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ABSTRACT 

This study develops a time series model to forecast the specific yield of solar panels 

in the Faculty of Electrical Technology and Engineering (FTKE) area. The study uses 

data from four types of solar panels around the (FTKE) area: Thin Film (TF) solar 

panels, Heterojunction (HIT) solar panels, monocrystalline solar panels and 

polycrystalline solar panels. Initially, the analysis begins with data pre-processing to 

calculate descriptive statistics, processing missing values and data merging. Then, the 

descriptive statistics are calculated, revealing that TF solar panels have the maximum 

specific yield. The study is then focus on forecasting the specific yield of TF solar 

panels. Subsequently, the time series models ARMA and ARIMA are developed using 

Minitab software to analyze the processed data. The forecast model's accuracy will be 

evaluated through Mean Absolute Error (MAE) and Mean Squared Error (MSE) to 

determine the best forecast model. The developed model is used to forecast the specific 

yield at FTKE, UTeM in the future. 
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ABSTRAK 

Kajian ini membentuk model siri masa untuk meramalkan hasil spesifik panel solar di 

kawasan Fakulti Teknologi Kejuruteraan Elektrik (FTKE). Kajian ini menggunakan 

data daripada empat jenis panel solar di sekitar kawasan FTKE: panel solar Thin Film 

(TF), panel solar Heterojunction (HIT), panel solar monocrystalline dan panel solar 

polycrystalline. Pada mulanya, analisis dimulakan dengan prapemprosesan data untuk 

mengira statistik deskriptif, memproses nilai yang hilang dan penggabungan data. 

Kemudian, statistik deskriptif dikira, menunjukkan bahawa panel solar TF mempunyai 

hasil spesifik maksimum. Kajian ini kemudian memfokuskan pada meramalkan hasil 

spesifik panel solar TF. Seterusnya, model siri masa ARMA dan ARIMA dibangunkan 

menggunakan perisian Minitab untuk menganalisis data yang diproses. Ketepatan 

model ramalan akan dinilai melalui Ralat Mutlak Min (MAE) dan Ralat Kuasa Dua 

Min (MSE) untuk menentukan model ramalan terbaik. Model yang dibangunkan akan 

digunakan untuk meramalkan hasil spesifik di FTKE, UTeM pada masa hadapan. 
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INTRODUCTION 

1.1 Background 

Solar power is a form of renewable energy that harness of the sun’s ray and transform 

the thermal energy to generate electricity. Solar power can be produced in two ways; 

photovoltaic (PV) and concentrated solar power (CSP). PV harnessed light and convert 

into electric using photovoltaic effect and CSP uses mirrors to focus sunlight to 

generate electricity [1]. 

          The level of solar radiation will determine the energy produced by solar panel. 

An accurate solar forecast helps to boost penetration level of a PV system, improve 

system reliability, and reduce power uncertainty on the grid. Different techniques have 

been developed to forecast solar radiation such as probability distribution, artificial 

neural network, hybrid model and time series analysis. Time series analysis methods 

are commonly used for forecasting, as it utilizes historical solar radiation data to 

analyse the behaviour of solar radiation and provide accurate forecast [2].  

          Solar energy is converted into electricity through the photovoltaic effect. When 

photons strike a semiconductor material like silicon, they release electrons from its 

atoms, leaving behind a vacant space. The stray electrons move around randomly, 

looking for another hole to fill. There are two types of semiconductors in solar cells, 

which are p-type and n-type. These two are joined together to form a p-n junction. An 

electric field is formed in the junction region. The electron starts moving to the 

negative side, the n-side. The electric field causes the charged particles to move in one 

direction and positively charged particles to move in the other direction [3]. 

          The sunlight comprises photons, also known as the small bundles of 

electromagnetic radiation energy. When photons hit the surface of a photovoltaic cell, 

their energy is transferred to the electrons in the cell. As a result, the electron gets 

excited and starts jumping to a higher energy state known as the conduction band. 
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Once the electrons jump to the conduction band, they leave holes in the valence band. 

This electron movement creates energy, making two charge carriers and an electron-

hole pair. The motion of electrons when they move in the excited state causes 

electricity conversion by solar cells [4]. Figure 1.1 illustrates how solar cells work. 

 

Figure 1.1: Conversion of solar to electrical energy [3]. 

          Faculty of Electrical Technology and Engineering (FTKE) installed several 

types of solar panels; Monocrystalline, Polycrystalline, Thin-Film (TF) and 

Heterojunction with Intrinsic Thin layer (HIT). Figure 1.2 to Figure 1.5 show solar 

panel in FTKE building. The solar panel system used for research activities such as 

partial shading analysis, PV forecasting, PV plant design and PV system performance.  

          Based on Table 1.1, each solar panel has its own material, such as Silicon 

fragments, Crystalline Silicon, Amorphous Silicon, Indium Tin Oxide and Cadmium 

Telluride. According to the table, TF has the shortest lifespan (15 to 20 years), 

followed by Polycrystalline (25 years) Monocrystalline (25 years) and HIT (25-30 

years). HIT has the highest efficiency (20-22%) while Polycrystalline has the lowest 

efficiency (13-18%). Monocrystalline and TF have an efficiency of (15-22%) and (19-

20.4%) respectively. Temperature coefficient is the percentage decrease in output for 

every 1ºC increase in temperature from 25ºC. Hence, TF solar panel has the most 

minor effect (-0.2) on temperature, followed by HIT (-0.3), Monocrystalline (-0.40) 

and Polycrystalline (-0.43) [5-7]. 
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Table 1.1: Characteristics of solar panel [5-7] 

 Polycrystalline Monocrystalline HIT TF 

Material Multiple silicon 
fragments 

Single crystal of 
silicon 

Crystalline 
Silicon, 

Amorphous 
Silicon, 

Indium Tin Oxide 

Cadmium 
Telluride 

Lifespan 25 years 25years 25-30 years 15 – 20 years 

Efficiency 13-18% 15-22% 20-22% 19-20.4% 

Average 
temperature 
coefficient 

-0.43%/ºC -0.40%/ºC -0.3%/ºC -0.2% 

 

          In this study, the method used to forecast the solar radiation is time series 

analysis. The data collected are form solar panel installed by Smart Grid Research 

Laboratory (SSG) in FTKE. The solar radiation data are from 1st January 2016 until 

31st December 2016. The time series model is used as a forecast model for the solar 

radiation which will benefit the solar panel at FTKE building. 

 

Figure 1.2: Monocrystalline solar panel at the FTKE administration rooftop [8] 
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Figure 1.3: TF solar panel at the FTKE laboratory rooftop [8] 

 

Figure 1.4: HIT solar panel at the FTKE administration rooftop [8] 

 

Figure 1.5: Polycrystalline solar panel at the FTKE entrance [8] 
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1.2 Problem Statement 

For the past years, humans heavily rely on oil, fossil fuels and coal to generate power 

for various purposes. These sources constitute the primary drivers of global climate 

change, responsible for more than 90% of total carbon dioxide emissions [9]. 

          Solar energy is considered as one of the main renewable sources in Malaysia 

due to its abundant sunlight which provide a reliable consistent source of power. 

Malaysia’s tropical climate and strategic location close to the equator results in high 

solar irradiance [10]. A series of government initiatives have been introduced 

throughout the years to boost the application of renewable energy to achieve 70% 

renewable energy by 2050. Net Energy Metering (NEM), Feed-in Tariff (FiT), Large 

Scale Solar (LSS), and Green Electricity Tariff (GET) are the initiatives by the 

government to increase the usage of solar panel in Malaysia [11]. However, the amount 

of energy produced by solar panels can be inconsistent due to weather conditions like 

cloudy or rainy days. The weather inconsistency makes grid integration a challenging 

task. Thus, solar forecasting becomes vital to ensure grid stability, reliability, and 

efficient operation of the power system [2]. Therefore, this study will forecast specific 

yield data in FTKE to ensure the best time series analysis for accurate forecast model 

of specific yield. 

1.3 Objective 

1. To pre-process raw data of specific yield produced by solar panel at FTKE 

through data cleaning. 

2. To analyse the clean data of specific yield from solar panel at FTKE by using 

time series analysis. 

3. To measure the accuracy of the time series model based on error measurement. 
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1.4 Scope 

This study has a few potential limitations. One of the limits are outdated data, as the 

data used for this study from 2016. This study does not use recent year data because 

of malfunction equipment at SSG laboratory. Secondly, this study only use data 

collected from solar panel around FTKE area. Thus, the forecast model is not suitable 

to use at other location as it will result with inaccurate forecast. Next, the limitation is 

imperfect data, as missing values are spotted at random timestamp. Subsequently, the 

limitation is the study used time series analysis method only. Although, there are 

several forecasting methods such as probability distribution, artificial neural network, 

and hybrid model. Lastly, the study is limited in the error measurement method, as the 

study only uses mean average error (MAE) and mean squared error (MSE). Other 

methods, such as mean absolute percentage error (MAPE) and root mean squared error 

(RMSE), can also be used for further error measurement analysis. 

