
UTeM BUS SCHEDULING MANAGEMENT SYSTEM

HO JIA QING

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

UTeM BUS SCHEDULING MANAGEMENT SYSTEM

HO JIA QING

This report is submitted in partial fulfilment of the requirement for the Bachelor of Computer

Science (Database Management) with Honours.

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITY TEKNIKAL MALAYSIA MELAKA

2024

DECLARATION

I at this moment declare that this project report entitled.

UTeM BUS SCHEDULING MANAGEMENT SYSTEM

is written by me and is my effort and no part has been plagiarized without citations.

STUDENT: ________________ DATE: ___2024-09-05__________

(HO JIA QING)

I at this moment declare that I have read this project report and found it is sufficient in terms

of the scope and quality for the award of Bachelor of Computer Science (Database

Management) with Honours.

SUPERVISOR: __________________________ DATE: ___2024-09-05__________

(DR. NURUL AKMAR BINTI EMRAN)

DEDICATION

I would like to convey my special appreciation to my dear parents and supervisor who

have been giving me direction and encouragement throughout my project. I would especially

like to express my sincere gratitude to the following important mentors and collaborators.

ii

ACKNOWLEDGEMENTS

I would like to express my heartfelt gratitude to Dr. Nurul Akmar binti Emran for her invaluable

assistance in successfully completing this project. Her expertise, advice, guidance, and

encouragement were instrumental throughout this journey. Dr. Nurul Akmar consistently

fostered a spirit of adventure in research and provided invaluable support and motivation.

Additionally, I extend my deepest thanks to my beloved parents and friends who have

supported and motivated me every step of the way. Their unwavering encouragement has been

a source of strength throughout this endeavour.

I am also deeply grateful to the following significant advisors and contributors for their

invaluable insights and support.

Furthermore, I extend sincere appreciation to my institution, the Faculty of Information and

Communications Technology at Universiti Teknikal Malaysia Melaka, lecturers, and friends

for their guidance and teachings throughout this report. Without their assistance, this report

would have remained a distant reality.

Thank you to everyone who has played a role in the success of this project.

iii

ABSTRACT

 UTeM Bus Scheduling Management System is a web-based system that provides a

platform to manage the bus scheduling process by viewing the bus schedule on the website. In

the current system, all data is only represented by social media officials. There is no available

system to manage the data. Moreover, the admin may face difficulty in updating the schedule.

Updating the schedule is challenging because all the data is recorded manually and shared

through social media. Additionally, manual recording makes it harder to keep the schedule up

to date. Admins need to upload to social media again if there are some changes in the bus

schedule. It makes students miss the updated bus schedule from social media. Therefore, this

system is developed to increase the efficiency of the bus scheduling process by replacing the

existing manual paper-based system. The user are able to view the bus schedules at the

university website. It also allows users to keep the bus schedules as pictures to easy their life.

In the same time, the system can minimize human errors by insert the bus schedule through

website and reduce data redundancy by enforcing key constraints in database. This system

convenience admin and driver to manage the bus schedule and user details. Furthermore, this

system is using Database Life Cycle (DBLC) as methodology to develop because easy to

manage due to the rigidity of the model each phase has specific deliverables and a review

process. DBLC contains six important phases that is database initial study, database design,

implementation & loading, training & Evaluation, operation, and maintenance & Evaluation.

As a result, the management of bus scheduling process is more efficient and systematic with

the development of UTeM Bus Scheduling Management System.

iv

ABSTRACT

Sistem Pengurusan Penjadualan Bas UTeM adalah sistem berasaskan web yang

menyediakan platform untuk menguruskan proses penjadualan bas dengan melihat jadual bas

di laman web. Dalam sistem semasa, semua data hanya dikumpul oleh Admin . Tiada sistem

yang tersedia untuk menguruskan data. Tambahan pula, mungkin menghadapi kesulitan dalam

mengemaskini jadual. Mengemaskini jadual adalah mencabar kerana semua data direkod

secara manual dan dikongsi melalui media sosial. Selain itu, pencatatan manual menjadikannya

lebih sukar untuk mengekalkan jadual yang terkini. Pentadbir perlu mengemaskini semula ke

media sosial jika terdapat perubahan dalam jadual bas. Ini menyebabkan pelajar terlepas jadual

bas yang dikemaskini dari media sosial. Oleh itu, sistem ini dibangunkan untuk meningkatkan

kecekapan proses penjadualan bas dengan menggantikan sistem manual berdasarkan kertas

yang sedia ada. Pengguna boleh melihat jadual bas di laman web universiti. Ia juga

membenarkan pengguna menyimpan jadual bas sebagai gambar untuk memudahkan kehidupan

mereka. Pada masa yang sama, sistem ini dapat mengurangkan kesilapan manusia dengan

memasukkan jadual bas melalui laman web dan mengurangkan kebarangkalian data dengan

menguatkuasakan kekangan kunci dalam pangkalan data. Sistem ini memudahkan pentadbir

dan pemandu menguruskan jadual bas dan butiran pengguna. Selain itu, sistem ini

menggunakan Kitaran Hidup Pangkalan Data (DBLC) sebagai metodologi untuk

pembangunan kerana mudah diuruskan kerana kekerasan model setiap fasa mempunyai hasil

khusus dan proses ulasan. DBLC mengandungi enam fasa penting iaitu kajian awal pangkalan

data, reka bentuk pangkalan data, pelaksanaan & pemuatan, latihan & Penilaian, operasi, dan

penyelenggaraan & Penilaian. Sebagai hasilnya, pengurusan proses penjadualan bas menjadi

lebih efisien dan sistematik dengan pembangunan Sistem Pengurusan Penjadualan Bas UTeM.

v

Table of Contents

1.INTRODUCTION .. 1

1.1Project Background .. 1

1.2 Problem Statements .. 2

1.3 Objective ... 2

1.4 Scope ... 3

1.4.1 Target User ... 3

4.1.3Modules ... 3

1.5 Project Significant ... 4

1.6 Expected Outcomes .. 4

1.7 Conclusion .. 4

2.PROJECT METHODOLOGY AND PLANNING .. 5

2.1 Introduction ... 5

2.2 Project Methodology ... 5

2.2.1 Database Initial Study .. 5

2.2.3 Implementation and Loading ... 6

2.2.4 Testing and Evaluation... 6

2.2.5 Operation .. 7

2.2.6 Maintenance and Evolution ... 7

2.3 Project Schedule and Milestones .. 9

2.4 Conclusion .. 11

3.ANALYSIS ... 12

3.1 Introduction ... 12

3.2 Problem Analysis .. 13

3.3 The Proposed Improvement/Solutions .. 16

3.4 Requirement Analysis of the to-be-System .. 18

3.4.1 Functional Requirement ... 18

3.4.2 Non- Functional Requirements .. 23

3.4.3 Other Requirements ... 23

vi

3.5 Conclusion .. 25

4.DESIGN .. 26

4.1 Introduction ... 26

4.2 System Architecture Design.. 26

4.3 Database Design .. 27

4.3.1 Conceptual Design ... 28

4.3.2 Logical Design ... 29

4.4 Graphical User Interface (GUI) Design .. 45

4.4.1 Navigation Design.. 45

4.4.2 Input Design ... 47

4.4.3 Output Design .. 47

4.5 Conclusion .. 47

5.IMPLEMENTATION ... 48

5.1 Introduction ... 48

5.2 System Development Environment Setup .. 48

5.2.1 Steps of Installation Setup .. 49

5.3 Database Implementation .. 56

5.3.1 Data Definition Language (DDL) .. 56

5.3.2 Data Manipulation Language ... 64

5.3.3 Stored Procedures .. 64

5.3.4 Triggers .. 67

5.3.5 Data Loading Process... 68

5.4 Implementation Status .. 68

5.5 Conclusion .. 69

6. Testing .. 70

6.1 Introduction ... 70

6.2 Test Plan.. 70

6.2.1 Test Organization ... 71

6.2.2 Test Environment ... 72

vii

6.2.3 Test Schedule ... 73

6.3 Test Strategy ... 75

6.3.1 Classes of Tests .. 78

6.4 Test Design ... 78

6.4.1 Test Description ... 78

6.4.3 Test Data and Test Result .. 90

6.5 Test Result and Analysis ... 93

6.6 Conclusion .. 99

7. CONCLUSION .. 100

7.1 Introduction ... 100

7.2 Observation Weakness and Strengths ... 100

7.2.1 Strengths .. 101

7.2.2 Weakness ... 101

7.3 Proposition of Improvement ... 102

7.4 Contribution .. 103

7.5 Conclusion .. 103

References .. 104

Appendix .. 105

viii

LIST OF TABLES

Table 2.1 : Project Milestones ... 10

Table 3.1: Non-Functional Requirements .. 23

Table 3.2 : Software Requirements .. 24

Table 3.3 : Hardware Requirements .. 25

Table 4.1 : Table User .. 30

Table 4.2 : Table Driver ... 30

Table 4.3 : Table External Bus .. 31

Table 4.4 : Table Checkin .. 31

Table 4.5 : Table Bus ... 32

Table 4.6 : Table Semester... 32

Table 4.7 : Table Schedule... 33

Table 4.8 : Table Route .. 33

Table 4.9 : Table Announcement ... 34

Table 4.10 : Table Stop .. 34

Table 4.11: Table Stop_Schedule .. 35

Table 4.12 : Table Seat .. 35

Table 4.13 : Departure Date Table ... 36

Table 4.14 : Booking Table ... 36

Table 4.15 : Query Design of UTeM Bus Scheduling Management System 41

Table 4.16: Triggers Relates Database Object Detail .. 42

Table 4.17 : Stored Procedure Relates Database Object Detail ... 43

Table 5.1: Stored Procedures Query .. 64

Table 5.2: Triggers Query .. 67

Table 6.1 : User Responsibilities List .. 71

Table 6.2 : Test Environment... 72

Table 6.3 : Test Environment Software List .. 73

Table 6.4 : Test Schedule ... 74

Table 6.5 : Type of test and test design techniques for white box and black box testing 76

