
PROTOTYPE OF BLOCKCHAIN-BASED WEB APPLICATION FOR
ELECTRONIC HEALTH RECORD (EHR) DATA MANAGEMENT

AMONG HOSPITALS

CHEK SHIN JING

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

i

PROTOTYPE OF BLOCKCHAIN-BASED WEB APPLICATION FOR
ELECTRONIC HEALTH RECORD (EHR) DATA MANAGEMENT AMONG

HOSPITALS

CHEK SHIN JING

This report is submitted in partial fulfillment of the requirements for the
Bachelor of [Computer Science (Computer Security)] with Honours.

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY
UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2023

ii

DECLARATION

I hereby declare that this project report entitled

PROTOTYPE OF BLOCKCHAIN-BASEDWEB APPLICATION FOR

ELECTRONIC HEALTH RECORD (EHR) DATA MANAGEMENT AMONG

HOSPITALS

is written by me and is my own effort and that no part has been plagiarized

without citations.

STUDENT : ________________CHEK__________________ Date : 25/9/2023
(CHEK SHIN JING)

I hereby declare that I have read this project report and found

this project report is sufficient in term of the scope and quality for the award of

Bachelor of [Computer Science (Computer Security)] with Honours.

SUPERVISOR : ______________________________________ Date : ________
(TS. DR. MOHD. FAIRUZ ISKANDAR OTHMAN)

mohdfairuz@utem.edu.my
Typewritten text
26/9/2023

iii

DEDICATION

This project is dedicated to whom that has been part of my life.

iv

ACKNOWLEDGEMENTS

First of all, I would like to take this opportunity to express my gratitude to my

supervisor TS. Dr. Mohd. Fairuz Iskandar Othman of Faculty of Information and

Communication Technology, Universiti Teknikal Malaysia Melaka (UTeM) for

assistant, motivation word and his patience to help in me to complete this project

successfully. I would also like to express my appreciation towards Dr. Zaheera

Zainal Abidin for her guidance and evaluator GS. Dr. Othman Mohd for his advice.

I would like to thank my beloved parents who have giving me support, motivation

word and provide needs during my studies.

I would like to express my sincere gratitude to my fellow friends that always give

motivation mentally and physically during the PSM.

v

ABSTRACT

Electronic Health Record (EHR) is considered as one of the most sensitive
data in digital world. However, it is often being compromised due to obsolete of data
management methods such as traditional data storage using local database, unpatched
cloud storage that cannot overcome the latest cybersecurity attacks. Besides, it is also
questioned that the current existing EHR data management solutions are mostly not
transparent enough and causing interoperability challenges. Hence, the primary
challenge addressed in this study is the secure sharing and management of sensitive
patient health data among hospitals while ensuring data integrity, access control and
auditability. The project utilizes Hyperledger Fabric's blockchain technology to
provide a private and tamper-resistant ledger for storing and sharing EHR data.
Through a rigorous research process involving system design, smart contract
development and network configuration, the prototype establishes a more robust
framework for EHR data management. The results demonstrate the potential
implementation of a secure and scalable system that enables authorized medical
authorities to access and update patient records efficiently, while ensuring data
privacy and compliance with healthcare regulations. This project contributes to the
advancement of healthcare data management by leveraging blockchain technology to
enhance data security, accessibility and transparency among collaborating hospitals.

vi

ABSTRAK

Rekod Kesihatan Elektronik (EHR) dianggap sebagai salah satu data yang
paling sensitif dalam dunia digital. Walau bagaimanapun, ia sering terdedah kepada
risiko keselamatan disebabkan oleh kaedah pengurusan data yang sudah ketinggalan
zaman seperti penyimpanan data tradisional menggunakan pangkalan data tempatan,
penyimpanan awan yang tidak dikemaskini yang tidak dapat mengatasi serangan
siber terkini. Selain itu, juga dipertikaikan bahawa penyelesaian pengurusan data
EHR yang sedia ada pada masa ini kebanyakannya tidak cukup telus dan
menyebabkan cabaran interoperabiliti. Oleh itu, cabaran utama yang dibincangkan
dalam kajian ini adalah berkongsi dengan selamat dan menguruskan data kesihatan
pesakit yang sensitif di antara hospital-hospital sambil memastikan integriti data,
kawalan akses dan boleh diperiksa. Projek ini menggunakan teknologi blok rantai
Hyperledger Fabric untuk menyediakan lejar peribadi dan tidak boleh diubahsuai
untuk penyimpanan dan perkongsian data EHR. Melalui proses penyelidikan yang
teliti yang melibatkan reka bentuk sistem, pembangunan kontrak pintar dan
konfigurasi rangkaian, prototaip ini membentuk rangka kerja yang lebih kukuh untuk
pengurusan data EHR. Hasilnya menunjukkan pelaksanaan potensi sistem yang
selamat dan boleh diubahsuai yang membolehkan pihak berkuasa perubatan yang
diberi kuasa untuk mengakses dan mengemas kini rekod pesakit dengan cekap,
sambil memastikan privasi data dan pematuhan terhadap peraturan kesihatan. Projek
ini menyumbang kepada kemajuan pengurusan data kesihatan dengan menggunakan
teknologi blok rantai untuk meningkatkan keselamatan data, aksesibiliti dan
ketelusan data di antara hospital-hospital yang bekerjasama.

vii

TABLE OF CONTENTS

PAGE

DEDICATION... III

ACKNOWLEDGEMENTS.. IV

ABSTRACT... V

ABSTRAK.. VI

TABLE OF CONTENTS...VII

LIST OF TABLES..XII

LIST OF FIGURES ..XIII

LIST OF ABBREVIATIONS.. XVI

LIST OF ATTACHMENTS... XVII

CHAPTER 1: INTRODUCTION... 1

1.1 Project Background .. 1

1.2 Problem Statement ... 2

1.3 Project Questions ..3

1.4 Project Objective .. 3

1.5 Project Scope ..4

1.6 Project Contribution ... 4

1.7 Report Organization ... 5

1.8 Conclusion ..6

viii

CHAPTER 2: LITERATURE REVIEW... 7

2.1 Introduction .. 7

2.2 Blockchain Technology ..7

2.2.1 Core of Blockchain Technology ... 8

2.2.1.1 Distributed Ledger Technology ... 9

2.2.1.2 Cryptography ..9

2.2.1.3 Smart Contract ..11

2.2.1.4 Consensus Mechanisms ..11

2.2.2 Types of Blockchain ..15

2.2.2.1 Public Blockchain .. 15

2.2.2.2 Private Blockchain ... 15

2.2.2.3 Consortium Blockchain ..16

2.3 Blockchain Platform...17

2.3.1 Ethereum... 17

2.3.2 Hyperledger ...18

2.3.2.1 Hyperledger Fabric ...19

2.3.2.2 Hyperledger Sawtooth Lake ...21

2.3.2.3 Hyperledger Iroha .. 21

2.3.2.4 Hyperledger Burrow ...21

2.3.2.5 Hyperledger Indy ..22

2.3.3 MultiChain .. 22

2.3.4 Open Chain ..23

2.4 Critical Review of Existing Works .. 23

ix

2.5 Proposed Solution ...30

2.6 Conclusion ..34

CHAPTER 3: PROJECT METHODOLOGY.. 35

3.1 Introduction .. 35

3.2 Methodology .. 35

3.2.1 Planning ...36

3.2.2 Design ..36

3.2.3 Implementation ..36

3.2.4 Testing ...36

3.2.5 Evolution ... 36

3.3 Project Milestones .. 37

3.4 Conclusion ..39

CHAPTER 4: DESIGN..40

4.1 Introduction .. 40

4.2 Problem Analysis ... 40

4.3 Requirement Analysis .. 41

4.3.1 Data Requirement ..41

4.3.2 Functional Requirement .. 43

4.3.2.1 Smart Contract/Chaincode ... 47

4.3.3 Software Requirement ...48

4.3.4 Hardware Requirement ... 50

4.4 High-Level Design ... 51

4.4.1 System Architecture .. 51

4.5 Conclusion ..52

x

CHAPTER 5: IMPLEMENTATION...53

5.1 Introduction .. 53

5.2 Software Configuration Management .. 53

5.3 Prerequisite Base Software ...54

5.4 Fabric and Fabric Samples ... 55

5.5 Contract APIs ... 55

5.6 Application SDK.. 58

5.6.1 Hyperledger Fabric Client SDK..58

5.6.2 Wallet .. 59

5.6.3 JSONWeb Tokens ..59

5.7 Application ... 59

5.7.1 State of Distributed Database ..59

5.7.2 Identity (CA) ... 60

5.7.3 Membership Service Provider (MSP) ... 61

5.7.4 Endorsement Policies .. 61

5.7.5 Security Mechanism ..63

5.8 Conclusion ..64

CHAPTER 6: TESTING... 65

6.1 Introduction .. 65

6.2 Test Strategy ...65

6.2.1 Classes of Tests ... 65

6.3 Test Design ...66

6.3.1 Test Description .. 66

6.3.2 Test Data ... 67

xi

6.4 Test Results and Analysis ...70

6.4.1 Network Testing ..70

6.4.2 Functionality Testing ...74

6.4.2.1 Admin ...74

6.4.2.2 Patient ...76

6.4.2.3 Doctor ...80

6.5 Conclusion ..84

CHAPTER 7: PROJECT CONCLUSION.. 85

7.1 Introduction .. 85

7.2 Project Summarization ... 85

7.3 Project Contribution ... 87

7.4 Project Limitation ...88

7.5 Future Works ..89

7.6 Conclusion ..91

REFERENCES... 92

APPENDICES.. 97

xii

LIST OF TABLES

PAGE

Table 1.1 : Problem Statement Table ... 3

Table 1.2 : Project Questions Table ..3

Table 1.3 : Project Objective Table .. 4

Table 1.4 : Project Scope Table ...4

Table 1.5 : Table for Report Organization .. 5

Table 2.1 : Type of blockchain .. 16

Table 2.2 : Comparisons among different Hyperledger frameworks22

Table 2.3 : Comparison of blockchain platform ..23

Table 2.4 : Comparison of existing work ... 28

Table 3.1 : Final year project 1 milestones .. 37

Table 3.2 : Final year project gantt chart .. 39

Table 4.1 : Participants permission in the network .. 45

Table 4.2 : Smart contracts in the system .. 47

Table 4.3 : Software requirement ... 48

Table 4.4 : Hardware requirement ... 50

Table 6.1 : Test Description ...66

Table 6.2 : Login details for users ...67

xiii

LIST OF FIGURES

PAGE

Figure 2.1 : Structure of blockchain ...8

Figure 2.2 : Taxonomy of cryptographic primitives ... 10

Figure 2.3 : Smart contract relationship with the blockchain 11

Figure 2.4 : Ledger on Hyperledger Fabric ... 20

Figure 2.5 : Architecture of proposed system from previous study 33

Figure 2.6 : Process flow of patient registration ..34

Figure 2.7 : Process flow of records sharing and adding new record34

Figure 3.1 : SDLC phases .. 35

Figure 4.1 : Comparison of present and future EHR system...............................41

Figure 4.2 : Data type of patient ... 42

Figure 4.3 : Data type of medical practitioner ...43

Figure 4.4 : Use case of admin ...43

Figure 4.5 : Use case of patient ..44

Figure 4.6 : Use case of medical practitioner ...44

Figure 4.7 : Sequence diagram of creation of a patient .. 46

Figure 4.8 : Sequence diagram of creation of a doctor ... 46

Figure 4.9 : System architecture of the blockchain. ..51

Figure 5.1 : Application stack in Fabric application ...54

Figure 5.2 : Smart contracts hierarchy .. 55

Figure 5.3 : Example of getPatientHistory() methods in doctor contract56

Figure 5.4 : Example of revokeAccessFromDoctor() method 56

Figure 5.5 : Example of verifying if the doctor is granted access 57

Figure 5.6 : Example of utilizing fabric-network between backend server and

blockchain network .. 58

xiv

Figure 5.7 : Endorsement policy for Hosp 1 .. 62

Figure 5.8 : Chaincode-level endorsement policy ..63

Figure 5.9 : TLS enabled in CA Hosp 1 ... 63

Figure 5.10 : Patient’s passwords are hashed and stored in the blockchain

(patient chaincode) ... 64

Figure 6.1 : EHR of patient 0 .. 68

Figure 6.2 : EHR of patient 1 .. 68

Figure 6.3 : EHR of patient 2 .. 68

Figure 6.4 : EHR of patient 3 .. 69

Figure 6.5 : EHR of patient 4 .. 69

Figure 6.6 : EHR of patient 5 .. 69

Figure 6.7 : Testing of bringing up network .. 70

Figure 6.8 : Testing of creating channel ... 71

Figure 6.9 : Testing of deploying smart contract .. 72

Figure 6.10 : Testing of running backend server .. 72

Figure 6.11 : Testing of running frontend server .. 73

Figure 6.12 : Main page of user interface .. 73

Figure 6.13 : Admin login page ... 74

Figure 6.14 : List of patients (admin) ... 75

Figure 6.15 : Create new patient ...75

Figure 6.16 : Create new doctor ..76

Figure 6.17 : Patient login page ...77

Figure 6.18 : Mandatory of changing new password for first-time login patient77

Figure 6.19 : View personal details & EHR (patient) ... 78

Figure 6.20 : View list of doctors & grant/revoke access78

Figure 6.21 : Edit personal details .. 79

Figure 6.22 : Updated personal details ...79

Figure 6.23 : View EHR history (patient) .. 80

Figure 6.24 : Doctor login page ... 81

Figure 6.25 : Doctor dashboard .. 81

Figure 6.26 : List of patients (doctor) ... 82

Figure 6.27 : View patient’s EHR... 82

Figure 6.28 : Update patient’s EHR... 83

Figure 6.29 : Updated patient’s EHR... 83

xv

Figure 6.30 : View patient’s EHR history .. 84

xvi

LIST OF ABBREVIATIONS

FYP - Final Year Project

EHR - Electronic Health Record

PoW - Proof of Work

PBFT - Practical Byzantine Fault Tolerance

API - Application Programming Interface

SDK - Software Development Kit

CA - Certificate Authority

HLF - Hyperledger Fabric

JSON - JavaScript Object Notation

xvii

LIST OF ATTACHMENTS

PAGE

Appendix A INSTALLATION OF PREREQUISITE 97

Appendix B STEPS TO START NETWORK 102

CHAPTER 1: INTRODUCTION

The purpose of this chapter is to provide project background, problem

statement, project questions, project goals, project scope, project contribution and

project development for the entire project.

1.1 Project Background

With the rapid development of internet technology, data sharing and storage

have become more critical to many industries, including finance, healthcare,

government, education and supply-chain as the needs of society to share and retrieve

latest information among many different parties has increased. Most industries have

adapted the cloud storage service or database service to store and transmit data where

there will be a third party organization or company to provide the data sharing and

storage services meanwhile the administrator is able to modify or delete any data

from the database. It is also the services providers’ responsibilities to maintain the

operation of the database and ensure regularly security updates. As traditional

database is centralized, it has often become a target for malicious party attempting to

access sensitive information and gain benefit from it. It can be said that traditional

methods of data sharing and storage are more often vulnerable to security breaches,

cyber attacks and unauthorized access. Thus, losing guarantee of the integrity and

reliability of user records and higher possibility of data loss or data misuse.

To eliminate the dependency for third party to develop a trust-based model,

blockchain technology is introduced to provide secure, transparent and tamper-proof

transactions. Blockchain is a distributed ledger technology which fully decentralized

2

peer-to-peer data storage where storage of data spread over all participants also

known as nodes of the network in the form of a distributed ledger. Blockchain stores

information in growing lists of records (blocks) that are securely linked together

through cryptographic hashes meanwhile each block contains hashed information

from the previous block, a timestamp and transaction data to provide cryptographic

security.