1.5 Project Motivation 

The motivation of this study is to reduce electricity bills. Malaysia now relies on non-

renewable energy sources such as fossil fuels and coal. With time, the fossil fuel will 

run out which could affect the increment of electricity bills in the future. The FTKE 

building uses a lot of electricity as the building need electricity to supply power for 

high voltage laboratory equipment, high horsepower air conditioning and electrical 

equipment. Therefore, to take a step forward a solar forecast model is needed to 

manage battery energy storage system for electricity usage management and associate 

cost. 
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LITERATURE REVIEW 

2.1 Types of Forecasting Method for Solar Radiation 

The following topic discussed about the methods used to analyse the solar radiation 

data. 

2.1.1 Probability Distribution 

A probability distribution is a statistical approach that indicates the likelihood of 

various outcomes in a random experiment or event. It assigns probabilities to different 

potential results. Studies in [12] and [13] used probability distribution to predict solar 

irradiance using gathered data. The study used four probability functions that are 

Normal, Rayleigh, Weibull, and Log normal to determine the most suitable fit for the 

data. The equation for normal distribution is shown in equation (2.1). 

𝑓𝑓(𝑥𝑥) =  1
𝜎𝜎√2𝜋𝜋

𝑒𝑒−
1
2(𝑥𝑥−𝜇𝜇𝜎𝜎 )2                                           (2.1) 

where 𝜎𝜎 is standard deviation and 𝜇𝜇 is mean. The equation for Rayleigh distribution is 

as shown in equation (2.2) 

𝑓𝑓(𝑥𝑥;𝜎𝜎) = 1 − 𝑒𝑒
−𝑥𝑥2

�2𝜎𝜎2�                                            (2.2) 

where 𝜎𝜎 is the shape parameter, e is Euler’s number and x is random variable. The 

equation for Weibull distribution is as shown in equation (2.3).                                           

𝑓𝑓(𝑥𝑥; 𝜆𝜆 ,𝑘𝑘) =
𝛾𝛾
𝛼𝛼 
�
𝑥𝑥 − 𝜇𝜇
𝛼𝛼

�
𝛾𝛾−1

𝑒𝑒𝑥𝑥𝑒𝑒−�
𝑥𝑥−𝜇𝜇
𝛼𝛼 �

𝛾𝛾

 𝑥𝑥 ≥ 𝜇𝜇; 𝛾𝛾,𝛼𝛼 > 0                 (2.3) 

where 𝛾𝛾 is the shape parameter, 𝛼𝛼 is the scale parameter, and 𝜇𝜇 is the location 

parameter. The equation for Log Normal distribution as shown in equation (2.4). 
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𝑓𝑓(𝑥𝑥) =  1
𝜎𝜎𝑥𝑥√2𝜋𝜋

𝑒𝑒�−
ln(𝑥𝑥)−𝜇𝜇2

2𝜎𝜎2
�                                      (2.4)  

where 𝜇𝜇 is the shape parameter, 𝜎𝜎 is the scale parameter of the distribution. 

          The MSE concept was applied to calculate the error and to get the best-fitted 

probability distribution. The standard distribution with the smallest MSE with respect 

to the data is considered as the best candidate distribution. Results in [13] show that 

normal distribution is the most suitable distribution function for summer and rainy 

seasons, and Rayleigh distribution is the most suitable for winter. 

          Based on these studies, it has been demonstrated that forecasting of solar 

irradiance, as well as its accuracy for sampled data, can be accommodated using 

various probability distribution functions [12,13]. 

2.1.2 Artificial Neural Network 

An artificial neural network (ANN) is a computational model inspired by the structure 

and functioning of the human brain. It is a type of machine learning algorithm designed 

to recognize patterns, learn from data, and make predictions or decisions [14]. The 

architecture of the ANN comprises three layers. Typically, there is an input layer that 

receives gathered data, an output layer that generates computed information, and one 

or more hidden layers that facilitate the connection between the input and output layers 

through processing unit neurons [15].  

          A study in [15] uses nine parameters that are latitude, longitude, altitude, year, 

month, mean ambient air temperature, mean station level pressure, mean wind speed, 

and mean relative humidity as the inputs of ANN model. The sole output is the 

prediction of the monthly average global solar radiation. The author collected data 

from Bangalore, Chennai, Kolkata, New Delhi, and Mumbai to conduct data training 

for the ANN model that is run on the MATLAB software. Two models of ANN were 

created where in model 1, data from Chennai, Kolkata, New Delhi, and Mumbai are 

used only for training, and testing will be done for data in Bangalore only. In another 

case, model 2 uses all five places' data for training and testing. The performance of the 

two ANN models was evaluated using MAE and RMSE error measurement. From the 

result of error measurement, model 2 is a slightly more accurate solar forecast model 
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as it has a lower error measurement value compared to model 1. Table 2.1 is the 

summarise between the two ANN models used in [15]. 

Table 2.1: Summary of two types of ANN model [15] 

 Training Testing Error Measurement 
No of city City No of city City MAE RMSE 

Model 1 4 

Chennai 
Kolkata 

New Delhi 
Mumbai 

1 

Bangalore 

0.83 1.08 

Model 2 5 

Chennai 
Kolkata 

New Delhi 
Mumbai 

Bangalore 

5 

Chennai 
Kolkata 

New Delhi 
Mumbai 

Bangalore 

0.78 0.95 

 

2.1.3 Hybrid Model 

Hybrid model analysis is the combination between linear and nonlinear models. This 

method is used to improve forecast accuracy. A study in [16] used hybrid model that 

harness the optimal performance of individual models across various temporal 

horizons, combining both machine learning and deep learning models. The study 

combines hybrid model with models based on satellite imagery and numerical weather 

prediction for improving intra-day solar radiation forecast and proved it is the optimal 

choice for short term hourly intra-day solar forecasting [16]. 

          The hybrid model is designed to begin by independently computing the hourly 

weighs for each individual machine learning and data learning model. The rankings 

are assigned based on the cumulative weight of each model. The top six performing 

models out of thirteen will be selected. The selected model is based on the process of 

decision tree hybrid model where the data will go through training to improve the 

accuracy of the selected models [16]. Later, the data will go through error measurement 

analysis. The error measurement value is compared between hybrid model and non-

hybrid model. The comparison summarises that, hybrid model able to increase 

efficiency of the selected models around 5% to 10% [16]. 
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2.1.4 Comparative Analysis of Past Case Studies 

Based on sub-section (2.1.1) to (2.1.3), it can be concluded that there are several 

methods used to forecast data gain from solar panels, such as ANN, probability 

distribution, and hybrid models. Some of the forecast models are used to forecast solar 

radiation or solar irradiance, while this study focuses on forecasting specific yields. 

All past studies and this study use historical data to generate the forecast model. There 

are several techniques are used to measure the accuracy of the forecast models, such 

as MAE, RMSE, and MAPE. However, for this study, the methods used will be MAE 

and MSE to measure the accuracy. 

2.2 Time Series Analysis 

Time Series pertains to the sequence of observations collected in constant time 

intervals, be it daily, monthly, quarterly, or yearly. Time series analysis involves 

developing models used to describe the observed time series and understand the "why" 

behind its dataset. This involves creating assumptions and interpretations about a given 

data. Time series forecasting makes use of the best-fitting model essential to predicting 

future observations based on the complex processing of current and previous data [19]. 

Figure 2.1 shows a sample for independent uncorrelated variables. 

 
Figure 2.1 Plot of independent uncorrelated random variable [20] 

          From Figure 2.1, it is evident that the plot shows no clear pattern or trend, 

highlighting the uncorrelated nature of the random variables. Each point is independent 

and does not provide predictive information about any other point. Consequently, the 

dataset is unsuitable for forecasting because it lacks any underlying pattern, trend, or 

correlation that could be used to predict future values [20]. 
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2.2.1 Type of Time Series Analysis 

Time series analysis involves the study and interpretation of data collected over 

successive points in time. The choice of analysis depends on the specific 

characteristics of the time series data and the goals of the analysis, such as forecasting, 

anomaly detection, or understanding underlying patterns [21]. The following topic will 

explain type of time series model. 

(i) Box Jenkins model 

The Box-Jenkins Model is a mathematical framework developed to predict data ranges 

by utilizing inputs from a designated time series. This model is versatile and capable 

of analysing various types of time series data for forecasting purposes. Originating 

from the collaborative efforts of mathematicians George Box and Gwilym Jenkins, the 

foundational concepts of this model were outlined in their 1970 publication titled 

"Time Series Analysis: Forecasting and Control." Specifically tailored for short to 

medium-term predictions, the Box-Jenkins Model is most effective when forecasting 

within time frames of 18 months or less [22]. 

          The Box-Jenkins Model forecasts data using three principles: autoregression, 

differencing, and moving average. These three principles are known as p, d, and q, 

respectively. The autoregression (p) process tests the data for its level of stationarity. 

If the data being used is stationary, it can simplify the forecasting process. If the data 

being used is non-stationary it will need to be differenced (d). The data is also tested 

for its moving average fit (which is done in part q of the analysis process). Overall, 

initial analysis of the data prepares it for forecasting by determining the parameters (p, 

d, and q), which are then applied to develop a forecast. 