Table 6.6 : Test Description for User Login (student) ... 79

Table 6.7 : Test Description of Registration for Driver Account .. 80

Table 6.8 : Test Description of Add Bus for Driver .. 81

Table 6.9 : Test Description of User Content .. 82

Table 6.10 : Test Description of Bus Route ... 83

ix

Table 6.11 : Test Description of Bus Schedule.. 84

Table 6.12 : Test Description of Manage Stop .. 85

Table 6.13 : Test Description of Announcement ... 86

Table 6.14 : Test Description of External Buses Registration ... 87

Table 6.15 : Test Description of Searching Schedule .. 87

Table 6.16 : Test Description of Booking Seats .. 88

Table 6.17 : Test Description for Driver Check-in .. 89

Table 6.18 : Test Description of Driver Check-out ... 89

Table 6.19: Test Data of User Login ... 90

Table 6.20 : Test Data of Registration for Driver Account ... 90

Table 6.21 : Test Data of Add Bus for Driver ... 90

Table 6.22 : Test Data of User Content ... 90

Table 6.23 : Test Data of Bus Route .. 91

Table 6.24 : Test Data of Bus Schedule ... 91

Table 6.25 : Test Data of Manage Stop ... 91

Table 6.26 : Test Data of Announcement .. 91

Table 6.27 : Test Data of External Buses Registration .. 92

Table 6.28 : Test Data of Searching Schedule ... 92

Table 6.29 : Test Data of Booking Seats ... 92

Table 6.30 : Test Data of Driver Check-in ... 92

Table 6.31 : Test Data of Driver Check-out .. 92

Table 6.32 : Test Result of User Login .. 93

Table 6.33 : Test Result of Registration for Driver Account ... 93

Table 6.34 : Test Result of Add Bus for Driver ... 94

Table 6.35 : Test Result of User Content .. 94

Table 6.36 : Test Result of Bus Route ... 95

Table 6.37 : Test Result of Bus Schedule .. 95

Table 6.38 : Test Result of Manage Stop ... 96

Table 6.39 : Test Result of Announcement ... 96

Table 6.40 : Test Result of External Buses Registration ... 97

Table 6.41 : Test Result of Searching Schedule .. 97

Table 6.42 : Test Result of Booking Seats ... 98

Table 6.43 : Test Result of Driver Check-in .. 98

Table 6.44 : Test Result of Driver Check-out .. 99

x

LIST OF FIGURES

Figure 2.1 Database life cycle illustration ... 8

Figure 2.2 : Gantt Chart of UTeM Bus Scheduling Management System 9

Figure 3.1: Current UTeM Bus Scheduling Process Flow Chart... 14

Figure 3.2: UTeM Bus Scheduling Management System Flow Chart 16

Figure 3.3: Context Diagram ... 19

Figure 3.4: Data Flow Diagram (DFD) Level 1 .. 20

Figure 3.5 : Data Flow Diagram (DFD) Level 2 (Check Bus Schedule) 21

Figure 3.6 : Data Flow Diagram (DFD) Level 2 (Check Bus Tracking) 21

Figure 3.7 : Data Flow Diagram (DFD) Level 2 (Manage Bus Ticket) 22

Figure 3.8 : Data Flow Diagram (DFD) Level 2 (Handle Announcement) 22

Figure 4.1 : 3 Tier Architecture ... 27

Figure 4.2: ERD of UTeM Bus Scheduling Management System .. 28

Figure 4.3 : 3 NF of User Table ... 37

Figure 4.4 : 3 NF of Driver Table .. 37

Figure 4.5 : 3 NF of External Bus Table .. 37

Figure 4.6: 3 NF of Checkin Table .. 38

Figure 4.7 : 3 NF of Bus Table .. 38

Figure 4.8: 3 NF of Semester Table ... 38

Figure 4.9 : 3 NF of Schedule Table .. 39

Figure 4.10: 3 NF of Route table ... 39

Figure 4.11: 3 NF of Announcement Table ... 39

Figure 4.12 : 3 NF of Stop Table ... 40

Figure 4.13: 3 NF of Stop_Schedule Table ... 40

Figure 4.14: Navigation Path of UTeM BUS SCHEDULING MANAGEMENT SYSTEM . 46

Figure 5.1 : Download MySQL installer for Windows ... 49

Figure 5.2 ： MySQL installer .. 49

Figure 5.3 : Select Custom Setup Type ... 50

Figure 5.4 : Select MySQL Products ... 50

Figure 5.5 : Server Configuration Type ... 51

Figure 5.6 : MySQL Settings ... 52

Figure 5.7 : Apply Configuration... 52

xi

Figure 5.8 : MySQL workbench interface ... 53

Figure 5.9 : Enter the root password .. 53

Figure 5.10 : Enter MySQL workbench main page ... 54

Figure 5.11 : Create database schema .. 54

Figure 5.12 : Add New Table into Database.. 55

Figure 5.13 : Add Attribute into Table .. 55

Figure 5.14 : Create Table Announcement .. 56

Figure 5.15 : Create Table Booking ... 57

Figure 5.16 : Create Table Bus .. 57

Figure 5.17 : Create Table Checkin ... 58

Figure 5.18 : Create Table Departure_Date ... 58

Figure 5.19 : Create Table Driver .. 59

Figure 5.20 : Create Table External_Bus ... 59

Figure 5.21 : Create Table GPS_Data.. 60

Figure 5.22 : Create Table Route ... 60

Figure 5.23 : Create Table Schedule .. 61

Figure 5.24 : Create Table Seat.. 61

Figure 5.25 : Create Table Semester .. 62

Figure 5.26 : Create Table Stop_Schedule .. 62

Figure 5.27 : Create Table Stop ... 63

Figure 5.28 : Create Table User ... 63

Figure 5.29 : Insert Statement – insert data into table semester .. 64

Figure 5.30 : Update Statement – update table bus ... 64

Figure 5.31 : Delete Statement – delete table driver .. 64

Figure 5.32 : Select Statement – retrieve table driver .. 64

Figure 6.1 : Level of Testing.. 77

Figure 8.1 : Login Page .. 105

Figure 8.2 : Add Driver .. 105

Figure 8.3 : Add Bus .. 106

Figure 8.4 : Add Schedule ... 106

Figure 8.5 : Add Route... 107

Figure 8.6 : Add Stop ... 107

Figure 8.7 : Assign Schedule ... 108

Figure 8.8 : Add Announcement .. 108

xii

Figure 8.9 : Admin Dashboard... 109

Figure 8.10 : Driver Detail ... 109

Figure 8.11 : Driver Report .. 110

Figure 8.12 : View User ... 110

Figure 8.13 : View Schedule .. 111

Figure 8.14 : View Announcement .. 111

Figure 8.15 : View External Bus.. 112

Figure 8.16 : User View Schedule ... 112

Figure 8.17 : List All Stops .. 113

Figure 8.18 : Bus Seat Booking Page .. 113

Figure 8.19 : User View Ticket .. 114

Figure 8.20 : Driver Check-in / Check-out Page ... 114

Figure 8.21 : Driver Tracking .. 115

Figure 8.22 : Driver Attendance .. 115

1

CHAPTER 1

1. INTRODUCTION

1.1 Project Background

In today’s fast-paced world, where efficient access to education is paramount, many

students heavily rely on public transportation to commute to and from their educational

institutions. Among these transportation services, bus systems stand out as a cornerstone,

providing students with a reliable and affordable means of travel.

Students at Universiti Teknikal Malaysia Melaka (UTeM) frequently rely on social media

sites like Facebook and Instagram to find out bus timings. While these platforms serve as

convenient channels for disseminating information, relying solely on them poses challenges

for students who may not have access to or actively use social media applications.

Consequently, students without such access risk missing important updates and announcements

regarding bus schedules and routes provided by their educational institution.

To address this issue and ensure equitable access to essential transportation information,

the introduction of a modern UTeM bus scheduling management system becomes imperative.

This system is designed to centralize and streamline the distribution of bus schedule

information through the official university website. By using this platform, students can

conveniently access up-to-date bus schedules, route details, and any relevant announcements

directly from a reliable and accessible source.

Implementing such a system not only enhances the accessibility of transportation

information but also fosters a more inclusive environment within the university community.

2

Students, regardless of their social media usage, can stay informed and plan their journeys

effectively, thereby reducing uncertainties and enhancing their overall educational experience.

In conclusion, the development of a modern UTeM bus scheduling management system

aligns with the university’s commitment to ensuring equal access to essential services for all

students. By embracing technology and using these digital platforms, UTeM tries to optimise

transportation solutions and support the diverse needs of its student population to enrich their

educational journeys for all.

1.2 Problem Statements

Several issues have been identified with the current system:

i. Difficulty updating the schedule because data are recorded in manuals.

Updating the schedule is challenging because all the data is recorded manually and

shared through social media. Additionally, manual recording makes it harder to

keep the schedule up to date.

ii. Human errors make it difficult to keep schedules up-to-date and accurate.