While the most valuable asset within healthcare sector is information where

accurate and complete patient records are important not to be compromised, there are

some serious issues need to be concerned such as balancing easy accessibility

between protecting the privacy of medical data, ensuring the integrity of patient data

and managing authorization rules for data access. As healthcare management

encompasses many different processes that will require patient related data, data

management system that integrated with blockchain technology will optimize the

complex medical processes and digital management of medical data. In the process,

the blockchain plays an essential role as a distributed database structure for the

electronic health record data management in which all transactions are checked and

stored by all parties participating in the database. Meanwhile, the data management

system which based on smart contracts for intelligent management would automated

enable parties who allowed to access or modify patient’s electronic health record

based on patient’s consent. This decentralization of the data would ensure higher

security, reduce administrative costs and increase the authenticity of information due

to transparency of blockchain technology. However, there is still a lot of

improvement needed in blockchain technology in order to provide accountable,

reliable and secure solutions to industries.

The researcher would identify the implementation of blockchain technology

using web-based application for electronic health record data management among

hospitals and point out the performance of the blockchain-based web application to

identify whether it is better in data confidentiality and integrity.

1.2 Problem Statement

Existing centralized data storage services which might lead to single point of

failure where such kind of systems usually rely solely on third party such as large

https://en.wikipedia.org/wiki/Record_(computer_science)
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Trusted_timestamping

3

company who provides strong storage capacity to store and transmit data.

Redundancy of different healthcare providers storing patients’ health records in their

own databases and problems in ensuring data integrity when retrieving and

transmitting health records.

Table 1.1: Problem Statement Table

No. Problem Statement

1 Existing centralized data storage services which might lead to single point of

failure where such kind of systems usually rely solely on third party such as

large company who provides strong storage capacity to store and transmit data.

2 Redundancy of different healthcare providers storing patients’ health records in

their own databases and problems in ensuring data integrity when retrieving

and transmitting health records.

1.3 Project Questions

Table 1.2: Project Questions Table

No. Project Questions

1 How can blockchain technology helps in securing and sharing data of

electronic health records among hospitals?

2 Are blockchain-based web application for EHR data management more

efficient than conventional storage method?

3 Does blockchain-based EHR data management system able to ensure data

integrity and transparency?

1.4 Project Objective

This study's goal is to determine the application of blockchain technology for

electronic health record among hospitals in healthcare sector. The second objective is

to design and implement a prototype of blockchain-based web application for

4

electronic health record data management among hospitals. Finally, the third

objective is to evaluate and analyze the performance of the blockchain-based

prototype for electronic health record.

Table 1.3: Project Objective Table

No Project Objective

1 To determine the application of blockchain technology for electronic health

record among hospitals in healthcare sector.

2 To design and implement a prototype of blockchain-based web application

for electronic health record data management among hospitals.

3 To evaluate and analyze the performance of the blockchain-based prototype

for electronic health record.

1.5 Project Scope

This project would focus on developing a blockchain-based web application

that is used for electronic health record data management among hospitals. The scope

for this project is explained below:

Table 1.4: Project Scope Table

No Project Scope

1 Understanding the architecture of blockchain technology and its application

for electronic health record data management among hospitals.

2 To develop a web application that demonstrates the use of blockchain for

electronic health record data management in healthcare sector.

3 Ensure data privacy and confidentiality for the blockchain-based web

application for electronic health record data management among hospitals.

1.6 Project Contribution

The essential key in this project is to propose a more secure and efficient

method using blockchain technology for electronic health record data management

5

that can ensure smooth operation among hospitals. Lastly, it will address the

implementation of blockchain-based electronic health record data management

system will be able to overcome the security issues of using conventional method of

data storage and sharing.

1.7 Report Organization

Table 1.5: Table for Report Organization

Chapter Detail

Chapter 1

Introduction

Research background, a problem statement, project questions,

project objectives, project scope, and a project contribution are all

included in this chapter.

Chapter 2

Literature

Review

This part will be reviewing past research, journal and conference

papers as well as related works for the project matter.

Chapter 3

Methodology

This chapter explains the approaches used in phasing out job

activities to contextualize the process being introduced. For this

work 4 steps are to be included. Using this phase encourages those

tasks to be executed and managed. It involves simple framework

and detailed framework.

Chapter 4

Design

This chapter discusses the requirement that will be used to run this

project and a flowchart. The flowchart is discussed in detail about

how the process works.

Chapter 5

Implementation

This chapter implements the new method and architecture that

being used in controlled environment.

6

Chapter 6

Testing and

Validation

The research and results of the suggested method were covered in

this chapter. This chapter also determines whether the suggested

approach works or not.

Chapter 7

Project

Conclusion

This last chapter summarizes the entire process and explain further

progress which could be implemented in the future.

1.8 Conclusion

To summarize, this chapter explains clearly about the general background of

this project and highlight the potential implementation of blockchain technology in

managing data for electronic health record among hospitals. The next chapter will

explain about the related work.

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

This chapter provides an overview of blockchain technology including its

core technologies, types and algorithms. It also introduces the advantages and

limitations of different blockchain platforms that are available to be used and then

focus on private permissioned blockchain using Hyperledger Fabric to create and

deploy decentralized applications. Furthermore, this chapter will highlight some

critical reviews of the existing works and its proposed solution.

2.2 Blockchain Technology

Blockchain is a distributed ledger technology that records all the transactions

that have occurred in the peer-to-peer network which the information is stored in

growing lists of records also known as blocks where the blocks are securely linked

together through cryptographic hashes to form a chain. A transaction represents a

transfer of value from one address to another. When the number of transactions grow,

the size of blockchain will grow as well. Blocks in the blockchain store the

chronological order of transactions along with their respective timestamps (Usman &

Qamar, 2020). Blockchain is called a secure, decentralized and immutable database

as it eliminates the dependency on trusted third-party where there is no single node

can control the entire network and all participants within the network possess an

identical copy of the database (Wang et al., 2018).

The Genesis block, an initial block without any transactions, is the predefined

start of the blockchain, then followed by subsequent blocks which constructed with

transactions that are added to the blockchain. Each block contains a block header and

https://en.wikipedia.org/wiki/Record_(computer_science)
https://en.wikipedia.org/wiki/Cryptographic_hash_function

8

a series of transactions. Meanwhile each block header contains data such as link

pointers to the previous block’s hash, nonce which is a number generated and used

only once for transaction replay protection and PoW consensus algorithms,

timestamp of the block created and Merkle root which is the hash of all transactions

in a block that can be used to verify all transactions present in the Merkle tree. As

each block is linked to the preceding block by hashing the block’s data along with

the previous block’s hash, this ensures the immutability and integrity of the data

stored in the chain and prevents unauthorized modifications to the blockchain (Ismail

& Materwala, 2020). A block is considered valid when there is more than 50% of the

participants in the network reach an agreement on verifying the validity of

transaction data using a consensus algorithm.

Figure 2.1: Structure of blockchain

(Odeh et al., 2022.)

2.2.1 Core of Blockchain Technology

According to Tanwar et al. (2020), the process of verifying and validating

transactions in a blockchain is complex, as it involved techniques such as distributed

ledger network, cryptography, smart contract and consensus protocol. There are

various steps required to complete a blockchain transaction. In the first step, the

network node requests the transaction by first creating and digitally signing it with its

private key. The transaction is then broadcast using a flooding protocol, called

Gossip protocol to peers that validate the transaction based on preset criteria

including smart contract and consensus algorithm. Once the transaction is validated,

it is included in a block, which is then propagated onto the network. At this point, the

transaction is considered confirmed. The newly-created block is appended in the

9

ledger and the next block will link itself cryptographically back to this block through

hash pointer. At this stage, the transaction gets its second confirmation and the block

gets its first confirmation. Usually, transactions are reconfirmed every time when a

new block is created. Lastly, the transaction is completed or committed to the

network.

There are four core technologies that is essential in blockchain solution which

are distributed ledger technology, cryptography, smart contract and consensus

protocol or trust systems. These technologies are designed to work together to create

a secure, transparent, and decentralized system for storing and processing data in

blockchain.

2.2.1.1 Distributed Ledger Technology

A distributed ledger, also known as shared ledger or distributed ledger

technology (DLT) is the consensus of replicated, shared, and synchronized digital

data that is distributed among its network participants and spread across multiple

sites, countries, or organizations (Bashir, 2018). Compared to a centralized database,

transactions are appended in a distributed system on the network which did not

required a central administrator and consequently eliminate a single point of failure.

While all distributed ledgers are based on a decentralized structure, it is important to

note that not all distributed ledgers can be classified as blockchains. The key

distinction lies in the fact that a distributed ledger might not necessarily involved

blocks of transactions to maintain the growth of the ledger. On the other hand, a

blockchain is a specific form of shared database that specifically comprises blocks of

transactions.

2.2.1.2 Cryptography

Cryptography involves the use of cryptographic algorithms and security

protocols to secure transactions and protect sensitive data. It has been applied in

blockchain to provide security services including non-repudiation, data integrity and

data origin authentication which makes the ledger secure against tampering and

misuse. The design of blockchain included this requirement due to the computational

hardness assumption and making encryption harder to be break. Cryptography is

https://en.wikipedia.org/wiki/Centralized_database
https://www.sciencedirect.com/topics/computer-science/single-point-of-failure

10

mainly divided into two categories which are symmetric cryptography and

asymmetric cryptography.

(a) Symmetric Cryptography

According to Bashir (2018), symmetric cryptography also known as shared

key cryptography refers to a type of cryptography where the key that is used to

encrypt the data is the same for decrypting the data. Before the data exchange occurs

between the communicating parties, the key must be established or agreed upon both

parties. There are two types of symmetric ciphers which are stream ciphers and block

ciphers. Typical example of stream ciphers are RC4 and A5 meanwhile Data

Encryption Standard (DES) and Advanced Encryption Standard (AES) are examples

of block ciphers.

(b) Asymmetric Cryptography

Asymmetric cryptography refers to a type of cryptography where two distinct

keys are involved in the process which are a public key that mainly used for

encryption or verifying key and a private key mainly used for decryption or signing

key (Guo & Yu, 2022). This is also known as public key cryptography. Asymmetric

key cryptography is well-suited for use in blockchain technology to authenticate

identities for transactions and individuals. Various asymmetric cryptography

schemes are introduced including RSA, DSA, and ElGammal.

Figure 2.2: Taxonomy of cryptographic primitives

(Bashir, 2018.)

11

2.2.1.3 Smart Contract

A smart contract, introduced by Nick Szabo in 1994 is defined as a ‘set of

promises, specified in a digital form, including protocols within which the parties

perform on the other promises’ (Antonopoulos & Wood, 2018). The implementation

of smart contracts in blockchain creates a platform for automatic, self-executing and

self-verifying transactions based on specific rules and regulations where contracts are

designed to execute when certain conditions and variables have been met. This

allows for flexibility and traceability as smart contract can autonomously execute

some or all of the operations related to a contract and provide verifiable evidences

which allows an organization to keep a record of all the transactions without the need

for human intervention. Moreover, the rules of a smart contract are acknowledged

and enforced by multiple organizations that operate on a decentralized blockchain

network for interaction among the users across the network. These smart contracts

can automatically execute based on users conditions to provide a secure method and

reduce the cost (Kumar et al., 2021).

Figure 2.3: Smart contract relationship with the blockchain

(Jabbar & Dani, 2020.)

2.2.1.4 Consensus Mechanisms

According to Bashir (2018), a consensus mechanism refers to a series of steps

followed by the majority or all nodes within a blockchain network to reach an

12

agreement on a proposed state or value. In client-server systems, it is easy to reach an

agreement between two nodes, however in a distributed system where there are

multiple participant nodes, it has become a challenge for all the nodes to agree on a

single value to achieve consensus. The consensus protocol adopted by a blockchain

ensures smooth execution of operation as it will determine which block to append

and how it should be appended, validation of block’s contents and construction of

block in the process. Transactions are only updated when all verified users in the

network agree to the condition of the transaction and then come to a conclusion of

adding or dropping a block in the blockchain. It solves the problem of trust in

blockchain, as assumed that all nodes in the network are untrusted and similar

algorithm is needed to agree on the validity of the block. Thus, consensus mechanism

can keep consistency in ledger synchronization and prevent malicious transactions

(Muhammad & Soewito, 2022).

The characteristics of blocks, such as their structure and the time intervals

between them, can be adjusted by modifying the parameters within the consensus

protocol. Meanwhile the selection of the consensus algorithm is influenced by the

specific type of blockchain being utilized as not all consensus mechanisms are

appropriate for every type of blockchain. The following shown some of the common

and popular consensus algorithms that have been introduced:

(a) Proof of Work (PoW)

Proof of Work (PoW) mechanism is based on mining which demands miners

to contribute a great number of computing power to solve a very difficult

cryptography puzzle by constantly trying to assemble blocks and new random

numbers until the correct random number is found (Wang et al., 2018). Mining is a

process of creating new blocks to the blockchain. To prevent the concentration of

computational power, the difficulty, also called nonce, for generating the next block

is adjusted dynamically on the basis of 10 minutes per block. While it is the only

algorithm that has proven against any collusion attacks on a blockchain network,

such as Sybil attack, PoW also results in low transaction throughput and excessive

energy usage (Gadekallu et al., 2022). The popular implementation of this scheme

are Bitcoin, Litecoin and other cryptocurrency blockchains.

13

(b) Proof of Stake (PoS)

Proof of Stake (PoS) addressed the problems posed by Proof of Work (PoW)

mechanisms where a miner node is selected to invest computational power through

pseudorandom methods weighted in relation to degree of ownership, credibility or

reputation or etc rather than all miner nodes competing to create the next block

depending on computational power. Another important concept in PoS is coin age

which is determined by the duration and quantity of unspent cryptocoins. In this

model, the probability of proposing and validating the next block is higher as the

coin age increases. As stated by Dagher et al. (2018), such a miner selection

approach leads to significantly reduced of resource consumption.

(c) Delegated Proof of Stake (DPoS)

Delegated Proof of Stake (DPoS) is an alternative to PoS where it is more

efficient and scalable than PoS. In DPoS, each node that has a stake in the system

can delegate the validation of a transaction to other nodes by voting. The delegates

play a crucial role in maintaining consensus, mining, and validating new blocks. As

rewards are earned, they are distributed proportionally among the stakeholders and

their delegates. This algorithm relies on a democratic voting system, where the

effectiveness and ethical behavior of delegates determine their reputation and

continued participation in the network. Delegates who fail to operate efficiently or

ethically may be expelled from the network to ensure its proper functioning.

Examples of networks that use DPoS include BitShares blockchain, Ark and Lisk.

(d) Byzantine Fault Tolerance (BFT)

Byzantine fault tolerance (BFT) refers to the capability of a network or

system to sustain its functionality even in the presence of faulty or failed components.

In a BFT system, blockchain networks can continue to operate and execute intended

actions as long as the majority of network participants are trustworthy and genuine.

This implies that for a transaction to be validated and added to the blockchain, it

requires agreement from more than half or two-thirds of the network nodes. However,

BFT algorithms for asynchronous networks are only practical up to about 1000

https://ark.io/
https://lisk.com/

14

participants due to the incurred overhead of the cryptographic algorithms (Knirsch et

al., 2019).

(e) PBFT

Practical Byzantine Fault Tolerant (PBFT) consensus is an efficient

consensus algorithm used in blockchain networks to achieve Byzantine fault

tolerance. It involves participation of a set number of nodes, known as replicas that

collectively agree on the validity and order of transactions. PBFT utilizes a leader

that is elected among the replicas who proposes a block of transactions and initiates a

voting process among the replicas. Once a sufficient number of replicas reach

agreement, the proposed block is considered finalized and added to the blockchain.

