PERFORMANCE OF SEMI-ACTIVE CONTROL OF RAILWAY VEHICLE SUSPENSION

MOHAMAD FAIZUL FADZLY BIN SALEHUDIN

This report is represented in partial fulfillment of the requirement for the Degree of Bachelor of Mechanical Engineering (Automotive)

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > MAY 2011

C Universiti Teknikal Malaysia Melaka

"I hereby declare that I have read this thesis and in my opinion this report is sufficient in terms of scope and quality for award of degree of Bachelor of Mechanical Engineering (Automotive)."

Signature	:
Supervisor I	: Mr. Mohd Hanif Bin Harun
Date	: 23 May 2011
Signature	:
Supervisor II	: Mr. Fauzi Bin Ahmad
Date	: 23 May 2011

"I hereby declare that the work in this report is my own work except for summaries and quotations that I have mentioned its sources."

Signature	·
Name of Author	: Mohamad Faizul Fadzly Bin Salehudin
Date	: 23 May 2011

To my beloved dad, mom and family

ACKNOWLEDGEMENTS

I would like to offer my heartfelt thanks to Projek Sarjana Muda (PSM) Committee, Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka (UTeM) concerned for having an arrangement of PSM for all fourth year students and giving us an invaluable chance to involve in PSM. My PSM supervisor, Mr. Mohd. Hanif bin Harun contributed a great amount of time and effort for making this PSM a success. He is willing to sacrifice their time and energy to discuss with me about my PSM research "Performance of Semi-Active Control of Railway Vehicle Suspension" during PSM period.

Meanwhile, I would like to offer heartfelt thanks to my course mate in Bachelor of Mechanical Engineering (Automotive) programme who has been helpful. They also give professional guidance, constructive comments and ideas to me during finishing this PSM.

I would be remiss and even be ungrateful if I could not acknowledge the help given to me by my family members. They are always a deep love and strong sense of encouragement from them. I hope my effort which done for PSM will be meaningful to each of them. Besides that, I also would like to offer my heartfelt thanks to everyone who involved directly and indirectly in this PSM research. To all of you, whom I mentioned above, please accept my deepest thanks. With your concern, I have successfully completed the PSM research within the stipulated period. Thank you all.

ABSTRACT

This PSM report describe the performance of semi-active control of railway vehicle suspension. The overall PSM work including development of 3 degree of freedom (DOF) of half railway vehicle ride model, equation of motion for passive suspension control and semi-active suspension control, PID controller for semi-active suspension control, half railway vehicle ride model with passive suspension control, half railway vehicle ride model with semi-active suspension control and simulate both half railway vehicle ride model with MATLAB-Simulink. The PSM work also study and analyze several graphs from simulation work for half railway vehicle ride model such as body acceleration, body velocity, body displacement, body rolling acceleration, body rolling velocity, body rolling angle, bogie acceleration, bogie velocity, bogie displacement, suspension travel response for damper (Cs), suspension travel response for spring (k1) and suspension travel response for spring (k3). The discussion is including evaluate the performance of semi-active suspension control with the passive suspension control of half railway vehicle ride model according to the graphs from simulation results. Based on analysis and discussion, the semi-active suspension control has provided the improved performance compared with the passive suspension control for half railway vehicle ride model.

ABSTRAK

Laporan PSM ini menerangkan prestasi kawalan semi aktif untuk suspensi kenderaan kereta api. Kerja-kerja untuk keseluruhan PSM adalah meliputi pembangunan 3 darjah kebebasan untuk model separuh kenderaan kereta api dalam keadaan bergerak, persamaan gerakan untuk kawalan suspensi pasif and kawalan suspensi semi aktif, pengawal PID untuk kawalan suspensi semi aktif, model separuh kenderaan kereta api dalam keadaan bergerak dengan kawalan suspensi pasif, model separuh kenderaan kerata api dalam keadaan bergerak dengan kawalan suspensi semi aktif dan menjalankan simulasi untuk kedua-dua model separuh kenderaan kereta api dengan menggunakan perisian komputer yang dikenali sebagai "MATLAB-Simulink". Kerja PSM ini akan mengkaji dan menganalisis beberapa graf iaitu pecutan jasad, halaju jasad, sesaran jasad, pecutan gulingan jasad, halaju gulingan jasad, sudut gulingan jasad pecutan bogi, halaju bogi, sesaran bogi, tindak balas perjalanan suspensi untuk penyerap hentakan (Cs), tindak balas perjalanan suspensi untuk spring (k1), tindak balas perjalanan dan tindak balas perjalanan suspensi untuk spring (k3). Hasil analisis dan perbincangan menunjukkan bahawa kawalan suspensi semi aktif memberikan peningkatan prestasi berbanding kawalan suspensi pasif untuk model separuh kenderaan kereta api.

