




ii 

DECLARATION 

“I hereby, declare this thesis is result of my own research except as cited in the 

references” 

Signature 

Author’s Name 

Date 

: …………………………. 

: CHIA HWEE SIANG 

: 10/04/2009 



iii 

Specially dedicated to my family, friends and companion 



iv 

ACKNOWLEDGEMENT 

I would like to express my deepest gratitude to my Projek Sarjana Muda (PSM) 

supervisor, En. Nazri Md Daud for the suggestion of this research. Great deals 

appreciated go to him for providing the supervision, support and guidance throughout 

this Projek Sarjana Muda (PSM). Thanks again to him for reviewed the entire 

manuscript of this project and provided me with valuable feedback, advises and 

encouragement to complete the project. Moreover, the golden time and experiences 

shared by him for the guidance truth appreciated. 

Nevertheless, especially grateful sent to my FKM lecturer, Mr. Ahmad Rivai 

who gave me the guidance due to the MSC Nastran/Patran simulation software. He had 

given a great idea and shares his experiences to solve the problem of finite element 

analysis on the turbine rotor. 

Meanwhile, the cooperation from the Spark Engineering Sdn Bhd is much indeed 

appreciated for provides lots of sources and information related to the turbine blade 

problems and diagnosis of turbocharger during the industry visit. 

Last but not least, I would like to thanks my FKM lecturer, Pn. Fatimah who 

gave the guidance on the CFD method for the turbomachinery and the supports from my 

family. 



v 

ABSTRACT 

MSC Nastran Patran technique was used to simulate and analysis for the 

turbocharger turbine blade failure investigation. The Finite Element Method (FEM) is 

applied and used for the turbine blade simulation for identifies the failure region and 

point by the stress distribution. The Finite Element Method (FEM) findings and results 

are a major consideration in design. Furthermore, the loads, boundary condition and 

material properties are defined. The Finite Element Model is submitted for the structural 

analysis once is completed. The similar turbine blade simulations from the literature 

study are referred and study in order to achieve the objectives of the Projek Sarjana 

Muda (PSM). The simulation results revealed that the stress distribution on the turbine 

under the various case such as comparison of dimension which is 80 mm, 100 mm 

(original dimension) and 120 mm and materials, Inconel X-750, Inconel 718 (original 

material), Inconel 650 and Inconel 620. Meanwhile, the result verified that Inconel 718 
with 80 mm turbine blade provided higher Young’s Modulus and stiffness characteristic 

in the project. Inconel 718 is well representative material for turbine blade due to the 

ability of withstands high pressure and temperature and insures the long wear life. Thus, 

the Inconel 718 and 80 mm dimension blade is applied in the overall simulation. The 

simulation result is indicated that the blade root is withstanding highest pressure which 

is showed the good agreement with the realistic turbine blade failure. The MSC 

Nastran/Patran is powerful method used to identify the critical areas at the turbine blade 

where the weakness point appear base on stress distribution result and essential to the 

marine industrial. 
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ABSTRAK 

Teknik MSC Nastran Patran digunakan untuk mesimulasi dan analisis siasatan 

kegagalan bilah turbin turbocharger. Finite Element Method (FEM) diaplikasikan dan 

digunakan untuk simulasi bilah turbin untuk mengenal pasti rantau and kawasan 

kegagalan oleh agihan tekanan. MSC / Patran adalah pra-pemproses untuk simulasi CAE. 

Tujuan Solidwork (CAD) adalah untuk mencipta peragaan bilah turbin turbocharger. 

