PROTOTYPE OF BLOCKCHAIN-BASED WEB APPLICATION FOR
ELECTRONIC HEALTH RECORD (EHR) DATA MANAGEMENT
AMONG HOSPITALS

CHEK SHIN JING

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

PROTOTYPE OF BLOCKCHAIN-BASED WEB APPLICATION FOR
ELECTRONIC HEALTH RECORD (EHR) DATA MANAGEMENT AMONG
HOSPITALS

CHEK SHIN JING

This report is submitted in partial fulfillment of the requirements for the
Bachelor of [Computer Science (Computer Security)] with Honours.

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY
UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2023

il

DECLARATION

I hereby declare that this project report entitled
PROTOTYPE OF BLOCKCHAIN-BASED WEB APPLICATION FOR
ELECTRONIC HEALTH RECORD (EHR) DATA MANAGEMENT AMONG
HOSPITALS
is written by me and is my own effort and that no part has been plagiarized

without citations.

STUDENT : CHSEK Date : 25/9/2023
(CHEK SHIN JING)

I hereby declare that I have read this project report and found
this project report is sufficient in term of the scope and quality for the award of

Bachelor of [Computer Science (Computer Security)] with Honours.

26/9/2023
SUPERVISOR : Date :
(TS. DR. MOHD. FAIRUZ ISKANDAR OTHMAN)

mohdfairuz@utem.edu.my
Typewritten text
26/9/2023

DEDICATION

This project is dedicated to whom that has been part of my life.

il

v

ACKNOWLEDGEMENTS

First of all, I would like to take this opportunity to express my gratitude to my
supervisor TS. Dr. Mohd. Fairuz Iskandar Othman of Faculty of Information and
Communication Technology, Universiti Teknikal Malaysia Melaka (UTeM) for
assistant, motivation word and his patience to help in me to complete this project
successfully. I would also like to express my appreciation towards Dr. Zaheera

Zainal Abidin for her guidance and evaluator GS. Dr. Othman Mohd for his advice.

I would like to thank my beloved parents who have giving me support, motivation

word and provide needs during my studies.

I would like to express my sincere gratitude to my fellow friends that always give

motivation mentally and physically during the PSM.

ABSTRACT

Electronic Health Record (EHR) is considered as one of the most sensitive
data in digital world. However, it is often being compromised due to obsolete of data
management methods such as traditional data storage using local database, unpatched
cloud storage that cannot overcome the latest cybersecurity attacks. Besides, it is also
questioned that the current existing EHR data management solutions are mostly not
transparent enough and causing interoperability challenges. Hence, the primary
challenge addressed in this study is the secure sharing and management of sensitive
patient health data among hospitals while ensuring data integrity, access control and
auditability. The project utilizes Hyperledger Fabric's blockchain technology to
provide a private and tamper-resistant ledger for storing and sharing EHR data.
Through a rigorous research process involving system design, smart contract
development and network configuration, the prototype establishes a more robust
framework for EHR data management. The results demonstrate the potential
implementation of a secure and scalable system that enables authorized medical
authorities to access and update patient records efficiently, while ensuring data
privacy and compliance with healthcare regulations. This project contributes to the
advancement of healthcare data management by leveraging blockchain technology to
enhance data security, accessibility and transparency among collaborating hospitals.

Vi

ABSTRAK

Rekod Kesihatan Elektronik (EHR) dianggap sebagai salah satu data yang
paling sensitif dalam dunia digital. Walau bagaimanapun, ia sering terdedah kepada
risiko keselamatan disebabkan oleh kaedah pengurusan data yang sudah ketinggalan
zaman seperti penyimpanan data tradisional menggunakan pangkalan data tempatan,
penyimpanan awan yang tidak dikemaskini yang tidak dapat mengatasi serangan
siber terkini. Selain itu, juga dipertikaikan bahawa penyelesaian pengurusan data
EHR yang sedia ada pada masa ini kebanyakannya tidak cukup telus dan
menyebabkan cabaran interoperabiliti. Oleh itu, cabaran utama yang dibincangkan
dalam kajian ini adalah berkongsi dengan selamat dan menguruskan data kesihatan
pesakit yang sensitif di antara hospital-hospital sambil memastikan integriti data,
kawalan akses dan boleh diperiksa. Projek ini menggunakan teknologi blok rantai
Hyperledger Fabric untuk menyediakan lejar peribadi dan tidak boleh diubahsuai
untuk penyimpanan dan perkongsian data EHR. Melalui proses penyelidikan yang
teliti yang melibatkan reka bentuk sistem, pembangunan kontrak pintar dan
konfigurasi rangkaian, prototaip ini membentuk rangka kerja yang lebih kukuh untuk
pengurusan data EHR. Hasilnya menunjukkan pelaksanaan potensi sistem yang
selamat dan boleh diubahsuai yang membolehkan pihak berkuasa perubatan yang
diberi kuasa untuk mengakses dan mengemas kini rekod pesakit dengan cekap,
sambil memastikan privasi data dan pematuhan terhadap peraturan kesihatan. Projek
ini menyumbang kepada kemajuan pengurusan data kesihatan dengan menggunakan
teknologi blok rantai untuk meningkatkan keselamatan data, aksesibiliti dan
ketelusan data di antara hospital-hospital yang bekerjasama.

vii

TABLE OF CONTENTS
DEDICATION ...ccuuiiiisuinrnnsensaicssnssesssisssssnssssssssssessass 11
ACKNOWLEDGEMENTSuuciniinininninsnisenssecssissesssesssssssssssssssssssssssssssssssssssssns v
ABSTRACT ..uuiiiiiiinninnnnsenssisssnssssssessssssssssssssssssssssssassssssssssssssssssssssssssssssssssssassssssass \Y%
ABSTRAK ...uuirtirniniisuinsnisaecssisssnsesssssssssssssssssassssssassssssssssssssssssssssssssssssssssssassssssass \Y |
TABLE OF CONTENTS ..uuciiviitineisinsnissensnsssncsssssecssissesssssssssssssssssssssssssssssssssssss \1!
LIST OF TABLEScoutiiitininsnicsnissessancssissesssesssisses XII
LIST OF FIGUREScuciiitiniininsninsensessnissssssssasssssssssssssssssssssasssssssssssssssssssssass XIII
LIST OF ABBREVIATIONS ...cucininninrnnsinsanssessssssissasssnsssssssssassssssssssssssasssssses XVI
LIST OF ATTACHMENTS ...cciniiviiivenininsncssansscsssnssesssesssessasssssssssssssssssssssassasssns XVl
CHAPTER 1: INTRODUCTIONccuiivuirenruecsnissenssnssansesssessssssesssesssssssssssssssssssssses 1
1.1 Project Back@round...........cccooiiiiiiiiiiiiieee e 1
1.2 Problem Statementcoiuiiiiieiiiiiieie et 2
1.3 Project QUESTIONSeeeuvieiiieiieeiieeite ettt eieeeiteeteesereeaeestbeesseessseensaessseenseessseensaensseens 3
1.4 PrOJeCt ODJECIVEvieviieiiieiieeiie ettt ettt ettt ebeessaeeteessseenseessseensaesaseenne 3
1.5 PrOJECE SCOPE ..ccnviiiiiieieeiteeit ettt ettt sttt e st e 4
1.6 Project ContribULIONcc.eevuiiiiriiiiiiieieeeee ettt 4
1.7 Report OrganizZationcecueeeerieeierienieeiesieenieeie sttt et siee st este st et entesaeeneeenee e 5

L8 COMCIUSION ..o 6

CHAPTER 2: LITERATURE REVIEWuiiininnninsennnissnnssessesssnssesssesssssssssaes 7
2.1 TNEPOAUCHION ...ttt ettt st et saee b enee e 7
2.2 Blockchain TeChnolo@Yc.cccuieriiiiieiiieiiecie ettt aae s ens 7
2.2.1 Core of Blockchain Technologycccccevevienieviinieneniiiniceeicnene 8
2.2.1.1 Distributed Ledger Technologyccccccveviienieeiiiinieeiieieeieeee 9
2.2.1.2 CryptOZIaphY .ccceeeeeiieiieeiieeiee et etee et eieeeve et e sseesaeenaeebeessseensaesnneens 9
2.2.1.3 Smart CONIACTccoiiiiiiiiiiiiiieeiiee ettt 11
2.2.1.4 Consensus MeChaniSmScccueerueeriierieeniienieeiie e eiee e 11
2.2.2 Types of BIOCKChaINcocvviiiiiiiiiiieiccie e 15
2.2.2.1 Public Blockchaincccueeiiiiiiiiiiiiiiiiicieeceee e 15
2.2.2.2 Private Blockchain...........cocooeiiiiiiiiiiiiiieeeee e 15
2.2.2.3 Consortium Blockchaincceeviiriiiniiniiiiiiiieieeeeeseee, 16
2.3 Blockchain Platformoveeiirieniiiinieeieseiese e 17
2.3.1 Ether@Umcccuooiiiiiiiiiiiciiee e 17
2.3.2 HyPerled@erccuieiieiieiieeeeeeeee ettt 18
2.3.2.1 Hyperledger Fabriccccccoeiiieiiiiiiieieeceee e 19
2.3.2.2 Hyperledger Sawtooth Lakecccceecieriininiiiniiiiniiniccniceees 21
2.3.2.3 Hyperledger Iroha...........cccooeovieiiieiiieciieiececeeee e 21
2.3.2.4 Hyperledger BUITOWccoiiiiiiiiiiieeiieeciee et 21
2.3.2.5 Hyperledger Indycooeeriiiiiiiiiiieeeee e 22
2.3.3 MUItICRAIN ..ttt 22
2.3.4 0PN CRAIMN ..ccoviiiiieiiicieee ettt e esaveeneees 23

2.4 Critical Review of EXisting WOrKSccccviiririiinieniiiiniccecececcsecseeee 23

iX

2.5 PropoSed SOIULIONceiiiiiiieiiecie ettt ettt e esae s e eeseenns 30
2.6 CONCIUSION ...t ettt et sttt et et et e e 34
CHAPTER 3: PROJECT METHODOLOGY ..ccooueevurrensuicsersaessaecsessanssasssssssesssces 35
3.1 TNEFOAUCTION ..ottt ettt et et et e bt e et eebeesnee e 35
3.2 MethOdOIOZYeeeiieeiiiee ettt ettt 35
32,1 PLANNING ..ovtiiiiieiieeieeee ettt et e et eennaes 36
3. 2.2 DIESIZN .ttt ettt ettt e 36
3.2.3 IMPlementation...........cccueeeuierieeriienieeieecte et eiee e sre e eenes 36
3. 2.4 TESTINE ..uveeiieeiieeiee ettt ettt ettt et e et e e b e saeeenne 36
3.2.5 EVOIULION -ttt ettt et ettt s 36
3.3 PrOJECt MILESIONEScutieiieiiiieiie ettt ettt ettt ettt e st e e nee s 37
3.4 CONCIUSION 1.ttt ettt ettt ettt e et et ee et e e bt esabe e bt e snseebeesaneens 39
CHAPTER 4: DESIGN ..cuuuiiiuiniiiinsnicsnnsesssesssissessns 40
4.1 TNEEOAUCTION ..ttt ettt ettt et e et et eneesaeeeeenee e 40
4.2 Problem ANALYSISeeiiiiiiiieeiiese ettt 40
4.3 Requirement ANALYSISccceeiiieiiiiiiieiieeie ettt 41
4.3.1 Data ReqUITCMENLccveeriieiieiieeiieeiie et enieeereeseee e esieeeereesaeeseneeneeas 41
4.3.2 Functional Requirement............c.cceevveeeviieeiieecieeceeeeree e 43
4.3.2.1 Smart Contract/Chaincodeccceeveeviriiinieneeieniereeeseeeeee 47
4.3.3 Software ReqUIr€MENtc.cccveriieriieeieerieeeieeiee e esieesveeree e eeeens 48
4.3.4 Hardware ReqUirement............ccueeecuveeeiieeeiie e 50
4.4 High-Level DESIZNc.eciuiiiiiiiieeiieiie ettt ettt ettt et sae et sereesaeseseesseennnas 51
4.4.1 System ATCRItECTUIEcovviruiiriiiiiriicteeee et 51

.5 CONCIUSION . eeeeeeeenenenennnes 52

CHAPTER 5: IMPLEMENTATIONccciniiniensenssnessassssssssssssassssasssssssssssssssssasses 53
5.1 INEOAUCLION ...ttt st et e e e saeeneeas 53
5.2 Software Configuration Managementc.eecveeruieerieenieecieenieereenieeeneenneennns 53
5.3 Prerequisite Base SOftWarecocoeiiiiiiiiiiiieeee e 54
5.4 Fabric and Fabric Samplesccoocioiiiiiiiiiieieeecee e 55
5.5 CoNtract APIS ...ooouiiiiiiiieeee e 55
5.6 ApPlication SDKcoociiiiiiiiiiiiiieieeeie ettt et et e ennees 58
5.6.1 Hyperledger Fabric Client SDKccccooiiiiiniiniiniiiniiiccnicieee 58
5.60.2 WALt ...n.eiiiiiiiiiee et 59
5.6.3 JISON WeED TOKENSveieievieeeiiieeciiie ettt e 59
5.7 APPIICALIONooviiiiiiieiie et eciee et este et et e et eesabe e s e essaeenbeeesbeenseassseensaessseenseansseensens 59
5.7.1 State of Distributed Databaseccceceevieierieneniirieecieseeeee 59
5.7.2 TAeNILY (CA) ittt ettt st 60
5.7.3 Membership Service Provider (MSP)ccccvvvieiiieiieiiiieieeieeeee 61
5.7.4 Endorsement POLICIESc.ceeeuiieeiiieeeiie et evee e 61
5.7.5 Security MeChaniSMcceevveeiiierieeiieeie et 63
5.8 CONCIUSION ...eeeviieiiiieciieeeetee et ettt e e tte e et e e et e e et e e sabeeesasaeesseeessaeensseesssseesseeenns 64
CHAPTER 6: TESTING ...uucouiiverrensnicrensenssissenssesssessssssessssssssssessssssssssssssssssssssssssss 65
0.1 INEOAUCTION ...ttt et st see e 65
0.2 TESE SITALEEY ..eenvveeeiieiieiieee ettt ettt st san e e sane e 65
6.2.1 Classes OF T@SS ..eeecuvieeiiireeiieeeiieeeiee et et eeiteeetaeeereeeereeesveeeseseeens 65
0.3 TSt DESIZN c.veiiiieiiieiieeiieeie ettt ettt ettt e ettt e e beesteeesbeesaeesbeeseessseenseennseans 66
6.3.1 TeSt DESCIIPLIONccuvvieeiiieeiieeciee ettt et e eree e e e 66

60.3.2 TESE DIAtA .ot e e e e et e e e e e e e 67

xi

6.4 Test Results and ANALYSIScccuieriieiiieriieiiecie ettt 70
6.4.1 NetWOrk TeSHNGcccveeeiieiieriieeiieeie ettt e ve e e eeee e 70
6.4.2 Functionality TeStINGccceeviiiiiierieeiieie e 74
0.4.2.1 AdMIN ..ottt 74
0.4.2.2 PATIENLoueiiiiiiieieieieeiee ettt 76
6.4.2.3 DIOCTOT ..ceeitiieiiie ettt et ettt et e e s 80
0.5 CONCIUSION ...ttt ettt et ettt et e et e et e sabe e bt e snteebeesneeens 84
CHAPTER 7: PROJECT CONCLUSION.ucooveruirsenssenssissessesssessssssessasssssssesssces 85
7.1 INEPOAUCTION ...ttt ettt et s ettt ese e bt et e saeeees 85
7.2 Project SUMMATIZAtIONoveeuerieenieeieniteteete sttt sttt sttt e esae e saeesaeennens 85
7.3 Project CONtITDULIONo.eeiiiieiieiie ettt ettt ettt ettt bee e eeee e ene 87
7.4 Project LIMITAtIONeeuvieiieiieeiieeteeiieeaeeiee e esteesaeeteeeeaeebeessseensaessseesseessseensens 88
7.5 FULUTE WOTKS ..t 89
7.6 CONCIUSION ...ttt ettt ettt e et e et e et e e b e st e e nbeesneeebeesneeans 91
REFERENCEScuuiiiiiintinninninsnissensssssisssassssssss 92

APPENDICESuuotiienniniennnnensnnnnessnsssessssssssssssssessssssssssssssssssssassssssssssassssssssssasss 97

Table 1.1 :
Table 1.2 :
Table 1.3 :
Table 1.4 :
Table 1.5 :
Table 2.1 :
Table 2.2 :
Table 2.3 :
Table 2.4 :
Table 3.1 :
Table 3.2 :
Table 4.1 :
Table 4.2 :
Table 4.3 :
Table 4.4 :
Table 6.1 :
Table 6.2 :

xii

LIST OF TABLES
Problem Statement Table...........eeniinniineinsenssnniseissecnseenssnecsnensnnens 3
Project Questions Table..........ccoeeevveiiiinriccnrinsnrcssnicssnnecssnnncssanccsnneens 3
Project Objective Table......cueiienneenisnensensnensuenssnnnsacnssnesssecssnessansssnesnes 4
Project SCope Table.......ccoveieneeicnenicsssnncssnncssnnicsssnsssssssssssssssssssssssssssnses 4
Table for Report Organizationccceceeeeccscerccsssnescnnossssscssssssssaseses 5
Type of bIOCKCRAIN a.....uuueiinviiiiiiiiiiiiiiiniinicininniiineeecsnencsssenesssenenes 16
Comparisons among different Hyperledger frameworks.................. 22
Comparison of blockchain platformceeicecveicrcvercsenrcssercssnnncsnnns 23
Comparison of exXiSting WOrkKccoceeevvrccsvencsssnrcssnrcssercssnsncssnsscsnnses 28
Final year project 1 mileStonesccceceeevcniecssnrecssneecsnncssnncssnencsnnnes 37
Final year project gantt chart...........eeivvceeiisercssercssneecssnnecssneccsnneens 39
Participants permission in the networkK.........cccevveecrvercccnrcscercscnenes 45
Smart contracts in the SyStemccoveecrvricisrcsssnrcsssnrcssnrcsseressnssosanns 47
Software reqUIremenNt.........ceeeecieecnseecssnecsssnecssseessssncssssnessssecssssssssnes 48
Hardware requirementc.eeeceecssnreecsssnnsecsssssssssssssssssssssssessssssssssssnass 50
Test DeSCrIPLiON c.uccceveierrercssninisnnisssanisssaressssressssssssssosssssssssssssssssssasssns 66

Login details fOr USErscccecveeerverisssnrcssnrcssnrcssnnrcssssssssssssssssssssssssssanes 67

Figure 2.1 :
Figure 2.2 :
Figure 2.3 :
Figure 2.4 :
Figure 2.5 :
Figure 2.6 :
Figure 2.7 :
Figure 3.1 :
Figure 4.1 :
Figure 4.2 :
Figure 4.3 :
Figure 4.4 :
Figure 4.5 :
Figure 4.6 :
Figure 4.7 :
Figure 4.8 :
Figure 4.9 :
Figure 5.1 :
Figure 5.2 :
Figure 5.3 :
Figure 5.4 :
Figure 5.5 :

Figure 5.6 :

xiii

LIST OF FIGURES

PAGE
Structure of blockchaincuiiceineeiniicniineiieenseicnenseeneecsnecssensenns 8
Taxonomy of cryptographic primitivescccecceeevceeeccecessnrcssnencsanns 10
Smart contract relationship with the blockchain................ccuueeeu... 11
Ledger on Hyperledger Fabric........cccecceeivenicrcercssnnicscnnscssnnscsnnessnnnes 20
Architecture of proposed system from previous studyccccceeeuneee. 33
Process flow of patient registrationceceevceeecvcneecccerccsnecssnnncsnnes 34
Process flow of records sharing and adding new record.................. 34
SDLC PRASES cccuviiernricssanicssarisssnrssssnncsssnsssssrsssssssssssssssssssssssssssssssssasssss 35
Comparison of present and future EHR systemcccccceeeuerercunrcnnnns 41
Data type of patieNt........cccveiievviicisniicisnnensniissencssnnesssnncsssencssssnessssees 42
Data type of medical practitionercceceeeeveercssneecsseercssneccsneccsnnnes 43
Use case of admin c....ueeeeeenveeinniiisnenieinsnenseensennsnesssesssecssessseessessssens 43
Use case Of PAtIENT....cccuueiervrinisnricssencsssnncsssnncssenesssssessssssssssssssssssssssses 44
Use case of medical practitionereeeeveeecsencssnecssnncssnencsssencsanns 44
Sequence diagram of creation of a patient............ccceveeecrveeecssenecsnne 46
Sequence diagram of creation of a doctorccoverevcercscercscnnrcsanns 46
System architecture of the blockchain.cccceeveerivcercscercscnercsnnnes 51
Application stack in Fabric applicationccooeeeecscseeiccscsnnreccscnnnee 54
Smart contracts hierarchyeeeeneenneensnennennsnensecnsnecsenssnensseesans 55
Example of getPatientHistory() methods in doctor contract........... 56
Example of revokeAccessFromDoctor() method.............ccccuereuneee. 56
Example of verifying if the doctor is granted access.........cceeuersueeeee 57

Example of utilizing fabric-network between backend server and

DIOCKCRAIN NEEWOTK c.oereeeeeerreneeieereneecerreneecerreseescesssesscsssssesssssssssssssssssssssssssssssssessssasses 58

Figure 5.7 :
Figure 5.8 :
Figure 5.9 :

Xiv

Endorsement policy for HOSP 1ccieevvuiiniverccssnncssnncssnnrcssnnscssnsscsanns 62
Chaincode-level endorsement PoOliCYyccceeeeescnrccsnrcssnrcssnercssnercsanes 63
TLS enabled in CA HOSP 1ucievveiiiivnrinisnncsssnncssnrcsssnnssssessssssssssnsscses 63

Figure 5.10 : Patient’s passwords are hashed and stored in the blockchain

(patient chaincode)

Figure 6.1 :
Figure 6.2 :
Figure 6.3 :
Figure 6.4 :
Figure 6.5 :
Figure 6.6 :
Figure 6.7 :
Figure 6.8 :
Figure 6.9 :
Figure 6.10
Figure 6.11
Figure 6.12
Figure 6.13

Figure 6.14 :
Figure 6.15 :
Figure 6.16 :
Figure 6.17 :
Figure 6.18 :
Figure 6.19 :
Figure 6.20 :

Figure 6.21
Figure 6.22
Figure 6.23

Figure 6.24 :
Figure 6.25 :
Figure 6.26 :
Figure 6.27 :
Figure 6.28 :
Figure 6.29 :

... 64

EHR of patient ()ccovvvereriercsssercsssencsseicssnscsssnssssssssssssssssssssssssssssases 68
EHR of patient 1cccovveiirvvniissvencsseicssnicsssnscsssnssssssssssssssssassssssssssssnes 68
EHR 0f PAtIENt 2 ..ouuuveriiiivnniicnisnniecsssnnicsssssnsscssssssesssssssssssssssssssssssssess 68
EHR 0f PAtient 3uueiiiiiivnniiciivnniccsssnnicsssssnsecssssssessssssssssssssssssssssssess 69
EHR of patient 4........cooverevvveiiniercsseicssnencssnncssssssssssssssssssssssssssssssssases 69
EHR of patient S.......ccovveiiiiverininercsseicssnicssencsssnssssssssssssssssssssssssssssses 69
Testing of bringing up NEItWOrKcceeeevveeicrneiciencsiercssnnncssnencsnneens 70
Testing of creating channel............ccoiiivveiiiiiiiiinninieicsseecssenecseneens 71
Testing of deploying smart cONtract.........ccecceeecvercscercssnressnescssnnsenes 72
: Testing of running backend SErVerccccecvercrcercrcnnrcssnnrcssnsscsnnees 72
: Testing of running frontend SErvereeeisercnsnecssneecsseeecsnnnes 73
: Main page of user interface..........coeeecvceeicsercssercssnncssnencsssenesnenes 73
: AAMIDN LOZIN PAGE c.ceeeeuveiiisnernssnrinssarisssnrisssaresssrsssssnessssssssssssssssssssssses 74
List of patients (AdMinN)cccevverecrrerccssercsssercssersssensssssressssssssssssssnsses 75
Create NewW PAtieN......ccceiiiiveiissniiisineissniessssncssneessssnessssnessssncsssseeses 75
Create NEW dOCLOTueeeeveeeiieeeisencssnecsssnncsssnecsssnessseessssnessssnessssneses 76
Patient 10Zin PAZecccvvervieriiiverinssnrissnrcssercssnicssssisssssssssssssssssssssanes 77

Mandatory of changing new password for first-time login patient77

View personal details & EHR (patient)ccceecveevvuercssnnrcssnencsnnnnes 78
View list of doctors & grant/revoke accesseeueeerseecseessacssanesans 78
: Edit personal detailsccooeeeevverinsvnrcnssnncsssnicssnncssnncsssencssssssssssscnes 79
: Updated personal details........ccceeeevueicicuencssnncnssnnccsnrcssnrcssnencssnsncsnns 79
: View EHR history (Patient)cceeecvceeicscenccisnecssnncssnnncsssescsssnecsnnnes 80
Doctor 10Zin PAGEcccueeeeueeiiinniisinnicssnnenssnniissnnicssnissseesssseesssssessssnes 81
Doctor dashboardeieeeciviicssneiissneicssniensnecssencssnncssssecsssnecanns 81
List of patients (dOCtOT)cccvueeeevericsveressrercssnrcssnercssssscssssssssssssssassssens 82
View patient’s EHR.......ccouiivviiiiiiiniiiinisninssnninssnncsssnesssssssssssssssses 82
Update patient’s EHRuciivirinvirinsirinsniinsnnecssneecssnnecssseccsssnecanns 83
Updated patient’s EHRcuuiiniriniirissirissneicssnnicsssnecsssescsssnscsssnes 83

Figure 6.30 : View patient’s EHR history

XV

xvi

LIST OF ABBREVIATIONS
FYP - Final Year Project
EHR - Electronic Health Record
PoW - Proof of Work
PBFT - Practical Byzantine Fault Tolerance
API - Application Programming Interface
SDK - Software Development Kit
CA - Certificate Authority
HLF - Hyperledger Fabric

JSON - JavaScript Object Notation

xvii

LIST OF ATTACHMENTS

PAGE

Appendix A INSTALLATION OF PREREQUISITE 97
Appendix B STEPS TO START NETWORK 102

CHAPTER 1: INTRODUCTION

The purpose of this chapter is to provide project background, problem
statement, project questions, project goals, project scope, project contribution and

project development for the entire project.