Administrator may have human errors in inserting the time into bus schedules, the

wrong schedule will cause the students to follow the wrong schedules for their bus.

iii. Difficulty in searching the timetable based on the route and time.

Students will face challenges when they want to search for timetable information

based on specific routes and times because of the lack of a user-friendly search

function. With this web-based platform, students can manage to search for the

relevant information they need. Students can generate files to store their schedules.

1.3 Objective

The objectives of this system are as follows:

i. To improve the efficiency of the bus timetable management system by

replacing the existing manual paper-based system.

Administrator can use this system to update the bus schedules to provide real-time

updates for students. This system can help the admin to manage the bus schedules

efficiently.

ii. To develop and implement automated data management systems for bus

schedules, aimed at reducing human errors and ensuring the accuracy of

schedule updates.

3

The system will help admins manage the data stored to reduce human errors.

iii. To enhance user experience and streamline timetable accessibility by

developing a digital search functionality that enables users to efficiently search

for bus schedules based on route and time criteria.

Students can search their bus schedules based on route and time criteria and save

them in pdf format.

1.4 Scope

1.4.1 Target User

The intended users and functional modules of the system can be used to classify its scope.

i. Users

Students are given options to log in with an account They can search the bus schedules

from this system and save them as pdf.

ii. Administrator

The administrator oversees overseeing the information kept on this system. The

administrator will update the schedules and enter the data supplied by the institution

into the system. When some emergencies cause the bus cannot arrive destination, the

admin should update this information in the system and give notification to the

students that will take this bus to the university.

iii. Driver

Driver is given a page to record their job working time and show in table.

4.1.3 Modules

i. User Authentication Module

In this module, user can create an account to ensure the security of their accounts. Users

are also given the option to log in without creating an account, but they may have less

functionality compared to the students who have accounts.

ii. Searching and Reporting Module

This module allows students to search for their bus schedules based on route and time

and generate pdf to save their bus schedules.

iii. Notification Module

Send notifications to students when schedules are updated or cancelled.

4

iv. Admin Dashboard Module

This module allows the admin to manage the bus schedules and make changes to the bus

schedules when needed to adjust the time in the schedule.

v. Tracking Module

This module able users to track the bus in the real time.

vi. Booking Module

This module able users to book seats in the system.

1.5 Project Significant

UTeM bus scheduling management system is developed to manage the bus schedules for

students. This system enables students to search their bus schedules based on route and

time and save them as pdf. This system also gives students notification when there are some

changes in the bus schedules. Admin can efficiently update the bus schedules in real time,

ensuring accuracy and reliability. This system facilitates the storage and management of

student data. By implementing this system, bus schedule management will become more

organized and efficient.

1.6 Expected Outcomes

UTeM bus scheduling management system is developed to manage the bus schedules for

students. First, the admin can manage the bus schedules and insert them into the system.

Next, students can view the bus schedules from this system and search based on route and

time. Admin can update the bus schedules when they are informed that there are some

changes in the bus schedules. Students also can get notifications from this system to know

which bus schedules get affected. Using this bus scheduling system, students do not need

to search the bus schedules from social media. They can log in to this system arrange their

preferred schedules and save them as pdf or pictures.

1.7 Conclusion

 This chapter is about UTeM bus scheduling management system. For UTeM, this

system is incredibly practical and helpful in managing the bus scheduling procedure.

This system also improves data consistency and is user-friendly. The development of the

UTeM bus scheduling management system has made the bus scheduling process more

organized and efficient.

.

5

CHAPTER II

2. PROJECT METHODOLOGY AND PLANNING

2.1 Introduction

This chapter outlines the chosen development methodology for the project. Many types of

System Development Life Cycle (SDLC) methodologies can be used in the development of

projects. For example, the waterfall model, agile model, and spiral mode can be used to design

the project. The projects use the Database Life Cycle (DBLC) methodology for development.

It provides a framework to follow identifying the need for a database to its ongoing use and

upkeep. In conclusion, the Database Life Cycle (DBLC) encompasses the entire lifespan of the

database.

2.2 Project Methodology

The system will be constructed on the Windows 11 operating system utilising a MySQL

database. For system development, the Database Life Cycle (DBLC) approach has been

selected. The initial database research, database design, implementation and data loading,

testing and evaluation, operation, maintenance, and evolution are the six stages of the Database

Life Cycle (DBLC).

2.2.1 Database Initial Study

 In the context of the UTeM Bus Scheduling Management System project, this phase

involves a thorough analysis of the existing process for managing and communicating bus

schedules. Currently, bus schedule information is disseminated exclusively through social

media platforms like Facebook, Instagram, and Telegram. This method has proven to be

difficult to manage due to the dispersed and inconsistent nature of the posts, leading to

6

communication gaps, missed updates, and confusion among students. By conducting detailed

observations, the project team identified the key issues and constraints of the current system,

such as the lack of real-time updates, the inefficiency of managing multiple platforms, and the

difficulty students face in accessing accurate schedule information. Based on these findings,

the objectives for the new system were established to address these challenges, focusing on

creating a centralized, real-time platform that improves accessibility and communication. The

project's scope was defined to ensure that the new system meets the operational requirements,

while considering the constraints imposed by existing hardware and software within the

university's infrastructure.

2.2.2 Database Design

 The second phase of the database design process is critical to ensuring that the final

system aligns with the specified requirements and objectives. The four sub-phases of this phase

are conceptual design, logical design, physical design, and DBMS selection. In the conceptual

design phase, an entity-relationship diagram is developed based on system requirements, and

normalization is applied to ensure data integrity and efficiency. MySQL has been selected as

the DBMS for this system. In the logical design phase, a relational data model is developed to

define data structures and queries according to system needs. Finally, in the physical design

phase, the logical model is translated into database objects such as tables, columns, indexes,

sequences, and constraints, grouping attributes to represent core business rules and data

relationships.

2.2.3 Implementation and Loading

 In this phase, MySQL is installed and configured on the computer. The databases are

created by using Data Definition Language (DDL) and data is added using Data Manipulation

Language (DML). The programming language or the software used to develop the interface

are VS Code with a PHP server extension, MySQL workbench to manage the database and

MySQL server to connect the local host. Furthermore, optimization, security measures and

backup procedures are implemented to ensure functionality and reliability.

2.2.4 Testing and Evaluation

 Three sub-phases comprise the testing and assessment phase: database testing, database

tuning, and database and application program evaluation. The purpose of this step is to

guarantee the database's backup, recovery, performance, security, and integrity.

7

a. Testing the Database

During the testing and evaluation phase, comprehensive testing is performed to ensure

the system's integrity, security, and performance. Data integrity is enforced by the

DBMS through primary keys (PK), foreign keys (FK), unique constraints, and other

rules. Data security is evaluated through tests that involve password protection, data

encryption, privileges, and access control. This phase encompasses both unit testing

and system testing. Unit testing involves testing individual functions, such as login,

admin, and student features, by inputting sample data to validate database connections,

error handling, and correct data types. System testing evaluates the overall business

processes to ensure the system operates smoothly without errors.

b. Fine-Tune the Database

The database will be refined if errors are detected or if data requirements are not fully

met, to enhance its performance.

c. Evaluating the Database and Its Application Programs

Once the database has been tested and optimized, the system undergoes a

comprehensive evaluation. Multiple testing processes are performed to ensure the

system fulfils all data requirements.

2.2.5 Operation

 The system is put into place as a fully working information system following the

conclusion of the review procedure. To enable the required information flow, users may start

using the system to perform operations like importing data, maintaining data, and creating

reports.

2.2.6 Maintenance and Evolution

 In this phase, many tasks are performed including index maintenance, table

optimisation and user management such as adding or removing users and updating passwords.

Backup and recovery can be done when failure happens. If there are new requirements needs

or changes, adaptive maintenance may be necessary to improve performance and meet the goal.

8

The Figure 2.1 show the Database Life Cycle Illustration that used in this system.

Figure 2.1 Database life cycle illustration

Marlon. (n.d.). Figure 2.1: Database life cycle illustration. In Database design. Retrieved

from https://www.slideserve.com/marlon/database-design

9

2.3 Project Schedule and Milestones

Figure 2.2 illustrates the complete development timeline for the progress in the year 2024.

Week

Task

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Planning the Project

Problem Identification and

Analysis

Database Design

Development And

Implementation of the Project

Testing and Evaluation

Presentation and

Demonstration

Operation

Maintenance and evaluation

Figure 2.2 : Gantt Chart of UTeM Bus Scheduling Management System

10

Table 2.1 shows the milestones of the development of the UTeM Bus Scheduling Management

System. In each milestone, some outcomes are expected to be produced to ensure all processes

can done within the expected time and meet the goals.

Table 2.1 : Project Milestones

Milestones Expected Outcomes Date

Observation 1. Decide what title want

to do

2. Do draft

12 March 2024

Problems identification

and analysis

1. Problem statement,

objective

2. Flow chart of the

current system and the

proposed system

3. Requirement and

module of proposed

system.

26 March 2024

Conceptual design of the

proposed system

1. DFD and ERD of the

proposed system

2. Business rules

3. Data Definition

Language

4. Data Manipulation

Language

5. Normalization and

query

26 April 2024

Implementation of the

proposed system

1. Database environment

set up

2. Graphical User

Interface (GUI) of the

proposed system

25 May 2024

11

3. Source code of the

proposed system each

function

4. Create procedure,

package and trigger.