PBFT requires 3f+1 nodes in order to keep the system stable, where f is the

maximum count of defective nodes the system can handle. As a result, approval from

2f+1 nodes is needed for the group of nodes to make any decision. PBFT provides

high fault tolerance as long as the majority of replicas are trusted. However, it

requires a predefined set of replicas, which can limit scalability. PBFT is commonly

used in permissioned blockchain networks where efficiency and fault tolerance are

essential.

(f) Proof of Storage (PoS)

Proof of Storage (PoS) is based on the concept that a particular piece of data

is probably stored by a node which serves as a means to participate in the consensus

mechanism rather than computational power (Bashir, 2018). In a PoS blockchain,

nodes must prove that they are storing specific data or files to participate in the

consensus process. This ensures that participants are actively contributing to the

network's storage capacity. PoS promotes efficiency by reducing the need for

computational resources and shifting the focus to storage capabilities which will

enhance data integrity and availability through decentralization. Several variations

based on PoS have been proposed such as Proof of Replication, Proof of Data

Possession, Proof of Space and Proof of Space-Time.

15

(g) Proof of Activity (PoA)

Proof of Activity (PoA) is a combination of Proof of Work (PoW) and Proof

of Stake (PoS) mechanisms, which participants are required to demonstrate both

computational work and ownership of a certain amount of cryptocurrency to achieve

consensus. It is more energy efficient as participants alternate between mining blocks

through PoW and validating blocks through PoS. This consensus algorithm offers a

compromise between security and energy efficiency while maintaining decentralized

participation in the network.

2.2.2 Types of Blockchain

Blockchains can be categorized into three types which are public, private and

consortium.

2.2.2.1 Public Blockchain

A public blockchain also known as permissionless blockchain, is a chain that

anyone in the world can participate into the network to read, write, access or send a

transaction to a valid user. According to Purwono et al. (2023), anyone can

contribute in a consensus process to determine what blocks can be appended to the

end of the chain as public blockchains are accessible by anyone. After validation of

the newly created block that linked to the chain, other participants will either expand

their individual copies of the chain with the newly generated block then broadcast the

block to other participants in the network or else discarded the invalid block from the

chain. This kind of blockchain is generally considered as decentralized network

where there is no central authority controlling the system. Public blockchain is

widely used in cryptocurrencies for example Bitcoin and Ethereum, are categorized

as public chains without permission.

2.2.2.2 Private Blockchain

A private blockchain is a restricted type of blockchain network created by an

entity or organization. It is also recognized as a centralized blockchain, where a

central authority is granted the authorization to control transactions across the entire

chain such as to add, delete or modify data (Dagher et al., 2018). This type of

16

blockchain is only accessible to those with access permissions where new users are

required to obtain prior permission before they can join the network. It is mainly

used to handle databases or private applications intended for sensitive data

manipulation as only specific participants can be granted defined read access along

with limitations on creating transactions. In private blockchain, the predefined nodes

who participate in the consensus management will be responsible for validating

transactions. Due to the nature of private blockchains, not all nodes are required to

verify transactions. By implementing this approach, the transaction speed within the

private blockchain can be significantly accelerated, making it the fastest blockchain-

based solution available. Moreover, it will lead to a reduction in the overall workload

required for processing transactions. Examples of private blockchains are

Hyperledger, HydraChain and Quorum.

2.2.2.3 Consortium Blockchain

A consortium blockchain also known as semiprivate blockchain, consists of

private part which is controlled by a group of individuals, while the public part is

open for participation by anyone. It can be recognized as semi-decentralized model

as only a select group of entities have the access right to view and participate in the

consensus protocol meanwhile multiple users are allowed to join the network by

following appropriate procedures, such as allowing mining. As the consortium

blockchain is decentralized and is managed by multiple organizations, it can be used

by banks, supply chain or food tracking companies where organization can manage

and control data access while part of the data can be available to public (Antwi et al.,

2021). Moreover, the consensus algorithm could be modified to use different ideas

such as voting based concept. The consensus policy can be configured to require a

specific number of nodes in the network to participate in voting or digitally signing

the block before it is officially added to the blockchain. This modification ensures

that consensus is reached through a democratic process and the blockchain can be

secured using PoW, thus providing consistency and validity for both the private and

public parts.

Table 2.1: Type of blockchain

17

Properties Public blockchain Consortium

blockchain

Private blockchain

Read permission Public Public or restricted Public or restricted

Consensus

determination

All miners Selected set of

nodes

One organization

Consensus process Permissionless Permissioned Permissioned

Centralized No Partial Yes

Immutability Nearly impossible Could be tampered Could be tampered

Efficiency Low High High

(Muhammad & Soewito, 2022).

2.3 Blockchain Platform

Due to the diverse requirements of businesses and users, it is not feasible to

have a one-size-fits-all blockchain network that can cater to all industries. This has

led to the creation of different blockchain platforms which allow developers and

users to create and execute applications on an existing blockchain network with a

different set of protocols. Generally, blockchain platform supplies a collection of

functionalities and tools that enable the management and creation of smart contracts,

launching decentralized applications (dApps) and communication with the

blockchain network. In this section, evaluation of some common blockchain platform

and its applicability of different types of consensus algorithms and permissions are

done as followed:

2.3.1 Ethereum

Ethereum is an example of public blockchain which was first proposed in

2013 by Vitalik Buterin. It is the first blockchain that introduced a Turing-complete

language and the concept of a virtual machine. According to Wang et al. (2018), the

Bitcoin system utilizes a scripting language that operates on a stack-based non-

Turing complete model which can only support simple logic, thus limiting its

application in many fields. Compared to the Bitcoin system, the availability of

Turing-complete language called Solidity in Ethereum has brought wider

possibilities for the development of decentralized applications using smart contracts.

As the platform supports the application of Turing complete, it allows developers to

18

deploy systems with smart contracts where the logic of that system is transformed

into the code. Once the contract is deployed, it can be automatically executed

according to the agreed logic of smart contracts. Due to smart contracts are capable

of representing practically arbitrarily complex transactions, it extends beyond

financial transactions found in Bitcoin and enable the representation of states and

their alterations.

On the Ethereum blockchain network, mining is a crucial process that

includes new blocks to the blockchain using proof of work (PoW) algorithms.

Meanwhile Ether (ETH) is the native cryptocurrency of the platform which the

second most popular cryptocurrency after Bitcoin (BTC). It is used to pay for

transaction fees and to incentivize network participants to maintain and update the

blockchain. There are two types of Ethereum accounts can be created on Ethereum

Virtual Machine (EVM) which are Externally Owned Accounts (EOAs) and contract

accounts. EOAs are controlled by user’s private key and are usually owned by

devices or users while contract accounts are controlled by their contract code (smart

contract) contained in them.

Although Ethereum is known for its versatility, prior studies have revealed

that even moderately complex smart contracts can be quite costly. Additionally, the

expense of executing operations and the unpredictability of costs are mostly

influenced by the fluctuations in exchange rates to Euros. Meanwhile updating a

modified Merkle Patricia Trie to store values in smart contracts is a time-consuming

process, speed of execution is also tend to slow down as data volume grows.

2.3.2 Hyperledger

Hyperledger is an open source private blockchain project initiated by the

Linux Foundation in December 2015 and has support from companies such as IBM

and Intel to SAP Ariba. According to Hyperledger Foundation, Hyperledger has

many frameworks and tools that can be used to build blockchain networks. While

each of these frameworks and devices has a specific function, they can also

collaborate during the implementation process of creating a blockchain network.

There are five hyperledger frameworks which are Fabric, Sawtooth Lake, Burrow,

Indy and Iroha meanwhile there are three modules that support these blockchains

19

which are Explorer, Cello and Composer. These frameworks will be discussed in

later section.

According to Usman & Qamar (2020), Hyperledger employs a modular

architecture that offers flexibility in terms of consensus and membership services. It

utilizes container technology to host smart contracts, known as chaincode, which

encapsulates the system's application logic. The modular architecture of Hyperledger

enables the integration of various consensus algorithms, such as the Practical

Byzantine Tolerance Algorithm (PBFT), which is computationally more efficient

compared to Proof of Work (PoW). This design approach allows for easier

customization and adaptability of the Hyperledger framework to meet diverse

requirements in the blockchain ecosystem.

In Hyperledger blockchain, each node in the network possesses a unique

identity. The Member Service Provider (MSP) plays a role in issuing cryptographic

certificates to all participating nodes through a public key infrastructure. Network

users are provided with a username and password combination, which is utilized to

obtain an Enrollment certificate (Ecert). Transaction certificates (TCert) are issued to

Ecert owners by the Transaction Certificate Authority. It is possible to derive

multiple TCerts from a single Ecert. When conducting transactions, network

participants employ Transaction Certificates (TCerts) as a means of authentication.

Besides, Hyperledger utilizes smart contracts, known as chaincode, to

incorporate the business logic that governs transaction execution and changes to the

World-State. The World-State represents a state database that stores the current

values of various ledger states, along with their associated block numbers.

Hyperledger offers a scalable, secure, and flexible blockchain platform with

significant potential to revolutionize numerous industries.

2.3.2.1 Hyperledger Fabric

Hyperledger Fabric can be considered as an open-source platform for the

permissioned blockchain proposed by IBM and DAH (Digital Asset Holdings). It has

a modular design and architecture and therefore has a high degree of flexibility and

extensibility (Zhang et al., 2020). It is based on a pluggable architecture where

20

various components, such as consensus engine and membership services, can be

plugged into the system as required. Moreover, it is the first platform that supports

smart contract through container technology using programming languages, such as

Go and Java (Namasudra et al., 2020). Currently, its status is active and it's the first

project to graduate from incubation to active state.

In Hyperledger Fabric, there is a database called world state that holds current

values of a set of ledger states. This ease the program to directly access the current

value of a state rather than having to calculate it by traversing the entire transaction

log. Another record is transaction log, which it records all the changes that have

resulted in the current world state. This enables transactions are collected inside

blocks which are appended to the blockchain (Muhammad & Soewito, 2022).

Besides, the ability of Fabric to create trusted subnetworks, called channels,

that can establish shared ledgers with a defined set of nodes and transact to the

exclusion of the rest of the blockchain allows for the confidential execution of

transactions. This approach ensures that information is not transmitted through a

central authority, thereby enhancing security and privacy. Furthermore, it also

provides secure interaction between different participants and organizations as the

use of Crase Fault Tolerance (CFT) or Byzantine Fault Tolerance (BFT) consensus

mechanism do not require more cost for mining. However, Hyperledger blockchains

still have the challenge of the computational and storage cost of large block sizes.

Figure 2.4: Ledger on Hyperledger Fabric

https://www.sciencedirect.com/topics/computer-science/byzantine-fault

21

(Muhammad & Soewito, 2022.)

2.3.2.2 Hyperledger Sawtooth Lake

The Sawtooth Lake is a blockchain project proposed by Intel in April 2016

which network nodes are able to deploy with separate permission efficiently using

transaction families and pluggable consensus. Based on the patterns and structures

defined in the transaction families, Sawtooth separates the execution of every

transaction from one another which allows for more flexibility, rich semantics and

open design of business logic. It is mainly built for solving the challenges or

problems arised in private networks. There are several components of Sawtooth

including Sawtooth validators, Sawtooth applications, transaction processors, batch,

network layer, global state and PoET. PoET, as known as Proof of Elapsed Time is a

consensus algorithm which makes use of Trusted Execution Environment (TEE)

provided by Intel Software Guard Extensions (Intel's SGX) to provide a safe and

random leader election process (Bashir, 2018).

2.3.2.3 Hyperledger Iroha

Iroha was contributed by Soramitsu, Hitachi, NTT Data and Colu in

September 2016. Its objective is to develop a collection of reusable components that

users can select to operate on their own distributed ledgers based on Hyperledger.

Iroha's primary goal is to complement other Hyperledger projects such as Sawtooth

and Fabric by providing reusable components written in C++ with an emphasis on

mobile development. This project has also proposed a novel consensus algorithm

called Sumeragi, which is a chain-based Byzantine fault tolerant consensus algorithm.

This feature makes it distinct from other Hyperledger frameworks (Namasudra et al.,

2020).

2.3.2.4 Hyperledger Burrow

Hyperledger Burrow was contributed by Monax, who develop blockchain

development and deployment platforms for business. Burrow introduces a modular

blockchain platform and an Ethereum Virtual Machine (EVM) based smart contract

execution environment. It employs a proof of stake consensus mechanism with

22

Byzantine fault tolerance called Tendermint. As a result, Burrow provides high

throughput and transaction finality. However, Burrow is still in the incubation stage.

2.3.2.5 Hyperledger Indy

Indy is a distributed ledger developed for building a decentralized identity

and to support participants to control and manage their identities rather than using a

large amount of personal information. It was developed by Sovrin Foundation to

provide tools, utility libraries and modules which can be used to build blockchain-

based digital identities. These identities can be used across multiple blockchains,

domains and applications where authentication is based on the attributes users shared.

Indy has its own distributed ledger and uses Redundant Byzantine Fault Tolerance

(RBFT) for consensus.

Table 2.2: Comparisons among different Hyperledger frameworks

Properties/

Type

Fabric Sawtooth Iroha Burrow Indy

Membership

service

Yes No No No No

Modularity High High Less Less Average

Flexibility Average Average High Average High

Scalability Less High Less Average Average

Decentralized

identity

No No No No Yes

(Namasudra et al., 2020).

2.3.3 MultiChain

MultiChain is a private and permissioned blockchain implementation. As like

Bitcoin, it is mainly be used within an organization for facilitating financial

transactions and thus the consensus algorithm is PoW-based. Although it will be

easier for management compared to Bitcoin, the less documentation of

implementation of network using MultiChain and its supported platform are

currently a major limitation.

23

2.3.4 Open Chain

OpenChain is a private blockchain that prioritizes energy efficiency, network

communication, and block rate. To achieve these goals, it diverges from the peer-to-

peer model and adopts a client-server architecture. Instead of using proof of work,

OpenChain employs a consensus algorithm known as proof of authority. The

selection of a specific authority to validate transactions would contradict with the

desired security and trust properties within blockchain while this applied to other

blockchains, such as Corda, that utilize Proof of Authority (PoA) to establish

consensus (Knirsch et al., 2019).

Table 2.3: Comparison of blockchain platform

Properties/

Platforms

Ethereum Hyperledger MultiChain Open Chain

Permissioned ❌ ✔ ✔ ✔

Smart contract ✔ ✔ ❌ ❌

Consensus Proof of Work

(PoW)

Pluggable

framework

Proof of Work

(PoW)

Proof of

Authority

(PoA)

Governance Ethereum

developers

Linux

Foundation

Coin Sciences

Ltd

Coinprism

2.4 Critical Review of Existing Works

As stated by Donawa et al. (2019), using Blockchain in electronic health

records offers a convenient and symmetric health record storage service that

promotes easy accessibility of such records through the web. The system is often

designed to allow the patients full control of generating, managing, and consequently

sharing their electronic health records with friends, family, healthcare providers, and

other relevant data consumers.

While Dagher et al. (2018) proposed a approach uses Ethereum’s public and

private blockchains, smart contracts and a local database to provide patients with

24

secure access to their electronic health records, it allows a patient to send requests to

its provider’s system through the blockchain. The system stores data in the provider’s

local database such as file name, a secure link, patient’s Ethereum address and public

key of the patient, which it is a separate layer outside the blockchain. The database

will only be used by the provider when adding a new file and when retrieving the

secure link upon valid request from the patient. Smart contracts on the Ethereum

blockchain are utilized to automate tasks and achieve access control. This solution

however, does not support a hybrid system such as a Bitcoin blockchain and an

Ethereum blockchain as these platforms employed different protocols.

