832

Finally, both systems have the same characteristics of response, which are

Underdamped Response. It is due to their damping ratio, ζ, which is more than 0 but

less than 1 (0<ζ <1).

In the meantime, the analysis time response of Neutral-to-Alkaline has also

analyzed. Tables 4.5 and 4.6 below show the tabulation of the calculation result.

Table 4.8 Time response analysis of STM32F411RE (Neutral-to-Alkaline).

STM32F411RE

 Mean

acid 3.963743033

neutral 6.9294178

alkaline 9.258266633

Neutral to Alkaline

 Time minus 57s 𝐶𝑚𝑎𝑥 𝐶𝑓𝑖𝑛𝑎𝑙

Peak time, 𝑇𝑝 67 10 9.275671 9.258266633
Percent Overshoot,
%𝑂𝑆 0.187987317

Damping ratio, ζ 0.894238069

Natural Frequency, 𝑤𝑛 0.701888143

 Refer to table

Normalized rise time 2.883

Rise Time, 𝑇𝑟 4.107492099 61.1074921

Settling Time, 𝑇𝑠 6.372926818 63.37292682

Characteristics of Response

0<ζ <1 Underdamped Response

93

𝐺2(𝑠)
0.4926

𝑠2+1.2553𝑠+0.4926

poles −0.6277 ± 0.3141𝑖
zeros -

Table 4.9 Time response analysis of Arduino UNO R3 (Neutral-to-Alkaline).

Arduino UNO R3

 Mean

acid 4.110517517

neutral 6.834200225

alkaline 9.233890407

Neutral to Alkaline

 Time minus 60s 𝐶𝑚𝑎𝑥 𝐶𝑓𝑖𝑛𝑎𝑙

Peak time, 𝑇𝑝 67s 7s 9.546515 9.233890407
Percent Overshoot,
%𝑂𝑆 3.385621648%

Damping ratio, ζ 0.733031939

Natural Frequency, 𝑤𝑛 0.659810004

 Refer to table

Normalized rise time 2.3988

Rise Time, 𝑇𝑟 3.635592042 60.63559204

Settling Time, 𝑇𝑠 8.270241608 65.27024161

Characteristics of Response

0<ζ <1 Underdamped Response

𝐺2(𝑠)
0.4353

𝑠2 + 0.9673𝑠 + 0.4353

poles −0.4837 ± 0.4488𝑖
zeros -

Table 4.10 Rise time and settling time (Neutral-to-Alkaline)

Microcontroller Rise time Settling time

STM32F411RE 4.11𝑠 6.37𝑠

Arduino UNO R3 3.64𝑠 8.27𝑠

94

From the table, Neutral-to-Alkaline time response analysis, the

STM32F411RE has the rise time at 4.11𝑠, and the Arduino UNO R3 has the rise time

at 3.64𝑠. From this result, the STM32F411RE has slightly higher rise time compared

to the Arduino UNO R3 microcontroller for about 0.47𝑠 . It means that the

STM32F411RE has a short delay of 0.47𝑠 in uploading the data compared to Arduino

UNO R3. For the settling time, the STM32F411RE has settling time at 6.37𝑠, whereas

the Arduino UNO R3 has the settling time at 8.27𝑠. For this time, the STM32F411RE

became faster to settling down the reading compared to Arduino UNO R3. It indicates

that the STM32F411RE is faster than Arduino UNO R3 about 1.9𝑠 for the transient’s

damped oscillations to reach and stay within ±2% of the steady state value. So, for

the overall, the Arduino UNO R3 requires 4.63𝑠 for the system to response towards

the changes (waveform to go from 0.1 to 0.9 of its final value) and maintain the

transient’s damped oscillation at ±2% of the steady state value. While for the

STM32F411RE, it requires 2.26𝑠 . Which means that STM32F411RE system

performance is faster to compute towards the input signal and produce the output data

than Arduino UNO R3. As it requires only a short time to respond to any changes at

the parameters and maintain the reading rapidly, which only requires 2.26𝑠. Although

the STM32F411RE have a short delay in responding towards the input signal at this

time, the time taken for the STM32F411RE to compute and produce the output signal

is way faster than the Arduino UNO R3. Once again, the STM32F411RE has a low

settling time compared to the Arduino UNO R3. Hence, the STM32F411RE system is

faster than the Arduino UNO R3.

95

Figure 4.11 Pole-zero diagram of Arduino UNO R3 (Neutral-to-Alkaline).