Testing of the proposed

system functionality

1. Test plan

2. Test case

3. Test result and

analysis

4. Solution solving of

error message from

testing process

15 July 2024

Completed documentation

and logbook

1. PSM 1 final report

and logbook

2. Project Demonstration

30 August 2024

Project Demonstration 1. Final Presentation 5 September 2024

2.4 Conclusion

In conclusion, this chapter outlines the selected methodology for guiding the system

development process, detailing the approach and the stages of the Database Life Cycle (DBLC).

DBLC was chosen due to its structured six-stage process: initial database study, database

design, implementation and loading, testing and evaluation, operations, and maintenance and

evolution. The maintenance phase continues throughout the system's operation to ensure

smooth performance. The next chapter will delve deeper into the technical analysis of the

overall system.

12

CHAPTER III

3. ANALYSIS

3.1 Introduction

This chapter will detail the project’s analysis phase. Analysis involves breaking down

a system into sub-modules, gathering data, identifying problems, and recommending solutions

to improve it. This includes studying the insurance company’s current recruitment process,

gathering operational data, understanding data flow, identifying bottlenecks, and easing user

workloads. This chapter focuses on studying the present recruiting process, identifying its

weaknesses, and improving the new system to meet user expectations.

13

3.2 Problem Analysis

 An observation was carried out to assess and analyze the weaknesses of the university's

current bus scheduling process. In the manual process, all bus scheduling tasks are still

performed without the use of a system. The users can refer to the bus schedule when the

university organisation release the bus schedule through media sources only. This situation

makes it difficult to manage the bus schedule. For example, the admin hard to update in real-

time if there are some changes in the bus schedule. They need to replace the changes in the bus

schedule and post again on social media. This will make some users miss the updated bus

schedule.

 Before the bus scheduling process, the admin needs to prepare the bus details and

collect where locations should become bus stops. All manual actions will cause some problems

like data entry mistakes and communication issues. For example, a scheduling staff member

inputs the wrong departure time for a bus route, indicating it leaves at 9:00 AM instead of the

correct time, 8:00 AM. The scheduling team updates a bus route due to road construction but

fails to effectively communicate the change to drivers. As a result, several drivers continue

following the old route, unaware of the update. These situations will cause human error that

makes the current manual system difficult to keep accurate.

 Besides that, some users felt difficulty when looking for new bus schedules. For new

students or new staff, they don’t have to join any related group and follow some pages on social

media. For the manual system, the bus schedules will be posted when any changes happen. If

not any changes, the organisation post once only.

 Moreover, the current process requires the admin to update the schedule details

manually and summarise the schedules and posts to social media. This is time-consuming and

less effective because the admin needs to insert the time and location manually. Users only can

follow what data is inserted by the admin. They cannot filter what they want and save as their

bus schedules.

14

 Figure 3.1 depicts the overall structure of the current manual bus scheduling

management system at UTeM.

 Figure 3.1: Current UTeM Bus Scheduling Process Flow Chart

15

 Figure 3.1 illustrates the current flow of the bus scheduling management system at

UTeM. The current flow of the UTeM bus scheduling management system reveals several

issues, primarily due to its reliance on manual processes and centralized communication. The

identification and updating of bus stops are time-consuming, requiring discussions that can

delay the scheduling process. Additionally, the system depends heavily on the admin to

communicate changes and address driver issues, creating potential bottlenecks if the admin is

unavailable or overwhelmed. This dependency on manual updates and communication can

lead to inefficiencies, delays, and potential miscommunication, ultimately affecting the

accuracy and timeliness of bus schedules for users.

16

3.3 The Proposed Improvement/Solutions

Figure 3.2 illustrates the overall proposed online bus scheduling management system in

UTeM.

Figure 3.2: UTeM Bus Scheduling Management System Flow Chart

17

The new process for managing the UTeM bus scheduling system addresses several

issues through improved functionality and efficiency. By allowing the administrator to update

bus schedules and driver information directly in the system, it eliminates delays and potential

errors associated with manual updates. Real-time driver updates and issue reporting streamline

communication, enabling quicker responses to problems such as delays or route changes. The

system’s capability to monitor driver locations in real time enhances route safety and ensures

timely adjustments if needed. For users, the interface provides convenient access to bus

schedules, filtering options, and the ability to save schedules as PDFs, improving user

experience and accessibility. Additionally, the automated notification system ensures that any

significant issues, like a driver being late, are promptly communicated to users, keeping

everyone informed and minimizing disruptions. This integrated approach resolves previous

problems by centralizing information, improving communication, and automating notifications,

thereby enhancing overall system efficiency and user satisfaction.

18

3.4 Requirement Analysis of the to-be-System

Each user's system requirements will be outlined and the functional requirements will be

specified by the requirements analysis.

3.4.1 Functional Requirement

i. Administrator

- Administer the bus schedule on the website.

- Administer the user account and view their user details.

- Administer the driver’s details.

- Administer the bus stop location

- Administer the announcement

ii. User

- View bus schedules from the website.

- Can check driver tracking on the map.

- View the available bus stop.

iii. Driver.

- Update their location in real time.

- Able to check-in and check-out

19

3.4.1.1 Data Flow Diagram (DFD)

The context diagram (Figure 3.3) illustrates the high-level interactions within the UTeM Bus

Scheduling Management System. It shows how external entities, such as Admins, Drivers,

and Users, interact with the system. Admins manage bus schedules, stops, and driver

assignments, while Drivers update their locations via GPS. Users interact with the system to

book seats on buses, view schedules, and track buses in real-time. The data flow between

these entities and the system is depicted in the diagram, which also emphasises how the

system combines several features to provide effective bus scheduling and administration.

i. Context Diagram

Figure 3.3: Context Diagram

20

ii. Data Flow Diagram (DFD) Level 1

Figure 3.4: Data Flow Diagram (DFD) Level 1

A thorough explanation of the elements shown in the Context Level Diagram may be found

in Figure 3.4. It breaks down the high-level process depicted in the Context Diagram into its

smaller processes and highlights the primary roles of the system.

21

Figure 3.5 : Data Flow Diagram (DFD) Level 2 (Check Bus Schedule)

Figure 3.5 illustrates the bus schedule management process. Administrators can manage

schedule information, which will be posted on the company website. Users can view the

details of the bus schedules. The schedule table stores all bus schedule information, and when

users perform a search on the website, the schedule details are retrieved from the database.

Figure 3.6 : Data Flow Diagram (DFD) Level 2 (Check Bus Tracking)

Figure 3.6 user view bus tracking process. User can view the bus tracking in website. Driver

updates the location and stores the location in the database.

22

Figure 3.7 : Data Flow Diagram (DFD) Level 2 (Manage Bus Ticket)

Figure 3.7 show user selects the available bus and choose a seat to get a ticket. After retrieving

a ticket, user can print the ticket. Administration able to manage the ticket information.

Figure 3.8 : Data Flow Diagram (DFD) Level 2 (Handle Announcement)

23

Figure 3.8 show the process of notification. Administrator will insert a new notification and

stored in announcement table and store at database. When database store the announcement

data, it will show the real-time notification at the user side website.

3.4.2 Non- Functional Requirements

The specifications that outline the capabilities and limitations of the system's functioning are

known as non-functional requirements, or NFRs. (AltexSoft, n.d.). Table 3.1 shows the non-

functional requirements and their description for UTeM Bus Scheduling Management

System.

No Non-Functional Description

1 Performance -The system should efficiently process and

display real-time bus tracking information

to users.

-Have a notification come out when the bus

schedules have been delayed

2 Security - The system should authenticate users

using a username and password and

determine their access level accordingly.

- User passwords must be securely

encrypted to ensure data protection.

3 Usability -The system features a user-friendly

interface, making it easy to learn and

operate.

-It provides guidance to assist users in

navigating and using the system effectively

4 Reliability -Data integrity should be maintained,

ensuring that bus schedules and driver

availability information are accurate and

consistent.

Table 3.1: Non-Functional Requirements

3.4.3 Other Requirements

The prerequisites for developing a database system fall into two categories: software and

hardware. Software requirements involve the applications and platforms used for system design,

24

while hardware requirements denote the physical equipment necessary for system support and

operation.

3.4.3.1 Software Requirement

 There have listed the requirements and description of software components, which have

been used in the system. There are:

Table 3.2 : Software Requirements

Software Description

DrawIO

A cross-platform diagramming tool called

Diagrams.net was created using JavaScript

and HTML5. With its user-friendly

interface, a variety of diagrams, such as

flowcharts, wireframes, UML diagrams,

organisational charts, and network

diagrams, may be constructed.

Microsoft Word

Microsoft Word is a word processing

application used for creating and writing

reports.

MySQL (My Structured Query Language)

Because of its scalability and dependability,

MySQL is a prominent open-source

relational database management system

(RDBMS) that is used for creating

databases for a variety of purposes.

Laravel

Laravel is a web application framework

known for its expressive and elegant syntax.

It provides a solid foundation that allows

developers to focus on creating their

applications without getting bogged down

by the details.

Visual Studio Code Microsoft created Visual Studio Code (VS

Code), a portable yet potent source code

editor. It is popular among developers for its

25

rich feature set, extensibility, and cross-

platform compatibility, making it suitable

for a wide range of programming languages

and platforms.

MySQL workbench

MySQL workbench is used to run database

and store.

3.4.3.2 Hardware Requirement

 The list of hardware components required for the system is shown in Table 3.3.