(ii) ARMA model 

The time series ARMA (Autoregressive Moving Average) model is a statistical 

approach used for analysing and forecasting time series data. The ARMA model 

combines two key components: Autoregressive (AR) and Moving Average (MA) [23]. 
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          The model is defined by two parameters, p and q, which represent the number 

of autoregressive and moving average terms in the model, respectively. The ARMA 

model is used to forecast future values of a time series based on its past values. The 

process of forecasting using an ARMA model involves estimating the model 

parameters, fitting the model to the data, and then using the model to make predictions 

[24]. 

(iii) ARIMA model 

An autoregressive integrated moving average, abbreviated as ARIMA, is a statistical 

model employed for analysing time series data. Its purpose is to enhance 

comprehension of the dataset or forecast future trends. The ARIMA model is a form 

of regression analysis that gauges the strength of one dependent variable relative to 

other changing variables. The model's goal is to predict future values by examining 

the differences between values in the series instead of through actual values [20]. 

          The ARIMA model is an enhancement of the ARMA model. The ARIMA model 

extends the ARMA model by including an "integration" component, which allows it 

to handle non-stationary data. Each component in ARIMA functions as a parameter 

with a standard notation. For ARIMA models, a standard notation would be ARIMA 

with p, d, and q, where integer values substitute for the parameters to indicate the type 

of ARIMA model used.  In the ARIMA model, differencing is applied to the data to 

achieve stationarity. Stationarity indicates a consistent pattern in the data over time. 

The aim of differencing is to eliminate any trends or seasonal patterns within the data. 

2.3 Factors that Contribute to The Time Series Analysis 

The large-scale deployment of photovoltaics (PV) for generating electricity plays an 

important role to mitigate global warming. However, the fluctuation in PV output 

power presents difficulties in managing the power grid. Generally, PV output power 

relies on historical solar irradiance data, associations among meteorological variables, 

and the impact of weather conditions in spatially neighbouring areas [25].  
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          A study in [26], the forecast utilizes data from a PV power station in the Ashland 

region of the United States. Numerous weather conditions impact PV output as well 

as environmental factors. Figure 2.2 depicts a graph illustrating the correlation of PV 

power generation in typical weather. 

 
Figure 2.2: Typical weather factor correlation curve [26]. 

          Figure 2.2 compare PV power generation on a typical rainy day (left) and a 

typical sunny day (right). On rainy days, power generation and solar radiation fluctuate 

significantly, indicating inconsistent and less efficient PV performance due to cloud 

cover. In contrast, sunny days show a smooth, consistent increase in power generation 

and solar radiation peaking around midday, with higher and more stable values, 

indicating optimal conditions for PV efficiency [26]. 

          A study in [27] conducted an analysis on the behaviour of different types of PV 

modules under a range of temperature of 20-60ºC. The outcome from the analysis 

shows CIGS PV modules seem to be better choice in high temperature conditions due 

to low temperature coefficients. With temperature increasing, the reverse saturation 

current increases rapidly which cause major changes in voltage rate. 

          In [28], the study analysed six meteorological factors as shown in Figure 2.3 

with the goal of accurately predicting solar power. The six meteorological factors are 

proven affect the solar power forecast in the following descending order: solar 

radiation, sunlight, wind speed, temperature, cloud cover, and humidity. Solar 

radiation has the greatest influence on solar power forecasting, while humidity has 

effectively no influence on the solar power forecast. 
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Figure 2.3: Meteorological factors affecting solar power forecasting by month [28] 

          In conclusion, the efficiency and performance of solar power systems are 

influenced by a multitude of factors such as cloud cover, humidity, temperature, and 

wind power. Each element plays a crucial role in determining the overall effectiveness 

of solar panels. As the world navigate the transition towards cleaner and sustainable 

energy sources, a comprehensive understanding of these influencing factors is 

essential for the effective design, installation, and solar forecast. 

2.4 Related Case Studies on Time Series Analysis 

Case studies are essential tools that offer real-world applications for theoretical 

concepts, enabling in-depth analyses of specific situations or events. They contribute 

to problem-solving skills, allowing individuals to learn from both successes and 

failures. Therefore, case studies on time series analysis are valuable resource that help 

to improve and make decision in analysing time series data. 

2.4.1 A Guide to Solar Power Forecasting using ARMA Models 

A study in [30], stated that solar power forecasting techniques can be generally 

categorized into two groups: (i) physics-based models, which predict solar power using 

numerical weather predictions and solar irradiation data, and (ii) statistical models, 

which forecast solar power directly based on historical data. 

          The data used in [30] is based in Australia. The sample comprises around nine 

months of data, with observations for 14 hours per day, spanning from 6:00 am to 7:00 

pm. The author constructs an ARMA (p, q) model and employs Monte Carlo sampling 

based on the optimal ARMA model to generate hourly scenarios for each hour. Figure 

2.4 shows estimated p and q values for the 14 hours of the day. 
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Figure 2.4: Estimated p and q values for ARMA model for 14 hours [18] 

          The process involved formulating the ARMA model equation, stationarity 

checking, selecting parameters, and making predictions with the model. Equation (2.5) 

is the general equation for ARMA model. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑒𝑒, 𝑞𝑞) = 𝑥𝑥𝑡𝑡 = �∅𝑖𝑖𝑥𝑥𝑡𝑡−𝑖𝑖 + 𝜖𝜖𝑡𝑡 + 𝐶𝐶 + �𝜃𝜃𝑖𝑖𝜖𝜖𝑡𝑡−𝑖𝑖

𝑞𝑞

𝑖𝑖=1

𝑝𝑝

𝑖𝑖=1

                  (2.5) 

          From the equation, p is the order of the autoregressive polynomial, q is the order 

of the moving average polynomial, ∅ is the autoregressive model’s parameter, 𝜃𝜃 is the 

moving average model’s parameter, C is constant and 𝜖𝜖𝑡𝑡is error terms (white noise). 

The output variable depends linearly on the current and various past values. 

          The accuracy of the time series model is measured by calculating MAE and 

RMSE. From the findings, the actual and predicted data is 3.3% and 5.1% of the 

maximum actual value respectively. In conclusion, this paper outlines a 

straightforward and concise process for fitting an ARMA model to historical solar 

radiation data.  
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2.4.2 ARMA Model for Short-term Forecasting of Solar Potential: Dakar Site 

A study in [29] introduces a model for short-term solar potential forecasting using the 

ARMA model. The study involves analysing data collected by assessing energy 

production from PV solar sources in the Sahelian zone. 

          The ARMA model is used to predict global solar potential over the next 24 

hours. The ARMA (p, q) model is utilized to identify the optimal p and q parameters 

for a more accurate fit to the variable under the consideration. Model calibration is 

conducted using data collected at the Dakar station, covering hourly records from 

October 2016 to September 2017. The selection of this model is based on its reliability 

and applicability across diverse global scales. The RStudio software is utilized for 

simulation purposes. Equation (2.6) is the ARMA models used in [29].  

𝑥𝑥𝑡𝑡 = �∅𝑖𝑖𝑥𝑥𝑡𝑡−𝑖𝑖 + 𝜖𝜖𝑡𝑡 + 𝐶𝐶 + �𝜃𝜃𝑖𝑖𝜖𝜖𝑡𝑡−𝑖𝑖

𝑞𝑞

𝑖𝑖=1

𝑝𝑝

𝑖𝑖=1

                                (2.6) 

          The parameter ∅𝑖𝑖 represents the autoregressive process, 𝜃𝜃𝑖𝑖 represents the 

moving average process, and 𝜖𝜖𝑡𝑡 is the residual of the model. To check the stationarity 

of a series, Dickey-Fuller test is used. The author notes that classical tests, such as the 

augmented Dickey-Fuller and Phillips Fuller tests, can also be employed. Additionally, 

for forecasting purposes, there are several methods used to verify the performance and 

reliability of the model. This paper specifically focuses on a few validation methods, 

using error measurements such as RMSE, MAE, and the coefficient of determination 

(𝐴𝐴2). 

          To summarize, the research in [29] demonstrates the reliability of the ARMA 

model for solar forecasting. This model can serve as a dependable decision support 

tool for the planning and management of PV solar power plants. 
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2.4.3 Forecasting of Total Daily Solar Energy Generation using ARIMA 

A study in [30] use ARIMA model to predict the daily total solar energy output of a 

10kW solar panel, accounting for both seasonal and nonseasonal variations. The solar 

panels were installed on the roof of the Group Nire building at the Reese Research 

Centre in Lubbock, Texas. The data spanned a full year, commencing from September 

6, 2017, to November 5, 2018. 