Figure 4.12 Pole-zero diagram of STM32F411RE (Neutral-to-Alkaline).

Besides, from the analysis of time response, the transfer function of both

systems are formed. From the transfer function, the poles and zeros were able to be

determined to plot the pole-zero diagram, as shown in Figure 4.16 and Figure 4.17.

From these pole-zero diagrams, both of the systems do not have any zero, but both

methods have two poles, and they are in the left half-plane. Hence, the system is said

to be a stable closed-loop system.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.6-0.4-0.200.20.40.6 Im
(s)

Re(s)

Poles-Zero Diagram

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-0.7-0.5-0.3-0.10.10.30.50.7 Im
(s)

Re(s)

Poles-Zero Diagram

•

·-

-,
J - • '

I -
I -

~ +

~ + • l L L .I. ~ L J

96

Table 4.11 Percent Overshoot (Neutral-to-Alkaline)

Microcontroller Overshoot Percent

STM32F411RE 0.19%

Arduino UNO R3 3.39%

Furthermore, due to the overshoot percent that Arduino UNO R3 (3.39%) has

that slightly higher than the STM32F411RE (0.19%). It shows that the

STM32F411RE is more stable, static, and consistent value compared to the Arduino

UNO R3.

Table 4.12 Damping ratio (Acid-to-Neutral)

Microcontroller Damping ratio, ζ

STM32F411RE 0.8942

Arduino UNO R3 0.7330

Finally, both systems have the same characteristics of response, which are

Underdamped Response. It is due to their damping ratio, ζ, which is more than 0 but

less than 1 (0<ζ <1).

From the analysis time response of Acid-to-Neutral and Neutral-to-Alkaline,

the STM32F411RE is faster and more stable than the Arduino UNO R3. From the

result, it also means that the STM32F411RE has a high-performance system than

Arduino UNO R3. From this conclusion, it proved and answered my objective of this

project.

4.4 Development of Water Monitoring System

4.4.1 Hardware implementation of the Water Monitoring system.

A project prototype of a water monitoring system is made by connecting the

same components, which are pH sensor and temperature sensor on two different

microcontrollers. The hardware components used in this project along with the

overview of connection. The function of each hardware component described.

4.4.1.1 STM32F411RE

Figure 4.13 Hardware components of the Water monitoring system on the

STM32F411RE microcontroller.

1. pH Sensor (SKU: SEN0161) that enable and help data request and collect

from pH probe via BNC connector to signal conversion board to measure and

obtain the pH level of solutions.

2. STM32F411RE board as a microcontroller to control and perform a task with

the help of other components such as data extraction, data collection, data

conversion, data are storing in the cloud, etc.

1. pH Sensor

2. STM32F411RE

3. IDW01M1

4. Temperature

Sensor

5.

98

3. IDW01M1 board as the Wi-Fi module board that provides internet

connectivity of this project for data transmitter and receiver in the cloud.

4. Temperature sensor (DS18B20) that enable and help data request and collect

to measure and obtain the temperature value of solutions.

4.4.1.2 Arduino UNO R3

Figure 4.14 Hardware components of the Water monitoring system on

Arduino UNO R3 microcontroller.

1. pH Sensor (SKU: SEN0161) that enable and help data request and collect

from pH probe via BNC connector to signal conversion board to measure and

obtain the pH level of solutions.

2. Arduino UNO R3 board as a microcontroller to control and perform a task with

the help of other components such as data extraction, data collection, data

conversion, data are storing in the cloud, etc.

3. ESP8266 board as the Wi-Fi module board that provides internet connectivity

of this project for data transmitter and receiver in the cloud.

4. Temperature sensor
2. Arduino UNO

3. ESP8266

1. pH sensor

99

4. Temperature sensor (DS18B20) that enable and help data request and collect

to measure and obtain the temperature value of solutions.

4.4.2 Software implementation of the Water Monitoring System.

The Arduino UNO R3 and STM32F411RE coding that implemented in the

previous chapter uploaded to the Arduino board and STM32F411RE using Arduino

IDE software and Mbed compiler, respectively. The Serial monitor in Arduino IDE

and Tera Term used for inspecting or observe the traffic of serial port in Arduino board

and STM32 board respectively to ensure the coding is working in an expected

sequence,

4.4.2.1 STM32F411RE

The setup of SPWF01SA Wi-Fi microchip, pH sensor, and temperature sensor

data after both sensors’ probe dipped into a solution. The region of red box shows in

Figure 4.10 is the setup of SPWF01SA by connecting to a Wi-Fi access point and the

configuration of the IP address as well as MAC address. These setup process will

respond by a result by a result which is either connected or not connected, the IP

address of the connection of network that took part in while the MAC address of the

microcontroller.