1.1 Project Background

With the rapid development of internet technology, data sharing and storage
have become more critical to many industries, including finance, healthcare,
government, education and supply-chain as the needs of society to share and retrieve
latest information among many different parties has increased. Most industries have
adapted the cloud storage service or database service to store and transmit data where
there will be a third party organization or company to provide the data sharing and
storage services meanwhile the administrator is able to modify or delete any data
from the database. It is also the services providers’ responsibilities to maintain the
operation of the database and ensure regularly security updates. As traditional
database is centralized, it has often become a target for malicious party attempting to
access sensitive information and gain benefit from it. It can be said that traditional
methods of data sharing and storage are more often vulnerable to security breaches,
cyber attacks and unauthorized access. Thus, losing guarantee of the integrity and

reliability of user records and higher possibility of data loss or data misuse.

To eliminate the dependency for third party to develop a trust-based model,
blockchain technology is introduced to provide secure, transparent and tamper-proof

transactions. Blockchain is a distributed ledger technology which fully decentralized

peer-to-peer data storage where storage of data spread over all participants also
known as nodes of the network in the form of a distributed ledger. Blockchain stores
information in growing lists of records (blocks) that are securely linked together
through cryptographic hashes meanwhile each block contains hashed information
from the previous block, a timestamp and transaction data to provide cryptographic

security.

While the most valuable asset within healthcare sector is information where
accurate and complete patient records are important not to be compromised, there are
some serious issues need to be concerned such as balancing easy accessibility
between protecting the privacy of medical data, ensuring the integrity of patient data
and managing authorization rules for data access. As healthcare management
encompasses many different processes that will require patient related data, data
management system that integrated with blockchain technology will optimize the
complex medical processes and digital management of medical data. In the process,
the blockchain plays an essential role as a distributed database structure for the
electronic health record data management in which all transactions are checked and
stored by all parties participating in the database. Meanwhile, the data management
system which based on smart contracts for intelligent management would automated
enable parties who allowed to access or modify patient’s electronic health record
based on patient’s consent. This decentralization of the data would ensure higher
security, reduce administrative costs and increase the authenticity of information due
to transparency of blockchain technology. However, there is still a lot of
improvement needed in blockchain technology in order to provide accountable,

reliable and secure solutions to industries.

The researcher would identify the implementation of blockchain technology
using web-based application for electronic health record data management among
hospitals and point out the performance of the blockchain-based web application to

identify whether it is better in data confidentiality and integrity.

1.2 Problem Statement

Existing centralized data storage services which might lead to single point of

failure where such kind of systems usually rely solely on third party such as large

https://en.wikipedia.org/wiki/Record_(computer_science)
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Trusted_timestamping

company who provides strong storage capacity to store and transmit data.

Redundancy of different healthcare providers storing patients’ health records in their

own databases and problems in ensuring data integrity when retrieving and

transmitting health records.

Table 1.1: Problem Statement Table

No. | Problem Statement
1 Existing centralized data storage services which might lead to single point of
failure where such kind of systems usually rely solely on third party such as
large company who provides strong storage capacity to store and transmit data.
2 Redundancy of different healthcare providers storing patients’ health records in
their own databases and problems in ensuring data integrity when retrieving
and transmitting health records.
1.3 Project Questions
Table 1.2: Project Questions Table
No. | Project Questions
1 How can blockchain technology helps in securing and sharing data of
electronic health records among hospitals?
2 Are blockchain-based web application for EHR data management more
efficient than conventional storage method?
3 Does blockchain-based EHR data management system able to ensure data
integrity and transparency?
14 Project Objective

This study's goal is to determine the application of blockchain technology for

electronic health record among hospitals in healthcare sector. The second objective is

to design and implement a prototype of blockchain-based web application for

electronic health record data management among hospitals. Finally, the third

objective is to evaluate and analyze the performance of the blockchain-based

prototype for electronic health record.

Table 1.3: Project Objective Table

No Project Objective

1 To determine the application of blockchain technology for electronic health
record among hospitals in healthcare sector.

2 To design and implement a prototype of blockchain-based web application
for electronic health record data management among hospitals.

3 To evaluate and analyze the performance of the blockchain-based prototype
for electronic health record.

1.5 Project Scope

This project would focus on developing a blockchain-based web application

that is used for electronic health record data management among hospitals. The scope

for this project is explained below:

Table 1.4: Project Scope Table

No | Project Scope

1 Understanding the architecture of blockchain technology and its application
for electronic health record data management among hospitals.

2 To develop a web application that demonstrates the use of blockchain for
electronic health record data management in healthcare sector.

3 Ensure data privacy and confidentiality for the blockchain-based web
application for electronic health record data management among hospitals.

1.6 Project Contribution

The essential key in this project is to propose a more secure and efficient

method using blockchain technology for electronic health record data management

that can ensure smooth operation among hospitals. Lastly, it will address the
implementation of blockchain-based electronic health record data management
system will be able to overcome the security issues of using conventional method of

data storage and sharing.

1.7 Report Organization

Table 1.5: Table for Report Organization

Chapter Detail
Chapter 1 Research background, a problem statement, project questions,
Introduction project objectives, project scope, and a project contribution are all

included in this chapter.

Chapter 2 This part will be reviewing past research, journal and conference
Literature papers as well as related works for the project matter.

Review

Chapter 3 This chapter explains the approaches used in phasing out job
Methodology activities to contextualize the process being introduced. For this

work 4 steps are to be included. Using this phase encourages those
tasks to be executed and managed. It involves simple framework

and detailed framework.

Chapter 4 This chapter discusses the requirement that will be used to run this
Design project and a flowchart. The flowchart is discussed in detail about

how the process works.

Chapter 5 This chapter implements the new method and architecture that

Implementation | being used in controlled environment.

Chapter 6 The research and results of the suggested method were covered in
Testing and this chapter. This chapter also determines whether the suggested
Validation approach works or not.

Chapter 7 This last chapter summarizes the entire process and explain further
Project progress which could be implemented in the future.

Conclusion

1.8 Conclusion

To summarize, this chapter explains clearly about the general background of
this project and highlight the potential implementation of blockchain technology in
managing data for electronic health record among hospitals. The next chapter will

explain about the related work.

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

This chapter provides an overview of blockchain technology including its
core technologies, types and algorithms. It also introduces the advantages and
limitations of different blockchain platforms that are available to be used and then
focus on private permissioned blockchain using Hyperledger Fabric to create and
deploy decentralized applications. Furthermore, this chapter will highlight some

critical reviews of the existing works and its proposed solution.

2.2 Blockchain Technology

Blockchain is a distributed ledger technology that records all the transactions
that have occurred in the peer-to-peer network which the information is stored in
growing lists of records also known as blocks where the blocks are securely linked
together through cryptographic hashes to form a chain. A transaction represents a
transfer of value from one address to another. When the number of transactions grow,
the size of blockchain will grow as well. Blocks in the blockchain store the
chronological order of transactions along with their respective timestamps (Usman &
Qamar, 2020). Blockchain is called a secure, decentralized and immutable database
as it eliminates the dependency on trusted third-party where there is no single node
can control the entire network and all participants within the network possess an

identical copy of the database (Wang et al., 2018).

The Genesis block, an initial block without any transactions, is the predefined
start of the blockchain, then followed by subsequent blocks which constructed with

transactions that are added to the blockchain. Each block contains a block header and

https://en.wikipedia.org/wiki/Record_(computer_science)
https://en.wikipedia.org/wiki/Cryptographic_hash_function

a series of transactions. Meanwhile each block header contains data such as link
pointers to the previous block’s hash, nonce which is a number generated and used
only once for transaction replay protection and PoW consensus algorithms,
timestamp of the block created and Merkle root which is the hash of all transactions
in a block that can be used to verify all transactions present in the Merkle tree. As
each block is linked to the preceding block by hashing the block’s data along with
the previous block’s hash, this ensures the immutability and integrity of the data
stored in the chain and prevents unauthorized modifications to the blockchain (Ismail
& Materwala, 2020). A block is considered valid when there is more than 50% of the
participants in the network reach an agreement on verifying the validity of

transaction data using a consensus algorithm.

Block Header Block Header Block Header
Hash (Previous BlockHeader) | Hash Previous BlockHeader) | | Hash PreviousBlock Header) |
[Timestamp } [Timestamp] [Timestamp }
. [Nonce } [Nonce] (Nonce }
| HashofBlockData | [HashofBlockData | " HashofBlockData |

Block Data
(Transaction List, etc.)
Block 01

Block Data
(Transaction List, etc.)

Block 02

Block Data
(Transaction List, etc.)

Block 03

Figure 2.1: Structure of blockchain
(Odeh et al., 2022.)

2.2.1 Core of Blockchain Technology

According to Tanwar et al. (2020), the process of verifying and validating
transactions in a blockchain is complex, as it involved techniques such as distributed
ledger network, cryptography, smart contract and consensus protocol. There are
various steps required to complete a blockchain transaction. In the first step, the
network node requests the transaction by first creating and digitally signing it with its
private key. The transaction is then broadcast using a flooding protocol, called
Gossip protocol to peers that validate the transaction based on preset criteria
including smart contract and consensus algorithm. Once the transaction is validated,
it is included in a block, which is then propagated onto the network. At this point, the

transaction is considered confirmed. The newly-created block is appended in the

ledger and the next block will link itself cryptographically back to this block through
hash pointer. At this stage, the transaction gets its second confirmation and the block
gets its first confirmation. Usually, transactions are reconfirmed every time when a
new block is created. Lastly, the transaction is completed or committed to the

network.

There are four core technologies that is essential in blockchain solution which
are distributed ledger technology, cryptography, smart contract and consensus
protocol or trust systems. These technologies are designed to work together to create
a secure, transparent, and decentralized system for storing and processing data in

blockchain.

2.2.1.1 Distributed Ledger Technology

A distributed ledger, also known as shared ledger or distributed ledger
technology (DLT) is the consensus of replicated, shared, and synchronized digital
data that is distributed among its network participants and spread across multiple
sites, countries, or organizations (Bashir, 2018). Compared to a centralized database,
transactions are appended in a distributed system on the network which did not
required a central administrator and consequently eliminate a single point of failure.
While all distributed ledgers are based on a decentralized structure, it is important to
note that not all distributed ledgers can be classified as blockchains. The key
distinction lies in the fact that a distributed ledger might not necessarily involved
blocks of transactions to maintain the growth of the ledger. On the other hand, a
blockchain is a specific form of shared database that specifically comprises blocks of

transactions.

2.2.1.2 Cryptography

Cryptography involves the use of cryptographic algorithms and security
protocols to secure transactions and protect sensitive data. It has been applied in
blockchain to provide security services including non-repudiation, data integrity and
data origin authentication which makes the ledger secure against tampering and
misuse. The design of blockchain included this requirement due to the computational

hardness assumption and making encryption harder to be break. Cryptography is

https://en.wikipedia.org/wiki/Centralized_database
https://www.sciencedirect.com/topics/computer-science/single-point-of-failure

10

mainly divided into two categories which are symmetric cryptography and

asymmetric cryptography.

(a) Symmetric Cryptography

According to Bashir (2018), symmetric cryptography also known as shared
key cryptography refers to a type of cryptography where the key that is used to
encrypt the data is the same for decrypting the data. Before the data exchange occurs
between the communicating parties, the key must be established or agreed upon both
parties. There are two types of symmetric ciphers which are stream ciphers and block
ciphers. Typical example of stream ciphers are RC4 and A5 meanwhile Data
Encryption Standard (DES) and Advanced Encryption Standard (AES) are examples
of block ciphers.

(b) Asymmetric Cryptography

Asymmetric cryptography refers to a type of cryptography where two distinct
keys are involved in the process which are a public key that mainly used for
encryption or verifying key and a private key mainly used for decryption or signing
key (Guo & Yu, 2022). This is also known as public key cryptography. Asymmetric
key cryptography is well-suited for use in blockchain technology to authenticate
identities for transactions and individuals. Various asymmetric cryptography

schemes are introduced including RSA, DSA, and EIGammal.

CRYPTOGRAPHIC |
PRIMITIVES

L

KEY LESS i SLs ASYMMETRIC

PRIMITIVES PRIMITIVES PRIMITIVES |

-

[sEcreT
MA
KEY ‘ s ‘
[_CIFHERS DIGITAL FUBLIC

; KEY
| SIGNATURES e

BLOCK STREAM
CIPHERS CIPHERS

i

RANDOM
NUMBERS

HASH
FUNCTIONS

Figure 2.2: Taxonomy of cryptographic primitives

(Bashir, 2018.)

11

2.2.1.3 Smart Contract

A smart contract, introduced by Nick Szabo in 1994 is defined as a ‘set of
promises, specified in a digital form, including protocols within which the parties
perform on the other promises’ (Antonopoulos & Wood, 2018). The implementation
of smart contracts in blockchain creates a platform for automatic, self-executing and
self-verifying transactions based on specific rules and regulations where contracts are
designed to execute when certain conditions and variables have been met. This
allows for flexibility and traceability as smart contract can autonomously execute
some or all of the operations related to a contract and provide verifiable evidences
which allows an organization to keep a record of all the transactions without the need
for human intervention. Moreover, the rules of a smart contract are acknowledged
and enforced by multiple organizations that operate on a decentralized blockchain
network for interaction among the users across the network. These smart contracts
can automatically execute based on users conditions to provide a secure method and

reduce the cost (Kumar et al., 2021).

Blockchain

N\ Deploy Check

i
!
Contract Blockchain }
o |— -~ - - -
conditions }
I

Revisit conditions

Check for new conditions

Figure 2.3: Smart contract relationship with the blockchain
(Jabbar & Dani, 2020.)
2.2.1.4 Consensus Mechanisms

According to Bashir (2018), a consensus mechanism refers to a series of steps

followed by the majority or all nodes within a blockchain network to reach an

12

agreement on a proposed state or value. In client-server systems, it is easy to reach an
agreement between two nodes, however in a distributed system where there are
multiple participant nodes, it has become a challenge for all the nodes to agree on a
single value to achieve consensus. The consensus protocol adopted by a blockchain
ensures smooth execution of operation as it will determine which block to append
and how it should be appended, validation of block’s contents and construction of
block in the process. Transactions are only updated when all verified users in the
network agree to the condition of the transaction and then come to a conclusion of
adding or dropping a block in the blockchain. It solves the problem of trust in
blockchain, as assumed that all nodes in the network are untrusted and similar
algorithm is needed to agree on the validity of the block. Thus, consensus mechanism
can keep consistency in ledger synchronization and prevent malicious transactions

(Muhammad & Soewito, 2022).

The characteristics of blocks, such as their structure and the time intervals
between them, can be adjusted by modifying the parameters within the consensus
protocol. Meanwhile the selection of the consensus algorithm is influenced by the
specific type of blockchain being utilized as not all consensus mechanisms are
appropriate for every type of blockchain. The following shown some of the common

and popular consensus algorithms that have been introduced:

(a) Proof of Work (PoW)

Proof of Work (PoW) mechanism is based on mining which demands miners
to contribute a great number of computing power to solve a very difficult
cryptography puzzle by constantly trying to assemble blocks and new random
numbers until the correct random number is found (Wang et al., 2018). Mining is a
process of creating new blocks to the blockchain. To prevent the concentration of
computational power, the difficulty, also called nonce, for generating the next block
is adjusted dynamically on the basis of 10 minutes per block. While it is the only
algorithm that has proven against any collusion attacks on a blockchain network,
such as Sybil attack, PoW also results in low transaction throughput and excessive
energy usage (Gadekallu et al., 2022). The popular implementation of this scheme

are Bitcoin, Litecoin and other cryptocurrency blockchains.

13

(b) Proof of Stake (PoS)

Proof of Stake (PoS) addressed the problems posed by Proof of Work (PoW)
mechanisms where a miner node is selected to invest computational power through
pseudorandom methods weighted in relation to degree of ownership, credibility or
reputation or etc rather than all miner nodes competing to create the next block
depending on computational power. Another important concept in PoS is coin age
which is determined by the duration and quantity of unspent cryptocoins. In this
model, the probability of proposing and validating the next block is higher as the
coin age increases. As stated by Dagher et al. (2018), such a miner selection

approach leads to significantly reduced of resource consumption.

(c) Delegated Proof of Stake (DPoS)

Delegated Proof of Stake (DPoS) is an alternative to PoS where it is more
efficient and scalable than PoS. In DPoS, each node that has a stake in the system
can delegate the validation of a transaction to other nodes by voting. The delegates
play a crucial role in maintaining consensus, mining, and validating new blocks. As
rewards are earned, they are distributed proportionally among the stakeholders and
their delegates. This algorithm relies on a democratic voting system, where the
effectiveness and ethical behavior of delegates determine their reputation and
continued participation in the network. Delegates who fail to operate efficiently or
ethically may be expelled from the network to ensure its proper functioning.

Examples of networks that use DPoS include BitShares blockchain, Ark and Lisk.

(d) Byzantine Fault Tolerance (BFT)

Byzantine fault tolerance (BFT) refers to the capability of a network or
system to sustain its functionality even in the presence of faulty or failed components.
In a BFT system, blockchain networks can continue to operate and execute intended
actions as long as the majority of network participants are trustworthy and genuine.
This implies that for a transaction to be validated and added to the blockchain, it
requires agreement from more than half or two-thirds of the network nodes. However,

BFT algorithms for asynchronous networks are only practical up to about 1000

https://ark.io/
https://lisk.com/

14

participants due to the incurred overhead of the cryptographic algorithms (Knirsch et
al., 2019).

() PBFT

Practical Byzantine Fault Tolerant (PBFT) consensus is an efficient
consensus algorithm used in blockchain networks to achieve Byzantine fault
tolerance. It involves participation of a set number of nodes, known as replicas that
collectively agree on the validity and order of transactions. PBFT utilizes a leader
that is elected among the replicas who proposes a block of transactions and initiates a
voting process among the replicas. Once a sufficient number of replicas reach
agreement, the proposed block is considered finalized and added to the blockchain.
PBFT requires 3f+1 nodes in order to keep the system stable, where f is the
maximum count of defective nodes the system can handle. As a result, approval from
2f+1 nodes is needed for the group of nodes to make any decision. PBFT provides
high fault tolerance as long as the majority of replicas are trusted. However, it
requires a predefined set of replicas, which can limit scalability. PBFT is commonly
used in permissioned blockchain networks where efficiency and fault tolerance are

essential.

) Proof of Storage (PoS)

Proof of Storage (PoS) is based on the concept that a particular piece of data
is probably stored by a node which serves as a means to participate in the consensus
mechanism rather than computational power (Bashir, 2018). In a PoS blockchain,
nodes must prove that they are storing specific data or files to participate in the
consensus process. This ensures that participants are actively contributing to the
network's storage capacity. PoS promotes efficiency by reducing the need for
computational resources and shifting the focus to storage capabilities which will
enhance data integrity and availability through decentralization. Several variations
based on PoS have been proposed such as Proof of Replication, Proof of Data

Possession, Proof of Space and Proof of Space-Time.

15

(g) Proof of Activity (PoA)

Proof of Activity (PoA) is a combination of Proof of Work (PoW) and Proof
of Stake (PoS) mechanisms, which participants are required to demonstrate both
computational work and ownership of a certain amount of cryptocurrency to achieve
consensus. It is more energy efficient as participants alternate between mining blocks
through PoW and validating blocks through PoS. This consensus algorithm offers a
compromise between security and energy efficiency while maintaining decentralized

participation in the network.

2.2.2 Types of Blockchain

Blockchains can be categorized into three types which are public, private and

consortium.

2.2.2.1 Public Blockchain

A public blockchain also known as permissionless blockchain, is a chain that
anyone in the world can participate into the network to read, write, access or send a
transaction to a valid user. According to Purwono et al. (2023), anyone can
contribute in a consensus process to determine what blocks can be appended to the
end of the chain as public blockchains are accessible by anyone. After validation of
the newly created block that linked to the chain, other participants will either expand
their individual copies of the chain with the newly generated block then broadcast the
block to other participants in the network or else discarded the invalid block from the
chain. This kind of blockchain is generally considered as decentralized network
where there is no central authority controlling the system. Public blockchain is
widely used in cryptocurrencies for example Bitcoin and Ethereum, are categorized

as public chains without permission.

2.2.2.2 Private Blockchain

A private blockchain is a restricted type of blockchain network created by an
entity or organization. It is also recognized as a centralized blockchain, where a
central authority is granted the authorization to control transactions across the entire

chain such as to add, delete or modify data (Dagher et al., 2018). This type of

16

blockchain is only accessible to those with access permissions where new users are
required to obtain prior permission before they can join the network. It is mainly
used to handle databases or private applications intended for sensitive data
manipulation as only specific participants can be granted defined read access along
with limitations on creating transactions. In private blockchain, the predefined nodes
who participate in the consensus management will be responsible for validating
transactions. Due to the nature of private blockchains, not all nodes are required to
verify transactions. By implementing this approach, the transaction speed within the
private blockchain can be significantly accelerated, making it the fastest blockchain-
based solution available. Moreover, it will lead to a reduction in the overall workload
required for processing transactions. Examples of private blockchains are

Hyperledger, HydraChain and Quorum.