According to Ismail & Materwala (2020), there is currently no existing

research or study that directly compares client/server-based healthcare data

management systems with blockchain-based counterparts. Therefore, the authors

implemented a minimal blockchain-based healthcare platform and compared its

execution time and amount of data transferred with the client/server system model

for health records update and query by increasing the number of records and

hospitals. A permissioned blockchain network is developed due to its advantages

over the permissionless where the model consists of participants such as patients,

allied health professionals and administrators. PBFT consensus protocol is used in

the developed blockchain-based healthcare platform rather than Proof of Work (PoW)

as PoW consumes more energy and less throughput than the former. It has been

found that blockchain platform is 11.7 times faster compared with the client/server

model in querying health records with increasing number of health records, but

blockchain-based system model is more costly than the client/server system model as

the longer execution time taken and larger amount of data transferred in updating

health record. This is due to exchange of messages to update ledger involving PBFT

consensus.

A proof-of-concept solution has been proposed by Newman & Thorpe, which

is a private permissioned blockchain that structured with three layer which are

application layer interface to patient EHR, blockchain application/transaction layer

and a off-chain storage for large patient centric data. A hashing mechanism is used

for linking the blockchain stored information such as patient demographic/metadata

to the storage area information that stored EHR specific data. Hyperledger platform

25

is preferred as it can improve patient experience with its modular and extendable

architecture that offers a broad understanding of consensus.

Besides, Purwono et al. (2023) has also suggested that the Hyperledger

platform is suitable for healthcare applications as Hyperledger provides extensive

control over smart contracts, allowing them to be executed using various

programming languages such as Node.js and Javascript. Compared with Ethereum

that can complete fifteen transactions per second, Hyperledger outperforms with

transaction speeds of up to 3000 transactions per second.

Usman & Qamar (2020) have developed a permissioned blockchain-based

system for efficient storage and sharing of electronic medical records (EMRs) which

provides better security and privacy of data. They selected Hyperledger over

Ethereum because Ethereum uses proof-of-work (PoW) algorithm that requires lot of

resources for mining and transaction execution while permissioned feature in

Hyperledger allows proper care of privacy requirements of medical data. Consensus

algorithm used is PBFT consensus algorithm as to check whether a transaction is

valid or not. The application focuses three type of users: Patients, Healthcare-

Providers and Health Administration where Health Administration will be

responsible for the registration of patients and doctors while patients can control of

who can add new records and view their medical history. As storing large amount of

data in blockchain might degrade the performance of whole blockchain system, the

blockchain will only hold transaction information and the WorldSate database will

hold data values (actual data), in this case CouchDB is used.

Other than that, a permissioned consortium blockchain network is created in

which all participating healthcare stakeholders and their end users are identified and

registered by health authorities through membership services component using

certificate issuing authority (Muhammad & Soewito, 2022). The system involves

users such as patient, hospitals and financial institutions where those institutions can

only create and view data on the smart healthcare system with the patient's

permission. This has comes with the use of multi-channel method where it allows

organizations to use the same network while maintaining segregation between

multiple blockchains. Only channel members (peers) are allowed to view

https://www.frontiersin.org/articles/10.3389/fbloc.2021.732112/full

26

transactions made by any member in the channel. In this case, Hyperledger Fabric is

used to create a blockchain with multi-channel so that access controls for respective

channels can be configured by certificate authorities.

In 2020, a consortium blockchain platform, Hyperledger Fabric is used to

develop a blockchain system based on purpose access control in order to build a

secure channel in a network among participant healthcare organizations. All

metadata of patient records, consents and data access are written immutably on the

blockchain and shared among participant organizations where patient records are

stored off-chain. Blockchain chaincode that performs business logic managing

patient consent are also used so that patients can create, update and withdraw their

consents in the blockchain.

Khatoon A. (2020) has proposed a decentralized application (DApp) that

supports a private blockchain network with a back-end distributed file system (DFS).

The main objective is to share the information through blockchain smart contracts by

permitting labs, doctors, emergency clinics and different partners to effectively

access and share a patient’s therapeutic information among different stakeholders. In

this solution, Ethereum has been used where PoW consensus is utilized. By

comparing DFS content with ledger records, the DApp would have the ability to

detect anomalies, unauthorized data insertions and missing entities. All of the

medical record data is stored in local database storage to maintain the performance

and hash of the data is the data element of the block committed to the chain. For

announcing smart contracts to the blockchain, Ethereum Wallet has been utilized.

According to Tanwar, Parekh & Evans (2020), a Hyperledger Fabric-based

EHR sharing system and its related test environment that was based on Hyperledger

composer has been proposed. This solution has used access control policy algorithm

with symmetric key cryptography to improve data accessibility between healthcare

providers and patient, also, the concept of chaincode is applied in assisting the

simulation of environments to implement the Hyperledger-based eletronic healthcare

record (EHR) sharing system. A shared symmetric key enable the transaction and

validation of EHR to be distributed to other participants in the blockchain network

while a private key is required for user to login. Similar to the other previous studies

https://www.sciencedirect.com/topics/computer-science/access-control-policies
https://www.sciencedirect.com/topics/computer-science/symmetric-key-cryptography
https://www.sciencedirect.com/topics/computer-science/healthcare-provider
https://www.sciencedirect.com/topics/computer-science/healthcare-provider
https://www.sciencedirect.com/topics/computer-science/healthcare-record
https://www.sciencedirect.com/topics/computer-science/healthcare-record

27

that have been stated, there are four types of participants in the EHR sharing system

including admin, patients, clinicians and laboratory staff where participants have

different roles in the system and can only access records that they have been granted

access. While all transactions are committed into the blockchain network using

patient public IDs that do not contain personal information, this means that the

database of blocks stores only non-identifiable patient data such as gender, age and

illnesses etc. In order to test the performance of the blockchain network, performance

metrics such as latency, throughput and round trip time (RTT) have been considered

to compare with traditional EHR systems which use client-server architecture. In this

case, a benchmarking tool is used for the blockchain network, called Hyperledger

caliper to verify and execute the performance of the system and its various

parameters, including latency, throughput, CPU usage, memory consumption, disk

write/read, network I/O, etc. It can be found that the increase in organizations and

peers will increase the time needed to execute transactions thus higher latency. Plus,

it is found that query a transaction on the blockchain network is much faster than

writing a transaction, this is probably due to the nature of blockchain network where

there are various ledger peers in each organization in the network which are used for

carrying a copy of the ledger.

In addition, Antwi, M. et al. (2021) has proposed a permissioned blockchain

solution for healthcare applications. Hyperledger Fabric is used as it allows a

developer to manage user authentication and authorization while restricted

messaging paths known as private channels are also utilized, which will provide both

confidentiality and privacy for transactions. Besides, smart contract is also

implemented to develop different access right such as a hospital account only can

create practitioners’ (doctors) accounts. The participants involved in the system are

admin, member, medical institution, medical practitioner and patient. This give

patients a full control of their EHR and they can decide who can access their health

record and for what purpose, for example only permissioned medical practitioners

are allowed to view or update patient’s information. Although certain research

suggested using a blockchain with a relational database to store the data, this could

create new risks to personal/critical data security and privacy directly.

https://www.sciencedirect.com/topics/computer-science/round-trip-time

28

In the latest solution proposed by Ndzimakhwe, M., Telukdarie, A., Munien,

I., Vermeulen, A., K., U., & Philbin, S. P. (2023), a framework for user-focused EHR

system has been developed using Hyperledger Fabric. The orderer certificate

authority (CA) is created and utilised by all the peers of hospital where the orderer

acts as an admin that approves all organizations and validates the credentials of their

peers. In this paper, there is a single channel created to connect two hospitals while it

is possible to add additional hospitals into the channel. Similar to other studies,

patient has full control of his/her own EHR and can decide to grant or revoke

permission to access his/her data from a particular doctor. Meanwhile doctor can

view or modify patient data and patient can view all the fields but edit only personal

fields.

Table 2.4: Comparison of existing work

No. Research Blockchain

Type

Platform Consensus

Algorithm

Difference

1 Usman & Qamar

(2020). Secure

Electronic

Medical Records

Storage and

Sharing Using

Blockchain

Technology

Permissioned Hyperledger

Fabric

PBFT World state

database as

actual data

storage

2 Muhammad &

Soewito (2022).

A Blockchain

For Secure Data

Storing With

Multi Chain On

Smart

Healthcare

System

Consortium Hyperledger

Fabric

PBFT Use of multi-

channel

between

healthcare and

financial

industry

3 Tith et al. Consortium Hyperledger PBFT Storage of

https://www.frontiersin.org/articles/10.3389/fbloc.2021.732112/full
https://www.frontiersin.org/articles/10.3389/fbloc.2021.732112/full

29

(2020). Patient

Consent

Management by

a Purpose-Based

Consent Model

for Electronic

Health Record

Based on

Blockchain

Technology

Fabric EHR in off-

chain database

linked with

blockchain

4 Khatoon, A.

(2020). A

Blockchain-

Based Smart

Contract System

for Healthcare

Management

Private Ethereum PoW Use of Gas to

validate

transaction

5 Antwi, M. et al.

(2021). The case

of HyperLedger

Fabric as a

blockchain

solution for

healthcare

applications

Private Hyperledger

Fabric

PBFT GDPR

compliance

6 Tanwar, Parekh

& Evans (2020).

Blockchain-

based electronic

healthcare record

system for

healthcare 4.0

Permissioned Hyperledger

Fabric &

Composer

PBFT Design access

control policy

algorithm with

smart contract

30

applications

7 Ismail &

Materwala

(2020).

Blockchain

Paradigm for

Healthcare:

Performance

Evaluation

Permissioned Not stated PBFT Validation of

transaction

done by

doctors and

pharmacists

8 Ndzimakhwe,

M., Telukdarie,

A., Munien, I.,

Vermeulen, A.,

K., U., &

Philbin, S.

P. (2023). A

Framework for

User-Focused

Electronic

Health Record

System

Leveraging

Hyperledger

Fabric

Private Hyperledger

Fabric

PBFT Latest

implementation

where all

hospitals are

connected to a

single channel

2.5 Proposed Solution

The Related Works have provided some limitation and gap that helps to

propose some method that is able to improve the application of blockchain-based

data management in electronic health record (EHR). Based on the proposed solution

by Usman, M., & Qamar, U. (2020) and Ndzimakhwe, M., Telukdarie, A., Munien,

I., Vermeulen, A., K., U., & Philbin, S. P. (2023), the private blockchain network

will be organized by government department which is Ministry of Health. While the

31

department has full access to all users and system resources, there are also Health

Administration which assigned to each hospital will be responsible for the

registration of patients and doctors. Their responsibility is to monitor and allow only

registered medical practitioners and public to enter the network. Within the

application framework, there are components such as Membership Management, user

interfaces facilitating user interactions, consensus nodes responsible for smart

contract execution and consensus mechanisms, and databases for both the Chain

(transaction history) and World-State (current state of the blockchain).

The application focuses on three types of users which are Patients, Healthcare

Providers and Health Administration. Prior to granting access to the system, it is

mandatory for all users to undergo a registration process which will be handled by

health administration. In this case, the administrator will utilize the user interface to

input patient details and sends the transaction to the Membership Service Provider

(MSP), which hosts the Certificate Authority (CA). The CA issues a Certificate and

Private Key for the user, which are then transmitted to the client application. The

membership service also hosts a certification authority responsible for generating a

key pair for signing and an encryption key pair for each user. The client application

generates a private/public key pair and a symmetric patient key, which are then

provided to the patient. Upon registration in the blockchain network, the user is

furnished with login credentials, namely a User ID and Secret Key, which they can

utilize for system access. While the process flow for Healthcare Providers follows a

similar pattern, they are granted an ID and private key to gain entry to the system.

There will be different hospitals in a channel involved in the blockchain

networks while the roles of patient is mainly the same as previous studies such as

patient will be able to control their information and decide who can access or modify

their information. Medical practitioners who have granted access can only view or

modify specific patient’s details while patient will have the right to revoke his access.

These processes are done through a patient is provided with a symmetric encryption

key, known as the Patient Key, which serves the purpose of encrypting and

decrypting medical records. In situations where a patient intends to share their

medical records with a Healthcare Provider, they have the ability to share their

patient key by utilizing the public key of the specific Healthcare Provider.

32

Furthermore, the Healthcare Provider has the option to request the patient's key, and

once it is provided, they can gain access to the patient's medical records and add new

entries. The Healthcare Provider can log into the system to review patients'

information. However, they can only view the patient's previous medical records

after receiving authorization from the patient. Additionally, the Healthcare Provider

has the ability to add new health records for the patient.

Besides, based on one of the function proposed by Khatoon A. (2020), our

proposed solution has filling the gap by adding the role of emergency medical

practitioners which they should have the right to access patient’s medical records

even when the patient is not available or conscious to give access right so that

customized treatment can be provided as soon as possible. This process can be

implemented using smart contract to streamline the transaction process.

As there is no cryptocurrency involved, the platform that will be used to

develop the blockchain network is Hyperledger Fabric where PBFT consensus

algorithm is utilized to ensure a secure, transparent and effective electronic health

record data management. In the system, a network consists of three peer nodes that

serve as both endorsing peers and committing peers is established. Additionally,

there is one orderer node responsible for providing the ordering service. For a

transaction to be successfully added to the blockchain, a consensus must be reached

by at least two out of the three peers. Each peer node holds a ledger and the

chaincode, which is written in JavaScript, along with its corresponding World-State

database. Transactions submitted by users are received by the nodes through role-

based APIs. When a user submits a transaction, the leader node organizes the

transaction into a block and initiates the consensus mechanism. All nodes execute the

transaction based on the implemented chaincode logic. Upon successful execution,

the endorsing peers send their endorsement responses to the client. The client then

sends the transaction, along with the endorsement responses, to the orderer node,

which hosts the ordering service. The ordering service receives the endorsed

transactions and arranges them into a block. Subsequently, it broadcasts the

generated block to all peers in the network. Each peer verifies that the transactions

within the received block are signed by the appropriate endorsers and that there are

33

sufficient endorsements. If the verification check passes, the peer proceeds to

commit/save the block to its ledger.

The data within the system is stored in the distributed ledger of Hyperledger

Fabric, utilizing two storage methods. Firstly, the blockchain maintains a chain of

blocks, with each block containing transaction information in the form of key-value

pairs. Secondly, the World-State database holds the values (assets) of all the most

recent committed transactions, organized by specific keys. In our system, CouchDB

is employed as the World-State database. Every peer within the network retains a

copy of the ledger, encompassing both the blockchain and the World-State database.

Figure 2.5: Architecture of proposed system from previous study

(Usman & Qamar, 2020.)

34

Figure 2.6: Process flow of patient registration

(Usman & Qamar, 2020.)

Figure 2.7: Process flow of records sharing and adding new record

(Usman & Qamar, 2020.)

2.6 Conclusion

To summarize, this chapter has covered introduction about blockchain, its

platform and highlighted a variety of previous research on approaches or applications

that have been proposed by different authors. The following chapter will discuss the

methodology of the study used in this project.

CHAPTER 3: PROJECT METHODOLOGY

3.1 Introduction

This chapter will discuss the methodology that will be used to complete this

project. This methodology will serve as a guide for creating the project so that it

develops according to the time frame.

3.2 Methodology

The project methodology for creating a prototype of blockchain-based web

application for electronic health record (EHR) data management among hospitals

involves a series of stages including planning, design, implementation, testing,

evolution and maintenance. This project methodology combines elements of the

Software Development Life Cycle (SDLC) methodology with a focus on blockchain-

specific perspectives and relevant phases necessary for development.

Figure 3.1: SDLC phases

(Sami, 2012.)

36

3.2.1 Planning

In this stage, the requirements and project scope for the development of

blockchain-based web application for electronic health record (EHR) data

management among hospitals are identified. This includes identifying the parties

involved in the data management process, determining the features and

functionalities of the smart contract and deciding on the data and transactions that

need to be recorded.