CONTENTS

CHAPTER

TITLE

SUPERVISOR DECLARATION	ii
DECLARATION	iii
DEDICATION	iv
ACKNOWLEDGMENTS	v
ABSTRACT	vii
ABSTRAK	viii
CONTENTS	ix
LIST OF FIGURES	XV
LIST OF TABLES	xxiii
LIST OF SYMBOLS	xxiv

LIST OF ABBREVIATION xxvi LIST OF APPENDICES xxvii

PAGE

CHAPTER I	INTI	INTRODUCTION				
	1.1	Background	1			
	1.2	Problem Statement	2			
	1.3	Project Objective	4			
	1.4	Project Scope	4			
	1.5	Project Gantt Chart	5			
	1.6	Project Outline	8			
	1.7	Project Flow Chart	9			

CHAPTER II	LITERATURE REVIEW			10	
	2.1	Theor	у		10
	2.2	Suspe	nsion S	System	11
		2.2.1	Passi	ve Suspension System	12
		2.2.2	Activ	e Suspension System	13
		2.2.3	Semi	-Active Suspension System	15
	2.3	Overv	Overview Of Railway Vehicle		16
		2.3.1	Study	Of Semi-Active Suspension For	17
			Railw	vay Vehicle Suspension	
		2.3.2	Study	Of Semi-Active Control	20
			(A)	PID Controller	20
			(B)	PID Controller Design In Semi-	23
				Active Suspension System	

CHAPTER III	METHODOLOGY					
	3.1	Projec	Project Methodology			
	3.2	3 DOF	Of Ha	alf Railway Vehicle Model	30	
		3.2.1	Equat	tion Of Motion For Passive Suspension	31	
			Syste	m		
			(A)	Free Body Diagram For Bogie	33	

	(B)	Free Body Diagram For Body	33				
	(C)	Free Body Diagram For Roll Case	34				
	(D)	Equation And Parameters	35				
3.2.2	Equation Of Motion For Semi-Active						
	Suspension System						
	(A)	Free Body Diagram For Bogie	38				
	(B)	Free Body Diagram For Body	38				
	(C)	Free Body Diagram For Roll Case	39				

(D) Equation And Parameters 40

CHAPTER IV	RESU	ILT AN	D ANALYSIS	41
	4.1	Result	And Analysis For PSM Work	41
	4.2	Block	Diagram Of Passive, Semi-Active,	42
		Skyho	ok And Groundhook Suspension System	
		4.2.1	Subsystem For Passive Suspension System	44
		4.2.2	Equation Of Motion For Passive	45
			Suspension System	
		4.2.3	Simulation Parameter For Passive	45
			Suspension System	
		4.2.4	Subsystem For Semi-Active Suspension	46
			System	
		4.2.5	Equation Of Motion For Semi-Active	47
			Suspension System	
		4.2.6	Simulation Parameter For Semi-Active	47
			Suspension System	
		4.2.7	Subsystem For Skyhook Suspension	48
			System	
		4.2.8	Equation Of Motion For Skyhook	49
			Suspension System	

4.2.9	Simulation Parameter For Skyhook	49
	Suspension System	
4.2.10	Subsystem For Groundhook Suspension	50
	System	
4.2.11	Equation Of Motion For Groundhook	51
	Suspension System	
4.2.12	Simulation Parameter For Groundhook	51
	Suspension System	
Graph	Result And Analysis From Simulation Work	52
4.3.1	Graph Of Body Lateral Acceleration For	53
	Passive, Semi-Active, Skyhook And	
	Groundhook Suspension System	
4.3.2	Graph Of Body Lateral Velocity For	55
	Passive, Semi-Active, Skyhook And	
	Groundhook Suspension System	
4.3.3	Graph Of Body Lateral Displacement For	56
	Passive, Semi-Active, Skyhook And	
	Groundhook Suspension System	
4.3.4	Graph Of Body Rolling Acceleration For	58
	Passive, Semi-Active, Skyhook And	
	Groundhook Suspension System	
4.3.5	Graph Of Body Rolling Velocity For	60
	Passive, Semi-Active, Skyhook And	
	Groundhook Suspension System	
4.3.6	Graph Of Body Rolling Angle For	62
	Passive, Semi-Active, Skyhook And	
	Groundhook Suspension System	
4.3.7	Graph Of Bogie Lateral Acceleration For	63
	Passive, Semi-Active, Skyhook And	
	Groundhook Suspension System	