          The application of the ARIMA model revealed the necessity of having stationary 

data. The author emphasized that non-stationary time series required transformation 

operations, such as differencing, logging, and deflating, to achieve stationarity in the 

time series. The ARIMA model equation is presented in (2.7), with the model's 

effectiveness depending on the values of autoregressive (p), moving average (q), and 

model differential (d). 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑦𝑦𝑡𝑡� = 𝜇𝜇 + ∅1𝑦𝑦𝑡𝑡 + ⋯+ ∅𝑝𝑝𝜖𝜖𝑡𝑡_𝑝𝑝 −  𝜃𝜃1𝜖𝜖𝑡𝑡1  −⋯  𝜃𝜃𝑞𝑞𝜖𝜖𝑡𝑡_𝑞𝑞            (2.7) 

𝑦𝑦𝑡𝑡�  is the 𝑑𝑑𝑡𝑡ℎ different of non-stationary time series of the model. The autoregressive 

lags term is denoted by p, while the differencing and moving average lag terms are 

represented by d and q, respectively. Parameters ∅𝑖𝑖 and 𝜃𝜃1 correspond to the AR and 

MA terms, respectively. 

          This study demonstrated the use of ARIMA statistical modelling for predicting 

the overall daily solar energy. The analysis involved determining the model parameters 

and assessing their validity through various criteria. Verification methods included the 

AIC as outlined in (2.8) where k is independently adjusted number of parameters and 

the sum of squared residuals (SSE) as specified in (2.9) where n is the data point, 𝑥𝑥� is 

the predicted value and 𝑥𝑥𝑖𝑖 is the deviation of observe value. Essential error analysis 

was used to evaluate the overall performance of the model. 

𝐴𝐴𝐴𝐴𝐶𝐶 = −2 log(𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑) + 2𝑘𝑘                          (2.8) 

𝑆𝑆𝑆𝑆𝑆𝑆 = �(𝑥𝑥𝑖𝑖 + 𝑥𝑥�)2
𝑛𝑛

𝑖𝑖=1

                                              (2.9) 

          The outcome shows that the model's accuracy was evaluated using R software. 

For the data gathered for this model, the MAE was 17.70%. 
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METHODOLOGY 

This section explains about the flowchart, data preparation, time series model and error 

measurement analysis in this project. 

3.1 Introduction 

 
 Figure 3.1 Flowchart of the project 
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Figure 3.1 shows the overall implementation process of this project. The process 

started with raw data acquired from the SSG laboratory. Next is data pre-processing to 

calculate descriptive statistics, processing missing values and data merging. 

Afterwards is data cleaning, where the necessary data will be arranged in a table 

format. As a result, the input data is ready to be used in the time series analysis.  

          The input data will be examined to identify if the data is stationary or not. If the 

data is non-stationary, it will go through data transformation to achieve stationary data. 

Once the data is stationary, the data will go through time series model development. 

The model identification process is to identify which models to use between ARMA 

and ARIMA models. If the data is initially stationary, the data will use the ARMA 

model. Otherwise, if the data has gone through data transformation, the data will be 

used for the ARIMA model. 

          Later, the process continues with parameter estimation. The estimation 

parameters are p, q and d. Consequently, the error measurement of the time series 

model will be calculated. If the error measurement value is high, the process will be 

repeated starting from time series model development. If the values of error 

measurement are acceptable, the time series model is ready to forecast future values 

of specific yield. 

3.2 Harvesting Raw Data 

 
Figure 3.2: Raw data from SSG Laboratory 



31 

 

The raw solar radiation data was obtained through solar panels in FTKE. The data were 

gathered daily at intervals of five minutes for one year, from 1st  January 2016 until 

31st  December 2016. Figure 3.2 shows the raw data in CSV file format collected from 

the SSG laboratory in FTKE. The collected data is transferred into Microsoft Excel, as 

shown in Figure 3.3. The data consists of timestamp, current, voltage, power, and 

frequency. 

 
Figure 3.3: Imported data in Microsoft Excel file format. 

3.3 Data Pre-Processing 

3.3.1 Data Merging 

The data were categorized based on the series number in the raw file. The raw data 

consists of solar radiation from polycrystalline, monocrystalline, TF and HIT solar 

panels in the FTKE area. The data is categorized based on series number. Table 3.1 

shows the type of solar panel with its respective series number. 

Table 3.1: Series number of type of solar panel 

Type of solar panel Series number 

Polycrystalline 21202111965, 2120212551, 2120213767 

Monocrystalline 2120213895, 2120213907, 2120213908 

TF solar panel 2120213855, 2120213894, 2120213897 

HIT solar panel 2120213801, 2120213906, 2120213910 
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          Following this, the data is used for the calculation of specific yield. Specific 

yield in a solar plant refers to the amount of electricity generated by a photovoltaic 

system per unit of installed capacity [31]. Equation (3.1) is the formula for specific 

yield. Figure 3.4 is an example of the summary result of four types of solar panel 

merging data in February 2016.  

𝑆𝑆𝑒𝑒𝑒𝑒𝑆𝑆𝑚𝑚𝑓𝑓𝑚𝑚𝑆𝑆 𝑌𝑌𝑚𝑚𝑒𝑒𝑚𝑚𝑑𝑑 =  
𝑆𝑆𝑦𝑦𝑆𝑆𝑡𝑡𝑒𝑒𝑚𝑚′𝑆𝑆 𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑎𝑎𝑒𝑒𝑎𝑎𝑚𝑚𝑎𝑎𝑒𝑒 𝑒𝑒𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎𝑦𝑦 𝑦𝑦𝑚𝑚𝑒𝑒𝑚𝑚𝑑𝑑 (𝑘𝑘𝑘𝑘ℎ)

𝑆𝑆𝑦𝑦𝑆𝑆𝑡𝑡𝑒𝑒𝑚𝑚′𝑆𝑆 𝑚𝑚𝑎𝑎𝑆𝑆𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑑𝑑 𝑆𝑆𝑚𝑚𝑒𝑒𝑚𝑚𝑆𝑆𝑚𝑚𝑡𝑡𝑦𝑦 (𝑘𝑘𝑘𝑘𝑒𝑒)
          (3.1) 

  
Figure 3.4: The summary results of data merging in February 2016 for (a) 

polycrystalline (b) HIT (c) Thin-Film (d) monocrystalline solar panels 
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3.3.2 Missing Values 

 
Figure 3.5: Datasheet with missing values 

From the data file, missing values were spotted in the spreadsheet at random 

timestamps. Figure 3.5 shows an example of a datasheet with missing values. To 

overcome this problem, the average of the past three consecutive readings is used to 

estimate the missing values. Figure 3.6 shows the list of missing values in February 

2016. 

 
Figure 3.6: List of missing values in February 2016 
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3.3.3 Descriptive Statistics 

Descriptive statistics are used to describe the essential characteristics of a data set in 

an analysis, which can represent the entire population or a sample of the population 

[32]. The descriptive statistics for this study include minimum value, maximum value, 

mean and standard deviation.  

          The maximum value is the most significant or highest value observed in a data 

set, and the minimum value is the smallest value observed in the data set. The mean is 

the average value of a time series over a given period. Mean is calculated by summing 

up all the values in the data set and dividing it by the total amount of data. The mean 

formula is shown in equation (3.2). The standard deviation measures the dispersion or 

variability of the data points within a specific time series data set [33]. It indicates how 

spread out the variables are from the mean [30]. The equation of standard deviation is 

shown in equation (3.3). 

𝐴𝐴𝑒𝑒𝑚𝑚𝑎𝑎 =  
∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑎𝑎
                                                         (3.2) 

where ∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1  is the summing of total variable and n is the number of variables. 

𝑆𝑆𝑡𝑡𝑚𝑚𝑎𝑎𝑑𝑑𝑚𝑚𝑎𝑎𝑑𝑑 𝐷𝐷𝑒𝑒𝑎𝑎𝑚𝑚𝑚𝑚𝑡𝑡𝑚𝑚𝑜𝑜𝑎𝑎 =  �
∑ (𝑋𝑋 − 𝑥𝑥𝑖𝑖)2𝑛𝑛
𝑖𝑖=1
𝑎𝑎 − 1

                             (3.3) 

where x is the value of observation data, 𝑥𝑥𝑖𝑖 is the mean value and n is the amount of 

data. 

3.4 Time Series Model 

Time series data analysis is the way to predict time series based on past behaviour. 

Prediction is made by analysing underlying patterns in the time-series data [14]. 
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3.4.1 ARMA Model 

An ARMA model is type of statistical model that are used in time series analysis for 

stationary data. ARMA model is a combination of an AR and MA in the model. The 

model is a model that predicts the current value based on the past values from the same 

time series. Equation (3.4) shows the equation for AR model. 

𝐴𝐴𝐴𝐴 (𝑒𝑒) =  𝑥𝑥𝑡𝑡 = �∅𝑖𝑖𝑥𝑥𝑡𝑡−𝑖𝑖 + 𝜀𝜀𝑡𝑡 + 𝐶𝐶
𝑝𝑝

𝑖𝑖=1

                                   (3.4) 

where 𝑥𝑥𝑡𝑡 is the level of current observation; ∅𝑖𝑖 parameter of autoregressive process; p 

is the term of lagged observation; 𝜀𝜀𝑡𝑡 is an additional white noise error term and C is 

constant.  

          The MA model create current values based on the errors from the past forecasts 

instead of using the past values like AR. Equation (3.5) shows the equation for MA 

model. 