3.2.2 Design

This stage involves outlining and specifying the protocol or set of rules for

the blockchain application’s architecture and interfaces. The mapping of the data

flow and transaction are streamlined using smart contracts.

3.2.3 Implementation

Implementation is the stage where we develop and code the EHR data

management system using the selected blockchain platform and programming

language while adhering to best practices such as secure coding and testing methods.

Besides, this stage also implements proper data validation measures to prevent data

tampering and unauthorized access.

3.2.4 Testing

This stage involves testing the blockchain-based web application for

electronic health record (EHR) data management in various scenarios to ensure it

works as intended. Besides, we will conduct proper validation of the data that comes

into the system and check for any vulnerabilities.

3.2.5 Evolution

In this stage, maintenance and improvement to the blockchain network or

web application code are done to ensure its performance is managed and the

requirements are met. In addition, this stage also will address any issues that may

arise and add updates to the contract as necessary.

37

3.3 Project Milestones

Project milestones is used to plan and track the progress of ongoing project. It

is to ensure that the project progress follows the origins life cycle, so that it would

not be contradictory with the project’s objectives at the first place. Thus, the table

shown below is the milestone and the Gantt chart for this project.

Table 3.1: Final year project 1 milestones

WEEK ACTIVITY NOTE/ACTION

W1

(20/03→24/03)

· Select a suitable project

topic and potential

supervisor.

· Proposal PSM:

Discussion with

supervisor.

· Proposal assessment and

verification.

· Title is chosen.

· Proposal Form – Ulearn.

· Deliverable – Draft

Proposal Form – email

PIC

W2

(27/03→31/03)

· List of students with

project title versus

supervisor and evaluator.

· Proposal

correction/improvement.

· Proposal approval and

submission

· Email Committee for

proposal approval.

· Upload approved

proposal at Ulearn

W3

(03/04→07/04)

Chapter 1

· Meeting 2

W4

(10/04→14/04)

Chapter 1

· Report Writing Progress

1

· Log progress – ePSM.

· Deliverable – Chapter 1

– ePSM.

W5

(17/04→21/04)

Chapter 2

38

W6

(24/04→28/04)

MID-SEMESTER BREAK

W7

(01/05→05/05)

Chapter 2

· Report Writing Progress

· Project Progress 1

· Log progress – ePSM.

· Deliverable – Chapter 2

– ePSM.

· Progress Presentation 1

(KP1)

W8

(08/05→12/05)

Chapter 3

W9

(15/05→19/05)

Chapter 3

· Report Writing Progress

· Log progress – ePSM

· Deliverable – Chapter 2

– ePSM

W10

(22/05→26/05)

Chapter 4

· Project Progress 2

· Log progress – ePSM.

· Progress Presentation 2

(KP2)

W11

(29/05→02/06)

Chapter 4

· Report Writing Progress

2

· Log progress – ePSM

Deliverable – Chapter 2 –

ePSM

W12 & W13

(05/06→16/06)

· PSM1 Draft Report

preparation

W14

(19/06→23/06)

· PSM1 Draft Report

submission to SV &

Evaluator

· Report Evaluation

· Log Progress – ePSM

· Deliverable – Complete

PSM1 Draft Report –

ePSM

W15

(26/06→30/06)

· PSM 1 Demo and Report

Presentation to Supervisor

& Evaluator

· Presentation Skill

· Submission of PSM 1

documents to PSM

· Log Record – ePSM

· Submission of logbook

in ePSM

· Submission of Project

Report PSM 1 to ePSM.

39

supervisor, evaluator and

committee in ePSM

Table 3.2: Final year project gantt chart

Progress Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FYP Proposal

Project Progress

1

Report Writing

Progress 1

Project Progress

2

Report Writing

Progress 2

Report

Evaluation

Demonstration

Presentation

3.4 Conclusion

This section offers a brief overview of the stage involved throughout the

project and shows the project milestone to ensure the project management process

schedules. The further explanation regarding the design of the project will be

clarified in the next section.

40

CHAPTER 4: DESIGN

4.1 Introduction

This chapter begins with a comprehensive description of the requirements

that have been gathered throughout the analytical process. The next part of the

chapter focuses on high-level design. The high-level design emphasizes the overall

system design, including the system architecture design. These designs will be

extensively explained and documented in this chapter.

4.2 Problem Analysis

Currently, health service data is spread over various systems that have

different architectures. There are also many problems of falsifying reports and

withholding important information from patients, which are considered medical

fraud. In traditional healthcare systems, patients often face cumbersome manual

approval processes when sharing their data with other parties like hospitals or

research institutes. These processes can be inefficient and challenging to coordinate,

particularly in cases where patients relocate or seek treatment in different locations.

Therefore, the use of blockchain technology provides patients with

comprehensive, immutable records and easier access to EHR free from service

providers or treatment websites. By leveraging the capabilities of Hyperledger Fabric

blockchain and various tools, such as Docker, npm and Ubuntu, the project aims to

address the limitations of the current system, such as manual enforcement, lack of

transparency, security vulnerabilities and challenges in interoperability among

hospitals. The goal is to decentralized data management of electronic health record

41

among hospitals by automating the transaction process thus ensure transparency and

integrity through blockchain technology.

Figure 4.1: Comparison of present and future EHR system

(Guo, Shi, Zhao, & Zheng, 2018.)

4.3 Requirement Analysis

Requirement analysis is used to find and analyze any task or requirement that

going to use to make this project run in successfully. This chapter will explain more

about the functional requirement and other requirements.

4.3.1 Data Requirement

In this data model:

Inputs:

 Personal details (Name, age, weight, height, health record,

diagnosis etc)

42

 Username, password, role

 Grant/Revoke permission

Outputs:

 Personal details (Name, age, weight, height, health record,

diagnosis etc)

Data storage:

 Personal details & Medical health record history (Blood type,

allergies, symptom etc)

Figure 4.2: Data type of patient

43

Figure 4.3: Data type of medical practitioner

4.3.2 Functional Requirement

Use case of actors within the system are shown as below:

Figure 4.4: Use case of admin

44

Figure 4.5: Use case of patient

Figure 4.6: Use case of medical practitioner

Table below shows the participants involved in the blockchain network and

their respective permission:

45

Table 4.1: Participants permission in the network

Role Permission

Hospital admin - Allow only registered medical

practitioner to enter the network.

- Allow public (patient) to enter the

network.

- Can view list of patients with limited

information

Medical practitioner (Doctor) - Can view self details

- Can view list of patients who gave

access permission to the doctor

- Can read or update patient information

with patient grant.

Patient - Can create, read and update their own

personal information

- Grant access rights to medical

practitioners

- Remove permissions from medical

practitioners

- Can view history of own data

Activity diagram of actors within the system are shown as below:

46

Figure 4.7: Sequence diagram of creation of a patient

The patient is required to establish an account only during their initial visit to

any of the hospitals within the network. During this first visit, the patient provides

their details to the administrator, who then invokes the AdminContract to create a

patient. In the backend, the admin certificate is used to establish a connection to the

network. A transaction is generated that incorporates the patient's information into

the ledger and adds their identity to the blockchain network. Upon successful

creation of the patient's account, the server generates a temporary password for the

patient, which enables them to log into the network. The patient's credentials are

recorded in the ledger, allowing them to visit any hospital within the network.

Figure 4.8: Sequence diagram of creation of a doctor

47

The doctor will provide their information to the admin, who proceeds to

establish a connection with the network and adds the doctor as an identity within the

blockchain network. The credentials of the doctor are stored in a Redis database

specific to the hospital. Now that the patient and doctor have been added as identities

in the blockchain network, they can subsequently connect to the network using their

certificates for any future interactions.

4.3.2.1 Smart Contract/Chaincode

In Hyperledger Fabric, a smart contract is responsible for governing the

transaction logic that manages the life cycle of a business object stored in the world

state. Multiple smart contracts are bundled together into a chaincode, which is

subsequently deployed onto a blockchain network. Smart contracts establish the rules

and agreements between different organizations using executable code. The Fabric

SDK is used to invoke smart contracts and initiate transactions, which then make

modifications to the ledger. A chaincode encompasses one or more smart contracts,

and when deployed, all the smart contracts within it become accessible to

applications.

The proposed application includes mainly three smart contracts packaged into

a single chaincode where each role (Patient/Medical Practitioner/Admin) invokes its

very own smart contract:

Table 4.2: Smart contracts in the system

Smart Contracts Descriptions

AdminContract This contract is invoked by the administrator, who can

utilize the contract's methods to create or delete patients

or medical practitioner by adding or removing objects

from the ledger. Additionally, the administrator has the

capability to view all the patients across the entire

network with limited information.

PatientContract The patient actively engages with the ledger through this

contract as it encompasses the necessary logic

specifically tailored for the patient's operations. For

48

example, the patient can exclusively update or view their

personal details using the methods outlined within the

contract. Moreover, the patient contract incorporates

methods to grant or revoke access to doctors.

MPContract The doctor contract has methods that allows the medical

practitioner to update or read the patients medical details

based on the conditions set such as when normal

condition there will need to have permission from patient

while medical practitioner under emergency department

will be able to view patient data directly.

4.3.3 Software Requirement

Software that is required for this project to complete the flow are as listed as

follow:

Table 4.3: Software requirement

Software/Tool Descriptions

Hyperledger Fabric It is an open-source blockchain platform designed

for developing decentralized applications. It provides

a modular architecture, enabling customizable

consensus protocols, privacy features and scalable

network design, also, easy for building smart

contract in the blockchain.

Hyperledger Fabric Client

SDK

It provides APIs to interact with the Hyperledger

Fabric blockchain, for instance, provides APIs to

interact with smart contracts, submit transactions to a

ledger and query the ledger.

Docker Compose This tool is used to deliver software packages called

containers such as docker-compose-ca.yaml, docker-

compose-couch.yaml and docker-compose-net.yaml.

Couch DB Couch DB is an open-source database which allows

49

the storage of data in JSON format and is used as an

external state of a database for Hyperledger fabric.

Node JS This is an open-source cross-platform backend that

runs scripts in the terminal, enabling the execution of

JavaScript code outside of the browser. Node.js is

employed to create APIs that interact with the

Hyperledger Fabric blockchain. It handles the initial

level of user authentication and serves as the

gateway to the Fabric smart contracts.

Angular JavaScript This framework is used to build the client application

web interface.

Redis Redis is an open source in-memory data structure

store, used as a distributed, in-memory key–value

database.

cURL cURL is a software project that offers a command-

line tool and library, allowing for data transfer across

different network protocols.

Ubuntu Ubuntu is a full Linux operating system, which is

freely available for both technical and community

support. In general, the software required can run

smoothly in Ubuntu compare to windows.

VMware VMware is a virtualization and cloud computing

software that provides solution for building and

managing virtualized environments. Its robust

platform offers developers the ability to create and

deploy blockchain projects with enhanced

scalability, security and performance.

Visual Studio Code Visual Studio Code is a code editor with support for

development operations like debugging, task running

and version control.

50

4.3.4 Hardware Requirement

To ensure smooth development and testing processes, it is recommended to

have a system that meets the following minimum hardware (laptop/PC)

specifications:

Table 4.4: Hardware requirement

Specification Details

Processor 2 GHz dual core x86_64 CPU supporting SSE4.2 and

above and virtualization

RAM At least 4 GB or above

Storage At least 50GB HDD or above

Operating System Ubuntu Linux 14.04 / 16.04 LTS (both 64-bit), or Mac

OS 10.12

51

4.4 High-Level Design

4.4.1 System Architecture

Figure 4.9: System architecture of the blockchain.

The system architecture begins with the blockchain operator bears the

responsibility of initializing the network's configuration and granting access and

credentials to users who manage the system. The orderer certificate authority (CA) is

established within the docker fabric image and utilized by all hospital peers. The

orderer assumes an administrative role by approving organizations and validating the

credentials of their respective peers. All components of the application are

interconnected to ensure seamless communication. The backend code and smart

contract logic are implemented using JavaScript, with ExpressJS serving as the

REST API server. The user interface is built with the Angular 11 framework,

providing a user-friendly experience. Communication between the frontend and

backend occurs through REST API calls, with authentication facilitated by JSON

web tokens. Backend code can also be written in Java, Go, and Typescript which is

officially supported languages by Hyperledger Fabric.

52

For the system design, a single channel named "hospitalChannel" is created

with initial two hospital organizations. Plus, the network can seamlessly incorporate

another new hospital organization even when the network is running as the new

organization can join into the existing channel. In this scenario, third hospital

organization should be able to join the network when the network is running and get

to join with the same channel.

Hyperledger Fabric offers support for two databases, LevelDB and CouchDB.

In this solution, CouchDB is chosen due to its flexibility and ability to handle image

data. CouchDB also supports indexes, unlike LevelDB. Since all patient data is

stored in CouchDB without maintaining a separate Electronic Health Record (EHR)

store, CouchDB fits well in this context. On the other hand, LevelDB, developed by

Google, is a powerful in-memory database designed to store key-value pairs. It can

be faster than CouchDB in some cases. In an alternative use case scenario where the

EHR database of hospitals is employed, LevelDB can be utilized to store references

(such as APIs) to the records in the blockchain ledger. In the current simple use cases,

CouchDB provides appropriate support. The ledger consists of the transaction log

and the world state. CouchDB is used to store the world state, eliminating the need to

query the entire transaction log for each transaction request. The transaction log

retains all transactions starting from the first one stored in the genesis block.

Additionally, the Redis key-value database is utilized to store doctor credentials,

specifically usernames and passwords while other details of the doctor are stored as

user attributes using the fabric SDK.

4.5 Conclusion

To summarize, project design plays a critical role in project development. It

is essential to define and evaluate all software and hardware requirements before

commencing the design implementation. This phase serves as a preparation stage for

the application, enabling a comprehensive understanding of the entire system before

implementation. Additionally, this chapter outlines the crucial design requirements

that will be implemented and tested in the subsequent chapter. It also presents the

planned architecture design for the project.

CHAPTER 5: IMPLEMENTATION

5.1 Introduction

This chapter explains about the implementation of prototype of blockchain-

based web application for EHR data management among hospitals that has been

described in previous chapter. The implementation phase including software

development environment setup, configuration of smart contracts, application APIs

and configuration on application.

5.2 Software Configuration Management

According to documentation in Hyperledger Fabric, the Fabric application

stack has five layers which are:

54

(a) Prerequisite software: The base layer needed to run the software, for example,
Docker.

(b) Fabric and Fabric samples: The Fabric executables to run a Fabric network
along with sample code.

(c) Contract APIs: To develop smart contracts executed on a Fabric Network.

(d) Application APIs: To develop blockchain application.

(e) The Application: Blockchain application that will utilize the Application
SDKs to call smart contracts running on a Fabric network.

Figure 5.1: Application stack in Fabric application

Therefore, the implementation steps of this project will followed according to

the stacks mentioned above from bottom-top in order to develop a blockchain-based

web application for EHR data management among hospitals.

5.3 Prerequisite Base Software

As this project is planned to develop in a controlled environment, operating

system, Ubuntu 22.04.3 LTS is used and setup in VMware. Within the system,

prerequisite tools according to Hyperledger Fabric documentation are installed which

are git, curl, docker, docker compose, golang, python, nodejs, npm and angular. It is

important to note that the version of node should be 10.15.3 which npm that included

in it is 6.4.1 and the frontend framework is angular 11. Besides, Microsft Visual

Studio Code is also used to building and debugging application.

https://hyperledger-fabric.readthedocs.io/en/latest/install.html
https://hyperledger-fabric.readthedocs.io/en/latest/sdk_chaincode.html
https://hyperledger-fabric.readthedocs.io/en/latest/sdk_chaincode.html

55

5.4 Fabric and Fabric Samples

After all prerequisite software are installed, Fabric basic framework is also

downloaded which included Fabric Docker images, Fabric CLI tool binaries and

Fabric samples which are test network created by HLF community using Docker

compose. To test all components are working, test network from fabric samples can

be run.