100

Figure 4.15 The monitoring interface in Tera Term (setup).

The monitoring interface of the Tera Term in Figure 4.10 shows two cycles of

the main function loop. The primary function loop begins with the data receive and

the data conversion process. The collected data is printed out and displayed on decimal

values. In the data conversion process, the pH and temperature data in the data field

further processed by a mathematical formula of each parameter. The actual reading of

sensors data after conversion printed out. Then, it continues with the data request

process. A non-blocking function used to send the parameter IDs to request the real-

time sensor data from it. With ESP8266 Wi-Fi microchip, lastly, the updated actual

sensors data submitted to the cloud server by using an HTTP request. In Figure 4.10

below, the results of data receive & data conversion and data request & data stored in

the cloud server process divided into the section with red and green boxes,

respectively. The sensor parameter that requested in this project includes the pH level

and temperature of a solution.

fac leo F411RE + \liFi + Things peak

::onnect ing to AP

10~,, connected

IP Add.-ess is: 192.168.43.248

1AC Add.-ess is: 00:80:E1:B8:8?:43

-St a1•t in g--

PH is 15.885568

temp = 25.0
ending HTTP Data to thingspeak ...

onnected to host server
essage Length=3?
equest to POST /update HTTP/1.1
ost: api.thingspeak.com
onnection: close
-TH I NGSPEAJ<API J<EY: Z9HN5?T63DB\/I \12D
ontent-Type: applicat ion/x-H~·H·>-f 01:·m-urlencoded
ontent-Length: 3?

ield1=15&field2=25&field3=0&field4=0
ent 214 !POST /update HTTP/1.1l
·ecu 64 IHTTP/1.1 200 OJ< l
hingspeak update completed successfully

101

Figure 4.16 The monitoring interface in Tera Term software along with

receiving, converting, and storing data in the cloud.

4.4.2.2 Arduino UNO R3

The setup of ESP8266 Wi-Fi microchip, pH sensor, and temperature sensor

data after both sensors’ probe dipped into a solution. The region of red box shows in

Figure 4.11 is the setup of ESP8266 by connecting to a Wi-Fi access point by using

the AT command. These setup process will respond by a result by a result which is

either ok or failed to indicate the behavior of these devices when booting it up.

102

Figure 4.17 The monitoring interface in Serial Monitor (setup).

The monitoring interface of Serial Monitor in Figure 4.12 shows two cycles of the

main function loop. The primary function loop begins with the data receive and the

data conversion process. The received data printed out. In the data conversion process,

the pH and temperature data in the data field further processed by a mathematical

formula of each parameter. The actual reading of sensors data after conversion printed

out. Then, it continues with the data request process. A non-blocking function to send

the parameters to request the real-time sensor data from it. Lastly, the updated actual

sensors data sent to the cloud server by using an HTTP request with ESP8266 Wi-Fi

microchip. In Figure 4.12 below, red and green boxes represented the results of data

receive & data conversion, data request & data storing in the cloud server process into

the section with, respectively. The sensor parameter that requested in this project

includes the pH level and temperature of a solution.

PK
~ B LA<SbN?c) ~~= @ Bl <) ~~~T@B« ~ « F

!Ai - Thi n k e r Te chno La g y Co . Lt d ..

r e ad y
k'\.T+olMOilE= l

k)K
P,,.T t-OWJ AP="te rryl " , " 1 2 3 4SE 7 8S"
Co,nne c·t ed / n

Conne c't ed / n
Wa t e r Moni t oring S y s t e m De mo/ n
Conne c·te-d/ n

Wa t e r Moni t o r ing S y s t e m Oe mo/ n

103

Figure 4.18 The monitoring interface in Serial Monitor

4.5 Water Monitoring System in the ThingSpeak IoT platform.

To ensure this Water Monitoring System achieve the objective listed in this

project, a series of data is taken by using this Water Monitoring System in a different

water solution with different pH value. This Vehicle Monitoring System starts to

collect and store the sensor data when once the microcontroller booted up. To

compensate for the accuracy of the result, the first 30 samples as initializing of the

water monitoring system. Then, 30 samples for acid, 30 samples for neutral, and 30

samples for alkaline. Hence, a total of 100 samples of data will be collected for the

study and compare the system performance of microcontrollers. The actual sensor data

are collected and sent to the ThingSpeak IoT platform along with this data collection

with an average delay interval of about 15 seconds. Figure 4.6 and Figure 4.7 below

shows the sensors data in three different water solution that presented in ThingSpeak