2.2.2.3 Consortium Blockchain

A consortium blockchain also known as semiprivate blockchain, consists of
private part which is controlled by a group of individuals, while the public part is
open for participation by anyone. It can be recognized as semi-decentralized model
as only a select group of entities have the access right to view and participate in the
consensus protocol meanwhile multiple users are allowed to join the network by
following appropriate procedures, such as allowing mining. As the consortium
blockchain is decentralized and is managed by multiple organizations, it can be used
by banks, supply chain or food tracking companies where organization can manage
and control data access while part of the data can be available to public (Antwi et al.,
2021). Moreover, the consensus algorithm could be modified to use different ideas
such as voting based concept. The consensus policy can be configured to require a
specific number of nodes in the network to participate in voting or digitally signing
the block before it is officially added to the blockchain. This modification ensures
that consensus is reached through a democratic process and the blockchain can be
secured using PoW, thus providing consistency and validity for both the private and

public parts.

Table 2.1: Type of blockchain

17

Properties Public blockchain | Consortium Private blockchain
blockchain

Read permission Public Public or restricted | Public or restricted

Consensus All miners Selected set of One organization

determination nodes

Consensus process | Permissionless Permissioned Permissioned

Centralized No Partial Yes

Immutability Nearly impossible | Could be tampered | Could be tampered

Efficiency Low High High

(Muhammad & Soewito, 2022).
2.3 Blockchain Platform

Due to the diverse requirements of businesses and users, it is not feasible to
have a one-size-fits-all blockchain network that can cater to all industries. This has
led to the creation of different blockchain platforms which allow developers and
users to create and execute applications on an existing blockchain network with a
different set of protocols. Generally, blockchain platform supplies a collection of
functionalities and tools that enable the management and creation of smart contracts,
launching decentralized applications (dApps) and communication with the
blockchain network. In this section, evaluation of some common blockchain platform
and its applicability of different types of consensus algorithms and permissions are

done as followed:

2.3.1 Ethereum

Ethereum is an example of public blockchain which was first proposed in
2013 by Vitalik Buterin. It is the first blockchain that introduced a Turing-complete
language and the concept of a virtual machine. According to Wang et al. (2018), the
Bitcoin system utilizes a scripting language that operates on a stack-based non-
Turing complete model which can only support simple logic, thus limiting its
application in many fields. Compared to the Bitcoin system, the availability of
Turing-complete language called Solidity in Ethereum has brought wider
possibilities for the development of decentralized applications using smart contracts.

As the platform supports the application of Turing complete, it allows developers to

18

deploy systems with smart contracts where the logic of that system is transformed
into the code. Once the contract is deployed, it can be automatically executed
according to the agreed logic of smart contracts. Due to smart contracts are capable
of representing practically arbitrarily complex transactions, it extends beyond
financial transactions found in Bitcoin and enable the representation of states and

their alterations.

On the Ethereum blockchain network, mining is a crucial process that
includes new blocks to the blockchain using proof of work (PoW) algorithms.
Meanwhile Ether (ETH) is the native cryptocurrency of the platform which the
second most popular cryptocurrency after Bitcoin (BTC). It is used to pay for
transaction fees and to incentivize network participants to maintain and update the
blockchain. There are two types of Ethereum accounts can be created on Ethereum
Virtual Machine (EVM) which are Externally Owned Accounts (EOAs) and contract
accounts. EOAs are controlled by user’s private key and are usually owned by
devices or users while contract accounts are controlled by their contract code (smart

contract) contained in them.

Although Ethereum is known for its versatility, prior studies have revealed
that even moderately complex smart contracts can be quite costly. Additionally, the
expense of executing operations and the unpredictability of costs are mostly
influenced by the fluctuations in exchange rates to Euros. Meanwhile updating a
modified Merkle Patricia Trie to store values in smart contracts is a time-consuming

process, speed of execution is also tend to slow down as data volume grows.

2.3.2 Hyperledger

Hyperledger is an open source private blockchain project initiated by the
Linux Foundation in December 2015 and has support from companies such as IBM
and Intel to SAP Ariba. According to Hyperledger Foundation, Hyperledger has
many frameworks and tools that can be used to build blockchain networks. While
each of these frameworks and devices has a specific function, they can also
collaborate during the implementation process of creating a blockchain network.
There are five hyperledger frameworks which are Fabric, Sawtooth Lake, Burrow,

Indy and Iroha meanwhile there are three modules that support these blockchains

19

which are Explorer, Cello and Composer. These frameworks will be discussed in

later section.

According to Usman & Qamar (2020), Hyperledger employs a modular
architecture that offers flexibility in terms of consensus and membership services. It
utilizes container technology to host smart contracts, known as chaincode, which
encapsulates the system's application logic. The modular architecture of Hyperledger
enables the integration of various consensus algorithms, such as the Practical
Byzantine Tolerance Algorithm (PBFT), which is computationally more efficient
compared to Proof of Work (PoW). This design approach allows for easier
customization and adaptability of the Hyperledger framework to meet diverse

requirements in the blockchain ecosystem.

In Hyperledger blockchain, each node in the network possesses a unique
identity. The Member Service Provider (MSP) plays a role in issuing cryptographic
certificates to all participating nodes through a public key infrastructure. Network
users are provided with a username and password combination, which is utilized to
obtain an Enrollment certificate (Ecert). Transaction certificates (TCert) are issued to
Ecert owners by the Transaction Certificate Authority. It is possible to derive
multiple TCerts from a single Ecert. When conducting transactions, network

participants employ Transaction Certificates (TCerts) as a means of authentication.

Besides, Hyperledger utilizes smart contracts, known as chaincode, to
incorporate the business logic that governs transaction execution and changes to the
World-State. The World-State represents a state database that stores the current
values of various ledger states, along with their associated block numbers.
Hyperledger offers a scalable, secure, and flexible blockchain platform with

significant potential to revolutionize numerous industries.

2.3.2.1 Hyperledger Fabric

Hyperledger Fabric can be considered as an open-source platform for the
permissioned blockchain proposed by IBM and DAH (Digital Asset Holdings). It has
a modular design and architecture and therefore has a high degree of flexibility and

extensibility (Zhang et al., 2020). It is based on a pluggable architecture where

20

various components, such as consensus engine and membership services, can be
plugged into the system as required. Moreover, it is the first platform that supports
smart contract through container technology using programming languages, such as
Go and Java (Namasudra et al., 2020). Currently, its status is active and it's the first

project to graduate from incubation to active state.

In Hyperledger Fabric, there is a database called world state that holds current
values of a set of ledger states. This ease the program to directly access the current
value of a state rather than having to calculate it by traversing the entire transaction
log. Another record is transaction log, which it records all the changes that have
resulted in the current world state. This enables transactions are collected inside

blocks which are appended to the blockchain (Muhammad & Soewito, 2022).

Besides, the ability of Fabric to create trusted subnetworks, called channels,
that can establish shared ledgers with a defined set of nodes and transact to the
exclusion of the rest of the blockchain allows for the confidential execution of
transactions. This approach ensures that information is not transmitted through a
central authority, thereby enhancing security and privacy. Furthermore, it also
provides secure interaction between different participants and organizations as the
use of Crase Fault Tolerance (CFT) or Byzantine Fault Tolerance (BFT) consensus
mechanism do not require more cost for mining. However, Hyperledger blockchains

still have the challenge of the computational and storage cost of large block sizes.

Ledger

World State

Blockchain

L comprises B and W

B determines W

Figure 2.4: Ledger on Hyperledger Fabric

https://www.sciencedirect.com/topics/computer-science/byzantine-fault

21

(Muhammad & Soewito, 2022.)
2.3.2.2 Hyperledger Sawtooth Lake

The Sawtooth Lake is a blockchain project proposed by Intel in April 2016
which network nodes are able to deploy with separate permission efficiently using
transaction families and pluggable consensus. Based on the patterns and structures
defined in the transaction families, Sawtooth separates the execution of every
transaction from one another which allows for more flexibility, rich semantics and
open design of business logic. It is mainly built for solving the challenges or
problems arised in private networks. There are several components of Sawtooth
including Sawtooth validators, Sawtooth applications, transaction processors, batch,
network layer, global state and POET. PoET, as known as Proof of Elapsed Time is a
consensus algorithm which makes use of Trusted Execution Environment (TEE)
provided by Intel Software Guard Extensions (Intel's SGX) to provide a safe and

random leader election process (Bashir, 2018).

2.3.2.3 Hyperledger Iroha

Iroha was contributed by Soramitsu, Hitachi, NTT Data and Colu in
September 2016. Its objective is to develop a collection of reusable components that
users can select to operate on their own distributed ledgers based on Hyperledger.
Iroha's primary goal is to complement other Hyperledger projects such as Sawtooth
and Fabric by providing reusable components written in C++ with an emphasis on
mobile development. This project has also proposed a novel consensus algorithm
called Sumeragi, which is a chain-based Byzantine fault tolerant consensus algorithm.
This feature makes it distinct from other Hyperledger frameworks (Namasudra et al.,

2020).

2.3.2.4 Hyperledger Burrow

Hyperledger Burrow was contributed by Monax, who develop blockchain
development and deployment platforms for business. Burrow introduces a modular
blockchain platform and an Ethereum Virtual Machine (EVM) based smart contract

execution environment. It employs a proof of stake consensus mechanism with

22

Byzantine fault tolerance called Tendermint. As a result, Burrow provides high

throughput and transaction finality. However, Burrow is still in the incubation stage.

2.3.2.5 Hyperledger Indy

Indy is a distributed ledger developed for building a decentralized identity
and to support participants to control and manage their identities rather than using a
large amount of personal information. It was developed by Sovrin Foundation to
provide tools, utility libraries and modules which can be used to build blockchain-
based digital identities. These identities can be used across multiple blockchains,
domains and applications where authentication is based on the attributes users shared.
Indy has its own distributed ledger and uses Redundant Byzantine Fault Tolerance

(RBFT) for consensus.

Table 2.2: Comparisons among different Hyperledger frameworks

Properties/ Fabric Sawtooth Iroha Burrow Indy
Type
Membership | Yes No No No No
service
Modularity High High Less Less Average
Flexibility Average Average High Average High
Scalability Less High Less Average Average
Decentralized | No No No No Yes
identity

(Namasudra et al., 2020).

2.3.3 MultiChain

MultiChain is a private and permissioned blockchain implementation. As like
Bitcoin, it is mainly be used within an organization for facilitating financial
transactions and thus the consensus algorithm is PoW-based. Although it will be
easier for management compared to Bitcoin, the less documentation of
implementation of network using MultiChain and its supported platform are

currently a major limitation.

23

2.3.4 Open Chain

OpenChain is a private blockchain that prioritizes energy efficiency, network
communication, and block rate. To achieve these goals, it diverges from the peer-to-
peer model and adopts a client-server architecture. Instead of using proof of work,
OpenChain employs a consensus algorithm known as proof of authority. The
selection of a specific authority to validate transactions would contradict with the
desired security and trust properties within blockchain while this applied to other
blockchains, such as Corda, that utilize Proof of Authority (PoA) to establish
consensus (Knirsch et al., 2019).

Table 2.3: Comparison of blockchain platform

Properties/ Ethereum Hyperledger MultiChain Open Chain

Platforms

Permissioned | X v v v

Smart contract | v/ v X X

Consensus Proof of Work | Pluggable Proof of Work | Proof of
(PoW) framework (PoW) Authority

(PoA)

Governance Ethereum Linux Coin Sciences | Coinprism

developers Foundation Ltd

24 Critical Review of Existing Works

As stated by Donawa et al. (2019), using Blockchain in electronic health
records offers a convenient and symmetric health record storage service that
promotes easy accessibility of such records through the web. The system is often
designed to allow the patients full control of generating, managing, and consequently
sharing their electronic health records with friends, family, healthcare providers, and

other relevant data consumers.

While Dagher et al. (2018) proposed a approach uses Ethereum’s public and

private blockchains, smart contracts and a local database to provide patients with

24

secure access to their electronic health records, it allows a patient to send requests to
its provider’s system through the blockchain. The system stores data in the provider’s
local database such as file name, a secure link, patient’s Ethereum address and public
key of the patient, which it is a separate layer outside the blockchain. The database
will only be used by the provider when adding a new file and when retrieving the
secure link upon valid request from the patient. Smart contracts on the Ethereum
blockchain are utilized to automate tasks and achieve access control. This solution
however, does not support a hybrid system such as a Bitcoin blockchain and an

Ethereum blockchain as these platforms employed different protocols.

According to Ismail & Materwala (2020), there is currently no existing
research or study that directly compares -client/server-based healthcare data
management systems with blockchain-based counterparts. Therefore, the authors
implemented a minimal blockchain-based healthcare platform and compared its
execution time and amount of data transferred with the client/server system model
for health records update and query by increasing the number of records and
hospitals. A permissioned blockchain network is developed due to its advantages
over the permissionless where the model consists of participants such as patients,
allied health professionals and administrators. PBFT consensus protocol is used in
the developed blockchain-based healthcare platform rather than Proof of Work (PoW)
as PoW consumes more energy and less throughput than the former. It has been
found that blockchain platform is 11.7 times faster compared with the client/server
model in querying health records with increasing number of health records, but
blockchain-based system model is more costly than the client/server system model as
the longer execution time taken and larger amount of data transferred in updating
health record. This is due to exchange of messages to update ledger involving PBFT

consensus.

A proof-of-concept solution has been proposed by Newman & Thorpe, which
is a private permissioned blockchain that structured with three layer which are
application layer interface to patient EHR, blockchain application/transaction layer
and a off-chain storage for large patient centric data. A hashing mechanism is used
for linking the blockchain stored information such as patient demographic/metadata

to the storage area information that stored EHR specific data. Hyperledger platform

25

is preferred as it can improve patient experience with its modular and extendable

architecture that offers a broad understanding of consensus.

Besides, Purwono et al. (2023) has also suggested that the Hyperledger
platform is suitable for healthcare applications as Hyperledger provides extensive
control over smart contracts, allowing them to be executed using various
programming languages such as Node.js and Javascript. Compared with Ethereum
that can complete fifteen transactions per second, Hyperledger outperforms with

transaction speeds of up to 3000 transactions per second.

Usman & Qamar (2020) have developed a permissioned blockchain-based
system for efficient storage and sharing of electronic medical records (EMRs) which
provides better security and privacy of data. They selected Hyperledger over
Ethereum because Ethereum uses proof-of-work (PoW) algorithm that requires lot of
resources for mining and transaction execution while permissioned feature in
Hyperledger allows proper care of privacy requirements of medical data. Consensus
algorithm used is PBFT consensus algorithm as to check whether a transaction is
valid or not. The application focuses three type of users: Patients, Healthcare-
Providers and Health Administration where Health Administration will be
responsible for the registration of patients and doctors while patients can control of
who can add new records and view their medical history. As storing large amount of
data in blockchain might degrade the performance of whole blockchain system, the
blockchain will only hold transaction information and the WorldSate database will

hold data values (actual data), in this case CouchDB is used.

Other than that, a permissioned consortium blockchain network is created in
which all participating healthcare stakeholders and their end users are identified and
registered by health authorities through membership services component using
certificate issuing authority (Muhammad & Soewito, 2022). The system involves
users such as patient, hospitals and financial institutions where those institutions can
only create and view data on the smart healthcare system with the patient's
permission. This has comes with the use of multi-channel method where it allows
organizations to use the same network while maintaining segregation between

multiple blockchains. Only channel members (peers) are allowed to view

https://www.frontiersin.org/articles/10.3389/fbloc.2021.732112/full

26

transactions made by any member in the channel. In this case, Hyperledger Fabric is
used to create a blockchain with multi-channel so that access controls for respective

channels can be configured by certificate authorities.

In 2020, a consortium blockchain platform, Hyperledger Fabric is used to
develop a blockchain system based on purpose access control in order to build a
secure channel in a network among participant healthcare organizations. All
metadata of patient records, consents and data access are written immutably on the
blockchain and shared among participant organizations where patient records are
stored off-chain. Blockchain chaincode that performs business logic managing
patient consent are also used so that patients can create, update and withdraw their

consents in the blockchain.

Khatoon A. (2020) has proposed a decentralized application (DApp) that
supports a private blockchain network with a back-end distributed file system (DFS).
The main objective is to share the information through blockchain smart contracts by
permitting labs, doctors, emergency clinics and different partners to effectively
access and share a patient’s therapeutic information among different stakeholders. In
this solution, Ethereum has been used where PoW consensus is utilized. By
comparing DFS content with ledger records, the DApp would have the ability to
detect anomalies, unauthorized data insertions and missing entities. All of the
medical record data is stored in local database storage to maintain the performance
and hash of the data is the data element of the block committed to the chain. For

announcing smart contracts to the blockchain, Ethereum Wallet has been utilized.

According to Tanwar, Parekh & Evans (2020), a Hyperledger Fabric-based
EHR sharing system and its related test environment that was based on Hyperledger
composer has been proposed. This solution has used access control policy algorithm
with symmetric key cryptography to improve data accessibility between healthcare
providers and patient, also, the concept of chaincode is applied in assisting the
simulation of environments to implement the Hyperledger-based eletronic healthcare
record (EHR) sharing system. A shared symmetric key enable the transaction and
validation of EHR to be distributed to other participants in the blockchain network

while a private key is required for user to login. Similar to the other previous studies

https://www.sciencedirect.com/topics/computer-science/access-control-policies
https://www.sciencedirect.com/topics/computer-science/symmetric-key-cryptography
https://www.sciencedirect.com/topics/computer-science/healthcare-provider
https://www.sciencedirect.com/topics/computer-science/healthcare-provider
https://www.sciencedirect.com/topics/computer-science/healthcare-record
https://www.sciencedirect.com/topics/computer-science/healthcare-record

27

that have been stated, there are four types of participants in the EHR sharing system
including admin, patients, clinicians and laboratory staff where participants have
different roles in the system and can only access records that they have been granted
access. While all transactions are committed into the blockchain network using
patient public IDs that do not contain personal information, this means that the
database of blocks stores only non-identifiable patient data such as gender, age and
illnesses etc. In order to test the performance of the blockchain network, performance
metrics such as latency, throughput and round trip time (RTT) have been considered
to compare with traditional EHR systems which use client-server architecture. In this
case, a benchmarking tool is used for the blockchain network, called Hyperledger
caliper to verify and execute the performance of the system and its various
parameters, including latency, throughput, CPU usage, memory consumption, disk
write/read, network I/O, etc. It can be found that the increase in organizations and
peers will increase the time needed to execute transactions thus higher latency. Plus,
it is found that query a transaction on the blockchain network is much faster than
writing a transaction, this is probably due to the nature of blockchain network where
there are various ledger peers in each organization in the network which are used for

carrying a copy of the ledger.

In addition, Antwi, M. et al. (2021) has proposed a permissioned blockchain
solution for healthcare applications. Hyperledger Fabric is used as it allows a
developer to manage user authentication and authorization while restricted
messaging paths known as private channels are also utilized, which will provide both
confidentiality and privacy for transactions. Besides, smart contract is also
implemented to develop different access right such as a hospital account only can
create practitioners’ (doctors) accounts. The participants involved in the system are
admin, member, medical institution, medical practitioner and patient. This give
patients a full control of their EHR and they can decide who can access their health
record and for what purpose, for example only permissioned medical practitioners
are allowed to view or update patient’s information. Although certain research
suggested using a blockchain with a relational database to store the data, this could

create new risks to personal/critical data security and privacy directly.

https://www.sciencedirect.com/topics/computer-science/round-trip-time

28

In the latest solution proposed by Ndzimakhwe, M., Telukdarie, A., Munien,
I., Vermeulen, A., K., U., & Philbin, S. P. (2023), a framework for user-focused EHR
system has been developed using Hyperledger Fabric. The orderer certificate
authority (CA) is created and utilised by all the peers of hospital where the orderer
acts as an admin that approves all organizations and validates the credentials of their
peers. In this paper, there is a single channel created to connect two hospitals while it
is possible to add additional hospitals into the channel. Similar to other studies,
patient has full control of his/her own EHR and can decide to grant or revoke
permission to access his/her data from a particular doctor. Meanwhile doctor can
view or modify patient data and patient can view all the fields but edit only personal

fields.

Table 2.4: Comparison of existing work

No. | Research Blockchain | Platform Consensus | Difference
Type Algorithm
1 Usman & Qamar | Permissioned | Hyperledger | PBFT World state
(2020). Secure Fabric database as
Electronic actual data
Medical Records storage

Storage and

Sharing Using
Blockchain
Technology

2 Muhammad & Consortium | Hyperledger | PBFT Use of multi-
Soewito (2022). Fabric channel
A Blockchain between
For Secure Data healthcare and
Storing With financial
Multi Chain On industry
Smart
Healthcare
System

3 Tith et al. Consortium | Hyperledger | PBFT Storage of

https://www.frontiersin.org/articles/10.3389/fbloc.2021.732112/full
https://www.frontiersin.org/articles/10.3389/fbloc.2021.732112/full

29

(2020). Patient
Consent
Management by
a Purpose-Based
Consent Model
for Electronic
Health Record
Based on
Blockchain
Technology

Fabric

EHR in off-
chain database
linked with
blockchain

Khatoon, A.
(2020). A
Blockchain-
Based Smart
Contract System
for Healthcare

Management

Private

Ethereum

PoW

Use of Gas to
validate

transaction

Antwi, M. et al.
(2021). The case
of HyperLedger
Fabric as a
blockchain
solution for
healthcare

applications

Private

Hyperledger
Fabric

PBFT

GDPR

compliance

Tanwar, Parekh
& Evans (2020).
Blockchain-
based electronic
healthcare record
system for

healthcare 4.0

Permissioned

Hyperledger
Fabric &

Composer

PBFT

Design access
control policy
algorithm with

smart contract

30

applications

Ismail & Permissioned | Not stated | PBFT Validation of
Materwala transaction
(2020). done by
Blockchain doctors and
Paradigm for pharmacists
Healthcare:

Performance

Evaluation

Ndzimakhwe, Private Hyperledger | PBFT Latest

M., Telukdarie, Fabric implementation
A., Munien, I., where all

Vermeulen, A.,

hospitals are

K., U, & connected to a
Philbin, S. single channel
P.(2023). A

Framework for
User-Focused
Electronic
Health Record
System
Leveraging
Hyperledger
Fabric

Proposed Solution

The Related Works have provided some limitation and gap that helps to

propose some method that is able to improve the application of blockchain-based
data management in electronic health record (EHR). Based on the proposed solution
by Usman, M., & Qamar, U. (2020) and Ndzimakhwe, M., Telukdarie, A., Munien,
I., Vermeulen, A., K., U., & Philbin, S. P. (2023), the private blockchain network
will be organized by government department which is Ministry of Health. While the

31

department has full access to all users and system resources, there are also Health
Administration which assigned to each hospital will be responsible for the
registration of patients and doctors. Their responsibility is to monitor and allow only
registered medical practitioners and public to enter the network. Within the
application framework, there are components such as Membership Management, user
interfaces facilitating user interactions, consensus nodes responsible for smart
contract execution and consensus mechanisms, and databases for both the Chain

(transaction history) and World-State (current state of the blockchain).