Peragaan bilah turbin diinput kepada MSC / Patran. Tambahan pula, daya, syarat 

sempadan dan ciri-ciri bahan oleh bilah turbin didefinisikan. Bilah turbin serupa 

simulasi-simulasi daripada kajian literature adalah dirujuk dan mengkaji untuk mencapai 

matlamat-matlamat Projek Sarjana Muda (PSM). Simulasi menunjukkan agihan tekanan 

keputusan pada bilah turbin daripada perbandingan kes-kes seperti dimensi-dimensi 80 

mm, 100 mm (dimensi asal) dan 120 mm serta bahan bahan perbezaan, Inconel X-750, 

Inconel 718 (bahan asal), Inconel 650 dan Inconel 620. Keputusan menunjukkan Inconel 
718 dengan 80 mm bilah turbin mempunyai Young’s Modulus paling tinggi dalam 

project ini dan menunjukkan keputusan yang paling sentuju dengan keputusan kegagalan 

yang sebenar. Selain itu, Inconel 718 adalah bahan yang paling sesuai untuk menahan 

tekanan dan suhu yang tinggi dalam implikasi turbocharger. MSC Nastran/Patran 

program adalah satu kaedah yang berkesan digunakan untuk menentukan agihan tekanan 

dan kawasan yang lemah wujud dalam bilah turbin. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Turbocharger is a forced-induction compressor powered by engine exhaust gas. 

The purpose of turbocharger is to increase the mass entering the engine to generate more 

power for marine application. The turbocharger turbine, which consist of a turbine wheel 

and a turbine housing, convert the engine exhaust gas into mechanical energy to drive 
the compressor impeller. The exhaust gas is restricted by the turbine’s flow cross- 

sectional area and thus result the pressure and temperature drop between inlet and outlet 

of turbocharger. This pressure drop is converted by turbine into kinetic energy to drive 

the turbine rotor. There are two main turbine types of turbocharger, axial flow and radial 

flow. In an axial turbine for exhaust gas turbochargers, the inner wall of the rotationally 

symmetrical exhaust gas deflection duct is designed as a deflection collar rigidly 

connected to the turbocharger shaft and rotating with it. 

In modern gas turbine turbocharger, the turbine performance increases as the 

pressure drop between the inlet and outlet increase. Thus, the turbine rotor blade inlet 

temperature has been increased in order to increase power and achieve higher efficiency. 

However, this has resulted in a higher heat load and thermal stress on turbine component. 

The turbine blade tips are one of the most critical regions susceptible to failure due to 

the large thermal load and heat load and difficulty in cooling. Furthermore, for the 

typical gas turbine rotor blade, there is a gap between the rotating blade tip and the 
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stationary shroud surface called the tip gap. Rotor blade tip failure is caused primarily by 

hot leakage flow through the tip gap due to the pressure difference between the blade 

pressure side and suction side, causing a thin boundary layer and a high heat transfer 

coefficient. Therefore, sophisticated cooling technique must be employed to cool the 

blade tip in order to maintain the performance requirements. 

For typically marine application turbocharger, the turbine rotor is operated at 

high revolution speed that is often in excess of 10000 rpm. Failures in blades are 

suspected to occur as a result of thermal mechanical stresses or fatigue load. Moreover, 

other causes of turbine blade crack such as creep-rupture as well as resonant vibration of 

turbine rotor. A crack blade can be enough to throw the turbocharger assembly out of 

balance. The imbalance will prevent the system achieved the maximum rpm and 

eventually pound the shaft bearing out of round. The present study investigates the 

possible causes of the failure of turbine blades. MSC Nastran/Patran is used to calculate 

the thermal centrifugal stresses and natural frequency to find the position failure of 

turbine blade. Low Cycle Fatigue (LCF) lives of blades are roughly estimated by using 

the stress and strain level determined by MSC Nastran/Patran. However, the 

investigation indicates that the failure with resonant force and High Cycle Fatigue 

(HCF). 

Analysis the geometrical design for the broken and crack turbine blade of 

turbocharger by considering the various size of turbine blade used such as 8 cm, 10 cm 

or 12 cm of turbine blade. Furthermore, as could be observe from the original 

conventional cargo ship turbocharger design, the turbine blade dimension is in 

approximately 10 cm such variation in between 8 cm to 12 cm is considered in this study 

and simulation in the event that it can operate and inherently converting exhaust gas to 

rotate the compressor, and hence improved the efficiency of the system. Moreover, it 

most complies with the design specification such that the clearance between the turbine 

blade and the housing is in tolerable. On the other hand, various materials analysis is 

presented. The development of materials improved the properties as well as turbine 

efficiency. In addition, some simulation on the turbine blade will be simulated to 
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observe the deformation and the stress distribution that lead the to the turbine blade 

failure. 