ATtRST

OK
bBLA<SbN? c) ,,= @ Bl ,) «<T@B,, < ,<; F
Ai - Thi n ke r Te chnolog y Co . Ltd .

r eady
ATtCWMO E=l

OK
AT+c"rlJAP= ut e r ryl O • 1'1 23 4 S 6;799u
Co-nne c ·ted / n
Water Mo-ni t o ri.ng S y stem De mo/ n
Co,nne c ·t ed / n
Wa t e r Mo-ni t o ri.ng S yg t ,em De mo/ n
Co-nnec:·t ed / n
Wat-e r Moni t o ri.ng S y :s t -em De mo/ n

C - l27 _00AT+cI PSTART="TCP" ,"18 4 _106 . 1 5 3 . 149",80
Re ques t i n g t empe ratu r e s & pH . Te mp Ce l c .i u s : - 1 2 7 _ 00

AT+cI PSEND=6 3
GET / update ? ke y=K1MN6 S459Y4HL56K&f i e ldl= 0 . 00
&f i e l d :2= - 127 . 00
~ pt1 : ~. u ' .l ~ UU

C - 1 27 _00ATtCI PSTART="TCP" , "184_106 . 1 53 . 149",80
Re-aues t i no t e Tm""ie ra t ur e s & -cH .. . T emo Ce lc.i u s: - 1 2 7 . 00

TtcI PSEND=6 3
;ET / update ? ke y=K1MN6 S459Y4HL5 6K& f i e ld1=3. 07
fi e ld:2 = - 127 . 00
.... pn : _..., ,.,...., ·oo

C - 12 7 . 00AT+cI PSTART= "TCP", "184.106 . 1 5 3 . 149" , 80
Re-que s t i.nq t e mpe r atu r e s & pH . . . Te mp Celc .i u s : - 127. 00

- , ~~ ~

TtcI PCLOSil:
fftc I PSTART="TCP" "1 8 4 .106 . 1 53 . 149 " SO

pH v a l u e : 0 . 000000

oH v alu e : 3 .071 300

oH v a lue : 7 _665788

104

IoT platform user interface. These two sensors data are plotted vs. time in graphical

form for better visibility.

Figure 4.19 Graphical User Interface in the ThingSpeak IoT platform

(Arduino UNO R3).

Figure 4.20 Graphical User Interface in the ThingSpeak IoT platform

(STM32F411RE).

Q ThingSpeak·~ Channels- Apps - Support- Commeran\Us.e HowtoBuy TI.

Ard uino UNO R3
ChannellD: 1032408

Author: tlim5135

Access:Private

Private View Public View Channel Settings Sharing API Keys Data Import / Export

I C AddVi':.W~zation~ II C Add Wodget~ II Q Exportrecent~ta I

Channel Slats
Created: _;1:IDQn \b;_;,go

l ast entry: .R.miD.\J.k UgQ
Ent rit-S: 86

pH level

M +fi MEE i\:fi IIHl"ihi
Channel2of4 < >

held2 0\art. 8" C , x

Temperature

QThingSpeak ' (ha~nou:. - App,: • Support- (ommerc.lUc,o '"'°"'lo8uf n

ST1V132F411RE
Ch,nnel ID:997200

PrivateViNi Plbli:: Vro,,. Chann!'\ Settings Shiring APIKeys Dab Import : ~

Channial Slnls

Crtal td: -~_.m.gn l !!.t .f&Q
La,tentrv: .M .mirni.!~UXi.
En:ries: 86

pH

Hifihi#HFIY·Milit-M

F,,-M 1n...t r.!' 0 , 11

Temperature

r

105

 Other than observing the collected data in graphical form, users can also

observe the collected data in tabular form. Users just need to simply download the raw

data set in the data export function offered by ThingSpeak. Figure 4.8 below shows

the tabulated raw data in Microsoft Excel.

Figure 4.21 Tabulated sensor raw data in Microsoft Excel (STM32F411RE).