The application focuses on three types of users which are Patients, Healthcare
Providers and Health Administration. Prior to granting access to the system, it is
mandatory for all users to undergo a registration process which will be handled by
health administration. In this case, the administrator will utilize the user interface to
input patient details and sends the transaction to the Membership Service Provider
(MSP), which hosts the Certificate Authority (CA). The CA issues a Certificate and
Private Key for the user, which are then transmitted to the client application. The
membership service also hosts a certification authority responsible for generating a
key pair for signing and an encryption key pair for each user. The client application
generates a private/public key pair and a symmetric patient key, which are then
provided to the patient. Upon registration in the blockchain network, the user is
furnished with login credentials, namely a User ID and Secret Key, which they can
utilize for system access. While the process flow for Healthcare Providers follows a

similar pattern, they are granted an ID and private key to gain entry to the system.

There will be different hospitals in a channel involved in the blockchain
networks while the roles of patient is mainly the same as previous studies such as
patient will be able to control their information and decide who can access or modify
their information. Medical practitioners who have granted access can only view or
modify specific patient’s details while patient will have the right to revoke his access.
These processes are done through a patient is provided with a symmetric encryption
key, known as the Patient Key, which serves the purpose of encrypting and
decrypting medical records. In situations where a patient intends to share their
medical records with a Healthcare Provider, they have the ability to share their

patient key by utilizing the public key of the specific Healthcare Provider.

32

Furthermore, the Healthcare Provider has the option to request the patient's key, and
once it is provided, they can gain access to the patient's medical records and add new
entries. The Healthcare Provider can log into the system to review patients'
information. However, they can only view the patient's previous medical records
after receiving authorization from the patient. Additionally, the Healthcare Provider

has the ability to add new health records for the patient.

Besides, based on one of the function proposed by Khatoon A. (2020), our
proposed solution has filling the gap by adding the role of emergency medical
practitioners which they should have the right to access patient’s medical records
even when the patient is not available or conscious to give access right so that
customized treatment can be provided as soon as possible. This process can be

implemented using smart contract to streamline the transaction process.

As there is no cryptocurrency involved, the platform that will be used to
develop the blockchain network is Hyperledger Fabric where PBFT consensus
algorithm is utilized to ensure a secure, transparent and effective electronic health
record data management. In the system, a network consists of three peer nodes that
serve as both endorsing peers and committing peers is established. Additionally,
there is one orderer node responsible for providing the ordering service. For a
transaction to be successfully added to the blockchain, a consensus must be reached
by at least two out of the three peers. Each peer node holds a ledger and the
chaincode, which is written in JavaScript, along with its corresponding World-State
database. Transactions submitted by users are received by the nodes through role-
based APIs. When a user submits a transaction, the leader node organizes the
transaction into a block and initiates the consensus mechanism. All nodes execute the
transaction based on the implemented chaincode logic. Upon successful execution,
the endorsing peers send their endorsement responses to the client. The client then
sends the transaction, along with the endorsement responses, to the orderer node,
which hosts the ordering service. The ordering service receives the endorsed
transactions and arranges them into a block. Subsequently, it broadcasts the
generated block to all peers in the network. Each peer verifies that the transactions

within the received block are signed by the appropriate endorsers and that there are

33

sufficient endorsements. If the verification check passes, the peer proceeds to

commit/save the block to its ledger.

The data within the system is stored in the distributed ledger of Hyperledger
Fabric, utilizing two storage methods. Firstly, the blockchain maintains a chain of
blocks, with each block containing transaction information in the form of key-value
pairs. Secondly, the World-State database holds the values (assets) of all the most
recent committed transactions, organized by specific keys. In our system, CouchDB
is employed as the World-State database. Every peer within the network retains a

copy of the ledger, encompassing both the blockchain and the World-State database.

s]| o] [e e o i Ty @Im""
. Client f 2 > = A g i b2 Endorse 1 - =

| | Blockehain ||+~ Blockehain
Ap[) Submit
m _— e —
Patient \\ State Database State Database
\
T = % Ry
\ | <. P
b i . #
\ i “ 4
\ ! < - P
Y | | Ordenng Service |
TN 1 ra 0
AL i # .,
0, i b Validate
Th ¥ '
AN

Y 4
B\
O
z
Client | % — ool foille e » i| Jeus
o) - = > EEE =TT
L]

Blockchain Blockchain

= e
~ \ E !
Provider “7';?;-. \‘. ' Entiefits dstailaia blockchaia State Database State Database
Wigpss,
fﬂl"\:l_;‘ \“ :
A 3 P
. Register user
Client CA (Certificate

Identity matemals

Authority)

£
=
7

Figure 2.5: Architecture of proposed system from previous study

(Usman & Qamar, 2020.)

7| Client App

identity materials

5. Generates a
private/public key pair

User (Patient / Health-
Provider)

Patient Registration

: 2. Register patient
1. Create patient >
» Certificate

4. Send back Authoerity (CA)

3. Issue patient’s
) certificate and

and a symmetric Patient S, private key
Key (PK) &
“%
Blockchain

Figure 2.6: Process flow of patient registration

(Usman & Qamar, 2020.)

3. Relay request

. 4. Receive request Pi’s 6. Retrieve HP’s Public key (HPPub)
3 . : Client App |3, Stores [PK]JHPPub on the blockchain and add HP to

- 5. Provide Patientkey (PK) a consent array in the patient participant object

Patient 7. Encrypt PK with

HPPub, make [PK]HPPub
2. Send Request

. 1. Request P1's Patient Rey > .HP,S 9. Notify record sharing event
m 10. Notify HP about record sharing Client App 11. Retrieves [PK]HPPub
Healthcare-Provider 12. Decrypt [PK]HPPub using

HP Private key to get PK

Record Sharing

medical record

Blockchain

New record for

°
1. Encrypt medical record
Healthcare-Provider with P1's Patient Key 4. Add medical record
) to the Blockchain
Adding New Record

Blockchain

3. 8C check whether HP
has P1 consent E
2. Send the request with

Figure 2.7: Process flow of records sharing and adding new record

(Usman & Qamar, 2020.)

2.6 Conclusion

34

To summarize, this chapter has covered introduction about blockchain, its

platform and highlighted a variety of previous research on approaches or applications

that have been proposed by different authors. The following chapter will discuss the

methodology of the study used in this project.

CHAPTER 3: PROJECT METHODOLOGY

3.1 Introduction

This chapter will discuss the methodology that will be used to complete this
project. This methodology will serve as a guide for creating the project so that it

develops according to the time frame.

3.2 Methodology

The project methodology for creating a prototype of blockchain-based web
application for electronic health record (EHR) data management among hospitals
involves a series of stages including planning, design, implementation, testing,
evolution and maintenance. This project methodology combines elements of the
Software Development Life Cycle (SDLC) methodology with a focus on blockchain-

specific perspectives and relevant phases necessary for development.

Requirgp,
Analys i s

Software /

.. System Development j
Life Cycle - SDLC

Figure 3.1: SDLC phases

(Sami, 2012.)

36

3.2.1 Planning

In this stage, the requirements and project scope for the development of
blockchain-based web application for electronic health record (EHR) data
management among hospitals are identified. This includes identifying the parties
involved in the data management process, determining the features and
functionalities of the smart contract and deciding on the data and transactions that

need to be recorded.

3.2.2 Design

This stage involves outlining and specifying the protocol or set of rules for
the blockchain application’s architecture and interfaces. The mapping of the data

flow and transaction are streamlined using smart contracts.

3.2.3 Implementation

Implementation is the stage where we develop and code the EHR data
management system using the selected blockchain platform and programming
language while adhering to best practices such as secure coding and testing methods.
Besides, this stage also implements proper data validation measures to prevent data

tampering and unauthorized access.

3.2.4 Testing

This stage involves testing the blockchain-based web application for
electronic health record (EHR) data management in various scenarios to ensure it
works as intended. Besides, we will conduct proper validation of the data that comes

into the system and check for any vulnerabilities.

3.2.5 Evolution

In this stage, maintenance and improvement to the blockchain network or
web application code are done to ensure its performance is managed and the
requirements are met. In addition, this stage also will address any issues that may

arise and add updates to the contract as necessary.

37

33 Project Milestones

Project milestones is used to plan and track the progress of ongoing project. It
is to ensure that the project progress follows the origins life cycle, so that it would
not be contradictory with the project’s objectives at the first place. Thus, the table

shown below is the milestone and the Gantt chart for this project.

Table 3.1: Final year project 1 milestones

WEEK ACTIVITY NOTE/ACTION
Wi - Select a suitable project | - Title is chosen.
(20/03—24/03) topic and potential - Proposal Form — Ulearn.
supervisor. - Deliverable — Draft
- Proposal PSM: Proposal Form — email
Discussion with PIC
supervisor.
- Proposal assessment and
verification.
w2 - List of students with - Email Committee for
(27/03—31/03) project title versus proposal approval.
supervisor and evaluator. - Upload approved
- Proposal proposal at Ulearn
correction/improvement.
- Proposal approval and
submission
W3 Chapter 1
(03/04—07/04) - Meeting 2
W4 Chapter 1 - Log progress — ePSM.
(10/04—14/04) - Report Writing Progress | - Deliverable — Chapter 1
1 —ePSM.
W5 Chapter 2
(17/04—21/04)

38

W6 MID-SEMESTER BREAK
(24/04—28/04)
W7 Chapter 2 - Log progress — ePSM.
(01/05—05/05) - Report Writing Progress | - Deliverable — Chapter 2
- Project Progress 1 —ePSM.
- Progress Presentation 1
(KP1)
W8 Chapter 3
(08/05—12/05)
W9 Chapter 3 - Log progress — ePSM
(15/05—19/05) - Report Writing Progress | - Deliverable — Chapter 2
—ePSM
W10 Chapter 4 - Log progress — ePSM.
(22/05—26/05) - Project Progress 2 - Progress Presentation 2
(KP2)
W11 Chapter 4 - Log progress — ePSM
(29/05—02/06) - Report Writing Progress | Deliverable — Chapter 2 —
2 ePSM
W12 & W13 - PSM1 Draft Report
(05/06—16/06) preparation
W14 - PSM1 Draft Report - Log Progress — ePSM
(19/06—23/06) submission to SV & - Deliverable — Complete
Evaluator PSM1 Draft Report —
- Report Evaluation ePSM
W15 - PSM 1 Demo and Report | - Log Record — ePSM
(26/06—30/06) Presentation to Supervisor | - Submission of logbook

& Evaluator

- Presentation Skill

- Submission of PSM 1
documents to PSM

in ePSM
- Submission of Project

Report PSM 1 to ePSM.

39

supervisor, evaluator and

committee in ePSM

Table 3.2: Final year project gantt chart

Progress | Week

2 13 141|516 |7 |89

10

11

12

13

14

15

FYP Proposal

Project Progress

1

Report Writing

Progress 1

Project Progress

2

Report Writing

Progress 2

Report

Evaluation

Demonstration

Presentation

3.4 Conclusion

This section offers a brief overview of the stage involved throughout the

project and shows the project milestone to ensure the project management process

schedules. The further explanation regarding the design of the project will be

clarified in the next section.

40

CHAPTER 4: DESIGN

4.1 Introduction

This chapter begins with a comprehensive description of the requirements
that have been gathered throughout the analytical process. The next part of the
chapter focuses on high-level design. The high-level design emphasizes the overall
system design, including the system architecture design. These designs will be

extensively explained and documented in this chapter.

4.2 Problem Analysis

Currently, health service data is spread over various systems that have
different architectures. There are also many problems of falsifying reports and
withholding important information from patients, which are considered medical
fraud. In traditional healthcare systems, patients often face cumbersome manual
approval processes when sharing their data with other parties like hospitals or
research institutes. These processes can be inefficient and challenging to coordinate,

particularly in cases where patients relocate or seek treatment in different locations.

Therefore, the use of blockchain technology provides patients with
comprehensive, immutable records and easier access to EHR free from service
providers or treatment websites. By leveraging the capabilities of Hyperledger Fabric
blockchain and various tools, such as Docker, npm and Ubuntu, the project aims to
address the limitations of the current system, such as manual enforcement, lack of
transparency, security vulnerabilities and challenges in interoperability among

hospitals. The goal is to decentralized data management of electronic health record

41

among hospitals by automating the transaction process thus ensure transparency and

integrity through blockchain technology.

EHRs System Server

qg-” / & \\ %i
o7 S
LT F
._}Q'

_~ -~
g P.i Treating oy ! -E Treating .
- Visiti 1]) * Visiting
" . isiting | (. isiting 4

Doctor Patient Doctor Patient

The Present EHRs System The Future EHRs System

Figure 4.1: Comparison of present and future EHR system
(Guo, Shi, Zhao, & Zheng, 2018.)
4.3 Requirement Analysis

Requirement analysis is used to find and analyze any task or requirement that
going to use to make this project run in successfully. This chapter will explain more

about the functional requirement and other requirements.

4.3.1 Data Requirement

In this data model:

Inputs:

® Personal details (Name, age, weight, height, health record,

diagnosis etc)

® Username, password, role

® (Grant/Revoke permission

Outputs:

42

® Personal details (Name, age, weight, height, health record,

diagnosis etc)

Data storage:

® Personal details & Medical health record history (Blood type,

allergies, symptom etc)

Patient

| patientid

| firstName

lastName

age

phoneNumber
emergancyContact

| address

bloodType
allergies

diagnosis
symptoms
treatment

followUp
permissionGranted
modifyBy

password

Figure 4.2: Data type of patient

IMedical Practitioner

mplD

firstName
lastName
hospitalName
departmentName

password

Figure 4.3: Data type of medical practitioner

4.3.2 Functional Requirement

Use case of actors within the system are shown as below:

Application

Create patient with personal
details and some medical
details

Create medical practitioner
in its own hospital

Admin

View list of patients with
limited information of patient
data

Figure 4.4: Use case of admin

43

44

Application

View self details
(all fields)

Edit personal details

Patient

Grant/revoke permission
to/from medical
personnel

View history of own
data

Figure 4.5: Use case of patient

Application

View self details

View list of patients who
granted access o
the doctor

Medical
Practitioner

View history of patient

Edit medical details

Figure 4.6: Use case of medical practitioner

Table below shows the participants involved in the blockchain network and

their respective permission:

45

Table 4.1: Participants permission in the network

Role

Permission

Hospital admin

- Allow only registered medical
practitioner to enter the network.

- Allow public (patient) to enter the
network.

- Can view list of patients with limited

information

Medical practitioner (Doctor)

- Can view self details

- Can view list of patients who gave
access permission to the doctor

- Can read or update patient information

with patient grant.

Patient

- Can create, read and update their own
personal information

- Grant access rights to medical
practitioners

- Remove permissions from medical
practitioners

- Can view history of own data

Activity diagram of actors within the system are shown as below:

46

Patient A Admin Hosp Fabric SDK Fabric Network

] '

Create Account !
; -
Create Patient
Gonnect to network Connect using admin cert

add patient to network as client

:

; Creale Patient Transaction invoke admin smart contract
i | patient created to ledger
i

)

]

'

A

Y

Add patient and
cert to wallet

]
'
'
]
]
]
]
]
'
]
]
]
'
i
'
'
'
i
'
'

H Success
Provide temporary |

password

==

Figure 4.7: Sequence diagram of creation of a patient

The patient is required to establish an account only during their initial visit to
any of the hospitals within the network. During this first visit, the patient provides
their details to the administrator, who then invokes the AdminContract to create a
patient. In the backend, the admin certificate is used to establish a connection to the
network. A transaction is generated that incorporates the patient's information into
the ledger and adds their identity to the blockchain network. Upon successful
creation of the patient's account, the server generates a temporary password for the
patient, which enables them to log into the network. The patient's credentials are

recorded in the ledger, allowing them to visit any hospital within the network.

| Doctor A | ‘ Admin Hosp | ‘ Redis DB | | Fabric SDK ‘ Fabric Network

; Create Account : H
|] Creatg Doctor o
" ' Connect to network Connect using admin cert

! ' » add doctor to network as client

-

Add doctor Add doctor and
credentials cert to wallet

v

A

I Success

Figure 4.8: Sequence diagram of creation of a doctor

Success

47

The doctor will provide their information to the admin, who proceeds to
establish a connection with the network and adds the doctor as an identity within the
blockchain network. The credentials of the doctor are stored in a Redis database
specific to the hospital. Now that the patient and doctor have been added as identities
in the blockchain network, they can subsequently connect to the network using their

certificates for any future interactions.

4.3.2.1 Smart Contract/Chaincode

In Hyperledger Fabric, a smart contract is responsible for governing the
transaction logic that manages the life cycle of a business object stored in the world
state. Multiple smart contracts are bundled together into a chaincode, which is
subsequently deployed onto a blockchain network. Smart contracts establish the rules
and agreements between different organizations using executable code. The Fabric
SDK is used to invoke smart contracts and initiate transactions, which then make
modifications to the ledger. A chaincode encompasses one or more smart contracts,
and when deployed, all the smart contracts within it become accessible to

applications.

The proposed application includes mainly three smart contracts packaged into
a single chaincode where each role (Patient/Medical Practitioner/Admin) invokes its

very own smart contract:

Table 4.2: Smart contracts in the system

Smart Contracts Descriptions

AdminContract This contract is invoked by the administrator, who can
utilize the contract's methods to create or delete patients
or medical practitioner by adding or removing objects
from the ledger. Additionally, the administrator has the
capability to view all the patients across the entire

network with limited information.

PatientContract The patient actively engages with the ledger through this
contract as it encompasses the necessary logic

specifically tailored for the patient's operations. For

48

example, the patient can exclusively update or view their
personal details using the methods outlined within the
contract. Moreover, the patient contract incorporates

methods to grant or revoke access to doctors.

MPContract

The doctor contract has methods that allows the medical
practitioner to update or read the patients medical details
based on the conditions set such as when normal
condition there will need to have permission from patient
while medical practitioner under emergency department

will be able to view patient data directly.

4.3.3 Software Requirement

Software that is required for this project to complete the flow are as listed as

follow:
Table 4.3: Software requirement
Software/Tool Descriptions
Hyperledger Fabric It is an open-source blockchain platform designed

for developing decentralized applications. It provides
a modular architecture, enabling customizable
consensus protocols, privacy features and scalable
network design, also, easy for building smart

contract in the blockchain.

Hyperledger Fabric Client
SDK

It provides APIs to interact with the Hyperledger
Fabric blockchain, for instance, provides APIs to
interact with smart contracts, submit transactions to a

ledger and query the ledger.

Docker Compose

This tool is used to deliver software packages called
containers such as docker-compose-ca.yaml, docker-

compose-couch.yaml and docker-compose-net.yaml.

Couch DB

Couch DB is an open-source database which allows

49

the storage of data in JSON format and is used as an

external state of a database for Hyperledger fabric.

Node JS

This is an open-source cross-platform backend that
runs scripts in the terminal, enabling the execution of
JavaScript code outside of the browser. Node.js is
employed to create APIs that interact with the
Hyperledger Fabric blockchain. It handles the initial
level of user authentication and serves as the

gateway to the Fabric smart contracts.

Angular JavaScript

This framework is used to build the client application

web interface.

Redis

Redis is an open source in-memory data structure
store, used as a distributed, in-memory key—value

database.

cURL

cURL is a software project that offers a command-
line tool and library, allowing for data transfer across

different network protocols.

Ubuntu

Ubuntu is a full Linux operating system, which is
freely available for both technical and community
support. In general, the software required can run

smoothly in Ubuntu compare to windows.

VMware

VMware is a virtualization and cloud computing
software that provides solution for building and
managing virtualized environments. Its robust
platform offers developers the ability to create and
deploy blockchain projects with enhanced

scalability, security and performance.

Visual Studio Code

Visual Studio Code is a code editor with support for
development operations like debugging, task running

and version control.

50

4.3.4 Hardware Requirement

To ensure smooth development and testing processes, it is recommended to

have a system that meets the following minimum hardware (laptop/PC)

specifications:
Table 4.4: Hardware requirement

Specification Details

Processor 2 GHz dual core x86 64 CPU supporting SSE4.2 and
above and virtualization

RAM At least 4 GB or above

Storage At least 50GB HDD or above

Operating System Ubuntu Linux 14.04 / 16.04 LTS (both 64-bit), or Mac
0S 10.12

51

4.4 High-Level Design

4.4.1 System Architecture

F———
Fabric SDK
—— » Docker NodeJS Angular)S
server
e

Blockchain Operator User

Fabric Network

haspitaichannel

L1 - Ledger{couchDB)

SC - Smart Contracts

Figure 4.9: System architecture of the blockchain.

The system architecture begins with the blockchain operator bears the
responsibility of initializing the network's configuration and granting access and
credentials to users who manage the system. The orderer certificate authority (CA) is
established within the docker fabric image and utilized by all hospital peers. The
orderer assumes an administrative role by approving organizations and validating the
credentials of their respective peers. All components of the application are
interconnected to ensure seamless communication. The backend code and smart
contract logic are implemented using JavaScript, with ExpressJS serving as the
REST API server. The user interface is built with the Angular 11 framework,
providing a user-friendly experience. Communication between the frontend and
backend occurs through REST API calls, with authentication facilitated by JSON
web tokens. Backend code can also be written in Java, Go, and Typescript which is

officially supported languages by Hyperledger Fabric.

52

For the system design, a single channel named "hospitalChannel" is created
with initial two hospital organizations. Plus, the network can seamlessly incorporate
another new hospital organization even when the network is running as the new
organization can join into the existing channel. In this scenario, third hospital
organization should be able to join the network when the network is running and get

to join with the same channel.

Hyperledger Fabric offers support for two databases, LevelDB and CouchDB.
In this solution, CouchDB is chosen due to its flexibility and ability to handle image
data. CouchDB also supports indexes, unlike LevelDB. Since all patient data is
stored in CouchDB without maintaining a separate Electronic Health Record (EHR)
store, CouchDB fits well in this context. On the other hand, LevelDB, developed by
Google, is a powerful in-memory database designed to store key-value pairs. It can
be faster than CouchDB in some cases. In an alternative use case scenario where the
EHR database of hospitals is employed, LevelDB can be utilized to store references
(such as APIs) to the records in the blockchain ledger. In the current simple use cases,
CouchDB provides appropriate support. The ledger consists of the transaction log
and the world state. CouchDB is used to store the world state, eliminating the need to
query the entire transaction log for each transaction request. The transaction log
retains all transactions starting from the first one stored in the genesis block.
Additionally, the Redis key-value database is utilized to store doctor credentials,
specifically usernames and passwords while other details of the doctor are stored as

user attributes using the fabric SDK.

4.5 Conclusion

To summarize, project design plays a critical role in project development. It
is essential to define and evaluate all software and hardware requirements before
commencing the design implementation. This phase serves as a preparation stage for
the application, enabling a comprehensive understanding of the entire system before
implementation. Additionally, this chapter outlines the crucial design requirements
that will be implemented and tested in the subsequent chapter. It also presents the

planned architecture design for the project.

CHAPTER 5: IMPLEMENTATION

5.1 Introduction

This chapter explains about the implementation of prototype of blockchain-
based web application for EHR data management among hospitals that has been
described in previous chapter. The implementation phase including software
development environment setup, configuration of smart contracts, application APIs

and configuration on application.

5.2 Software Configuration Management

According to documentation in Hyperledger Fabric, the Fabric application

stack has five layers which are:

54

(a) Prerequisite software: The base layer needed to run the software, for example,
Docker.

(b) Fabric and Fabric samples: The Fabric executables to run a Fabric network
along with sample code.

(c) Contract APIs: To develop smart contracts executed on a Fabric Network.
(d) Application APIs: To develop blockchain application.

(e) The Application: Blockchain application that will utilize the Application
SDKSs to call smart contracts running on a Fabric network.

Figure 5.1: Application stack in Fabric application

Therefore, the implementation steps of this project will followed according to
the stacks mentioned above from bottom-top in order to develop a blockchain-based

web application for EHR data management among hospitals.