1.2 Objective of the Project 

The project is to analysis the characteristic turbine blade in cargo ship diesel 

engine turbocharger. The present study investigated the possible cause of the turbine 

blade failure. Thermal centrifugal stresses and frequency are calculated to detect the 

turbine blade failure region. The main objectives in this project study are as following: 

i. To investigate the possible causes of turbine blade failure in marine 

application. 

ii. To model the conventional turbocharger turbine blade based on the actual 

dimension and geometry in cargo ship engine. 

iii. To simulate the turbine blade failure using Nastran/Patran. 



4 

1.3 Scope of the Project 

The project is involved the simulation and specific field on the turbocharger 

turbine blade analysis. Thus, the scopes are listed as following: 

i. Literature review and study of turbine blade used in conventional cargo 

ship engine turbocharger. 

ii. The 3-dimensional view drawing of actual dimension turbine blade by 

using Solid work for the further simulation. 

iii. Simulation of turbine blade using Nastran/Patran on static stresses 

distribution analysis and deformation. 

iv. Obtain simulation at different condition such as the various dimension of 

turbine blade (8cm, 10 cm, 12 cm) being used and different materials 

configurations. 

v. Simulation identified the optimum blade profile in which the region of 

turbine blade that can sustain the higher pressure, force and stresses under 

operating condition. 

vi. 

vii. 

To understand the turbocharger turbine blade profile. 

Numerical study and design of turbine blade under high temperature and 

rotational speed. 

1.4 Problem Statement 

The conventional turbocharger turbine blade facing the crack and broken turbine 

blade due to the thermal stresses, higher thermal load from exhaust gas, materials, 

design error that cause the failure and thus, throw the assemble out of balance as well as 

lead the vibration of the system. Generally, these problems are affecting due to the 

increased of pressure drop between inlet and outlet to increased power and efficiency. 

Hence, the inlet temperature of turbine rotor is increased. This has resulted in a higher 
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heat load and thermal stresses of turbine components. The turbine blade tips are one of 

the most critical regions susceptible to failure due to the large thermal load and heat load 

and difficulty in cooling. During the performance test of turbocharger by other study, 

failures in blade tip trailing edge occurred and cracks were found in the mid regions of 

the blade edges illustrated in Figure 1.1 and Figure 1.2. Thus, this study is purposed to 

investigate the position of blade failure occurred by the Finite Element Method (FEM). 

Figure 1.1: Upper Views of the Failed Blade and Surrounding 

(Source: Poursaeidi, E. et. al. (2007)) 

Figure 1.2: Leading Edge Damage in Turbine Blade 

(Source: Poursaeidi, E. et. al. (2007)) 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

The turbocharger turbine which consist of a turbine wheel and turbine housing, 

converts the engine exhaust gas into mechanical energy to rotate the compressor. The 
engine exhaust gas is restricted by turbine’s flow cross-sectional area and thus result the 

pressure and temperature drop between the inlet and outlet. Furthermore, this pressure 

drop is converted by the turbine into kinetic energy for the purpose to drive the turbine 

wheel. On the other hand, the turbine performance is directly proportional to the 

pressure drop between inlet and outlet. The conventional turbine blade usually made of 

cast iron, steel or aluminum which converts the steam to drive the compressor. 

2.2 Background 

Hou, J.F. et. al. (2000) had preceded an investigation of fatigue failures of 

turbines blade in gas turbine engine by mechanical analysis. Blade failures in gas 

turbine engines often lead to loss of all downstream stages and can have a dramatic 

effect on the availability of the turbine engines. Through failure investigation is essential 

for the effective management of engine airworthiness. In this paper blade fatigue failures 

are investigated by mechanical analyses and by examination of failed blades. A series of 

mechanical analyses were performed to identify the possible causes of the failures by 