25 2020-03-28 08'06,241 24 3.8226 31.6
2020-03-28 OR06'50 I 25 3.828 31.6
2020-03-28 OR07,08 I 26 3.8306 31.6
2020-03-28 08'07'291 27 6.9002 31.6
2020-03-28 OR ONO I 28 6.9131 31.6
2020-03-28 08'08 091 29 6.926 31.6

31 2020-03-28 08,08All 30 6.9397 31.6
2020-03-28 08,08,58 I 31 6.9333 31.6
2020-03-28 08'09,15 l 32 6.8349 31.6
2020-03-28 08'°9,31 l 33 6.9381 31.6
2020-03-28 OR09A31 34 6.8252 31.6
2020-03-28 ORl0,08 l 35 6.9236 31.6
2020-03-28 ORl0,24 l 36 6.9365 31.6
2020-03-28 OR10All 37 6.9349 31.6
2020-03-28 08,1l18 U 38 6.9292 31.6
2020-03-28 08,1l34 L 39 6.93 31.6
2020-03-28 08'11.51 U 40 6.8357 31.6
2020-03-28 08'12,09 l 41 6.926 31.1
2020-03-28 OR12,26 l 42 6.8325 31.6
2020-03-28 OR 12'43 l 43 6.926 31.6
2020-03-28 08'12,59 l 44 6.9373 31.6
2020-03-28 OR 13, 16 L 45 6.9405 31.6
2020-03-28 OR 13, 38 l 46 6.9341 31.6
2020-03-28 08, H 55 l 47 6.9292 31.6
2020-03-28 08,14,04 l 48 6.9196 31.6
2020-03-28 08'1420l 48 6.8282 31.6

51 2020-03-28 08'14,38l 50 6.83 31.6
2020-03-28 OR14,55l 51 6.9316 31.6
2020-03-28 OR 15, 12 L 52 6.9284 31.6
2020-03-28 OR15,29 l 53 6.9284 31.6
2020-03-28 OR15A7 l 54 6.93 31.6
2020-03-28 08'16,07l 55 6.9276 31.6
2020-03-28 08,16,23 l 56 6.9316 31.6
2020-03-28 08'16A1 L 57 9.2258 31.6
2020-03-28 ORffOO l 58 9.2258 31.6
2020-03-28 OR ff 18 L 58 9.2546 31.6

61 2020-03-28 OR 1N4 l 60 9.2616 31.6
2020-03-28 08'1R07 l 61 9.2616 31.6

106

Figure 4.22 Tabulated sensor raw data in Microsoft Excel (Arduino UNO

R3).

From the sensors data presented in graphical and tabular above, the pH values

of acid are fallen within 3.917728 to 3.939487 and 4.0616 to 4.1891 for

STM32F411RE and Arduino UNO R3, respectively. As for the benchmark for this

acid pH value that should be obtained is 4.01 to 4.02 at the room temperature of 30℃

to 35 ℃ . The pH value for neutral, the Arduino UNO R3 microcontrollers has

measured the pH values which fall within 6.7845 to 7.2685. While for the

STM32F411RE, it estimated the pH value falls that within the value of 6.900222 to

6.940512. Which the reference pH value should be within 6.85 to 6.84 at room

temperature in between 30℃ to 35℃. Last but not least, for alkaline pH value,

Arduino UNO has measured the pH value that falls within 9.1053 to 9.5465 while the

STM32F411RE has measured the pH value that falls within 9.225815 to 9.275671.

24 4.171462 3148
25 4.171462 31.58
26 4.171462 31.55
27 4.088077 3162
28 4.088077 3158

28 6.800222 3158
30 7.268541 3154
31 6.784528 31.54
32 6.880154 3152
33 6.880154 30.57
34 6.880154 30.58
35 7.027462 30.87
36 6.845077 31.25
37 6.862682 31.45
38 6.880154 3168

38 6.880154 3162
40 6.880154 31.62
41 6.845077 311

-28 08,12,26 UTC 42 6.880154 31.25
-2808,12'43UTC 43 6.880154 3158
-28 08,12,58 UTC 44 6.817615 3162

3-2808,H16UTC 45 6.862682 3165
3-28 08,H38 UTC 46 6.817615 31.51

3-28 08:13:55 UTC 47 6.845077 3156
48 6.880154 3168
48 6.880154 3161
50 6.845077 31.68
51 6.845077 31.65
52 6.845077 31.62
53 6.862682 3168
54 6.817615 3162
55 6.845077 3148
56 6.845077 31.57
57 7.0137312 315
58 6.845077 3164
58 6.862682 3165
60 8.105271 3161
61 8.546515 31.62
62 8.215748 3161

·1R4SI nr R1 3 :16!1381 3:161

107

For the benchmark pH value of alkaline, it should fall within the pH value of 9.14 to

9.10 at room temperature of 30℃ to 35℃.