53 Prerequisite Base Software

As this project is planned to develop in a controlled environment, operating
system, Ubuntu 22.04.3 LTS is used and setup in VMware. Within the system,
prerequisite tools according to Hyperledger Fabric documentation are installed which
are git, curl, docker, docker compose, golang, python, nodejs, npm and angular. It is
important to note that the version of node should be 10.15.3 which npm that included
in it is 6.4.1 and the frontend framework is angular 11. Besides, Microsft Visual

Studio Code is also used to building and debugging application.

https://hyperledger-fabric.readthedocs.io/en/latest/install.html
https://hyperledger-fabric.readthedocs.io/en/latest/sdk_chaincode.html
https://hyperledger-fabric.readthedocs.io/en/latest/sdk_chaincode.html

55

5.4 Fabric and Fabric Samples

After all prerequisite software are installed, Fabric basic framework is also
downloaded which included Fabric Docker images, Fabric CLI tool binaries and
Fabric samples which are test network created by HLF community using Docker
compose. To test all components are working, test network from fabric samples can

be run.

5.5 Contract APIs

Contracts serve as the implementation of all executable business logic within
the application, with smart contracts executing actions like creating, reading,
updating, or deleting assets on the distributed ledger. In this specific instance, smart
contracts are written in JavaScript which one function has been written for each

capability of the proposed system.

PrimaryContract

initLedger
readPatient
patientExists

getQueryResultForQueryString

getAllPatientResults

i

PatientContract AdminCentract
readPatient getLatestPatientid
deletePatient createPatient
updatePatieniPersonalDetails readPatient
updatePatientPassword deletePatient
getPatientPassword queryPatientsBylLastName
getPatientHistory queryPatientsByFirstName
fetchLimitedFields queryAllPatients
grantAccess ToDoctor fetchLimitedFields
revokeAccessFromDoctor ?

DoctorContract

readPatient
updatePatientMedicalDetails
queryPatientsByLastName
queryPatientsByFirstName
getPatientHistory
queryAliPatients
fetchLimitedFields

getClientid

Figure 5.2: Smart contracts hierarchy

The primary focus of smart contract development is typically the entity on

which network transactions are expected to occur. In this project, EHR take center

56

stage, and smart contracts are designed around them. For example, the createPatient()
contract facilitates the creation of a new EHR when an admin registers a new patient,
while contracts like updatePatientPersonalDetails() and
updatePatientMedicalDetails() handle updates to patient personal and medical
information. When access to a latest EHR is requested, readPatient() contracts are
invoked. Retrieving an EHR's transaction history is accomplished using the
getPatientHistory() contract. The HLF blockchain network offers a useful function
which is getHistory, enabling users to access the transaction history of a particular
entity. This is advantageous because the global state keeps track of the most recent

record state while the history feature allows for tracing earlier transactions.

let resultsIterator = await

let asset t this tAllPatientResults(resultsIterator, true);

n this.fetchlLimitedFields(asset, true);

Figure 5.3: Example of getPatientHistory() methods in doctor contract

A fundamental aspect of the Patient-centered Data Management System
(PDMS) involves granting and revoking access. This is achieved through the
grantAccessToDoctor() and revokeAccessFromDoctor() methods, enabling patients
to manage a doctor's access to their electronic health record. Access control is

implemented in smart contracts to regulate data access at the time of retrieval.

c revokeAccessFromDoctor(ctx, args) {
args = 1S0N._parse(args);

let patientId = args.

let doctorld = args.d

t patient
if (patient. ra d.includes{doctorId)) {

patient. ion(d ati .permissionGranted.filter(doctor => doctor !== doctorld);

patient. patientId;

t buffer = Buffer.from(JSON.stringify(patient));

Figure 5.4: Example of revokeAccessFromDoctor() method

57

A permissionGranted array, which contains doctor IDs permitted to access
the EHR, is maintained within the EHR. Patients can add or remove a doctor's ID
from this list which is a process hidden from the doctor and only accessible to the
patient. When a doctor interacts with a patient's EHR, the system checks the doctor's
user ID against the permissionGranted array. If the ID is absent, access is denied,

thus ensuring data privacy.

t permissionArray = asset.perm

onArray.includes(doctorId)) {

ror(” The doctor ${doctorld} does not have permission to patient ${patientId});

return asset;

Figure 5.5: Example of verifying if the doctor is granted access

There are four processes involved in deploying chaincode which are
packaging, peer installation, approval for a channel and commitment. In Fabric,
smart contracts are deployed on the network in packages referred to as chaincode. A
chaincode is installed on the peers of an organization and then deployed to a channel,
where it can then be used to endorse transactions and interact with the blockchain
ledger. Before a chaincode can be deployed to a channel, the members of the channel
need to agree on a chaincode definition that establishes chaincode governance. When
the required number of organizations agree, the chaincode definition can be
committed to the channel and then the chaincode is ready to be used. All of these
processess can be streamlined using the deployCC command once the HLF network

is operational.

58

5.6 Application SDK
5.6.1 Hyperledger Fabric Client SDK

The Hyperledger Fabric Client SDK offers APIs to interact with the HLF
blockchain such as interact with smart contracts, submit transactions to a ledger and

query the ledger. The Fabric SDK provides the following packages:

(a) fabric-ca-client: The fabric-ca provides APIs to participants (admin, patient
and doctor) to register and enroll for establishment of trusted identities on the

blockchain network.

(b) fabric-common: This component consolidates the common code utilized
across all fabric-sdk-node packages, facilitating precise interactions with the
Fabric network for transaction invocations. It offers APIs for monitoring
events, logging and configuring settings, allowing customization via

environment variables, program arguments and in-memory configuration.

(c) fabric-network: This package contains the APIs required to connect to the
Fabric network, submit transactions to query or edit the ledger. It also
provides APIs to manage the wallet which is used for managing identities
and create a connection profile based on the connection profile JSON
generated when CA is created. In this package, the main class that allows the
Fabric SDK to interact with the network is the Gateway class. Once
instantiated, the object create a gateway (connection) to a peer (user) within
the blockchain network and enables access to the chaincode and channels for

which that peer is a member.

*fabric-network") ;

‘equire(’fabric-ca-client');

t {buildCCPHosp2, buildWallet} = require(’../patient-asset-transfer/application-javascript/AppUtil.js’);

minHospital2 = 'hosp2admin’;

t adminHospital2Passwd = "hosp2lithium’;

Figure 5.6: Example of utilizing fabric-network between backend server and
blockchain network

59

5.6.2 Wallet

The wallet plays a crucial role in the Hyperledger Fabric SDK, serving as an
identity repository. It stores essential Fabric metadata, including authorized private
keys and corresponding public keys issued by a certificate authority. Wallets can be
configured in multiple formats, such as file-based, in-memory and database-based
wallets. In the context of developing a patient data management system, the file-
based wallet is employed. When establishing a connection through the Gateway class,
the wallet stores both the mspID and user type, which are then used to verify the

user's access rights to the specific channel within the network.

5.6.3 JSON Web Tokens

JSON Web Tokens (JWTs) are employed to manage API permissions and
maintain user sessions. This approach ensures that the individual who initially logged
in also has access to the APIL. Instead of the server retaining session information, a
token is generated upon the user's login using their username and password.
Subsequently, this token is signed, encrypted, transmitted to the client and stored
there. When the user attempts to access the API with the same token, JWT verifies
the token using a key (the user's password). If the token is unaltered and the user
remains the same, access to the API is granted. To prioritize Hyperledger Fabric over
application development, user login credentials are stored as JSON in a file and

verified against it.

5.7 Application
5.7.1 State of Distributed Database

In this project, CouchDB is employed as a database on a peer node to
represent each patient's health records in JSON data structures. The number of
CouchDB Docker images depends on the number of peers within the network and it
operates on the identical server as the respective peer. Since each peer has its ledger,
an HLF network requires a single CouchDB image for each peer. In this case, 2

CouchDB images are required as there are 2 peer nodes in the network.

60

5.7.2 Identity (CA)

To become a recognized participant within the hospital network, individuals
must first establish their trustworthiness to conduct transactions on the blockchain.
This involves obtaining an identity issued by a trusted authority, which is
Membership Service Providers (MSPs), as indicated in the app/first-
network/configtx/configtx.yaml configuration file. Each hospital operates its
Certificate Authority (CA), responsible for issuing certificates to its participants.
These certificates are digitally signed by the CA and serve to bind a participant with
their public key, along with a set of permissions. Consequently, if one places trust in
the CA (and possesses its public key), they can have confidence in the specific
participant associated with the public key contained in the certificate which all
validated by the CA's signature. In the application, there are 2 components can be
choose and used for issuing identities within the network which are default CAs or

the cryptogen tool.

61

(a) Cryptogen: Cryptogen is a tool that creates certificates and keys. This tool
can be used during development and testing. The tool quickly just creates the
required crypto material for the hospitals. The configuration files for all the
hospitals and the orderer are defined in app/first-
network/organizations/cryptogen directory, the YAML files contain the
necessary information for the tool to create the cryto material for the hospitals

and the Orderer.

(b) CAs: Each hospital has its very own CA server that creates the identities
using client of the server to prove that the identity belong to their hospital
and can be trsuted. All of the identities created by a CA run in the hospital
share the same trust of the root CA. In this project, CAs are used to allow
registration and enrollment of patients and doctors with Fabric SDK which
cannot be done using Cryptogen. The configuration files of the CAs of the

hospitals and orderer are defined in app/first-network/organizations/fabric-ca.

5.7.3 Membership Service Provider (MSP)

As stated in previous chapter, MSP is the one that verifies the private keys of
the participants by matching them with the stored public key. While CAs are used to
create trusted identities that are recognized by the network (peers/doctors/patients),
MSPs are instrumental in defining the hospitals that enjoy trust among network
members. MSPs allocate roles and permissions to participants from these hospitals,
allowing them to engage within the network. In the application setup, all hospitals
that become part of the network are empowered to carry out read and write
transactions. These permissions are configured in the app/first-
network/configtx/configtx.yaml file. However, to initiate a transaction within the
network, participants must first obtain an identity issued by a CA that is
acknowledged by the network. Furthermore, they must be the member in one of the

hospitals.

5.7.4 Endorsement Policies

The chaincodes in Hyperledger fabric have an endorsement policy that

specifies the peers on the channel that executes the chaincode functions and endorses

62

the results to the ledger and makes the transaction valid. The endorsement policies
define the peers which will verify and approve/reject the execution of a transaction.
During this process, the peers verify the transaction, and the committing peer ensures
that the transaction contains the the required number of endorsements which is

configured in the endorsement policy.

The Endorsement Policy is defined in the configtx.yaml. Each hospital
contains its very own endorsing peers as specified in the YAML file in the path
&hospl/Policies/Endorsement similarly for hosp2. The rule specifies the roles who
are endorsers. In the YAML file, all the peers of the hospitals are endorsers. In path
&hospl/Policies/Endorsement, the rule OR("hosp1 MSP.peer’) requests one signature
from the peers of hospl. A Chaincode-level endorsement policy is defined in the
YAML file in the path &ApplicationDefaults/Policies/Endorsement, where
“MAJORITY” specifies that only when a majority of channel members approve a

chaincode definition then definition is committed to the channel.

MSPDir: ../organizations/peerOrganizations/hospl.lithium.com/msp

Readers:

Type: Signature

Rule: "OR(hosplMSP.admin’, 'hospIMSP.peer”, 'hospIMSP.client’)"

Writers:

Type: Signature

Rule: "OR("hosplMSP.admin’, "hosplMSP.client')"
Admins:

Type: Signature

Rule: "OR(hosplMSP.admin’)"
Endorsement:

Type: Signature

Rule: "OR("hosplMSP.peer’)”

Figure 5.7: Endorsement policy for Hosp 1

63

Application: &ApplicationDefaults

Readers:
Type: ImplicitMeta
Rule: “"ANY Readers"
Writers:
Type: ImplicitMeta
Rule: "ANY Writers”
Admins:
Type: ImplicitMeta
Rule: "MAJORITY Admins™
LifecycleEnd =
Impl
"MAJORITY Endorsement™
nt:
Type: ImplicitMeta
Rule: "MAJORITY Endorsement™

Figure 5.8: Chaincode-level endorsement policy
5.7.5 Security Mechanism

Security of the data is essential when question arises for patient data in
healthcare sector. Therefore, encryption capabilities in HLF are enable which uses
Transport Layer Security (TLS) 1.2/1.3 (RSA TLS) for certificates generation to
securely work in the network and also SHA256 for hashing. These TLS certificates
will be used by the peer when communicating with the network and hashes of

passwords making it more difficult to be break, thus prevent any security risks.

keyfile:

clientauth:
: noclientcert

files:

Figure 5.9: TLS enabled in CA Hosp 1

64

Patient {

constructor(patientId, firstName, lastName, password, age, phoneNumber, emergPhoneNumber, address, bloodGroup,

changedBy = ', allergies = '', symptoms = ', diagnosis = "', treatment = '', followlp = ')
{

this.pati d = patientld;

this firstName;

this E lastName;

this.pass = crypto.createHash('sha256").update(password).digest(" hex

this

this.pl umb. = phoneNumber;

ellumber = emergPhoneNumber;

Figure 5.10: Patient’s passwords are hashed and stored in the blockchain
(patient chaincode)

5.8 Conclusion

This chapter covers about the analysis and modifying part to reach the
objective of this research. This chapter also explains about every function used for

the project where it is crucial to understand how the system works.

65

CHAPTER 6: TESTING

6.1 Introduction

This chapter will explain about the testing and evaluation after the
blockchain-based web application for EHR data management system is created. This
chapter is crucial to measure the performance of the system and discuss about the
capability of blockchain-based EHR data management system in ensuring data

confidentiality, integrity and transparency.

6.2 Test Strategy

The testing strategy of this project combines both top-down and bottom-up
approaches. Top-down approach helps to define the overall system architecture and
functionality of the blockchain-based EHR system while bottom-up approach helps
to test individual components and smart contracts. In terms of testing types, both
black-box and white-box tests are employed. Black-box tests involved functional

tests while white-box tests includes security tests and data correctness checking.

6.2.1 Classes of Tests

As the evaluation of the prototype system aims to ensure data security in
terms of confidentiality, integrity and availability, several tests can be conducted
such as output correctness which provide data integrity, functionality test which
evaluate system's functionality and security test which can analyze the system's

internal logic and address any potential vulnerabilities.

66

6.3 Test Design
6.3.1 Test Description

Each test has objectives which outline the purpose of the test while a test
description outlining the methodology. Expected result for each module in the
prototype is designed and the actual result should be the same as the expected result
in order to pass the test. There are two types of tests which are manual tests that are
executed by an individual and automated tests that are executed via scripts. In this
project, manual tests are conducted as it is a more appropriate approach to assess

specific features within the prototype such as participant's access control.

Interactive tests will be used to check the validation, verification, permissions
and the overall performance of the prototype of blockchain-based EHR system. All
the test description listed below will be used to evaluate the fault tolerance and

efficiency of the system.

Table 6.1: Test Description

No. | Test Description

1 Only admin in hospitals can login as admin.

2 Admin can only view list of patients with limited personal information.

3 Only admin can create patient and doctor to join the network.

4 Only registered patient can login as patient.

5 First-time login patient always need to change password.

6 Only patient himself can view all his personal information and EHR.

7 Only the EHR owner can view list of doctors and grant or revoke access
rights to doctors.

8 Patient can only update his own personal information.

9 Patient can only view his own data history.

10 Only registered doctor in hospitals can login as doctor.

11 Only doctor can view his own details and specialty.

12 Only doctor can view list of patients who granted access and the patient’s
EHR.

13 Only doctor who granted access can update patient’s EHR.

67

14 Only doctor who granted access can view patient’s EHR history.

15 Data within the system is always correct.

16 HTTPS should be used to secure the channel between the client and
blockchain.

6.3.2 Test Data

Table and figures below show the data involved and stored within the
blockchain-based EHR system which can be used for testing. The EHR data of
patients shown below are initial data which will directly created within blockchain
when the network is up. The code is included in app/patient-asset-

transfer/chaincode/lib/initLedger.json.

Table 6.2: Login details for users

Role Username Password
Admin hospladmin hosp1lithium
Admin hosp2admin hosp2lithium
Patient PIDO PIDO

Patient PID1 PID1

Patient PID2 PID2

Patient PID3 PID3

Patient PID4 PID4

Patient PIDS5 PID5

Doctor HOSPI1-DOCO password
Doctor HOSP1-DOC2 password
Doctor HOSP2-DOC1 password
Doctor HOSP2-DOC3 password

"firstNam "Monica”,

"lastName “Latte™,

+4912345678",

"emergPhoneNumbe "+491 5

"address™: "Albrechtstrasse 71,

"bloodGrot "0+,
"allergies”: "No",

mptoms”: “Cholesterol, Total 258 mg/dl",
"diagnosis”: "High Cholesterol”,
“treatment”: "Vasolip 10 mg everyday”,
“"followlp”: "6 Months",

"permissionGranted

": ["hospladmin”, “hosp2admin™],

"initledger”,
"passwor baffdb@8c3ef9c6444816329b56250ae42a2149b3e72136251a7d8340ded3b™
“pwdlemp™: true

»

Figure 6.1: EHR of patient 0

“fi "t “Max”™,
"las : "Mustermann”,
“age”: 8",
“phenelumber™: "+491764561111",
"emergPhoneNumber™: "+491764561113",
"address™: "Mail ? : b 6 Frankfurt am Main™,
"bloodGroup™: “B+",
"allergies”: "No",

: "Heart Burn, shortness of breath, Acidity”,

“Esophagitis

“initlLedger”,
"fd1le5d642dal34218f1cc5c26 eb2fe2b2flc/e/795b",

“"pwdTemp™: true

“firstName”: "Johannes

S

"lastName": "Schmidt™,

"+491764561111"

mber": "+491

GenslerstraBe 19, 68326 Berlin®,
"bloodGroup™: "B+",

“No",

Nausea, systolic-15@, diastolic-11l

diagnosis”: "Hypertension™,
“treatment "CORBIS 5 mg cne per day”,
"followlp

"permissionGrant [*hospladmin®”, “hosp2admin”],

"changedB: "initledger”,

“pa rd": "8c90267256e654ee3f77196ee12e95 £ 0bfaf69614cc2d92
“pwdTemp™: tr

Figure 6.3: EHR of patient 2

+491764561113",
erstrafe 19, 60326 Berli
"bloodGroup

"allergie

Mellitus™,
“treatment”: "PRINIVIL TABS 28 MG (LISINOPRIL), HUMULIN INJ 70/30@ 2@ units after breakfast”,
"followUp": "4 Weeks",
“permissionGranted”: [”
“changedBy": "initLedger
“password”: 6 82c2a724447d5c444aac713a7",
“pwdTemp

"firstNam:
"lastNa
“age”: "78",

+491764567913",
ddr strale 19, 60326 Berlin”,
"bloodG

"Pain in the knee joints™,
"diagnosis": "Osteoarthritis”,
"treatment “ULTRADAY 40 mg per d
"followlp "2 Weeks"™,
"permissionGranted”: ["hospladmin”, “hosp2admin”],
“changedBy": "initledger”,

“password”: “eceb33ea78leld

"pwdTemp™: fa

umber™: "+4917645611

"emergPhoneNumber”: "+491764589113"

>
"address™: "Pappelallee 98631 Behrungen”,
"bloodGro : "AB+",

No™,

"Pain in the oulder and difficulty in shoulder movement “,
"Periarthritis”,
"Hydrocortisone 28 ml inj ion"™,
"4 Weeks™,
"permissionGrante [*hospladmin”, "hospZadmin”],
"initledger”,
"49bb4e28642c7eeelfdb6fc3d359d80c22b5a871c441beB9c103538be167a281",
false

Figure 6.6: EHR of patient 5

70

6.4 Test Results and Analysis
6.4.1 Network Testing

In the app/first-network directory, command ./network.sh up is executed to
bring up the network. If there is no issue, a Fabric network that consists of two
organizations which are Hosp 1 and Hosp 2 with one ordering node will be created.
Docker containers are created too and will be running on the machine. With the
command ./network.sh createChannel, a channel called “hospitalChannel” will also
be created between both organizations and join their peers to the channel. Once the

command is successful, it will show “Channel successfully joined”.

$ cd app
$ cd first-network
$./network.sh up

network "lithium-network_hospital” with the default driver
ca_hospl ...
ca_orderer

ca_hosp2

+ fabric-ca-client enroll -u https://hospladmin:hospilithiun@localhost: 7854 --caname ca-hospl --tls.certfiles /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app
/first-network/organizations/fabric-ca/hosp1/tls-cert.pen
4:12 [INFO] Created a default configuration file at /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/first-network/organizations/peerorganizati
m/fabric-ca-client-config.yanl
[INFO] TLS Enabled
recdsa S:256}

34:12 [INFO] Stored client certificate at /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/first-network/organizations/peerorganizations/hospl.l
ithium. com/msp/signcerts/cert.pem
2023/09/10 13:34:12 [INFO] Stored CA certificate at /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/first-network/organizations/peerorganizations/hospl.
Creating redis.hosp1.lithium.con ...
CONTAINER ID IMAGE CREATED STATUS NAMES
1ebeas767639 redis:latest ocker-entrypoint.s.” 3 seconds ago Up Less than a second ©.6.0.0:6380->6379/tcp redis.hosp2.1it
) hiun.com
95d8bb29ae32 redis: latest "docker-entrypoint.s.” 3 seconds ago Up Less than a second 6.6.0.0:6381->6379/tcp redis.hosp3.lit
un. con
3ffag134ff redis:latest "docker-entrypoint.s.” 3 seconds ago Less than a second ©.0.0.0:6379->6379/tcp redis.hosp1.lit
hium.con
2b40bfe3355d hyperledger/fabric-peer:latest r node start seconds ago seconds 7651/tcp, ©.0.0.0:9051->9051/tcp peer6.hosp2.lit
hium.con
53d9acs2af3a hyperledger/fabric-peer:latest node start” seconds seconds .0.0.0:7051->7051/tcp peere.hospl.lit

hi om
7d4ddaeba2dd hyperledger/fabric-orderer:latest 4 6 seconds seconds ©.0.0.0:7050->7050/tcp orderer.lithium

a7c1667fb37c couchdb:3.1.1 -~ /de " 36 seconds seconds 4369/tcp, 9100/tcp, ©.0.6.0:7984->5984/tcp couchdb.hosp2.1
ithium. com
easd73c7icad couchdb:3.1.1 " 36 seconds ago seconds 4369/tcp, 9100/tcp, 0.0.0.0:5984->5984/tcp couchdb.hospl.l
ithiy
d99e7184e65c hyperledger/fabric- & 'fabric-ca-se.” About a minute ago Up About a minute 7054/tcp, 0. 4 ca_hosp2
387a781d604f hyperledger/fabric- 'fabric-ca-se About a minute ago Up About a minute 7054/tcp, 4 ca_orderer
7e9306dassbs hyperledger/fabric-ca:latest 'fabric-ca-se.” About a minute ago Up Abx)ui a minute ©.0.0.0:760 ca_hosp1

g $

Figure 6.7: Testing of bringing up network

71

s cd
5 (d first- n:twork
. /network.sh up createchannel

Creating network "lithiun-network_hospital® with the default driver
Creating ca h)<p1

+ fabric-ca-client enroll -u https://hospladnin:hospilithiun@localhost:7054 --caname ca-hospl --tls.certfiles /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app
/first-network/organizations/fabric-ca/hosp1/tls-cert.pen
2023/09/10 17:22:59 [INFO] Created a default configuration file at /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/first-network/organizations/peerorgantizati
ons/hosp1.lithium.com/fabric-ca-client-config.yaml
2023/09/10 17: 22 59 [INFO] TLS Enabled

generating ke: cdsa S

encoded CSR

Stored client certificate at /hone/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/first-network/organizations/peerorganizations/hospl. 1 I

FErer ! orehR G e T e
Expect block, but got status: &{SERVICE_UNAVATLABLE}
Endorser and orderer connections initialized
Expect block, but got status RVICE_UNAVATLABLE}
Endorser and orderer connections initialized
Expect block, but got status: &{SERVICE_UNAVATLABLE}
Endorser and orderer connections initialized
Expect block, but got status RVICE_UNAVATLABLE}
Endorser and orderer connections initialized
Expect block, but got status: &{SERVICE_UNAVAILABLE}
Endorser and orderer connections initialized
Received block: ©

r channel join -b ./channel-artifacts/hospitalchannel.block

Endorser and orderer connections inttialized
Successfully submitted proposal to join channel

+ peer channel join -b ./channel-artifacts/hospitalchannel.block
-0

gndorser and orderer connections initialized
fully submitted proposal to join channel

r channel update -o localhost:7650 --ordererTLSHostnameoverride orderer.lithium.com -c hospttalchannel -f ./channel-artifacts/hospiMsPanchors.tx --tls --cafile /home/chek/block
chain-hyperledger-fabric-electronic-patient-records/app/First-network/organizations/ordererorganizations/lithiun. con/orderers/orderer. lithiun. con/msp/tlscacerts/t1sca. Lithiun. con-ce

Endorser and orderer connections initialized
Successfully subnmitted channel update

+ peer channel update -o localhost:705@ --ordererTLSHostnameOverride orderer.lithium.com -c hospitalchannel -f ./channel-artifacts/hosp2MSPanchors.tx --tls --cafile /home/chek/block
chain-hyperledger-fabric-electronic-patient-records/app/first-network/organizations/ordererorganizations/lithium.com/orderers /orderer.Lithium.com/msp/tlscacerts/tlsca.lithiun.con-ce
rt.pen
+ res
Endorser and orderer connections initialized
successfully submitted channel update

s

Figure 6.8: Testing of creating channel

To test whether the chaincode is applicable, command ./network.sh deployCC
is executed. This command will package the smart contract code inside app/patient-
asset-transfer, then install package to peer nodes, query installed chaincode, approve
chaincode for both organizations and finally commit and invoke the chaincode. Once

successful, the initial data of six patients are created in a ledger.