Table 3.3 : Hardware Requirements

No Hardware Description

1 Processor Intel Core i5

2 Memory 16 GB DDR4

3 SSD 1TB

4 Telephone Redmi note 9s

3.5 Conclusion

 The examination of the present system is compiled in Chapter III, along with

suggestions for enhancements and the creation of a new system's idea. Flowcharts are used to

illustrate the current (as-is) and proposed (to-be) system processes, providing a visual

representation of how information flows within the system. The Context Diagram offers a high-

level perspective of the system's components and their interconnections, giving a general

picture of the complete system that has to be constructed. The Data Flow Diagram, on the other

hand, is primarily concerned with depicting the data flow inside the system or process.

It illustrates the inputs, outputs, and interactions between entities and processes. Chapter III

serves to guide the development process towards creating an improved and more efficient

system.

26

CHAPTER IV

4. DESIGN

4.1 Introduction

In the design stage of the project, the system architecture is meticulously established

through three key design levels: conceptual, logical, and physical. The conceptual design

provides a high-level overview of the system’s major components and their relationships,

setting the framework for further development. The logical design translates this overview into

detailed, technology-agnostic models that outline how data will be organized and interact

within the system. Finally, the physical design specifies the actual technologies, hardware, and

database schemas needed for implementation. This structured approach ensures that the system

design not only meets the initial application requirements but also effectively addresses all

specified functions, paving the way for successful development and deployment.

4.2 System Architecture Design

 UTeM Bus Scheduling Management System is designed on a 3-tier design architecture.

There are 3 types of functionalities for this 3-Tier architecture. These are the presentation tier,

logical tier and data tier.

 The presentation tier is the topmost layer of this application and is responsible for the

user interface. This tier is built using HTML, CSS, JavaScript and Laravel’s Blade templating

engine and users can display bus schedules, routes and locations of bus stops. The login tier is

the layer between the presentation and data tiers. This login tier is implemented using Laravel

controllers, in which each controller handles specific requests related to bus scheduling,

27

administrative side and driver check-in, and check-out. In addition, the data tier is stored and

retrieved from a database and implemented using Eloquent ORM which provides a simple

implementation for working with the database.

The Figure 4.1 provided represents a multi-tier architecture for a Laravel-based web application.

Figure 4.1 : 3 Tier Architecture

4.3 Database Design

 The systematic process of creating a comprehensive data model for a database is known

as database design. This data model includes all the logical and physical design choices that

are required, together with the actual storage. Each entity's specific properties are included in

a fully attributed data model.

 Many distinct aspects of the overall design of a database system can be referred to by a

term "database design." It makes sense to think of it mostly as the logical arrangement of the

basic data structures that house the data. In an object database, relationships and entities

precisely translate to named relationships and object classes. These are the tables and views

that make up the relational model.In Entity-Relationship Design (ERD), three primary types of

designs guide the creation of a database system. Conceptual Design focuses on defining the

high-level structure by identifying main entities, their attributes, and relationships without

delving into implementation details. This stage aims to capture the essential business

requirements and data interactions in an abstract form. Logical Design then refines this abstract

model into a detailed schema that specifies primary keys, foreign keys, and normalization rules

to ensure data integrity and organization. This design serves as a blueprint for the database

structure. Physical Design translates the logical schema into the actual database

implementation, including the creation of tables, indexes, and optimization strategies for

28

performance. This final stage addresses the practical aspects of data storage and access,

ensuring the database operates efficiently within a specific DBMS environment. Each design

phase builds on the previous one to create a comprehensive and effective database system.

4.3.1 Conceptual Design

 Figure 4.2 illustrates the Entity Relationship Diagram for the UTeM Bus Scheduling

Management System.

Figure 4.2: ERD of UTeM Bus Scheduling Management System

29

Business rule of UTeM Bus Scheduling Management System

1. Each user can give one or many feedback while each feedback only can be given from

one and only one user.

2. Each user can do one or many checkin while each checkin only can be done by one

and only one user.

3. Each user can check one or many schedules while each schedule only can be checked

by one and only one user.

4. Each schedule has one and only one bus while each bus belongs to one or many

schedules.

5. Each driver can driver one or many busses while each bus driven by one driver only.

6. Each semester has one or many schedules while each schedule belongs to one

semester only.

7. Each route has one or many schedules while each schedule belongs to one route only.

8. Each routes has one or many announcements while each announcement belongs to

one route only.

9. Each stop has many schedules while each schedule has many stops.

10. A user allowed book one seat only while each seat can be booked by one user only.

11. An external bus has one or many seats while each seat has belonged to one bus only.

12. Each external bus has one departure date while each departure date has belonged to

one bus only

13. An external bus has one or many booking while each booking is belonging to one bus

only

4.3.2 Logical Design

The second stage of database design is called logical design. Based on user transactions,

the linkages between the logical data are defined, normalised, and validated in this stage. Every

logical data element's restrictions are also evaluated.

30

4.3.2.1 Data Dictionary for Entity Relational Diagram

a) User table

This table keeps each user's detailed data.

Table 4.1 : Table User

Attribute Description Data Type Required PK/FK Reference Table

UserID User ID INT Yes PK

Name Name varchar(255) Yes

Usertype User Type varchar(255) Yes

Faculty User Faculty varchar(255) Yes

MatricNumber User Matric

Number

varchar(255) Yes

Age User Age INT Yes

Gender User Gender varchar(255) Yes

Course User Course varchar(255) Yes

Phone User Phone varchar(255) Yes

Email User Email varchar(255) Yes

Password User Password varchar(255) Yes

b) Driver table

This table keeps each driver's detailed data.

Table 4.2 : Table Driver

Attribute Description Data Type Required PK/FK Reference

Table

DriverID Driver ID INT Yes PK

Name Driver Name varchar(255) Yes

Licence Number Driver Licence

Number

varchar(255) Yes

Phone Driver Phone varchar(255) Yes

31

c) External Bus table

This table keeps each feedback detailed data.

Table 4.3 : Table External Bus

Attribute Description Data Type Required PK/FK Reference

Table

ExternalBusID External Bus ID INT Yes PK

NumberPlate Bus Number Plate varchar(255) Yes

Capacity Bus Capacity varchar(255) Yes

Zone Zone varchar(255) Yes

d) Checkin table

This table keeps each checkin and checkout detailed data.

Table 4.4 : Table Checkin

Attribute Description Data Type Required PK/FK Reference

Table

Id Check ID INT Yes PK

Checkin_time Check-in time Timestamp Yes

Checkout_time Check-out time Timestamp Yes

Status Driver Status ENUM('work',

'rest')

Yes

UserID User ID INT Yes FK User

32

e) Bus table

This table keeps each bus's detailed data.

Table 4.5 : Table Bus

Attribute Description Data Type Required PK/FK Reference

Table

BusID Bus ID INT Yes PK

NumberPlate Bus Number Plate varchar(255) Yes

Capacity Bus Capacity INT Yes

DriverID Driiver ID INT Yes FK Driver

f) Semester table

This table keeps each semester's detailed data.

Table 4.6 : Table Semester

Attribute Description Data Type Required PK/FK Reference

Table

Semester ID Semester ID INT Yes PK

Name Semester Name varchar(50) Yes

Start_Date Semester Start

Date

Timestamp Yes

End_Date Semester End

Date

Timestamp Yes

33

g) Schedule table

This table keeps each schedule detailed data.

Table 4.7 : Table Schedule

Attribute Description Data Type Required PK/FK Reference

Table

ScheduleID Schedule ID INT Yes PK

Date Schedule Date Date Yes

Time Schedule Time Time Yes

BusID Bus ID INT Yes FK Bus

SemesterID Semester ID INT Yes FK Semester

RouteID Route ID INT Yes FK Route

h) Route table

This table keeps each route detailed data.

Table 4.8 : Table Route

Attribute Description Data Type Required PK/FK Reference

Table

RouteID Route ID INT Yes PK

Description Route

Description

varchar(100) Yes

Origin Route Origin varchar(50) Yes

OriginLatitude Origin Latitude double Yes

OriginLongitude Origin

Longitude

double Yes

Destination Route

Destination

varchar(50) Yes

DestinationLatitude Destination

Latituide

double Yes

34

DestinationLongitude Destination

Longitude

double Yes

i) Announcement table

This table keeps each announcement's detailed data.

Table 4.9 : Table Announcement

Attribute Description Data Type Required PK/FK Reference

Table

AnnouncementID Announcement

ID

INT Yes PK

Title Announcement

Title

varchar(50) Yes

Description Announcement

Description

varchar(100) Yes

DatePosted Date Posted date Yes

RouteID Route ID INT Yes FK Route

j) Stop table

This table keeps each stop with detailed data.

Table 4.10 : Table Stop

Attribute Description Data Type Required PK/FK Reference

Table

StopID Stop ID INT Yes PK

Name Stop Name varchar(50) Yes

Location Stop Location varchar(50) Yes

Latitude Stop Latitude decimal(10,7) Yes

Longitude Stop Longitude decimal(10,7) Yes

Picture Stop Picture varchar(255) Yes

35

k) Stop_Schedule table

This table keeps a pivot table of schedule and stop detailed data.

Table 4.11: Table Stop_Schedule

Attribute Description Data Type Required PK/FK Reference

Table

StopID Stop ID INT Yes FK Stop

ScheduleID Schedule ID INT Yes FK Schedule

l) Seat Table

This table keeps each seat with detailed data.

Table 4.12 : Table Seat

Attribute Description Data Type Required PK/FK Reference

Table

SeatID Seat ID INT Yes PK

SeatNumber Seat Number varchar(50) Yes

IsBooked Is Booked Boolean Yes

ExternalBusID External Bus ID INT Yes FK External Bus

36

m) Departure_Date Table

This table keeps each departure date with detailed data.