𝐴𝐴𝐴𝐴 (𝑞𝑞) =  𝑥𝑥𝑡𝑡 = 𝜖𝜖𝑡𝑡 + �𝜃𝜃𝑖𝑖𝜖𝜖𝑡𝑡−1

𝑞𝑞

𝑖𝑖=1

                                       (3.5) 

where 𝑥𝑥𝑡𝑡 is the level of current observation; q is the term of moving average value; 𝜃𝜃𝑖𝑖 

is parameter of moving average process; 𝜖𝜖𝑡𝑡 is a residual of the model. The model 

development combine (3.4) and (3.5) to form the general formula of ARMA model as 

shown in equation (3.6). This equation observes the output variables depends linearly 

on the current and past value. 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑒𝑒, 𝑞𝑞) =  𝑥𝑥𝑡𝑡 = �∅𝑖𝑖𝑥𝑥𝑡𝑡−1 + 𝜀𝜀𝑡𝑡 + 𝐶𝐶
𝑝𝑝

𝑖𝑖=1

 +  �𝜃𝜃𝑖𝑖𝜖𝜖𝑡𝑡−1                       (3.6)
𝑞𝑞

𝑖𝑖=1

 

 

3.4.2 ARIMA Model 

ARIMA model is a type of model used in time series analysis for analysing and 

forecasting time series data. The model can be used for analysing data with trends and 

seasonality.  
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          The ARIMA model has three components which are (AR), (I) and (MA). AR 

refers to the dependence of current value on previous values in time series. The number 

of past values (p) is called the lag. Integrated (I) represents the differencing of raw 

observation to allow the time series to become stationary. The number of times series 

go through differencing (d) is called degree of differencing. Moving average (MA), 

refers to the dependency between an observation and a residual error from a moving 

average applied to lagged observation. The number of past errors used (q) is called the 

order of the moving average. The equation for ARIMA model is as shown in equation 

(3.7). 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑒𝑒, 𝑞𝑞,𝑑𝑑) =  𝜇𝜇 + ∅1𝑦𝑦𝑡𝑡 + ⋯+  ∅𝑝𝑝𝑦𝑦𝑡𝑡𝑝𝑝 − 𝜃𝜃1𝑒𝑒1 − ⋯𝜃𝜃𝑞𝑞𝑒𝑒𝑡𝑡𝑞𝑞            (3.7) 

where ∅1 autoregression parameter; 𝜃𝜃 is moving average parameters; 𝜇𝜇 is constant; 

𝜃𝜃1𝑒𝑒1 degree of differential; ∅𝑝𝑝𝑦𝑦𝑡𝑡𝑝𝑝 is 𝑑𝑑𝑡𝑡ℎ a stationary ARIMA model. The parameters 

p, d and q can be determined using statistical techniques such as the Akaike 

information criterion (AIC) or the Bayesian information criterion (BIC) [28]. 

3.4.3 Model Parameter Selection 

Model parameter selection determine the performance and accuracy of the models 

used for forecasting time series analysis. 

3.4.3.1 Stationary Data 

A time series is said to be stationary if its statistical properties are constant and it does 

not exhibit seasonality. A time series is considered stationary if the value of mean or 

standard deviation is constant, and there is no trend or seasonality in the data. A non-

stationary time series has the statistical properties change over time and there is a trend 

and seasonality component [34]. Figure 3.7 shows the difference data trend between 

stationary data and non-stationary data. 
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Figure 3.7: Time series plot of stationary and non-stationary data [34] 

3.4.3.2 Autocorrelation Function (ACF) 

The autocorrelation function (ACF) is a measure of correlation coefficient between the 

series and past values. ACF offers a way to examine the current value of the time series 

data and past value to identify trends and patterns. For the function to work, the 

complete data of time series need to be analysed with one or more lagged version of 

the data for comparison. As a result, the strength between variables can be evaluated 

[35]. 

          The fundamental of the correlation at lag k is the correlation between the original 

data series, 𝑥𝑥𝑡𝑡 and the same series moved forward one period represented as 𝑥𝑥𝑡𝑡−1. The 

autocovariance at lag k is defined in equation (3.8). 

𝑆𝑆𝑜𝑜𝑎𝑎(𝑥𝑥𝑡𝑡 , 𝑥𝑥𝑡𝑡−1) = 𝑆𝑆(𝑥𝑥𝑡𝑡 − 𝜇𝜇)(𝑥𝑥𝑡𝑡−1 − 𝜇𝜇)                                         (3.8) 

where E is the estimation; 𝜇𝜇 is the mean of the data observation. The autocorrelation 

at lag k is defined as in equation (3.9). 

𝐴𝐴𝐶𝐶𝐴𝐴,𝜌𝜌𝑘𝑘 =
𝑆𝑆(𝑥𝑥𝑡𝑡 − 𝜇𝜇)(𝑥𝑥𝑡𝑡−1 − 𝜇𝜇) 

𝜎𝜎𝑥𝑥2
                                             (3.9) 
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where 𝜎𝜎𝑥𝑥2 is the variance of stochastic process; E is the estimation; 𝜇𝜇 is the mean of 

the data observation; k is specific number of periods. The ACF used in time series 

analysis to identify the appropriate order MA terms in a series model. 

3.4.3.3  Partial Autocorrelation Function (PACF) 

 
Figure 3.8: Example of PACF plot of time series data after differencing [36] 

Figure 3.8 shows PACF plot after differencing. In time series analysis, the PACF gives 

the partial correlation of a stationary time series with its own lagged values, regressed 

the values of the time series at all shorter lags [37].  

3.5 Error Measurement 

Error measurement focus on measuring the accuracy and magnitude of error in the 

forecasted values when compared to the actual values. They emphasize the magnitude 

of errors rather than the specific direction and provide insights into the overall 

performance and precision of the forecasting model [38]. 

3.5.1 Mean Absolute Error (MAE) 

MAE is a measure of the average size of the mistakes in a collection of predictions, 

without taking their direction into account. It is measured as the average absolute 

difference between the predicted values and the actual values and is used to assess the 

effectiveness of a regression model [39]. The MAE formula is shown in equation 

(3.10). 
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𝐴𝐴𝐴𝐴𝑆𝑆 =  
1
𝑎𝑎
��𝑃𝑃𝑖𝑖 − 𝑃𝑃�𝑖𝑖�
𝑛𝑛

𝑖𝑖=1

                                            (3.10) 

where n is number of observations; Pi is observed data; 𝑃𝑃�𝑖𝑖 is predicted data, �𝑃𝑃𝑖𝑖 − 𝑃𝑃�𝑖𝑖� 

is absolute value of the difference of 𝑃𝑃𝑖𝑖 − 𝑃𝑃�𝑖𝑖.  

3.5.2 Mean Squared Error (MSE) 

The MSE indicates how close a regression line is to a set of points. It does this by 

taking the distances from the points to the regression line (these distances are the 

errors) and squaring them. The squaring is necessary to remove any negative signs. It 

also gives more weight to larger differences [40]. The MSE equation is as shown in 

(3.11). 

𝐴𝐴𝑆𝑆𝑆𝑆 =  
1
𝑎𝑎
�(𝑃𝑃𝑖𝑖 − 𝑃𝑃�𝑖𝑖)2                                            (3.11)
𝑛𝑛

𝑖𝑖=1

 

where n is the number of observations of error; Pi is observed data; 𝑃𝑃�𝑖𝑖 is predicted data, 

(𝑃𝑃𝑖𝑖 − 𝑃𝑃�𝑖𝑖)2 is squared different absolute error. 

 

 

 



40 

  
 

 

RESULTS AND DISCUSSIONS 

4.1 Preliminary Results 

Total energy yield and specific yield were calculated. The data were obtained for each 

solar panel from 1 January 2016 until 31 December 2016. The data were collected 

between 7:00 am and 6:00 pm. There were 366 energy yield data (kWh) and specific 

yield (kWh/kWp). The preliminary results were analysed to detect the daily and 

monthly trends for each type of solar panel. The data is taken from four types of solar 

panels: Polycrystalline, Monocrystalline, HIT solar panel and TF solar panel. 

 

4.1.1 Monthly Data Trend  

 
Figure 4.1: Total energy yield and specific yield in January 2016 

Based on Figure 4.1, the highest energy yield generated by the TF solar panel is 

963.55kWh, followed by HIT and monocrystalline. Polycrystalline (772.8kWh) 

generates the least energy yield. Data trend for specific yield in January shows that the 

highest specific yield is TF solar panel followed by HIT, monocrystalline and 

polycrystalline solar panel.  
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Figure 4.2: Total energy yield and specific yield in February 2016 

          Based on Figure 4.2, the energy yield decreased from the previous month except 

for the monocrystalline solar panel. The increased energy yield of the monocrystalline 

solar panels might be because of a decrease in humidity by 3% in February [41]. 

However, the reduction of the energy yield of three other solar panels might be affected 

by other factors such as shading, inverter efficiency, and dust.  