72

$./network.sh deploycc

executing with the following

- CHANNEL_NAME :
CC_NAME:
CC_SRC_PATH:
CC_SRC_LANGUAGE:
CC_VERSION:
CC_SEQUENCI
CC_END_POLICY
CC_COLL_CONFT
CC_INIT_FCN:
DELAY:
MAX_RETRY:

VERBOS|

peer lifecycle chaincode package patient.tar.gz --path ../patient-asset-transfer/chaincode/ --lang node --label patient 1.0
=6

peer lifecycle chaincode install patient.tar.gz
re
Installed remotely: response:<status:200 payload:"\nLpatient_1.0:c7ea85e1f90be749d9ed1ece3eda
48196936200c28e3dcd27das ffaef6fdsac7\022\013patient_1.0" >
Chaincode code package identifier: patient_1.0:c7e485e1f9ebe749d9ediee3edad8196936200c28e3dc
d27dacffaefordsact

+ peer chaincode invoke -o localhost:7850 --ordererTLSHostnameOverride orderer.lithium.com --tls --cafile /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/fir
st-network/organizations/ordererorganizations/lithium.con/orderers/orderer. lithiun.con/msp/tlscacerts/tlsca.lithiun.con-cert.pem -C hospitalchannel -n patient --peerAddresses localh
0st:7051 --tlsRootCertFiles /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/first-network/organizations/peerorganizations/hospi.lithiun.con/peers/peere.hospl
.Llithium.com/tls/ca.crt --peerAddresses localhost:9851 --tlsRootCertFiles /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/first-network/organizations/peer0rg
anizations/hospz.1ithium.con/peers/peer6.hospz.lithiun.con/tls/ca.crt --isInit -c '{"function”:"initLedger","Args":[]}'

Chaincode invoke successful. result: status:200

e |

Figure 6.9: Testing of deploying smart contract

In directory app/server, command npm start is executed to start the ExpressJS
backend server. If it is successful, users from the network including admin from
hospital organizations, initial six patients data and four doctors will be enrolled and
registered which are then created inside the wallet and the backend server will be

running.

3 $ cd ../server
No such file or directory

$ cd server
S npm start

patient-application@l.0.8 prestart /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/server
node initServer.

CA Client named ca-hospl
fully registered and enrolled user PID5 and imported it into the wallet
uccessfully enrolled user PID5 and imported it into the wallet

Built a file system wallet at /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/patient-asset-transfer/application-Jjavascript/wallet
Loaded the network configuration located at /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/first-network/organizations/peerorganizations/hosp1.lithium.con/c
onnection-hosp1.json
Built a CA Client named ca-hospi
Successfully registered and enrolled user HOSP1-DOCO and imported it into the wallet
msg: Successfully enrolled user HOSP1-DOCO and imported it into the wallet
Built a file system wallet at /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/patient-asset-transfer/application-javascript/wallet
Loaded the network configuration located at /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/first-network/organizations/peerorganizations/hosp2.lithium.con/c
onnection-hosp2. json
Built a CA Client named ca-hosp2
successfully registered and enrolled user HOSP2-DOC1 and imported it into the wallet
: successfully enrolled user HOSP2-DOCI and imported it into the wallet
Built a file system wallet at /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/patient-asset-transfer/application-javascript/wallet
Loaded the network configuration located at /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/first-network/organizations/peerorganizations/hosp1.lithium.con/c
onnection-hosp1.json
Built a CA Client named ca-hospl
successfully registered and enrolled user HOSP1-DOC2 and imported it into the wallet
msg: Successfully enrolled user HOSP1-DOC2 and imported it into the wallet
Built a file system wallet at /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/patient-asset-transfer/application-javascript/wallet
Loaded the network configuration located at /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/first-network/organizations/peerOrganizations/hosp2.lithium.con/c
onnection-hosp2.j
Built a CA Client named ca-hospz
successfully registered and enrolled user HOSP2-DOC3 and imported it into the wallet
msg: Successfully enrolled user HOSP2-DOC3 and imported it into the wallet

> patient-application@l.0.0 start /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/server
> ./node_modules/nodemon/bin/nodemon. s src/server.

Backend server running on 3001

Figure 6.10: Testing of running backend server

73

To test frontend server, command ng serve -o is used to bring up the angular
server. If there is no issue, a user interface will be automatically opened up in the

default browser.

$ ng serve -o

Compiling @angular/core : es2015 as esm2015
Compiling @angular/common : es52015 as esm2015
Compiling @angular/platform-browser : es2015 as esm2015
Compiling @angular/platform-browser-dynamic : es2015 as esm2015
Compiling @angular/common/http : es2015 as m2015
Compiling @angular/forms : es2015 as esm2015
Compiling @ng-select/ng-select : es2615 as esm2015
Compiling @ng-bootstrap/ng-bootstrap : es2815 as esm2815
Compiling @angular/router : es2015 as esm2015

Browser application bundle generation complete.

Initial Chunk Files | Names
v r.js vendor

|
|
main
styles |
|
|

polyfills
runtime

Initial Total | 4.46 MB
Build at: 2023-09-11T04:37:30.269Z - Hash: 24876a4c809fe00937cf - Time: 20061ms
*% Angular Live D opment Server is listening on localhost:4208, open your browser on http://localhost:42008/ **
7 Compiled successfully.
Browser application bundle generation complete.

Initial Chunk Files | Names | Size
styles.c | styles | 218.71 kB

4 unchanged chunks
Build at: 2023-09-11T04:37:38.176Z - Hash: c69d95f4032435ff3ae2 - Time: 7263ms

¢ Compiled successfully.

Figure 6.11: Testing of running frontend server

chek@chek-virtual-machine: ~/blockchain-hyperledger-fabric-electronic-patient-records/app/client

@) HLF Healthcare X |+

c QO D localhost:

1 Lithium = Login

Compilir |_ogir|

Role L

ma Hospital

Username

Password

Figure 6.12: Main page of user interface

74

6.4.2 Functionality Testing
6.4.2.1 Admin
(a) Login

An admin is created for each hospital that joins the network. During the
hospital's network enrollment process, the details of the administrator must be
present. The administrator's credentials which are username and password, are
specified in the fabric-ca-server-config.yaml file within the configuration of the
respective hospital's CA (app/first-network/organizations/fabric-ca). For admin login,
specific role and hospital should be chosen and the credentials entered are checked
against the credentials stored in the blockchain network where only valid admin can

log into the system.

I Lithium 1 Login

Login

Role

Admin

Hospital

Hospital 1

Username

hospladmin

Password

Figure 6.13: Admin login page
(b) View List of Patients

Once the admin login successfully, a list of patients with limited information
(patient ID, first name and last name) within the blockchain network are displayed.
The patient list is retrieved by invoking the admin contract which a new transaction
that retrieves all patient objects in the world state is recorded in the ledger. It has also
shown that the admin chaincode is functioning as it limits the access of admin only to

the names while EHR of the patients are restricted.

75

@ | O HLF Healthcare x|+ v 5 o @

“ c QO D localhost:a200/admin/hosp1admin s B & =
I Lithium © Admin

Admin ,hosplad min * Create Patient ¥ Create Doctor £ Refresh|

List of all patients.

Patient Id First Name Last Name

PIDO Monica Latte

PID1 Max Mustermann

PID2 Johannes Schmidt

PID3 Torben Klaproth

PID4 Lisa Eckel

PID5 Harry Schumann
Total count: 6

Figure 6.14: List of patients (admin)
(c) Create Patient

Admin has the capability to create a new patient. When creating a new patient,
a transaction is generated in the ledger which is to create an object in world state then
it will be sent to all network peers for verification, endorsed and stored in the ledger
if valid. The patient is also registered within the network as a client so that
interaction between ledger can be done. In addition, temporary passwords are created

which the patient must change on the first-time login for security reasons.

&« ¢ O D localhost:a200 ient/edit/new bl
Ali

Create Patient Last name

Abdul

Address

George Town, Penang

Age
23

Blood group

AB +

Contact number

013256789

Emergency contact number

0184562489

New patient's credentials: PID6 - 68ljdi6g

Figure 6.15: Create new patient

76

(d) Create Doctor

Admin can also create a new doctor, however, doctor is not an object stored
in the ledger due to problem of HLF. Therefore, there is no relationship with the
ledger upon registration of a doctor while doctor’s credentials are stored in Redis
database. A client is created in the network for the doctor so that he can

communicate with the ledger.

@ O HLF Healthcare X |+
€« (¢] O DO localhost i o

MM Lithium © Admir

Create Doctor
Please fill out doctor details. All fields are required.

First name

Dr

Last name

James

Hospital

Hospital 1
Speciality
Ophthalmology

Username

Password

Figure 6.16: Create new doctor
6.4.2.2 Patient
(a) Login

If a patient is logged into the system using temporary password given for the
first time, a message of requesting for changing new password will be appeared. The
temporary password and new password are hashed and stored in the ledger. During
every login, the entered password is hashed and compared with the hash value of

password stored in ledger.

77

~ - a x

@ | B HLF Healthcare x | +
« (e} QO D localhost:4200/login <& N =
I Lithium %1 Login
Login
Role
Patient
Usermname
PIDO
Password
Figure 6.17: Patient login page
@ O HLF Healtheare x|+ v B & &
« C QO D localhest:4200/login b Q2 9 =

&, Password

Enter new password for authentication

Figure 6.18: Mandatory of changing new password for first-time login patient

(b) View Personal Details

After successful login, the patient can view all his personal data as well as his

current medical details. These data are retrieved from the world state by invoking the

patient contract.

@

«

) HLF Healthcare x |+

C

O D localhost:4200/patient/PIDO

]

78

i Lithium & Patient -

Edit personal details & View doctors D View history £ Refresh

Patient PIDO
Details
Patient ID PIDO
First Name Monica
Last Name Latte
Age 50

Contact number ~ +4912345678
Emergency number +4912345678

Address Al 71, 86383 1
Blood Group O+

Allergies No

Symptoms Cholesterol, Total 250 mg/d|
Diagnesis High Cholesterol

Treatment Vasolip 10 mg everyday

Follow up period 6 Months

Figure 6.19: View personal details & EHR (patient)

(c) View List of Doctors & Grant/Revoke Access

From the patient dashboard selecting “View Doctors”, a list of available

doctors from both hospitals are shown. The patient has the right to grant or revoke

access to/from specific doctor. Doctors who are granted access only can view and

update the patient’s EHR else unable to do so if access revoked.

@ | O HLF Healthcare x 4

<« &

M Lithium

QO D localhest:4200/patient/PID0/doctors/list

& Patient

Doctors

List of all doctors.

i Refresh

Doctor Id First Name Last Name Actions

HOSP1-DOCD Brick Wall m
HOSP1-DOC2 Peter Leavitt m
HOSP2-DOC1 Everhart Hall
HOSP2-DOC3 Jeremy Stone

Total count: 4

Figure 6.20: View list of doctors & grant/revoke access

oo

79

(d) Edit Personal Details

The patient can edit his personal details. If any changes are made, the new

details will be updated in the ledger using patient contract through new transaction.

@ |) HLF Healthcare X | + v B i &
< C U D localhost:4200/patient/edit/PIDO o 8 & =
Please fill out patient details. All fields are required.
First name
Edit Patient sacy S Refresh|
Last name
Cheung
Address

Aver Keroh, Melaka

Age
60
Contact number

+6012345678

Emergency contact number

k +6032456765

cance'

Figure 6.21: Edit personal details

@ | O HLF Healthcare T 9 5 & &

€ c O D localhost:4200/patient/PIDO & @ 8 =

I Lithium & Patient

Patlent PIDO ¥ Edit personal details & View doctors D View history SRefreshi
Details
Patient ID PIDO
First Name Jacky
Last Name Cheung
Age 60

Contact number +6012345678
Emergency number+6032456765

Address Ayer Keroh, Melaka

Blood Group O+

Allergies No

Symptoms Cholesteral, Total 250 mg/d|
Diagnosis High Cholesterol

Treatment Vasolip 10 mg everyday ®

Follow up period 6 Months

Figure 6.22: Updated personal details

(e) View EHR History

The patient can view all his history records starting from the first visit to the
latest visit where any modification in the records can be known. This functionality is
possible due to the presence of getHistoryForKey API for public data in Hyperledger
Fabric which returns the history of patient. This provides complete transparency over

all the transactions made to the patient’s data as all records are traceable including

who modified the data and timestamp.

@ | O HLF Healthcare + v &
« (&) O D localhost:4200/p >0/history P g =
I Lithium & Patient »

Patient History SReresh|
History of a patient.
Last
changed First Last Blood Contact Emergency
Date by Name Name Age Group Address number number Allergies Diagnosis Symptoms Treaty
Mon PIDO Jacky Cheung 60 O+ Ayer Keroh, +6012345678 +6032456765 No High Cholesterol, Vasoli
Sep Melaka Cholesterol Total 250 mg
1 mg/dl everyt
2023
Mon PIDO Monica Latte 50 O+ Albrechisirasse +4912345678 +4912345678 No High Cholesterol, Vasoli
Sep 71, 86383 Cholesterol Total 250 mg
11 Stadtbergen maidl everyl
2023
Mon initLedger Monica Latte 50 o+ Albrechtstrasse +4912345678 +4912345678 No High Cholesterol, Vasoli
Sep 71, 86383 Cholesterol Total 250 mg
11 Stadtbergen mgidl everye
2023
Total count: 3

6.4.2.3 Doctor

(a) Login

To login as doctor, user need to select role as “Doctor”, hospital his belong

and correct credentials on login page. Upon successful login, details of the doctor

will be shown.

Figure 6.23: View EHR history (patient)

81

@ | O HLF Healthcare x|+
& c QO D localhost:4200/lox &
I Lithium
Login
Role
Doctor
Hospital
Hospital 1
Username
HOSP1-DOCO
Password
. .
Figure 6.24: Doctor login page
@ | O HLF Healthcare x| +
= o] QO D localhost:4200/doctor/HOSF co <

I Lithium & Doctor

Doctor HOSP1-DOCO i

Details

Doctor ID HOSP1-DOCO
First Name Brick
Last Name Wall
Speciality Neurosurgery

Figure 6.25: Doctor dashboard
(b) View List of Patients & Patient’s EHR

If there is any patient who has granted access to the doctor, his information
will be displayed otherwise the list will be empty. Through “View More”, doctor can

view the latest condition and information of the patient.

82

@ O HLFHealthcare % |
71 c QO D localhost:4200/doctor/HOSP1-DOCO/patient e
I Lithium & Doctor

Patients

List of all patients.

Patient Id First Name Last Name
PIDO Jacky Cheung View more
L3
Total count: 1

Figure 6.26: List of patients (doctor)

@ | B HLF Healthcare x| +
4 (% QO D localhost:420¢ ent/PIDO Ll
I Lithium &
i £ Edit medical details '
Patient PIDO i

Details

Patient ID PIDO

First Name Jacky

Last Name Cheung

Age 60

Blood Group O+

Allergies No

Symptoms Cholesterol, Total 250 mg/dl L

Diagnosis High Cholesterol

Treatment Vasolip 10 mg everyday

Follow up period 6 Months

Figure 6.27: View patient’s EHR

(¢) Update EHR

In “Edit medical details”, doctor will be able to provide latest consultation
and treatment by updating patient’s EHR. Upon successful update, it will redirected

to the patient’s information page that displayed latest patient’s data.

83

@ O HLF Healthcare x | +

s < O D localhost:a200/patient/edit/PiD0 .

fiif Lithium &

Edit Patient

Please fill out patient details, All fields are required.
Allergies

Yes
Symptoms

Lose weight, urinate alot
Diagnosis

Type 1 diabetes mellitus with diabetic autonomic
Treatment

Insulin shot every day
Follow Up Duration

5/Months

conce!

Figure 6.28: Update patient’s EHR

@ | B HLF Healthcare x |+
< (¢} QO D localhost:4200/patient/PID P
I Lithium &0
5 z
Edit medical details
Patient PIDO bl

Details

Patient ID PIDO

First Name Jacky

Last Name Cheung

Age 60

Blood Group O+

Allergies No

Symptoms Lose weight, urinate alot

Diagnosis Type 1 diabetes mellitus with diabetic autonomic

Treatment Insulin shot every day

Follow up period5 Months

3

Figure 6.29: Updated patient’s EHR
(d) View Patient’s EHR history

As the patient’s whole medical history is available to the doctor, it can ease
the effort of doctor to retrieve patient’s EHR and avoid any healthcare fraud,
therefore improved the doctor’s understanding on patient’s condition so that better

and appropriate medication can be conducted.

84

@ | © HLF Healthcare +

€ c O D localhost:42 y &

M Lithium & Doctor

Patient History

History of a patient.

Last

changed First Last Blood Followup
Date by Name Name Age Group Allergies Di; i Symp Ti duration
Mon PIDO Jacky Cheung 60 O+ No High Cholesteral, Vasolip 10 6 Months
Sep 11 Cholesterol Total 250 mg/dl mg everyday
2023
Mon PIDO Jacky Cheung 60 O+ No High Cholesterol, Vasolip 10 6 Months
Sep 11 Cholesterol Total 250 mg/dl mg everyday
2023
Mon PIDO Monica Latte 50 O+ No High Cholesteral, Vasolip 10 6 Months
Sep 11 Cholesterol Total 250 mg/dl mg everyday
2023
Mon initLedger Monica Latte 50 O+ No High Cholesterol, Vasolip 10 6 Months
Sep 11 Y Cholesterol ~ Total 250 mg/dl mg everyday

2023

Total count: 4

Figure 6.30: View patient’s EHR history
6.5 Conclusion

This chapter has demonstrated the functionality of the prototype of
blockchain-based web application for EHR data management among hospitals and
proven that it is an applicable approach with different users permissions but
increased data security compared with conventional EHR database system. Data
validation testing has also been done which it has passed the test. For improvement,
there should have an error message indicates that the request is not being processed.
Although other performance parameters and tests for the blockchain such as
transaction throughput, latency and resource consumption are not evaluated yet, it is
planned that Hyperledger Caliper which is a blockchain performance benchmark
framework can be used to test the performance of blockchain solution using custom
use cases. This chapter has also helps to point out the advantages and weaknesses of

the prototype.

85

CHAPTER 7: PROJECT CONCLUSION

7.1 Introduction

This chapter addresses the concluding phases of the project, which are Project
Summarization, Project Contribution, Project Limitation, Future Works and
Summary. This chapter holds significant importance within the project as it helps
fellow researchers in enhancing our model by consolidating all its constraints and

offering recommendations for enhancement.

7.2 Project Summarization

This project has been designed to determine the application of blockchain
technology for EHR among hospitals in healthcare sector. There are 7 chapters in
this project which starts with Chapter 1 that introduced about research background,
problem statement, project questions, project objectives, project scope and project
contribution while Chapter 2 emphasizes on introduction for blockchain technology,
critical review on existing papers and researches then proposal of a better solution.
Chapter 3 covers about methodology and approach used in this project to achieve
project objectives. Next is Chapter 4 and Chapter 5 that can relate with second
objective of this project which are design of the proposed blockchain-based web
application for EHR data management including data involved, requirements and
system architecture and implementation of the architecture using Hyperledger Fabric
that aims to tackle the identified issues in current existing conventional healthcare

data management systems. The following chapter which is Chapter 6 has analyzed

86

the results of the developed blockchain-based web application for EHR data
management among hospitals in terms of functionality, evaluation and comparison
between conventional EHR data management systems have also done to know
whether the proposed blockchain-based web application for EHR data management
is a more secure and efficient method. Lastly, Chapter 7 concludes the entire project

and explain further progress that could implement in the future.

The system's components are adaptable to meet specific design requirements
such as creation of new patient and doctor, different rights of the participants in the
network to modify or view their own or other person’s data, which allow for scenario
simulations mirroring real-world application behavior. This has offered an insight on
complexity in managing patients’ health records where many roles are involved and
the challenges in system implementation, encompassing usability, security,
scalability and maintainability. Beyond the prototype's accomplishments, further
theoretical ideas have also been explored that could enhance the system, capitalizing
the advantages of a decentralized blockchain approach, such as re-encryption
algorithm which is a more robust security approach to protect public and private keys,
feature of private data collection in Hyperledger Fabric that can prevent complexity
of deploying a large number of channels when scaling different organizations with
various business needs to join the network. Additionally, it has been proved that
adopting a blockchain-based EHR data management system is feasible as patient’s
health records can be more secure in blockchain network where data integrity and
transparency are ensured as any access to patient’s medical history is preserved in the
ledger through transaction history and a patient-centric system can provide greater
control to individuals. Due to the nature of blockchain, also offered by Hyperledger
Fabric, which data are distributed in blocks, immutable as hashes are stored and
compared consistently, blockchain system can also mitigate the risk of single point
failures in conventional EHR databases as copies of valid data are appended in the

blockchain.

In Hyperledger Fabric, the pluggable feature for consensus method and
identity management has made business organization easier to integrate their
requirements with blockchain system. While data confidentiality is one of the

primary goal in most businesses, permissioned-based blockchains provided by

87

Hyperledger Fabric have ensure data security as its membership service provider
(MSP) component offers user authentication by issuing and validating certificates
and also creation of private channel where transactions are only can be seen by
specific peers within the channel has improved data privacy. However, there are
some weaknesses that can be pointed out and could be enhanced in future works. For
instance, the current version of Hyperledger Fabric only supports three roles in HLF
Registrar which are peer, client and admin. The limitation of having just three roles
is that it results in all clients having identical permissions despite there could have
different role types and corresponding permissions for each custom-defined role in a
blockchain system. Issues might arise as patient may not have access to view
attributes that are relevant to doctors even though that information is stored in the
blockchain, but only admin user can read the attributes. In this case, doctor and
patient can be the user-defined roles rather than just the client where they could have
their own set of rules. By creating user-defined role, it can overcome the issue of
separate permissions cannot be applied as if both doctor and patient are client but yet
this is a progress need to be improved by HLF. Whereas doctor is not an asset to the
ledger, the name and specialty of the doctor are stored in the attributes of the identity.
Even though there are some proposed techniques not able to finish on given time
such as function of removing invalid doctor or patient and role of medical
practitioner under emergency department, yet the blockchain-based EHR system still

able to complete with base model.