5.5 Contract APIs

Contracts serve as the implementation of all executable business logic within

the application, with smart contracts executing actions like creating, reading,

updating, or deleting assets on the distributed ledger. In this specific instance, smart

contracts are written in JavaScript which one function has been written for each

capability of the proposed system.

Figure 5.2: Smart contracts hierarchy

The primary focus of smart contract development is typically the entity on

which network transactions are expected to occur. In this project, EHR take center

56

stage, and smart contracts are designed around them. For example, the createPatient()

contract facilitates the creation of a new EHR when an admin registers a new patient,

while contracts like updatePatientPersonalDetails() and

updatePatientMedicalDetails() handle updates to patient personal and medical

information. When access to a latest EHR is requested, readPatient() contracts are

invoked. Retrieving an EHR's transaction history is accomplished using the

getPatientHistory() contract. The HLF blockchain network offers a useful function

which is getHistory, enabling users to access the transaction history of a particular

entity. This is advantageous because the global state keeps track of the most recent

record state while the history feature allows for tracing earlier transactions.

Figure 5.3: Example of getPatientHistory() methods in doctor contract

A fundamental aspect of the Patient-centered Data Management System

(PDMS) involves granting and revoking access. This is achieved through the

grantAccessToDoctor() and revokeAccessFromDoctor() methods, enabling patients

to manage a doctor's access to their electronic health record. Access control is

implemented in smart contracts to regulate data access at the time of retrieval.

Figure 5.4: Example of revokeAccessFromDoctor() method

57

A permissionGranted array, which contains doctor IDs permitted to access

the EHR, is maintained within the EHR. Patients can add or remove a doctor's ID

from this list which is a process hidden from the doctor and only accessible to the

patient. When a doctor interacts with a patient's EHR, the system checks the doctor's

user ID against the permissionGranted array. If the ID is absent, access is denied,

thus ensuring data privacy.

Figure 5.5: Example of verifying if the doctor is granted access

There are four processes involved in deploying chaincode which are

packaging, peer installation, approval for a channel and commitment. In Fabric,

smart contracts are deployed on the network in packages referred to as chaincode. A

chaincode is installed on the peers of an organization and then deployed to a channel,

where it can then be used to endorse transactions and interact with the blockchain

ledger. Before a chaincode can be deployed to a channel, the members of the channel

need to agree on a chaincode definition that establishes chaincode governance. When

the required number of organizations agree, the chaincode definition can be

committed to the channel and then the chaincode is ready to be used. All of these

processess can be streamlined using the deployCC command once the HLF network

is operational.

58

5.6 Application SDK

5.6.1 Hyperledger Fabric Client SDK

The Hyperledger Fabric Client SDK offers APIs to interact with the HLF

blockchain such as interact with smart contracts, submit transactions to a ledger and

query the ledger. The Fabric SDK provides the following packages:

(a) fabric-ca-client: The fabric-ca provides APIs to participants (admin, patient

and doctor) to register and enroll for establishment of trusted identities on the

blockchain network.

(b) fabric-common: This component consolidates the common code utilized

across all fabric-sdk-node packages, facilitating precise interactions with the

Fabric network for transaction invocations. It offers APIs for monitoring

events, logging and configuring settings, allowing customization via

environment variables, program arguments and in-memory configuration.

(c) fabric-network: This package contains the APIs required to connect to the

Fabric network, submit transactions to query or edit the ledger. It also

provides APIs to manage the wallet which is used for managing identities

and create a connection profile based on the connection profile JSON

generated when CA is created. In this package, the main class that allows the

Fabric SDK to interact with the network is the Gateway class. Once

instantiated, the object create a gateway (connection) to a peer (user) within

the blockchain network and enables access to the chaincode and channels for

which that peer is a member.

Figure 5.6: Example of utilizing fabric-network between backend server and
blockchain network

59

5.6.2 Wallet

The wallet plays a crucial role in the Hyperledger Fabric SDK, serving as an

identity repository. It stores essential Fabric metadata, including authorized private

keys and corresponding public keys issued by a certificate authority. Wallets can be

configured in multiple formats, such as file-based, in-memory and database-based

wallets. In the context of developing a patient data management system, the file-

based wallet is employed. When establishing a connection through the Gateway class,

the wallet stores both the mspID and user type, which are then used to verify the

user's access rights to the specific channel within the network.

5.6.3 JSONWeb Tokens

JSON Web Tokens (JWTs) are employed to manage API permissions and

maintain user sessions. This approach ensures that the individual who initially logged

in also has access to the API. Instead of the server retaining session information, a

token is generated upon the user's login using their username and password.

Subsequently, this token is signed, encrypted, transmitted to the client and stored

there. When the user attempts to access the API with the same token, JWT verifies

the token using a key (the user's password). If the token is unaltered and the user

remains the same, access to the API is granted. To prioritize Hyperledger Fabric over

application development, user login credentials are stored as JSON in a file and

verified against it.

5.7 Application

5.7.1 State of Distributed Database

In this project, CouchDB is employed as a database on a peer node to

represent each patient's health records in JSON data structures. The number of

CouchDB Docker images depends on the number of peers within the network and it

operates on the identical server as the respective peer. Since each peer has its ledger,

an HLF network requires a single CouchDB image for each peer. In this case, 2

CouchDB images are required as there are 2 peer nodes in the network.

60

5.7.2 Identity (CA)

To become a recognized participant within the hospital network, individuals

must first establish their trustworthiness to conduct transactions on the blockchain.

This involves obtaining an identity issued by a trusted authority, which is

Membership Service Providers (MSPs), as indicated in the app/first-

network/configtx/configtx.yaml configuration file. Each hospital operates its

Certificate Authority (CA), responsible for issuing certificates to its participants.

These certificates are digitally signed by the CA and serve to bind a participant with

their public key, along with a set of permissions. Consequently, if one places trust in

the CA (and possesses its public key), they can have confidence in the specific

participant associated with the public key contained in the certificate which all

validated by the CA's signature. In the application, there are 2 components can be

choose and used for issuing identities within the network which are default CAs or

the cryptogen tool.

61

(a) Cryptogen: Cryptogen is a tool that creates certificates and keys. This tool

can be used during development and testing. The tool quickly just creates the

required crypto material for the hospitals. The configuration files for all the

hospitals and the orderer are defined in app/first-

network/organizations/cryptogen directory, the YAML files contain the

necessary information for the tool to create the cryto material for the hospitals

and the Orderer.

(b) CAs: Each hospital has its very own CA server that creates the identities

using client of the server to prove that the identity belong to their hospital

and can be trsuted. All of the identities created by a CA run in the hospital

share the same trust of the root CA. In this project, CAs are used to allow

registration and enrollment of patients and doctors with Fabric SDK which

cannot be done using Cryptogen. The configuration files of the CAs of the

hospitals and orderer are defined in app/first-network/organizations/fabric-ca.

5.7.3 Membership Service Provider (MSP)

As stated in previous chapter, MSP is the one that verifies the private keys of

the participants by matching them with the stored public key. While CAs are used to

create trusted identities that are recognized by the network (peers/doctors/patients),

MSPs are instrumental in defining the hospitals that enjoy trust among network

members. MSPs allocate roles and permissions to participants from these hospitals,

allowing them to engage within the network. In the application setup, all hospitals

that become part of the network are empowered to carry out read and write

transactions. These permissions are configured in the app/first-

network/configtx/configtx.yaml file. However, to initiate a transaction within the

network, participants must first obtain an identity issued by a CA that is

acknowledged by the network. Furthermore, they must be the member in one of the

hospitals.

5.7.4 Endorsement Policies

The chaincodes in Hyperledger fabric have an endorsement policy that

specifies the peers on the channel that executes the chaincode functions and endorses

62

the results to the ledger and makes the transaction valid. The endorsement policies

define the peers which will verify and approve/reject the execution of a transaction.

During this process, the peers verify the transaction, and the committing peer ensures

that the transaction contains the the required number of endorsements which is

configured in the endorsement policy.

The Endorsement Policy is defined in the configtx.yaml. Each hospital

contains its very own endorsing peers as specified in the YAML file in the path

&hosp1/Policies/Endorsement similarly for hosp2. The rule specifies the roles who

are endorsers. In the YAML file, all the peers of the hospitals are endorsers. In path

&hosp1/Policies/Endorsement, the rule OR(’hosp1MSP.peer’) requests one signature

from the peers of hosp1. A Chaincode-level endorsement policy is defined in the

YAML file in the path &ApplicationDefaults/Policies/Endorsement, where

“MAJORITY” specifies that only when a majority of channel members approve a

chaincode definition then definition is committed to the channel.

Figure 5.7: Endorsement policy for Hosp 1

63

Figure 5.8: Chaincode-level endorsement policy

5.7.5 Security Mechanism

Security of the data is essential when question arises for patient data in

healthcare sector. Therefore, encryption capabilities in HLF are enable which uses

Transport Layer Security (TLS) 1.2/1.3 (RSA TLS) for certificates generation to

securely work in the network and also SHA256 for hashing. These TLS certificates

will be used by the peer when communicating with the network and hashes of

passwords making it more difficult to be break, thus prevent any security risks.

Figure 5.9: TLS enabled in CA Hosp 1

64

Figure 5.10: Patient’s passwords are hashed and stored in the blockchain
(patient chaincode)

5.8 Conclusion

This chapter covers about the analysis and modifying part to reach the

objective of this research. This chapter also explains about every function used for

the project where it is crucial to understand how the system works.

65

CHAPTER 6: TESTING

6.1 Introduction

This chapter will explain about the testing and evaluation after the

blockchain-based web application for EHR data management system is created. This

chapter is crucial to measure the performance of the system and discuss about the

capability of blockchain-based EHR data management system in ensuring data

confidentiality, integrity and transparency.

6.2 Test Strategy

The testing strategy of this project combines both top-down and bottom-up

approaches. Top-down approach helps to define the overall system architecture and

functionality of the blockchain-based EHR system while bottom-up approach helps

to test individual components and smart contracts. In terms of testing types, both

black-box and white-box tests are employed. Black-box tests involved functional

tests while white-box tests includes security tests and data correctness checking.

6.2.1 Classes of Tests

As the evaluation of the prototype system aims to ensure data security in

terms of confidentiality, integrity and availability, several tests can be conducted

such as output correctness which provide data integrity, functionality test which

evaluate system's functionality and security test which can analyze the system's

internal logic and address any potential vulnerabilities.

66

6.3 Test Design

6.3.1 Test Description

Each test has objectives which outline the purpose of the test while a test

description outlining the methodology. Expected result for each module in the

prototype is designed and the actual result should be the same as the expected result

in order to pass the test. There are two types of tests which are manual tests that are

executed by an individual and automated tests that are executed via scripts. In this

project, manual tests are conducted as it is a more appropriate approach to assess

specific features within the prototype such as participant's access control.

Interactive tests will be used to check the validation, verification, permissions

and the overall performance of the prototype of blockchain-based EHR system. All

the test description listed below will be used to evaluate the fault tolerance and

efficiency of the system.

Table 6.1: Test Description

No. Test Description

1 Only admin in hospitals can login as admin.

2 Admin can only view list of patients with limited personal information.

3 Only admin can create patient and doctor to join the network.

4 Only registered patient can login as patient.

5 First-time login patient always need to change password.

6 Only patient himself can view all his personal information and EHR.

7 Only the EHR owner can view list of doctors and grant or revoke access

rights to doctors.

8 Patient can only update his own personal information.

9 Patient can only view his own data history.

10 Only registered doctor in hospitals can login as doctor.

11 Only doctor can view his own details and specialty.

12 Only doctor can view list of patients who granted access and the patient’s

EHR.

13 Only doctor who granted access can update patient’s EHR.

67

14 Only doctor who granted access can view patient’s EHR history.

15 Data within the system is always correct.

16 HTTPS should be used to secure the channel between the client and

blockchain.

6.3.2 Test Data

Table and figures below show the data involved and stored within the

blockchain-based EHR system which can be used for testing. The EHR data of

patients shown below are initial data which will directly created within blockchain

when the network is up. The code is included in app/patient-asset-

transfer/chaincode/lib/initLedger.json.

Table 6.2: Login details for users

Role Username Password

Admin hosp1admin hosp1lithium

Admin hosp2admin hosp2lithium

Patient PID0 PID0

Patient PID1 PID1

Patient PID2 PID2

Patient PID3 PID3

Patient PID4 PID4

Patient PID5 PID5

Doctor HOSP1-DOC0 password

Doctor HOSP1-DOC2 password

Doctor HOSP2-DOC1 password

Doctor HOSP2-DOC3 password

68

Figure 6.1: EHR of patient 0

Figure 6.2: EHR of patient 1

Figure 6.3: EHR of patient 2

69

Figure 6.4: EHR of patient 3

Figure 6.5: EHR of patient 4

Figure 6.6: EHR of patient 5

70

6.4 Test Results and Analysis

6.4.1 Network Testing

In the app/first-network directory, command ./network.sh up is executed to

bring up the network. If there is no issue, a Fabric network that consists of two

organizations which are Hosp 1 and Hosp 2 with one ordering node will be created.

Docker containers are created too and will be running on the machine. With the

command ./network.sh createChannel, a channel called “hospitalChannel” will also

be created between both organizations and join their peers to the channel. Once the

command is successful, it will show “Channel successfully joined”.

Figure 6.7: Testing of bringing up network

71

Figure 6.8: Testing of creating channel

To test whether the chaincode is applicable, command ./network.sh deployCC

is executed. This command will package the smart contract code inside app/patient-

asset-transfer, then install package to peer nodes, query installed chaincode, approve

chaincode for both organizations and finally commit and invoke the chaincode. Once

successful, the initial data of six patients are created in a ledger.

72

Figure 6.9: Testing of deploying smart contract

In directory app/server, command npm start is executed to start the ExpressJS

backend server. If it is successful, users from the network including admin from

hospital organizations, initial six patients data and four doctors will be enrolled and

registered which are then created inside the wallet and the backend server will be

running.

Figure 6.10: Testing of running backend server

73

To test frontend server, command ng serve -o is used to bring up the angular

server. If there is no issue, a user interface will be automatically opened up in the

default browser.

Figure 6.11: Testing of running frontend server

Figure 6.12: Main page of user interface

74

6.4.2 Functionality Testing

6.4.2.1 Admin

(a) Login

An admin is created for each hospital that joins the network. During the

hospital's network enrollment process, the details of the administrator must be

present. The administrator's credentials which are username and password, are

specified in the fabric-ca-server-config.yaml file within the configuration of the

respective hospital's CA (app/first-network/organizations/fabric-ca). For admin login,

specific role and hospital should be chosen and the credentials entered are checked

against the credentials stored in the blockchain network where only valid admin can

log into the system.

Figure 6.13: Admin login page

(b) View List of Patients

Once the admin login successfully, a list of patients with limited information

(patient ID, first name and last name) within the blockchain network are displayed.

The patient list is retrieved by invoking the admin contract which a new transaction

that retrieves all patient objects in the world state is recorded in the ledger. It has also

shown that the admin chaincode is functioning as it limits the access of admin only to

the names while EHR of the patients are restricted.

75

Figure 6.14: List of patients (admin)

(c) Create Patient

Admin has the capability to create a new patient. When creating a new patient,

a transaction is generated in the ledger which is to create an object in world state then

it will be sent to all network peers for verification, endorsed and stored in the ledger

if valid. The patient is also registered within the network as a client so that

interaction between ledger can be done. In addition, temporary passwords are created

which the patient must change on the first-time login for security reasons.