 
Figure 4.3: Total energy yield and specific yield in March 2016 

          In March 2016, the highest energy yield was by the TF solar panel, which was 

985.57kWh, slightly higher than the month before. As shown in Figure 4.3, the 

increment of all types of solar panels may be affected due to the higher amount of solar 

radiation in March. Data trend for specific yield in March 2016 shows that TF solar 

panel has the highest value (157.94kWh/kWp) followed by HIT, monocrystalline and 

polycrystalline.  
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.  

Figure 4.4: Total energy yield and specific yield in April 2016 

          In Figure 4.4, the TF solar panel generates the highest energy yield; the value is 

809.60kWh lower than the previous month. Each solar panel's energy yield decreases: 

the decrement might be related to cloudy weather as humidity increased by 4% in April 

[41]. Data trend for specific yield in April shows that TF produced the highest specific 

yield; meanwhile, HIT has the lowest specific yield value.  

.  

Figure 4.5 Total energy yield and specific yield in May 2016 

          In Figure 4.5, the values of energy yield and specific yield continue to decrease 

as the highest energy yield is TF with a value of 774.58kWh followed by 

monocrystalline (700.57kWh), polycrystalline (658.83kWh) and HIT solar panel 

(665kWh). The decrease in energy yield in May might be affected by the 2% increase 

in humidity [41]. Data trends for specific yield indicate that the highest is TF, followed 

by monocrystalline, HIT, and polycrystalline.  
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Figure 4.6: Total energy yield and specific yield in June 2016 

          Figure 4.6 shows that the energy yield and specific yield for June show decreases 

for all type of solar panels. However, the daily data trend shows that the specific yield 

value for monocrystalline solar decreased drastically by about 30% from the previous 

month. 

 
Figure 4.7: Total energy yield and specific yield in July 2016 

          In July, energy yield by all types of solar panels increases after five months of 

consecutive decrement. TF solar panels still produce the highest energy yield, followed 

by monocrystalline, polycrystalline and HIT. The factors affecting the increment could 

be the increase of solar radiation or the solar being cleaned. The data trend in Figure 

4.7 shows that the TF solar panel has the highest specific yield (117kWh/kWp), and 

polycrystalline has the lowest value (106.27kWh/kWp). 



44 

 
Figure 4.8: Total energy yield and specific yield in August 2016 

          From Figure 4.8, the value of energy yield and specific yield continues to 

increase. The humidity in Melaka decreased by 2% in August [41], which might 

correlate with the increment of energy yield in August. TF solar panels still dominate 

with the highest value of energy yield (756 kWh) and specific yield (121.15 

kWh/kWp). The lowest value for energy yield is HIT solar panel (668.72kWh), while 

monocrystalline has the lowest specific yield value (114.71kWh/kWp). 

 
Figure 4.9: Total energy yield and specific yield in September 2016 

          Referring to Figure 4.9, all three types of solar panels have an increment of 

energy yield and specific yield. The solar panels mentioned are TF, HIT and 

monocrystalline. However, polycrystalline solar panels have slightly decreased from 

the previous month. This situation might be affected by shading, inverter efficiency, 
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or dust, which impacts the output power. Under those circumstances, polycrystalline 

has the second lowest value of energy yield (686.16kWh) and the lowest specific yield 

value (116.69kWh/kWp). TF has the highest value of energy yield (817kWh) and the 

highest value of specific yield (130.93kWh/kWp). HIT solar panels have the lowest 

energy yield of 680.64kWh. 

 
Figure 4.10: Total energy yield and specific yield in October 2016 

          Figure 4.10 shows that all four solar panels started to plummet again in October 

as Melaka's humidity increased by 2% [41]. The highest energy yield produced by 

solar panels is the TF solar panel (780.87kWh), and the lowest is the HIT solar panel 

(658.33kWh). TF remains the highest for the specific yield, while monocrystalline has 

the lowest value. 

 
Figure 4.11: Total energy yield and specific yield November 2016 
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          Based on Figure 4.11, November has the lowest energy and specific yield 

produced in 2016.  The resulting output may be affected by humidity, as Melaka's 

highest percentage of humidity in 2016 was in November (86%) [41].  TF solar panels 

have the highest energy yield (663.19kWh) and specific yield (118.18kWh/kWp).  

Meanwhile, HIT solar panels have the lowest value of energy yield (594.41kWh) and 

polycrystalline has the lowest value of specific yield (92.22kWh/kWp). 

 
Figure 4.12: Total energy yield and specific yield in December 2016 

          Referring to Figure 5.12, in December 2016, the values started to increase from 

the previous month. TF solar panel continues its streak of highest value in energy yield 

(737.43kWh) and specific yield (118.18kWh/kWp). Monocrystalline has the second 

highest value of energy yield (645.6kWh) and specific yield (105.49kWh/kWp). The 

lowest energy yield is from HIT solar panels (594.51kWh), and polycrystalline solar 

panels have the lowest specific yield (103kWh/kWp). 

          In conclusion, TF solar panels consistently showed the highest energy and 

specific yield over the months. Polycrystalline has the lowest value for energy yield 

from January until May. However, from June until December, HIT solar panels have 

the lowest energy yield. For specific yield, polycrystalline has dominated the lowest 

value for nine months, and the remaining three months are from monocrystalline solar 

panels. The data indicated fluctuations in energy generation influenced by various 

factors such as dust, shading and meteorological factors.  
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4.1.2 Daily Data Trend 

 
Figure 4.13: Daily trend for Polycrystalline solar panel 

          Figure 4.13 shows the trend in daily specific yield for polycrystalline solar 

panels in 2016. The specific yield of the solar system was calculated using equation 

(3.1), the energy yield values were acquired from the datasheet, and the kilowatt peak 

(kWp) data were obtained from the SSG laboratory website. Based on Figure 4.13, the 

highest specific yield that polycrystalline solar panels can produce is on 9th February 

2016, with approximately 6.66kWh/kWp. The least specific yield was 0.32kWh/kWp 

on 12th December 2016. The constant value of the specific yield from 20th May until 

26th July is due to the estimation of missing values in that period. 

 
Figure 4.14 Daily trend for Monocrystalline solar panel 

          Figure 4.14 shows the trend in daily specific yield for monocrystalline solar 

panels in 2016. The highest specific yield that polycrystalline solar panels can produce 

is on 9th February 2016, with approximately 7.02kWh/kWp. The least specific yield 

was 0.34kWh/kWp on 12th December 2016. The static value of the specific yield from 

20th May until 26th July is due to the estimation of missing values in that period. 
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Figure 4.15: Daily trend for Thin Film solar panel 

          Figure 4.15 shows the trend in daily specific yield for monocrystalline solar 

panels in 2016. The highest specific yield that polycrystalline solar panels can produce 

is on 9th February 2016, with approximately 7.64kWh/kWp. The least specific yield 

is 0.34kWh/kWp on 12th December 2016. The constant value of the specific yield 

from 20th May until 26th   July is due to the estimation of missing values in that period. 

 
Figure 4.16: Daily trend for HIT solar panel. 

          Figure 4.16 shows the trend in daily specific yield for HIT solar panels in 2016. 

The highest specific yield that polycrystalline solar panels can produce is on 9th 

February 2016, with approximately 7.13kWh/kWp. The least specific yield was 

0.33kWh/kWp on 12th December 2016. The static value of the specific yield from 

20th May until 26th July is due to the estimation of missing values in that period. 

          In conclusion, the graph of daily data trends highlights the varying specific 

yields for different types of solar panels over the 12 months. The highest specific yield 

was around 7kWh/kWp, and the lowest was around 0.33kWh/kWp. Moreover, there 

has been a trend of decrement values of specific yield from the end of October 2016 

until December 2016 for all type of solar panels in FTKE. 

0

2

4

6

8

1-
Ja

n
14

-Ja
n

27
-Ja

n
9-

Fe
b

22
-F

eb
6-

M
ar

19
-M

ar
1-

Ap
r

14
-A

pr
27

-A
pr

10
-M

ay
23

-M
ay

5-
Ju

n
18

-Ju
n

1-
Ju

l
14

-Ju
l

27
-Ju

l
9-

Au
g

22
-A

ug
4-

Se
p

17
-S

ep
30

-S
ep

13
-O

ct
26

-O
ct

8-
N

ov
21

-N
ov

4-
De

c
17

-D
ec

30
-D

ec

Sp
ec

ifi
c 

Yi
el

d 
(k

W
h/

kW
p)

Daily Trend Thin Film Solar Panel



49 

4.2 Descriptive Statistics 

Descriptive statistics analysis provides insights into features and patterns of data. 

Various measures and methods are used to interpret data. Table 4.1 summarises four 

types of solar panels with descriptive statistics. 