7.3 Project Contribution

The Project Contribution that can gain from this Project is the study of
blockchain technology and development of application using blockchain for EHR
data management among hospitals. This project has proposed a more secure and
efficient method using blockchain technology for EHR data management that can
ensure smooth operation among hospitals. As the current client/server-based system
stores patients’ data differently in terms of system architecture, data format and
structure resulting in interoperability challenges, the features of synchronized and
duplicated ledger within the blockchain-based EHR system have resolved this
problem and simplified the data sharing process among all hospitals within the

network. It has also contributed the possibility of developing a national or even

88

international data sharing program involving healthcare data with researchers,

partner facilities or other interested parties such as insurance providers.

In addition, the project's contribution includes demonstrating how a
blockchain-based EHR data management system can address the security issues
associated with conventional methods of data storage and sharing. These issues
include inconvenient accessibility, potential for a single point of failure, data
breaches and data alteration. The implementation of blockchain-based EHR system
ensures data security, enhances flexibility, efficiency, transparency and reduces

medical errors, thereby improving fault tolerance.

7.4 Project Limitation

The developed project contains few limitations. As the architecture of
Hyperledger Fabric is quite complex and it offers limited database support including
CouchDB and LevelDb only, it is a challenge to host documents or big data in the
blockchain database and the limitation of Fabric to store data in JSON format
causing the current prototype of the blockchain-based EHR data management system
proposed is only accepting text-based data. The capabilities of the system could be
expand to accommodate various data types, including medical images such as results
of CT scan, ultrasound, X-ray etc to enable healthcare providers to store and analyze
a broader range of patient information, facilitating a more comprehensive
blockchain-based EHR system. While implementation of an application layer that
will convert any data into text using Base64 is possible, many researchers have
recommended an alternative way which is to store data in an external database and
integrate with blockchain system, for example InterPlanetary File System (IPFS)
which is a peer-to-peer file sharing network in a distributed file system that provides
lookups and storage for the mapping of keys to values using distributed hash tables
(DHT). However, it is believed that this approach will add another layer of

complexity and security risks.

Another limitation faced in this project is the security implementation on
patient data in the ledger on peer level using the feature of private data collection in
Hyperledger Fabric. The utilization of private data collection is driven by security

concerns when a client initiates a transaction, it is sent to the orderer before being

&9

included in a block. Once added to a block, that block is broadcast to all participating
organizations in the network meanwhile this process could potentially expose
sensitive data included in the transaction, such as patients' data. To ensure the
confidentiality of such sensitive information, private data collections are employed,
allowing organizations to restrict access to specific data, ensuring that only
authorized parties can view or transact with it. Although this feature can help to
address the drawbacks of channel when it comes to scalability, the private data
collection approach is unable to apply due to the version of Hyperledger Fabric used
which is 2.2.2, does not support the API getHistoryForKey for a private data
collection. However, it is believed that the Hyperleder Fabric community will
progress to add a history index and chaincode API similar to public data history to
enable the query of history of a private data key.

Besides, the project also faced challenges in scaling peers of hospital
organizations and adding new organization into the network. Due to certain
unforeseen reason, one fabric-peer container always stops whenever the network gets
up. While adding third hospital organization to join the network, it has also failed to
join the channel. Moreover, error handling in the proposed system should be
enhanced to define error with error codes and messages. This is a common practice
to help the user and developer to distinguish whether a request or response is
successful or not. Until the time being, these problems have not been solved yet and

required more research works.

7.5 Future Works

There are many improvements can be done to elevate the application to a
product that can fits real-world scenario and different business requirements. As this
project has only discussed about basic participant entities including patient, doctor
and hospital, other stakeholders such as commercial insurance companies,
researchers, laboratory, pharmacy and transnational health care industries might also
have the potential to participate into the network through the blockchain-based EHR
system. While scalability is allowed within Hyperledger Fabric framework, further
studies are required to address this feature as there might involved different sub-

channels and endorsement policies. Besides, the source code can also be improved to

90

make the solution more pluggable when adding more hospitals and its peers. Once
the network scales up, it will need to handle higher amount of transaction requests
and approvals, and this required more ordering peers to speed up the process. As
suggestion, Apaches Kafka, an open-source distributed event streaming platform
which can provide high-throughput, low-latency for real-time data handling should
be considered to manage multiple ordering nodes. In addition, Kubernetes, an open-
source container orchestration system for automating software deployment, scaling
and management can also be used for production environment when there are getting

more hospitals with their peers and channels exist in the network.

One notable trend in the healthcare industry is the increasing integration of
artificial intelligence (Al) into medical systems. Implementing Al algorithms into
EHR system where Al can aid in analyzing ledger data that includes patients’ health
data from all hospital in the network could revolutionize patient care in better
prognosis and diagnosis support. Al can assist healthcare professionals in detecting
patterns and anomalies within patient records, leading to quicker and more accurate
diagnoses. Additionally, the current metadata concept keeps the actual patient data
on the blockchain ledger as developed. However, it is not ideal when the blockchain
network grows bigger as it might degrade the transaction speed, plus many
healthcare entities have already invested significantly in conventional databases or
cloud-based storage solutions, making it impractical to migrate all data into a
blockchain network. By adopting a hybrid approach, where the blockchain stores
metadata and access records while the actual patient data remains in conventional
databases or cloud storage, healthcare organizations can leverage the benefits of both
worlds. This integration not only preserves existing investments but also allows for a
gradual transition towards decentralized systems and minimizing disruption which

benefits from the blockchain technology.

Another important thing to note is the network communication within the
system should be conducted using HTTPS to ensure transport-level security through
TLS encryption. Currently, passwords are transmitted in plain text from the front end
to the back end, and this security vulnerability can be addressed by implementing
HTTPS. Besides, it is recommended to integrate temporary password generated

when new user created through emails. Additionally, adaption of "forgot password"

91

feature is advisable. To enhance user experience and manage extensive patient data,
UI/UX strategies and a search functionality can be implemented. However, it is
essential to research whether Hyperledger Fabric supports wildcard searches. Given
that the data originates from multiple databases, it is crucial to prevent frequent

search queries so that system performance can be maintained.

These future developments align with the ongoing evolution of healthcare
technology, ensuring that the blockchain-based EHR system remains relevant and

adaptable to the changing landscape of EHR data management.

7.6 Conclusion

As a summary, this project has achieved its goals successfully and able to
contribute for future research to develop a more sophisticated blockchain-based EHR
data management system. It can be identified from this study that the personalized
medical system is a practical and useful application. By utilizing Hyperledger Fabric,
which is an encouraging blockchain framework that comes with the concepts of
smart contracts, endorsement policies and provision of secure identities which make
the records secure and controlled, it can offer a reliable and secure solution in
managing medical health record. This technology enables interoperability among
multiple hospital organizations, simplifying doctors' access to patient histories,
eliminating the need for patients to carry physical medical records, and substantially
enhancing the digital record-keeping process. Nonetheless, there is room for
improvement within Hyperledger Fabric before a finalized product can be developed.
Moreover, additional components or technologies beyond Hyperledger Fabric may
be necessary to further enhance its effectiveness and satisfy real-world scenario

requirements.

REFERENCES

Antonopoulos, A., & Wood, G. (2018). Mastering Ethereum: Building Smart
Contracts and Dapps. O'Reilly Media.

Antwi, M., Adnane, A., Ahmad, F., Hussain, R., Muhammad Habib Rehman, &
Kerrache, C. A. (2021). The Case of HyperLedger Fabric as a blockchain
Solution for Healthcare Applications. Blockchain: Research and

Applications, 2(1). https://doi.org/10.1016/j.bcra.2021.100012

Bashir, 1. (2017). Mastering Blockchain. Packt Publishing. https://shorturl.at/pxGLP

Dagher, G. G., Adhikari, C. L., & Enderson, T. (2018). Towards Secure
Interoperability between Heterogeneous Blockchains using Smart Contracts.
Future Technologies Conference (FTC).
https://saiconference.com/Downloads/FTC2017/Proceedings/8 Paper 491-
Towards_Secure Interoperability.pdf

Dimitrov, D. V. (2019). Blockchain Applications for Healthcare Data Management.
Healthcare Informatics Research, 25(1), 51.
http://dx.doi.org/10.4258/hir.2019.25.1.51

Donawa, A., Orukari, 1., & Baker, C. E. (2019). Scaling Blockchains to Support
Electronic Health Records for Hospital Systems. 2019 IEEE 10th Annual
Ubiquitous Computing, Electronics and Mobile Communication Conference,
UEMCON 2019, 550-556,
8993101. https://doi.org/10.1109/UEMCON47517.2019.8993101

Guo, H., & Yu, X. (2022). A Survey on Blockchain Technology and Its Security.
Blockchain: Research and Applications, 3(2), 100067.
https://doi.org/10.1016/j.bcra.2022.100067

http://dx.doi.org/10.4258/hir.2019.25.1.51
https://doi.org/10.1016/j.bcra.2022.100067

93

Guo, R., Shi, H., Zhao, Q., & Zheng, D. (2018). Secure Attribute-Based Signature
Scheme with Multiple Authorities for Blockchain in Electronic Health
Records Systems. I[EEE Access, 6, 11676-11686. doi:
10.1109/ACCESS.2018.2801266.

Huynh-The, T., Gadekallu, T. R., Wang, W., Yenduri, G., Ranaweera, P., Pham, Q.,
da Costa, D. B., & Liyanage, M. (2023). Blockchain for the metaverse: A

Review. Future Generation Computer Systems, 143, 401-419.
https://doi.org/10.1016/j.future.2023.02.008

Ismail, L. & Materwala, H. (2020). Blockchain Paradigm for Healthcare:
Performance Evaluation. Symmetry, 12(8), 1200.
DOI:10.3390/sym12081200

Jabbar, A., & Dani, S. (2020). Investigating the Link Between Transaction and
Computational Costs in A Blockchain Environment. Infernational Journal
of Production Research, 58(11), 3423-3436.
https://doi.org/10.1080/00207543.2020.1754487

Khatoon, A. (2020). A Blockchain-Based Smart Contract System for Healthcare
Management. Electronics, 9(1), 94,
https://doi.org/10.3390/electronics9010094

Knirsch, F., Unterweger, A., & Engel, D. (2019). Implementing a Blockchain from
Scratch: Why, How, and What We Learned. EURASIP Journal on
Information Security, 2. https://doi.org/10.1186/s13635-019-0085-3

Kumar, R., Wang, W., Kumar, J., Yang, T., Khan, A., Ali, W., & Ali, L. (2021). An
Integration of Blockchain and Ai for Secure Data Sharing and Detection Of
CT Images for the Hospitals. Computerized Medical Imaging and Graphics,
87. https://doi.org/10.1016/j.compmedimag.2020.101812

Lu, N., Zhang, Y., Shi, W., Kumari, S., & Choo, K. K. R. (2020). A secure and
Scalable Data Integrity Auditing Scheme Based on Hyperledger Fabric.

https://www.researchgate.net/journal/Symmetry-2073-8994
http://dx.doi.org/10.3390/sym12081200
https://doi.org/10.1016/j.compmedimag.2020.101812

94

Computers & Security, 92, 101741. doi:
https://doi.org/10.1016/j.cose.2020.101741.

Mitra, A., Bera, B., Das, A. K., Jamal, S. S., & You, I. (2023). Impact on
Blockchain-based AI/ML-enabled Big Data Analytics for Cognitive Internet
of Things environment. Computer Communications, 197, 173-185.

https://doi.org/10.1016/j.comcom.2022.10.010

Muhammad, S. & Soewito, B. (2022). A Blockchain for Secure Data Storing with
Multi Chain on Smart Healthcare System. Journal of Theoretical and
Applied Information Technology, 100, 13.
http://www.jatit.org/volumes/Vol100No13/4Vol100No13.pdf

Naz, M., A., F., Khalid, R., Javaid, N., Qamar, A. M., Afzal, M. K., & Shafiq, M.
(2019). A Secure Data Sharing Platform Using Blockchain and
Interplanetary File System. Sustainability, 11(24), 7054.
https://doi.org/10.3390/sul1247054

Ndzimakhwe, M., Telukdarie, A., Munien, 1., Vermeulen, A., K., U., & Philbin, S. P.
(2023). A Framework for User-Focused Electronic Health Record System

Leveraging Hyperledger Fabric. Information, 14(1), 51.
https://doi.org/10.3390/info14010051

Negi, L., & Bhatt, S. (2022). A Review on security schemes for Electronic Health
Records. 2022 Fifth International Conference on Computational Intelligence
and Communication Technologies (CCICT), Sonepat, India, 37-41. doi:
10.1109/CCiCT56684.2022.00019.

Newman, O., & Thorpe, S. Towards a Privately Permissioned Blockchain for

Electronic Health Care Environments — A Proof of Concept case study.

Odeh, A., Keshta, 1., & Al-Haija, Q. A. (2022). Analysis of Blockchain in the
Healthcare Sector: Application and Issues. Symmetry, 14(9), 1760.
https://doi.org/10.3390/sym 14091760

https://doi.org/10.1016/j.cose.2020.101741.
https://doi.org/10.1016/j.comcom.2022.10.010
http://www.jatit.org/volumes/Vol100No13/4Vol100No13.pdf
https://doi.org/10.3390/su11247054
https://doi.org/10.3390/info14010051
https://doi.org/10.3390/sym14091760

95

Purwono, Nisa, K., Wibisono, S. K., & Dewa, B. P. (2023). Private Blockchain in the
Field of Health Services. Journal of Advanced Health Informatics Research
(JAHIR), 1, 1, 10-15. DOI: https://doi.org/10.59247/jahir.v1il.14

Rouhani, S., Butterworth, L., Simmons, A. D., Humphery, D. G., & Deters, R.
(2019). MediChainTM: A Secure Decentralized Medical Data Asset

Management System. ArXiv.
https://doi.org/10.1109/Cybermatics 2018.2018.00258

Tanwar, S., Parekh, K., & Evans, R. (2020). Blockchain-based electronic healthcare
record system for healthcare 4.0 applications. Journal of Information
Security and Applications, 50, 102407.
https://doi.org/10.1016/j.jisa.2019.102407

Tith, D., Lee, J., Suzuki, H., Wijesundara, W. M. A. B., Taira, N., Obi, T., &
Ohyama, N. (2020). Patient Consent Management by a Purpose-Based
Consent Model for Electronic Health Record Based on Blockchain
Technology. Healthcare Informatics Research 2020, 26(4), 265-273.
https://doi.org/10.4258/hir.2020.26.4.265

Usman, M., & Qamar, U. (2020). Secure Electronic Medical Records Storage and
Sharing Using Blockchain Technology. Procedia Computer Science, 174,
321-327. https://doi.org/10.1016/j.procs.2020.06.093

Wang, Q., & Qin, S. (2021). A Hyperledger Fabric-Based System Framework for
Healthcare Data Management. Applied Sciences, 11(24), 11693.
https://doi.org/10.3390/app112411693

Wang, S., Zhang, Y., & Zhang, Y. (2018). A Blockchain-Based Framework for Data
Sharing with Fine-Grained Access Control in Decentralized Storage
Systems. IEEE Access, 6, 38437-38450. doi:
10.1109/ACCESS.2018.2851611.

https://doi.org/10.59247/jahir.v1i1.14
https://doi.org/10.4258/hir.2020.26.4.265
https://doi.org/10.1016/j.procs.2020.06.093

96

Westphal, E., & Seitz, H. (2021). Digital and Decentralized Management of Patient
Data in Healthcare Using Blockchain Implementations. Frontiers in

Blockchain, 4, 732

APPENDICES

APPENDIX A - INSTALLATION OF PREREQUISITE

1. Setting up Ubuntu 22.04.3 LTS in VMware.

My Computer
Windows 7 New Virtual Machine Wizard
Guest Operating System Installation
Avirtual machine is like a physical computer; it needs an operating
system. How will you install the guest operating system?
Install from:

Installer disc:

No drives available.

(@ Installer disc image file (iso):

‘ D:\Desktop\FYP2\Downloads\ubuntu-22.04.3-deskiop v‘ Brovise...

n it in a tab.

(] Ubuntu 64-bit 22.04.3 detected.
This operating system will use Easy nstall. (What's this?)

(O 1will install the operating system later.

The virtual machine will be created with blank hard disk.

= Cance

2. Install git.

98

#1 chek@chek-virtual-machine: ~

:~$ git --version
Command 'git' not found, but can be installed with:
sudo apt install git
:-$ sudo apt-get install git
[sudo] password for chek:
Reading package lists... Done
Building dependency tree Done
Reading state information... Done
The following additional packages will be installed:
git-man liberror-perl
Suggested packages:
git-daemon-run | git-daemon-sysvinit git-doc git-email git-gui gitk gitweb
git-cvs git-mediawiki git-svn
The following NEW packages will be installe
git git-man liberror-perl
@ upgraded, 3 newly installed, @ to remove and 2 not upgraded.
Need to get 4,147 kB of archives.
After this operation, 21.0 MB of additional disk space will be used.
Do you want to continue? [Y/n] y
/my.archive.ubuntu.com/ubuntu jammy/main amd64 liberror-perl all ©.17029-1 [26.5 kB]
/my.archive.ubuntu.com/ubuntu jammy-updates/main amd64 git-man all 1:2.34.1-1ubuntul.10 [954 kB]
/my.archive.ubuntu.com/ubuntu jammy-updates/main amd64 git amd64 1:2.34.1-1ubuntul.10 [3,166 kB]
Fetched 4,147 kB in 2s (1,716 kB/s)
Selecting previously unselected package liberror-perl.
(Reading database ... 198900 files and directories currently installed.)
Preparing to unpack .../liberror-perl_6.17629-1_all.deb ...
Unpacking liberror-perl (©.17029-1)
Selecting previously unselected package git-man.
to unpack .../git-man_1%3a2.34.1-1ubuntul.10_all.deb
git-man (1:2.34.1-1ubuntul.10) ...
previously unselected package git.
to unpack fgit_1%3a2.34.1-1ubuntul.10_amd64.deb ...
git (1:2.34.1-1ubuntul.10) ...
Setting up liberror-perl (©.17029-1)
tting up git-man (.34.1-1ubuntul.10)
Setting up git (1 34.1-1ubuntul.10)
Processing trigge for man-db (2.10.2-1) ...
:-$ git --version
git version 2.34.1

3. Install curl.

+-$ sudo apt install curl

Reading package lists... Done

Building dependency t Done

Reading state information... Done

The following NEW packages will be installed

curl

6 upgraded, 1 newly installed, 0 to remove and 2 not upgraded

Need to get 194 kB of archives.

After this operation, 454 kB of additional disk space will be used

Get:1 http://my.archive.ubuntu.com/ubuntu jammy-updates/main amd64 curl amd64 7.81.0-lubuntul.13 [194 kB]

Fetched 194 kB in 1s (206 kB/s)

selecting previously unselected package curl

(Reading database 199885 files and directories currently installed.)
/curl_7.81.0-1ubuntul.13_and64.deb ...

Setting up curl (7.81.0-1ubuntul.13)
Processing triggers for man-db (2.16.2-1) ...
+$ curl
curl: try 'curl --help' or 'curl --manual' for more information
$ curl --version
curl 7.81.0 (x86_64-pc-linux-gnu) libcurl/7.81.0 OpenssL/3.0.2 zlib/1.2.11 brotli/1.0.9 zstd/1.4.8 1ibidn2/2.3.2 libpsl/e.21.6 (+libidn2/2.3.2) libssh/e.9.6/openssl/zlib nghttp2/1.4
3.6 librtmp/2.3 OpenlDAP/2.5.16
Re’ e-Date: 2022-01-05
protocols: dict file ftp ftps gopher gophers http https imap imaps ldap ldaps mqtt pop3 pop3s rtmp rtsp scp sftp smb smbs smtp smtps telnet tftp
Featur alt-svc AsynchDNS biotli PI HSTS HTTP2 HTTPS-proxy IDN IPv6 Kerberos Largefile libz NTLM NTLM_WB PSL SPNEGO SSL TLS UnixSockets zstd
IS5

4. Install docker desktop.

1 chek@chek-virtual-machine: ~

chek:x:1000:1000:chek, ,, : /home/chek: /bin/bash
:-$ sudo usermod -aG kvm chek
[sudo] password for che
: S 1s -al /dev/kvm
crw-rw----+ 1 root kvm 10, 232 Ogos 30 13:44
S sudo apt install gnome-terminal
Reading package lists... Done
Building dependency tree Done
Reading state information... Done
gnome-terminal is already the newest version (3.44.08-1ubuntul).
gnome-terminal set to manually installed.
© upgraded, ©® newly installed, ©@ to remove and 2 not upgraded.
:-$ sudo apt remove docker-desktop
Reading package lists... Done
Building dependency tree Done
Reading state information.
Unable to locate package docker-desktol

99

:S$ sudo apt-get update
Hit:1 http://my.archive.ubuntu.com/ubuntu jammy InRelease
Hit:2 http://my.archive.ubuntu.com/ubuntu jammy-updates InRelease
Hit:3 http://my.archive.ubuntu.com/ubuntu jammy-backports InRelease
Hit:4 http://security.ubuntu.com/ubuntu jammy-security InRelease
Reading package lists... Done
:$ sudo apt-get install ca-certificates curl gnupg
Reading package lists...
Building dependency tree.
Reading state information
ca-certificates is already the newest version (20230311ubuntu0.22.04.1).
ca-certificates set to manually installed.
curl is already the newest version (7.81.0-1ubuntul.13).
gnupg is already the newest version (2.2.27-3ubuntu2.1).
gnupg set to manually installed.
0 upgraded, © newly installed, © to remove and 2 not upgraded.
: $ sudo install -m 0755 -d /etc/apt/keyrings
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /etc/apt/keyrings/docker.gpg
sudo chmod a+r /etc/apt/keyrings/docker.gpg
2 echo \
"deb [arch="$(dpkg --print-architecture)" signed-by=/etc/apt/keyrings/docker.gpg] https://download.docker.com/linux/ubuntu \
"$(. /etc/os-release && echo "SVERSION_CODENAME")" stable" |
sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
: $ sudo apt-get update
Get:1 https://download.docker.com/linux/ubuntu jammy InRelease [48.9 kB]
Get:2 https://download.docker.com/linux/ubuntu jammy/stable amd64 Packages [21.4 kB]
Hit:3 http://security.ubuntu.com/ubuntu jammy-security InRelease
Hit:4 http://my.archive.ubuntu.com/ubuntu jammy InRelease
Hit:5 http://my.archive.ubuntu.com/ubuntu jammy-updates InRelease
Hit:6 http://my.archive.ubuntu.com/ubuntu jammy-backports InRelease
Fetched 70.3 kB in 1s (64.5 kB/s)

Reading package lists... Done
=9 I
@ | @ NewTab X | v 5 o &
(] Q t ux/main/amd 2212 ; ckeraut o8 a =
3] Import bookmarks... @ Getting Started BB cocker-desktop-4.22.1-amded.deb 5
= .
| © open previous tabs? You can restore your previous session from the Firefox application mei X
show all downloads
3

$ cd Desktop
$ sudo apt-get install ./docker-desktop-4.22.1-amd64.deb
Reading package lists... e
Building dependency tree Done
Reading state information Done
Note, selecting 'docker-desktop’ instead of './docker-desktop-4.22.1-amd64.deb’
The following additional packages will be installed:
docker-buildx-plugin docker-ce-cli docker-compose-plugin ibverbs-providers ipxe-qemu
ipxe-qemu-256k-compat-efi-roms libaiol libcacarde libdaxctli libdecor-6-0
1libdecor-@-plugin-1-cairo libfdt1 libgfapi® libgfrpce libgfxdre libglusterfse
libibverbs1i libiscsi7 1libndctl6 libpmeml libpmemobji libgrencode4 librados2 librbdi
librdmacm1 libsdl12-2.0-0 libslirpe libspice-server1l liburing2 libusbredirparseri1
libvirglrenderer1 ovmf pass gemu-block-extra gemu-system-common qemu-system-data
qemu-system-gui gemu-system-x86 gemu-utils grencode seabios tree uidmap xclip
Suggested packages:
gstreamer1.0-1libav gstreamer1.0-plugins-ugly libxml-simple-perl python ruby samba vde2
debootstrap
The following NEW packages will be installed:
docker-buildx-plugin docker-ce-cli docker-compose-plugin docker-desktop
ibverbs-providers ipxe-gemu ipxe-qemu-256k-compat-efi-roms libaiol libcacard® libdaxctli
libdecor-©-6 libdecor-®-plugin-1-cairo libfdt1i libgfapie libgfrpce libgfxdre

systemctl --user start docker-desktop
: docker compose version
Docker Compose version v2.20.2-desktop.1
:$ docker --version
Docker version 24.0.5, build ced®996
H docker version
Client: Docker Engine - Community
Cloud integration: v1.0.35-desktop+0081
Version: 24.0.5
API version: 1.43
Go version go1.20.6
Git commit: ced0996
Built: Fri Jul 21 26:
0S/Arch: linux/amd64
Context: desktop-linux

Server: Docker Desktop 4.22.1 (118664)

Engine:

Version: 24.0.5

API version: 1.43 (minimum version 1.12)

Go version: g01.20.6

Git commit: a6le2bs

Built: Fri Jul 21 20:35:45 2023

0S/Arch: linux/amd64

Experimental: false

containerd:

Version 1.6.21

GitCommit: 3dce8eb855cbb6872793272b4f20ed1611734418

runc:

Version: 1.1.7

GitCommit v1.1.7-6-g860f061

docker-init:

Version: 0.19.0

GitCommit: de40ado

: S systemctl --user enable docker-desktop

Created symlink /home/chek/.config/systemd/user/docker-desktop.service — fusr/lib/systemd/user/docker-desktop.service.
Created symlink /home/chek/.config/systemd/user/graphical-session.target.wants/docker-desktop.service — /usr/lib/systemd/user/docker-desktop.service.