4.3

4.3.8	Graph Of Bogie Lateral Velocity For	65
	Passive, Semi-Active, Skyhook And	
	Groundhook Suspension System	
4.3.9	Graph Of Bogie Lateral Displacement For	67
	Passive, Semi-Active, Skyhook And	
	Groundhook Suspension System	
4.3.10	Graph Of Suspension Travel Response	68
	For Damper (Cs) Of Passive, Semi-Active,	
	Skyhook And Groundhook Suspension	
	System	
4.3.11	Graph Of Suspension Travel Response	70
	For Spring (k1) Of Passive, Semi-Active,	
	Skyhook And Groundhook Suspension	
	System	
4.3.12	Graph Of Suspension Travel Response	72
	For Spring (k3) Of Passive, Semi-Active,	
	Skyhook And Groundhook Suspension	

CHAPTER V	DISC	CUSSIO	Ν	74	
	5.1	5.1 Discussion For PSM Work5.2 Validation Of Graphs From Simulation Work			
	5.2				
		5.2.1	Body Lateral Acceleration	76	
		5.2.2	Body Rolling Acceleration	81	
		5.2.3	Suspension Travel Response For Spring	85	
			(k1)		
		5.2.4	Suspension Travel Response For Spring	89	
			(k3)		
		5.2.5	Body Lateral Velocity	93	
		5.2.6	Body Lateral Displacement	95	
		5.2.7	Body Rolling Velocity	97	

5.2.8	Body Rolling Angle	99
5.2.9	Bogie Lateral Acceleration	101
5.2.10	Bogie Lateral Velocity	103
5.2.11	Bogie Lateral Displacement	105
5.2.12	Suspension Travel Response For	107
	Damper (Cs)	

CHAPTER VI	CONCLUSION AND RECOMMENDATION		109
	6.1	Conclusion And Recommendation For PSM Work	109
	REF	ERENCES	112
	APP	ENDICES	116

LIST OF FIGURES

NO.	TITLE	PAGE
110.		INOL

Figure 1.1	Project Flow Chart	9
Figure 2.1	Passive Suspension System	13
Figure 2.2	Schematic Diagram Of An Active Suspension System	14
Figure 2.3	Schematic Diagram Of A Semi-Active Suspension System	16
Figure 2.4	Railway Vehicle	17
Figure 2.5	Railway Vehicle Suspension System	19
Figure 2.6	Railway Vehicle Suspension System	19
Figure 2.7	A Block Diagram Of A PID Controller	21
Figure 2.8	Semi-Active Suspension System Model	24
Figure 2.9	Block Diagram For Semi-Active Suspension With PID Controller	26

Figure 3.1	3 DOF Of Half Railway Vehicle Model For Simulation Work	30
Figure 3.2	Half Railway Vehicle Ride Model For Passive Suspension System	31
Figure 3.3	Free Body Diagram For Bogie Of Passive Suspension System	33
Figure 3.4	Free Body Diagram For Body Of Passive Suspension System	33
Figure 3.5	Free Body Diagram For Roll Case Of Passive Suspension System	34
Figure 3.6	Half Railway Vehicle Ride Model For Semi-Active Suspension System	36
Figure 3.7	Free Body Diagram For Bogie Of Semi-Active Suspension System	38
Figure 3.8	Free Body Diagram For Body Of Semi-Active Suspension System	38
Figure 3.9	Free Body Diagram For Roll Case Of Semi-Active Suspension System	39
Figure 4.1	Block Diagram Of MATLAB-Simulink Of Passive, Semi-Active, Skyhook And Groundhook Suspension System	43
Figure 4.2	Subsystem For Passive Suspension System	44
Figure 4.3	Subsystem For Semi-Active Suspension System	46
Figure 4.4	Subsystem For Skyhook Suspension System	48
Figure 4.5	Subsystem For Groundhook Suspension System	50