Table 4.1 Descriptive statistics of solar panels 

Parameter Polycrystalline 
solar panel 

Monocrystalline 
solar panel 

HIT solar 
panel 

TF solar 
panel 

Maximum 
Value 6.66 7.02 7.13 7.64 

Minimum 
Value 0.32 0.34 0.33 0.34 

Mean 3.78 3.66 3.98 4.24 
Standard 
Deviation 0.83 1.16 0.93 1.07 

 
          Referring to Table 4.1, TF solar panel had the highest maximum value of 

specific yield in 2016 (7.64 kWh/kWp), followed by HIT, monocrystalline and 

polycrystalline. Hence, TF solar panels produced the highest energy yield for every 

peak power of the PV system. Meanwhile, polycrystalline had the lowest minimum 

value of specific yield in 2016 (0.32 kWh/kWp), followed by HIT, monocrystalline 

and TF solar panels. Therefore, polycrystalline solar panels produced the lowest 

energy yield for every peak power of the PV system. The result shows that TF solar 

panels are more efficient in hot and humid climates than polycrystalline solar panels. 

          Secondly, TF solar panels have the highest mean values of specific yield 

followed by HIT, polycrystalline and monocrystalline, which means that the TF solar 

panels are the most efficient for generating power in the FTKE area. Next, 

polycrystalline has the lowest standard deviation, followed by HIT, monocrystalline 

and TF solar panels. The low standard deviation value shows that the specific yield 

data clustered tightly around the mean value. 

          In conclusion, TF solar panels produce the highest specific yield compared to 

other types of solar panels. Therefore, for the purpose of developing a forecasting 

model, the next chapter will focus on the ARIMA model for TF solar panels. 
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4.3 Stationarity 

The probability plot compares the data quantiles to the expected quantiles from a 

theoretical distribution. If the data points align closely with a straight line, it indicates 

that the dataset roughly follows the normal distribution. Otherwise, techniques such as 

differencing can be applied in time series analysis to make the data stationary. 

Differencing involves calculating the differences between consecutive observations in 

a time series. This method helps to eliminate trends or seasonality in the data, making 

it stationary. 

4.3.1 Probability Plot 

 

 

 

 
(a) One year (b) First quarter 

 

  
(c) Second quarter (d) Third quarter 

 
(e) Fourth quarter 

 
Figure 4.17: Probability plot of TF specific yield in (a) one year, (b) first quarter, (c) 

second quarter, (d) third quarter and (e) fourth quarter of 2016 
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Figure 4.17 (a) to Figure 4.17 (e) presents the probability plot for the specific yield of 

TF solar panel. The results indicate that the p-value for the fourth quarter of 2016 is 

0.467, which is higher than the significance level (α = 0.05), suggesting that the data 

follows a normal distribution. However, the p-values for the one year, first quarter, 

second quarter, and third quarter of 2016 are below the significance level, indicating 

that the data does not follow a normal distribution. Therefore, normalization or 

transformation methods should be applied to make the data follows normal distributed. 

4.3.2 Box-Cox Transformation 

The Box-Cox transformation transforms the data so that its distribution is as close to a 

normal distribution as possible. It is useful when dealing with data that violates the 

assumption of normality and constant variance. These diagnostic plots help assess the 

effectiveness of the transformation and verify if the transformed data meet the 

assumption of normality and constant variance. 

 

 

 

 
(a) One Year (b) First quarter 

 

  
(c) Second quarter 

 
(d) Third quarter 

. 
Figure 4.18: Probability plot after normalization of TF specific yield in (a) one year, 

(b) first quarter, (c) second quarter and (d) third quarter of 2016 
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          Figure 4.18 (a) to Figure 4.18 (d) shows the probability plot after normalization 

using Box-Cox transformation. The results indicate that the p-values for the first and 

second quarters are above the significance level (α = 0.05), suggesting that the Box-

Cox transformation method successfully made this data normally distributed. 

However, the p-values for the one year and third quarter remain below the significance 

level, indicating that the transformation fail to make the data normally distributed. 

4.3.3 Autocorrelation Factor (ACF) 

Auto-correlation refers to the correlation between a time series and its own past values 

at different points in time. It quantifies how current values are related to previous 

values within the time series. 

 

 

 

 
(a) One Year (b) First quarter 

  
(c) Second quarter (d) Third quarter 

 
 (e) Fourth quarter 
 

 

Figure 4.19: ACF plot for TF specific yield in (a) one year, (b) first quarter, (c) 
second quarter, (d) third quarter and (e) fourth quarter of 2016 
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          Figure 4.19 (a) to Figure 4.19 (e) displays the ACF graph for the case study data, 

showing the correlation between the current observation and its lagged values. The red 

horizontal line marks the significance threshold. ACF values that exceed this line are 

considered non-stationary. In Figure 4.19, the second quarter of 2016 has all ACF 

values within the red horizontal line, illustrating the stationarity of the data. 

Meanwhile, for the one year, first, third, and fourth quarters of 2016, there is one ACF 

value that exceeds the red horizontal line. 

4.3.4 Partial Autocorrelation Factor (PACF) 

A PACF captures a direct correlation between time series and a lagged series of data. 

  
(a) One year (b) First quarter 

  
(c) Second quarter (d) Third quarter 

 
(e) Fourth quarter 

. 
Figure 4.20: PACF plot for TF specific yield in (a) one year, (b) first quarter, (c) 

second quarter, (d) third quarter and (e) fourth quarter of 2016 
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          Figure 4.20 (a) to Figure 4.20 (e) depicts the PACF plot, with a red horizontal 

line representing the threshold value of the PACF where any value above this line is 

deemed significant. From Figure 4.20, it is observed that the PACF plot for the one-

year and the third quarter of 2016 exhibits multiple non-staionary values, suggesting 

potential non-stationarity in the data. Conversely, for the first, second, and fourth 

quarters, all PACF values fall within or have only one exceeding the significance 

threshold, indicating that the data can be considered as stationary. 

4.4 Time Series Model Development 

To determine whether the association between the response and each term in the model 

is statistically significant, a comparison of the p-value and the to significance level was 

done to assess the null hypothesis. The null hypothesis is that the term is not 

significantly different from 0, which indicates that no association exists between the 

term and the response. Usually, the significance level used is 0.05.  

          The data of one year, the first quarter, second quarter, third quarter and the fourth 

quarter of 2016 were tested with 26 ARIMA models. The p-values of these models 

were observed to determine their significance. 

          For instance, when testing an ARIMA model (1,0,1) on the first quarter of 2016, 

the results reveal that the p-value for the AR 1 and MA 1 terms are 0.261 and 0.432, 

respectively. Both p-values exceed the significance level, suggesting that the model is 

not significant. Table 4.2 shows analysis of all non-significant ARIMA models tested 

for one year, first quarter, second quarter, third quarter, and fourth quarter of 2016. 
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Table 4.2 Non-significant ARIMA model for specific yield of TF solar panel 

ARIMA model (p,d,q) for one year 
(2,0,2) (2,2,1) (1,2,1) (1,1,2) (0,2,2) (2,1,1) (2,1,2) (2,2,0) 

ARIMA model (p,d,q) for first quarter 
(0,2,2) (1,0,1) (2,1,2) (1,1,2) (1,2,2) (2,0,0) (2,0,2) (2,2,2) 

ARIMA model (p,d,q) for second quarter 
(0,0,2) (2,1,1) (0,2,2) (1,0,0) (1,0,1) (1,0,2) (1,1,0) (1,1,1) 
(2,1,2) (1,1,2) (1,2,1) (1,2,2) (2,0,0) (2,0,2) (2,2,1) (1,2,2) 

ARIMA model (p,d,q) for third quarter 
(0,0,1) (0,0,2) (0,1,2) (2,1,1) (1,0,0) (1,0,1) (1,0,2) (1,1,1) 
(2,1,2) (1,1,2) (1,2,2) (2,0,0) (2,0,1) (2,0,2)   

ARIMA model (p,d,q) for fourth quarter 
(0,0,1) (0,0,2) (0,1,2) (1,0,0) (1,0,1) (1,0,2) (1,1,1) (2,1,2) 
(1,2,2) (2,0,0) (2,0,1) (2,0,2) (2,2,1) (1,1,2)   

 

         Conversely, when testing an ARIMA model (0,1,1) on the first quarter of 2016, 

the analysis reveals that the p-value for the MA 1 is 0 which is lower than the 

significance level, indicating the ARIMA model is significant. Table 4.3 shows 

analysis of all significant ARIMA models tested for one year, first quarter, second 

quarter, third quarter, and fourth quarter of 2016. 

Table 4.3 Significant ARIMA model for case study data 

ARIMA model (p,d,q) for one year 
(0,0,1) (0,0,2) (0,1,1) (0,1,2) (2,1,0) (2,0,0) (1,2,2) (1,0,0) 
(1,0,1) (1,0,2) (1,1,0) (1,1,1) (2,0,1) (2,2,2)   

ARIMA model (p,d,q) for first quarter 
(0,1,1) (2,2,0) (0,0,1) (2,1,1) (1,0,2) (1,1,1) (2,0,1) (2,1,0) 
(1,2,0) (0,1,2) (1,0,0) (1,1,0) (1,2,1) (2,2,1)   

ARIMA model (p,d,q) for second quarter 
(0,1,1) (2,1,0) (2,2,0) (1,2,0) (0,0,1) (0,1,2) (2,0,1)  

ARIMA model (p,d,q) for third quarter 
(0,1,1) (2,1,0) (2,2,0) (1,2,0) (0,2,2) (1,1,0) (1,2,1) (2,2,1) 
(2,2,2)        

ARIMA model (p,d,q) for fourth quarter 
(0,1,1) (2,1,0) (2,2,0) (1,2,0) (2,1,1) (0,2,2) (1,1,0) (1,2,1) 
(2,2,2)        
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4.5 Error Measurement 

Error measurement is the difference between a measured quantity and its actual value. 