Docker Desktop Upgrade plan Q, Search for images, containers, volumes, extensions and more... Ctri+K Signin €

@ Containers Containers e feedback =
“¥ Images

Volumes

Dev Environments BETA cr

©

Docker Scout EARLY ACCESS

¢ S

Learmng center
Your running containers show up here

S A
Extensions : A container is an isolated environment for your code

@ Add Extensions

What is a container? How do | run a container?

?

= 5 mins 6 mins
Run Docker Hub images Multi-container applications
5 mins 6 mins

View more guides

— RAM0.89 GB CPUOD.50% Disk 62.03 GB avail. of 67.3268 % Not connected to Hub v4.22.1

5. Install docker compose.

e:-$ sudo apt-get install git curl docker-compose -y
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done

:-S sudo apt-get install docker-ce docker-ce-cli containerd.io docker-compose-plugin
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
docker-ce-cli is already the newest version (5:24.0.5-1~ubuntu.22.04-jammy).
docker-ce-cli set to manually installed.

: S sudo usermod -a -G docker chek
:-% docker --version
Docker version 24.0.5, build ced8996
: % docker-compose --version
docker-compose version 1.29.2, build unknown

6. Install golang.

:-$ sudo apt install golang-go
Reading package lists... Done

:S$ go version
go version gol.18.1 linux/amd64

S

7. Install Hyperledger Fabric and download binary, images.

101

1S curl -ssL https://bit.ly/2ysboFE | bash 2:2.2 1.4.9
Clone hyperledger/fab -samples repo

===> Cloning hyperledger/fabric-samples repo
Cloning into 'fabric-samples'...
remote: Enumerating objects: 12544, done.
remote: Counting objects: 1008% (577/577), done.
remot Compressing objects: 108% (323/323), done.
remote: Total 12544 (delta 274), reused 426 (delta 224), pack-reused 11967
Receiving objects: 100% (12544/12544), 22.53 MiB | 1.40 MiB/s, done.
Resolving deltas: 100% (6728/6728), done.
Checking out v2.2.2 of hyperledger/fabric-samples

Pull Hyperledger Fabric binaries

Downloading version 2.2.2 platform specific fabric binar
Downloading: https://github.com/hyperledger/fabric/releases/download/v2.2.2/hyperledger-fabric-linux-amd64-2.2.2.tar.gz
Total % Received % Xferd Average Speed Time Time Time Current
Dh)dd Upload Total Spent Left Speed
(] (] e (] (6] (]
72.8M 100 72.8M e e 9,9M B 11.4M
Done.
Downloading version 1.4.9 platform specific fabric-ca-client binary
Downloading: https://github.com/hyperledger/fabric-cafreleases/download/v1.4.9/hyperledger-fabric-ca-linux-amd64-1.4.9.tar.gz
Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
(] e e ¢} e e e e i et It (]
23.6M 100 23.6M (] 0 9186k 0 0:00:02 0:00:02 - 16.4M

$ curl -o- https /raw.githubusercontent.com/nvn-sh/nvn/ve.38.0/install.sh | bash
% Total % i Xferd Averag d Time Time Time Current
Dload Upl(:ad Total Spent Left Speed
100 14926 100 14926 © o 25134 0 25127
fia (Z0STee 0, otaiadl i onel cher n oW - Lol st T
Compressing and cleaning up git repository

nvm source string already in /home/chek/.bashre
ash_completion source string already in /home/chek/.bashrc
> (10\: and reopen your terminal to start using nvm or run the following to use it now:

export NVM_D: uME/,nvm”
L NVM_DIR/nvnm 1 88 \. "SNVM_DIR/nvm.sh” # This loads nvm
NVM_DIR/bash_completion”] && \. "SNVM_DIR/bash_completion” # This loads nvm bash_completion
$ source ~/.bashrc
bash: fusr/localfbin/ng: No such file or directory
:-$ nvm install 16.15.3
Downloading and installing node v16.15.3.
Downloading https://nodejs.org/dist/v16.15.3/node-v10.15.3- Lin .tar.>»
»nn»mnmmym»mwvm}mmmm»ma#»am#mm»mm»wmmmmmvmngm»mnvm 100
Computing checksum with sha256sun
Checksuns matched!
Now using node v16.15.3 (npm v6.4.1)
Creating default ali;)
:-$ npm install -g @angular/cli@il

npm @schematics/update@.1162.19: This was an internal-only Angular package up through Angular vil which is no longer used or maintained. Upgrade Angular to vi2+ to
remove this dependency.

sour cemap-codec@ : Please use @jridgewell/sourcemap-codec instead

request@2.88.2: request has been deprecated, see https://github.com/request/request/issues/3142

har-validator@s.1.5: this library is no longer supported

uuid@3.4.0: Please upgrade to version 7 or higher. Older versions may use Math.random() in certain circumstances, which is known to be problematic. See https:
//vs« dev/blog/math-randon for details.
i @npncli/mo rhl:@i 1.2: Thls functionality has been moved tv) lecenct it

pncli/ci-detect@l.4.0 s package has been deprecated ct

/home/ch:k/ nvn/versions/node/v10.15. 3/b\n/ng > /hnme/(hek/ nvm/verﬂon)/node/vm 15. 3/1\b/nod: modul:s/@angular/tllfb\n/ng

> @angular/cli@11.2.19 postinstall /home/chek/.nvn/versions/node/v16.15.3/1ib/node_modules/@angular/cli
> node ./bin/postinstall/script.js

+ @angular/cli@1l.2.19

added 247 packages from 183 contributors in 23.264s
:$ node -v

v10.15.3

4.1

Angular CLI: 11.2.19
Node: 168.15.3
05: linux x6

Angular:

Version
@angular-devkit/architect 0.1102.19 (cli-only)
@angular-devkit/core 11.2.19 (cli-only)
@angular-devkit/schematics 11.2.19 (cli-only)
@schematics/angular 11.2.19 (cli-only)
@schematics/update 0.1102.19 (cli-only)

s

9. Install python.

102

: 5 sudo apt install python2
Reading package lists. Done
Building dependency tree... Done
Reading state information... Done
The following additional packages will be installed:
libpython2-stdlib python2-minimal

Suggested packages:
python2-doc python-tk
The following NEW packages will be installed:
libpython2-stdlib python2 python2-minimal
® upgraded, 3 newly installed, @ to remove and 2 not upgraded.
Need to get 37.4 kB of archives.

APPENDIX B - STEPS TO START NETWORK

1. Copy bin directory from ‘fabric samples’ to blockchain-hyperledger-fabric-

electronic-patient-records/app directory.

2. At first network directory, execute the network.sh file with argument up.

$ cd app
$ cd first-network
$. /network.sh up createchannel

Creating network "lithiun-network_hospital® with the default driver
Creating =
Creating 5
Creating ca_orderer ...

-ca-client enroll -u https://hospladnin:hospilithiun@localhost:7054 --caname ca-hospl --tls.certfiles /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app
twork/organizations/fabric-ca/hospl/tls-cert.pen
2023/09/10 17:22:59 [INFO] Created a default configuration file at /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/first-network/organizations/peerorganizati
ons/hosp1.lithium.com/fabric-ca-client-config.yaml
9 [INFO] TLS Enabled
9 [INFO] generating key:
2023/69/16 17:22:59 [INFO] encoded CSR
2023/09/16 17:22:59 [INFO] Stored client certificate at /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/first-network/organizations/peerorganizations/hospl.l
ithiun. con/msp/signcerts/cert. pem
2 20:c0 01 <

got status: &{SERVICE_UNAVAIL/
orderer connections initialized
got status: &{SERVICE_UNAVAILABLE}
orderer connections initialized
got status: &[SERVICE_UNAVAILABLE}
orderer connections initialized
{SERVICE_UNAVATLABLE}
ions initialized
got status: &{SERVICE_UNAVAILABLE}
orderer connections initialized
Received block:

channel join -b ./channel-artifacts/hospitalchannel.block

Endorser and orderer connections initialized
Successfully submitted proposal to join channel

+ peer channel join -b ./channel-artifacts/hospitalchannel.block
+ res=e
Endorser and orderer connections initialized
Successfully submitted proposal to join channel

+ peer channel update -o localhost:7656 --ordererTLSHostnameOverride orderer.lithium.com -c hospitalchannel -f ./channel-artifacts/hospiMSPanchors.tx --tls --cafile /home/chek/block
chain-hyperledger-fabric-electronic-patient-records/app/first-network/organizations/ordererorganizations/lithiun. con/orderers/orderer.lithiun.com/msp/tlscacerts/tlsca. lithiun.con-ce
rt.pem
+ res=0
Endorser and orderer connections initialized
Successfully submitted channel update

+ peer channel update -o localhost:7050 --ordererTLSHostnameOverride orderer.lithium.con -c hospitalchannel -f ./channel-artifacts/hospzMSPanchors.tx --tls --cafile /home/chek/block
chain-hyperledger-fabric-electronic-patient-records/app/first-network/organizations/ordererorganizations/lithium. con/orderers/orderer.lithiun.com/msp/tlscacerts/tlsca. lithiun.con-ce

Endorser and orderer connections initialized
Successfully submitted channel update

s

3. Package smart contract codes inside ’patient-asset-transfer’ using deployCC

command.

103

S ./network. sh deploycC

executing with the following

- CHANNEL_NAME:
CC_NAM
CC_SRC_PATH:
CC_SRC_LANGUAGE :
CC_VERSION:
CC_SEQUENCE
CC_END_POLTC
CC_COLL_CONFIG:
CC_INIT_FCN:
DELAY
MAX_RETRY:
VERBOSE:
HOSP:

peer lifecycle chaincode package patient.tar.gz --path ../patient-asset-transfer/chaincode/ --lang node --label patient 1.6
res=0

+ peer lifecycle chaincode install patient.tar.gz
+ res=

Installed remotely: response:<status:200 payload:"\nLpatient_1.:c7e485e1f96be749d9ed1ese3eda
48196936200c28e3dcd27da6f f4ef6Fd84c7\022\613patient_1.0" >

Chaincode code package identifier: patient_1.0:c7e485e1f98be749d9ed1e6e3edads196936200c28e3dc
d27da6f faefefdaac

r chaincode invoke -o localhost:7656 --ordererTLSHostnameOverride orderer.lithium.com --tls --cafile /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/fir
st-network/organizations /orderer0rganizations/lithiun. con/orderers/orderer. Lithiun.com/nsp/tlscacerts/tlsca. lithiu.con-cert.pem -C hospitalchannel -n patient --peerAddresses localh
651 --tlsRootCertFiles /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/first-network/organizations/peerorganizations/hosp.ithiun.con/peers/peere.hospl
.lithium.com/t1s/ca.crt --peerAddresses localhost:9851 --tlsRootCertFiles /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/first-network/organizations/peerorg
anizations/hosp2. lithiun.con/peers/peero.hospz.1ithium.con/tls/ca.crt --isInit -c '{"function”:"initLedger","Args":[]}'
+ res=0
Chatncode invoke successful. result: statu

sl

4. Go to app/server and installs all dependency files required for the backend server

to run by using command ‘npm install’.

S npm install

The package-lock.json file was created with an old version of npm,
so supplemental metadata must be fetched from the registry.

This is a one-time fix-up, please be patient...

inflate:extend-shallow/node_modules/is-extendable: node_modules/extend-shallow/node_modules/is-extendable

5.Go to directory app/patient-asset-transfer/application-javascript, install node

project by npm install.

$ cd ../patient-asset-transfer/application-javascript
$ npm install

> pkcs11js@1.2.0 install /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/patient-asset-transfer/application-javascript/node_modules/pkcsiljs
> node-gyp rebuild

6. Go to app/patient-asset-transfer/chaincode, install node project by npm install.

$ cd ../chaincode
s npn install
I] / refresh-package-json:is-fullwidth-code-point: /home/chek /blockchain-hyperledger-fabric-electronic-patient-records/app/patient-ass

7. Start the expressjs backend server.

¥ $ cd ../server
ash: cd: ../server: No such file or directory

$ cd server

S npm start

patient-application@l.0.8 prestart /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/server
node initServer.js

104

Built a CA Client named ca-hospl
successfully registered and enrolled user PIDS and imported it into the wallet
msg: Successfully enrolled user PID5 and imported it into the wallet
Done
Built a file system wallet at /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/patient-asset-transfer/application-Jjavascript/wallet
Loaded the network configuration located at /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/first-network/organizations/peerorganizations/hosp1.lithium.con/c
onnection-hosp1.json
Built a CA Client named ca-hospi
Successfully registered and enrolled user HOSP1-DOCO and imported it into the wallet
msg: Successfully enrolled user HOSP1-DOCO and imported it into the wallet
Built a file system wallet at /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/patient-asset-transfer/application-javascript/wallet
Loaded the network configuration located at /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/first-network/organizations/peerorganizations/hosp2.lithium.con/c
onnection-hosp2. json
Built a CA Client named ca-hosp2
successfully registered and enrolled user HOSP2-DOC1 and imported it into the wallet
: successfully enrolled user HOSP2-DOCI and imported it into the wallet
Built a file system wallet at /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/patient-asset-transfer/application-javascript/wallet
Loaded the network configuration located at /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/first-network/organizations/peerorganizations/hosp1.lithium.con/c
onnection-hosp1.json
Built a CA Client named ca-hospl
successfully registered and enrolled user HOSP1-DOC2 and imported it into the wallet
msg: Successfully enrolled user HOSP1-DOC2 and imported it into the wallet
Built a file system wallet at /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/patient-asset-transfer/application-javascript/wallet
Loaded the network configuration located at /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/first-network/organizations/peerOrganizations/hosp2.lithium.con/c
onnection-hosp2.json
Built a CA Client named ca-hospz
successfully registered and enrolled user HOSP2-DOC3 and imported it into the wallet
msg: Successfully enrolled user HOSP2-DOC3 and imported it into the wallet

> patient-application@l.0.0 start /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/server

> ./node_modules/nodemon/bin/nodenon. s src/server.js

Backend server running on 3001

Backend server running on 3801

8. Go to app/client, install node project by npm install.

$ cd ../client
: S npm install
This version of npm is compatible with lockfileversiongl, but package-lock.json was generated for lockfileversiongz. I'll try to do my best with it!
] \ extract:gbabel/plugin-transform-reserved-word: GET 200 https://registry.npnjs.org/@babel/plugin-transform-block-scoping/-/plugin-transforn-block-

cypress@.8.0 postinstall /home/chek/blockchain-hyperledger-fabric-electronic-patient-records/app/client/node_modules/cypress
node index.js --exec install

Installing Cypress

You can now open Cypress by running:

SKIPPING OPTIONAL DEPENDENCY: fsevents@l.2.13 (node_modules/webpack-dev-server/node_modules/fsevents):

SKIPPING OPTIONAL DEPENDENCY: Unsupported platforn for fsevents@l.2.13: wanted {"os":"darwin”,”arch”:"any"} (current: {"os":"linux","arch”:"x64"})
SKIPPING OPTIONAL DEPENDENCY: fsevents@l.2.13 (node_modules/watchpack-chokidar2/node_modules/fsevents
IPPING OPTIONAL DEPENDENCY: Unsupported platform for fsevents@l.2.13: wanted {"os":"darwin","arch”:"any"} (current: {"os":"linux","arch":
SKIPPING OPTIONAL DEPENDENCY: fsevents@2.1.3 (node_modules/fsevents)

SKIPPING OPTIONAL DEPENDENCY: Unsupported platform for fsevents@2.1.3: wanted { darwin”,"arch”:"any"} (current: {"os":"linux

added 1587 packages from 1305 contributors and audited 1593 packages in 91.164s
vulnerabilities (2 low, 107 mo i3)
: &

1 25
“npm audit fix' to fix them, or ‘npm audit' for details

S ng serve -o

Compiling @angular/core : es2015 as esm2015
iling @angular/common : es2015 as esm2015
@angular /platforn-browser : es2015 as esm2015
@angular /platforn-browser-dynamic : es2015 as esm2015
@angular/conmon/http : es2015 as esm2015
@angular/forms : es2015 as esm2015
@ng-select/ng-select : es2015 as esm2015
@ng-bootstrap/ng-bootstrap : es2015 as esm2015
@angular/router : es2615 as esm2015
Browser application bundle generation complete.

Initial Chunk Files | Names size
for. j vendor HB
main
styles
polyfills
runtime
Initial Total 4.46 MB
Build at: 2023-69-11T04:37:30.269Z - Hash: 24876a4c809fe0937cf - Time: 20061ns
** Angular Live Development Server is listening on localhost:4200, open your browser on http://localhost:4208/ **

¥ Compiled successfully.
Browser application bundle generation complete.

Initial Chunk Files | Names
t styles | 21

size
1 kE

4 unchanged chunks
Build at: 2023-69-11T04:37:38.176Z - Hash: c69d95f4632435ff3ae2 - Time: 7263nms

/ Compiled successfully.

	DEDICATION
	ACKNOWLEDGEMENTS
	ABSTRACT
	ABSTRAK
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF ATTACHMENTS
	Chapter 1: INTRODUCTION
	1.1Project Background
	1.2Problem Statement
	1.3Project Questions
	1.4Project Objective
	1.5Project Scope
	1.6Project Contribution
	1.7Report Organization
	1.8Conclusion

	Chapter 2: LITERATURE REVIEW
	2.1Introduction
	2.2Blockchain Technology
	2.2.1Core of Blockchain Technology
	2.2.1.1Distributed Ledger Technology
	2.2.1.2Cryptography
	(a)Symmetric Cryptography
	(b)Asymmetric Cryptography

	2.2.1.3Smart Contract
	2.2.1.4Consensus Mechanisms
	(a)Proof of Work (PoW)
	(b)Proof of Stake (PoS)
	(c)Delegated Proof of Stake (DPoS)
	(d)Byzantine Fault Tolerance (BFT)
	(e)PBFT
	(f)Proof of Storage (PoS)
	(g)Proof of Activity (PoA)

	2.2.2Types of Blockchain
	2.2.2.1Public Blockchain
	2.2.2.2Private Blockchain
	2.2.2.3Consortium Blockchain

	2.3Blockchain Platform
	2.3.1Ethereum
	2.3.2Hyperledger
	2.3.2.1Hyperledger Fabric
	2.3.2.2Hyperledger Sawtooth Lake
	2.3.2.3Hyperledger Iroha
	2.3.2.4Hyperledger Burrow
	2.3.2.5Hyperledger Indy

	2.3.3MultiChain
	2.3.4Open Chain

	2.4Critical Review of Existing Works
	2.5Proposed Solution
	2.6Conclusion

	Chapter 3: PROJECT METHODOLOGY
	3.1Introduction
	3.2Methodology
	3.2.1Planning
	3.2.2Design
	3.2.3Implementation
	3.2.4Testing
	3.2.5Evolution

	3.3Project Milestones
	3.4Conclusion

	Chapter 4: DESIGN
	4.1Introduction
	4.2Problem Analysis
	4.3Requirement Analysis
	4.3.1Data Requirement
	4.3.2Functional Requirement
	4.3.2.1Smart Contract/Chaincode

	4.3.3Software Requirement
	4.3.4Hardware Requirement

	4.4High-Level Design
	4.4.1System Architecture

	4.5Conclusion

	Chapter 5: IMPLEMENTATION
	5.1Introduction
	5.2Software Configuration Management
	(a)Prerequisite software: The base layer needed to ru
	(b)
	(c)
	(d)
	(e)The Application: Blockchain application that will

	5.3Prerequisite Base Software
	5.4Fabric and Fabric Samples
	5.5Contract APIs
	5.6Application SDK
	5.6.1Hyperledger Fabric Client SDK
	(a)fabric-ca-client: The fabric-ca provides APIs to p
	(b)fabric-common: This component consolidates the com
	(c)fabric-network: This package contains the APIs req

	5.6.2Wallet
	5.6.3JSON Web Tokens

	5.7Application
	5.7.1State of Distributed Database
	5.7.2Identity (CA)
	(a)Cryptogen: Cryptogen is a tool that creates certif
	(b)CAs: Each hospital has its very own CA server that

	5.7.3Membership Service Provider (MSP)
	5.7.4Endorsement Policies
	5.7.5Security Mechanism

	5.8Conclusion

	Chapter 6: TESTING
	6.1Introduction
	6.2Test Strategy
	6.2.1Classes of Tests

	6.3Test Design
	6.3.1Test Description
	6.3.2Test Data

	6.4Test Results and Analysis
	6.4.1Network Testing
	6.4.2Functionality Testing
	6.4.2.1Admin
	(a)Login
	(b)View List of Patients
	(c)Create Patient
	(d)Create Doctor

	6.4.2.2Patient
	(a)Login
	(b)View Personal Details
	(c)View List of Doctors & Grant/Revoke Access
	(d)Edit Personal Details
	(e)View EHR History

	6.4.2.3 Doctor
	(a)Login
	(b) View List of Patients & Patient’s EHR
	(c) Update EHR
	(d) View Patient’s EHR history

	6.5Conclusion

	Chapter 7: PROJECT CONCLUSION
	7.1Introduction
	7.2Project Summarization
	7.3Project Contribution
	7.4Project Limitation
	7.5Future Works
	7.6Conclusion

	REFERENCES
	APPENDICES