Table 4.13 : Departure Date Table

Attribute Description Data Type Required PK/FK Reference

Table

DepartureDateID Departure Date

ID

INT Yes PK

Departure_date Departure Date date Yes

ExternalBusID External Bus ID INT Yes FK External Bus

n) Booking Table

This table keeps each booking with detailed data.

Table 4.14 : Booking Table

Attribute Description Data Type Required PK/FK Reference

Table

BookingID Booking ID INT Yes PK

SeatNumber Departure Date varchar(50) Yes

BookingDate Booking Date DATE Yes

ExternalBusID External Bus ID INT Yes FK External Bus

UserID User ID INT Yes FK User

4.3.2.2 Normalization

The conceptual design employs normalization, which is illustrated in the tables

showing attributes, primary keys, and foreign keys. Figures 4.3 to 4.14 present the Third

Normal Form (3NF) of the UTeM Bus Scheduling Management System. Tables are in 3NF

when they eliminate transitive dependencies, ensuring that all non-key attributes are

functionally dependent solely on the primary key. This process reduces redundancy and

enhances data integrity.

37

Figure 4.3 shows that the User table is in Third Normal Form (3NF).

Figure 4.3 : 3 NF of User Table

Figure 4.4 shows that Driver table is in Third Normal Form (3NF).

Figure 4.4 : 3 NF of Driver Table

Figure 4.5 shows that External Bus table is in Third Normal Form (3NF).

Figure 4.5 : 3 NF of External Bus Table

38

Figure 4.6 shows that Checkin table is in Third Normal Form (3NF).

Figure 4.6: 3 NF of Checkin Table

Figure 4.7 shows that Bus table is in Third Normal Form (3NF).

Figure 4.7 : 3 NF of Bus Table

Figure 4.8 shows that Semester table is in Third Normal Form (3NF).

Figure 4.8: 3 NF of Semester Table

39

Figure 4.9 shows that Schedule table is in Third Normal Form (3NF).

Figure 4.9 : 3 NF of Schedule Table

Figure 4.10 shows that Route table is in Third Normal Form (3NF).

Figure 4.10: 3 NF of Route table

Figure 4.11 shows that Announcement table is in Third Normal Form (3NF).

Figure 4.11: 3 NF of Announcement Table

Figure 4.12 shows that Stop table is in Third Normal Form (3NF).

40

Figure 4.12 : 3 NF of Stop Table

Figure 4.13 shows that Stop_Schedule table is in Third Normal Form (3NF).

Figure 4.13: 3 NF of Stop_Schedule Table

41

4.3.2.2 Query Design

Various query structures able to produce different types of outputs, each tailored to specific

requirements, reasons, and purposes. Table 4.15 will provide examples of query designs.

Table 4.15 : Query Design of UTeM Bus Scheduling Management System

Type of Query Query Explanation

Simple Query SELECT COUNT(*) FROM

users WHERE usertype =

'admin';

To retrieve the count of

users where the user type is

administrator.

Join Table Query SELECT routes. *,

schedules.*

FROM routes

LEFT JOIN schedules ON

routes.RouteID =

schedules.RouteID;

To retrieve the routes and

schedules detail with join

using RouteID.

 SELECT b.*, d.*

FROM buses b

LEFT JOIN drivers d ON

b.DriverID = d.DriverID

WHERE b.DriverID IS

NOT NULL;

To retrieve the buses and

drivers’ detail with join

using DriverID.

Aggregate and Grouping

Query

SELECT faculty,

COUNT(*) as student_count

FROM users

WHERE usertype = 'user'

GROUP BY faculty;

To retrieve the faculty and

count the students where

user type is user group by

faculty.

42

4.3.2.3 Usage of Stored Procedures and Triggers

Table 4.16: Triggers Relates Database Object Detail

Trigger Database

table

Query Explanation

Before

Delete

Drivers CREATE DEFINER=`root`@`localhost`

TRIGGER `delete_driver_trigger`

BEFORE DELETE ON `drivers` FOR

EACH ROW BEGIN

 DELETE FROM users

 WHERE users.usertype = 'driver'

 AND users.phone = OLD.phone;

END

To delete users

before delete

the driver

where user type

is driver and

user phone

number is

driver phone

number

Before Insert Checkins CREATE DEFINER=`root`@`localhost`

TRIGGER

`prevent_new_checkin_before_checkout`

BEFORE INSERT ON `checkins` FOR

EACH ROW BEGIN

 IF (SELECT COUNT(*) FROM

checkins WHERE user_id =

NEW.user_id) > 0 THEN

 IF (SELECT COUNT(*) FROM

checkins WHERE user_id =

NEW.user_id AND checkout_time IS

NULL) > 0 THEN

 SIGNAL SQLSTATE '45000'

SET MESSAGE_TEXT = 'Cannot create

a new checkin before checking out.';

 END IF;

 END IF;

END

This trigger

prevents a new

checkin from

being inserted

if there is

already an open

checkin

43

Table 4.17 : Stored Procedure Relates Database Object Detail

Procedure Database table Query Explanation

Insert Schedules CREATE

DEFINER=`root`@`localhost`

PROCEDURE

`add_schedule`(

 IN p_date DATE,

 IN p_Time TIME,

 IN p_BusID BIGINT,

 IN p_SemesterID BIGINT,

 IN p_RouteID BIGINT

)

BEGIN

 INSERT INTO schedules

(Date, Time, BusID,

SemesterID, RouteID)

 VALUES (p_date, p_Time,

p_BusID, p_SemesterID,

p_RouteID);

END

To insert new

schedule

Update Drivers CREATE

DEFINER=`root`@`localhost`

PROCEDURE

`update_driver`(

 IN p_DriverID BIGINT,

 IN p_name

VARCHAR(255),

 IN p_license_number

VARCHAR(255),

 IN p_phone

VARCHAR(20)

)

BEGIN

To update drivers

information

44

 UPDATE drivers

 SET name = p_name,

 license_number =

p_license_number,

 phone = p_phone,

 updated_at = NOW()

 WHERE DriverID =

p_DriverID;

END

Delete Announcements CREATE

DEFINER=`root`@`localhost`

PROCEDURE

`delete_announcement`(IN

p_AnnouncementID BIGINT)

BEGIN

 DELETE FROM

announcements WHERE

AnnouncementID =

p_AnnouncementID;

END

To delete

annoucement

4.3.2.4 Security Mechanism

The security mechanism in the system validates the user's email and password to

ensure they are correct and determines the user's role (admin, normal user, or driver). Based

on their role, the user is directed to the appropriate page. For example, if a user enters a valid

email and password for a driver account, they will log in as a driver and be navigated to the

driver-specific page..

45

4.4 Graphical User Interface (GUI) Design

. The way users will engage with a system and the kinds of inputs it may process are

delineated in a graphical user interface (GUI) design. It includes forms and screens for data

entry in addition to screen displays that make navigating the system easier. The three primary

parts of GUI design are input, output, and navigation design.

4.4.1 Navigation Design

The user's easy access and guidance are guaranteed by the interface design's

navigation component. The UTeM Bus Scheduling Management System's navigation

architecture and path are shown in Figure 4.14.

46

Figure 4.14: Navigation Path of UTeM BUS SCHEDULING MANAGEMENT

SYSTEM

47

4.4.2 Input Design

The input design is concerned with how admin enter both organised and unstructured

data into the system. Information for a completed action is stored in the forms and screen to

be used by the system. Appendix A contains the illustrations of the input design, which range

from Figure 8.1 to Figure 8.8.

4.4.3 Output Design

The output design focuses on presenting the system's retrieved information on the screen or

in forms. Figures 8.9 through 8.22, which can be referenced in Appendix A, illustrate the

output design.

4.5 Conclusion

This chapter concludes by detailing a methodical approach to building the UTeM Bus

Scheduling Management System, addressing both the functional and non-functional

requirements identified in Chapter 3. The requirements document from the analysis phase's

problems are the focus of the design phase's work. The shift from the issue domain to the

solution domain is signified by this phase. This phase's design document will be used as a

guide for the stages of implementation, testing, and maintenance.

48

CHAPTER V

5. IMPLEMENTATION

5.1 Introduction

This chapter delineates the procedure for executing the database design. It outlines the

installation and configuration processes for the database. MySQL was installed on a

Windows 11 platform during the database implementation phase. This phase entailed the

execution of Data Definition Language (DDL) and Data Manipulation Language (DML) SQL

statements in the database. The status of implementation for each module is also detailed.

5.2 System Development Environment Setup

 In the UTeM bus scheduling management system, the software development

environment must be set up before developing the system. In addition, the development

environment of the system has 4 main components which are built-in PHP development servers

from Laravel, MySQL server, PHP Web Programming Language using Laravel and MySQL

49

Workbench Database Management Tool. In addition, MySQL workbench may be downloaded

for free from the internet for the Windows platform.

5.2.1 Steps of Installation Setup

Installation of MySQL workbench

Step 1: Download the installer from https://dev.mysql.com/downloads/workbench/ using a

web browser.

Figure 5.1 : Download MySQL installer for Windows

Step 2: After the download, open the installer as shown in Figure 5.2.

Figure 5.2 ： MySQL installer

50

Step 3: Click Custom for installation of MySQL in Figure 5.3. Click on Next.

Figure 5.3 : Select Custom Setup Type

Step 4: Select MySQL Server, MySQL Workbench, and MySQL Shell as shown at Figure

5.4.

Figure 5.4 : Select MySQL Products

51

Step 5: Choose the server configuration type for the MySQL Server installation and click

Next in Figure 5.5.