Figure 4.6	Graph Of Body Lateral Acceleration For Passive, Semi- Active, Skyhook And Groundhook Suspension System	53
Figure 4.7	Graph Of Body Lateral Velocity For Passive, Semi- Active, Skyhook And Groundhook Suspension System	55
Figure 4.8	Graph Of Body Lateral Displacement For Passive, Semi-Active, Skyhook And Groundhook Suspension System	56
Figure 4.9	Graph Of Body Rolling Acceleration For Passive, Semi-Active, Skyhook And Groundhook Suspension System	58
Figure 4.10	Graph Of Body Rolling Velocity For Passive, Semi- Active, Skyhook And Groundhook Suspension System	60
Figure 4.11	Graph Of Body Rolling Angle For Passive, Semi- Active, Skyhook And Groundhook Suspension System	62
Figure 4.12	Graph Of Bogie Lateral Acceleration For Passive, Semi-Active, Skyhook And Groundhook Suspension System	63
Figure 4.13	Graph Of Bogie Lateral Velocity For Passive, Semi- Skyhook And Groundhook Suspension System	65
Figure 4.14	Graph Of Bogie Lateral Displacement For Passive, Semi-Active, Skyhook And Groundhook Suspension System	67
Figure 4.15	Graph Of Suspension Travel Response For Damper (Cs) Of Passive, Semi-Active, Skyhook And Groundhook Suspension System	68

Figure 4.16	Graph Of Suspension Travel Response For Spring (k1) Of Passive, Semi-Active, Skyhook And Groundhook Suspension System	70
Figure 4.17	Graph Of Suspension Travel Response For Spring (k3) Of Passive, Semi-Active, Skyhook And Groundhook Suspension System	72
Figure 5.1	Graph Of Body Lateral Acceleration For Passive, Semi-Active, Skyhook And Groundhook Suspension System With Random Railway Track Profile	76
Figure 5.2	Graph Of Locomotive Lateral Acceleration Versus Time With Random Railway Track Profile	77
Figure 5.3	Graph Of Body Lateral Acceleration For Passive, Semi-Active, Skyhook And Groundhook Suspension System With Sinusoidal Railway Track Profile	78
Figure 5.4	Graph Of Body Lateral Acceleration Versus Frequency For Passive And Semi-Active Suspension System	79
Figure 5.5	Graph Of Body Lateral Acceleration Versus Frequency For Passive And Semi-Active Suspension System From Gao, G. S. and Yang, S. P. (2006)	79
Figure 5.6	Graph Of Body Rolling Acceleration For Passive, Semi-Active, Skyhook And Groundhook Suspension System With Sinusoidal Railway Track Profile	81
Figure 5.7	Graph Of Body Rolling Acceleration For Passive, Semi-Active, Skyhook And Groundhook Suspension System With Random Railway Track Profile	82

Figure 5.8	Graph Of Body Rolling Acceleration Versus Frequency For Passive And Semi-Active Suspension System	83
Figure 5.9	Graph Of Body Rolling Acceleration Versus Frequency For Passive And Semi-Active Suspension System From Gao, G. S. and Yang, S. P. (2006)	83
Figure 5.10	Graph Of Suspension Travel Response For Spring (k1) Of Passive, Semi-Active, Skyhook And Groundhook Suspension System With Sinusoidal Railway Track Profile	85
Figure 5.11	Graph Of Suspension Travel Response For Spring (k1) Of Passive, Semi-Active, Skyhook And Groundhook Suspension System With Random Railway Track Profile	86
Figure 5.12	Graph Of Suspension Travel Response For Spring (k1) Versus Frequency For Passive And Semi- Active Suspension System	87
Figure 5.13	Graph Of Suspension Travel Response Versus Frequency For Passive And Semi-Active Suspension System From Gao, G. S. and Yang, S. P. (2006)	87
Figure 5.14	Graph Of Suspension Travel Response For Spring (k3) Of Passive, Semi-Active, Skyhook And Groundhook Suspension System With Sinusoidal Railway Track Profile	89
Figure 5.15	Graph Of Suspension Travel Response For Spring (k3) Of Passive, Semi-Active, Skyhook And Groundhook Suspension System With Random Railway Track Profile	90