Figure 6.15: Create new patient

76

(d) Create Doctor

Admin can also create a new doctor, however, doctor is not an object stored

in the ledger due to problem of HLF. Therefore, there is no relationship with the

ledger upon registration of a doctor while doctor’s credentials are stored in Redis

database. A client is created in the network for the doctor so that he can

communicate with the ledger.

Figure 6.16: Create new doctor

6.4.2.2 Patient

(a) Login

If a patient is logged into the system using temporary password given for the

first time, a message of requesting for changing new password will be appeared. The

temporary password and new password are hashed and stored in the ledger. During

every login, the entered password is hashed and compared with the hash value of

password stored in ledger.

77

Figure 6.17: Patient login page

Figure 6.18: Mandatory of changing new password for first-time login patient

(b) View Personal Details

After successful login, the patient can view all his personal data as well as his

current medical details. These data are retrieved from the world state by invoking the

patient contract.

78

Figure 6.19: View personal details & EHR (patient)

(c) View List of Doctors & Grant/Revoke Access

From the patient dashboard selecting “View Doctors”, a list of available

doctors from both hospitals are shown. The patient has the right to grant or revoke

access to/from specific doctor. Doctors who are granted access only can view and

update the patient’s EHR else unable to do so if access revoked.

Figure 6.20: View list of doctors & grant/revoke access

79

(d) Edit Personal Details

The patient can edit his personal details. If any changes are made, the new

details will be updated in the ledger using patient contract through new transaction.

Figure 6.21: Edit personal details

Figure 6.22: Updated personal details

80

(e) View EHR History

The patient can view all his history records starting from the first visit to the

latest visit where any modification in the records can be known. This functionality is

possible due to the presence of getHistoryForKey API for public data in Hyperledger

Fabric which returns the history of patient. This provides complete transparency over

all the transactions made to the patient’s data as all records are traceable including

who modified the data and timestamp.

Figure 6.23: View EHR history (patient)

6.4.2.3 Doctor

(a) Login

To login as doctor, user need to select role as “Doctor”, hospital his belong

and correct credentials on login page. Upon successful login, details of the doctor

will be shown.

81

Figure 6.24: Doctor login page

Figure 6.25: Doctor dashboard

(b) View List of Patients & Patient’s EHR

If there is any patient who has granted access to the doctor, his information

will be displayed otherwise the list will be empty. Through “View More”, doctor can

view the latest condition and information of the patient.

82

Figure 6.26: List of patients (doctor)

Figure 6.27: View patient’s EHR

(c) Update EHR

In “Edit medical details”, doctor will be able to provide latest consultation

and treatment by updating patient’s EHR. Upon successful update, it will redirected

to the patient’s information page that displayed latest patient’s data.

83

Figure 6.28: Update patient’s EHR

Figure 6.29: Updated patient’s EHR

(d) View Patient’s EHR history

As the patient’s whole medical history is available to the doctor, it can ease

the effort of doctor to retrieve patient’s EHR and avoid any healthcare fraud,

therefore improved the doctor’s understanding on patient’s condition so that better

and appropriate medication can be conducted.

84

Figure 6.30: View patient’s EHR history

6.5 Conclusion

This chapter has demonstrated the functionality of the prototype of

blockchain-based web application for EHR data management among hospitals and

proven that it is an applicable approach with different users permissions but

increased data security compared with conventional EHR database system. Data

validation testing has also been done which it has passed the test. For improvement,

there should have an error message indicates that the request is not being processed.

Although other performance parameters and tests for the blockchain such as

transaction throughput, latency and resource consumption are not evaluated yet, it is

planned that Hyperledger Caliper which is a blockchain performance benchmark

framework can be used to test the performance of blockchain solution using custom

use cases. This chapter has also helps to point out the advantages and weaknesses of

the prototype.

85

CHAPTER 7: PROJECT CONCLUSION

7.1 Introduction

This chapter addresses the concluding phases of the project, which are Project

Summarization, Project Contribution, Project Limitation, Future Works and

Summary. This chapter holds significant importance within the project as it helps

fellow researchers in enhancing our model by consolidating all its constraints and

offering recommendations for enhancement.

7.2 Project Summarization

This project has been designed to determine the application of blockchain

technology for EHR among hospitals in healthcare sector. There are 7 chapters in

this project which starts with Chapter 1 that introduced about research background,

problem statement, project questions, project objectives, project scope and project

contribution while Chapter 2 emphasizes on introduction for blockchain technology,

critical review on existing papers and researches then proposal of a better solution.

Chapter 3 covers about methodology and approach used in this project to achieve

project objectives. Next is Chapter 4 and Chapter 5 that can relate with second

objective of this project which are design of the proposed blockchain-based web

application for EHR data management including data involved, requirements and

system architecture and implementation of the architecture using Hyperledger Fabric

that aims to tackle the identified issues in current existing conventional healthcare

data management systems. The following chapter which is Chapter 6 has analyzed

86

the results of the developed blockchain-based web application for EHR data

management among hospitals in terms of functionality, evaluation and comparison

between conventional EHR data management systems have also done to know

whether the proposed blockchain-based web application for EHR data management

is a more secure and efficient method. Lastly, Chapter 7 concludes the entire project

and explain further progress that could implement in the future.

The system's components are adaptable to meet specific design requirements

such as creation of new patient and doctor, different rights of the participants in the

network to modify or view their own or other person’s data, which allow for scenario

simulations mirroring real-world application behavior. This has offered an insight on

complexity in managing patients’ health records where many roles are involved and

the challenges in system implementation, encompassing usability, security,

scalability and maintainability. Beyond the prototype's accomplishments, further

theoretical ideas have also been explored that could enhance the system, capitalizing

the advantages of a decentralized blockchain approach, such as re-encryption

algorithm which is a more robust security approach to protect public and private keys,

feature of private data collection in Hyperledger Fabric that can prevent complexity

of deploying a large number of channels when scaling different organizations with

various business needs to join the network. Additionally, it has been proved that

adopting a blockchain-based EHR data management system is feasible as patient’s

health records can be more secure in blockchain network where data integrity and

transparency are ensured as any access to patient’s medical history is preserved in the

ledger through transaction history and a patient-centric system can provide greater

control to individuals. Due to the nature of blockchain, also offered by Hyperledger

Fabric, which data are distributed in blocks, immutable as hashes are stored and

compared consistently, blockchain system can also mitigate the risk of single point

failures in conventional EHR databases as copies of valid data are appended in the

blockchain.

In Hyperledger Fabric, the pluggable feature for consensus method and

identity management has made business organization easier to integrate their

requirements with blockchain system. While data confidentiality is one of the

primary goal in most businesses, permissioned-based blockchains provided by

87

Hyperledger Fabric have ensure data security as its membership service provider

(MSP) component offers user authentication by issuing and validating certificates

and also creation of private channel where transactions are only can be seen by

specific peers within the channel has improved data privacy. However, there are

some weaknesses that can be pointed out and could be enhanced in future works. For

instance, the current version of Hyperledger Fabric only supports three roles in HLF

Registrar which are peer, client and admin. The limitation of having just three roles

is that it results in all clients having identical permissions despite there could have

different role types and corresponding permissions for each custom-defined role in a

blockchain system. Issues might arise as patient may not have access to view

attributes that are relevant to doctors even though that information is stored in the

blockchain, but only admin user can read the attributes. In this case, doctor and

patient can be the user-defined roles rather than just the client where they could have

their own set of rules. By creating user-defined role, it can overcome the issue of

separate permissions cannot be applied as if both doctor and patient are client but yet

this is a progress need to be improved by HLF. Whereas doctor is not an asset to the

ledger, the name and specialty of the doctor are stored in the attributes of the identity.

Even though there are some proposed techniques not able to finish on given time

such as function of removing invalid doctor or patient and role of medical

practitioner under emergency department, yet the blockchain-based EHR system still

able to complete with base model.

7.3 Project Contribution

The Project Contribution that can gain from this Project is the study of

blockchain technology and development of application using blockchain for EHR

data management among hospitals. This project has proposed a more secure and

efficient method using blockchain technology for EHR data management that can

ensure smooth operation among hospitals. As the current client/server-based system

stores patients’ data differently in terms of system architecture, data format and

structure resulting in interoperability challenges, the features of synchronized and

duplicated ledger within the blockchain-based EHR system have resolved this

problem and simplified the data sharing process among all hospitals within the

network. It has also contributed the possibility of developing a national or even

88

international data sharing program involving healthcare data with researchers,

partner facilities or other interested parties such as insurance providers.

In addition, the project's contribution includes demonstrating how a

blockchain-based EHR data management system can address the security issues

associated with conventional methods of data storage and sharing. These issues

include inconvenient accessibility, potential for a single point of failure, data

breaches and data alteration. The implementation of blockchain-based EHR system

ensures data security, enhances flexibility, efficiency, transparency and reduces

medical errors, thereby improving fault tolerance.

7.4 Project Limitation

The developed project contains few limitations. As the architecture of

Hyperledger Fabric is quite complex and it offers limited database support including

CouchDB and LevelDb only, it is a challenge to host documents or big data in the

blockchain database and the limitation of Fabric to store data in JSON format

causing the current prototype of the blockchain-based EHR data management system

proposed is only accepting text-based data. The capabilities of the system could be

expand to accommodate various data types, including medical images such as results

of CT scan, ultrasound, X-ray etc to enable healthcare providers to store and analyze

a broader range of patient information, facilitating a more comprehensive

blockchain-based EHR system. While implementation of an application layer that

will convert any data into text using Base64 is possible, many researchers have

recommended an alternative way which is to store data in an external database and

integrate with blockchain system, for example InterPlanetary File System (IPFS)

which is a peer-to-peer file sharing network in a distributed file system that provides

lookups and storage for the mapping of keys to values using distributed hash tables

(DHT). However, it is believed that this approach will add another layer of

complexity and security risks.

Another limitation faced in this project is the security implementation on

patient data in the ledger on peer level using the feature of private data collection in

Hyperledger Fabric. The utilization of private data collection is driven by security

concerns when a client initiates a transaction, it is sent to the orderer before being

89

included in a block. Once added to a block, that block is broadcast to all participating

organizations in the network meanwhile this process could potentially expose

sensitive data included in the transaction, such as patients' data. To ensure the

confidentiality of such sensitive information, private data collections are employed,

allowing organizations to restrict access to specific data, ensuring that only

authorized parties can view or transact with it. Although this feature can help to

address the drawbacks of channel when it comes to scalability, the private data

collection approach is unable to apply due to the version of Hyperledger Fabric used

which is 2.2.2, does not support the API getHistoryForKey for a private data

collection. However, it is believed that the Hyperleder Fabric community will

progress to add a history index and chaincode API similar to public data history to

enable the query of history of a private data key.

Besides, the project also faced challenges in scaling peers of hospital

organizations and adding new organization into the network. Due to certain

unforeseen reason, one fabric-peer container always stops whenever the network gets

up. While adding third hospital organization to join the network, it has also failed to

join the channel. Moreover, error handling in the proposed system should be

enhanced to define error with error codes and messages. This is a common practice

to help the user and developer to distinguish whether a request or response is

successful or not. Until the time being, these problems have not been solved yet and

required more research works.

7.5 Future Works

There are many improvements can be done to elevate the application to a

product that can fits real-world scenario and different business requirements. As this

project has only discussed about basic participant entities including patient, doctor

and hospital, other stakeholders such as commercial insurance companies,

researchers, laboratory, pharmacy and transnational health care industries might also

have the potential to participate into the network through the blockchain-based EHR

system. While scalability is allowed within Hyperledger Fabric framework, further

studies are required to address this feature as there might involved different sub-

channels and endorsement policies. Besides, the source code can also be improved to

90

make the solution more pluggable when adding more hospitals and its peers. Once

the network scales up, it will need to handle higher amount of transaction requests

and approvals, and this required more ordering peers to speed up the process. As

suggestion, Apaches Kafka, an open-source distributed event streaming platform

which can provide high-throughput, low-latency for real-time data handling should

be considered to manage multiple ordering nodes. In addition, Kubernetes, an open-

source container orchestration system for automating software deployment, scaling

and management can also be used for production environment when there are getting

more hospitals with their peers and channels exist in the network.

One notable trend in the healthcare industry is the increasing integration of

artificial intelligence (AI) into medical systems. Implementing AI algorithms into

EHR system where AI can aid in analyzing ledger data that includes patients’ health

data from all hospital in the network could revolutionize patient care in better

prognosis and diagnosis support. AI can assist healthcare professionals in detecting

patterns and anomalies within patient records, leading to quicker and more accurate

diagnoses. Additionally, the current metadata concept keeps the actual patient data

on the blockchain ledger as developed. However, it is not ideal when the blockchain

network grows bigger as it might degrade the transaction speed, plus many

healthcare entities have already invested significantly in conventional databases or

cloud-based storage solutions, making it impractical to migrate all data into a

blockchain network. By adopting a hybrid approach, where the blockchain stores

metadata and access records while the actual patient data remains in conventional

databases or cloud storage, healthcare organizations can leverage the benefits of both

worlds. This integration not only preserves existing investments but also allows for a

gradual transition towards decentralized systems and minimizing disruption which

benefits from the blockchain technology.

Another important thing to note is the network communication within the

system should be conducted using HTTPS to ensure transport-level security through

TLS encryption. Currently, passwords are transmitted in plain text from the front end

to the back end, and this security vulnerability can be addressed by implementing

HTTPS. Besides, it is recommended to integrate temporary password generated

when new user created through emails. Additionally, adaption of "forgot password"

91

feature is advisable. To enhance user experience and manage extensive patient data,

UI/UX strategies and a search functionality can be implemented. However, it is

essential to research whether Hyperledger Fabric supports wildcard searches. Given

that the data originates from multiple databases, it is crucial to prevent frequent

search queries so that system performance can be maintained.

These future developments align with the ongoing evolution of healthcare

technology, ensuring that the blockchain-based EHR system remains relevant and

adaptable to the changing landscape of EHR data management.

7.6 Conclusion

As a summary, this project has achieved its goals successfully and able to

contribute for future research to develop a more sophisticated blockchain-based EHR

data management system. It can be identified from this study that the personalized

medical system is a practical and useful application. By utilizing Hyperledger Fabric,

which is an encouraging blockchain framework that comes with the concepts of

smart contracts, endorsement policies and provision of secure identities which make

the records secure and controlled, it can offer a reliable and secure solution in

managing medical health record. This technology enables interoperability among

multiple hospital organizations, simplifying doctors' access to patient histories,

eliminating the need for patients to carry physical medical records, and substantially

enhancing the digital record-keeping process. Nonetheless, there is room for

improvement within Hyperledger Fabric before a finalized product can be developed.

Moreover, additional components or technologies beyond Hyperledger Fabric may

be necessary to further enhance its effectiveness and satisfy real-world scenario

requirements.

REFERENCES

Antonopoulos, A., & Wood, G. (2018). Mastering Ethereum: Building Smart

Contracts and Dapps. O'Reilly Media.

Antwi, M., Adnane, A., Ahmad, F., Hussain, R., Muhammad Habib Rehman, &

Kerrache, C. A. (2021). The Case of HyperLedger Fabric as a blockchain

Solution for Healthcare Applications. Blockchain: Research and

Applications, 2(1). https://doi.org/10.1016/j.bcra.2021.100012

Bashir, I. (2017). Mastering Blockchain. Packt Publishing. https://shorturl.at/pxGLP

Dagher, G. G., Adhikari, C. L., & Enderson, T. (2018). Towards Secure

Interoperability between Heterogeneous Blockchains using Smart Contracts.

Future Technologies Conference (FTC).

https://saiconference.com/Downloads/FTC2017/Proceedings/8_Paper_491-

Towards_Secure_Interoperability.pdf

Dimitrov, D. V. (2019). Blockchain Applications for Healthcare Data Management.