Figure 5.5 : Server Configuration Type

52

Step 6: Set the MySQL root password and click on Next in Figure 5.6.

Figure 5.6 : MySQL Settings

Step 7: After the configuration in Figure 5.7 is done, click on finish.

Figure 5.7 : Apply Configuration

53

Step 8: Launch the MySQL workbench and click the local instance in Figure 5.8.

Figure 5.8 : MySQL workbench interface

Step 9: Login into the MySQL workbench with the password in figure 5.6.

 Figure 5.9 : Enter the root password

54

Step 10: Figure 5.10 shows the MySQL workbench page. Click the schema icon to create a

schema.

Figure 5.10 : Enter MySQL workbench main page

Step 11: The database schema was successfully constructed after entering the database name

in the name column in Figure 5.11.

Figure 5.11 : Create database schema

55

Step 12: In Figure 5.12 click the Create Table button under the schema that created.

Figure 5.12 : Add New Table into Database

Step 13: Type the name of the database table into the assigned text box, fill in the text field

with the name, type, length, and index of each attribute, and click Save. As shown in Figure

5.13, the insertion of attributes into the database table was completed successfully.

Figure 5.13 : Add Attribute into Table

56

5.3 Database Implementation

In the database implementation for the UTeM bus schedule management system, the database

is used to evaluate database queries, including basic and complicated queries, aggregate

functions, stored procedures, and triggers.

5.3.1 Data Definition Language (DDL)

Data Definition Language (DDL) pertains to the SQL commands utilised for the creation and

modification of tables within a relational database. DDL statements are employed to build,

modify, and remove objects within the database, such as tables, indexes, and triggers, for the

UTeM bus scheduling management system.

5.3.1.1 Create Table Commands

Figure 5.14 to Figure 5.28 will show the database queries of each create table commands.

CREATE TABLE `announcements` (

 `AnnouncementID` bigint unsigned NOT NULL AUTO_INCREMENT,

 `Title` varchar(50) COLLATE utf8mb4_unicode_ci NOT NULL,

 `Description` varchar(100) COLLATE utf8mb4_unicode_ci NOT NULL,

 `DatePosted` date NOT NULL,

 `RouteID` bigint unsigned NOT NULL,

 `created_at` timestamp NULL DEFAULT NULL,

 `updated_at` timestamp NULL DEFAULT NULL,

 PRIMARY KEY (`AnnouncementID`),

 KEY `announcements_routeid_foreign` (`RouteID`),

 CONSTRAINT `announcements_routeid_foreign` FOREIGN KEY (`RouteID`)

REFERENCES `routes` (`RouteID`)

) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_unicode_ci;

Figure 5.14 : Create Table Announcement

57

CREATE TABLE `bookings` (

 `BookingID` bigint unsigned NOT NULL AUTO_INCREMENT,

 `UserID` bigint unsigned NOT NULL,

 `ExternalBusID` bigint unsigned NOT NULL,

 `SeatNumber` varchar(255) COLLATE utf8mb4_unicode_ci NOT NULL,

 `BookingDate` datetime NOT NULL,

 `departure_date` date NOT NULL,

 `created_at` timestamp NULL DEFAULT NULL,

 `updated_at` timestamp NULL DEFAULT NULL,

 PRIMARY KEY (`BookingID`),

 KEY `bookings_userid_foreign` (`UserID`),

 KEY `bookings_externalbusid_foreign` (`ExternalBusID`),

 CONSTRAINT `bookings_externalbusid_foreign` FOREIGN KEY (`ExternalBusID`)

REFERENCES `external_buses` (`ExternalBusID`) ON DELETE CASCADE,

 CONSTRAINT `bookings_userid_foreign` FOREIGN KEY (`UserID`) REFERENCES

`users` (`id`) ON DELETE CASCADE

) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_unicode_ci;

CREATE TABLE `buses` (

 `BusID` bigint unsigned NOT NULL AUTO_INCREMENT,

 `NumberPlate` varchar(255) COLLATE utf8mb4_unicode_ci NOT NULL,

 `Capacity` int NOT NULL,

 `DriverID` bigint unsigned NOT NULL,

 `created_at` timestamp NULL DEFAULT NULL,

 `updated_at` timestamp NULL DEFAULT NULL,

 PRIMARY KEY (`BusID`),

 KEY `buses_driverid_foreign` (`DriverID`),

 CONSTRAINT `buses_driverid_foreign` FOREIGN KEY (`DriverID`) REFERENCES

`drivers` (`DriverID`) ON DELETE CASCADE

) ENGINE=InnoDB AUTO_INCREMENT=17 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_unicode_ci;

 Figure 5.15 : Create Table Booking

Figure 5.16 : Create Table Bus

58

CREATE TABLE `checkins` (

 `id` bigint unsigned NOT NULL AUTO_INCREMENT,

 `UserID` bigint unsigned NOT NULL,

 `checkin_time` timestamp NULL DEFAULT NULL,

 `checkout_time` timestamp NULL DEFAULT NULL,

 `status` enum('work','rest') COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT 'rest',

 `created_at` timestamp NULL DEFAULT NULL,

 `updated_at` timestamp NULL DEFAULT NULL,

 PRIMARY KEY (`id`),

 KEY `checkins_userid_foreign` (`UserID`),

 CONSTRAINT `checkins_userid_foreign` FOREIGN KEY (`UserID`) REFERENCES

`users` (`id`) ON DELETE CASCADE

) ENGINE=InnoDB AUTO_INCREMENT=7 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_unicode_ci;

 Figure 5.17 : Create Table Checkin

CREATE TABLE `departure_dates` (

 `DepartureDateID` bigint unsigned NOT NULL AUTO_INCREMENT,

 `departure_date` date NOT NULL,

 `ExternalBusID` bigint unsigned NOT NULL,

 `created_at` timestamp NULL DEFAULT NULL,

 `updated_at` timestamp NULL DEFAULT NULL,

 PRIMARY KEY (`DepartureDateID`),

 KEY `departure_dates_externalbusid_foreign` (`ExternalBusID`),

 CONSTRAINT `departure_dates_externalbusid_foreign` FOREIGN KEY (`ExternalBusID`)

REFERENCES `external_buses` (`ExternalBusID`) ON DELETE CASCADE

) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_unicode_ci;

Figure 5.18 : Create Table Departure_Date

59

CREATE TABLE `drivers` (

 `DriverID` bigint unsigned NOT NULL AUTO_INCREMENT,

 `name` varchar(255) COLLATE utf8mb4_unicode_ci NOT NULL,

 `license_number` varchar(255) COLLATE utf8mb4_unicode_ci NOT NULL,

 `phone` varchar(255) COLLATE utf8mb4_unicode_ci NOT NULL,

 `created_at` timestamp NULL DEFAULT NULL,

 `updated_at` timestamp NULL DEFAULT NULL,

 PRIMARY KEY (`DriverID`)

) ENGINE=InnoDB AUTO_INCREMENT=6 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_unicode_ci;

Figure 5.19 : Create Table Driver

CREATE TABLE `external_buses` (

 `ExternalBusID` bigint unsigned NOT NULL AUTO_INCREMENT,

 `NumberPlate` varchar(255) COLLATE utf8mb4_unicode_ci NOT NULL,

 `Capacity` int NOT NULL,

 `Zone` varchar(255) COLLATE utf8mb4_unicode_ci NOT NULL,

 `created_at` timestamp NULL DEFAULT NULL,

 `updated_at` timestamp NULL DEFAULT NULL,

 PRIMARY KEY (`ExternalBusID`),

 UNIQUE KEY `external_buses_numberplate_unique` (`NumberPlate`)

) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_unicode_ci;

Figure 5.20 : Create Table External_Bus

60

CREATE TABLE `gps_data` (

 `id` bigint unsigned NOT NULL AUTO_INCREMENT,

 `UserID` bigint unsigned NOT NULL,

 `latitude` double NOT NULL,

 `longitude` double NOT NULL,

 `timestamp` timestamp NOT NULL,

 `created_at` timestamp NULL DEFAULT NULL,

 `updated_at` timestamp NULL DEFAULT NULL,

 PRIMARY KEY (`id`),

 KEY `gps_data_userid_foreign` (`UserID`),

 CONSTRAINT `gps_data_userid_foreign` FOREIGN KEY (`UserID`) REFERENCES

`users` (`id`)

) ENGINE=InnoDB AUTO_INCREMENT=11 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_unicode_ci;

Figure 5.21 : Create Table GPS_Data

CREATE TABLE `routes` (

 `RouteID` bigint unsigned NOT NULL AUTO_INCREMENT,

 `Description` varchar(100) COLLATE utf8mb4_unicode_ci NOT NULL,

 `created_at` timestamp NULL DEFAULT NULL,

 `updated_at` timestamp NULL DEFAULT NULL,

 `Origin` varchar(50) COLLATE utf8mb4_unicode_ci NOT NULL,

 `OriginLatitude` double NOT NULL,

 `OriginLongitude` double NOT NULL,

 `Destination` varchar(50) COLLATE utf8mb4_unicode_ci NOT NULL,

 `DestinationLatitude` double NOT NULL,

 `DestinationLongitude` double NOT NULL,

 PRIMARY KEY (`RouteID`)

) ENGINE=InnoDB AUTO_INCREMENT=3 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_unicode_ci;