C Universiti Teknikal Malaysia Melaka

Figure 5.16	Graph Of Suspension Travel Response For Spring	91
	(k3) Versus Frequency For Passive And Semi-	
	Active Suspension System	
Figure 5.17	Graph Of Suspension Travel Response Versus	91
	Frequency For Passive And Semi-Active Suspension	
	System From Gao, G. S. and Yang, S. P. (2006)	
Figure 5.18	Graph Of Body Lateral Velocity For Passive,	93
	Semi-Active, Skyhook And Groundhook Suspension	
	System With Sinusoidal Railway Track Profile	
Figure 5.19	Graph Of Body Lateral Velocity For Passive,	94
	Semi-Active, Skyhook And Groundhook Suspension	
	System With Random Railway Track Profile	
Figure 5.20	Graph Of Body Lateral Displacement For Passive	95
	Semi-Active, Skyhook And Groundhook Suspension	
	System With Sinusoidal Railway Track Profile	
Figure 5.21	Graph Of Body Lateral Displacement For Passive	96
	Semi-Active, Skyhook And Groundhook Suspension	
	System With Random Railway Track Profile	
Figure 5.22	Graph Of Body Rolling Velocity For Passive, Semi-	97
	Active, Skyhook And Groundhook Suspension	
	System With Sinusoidal Railway Track Profile	
Figure 5.23	Graph Of Body Rolling Velocity For Passive, Semi-	98
	Active, Skyhook And Groundhook Suspension	
	System With Random Railway Track Profile	
Figure 5.24	Graph Of Body Rolling Angle For Passive, Semi-	99
	Active, Skyhook And Groundhook Suspension	
	System With Sinusoidal Railway Track Profile	

Figure 5.25	Graph Of Body Rolling Angle For Passive, Semi-	100
	Active, Skyhook And Groundhook Suspension	
	System With Random Railway Track Profile	
Figure 5.26	Graph Of Bogie Lateral Acceleration For Passive,	101
	Semi-Active, Skyhook And Groundhook	
	Suspension System With Sinusoidal Railway	
	Track Profile	
Figure 5.27	Graph Of Bogie Lateral Acceleration For Passive,	102
	Semi-Active, Skyhook And Groundhook	
	Suspension System With Random Railway	
	Track Profile	
Figure 5.28	Graph Of Bogie Lateral Velocity For Passive, Semi-	103
	Active, Skyhook And Groundhook Suspension	
	System With Sinusiodal Railway Track Profile	
Figure 5.29	Graph Of Bogie Lateral Velocity For Passive, Semi-	104
	Active, Skyhook And Groundhook Suspension	
	System With Random Railway Track Profile	
Figure 5.30	Graph Of Bogie Lateral Displacement For Passive,	105
	Semi-Active, Skyhook And Groundhook Suspension	
	System With Sinusoidal Railway Track Profile	
Figure 5.31	Graph Of Bogie Lateral Displcement For Passive,	106
	Semi-Active, Skyhook And Groundhook Suspension	
	System With Random Railway Track Profile	
Figure 5.32	Graph Of Suspension Travel Response For Damper	107
	(Cs) Of Passive, Semi-Active, Skyhook And	
	Groundhook Suspension System With Sinusoidal	
	Railway Track Profile	

LIST OF TABLES

NO. TITLE	PAGE
-----------	------

Table 1.1	Project Gantt Chart	5
Table 2.1	Effect Of Independent P, I And D Tuning	23
Table 2.2	Symbol For Semi-Active Suspension System	25

LIST OF SYMBOLS

m_1	=	Bogie Mass, kg
m ₂	=	Body Mass, kg
Ir	=	Moment Of Inertia Of Rolling, kg.m ²
\mathbf{k}_1	=	Spring Stiffness, N/m
k_2	=	Spring Stiffness, N/m
k_3	=	Spring Stiffness, N/m
b	=	Half Of Track Width (Distance Between k_3 And Centre Of Gravity Of Body), m
h_1	=	Height Between k1 And Centre Of Gravity Of Body, m
h ₂	=	Height Between c _s And Centre Of Gravity Of Body, m
cs	=	Damping Coefficient, Ns/m
θ	=	Roll Angle At The Centre Of Gravity Of Body, °
Ö	=	Roll Acceleration At The Centre Of Gravity Of Body, rad/s ²
F_{s1}	=	Spring Force, N
F_{s2}	=	Spring Force, N

C Universiti Teknikal Malaysia Melaka