Healthcare Informatics Research, 25(1), 51.

http://dx.doi.org/10.4258/hir.2019.25.1.51

Donawa, A., Orukari, I., & Baker, C. E. (2019). Scaling Blockchains to Support

Electronic Health Records for Hospital Systems. 2019 IEEE 10th Annual

Ubiquitous Computing, Electronics and Mobile Communication Conference,

UEMCON 2019, 550-556,

8993101. https://doi.org/10.1109/UEMCON47517.2019.8993101

Guo, H., & Yu, X. (2022). A Survey on Blockchain Technology and Its Security.

Blockchain: Research and Applications, 3(2), 100067.

https://doi.org/10.1016/j.bcra.2022.100067

http://dx.doi.org/10.4258/hir.2019.25.1.51
https://doi.org/10.1016/j.bcra.2022.100067

93

Guo, R., Shi, H., Zhao, Q., & Zheng, D. (2018). Secure Attribute-Based Signature

Scheme with Multiple Authorities for Blockchain in Electronic Health

Records Systems. IEEE Access, 6, 11676-11686. doi:

10.1109/ACCESS.2018.2801266.

Huynh-The, T., Gadekallu, T. R., Wang, W., Yenduri, G., Ranaweera, P., Pham, Q.,

da Costa, D. B., & Liyanage, M. (2023). Blockchain for the metaverse: A

Review. Future Generation Computer Systems, 143, 401-419.

https://doi.org/10.1016/j.future.2023.02.008

Ismail, L. & Materwala, H. (2020). Blockchain Paradigm for Healthcare:

Performance Evaluation. Symmetry, 12(8), 1200.

DOI:10.3390/sym12081200

Jabbar, A., & Dani, S. (2020). Investigating the Link Between Transaction and

Computational Costs in A Blockchain Environment. International Journal

of Production Research, 58(11), 3423-3436.

https://doi.org/10.1080/00207543.2020.1754487

Khatoon, A. (2020). A Blockchain-Based Smart Contract System for Healthcare

Management. Electronics, 9(1), 94.

https://doi.org/10.3390/electronics9010094

Knirsch, F., Unterweger, A., & Engel, D. (2019). Implementing a Blockchain from

Scratch: Why, How, and What We Learned. EURASIP Journal on

Information Security, 2. https://doi.org/10.1186/s13635-019-0085-3

Kumar, R., Wang, W., Kumar, J., Yang, T., Khan, A., Ali, W., & Ali, I. (2021). An

Integration of Blockchain and Ai for Secure Data Sharing and Detection Of

CT Images for the Hospitals. Computerized Medical Imaging and Graphics,

87. https://doi.org/10.1016/j.compmedimag.2020.101812

Lu, N., Zhang, Y., Shi, W., Kumari, S., & Choo, K. K. R. (2020). A secure and

Scalable Data Integrity Auditing Scheme Based on Hyperledger Fabric.

https://www.researchgate.net/journal/Symmetry-2073-8994
http://dx.doi.org/10.3390/sym12081200
https://doi.org/10.1016/j.compmedimag.2020.101812

94

Computers & Security, 92, 101741. doi:

https://doi.org/10.1016/j.cose.2020.101741.

Mitra, A., Bera, B., Das, A. K., Jamal, S. S., & You, I. (2023). Impact on

Blockchain-based AI/ML-enabled Big Data Analytics for Cognitive Internet

of Things environment. Computer Communications, 197, 173-185.

https://doi.org/10.1016/j.comcom.2022.10.010

Muhammad, S. & Soewito, B. (2022). A Blockchain for Secure Data Storing with

Multi Chain on Smart Healthcare System. Journal of Theoretical and

Applied Information Technology, 100, 13.

http://www.jatit.org/volumes/Vol100No13/4Vol100No13.pdf

Naz, M., A., F., Khalid, R., Javaid, N., Qamar, A. M., Afzal, M. K., & Shafiq, M.

(2019). A Secure Data Sharing Platform Using Blockchain and

Interplanetary File System. Sustainability, 11(24), 7054.

https://doi.org/10.3390/su11247054

Ndzimakhwe, M., Telukdarie, A., Munien, I., Vermeulen, A., K., U., & Philbin, S. P.

(2023). A Framework for User-Focused Electronic Health Record System

Leveraging Hyperledger Fabric. Information, 14(1), 51.

https://doi.org/10.3390/info14010051

Negi, L., & Bhatt, S. (2022). A Review on security schemes for Electronic Health

Records. 2022 Fifth International Conference on Computational Intelligence

and Communication Technologies (CCICT), Sonepat, India, 37-41. doi:

10.1109/CCiCT56684.2022.00019.

Newman, O., & Thorpe, S. Towards a Privately Permissioned Blockchain for

Electronic Health Care Environments – A Proof of Concept case study.

Odeh, A., Keshta, I., & Al-Haija, Q. A. (2022). Analysis of Blockchain in the

Healthcare Sector: Application and Issues. Symmetry, 14(9), 1760.

https://doi.org/10.3390/sym14091760

https://doi.org/10.1016/j.cose.2020.101741.
https://doi.org/10.1016/j.comcom.2022.10.010
http://www.jatit.org/volumes/Vol100No13/4Vol100No13.pdf
https://doi.org/10.3390/su11247054
https://doi.org/10.3390/info14010051
https://doi.org/10.3390/sym14091760

95

Purwono, Nisa, K., Wibisono, S. K., & Dewa, B. P. (2023). Private Blockchain in the

Field of Health Services. Journal of Advanced Health Informatics Research

(JAHIR), 1, 1, 10-15. DOI: https://doi.org/10.59247/jahir.v1i1.14

Rouhani, S., Butterworth, L., Simmons, A. D., Humphery, D. G., & Deters, R.

(2019). MediChainTM: A Secure Decentralized Medical Data Asset

Management System. ArXiv.

https://doi.org/10.1109/Cybermatics_2018.2018.00258

Tanwar, S., Parekh, K., & Evans, R. (2020). Blockchain-based electronic healthcare

record system for healthcare 4.0 applications. Journal of Information

Security and Applications, 50, 102407.

https://doi.org/10.1016/j.jisa.2019.102407

Tith, D., Lee, J., Suzuki, H., Wijesundara, W. M. A. B., Taira, N., Obi, T., &

Ohyama, N. (2020). Patient Consent Management by a Purpose-Based

Consent Model for Electronic Health Record Based on Blockchain

Technology. Healthcare Informatics Research 2020, 26(4), 265-273.

https://doi.org/10.4258/hir.2020.26.4.265

Usman, M., & Qamar, U. (2020). Secure Electronic Medical Records Storage and

Sharing Using Blockchain Technology. Procedia Computer Science, 174,

321-327. https://doi.org/10.1016/j.procs.2020.06.093

Wang, Q., & Qin, S. (2021). A Hyperledger Fabric-Based System Framework for

Healthcare Data Management. Applied Sciences, 11(24), 11693.

https://doi.org/10.3390/app112411693

Wang, S., Zhang, Y., & Zhang, Y. (2018). A Blockchain-Based Framework for Data

Sharing with Fine-Grained Access Control in Decentralized Storage

Systems. IEEE Access, 6, 38437-38450. doi:

10.1109/ACCESS.2018.2851611.

https://doi.org/10.59247/jahir.v1i1.14
https://doi.org/10.4258/hir.2020.26.4.265
https://doi.org/10.1016/j.procs.2020.06.093

96

Westphal, E., & Seitz, H. (2021). Digital and Decentralized Management of Patient

Data in Healthcare Using Blockchain Implementations. Frontiers in

Blockchain, 4, 732

APPENDICES

APPENDIX A - INSTALLATION OF PREREQUISITE

1. Setting up Ubuntu 22.04.3 LTS in VMware.

2. Install git.

98

3. Install curl.

4. Install docker desktop.

99

$ sudo apt - get update
Ht t: 1 http //ro,y. archive. ubuntu. coro,/ubuntu jaf'lf'lY InRelease
Hlt 2 http //ro,y.archlve.ubuntu.co!'l/ubuntu jaf'lf'ly-updates InRelease
Hlt 3 http //ro,y.archlve.ubuntu.coro,/ubuntu ja!'1f'ly-backports InRelease
Hlt 4 http://securtty.ubuntu.co!'l/ubuntu jaf'1!'1y - securlty InRelease
Reading package lists. Done

$ sudo apt get install ca - certificates curl gnupg
Readi ng package lists. Done
Building dependency tree. Done
Reading state inforro,atlon. Done
ca - certificates is already the newest version (20230311ubuntu0.22.04.1).
ca - certificates set to ro,anually installed.
curl is already the newest version (7.81.0 - 1ubuntu1.13).
gnupg ts already the newest version (2.2.27-3ubuntu2.1).
gnupg set to ro,anually i nstalled.
O upgraded, O newly i nstalled, O to ref'love and 2 not upgraded.

$ sudo install - !'1 6755 -d /etc/apt/keyrlngs
$curl -fsS L https://download.docker.cof'l/ l lnux/ubu ntu/gpg I sudo gpg -deamor -o /etc/apt/key r lngs/docker.gpg
$ sudo chro,od a+r /etc/apt/keyrlngs/docker .gpg
$ echo \

' deb [arch;:"$(dpkg ··print· archt tecture)" signed· by=/etc / apt/keyr ings / docker .gpg] https: //download. docker. coM/ l tnux/ubuntu \
' $(. /etc/as-release && echo "SVERSION_CODENAME")" stable" I \
sudo tee /etc/apt/sources. list.d/docker. list > /dev/nul l

$ sudo apt - get update
Get: 1 https: //download .docker .cori/l tnux/ubuntu jaf'1f'1Y InRelease [48.9 kB]
Get 2 https://download.docker.coM/llnux/ubuntu jaf'lf'ly/stable aMd64 Packages [21.4 kB]
Hit 3 http: //security. ubuntu. COf'l/ubuntu jaMMy ·security InRelease
Hit 4 http://f'1y.archive.ubuntu.coM/ubuntu jaMMy InRelease
Hit 5 http: //f'1y. archive. ubuntu. coM/ubuntu jaMf'ly ·updates InRelease
Hit: 6 http: //My. archive. ubuntu. coM/ubuntu jaMMy · backpor ts InRelease
Fetched 76.3 kB in ls (64.5 kB/s)
Reading package lis t s. Done

s I

New Tab +

c 0.. https://desktop.docker.comjlinux/main/amd64/docker-desktop-4.22.1-amd64.deb?utm_source=docker&utm_

-® Import bookmarks... • Getting Started

I 0 Open previous tabs? You can restore your previous session from the Firefox application me1

docker-desktop--4.22.1·amd64.deb
completed- 445 MB

~how all downloads

0

100

5. Install docker compose.

6. Install golang.

7. Install Hyperledger Fabric and download binary, images.

101

8. Install node, npm and angular.

9. Install python.

102

APPENDIX B - STEPS TO START NETWORK

1. Copy bin directory from ‘fabric samples’ to blockchain-hyperledger-fabric-

electronic-patient-records/app directory.

2. At first network directory, execute the network.sh file with argument up.

3. Package smart contract codes inside ’patient-asset-transfer’ using deployCC

command.

103

4. Go to app/server and installs all dependency files required for the backend server

to run by using command ‘npm install’.

5. Go to directory app/patient-asset-transfer/application-javascript, install node

project by npm install.

6. Go to app/patient-asset-transfer/chaincode, install node project by npm install.

7. Start the expressjs backend server.

104

8. Go to app/client, install node project by npm install.

9. Brings up angular server using command ng serve -o.

	DEDICATION
	ACKNOWLEDGEMENTS
	ABSTRACT
	ABSTRAK
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF ATTACHMENTS
	Chapter 1: INTRODUCTION
	1.1Project Background
	1.2Problem Statement
	1.3Project Questions
	1.4Project Objective
	1.5Project Scope
	1.6Project Contribution
	1.7Report Organization
	1.8Conclusion

	Chapter 2: LITERATURE REVIEW
	2.1Introduction
	2.2Blockchain Technology
	2.2.1Core of Blockchain Technology
	2.2.1.1Distributed Ledger Technology
	2.2.1.2Cryptography
	(a)Symmetric Cryptography
	(b)Asymmetric Cryptography

	2.2.1.3Smart Contract
	2.2.1.4Consensus Mechanisms
	(a)Proof of Work (PoW)
	(b)Proof of Stake (PoS)
	(c)Delegated Proof of Stake (DPoS)
	(d)Byzantine Fault Tolerance (BFT)
	(e)PBFT
	(f)Proof of Storage (PoS)
	(g)Proof of Activity (PoA)

	2.2.2Types of Blockchain
	2.2.2.1Public Blockchain
	2.2.2.2Private Blockchain
	2.2.2.3Consortium Blockchain

	2.3Blockchain Platform
	2.3.1Ethereum
	2.3.2Hyperledger
	2.3.2.1Hyperledger Fabric
	2.3.2.2Hyperledger Sawtooth Lake
	2.3.2.3Hyperledger Iroha
	2.3.2.4Hyperledger Burrow
	2.3.2.5Hyperledger Indy

	2.3.3MultiChain
	2.3.4Open Chain

	2.4Critical Review of Existing Works
	2.5Proposed Solution
	2.6Conclusion

	Chapter 3: PROJECT METHODOLOGY
	3.1Introduction
	3.2Methodology
	3.2.1Planning
	3.2.2Design
	3.2.3Implementation
	3.2.4Testing
	3.2.5Evolution

	3.3Project Milestones
	3.4Conclusion

	Chapter 4: DESIGN
	4.1Introduction
	4.2Problem Analysis
	4.3Requirement Analysis
	4.3.1Data Requirement
	4.3.2Functional Requirement
	4.3.2.1Smart Contract/Chaincode

	4.3.3Software Requirement
	4.3.4Hardware Requirement

	4.4High-Level Design
	4.4.1System Architecture

	4.5Conclusion

	Chapter 5: IMPLEMENTATION
	5.1Introduction
	5.2Software Configuration Management
	(a)Prerequisite software: The base layer needed to ru
	(b)
	(c)
	(d)
	(e)The Application: Blockchain application that will

	5.3Prerequisite Base Software
	5.4Fabric and Fabric Samples
	5.5Contract APIs
	5.6Application SDK
	5.6.1Hyperledger Fabric Client SDK
	(a)fabric-ca-client: The fabric-ca provides APIs to p
	(b)fabric-common: This component consolidates the com
	(c)fabric-network: This package contains the APIs req

	5.6.2Wallet
	5.6.3JSON Web Tokens

	5.7Application
	5.7.1State of Distributed Database
	5.7.2Identity (CA)
	(a)Cryptogen: Cryptogen is a tool that creates certif
	(b)CAs: Each hospital has its very own CA server that

	5.7.3Membership Service Provider (MSP)
	5.7.4Endorsement Policies
	5.7.5Security Mechanism

	5.8Conclusion

	Chapter 6: TESTING
	6.1Introduction
	6.2Test Strategy
	6.2.1Classes of Tests

	6.3Test Design
	6.3.1Test Description
	6.3.2Test Data

	6.4Test Results and Analysis
	6.4.1Network Testing
	6.4.2Functionality Testing
	6.4.2.1Admin
	(a)Login
	(b)View List of Patients
	(c)Create Patient
	(d)Create Doctor

	6.4.2.2Patient
	(a)Login
	(b)View Personal Details
	(c)View List of Doctors & Grant/Revoke Access
	(d)Edit Personal Details
	(e)View EHR History

	6.4.2.3 Doctor
	(a)Login
	(b) View List of Patients & Patient’s EHR
	(c) Update EHR
	(d) View Patient’s EHR history

	6.5Conclusion

	Chapter 7: PROJECT CONCLUSION
	7.1Introduction
	7.2Project Summarization
	7.3Project Contribution
	7.4Project Limitation
	7.5Future Works
	7.6Conclusion

	REFERENCES
	APPENDICES