108

CHAPTER 5

CONCLUSION AND FUTURE WORKS

This chapter will describe the conclusion and recommendation for the future

development of this project.

5.1 Conclusion

The first goal of this project is to compare and study Arduino UNO R3 and

STM32F411RE microcontrollers’ speed responsiveness with RISC and CISC

instruction set. In this project, the comparative and study of Arduino UNO R3 and

STM32F411RE speed responsiveness are using the techniques of latency and integer

math comparison. During this study, hardware, as well as the software, were included.

For the minimum latency and integer math comparison, the generated waveform of

the operation, and then analyzed. From that particular waveform, the speed of each

operation of integer math and minimum latency is being captured and observed. A

109

reviewed to determine the speed responsiveness of each microcontroller. The analyzed

data obtained is then tabulated to have an overview of each speed responsiveness.

Form the result, it is evident that the STM32F411RE is faster than the Arduino UNO

R3 compared to STM32F411RE. The proved result in sections 4.1 and 4.2.

The second goal of this project is to design and develop a cloud-based water

monitoring system that can monitor data in real-time using the ThingSpeak IoT

platform. Besides, with the real-time data uploaded to the IoT platform will be

analyzed to determine the microcontroller wireless connection latency and stability.

The technique or method to determine that characteristics are by using the time

response analysis. In this project, the Water Monitoring System is implementing a

real-time application that purposely to collect pH level and temperature reading of a

solution with the help of pH sensors (SEN0161) and temperature sensor (DS18B20).

The data of each parameter obtained is then sending to the cloud database in the

ThingSpeak IoT platform. The user or authorities can inspect the data in real-time

using the Graphical User Interface (GUI) implemented by ThingSpeak. The data is to

download and analyze studies. From the survey, although both microcontrollers are

stable. Still, the only difference is that from the perspective of upload speed,

consistency, and efficient performance of a system, the STM32F411RE is once again

faster than the Arduino UNO R3. The result of this function if proven in section 4.4.

In conclusion, it is a success, and all objectives mentioned are achieved in

conducting this project of comparison and study of Arduino UNO R3 and

STM32F411RE development board in a water monitoring system.

110

5.2 Future Works

There are lots of ways to study and compare the microcontroller

STM32F411RE. However, only minimum latency, integer math, and wireless

performance comparisons were uses in this project. The wireless performance

comparison brings into this project are purposely to apply or bring in the

microcontroller into the real-life application to determine how well or how real the

microcontrollers are potential to perform. The only parameters that tested in the

project are pH level and temperature as to check how well the system performance of

the microcontroller and perform with lesser parameters. The future development for

this project can proceed by adding more parameters. With these, it can determine how

well the system performance of microcontrollers was able to handle such substantial

parameters. Besides, these additional parameters will significantly benefit the user,

especially to the company that manages the water quality monitoring services and

references for fishing industries. More types of parameters in a water monitoring

system will give a more accurate result in indicating a vehicle or driver for the end-

user. Besides, this project can be future enhance by modifying it to be a mobility

device that able to move freely on the surface of the water to identify & tag by

providing the parameters of the water so that it would ease the user for providing the

neutralizer and water treatment services. Last but not least, compare more and

different types of microcontrollers at the same time to give the real system

performance of a microcontroller in the market to the consumer. Besides, it is

purposely to have a clear and deep understanding to choose the optimum

microcontroller for their projects, mainly students like us who took their Final Year

Project.

111

REFERENCES

[1] S. Dhiman, “Performance Testing: A Comparative Study and Analysis of Web

Service Testing Tools,” Int. J. Recent Trends Eng. Res., vol. 4, no. 3, pp. 95–

100, 2018, doi: 10.23883/ijrter.2018.4102.tbuwk.

[2] G. Gridling and B. Weiss, “Microcontrollers,” Introd. to Microcontrollers, pp.

379–414, 2007, doi: 10.1016/b978-012451838-4/50016-9.