It helps to understand the accuracy of a prediction or estimation. For this analysis, only 

significant models as mentioned in Table 4.3 are used for forecasting purposes. The 

MAE and MSE methods are used to measure the accuracy of the predicted models. 

Table 4.4: MAE and MSE for ARIMA model for one year (2016) 

Model (p,d,q) MAE MSE 

(0,0,1) 0.825 0.680 

(0,0,2) 0.797 0.636 

(0,1,1) 0.866 0.750 

(0,1,2) 0.905 0.819 

(2,1,0) 0.792 0.628 

(2,0,0) 0.758 0.574 

(1,2,2) 0.882 0.778 

(1,0,0) 0.805 0.647 

(1,0,1) 0.795 0.632 

(1,0,2) 0.853 0.727 

(1,1,0) 0.884 0.781 

(1,1,1) 0.912 0.831 

(2,0,1) 0.845 0.714 

(2,2,2) 0.806 0.649 
 

          The best ARIMA model for specific yield in 2016 is (2,0,0). This model has the 

lowest error compared to the other 13 significant ARIMA models. This analysis is 

supported by the lowest values of MSE and MAE as shown in Table 4.4. However, the 

MAE and MSE values are still considered high, above 0.5. This is because the data 

used for one entire year of 2016 are not stationary. 
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Table 4.5: MAE and MSE for ARIMA model for (Q1), (Q2), (Q3) and (Q4) of 2016  

No Model 
(p,d,q) 

Q1 Q2 Q3 Q4 

MAE MSE MAE MSE MAE MSE MAE MSE 

1 (0,1,1) 0.381 0.145 0.530 0.281 1.119 1.253 0.316 0.100 

2 (2,1,0) 0.735 0.540 0.659 0.434 1.186 1.406 0.452 0.204 

3 (2,2,0) 1.063 1.129 0.790 0.625 1.260 1.588 0.554 0.306 

4 (1,2,0) 0.634 0.402 0.886 0.784 1.100 1.210 2.586 6.690 

5 (1,1,0) 0.721 0.520 - - 0.894 0.799 0.205 0.042 

6 (1,2,1) 0.422 0.178 - - 0.870 0.756 0.195 0.038 

7 (0,2,2) - - - - 1.077 1.160 0.322 0.104 

8 (2,2,2) - - - - 1.246 1.553 0.276 0.076 

9 (2,2,1) 0.295 0.087 - - 1.831 3.354 - - 

10 (2,1,1) 0.715 0.511 - - - - 0.377 0.142 

11 (0,0,1) 0.210 0.044 0.626 0.392 - - - - 

12 (2,0,1) 0.265 0.070 0.419 0.176 - - - - 

13 (0,1,2) 0.385 0.148 0.505 0.255 - - - - 

14 (1,0,2) 0.255 0.065 - - - - - - 

15 (1,1,1) 0.473 0.223 - - - - - - 

16 (1,0,0) 0.256 0.066 - - - - - - 

 

          The ARIMA model (0,0,1) is the most accurate model for forecasting the 

specific yield of the TF solar panel in FTKE for the first quarter of 2016. This model 

exhibits the lowest error among the 13 other significant models, as indicated by the 

values of MAE and MSE presented in Table 4.5. For the second quarter of 2016, the 

best ARIMA model for forecasting specific yield of TF solar panel in FTKE is (2,0,1). 

This analysis is supported by the lowest values of MAE and MSE as shown in Table 

4.5. The most precise ARIMA model for forecasting the specific yield in the third 

quarter of 2016 is (1,2,1). This model stands out among the other eight significant 

ARIMA models tested due to its lowest MAE and MSE value, as shown in Table 4.5. 

However, the MAE and MSE values are still considered high, above 0.5. This is 

because the data used for the year 2016 are not stationary. The fourth quarter of 2016 
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for ARIMA (1,2,1) stands out as the most precise choice for forecasting specific yield 

of the TF solar panel in FTKE. Among the other 8 significant models, the smallest 

margin of error as shown the value of MAE and MSE as presented in Table 4.5. 

In conclusion, the best ARIMA models are: 

1 year data: ARIMA (2,0,0) 

1st quarter: ARIMA (0,0,1) 

2nd quarter: ARIMA (2,0,1) 

3rd quarter: ARIMA (1,2,1) 

4th quarter: ARIMA (1,2,1) 

4.6 Forecasting Future Values by using ARIMA Model 

 

 
Figure 4.21: Forecast trend for one whole year of 2016 for TF solar panel 

Figure 4.21 displays the data trend of the forecasted specific yield using the ARIMA 

model (2,0,0). The model was developed using data from 1st January 2016 to 31st 

December 2016. With this timeframe, a specific yield forecast can be made from 1st 

January 2017 to 10th January 2017. The forecasted data trend indicates that the specific 

yield slightly increases from 4.093 kWh/kWp on the 1st January to 4.223 kWh/kWp 

on the 10th January 2017. This differs from the measured data which shows significant 

fluctuations during that timeframe. The forecast data does not follow the trendline of 

the measured data because the data used to develop the forecast model is not stationary. 
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Figure 4.22: Forecast trend for the first quarter of 2016 for TF solar panel 

           Figure 4.22 exhibits the data trend of forecast specific yield of the ARIMA 

(0,0,1). The model is created based on data spanning from 1st January 2016 to 31st 

March 2016. This timeframe enables the forecast of specific yield from 1st April to 3rd 

April 2016. The forecast follows the trendline of the measured data as there is only a 

slight difference between the forecast and measured data.  

Figure 4.23: Forecast trend for the second quarter of 2016 for TF solar panel 

          Figure 4.23 illustrates the data trend in forecast specific yield data produced by 

the ARIMA (2,0,1). The model was developed using data ranging from 1st April to 10th 

May 2016. This time period allows for the prediction of specific yield values from 11th 

May 2016 to 13th May 2016. The forecast data trend indicates a decrease in value from 

11th May (4.048 kWh/kWp) to 12th May (3.953 kWh/kWp) and then increase on 13th 

May (4.023 kWh/kWp). 
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Figure 4.24: Forecast trend for the third quarter of 2016 for TF solar panel  

           Figure 4.24 illustrates the trend of forecasted specific yield using the ARIMA 

(1,2,1). This model was built based on data collected from 1st 2016 to 30th September 

2016. Utilizing this timeframe, the model can be forecast from 1st October to 3rd 

October 2016. The forecast data shows a major difference between actual and forecast 

data on the 1st October 2016 to 2nd October 2016. This is because the data used to build 

the ARIMA model is not stationary. 

 
Figure 4.25: Forecast data for the fourth quarter of 2016 for TF solar panel 

           Figure 4.25 displays the data trend of forecast specific yield using the ARIMA 

model (1,2,1). The model was developed using data from 1st October to 31st December 

2016. With this timeframe, a specific yield forecast can be made from 1st January 2017 

to 3rd January 2017. The forecast follows the trendline of the measured data as there 

is only a slight difference between the forecast and measured data.  
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CONCLUSION AND RECOMMENDATIONS  

5.1 Conclusion 

Based on the time series analysis, it has been determined that the Thin-Film solar panel 

exhibits the highest specific yield for solar radiation, suggesting it as the ideal solar 

panel for power generation in the FTKE area. Subsequently, a forecasting model for 

specific yield utilizing ARIMA models was developed by using the Minitab software. 

Five ARIMA models were developed: (2,0,0), (0,0,1), (2,0,1), (1,2,1), and (1,2,1), each 

applied to five distinct timeframes; the entire year of 2016, the first, second, third, and 

fourth quarters of 2016. The accuracy of these models was evaluated, revealing highly 

precise results with MAE values are 0.758, 0.210, 0.419, 0.870, and 0.195, along with 

MSE values are 0.574, 0.044, 0.176, 0.756, and 0.038 for the same respective 

timeframes. Finally, this analysis offers valuable insights into the trend analysis of 

specific yield, enhancing comprehension of its patterns and trends in the area of FTKE, 

UTeM area. The ARIMA model and its error measurement provides crucial 

information for decision-making and planning concerning the utilization and 

management of solar energy at the facility. 

5.2 Future Works 

In future studies, researchers can enhance specific yield forecasting models at FTKE, 

UTeM, by considering meteorological factors like temperature, humidity, and cloud 

cover. By including these factors, the models can better predict how solar radiation 

changes based on weather conditions. Also, extending the forecasting period to months 

or years can help assess long-term solar energy planning and decision-making at 

FTKE. This would give useful information for improving how resources are used and 

managed. By making these improvements, researchers can help increase the accuracy 

of forecasting specific yield in FTKE, UTeM. 
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