[3] M. K. Parai, B. Das, and G. Das, “An Overview of Microcontroller Unit: From

Proper Selection to Specific Application,” Int. J. Soft Comput., no. 6, pp. 228–

231, 2013, doi: 2231-2307.

[4] R. Khadse, N. Gawai, and B. M. Faruk, “Overview and Comparative Study of

Different Microcontrollers,” [Online]. Available: www.ijraset.com.

[5] P. R.Dinkir, Patnaik, “A Comparative Study of Arduino, Raspberry Pi and

ESP8266 as IoT Development Board,” Int. J. Adv. Res. Comput. Sci., vol. 8, no.

5, pp. 2350–2352, 2017.

[6] M. Fadzli Abdul Shaib, R. Abdul Rahim, S. Z. M. Muji, N. Shima, and M. Z.

Zawahir, “Comparison between two different types of microcontroller in

112

developing optical tomography controller unit,” J. Teknol. (Sciences Eng., vol.

64, no. 5, pp. 13–17, 2013, doi: 10.11113/jt.v64.2126.

[7] Y. Güven, E. Coşgun, S. Kocaoğlu, H. Gezici, and E. Yilmazlar,

“Understanding the Concept of Microcontroller Based Systems To Choose The

Best Hardware For Applications,” Res. Inven. Int. J. Eng. Sci., vol. 7, no.

December, p. 38, 2017.

[8] R. Khadse, N. Gawai, and B. M. Faruk, “Overview and Comparative Study of

Different Microcontrollers,” vol. 2, no. Xii, pp. 311–315, 2014.

[9] M. Kumar Jha, R. Kumari Sah, M. S. Rashmitha, R. Sinha, B. Sujatha, and K.

V. Suma, “Smart Water Monitoring System for Real-Time Water Quality and

Usage Monitoring,” Proc. Int. Conf. Inven. Res. Comput. Appl. ICIRCA 2018,

no. Icirca, pp. 617–621, 2018, doi: 10.1109/ICIRCA.2018.8597179.

[10] R. Gouws and A. S. Nieuwoudt, “Design and cost analysis of an automation

system for swimming pools in South Africa,” Proc. 20th Conf. Domest. Use

Energy, DUE 2012, no. April 2012, pp. 9–15, 2012.

[11] D. E. Bolanakis, A. K. Rachioti, and E. Glavas, “Nowadays trends in

microcontroller education: Do we educate engineers or electronic hobbyists?

Recommendation on a multi-platform method and system for lab training

activities,” IEEE Glob. Eng. Educ. Conf. EDUCON, no. April, pp. 73–77, 2017,

doi: 10.1109/EDUCON.2017.7942826.

[12] Farnell, “Arduino Uno Datasheet,” Datasheets, pp. 1–4, 2013.

[13] STMicroelectronics, “Arm® Cortex®-M4 32b MCU+FPU, 125 DMIPS,

113

512KB Flash, 128KB RAM, USB OTG FS, 11 TIMs, 1 ADC, 13 comm.

interfaces,” no. December, 2017.

[14] MAKER.IO STAFF, “Powerful Low-Cost Arduino Alternatives: STM32

Nucleo,” 2016. https://www.digikey.my/en/maker/blogs/st-nucleo-a-powerful-

low-cost-alternative-to-the-arduino (accessed Nov. 29, 2019).

[15] L. Louis, “Working Principle of Arduino and Using It As a Tool for Study and

W Orking P Rinciple of a Rduino and U Sing I T,” no. July, 2018, doi:

10.5121/ijcacs.2016.1203.

[16] I. Tsekoura, G. Rebel, P. Glosekotter, and M. Berekovic, “An evaluation of

energy efficient microcontrollers,” 2014 9th Int. Symp. Reconfigurable

Commun. Syst. ReCoSoC 2014, no. May, 2014, doi:

10.1109/ReCoSoC.2014.6861368.

[17] A. Ng, J. Lepinski, D. Wigdor, S. Sanders, and P. Dietz, “Designing for Low-

Latency Direct-Touch Input,” pp. 453–464, 2012.

[18] J. Deber, R. Jota, C. Forlines, and D. Wigdor, “How much faster is fast enough?

User perception of latency & latency improvements in direct and indirect

touch,” Conf. Hum. Factors Comput. Syst. - Proc., vol. 2015-April, no. 1, pp.

1827–1836, 2015, doi: 10.1145/2702123.2702300.

[19] “Performance comparison: Arduino Uno vs. ST Nucleo L152RE | Mbed.”

https://os.mbed.com/users/iliketux/notebook/performance-comparison-

arduino-uno-vs-st-nucleo-l1/ (accessed Nov. 29, 2019).

[20] G. Simoes, C. Dionisio, A. Gloria, P. Sebastiao, and N. Souto, “Smart System

114

for Monitoring and Control of Swimming Pools,” IEEE 5th World Forum

Internet Things, WF-IoT 2019 - Conf. Proc., no. 1, pp. 829–832, 2019, doi:

10.1109/WF-IoT.2019.8767240.

[21] M. Kit and S. K. U. Sen, “PH meter(SKU: SEN0161).”

[22] Maximintegrated, “DS18B20 Programmable Resolution 1-Wire Digital

Thermometer DS18B20 Programmable Resolution 1-Wire Digital

Thermometer Absolute Maximum Ratings,” vol. 92, pp. 1–20, 2019.

[23] S. Mccaffrey, “Water Quality Parameters & indicator,” pp. 0–3, 1997.

[24] C. R. Shah, “Which Physical , Chemical and Biological Parameters of water

determine its quality?,” ResearchGate, no. June, pp. 1–74, 2017, doi:

10.13140/RG.2.2.29178.90569.

[25] “bildr » One Wire Digital Temperature. DS18B20 + Arduino.”

https://bildr.org/2011/07/ds18b20-arduino/ (accessed May 14, 2020).

[26] B. Sigdel, “Water Quality Measuring Station,” p. pp 1-37, 2017.

[27] J. J.Barron, C. Ashton, and L. Geary, “The Effects of Temperature on pH

Measurement,” Ecol. Reprod. Wild Domest. Mamm., pp. 1–7, doi:

10.1007/978-94-011-6527-3_13.

[28] “pH value, index.” http://www.soz-etc.com/med/pH/pH-index-ENGL.html

(accessed May 14, 2020).

[29] J. Gowthamy, C. R. Reddy, P. Meher, S. Shrivastava, and G. Kumar, “Smart

Water Monitoring System using IoT,” Int. Res. J. Eng. Technol., p. 1170, 2008,

115

[Online]. Available: www.irjet.net.

[30] K. Karimi and K. Salah-ddine, “a Comparative Study of the Implementations

Design for Smart Homes / Smart Phones Systems,” vol. 7, no. January, pp. 141–

149, 2018.

[31] N. Thirupathi Rao, D. Bhattacharyya, V. Madhusudhan Rao, and T. H. Kim,

“Water quality testing and monitoring system,” Int. J. Innov. Technol. Explor.

Eng., vol. 8, no. 5, pp. 162–166, 2019.

[32] A. N. Prasad, K. A. Mamun, F. R. Islam, and H. Haqva, “Smart water quality

monitoring system,” 2015 2nd Asia-Pacific World Congr. Comput. Sci. Eng.

APWC CSE 2015, no. December 2016, 2016, doi:

10.1109/APWCCSE.2015.7476234.

[33] A. N. Prasad, K. A. Mamun, F. R. Islam, and H. Haqva, “Smart water quality

monitoring system,” in 2015 2nd Asia-Pacific World Congress on Computer

Science and Engineering, APWC on CSE 2015, May 2016, doi:

10.1109/APWCCSE.2015.7476234.

[34] S. Geetha and S. Gouthami, “Internet of things enabled real time water quality

monitoring system,” Smart Water, vol. 2, no. 1, pp. 1–19, 2016, doi:

10.1186/s40713-017-0005-y.

[35] E. Systems, “ESP8266EX,” 2019.

[36] A. Uno et al., “X-NUCLEO-IDW01M1 Wi-Fi expansion board based on

SPWF01SA module for STM32,” pp. 1–8, 2016.

116

[37] K. K. Patel, S. M. Patel, and P. G. Scholar, “Internet of Things-IOT: Definition,

Characteristics, Architecture, Enabling Technologies, Application &

Future Challenges,” Int. J. Eng. Sci. Comput., vol. 6, no. 5, pp. 1–10, 2016, doi:

10.4010/2016.1482.

[38] P. Ganguly, “Selecting the right IoT cloud platform,” in 2016 International

Conference on Internet of Things and Applications, IOTA 2016, 2016, pp. 316–

320, doi: 10.1109/IOTA.2016.7562744.