Figure 5.22 : Create Table Route

61

CREATE TABLE `schedules` (

 `ScheduleID` bigint unsigned NOT NULL AUTO_INCREMENT,

 `date` date NOT NULL,

 `Time` time NOT NULL,

 `BusID` bigint unsigned NOT NULL,

 `SemesterID` bigint unsigned NOT NULL,

 `RouteID` bigint unsigned NOT NULL,

 `created_at` timestamp NULL DEFAULT NULL,

 `updated_at` timestamp NULL DEFAULT NULL,

 PRIMARY KEY (`ScheduleID`),

 KEY `schedules_busid_foreign` (`BusID`),

 KEY `schedules_routeid_foreign` (`RouteID`),

 KEY `schedules_semesterid_foreign` (`SemesterID`),

 CONSTRAINT `schedules_busid_foreign` FOREIGN KEY (`BusID`) REFERENCES

`buses` (`BusID`),

 CONSTRAINT `schedules_routeid_foreign` FOREIGN KEY (`RouteID`) REFERENCES

`routes` (`RouteID`),

 CONSTRAINT `schedules_semesterid_foreign` FOREIGN KEY (`SemesterID`)

REFERENCES `semesters` (`SemesterID`)

) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_unicode_ci;

Figure 5.23 : Create Table Schedule

CREATE TABLE `seats` (

 `SeatID` bigint unsigned NOT NULL AUTO_INCREMENT,

 `ExternalBusID` bigint unsigned NOT NULL,

 `SeatNumber` varchar(255) COLLATE utf8mb4_unicode_ci NOT NULL,

 `IsBooked` tinyint(1) NOT NULL DEFAULT '0',

 `created_at` timestamp NULL DEFAULT NULL,

 `updated_at` timestamp NULL DEFAULT NULL,

 PRIMARY KEY (`SeatID`),

 KEY `seats_externalbusid_foreign` (`ExternalBusID`),

 CONSTRAINT `seats_externalbusid_foreign` FOREIGN KEY (`ExternalBusID`)

REFERENCES `external_buses` (`ExternalBusID`) ON DELETE CASCADE

) ENGINE=InnoDB AUTO_INCREMENT=295 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_unicode_ci;

Figure 5.24 : Create Table Seat

62

CREATE TABLE `semesters` (

 `SemesterID` bigint unsigned NOT NULL AUTO_INCREMENT,

 `Name` varchar(50) COLLATE utf8mb4_unicode_ci NOT NULL,

 `Start_Date` date NOT NULL,

 `End_Date` date NOT NULL,

 `created_at` timestamp NULL DEFAULT NULL,

 `updated_at` timestamp NULL DEFAULT NULL,

 PRIMARY KEY (`SemesterID`)

) ENGINE=InnoDB AUTO_INCREMENT=3 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_unicode_ci;

Figure 5.25 : Create Table Semester

CREATE TABLE `stop_schedule` (

 `StopID` bigint unsigned NOT NULL,

 `ScheduleID` bigint unsigned NOT NULL,

 `created_at` timestamp NULL DEFAULT NULL,

 `updated_at` timestamp NULL DEFAULT NULL,

 PRIMARY KEY (`StopID`,`ScheduleID`),

 KEY `stop_schedule_scheduleid_foreign` (`ScheduleID`),

 CONSTRAINT `stop_schedule_scheduleid_foreign` FOREIGN KEY (`ScheduleID`)

REFERENCES `schedules` (`ScheduleID`),

 CONSTRAINT `stop_schedule_stopid_foreign` FOREIGN KEY (`StopID`)

REFERENCES `stops` (`StopID`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;

Figure 5.26 : Create Table Stop_Schedule

63

CREATE TABLE `stops` (

 `StopID` bigint unsigned NOT NULL AUTO_INCREMENT,

 `Name` varchar(50) COLLATE utf8mb4_unicode_ci NOT NULL,

 `Location` varchar(50) COLLATE utf8mb4_unicode_ci NOT NULL,

 `Latitude` decimal(10,7) DEFAULT NULL,

 `Longitude` decimal(10,7) DEFAULT NULL,

 `picture` varchar(255) COLLATE utf8mb4_unicode_ci DEFAULT NULL,

 `created_at` timestamp NULL DEFAULT NULL,

 `updated_at` timestamp NULL DEFAULT NULL,

 PRIMARY KEY (`StopID`)

) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_unicode_ci;

Figure 5.27 : Create Table Stop

CREATE TABLE `users` (

 `id` bigint unsigned NOT NULL AUTO_INCREMENT,

 `name` varchar(255) COLLATE utf8mb4_unicode_ci NOT NULL,

 `email` varchar(255) COLLATE utf8mb4_unicode_ci NOT NULL,

 `phone` varchar(255) COLLATE utf8mb4_unicode_ci DEFAULT NULL,

 `matricNumber` varchar(255) COLLATE utf8mb4_unicode_ci DEFAULT NULL,

 `faculty` varchar(255) COLLATE utf8mb4_unicode_ci DEFAULT NULL,

 `age` int DEFAULT NULL,

 `gender` varchar(255) COLLATE utf8mb4_unicode_ci DEFAULT NULL,

 `course` varchar(255) COLLATE utf8mb4_unicode_ci DEFAULT NULL,

 `usertype` varchar(255) COLLATE utf8mb4_unicode_ci NOT NULL DEFAULT 'user',

 `email_verified_at` timestamp NULL DEFAULT NULL,

 `password` varchar(255) COLLATE utf8mb4_unicode_ci NOT NULL,

 `two_factor_secret` text COLLATE utf8mb4_unicode_ci,

 `two_factor_recovery_codes` text COLLATE utf8mb4_unicode_ci,

 `two_factor_confirmed_at` timestamp NULL DEFAULT NULL,

 `remember_token` varchar(100) COLLATE utf8mb4_unicode_ci DEFAULT NULL,

 `current_team_id` bigint unsigned DEFAULT NULL,

 `profile_photo_path` varchar(2048) COLLATE utf8mb4_unicode_ci DEFAULT

NULL,

 `created_at` timestamp NULL DEFAULT NULL,

 `updated_at` timestamp NULL DEFAULT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `users_email_unique` (`email`)

) ENGINE=InnoDB AUTO_INCREMENT=8 DEFAULT CHARSET=utf8mb4

COLLATE=utf8mb4_unicode_ci;

Figure 5.28 : Create Table User

64

5.3.2 Data Manipulation Language

5.3.3 Stored Procedures

Table 5.1: Stored Procedures Query

Description Stored Procedure Query

To insert a new schedule CREATE DEFINER=`root`@`localhost`

PROCEDURE `add_schedule`(IN p_date

DATE, IN p_time VARCHAR(255), IN

p_BusID INT, IN p_SemesterID INT, IN

p_RouteID INT) BEGIN INSERT INTO

schedules (date, Time, BusID, SemesterID,

RouteID) VALUES (p_date, p_time,

INSERT INTO semesters (Name, Start_Date, End_Date) VALUES

('Week 1 to Week 7', '2024-03-10', '2024-12-15'),

('Week 8 to Week 15', '2024-05-10', '2024-07-03');

Figure 5.29 : Insert Statement – insert data into table semester

UPDATE buses

SET NumberPlate = 'ABC1234', Capacity = 40

WHERE BusID = 1;

Figure 5.30 : Update Statement – update table bus

DELETE FROM drivers WHERE DriverID = 1;

 Figure 5.31 : Delete Statement – delete table driver

SELECT drivers.name, drivers.license_number, drivers.phone, users.email,

checkins.checkin_time, checkins.checkout_time FROM drivers JOIN users ON

drivers.phone = users.phone JOIN checkins ON users.id = checkins.UserID;

Figure 5.32 : Select Statement – retrieve table driver

65

p_BusID, p_SemesterID, p_RouteID);

END;

To insert a new bus CREATE DEFINER=`root`@`localhost`

PROCEDURE `insert_bus`(IN

number_plate VARCHAR(255), IN

capacity INT, IN driver_id INT) BEGIN

INSERT INTO buses (NumberPlate,

Capacity, DriverID) VALUES

(number_plate, capacity, driver_id); END;

To insert a new route CREATE DEFINER=`root`@`localhost`

PROCEDURE `insert_route`(IN origin

VARCHAR(50), IN origin_latitude

DECIMAL(10, 6), IN origin_longitude

DECIMAL(10, 6), IN destination

VARCHAR(50), IN destination_latitude

DECIMAL(10, 6), IN destination_longitude

DECIMAL(10, 6), IN description

VARCHAR(100)) BEGIN INSERT INTO

routes (Origin, OriginLatitude,

OriginLongitude, Destination,

DestinationLatitude, DestinationLongitude,

Description) VALUES (origin,

origin_latitude, origin_longitude,

destination, destination_latitude,

destination_longitude, description); END;

To update an existing bus record in the

buses table with new values for the number

plate and capacity, based on the provided

busID.

CREATE DEFINER=`root`@`localhost`

PROCEDURE `update_bus`(IN busID

BIGINT, IN numberPlate VARCHAR(255),

IN capacity INT) BEGIN UPDATE buses

SET NumberPlate = numberPlate, Capacity

= capacity WHERE BusID = busID; END;

66

To update an existing driver record in the

drivers table with new values for the driver's

name, license number, and phone number,

based on the provided driver_id.

CREATE DEFINER=`root`@`localhost`

PROCEDURE `update_driver`(IN driver_id

INT, IN driver_name VARCHAR(255), IN

license_number VARCHAR(255), IN

phone VARCHAR(15)) BEGIN UPDATE

drivers SET name = driver_name,

license_number = license_number, phone =

phone WHERE DriverID = driver_id; END;

To retrieve detailed information about a

specific driver, including all driver details

and the associated user's email, based on the

provided driver_id

CREATE DEFINER=`root`@`localhost`

PROCEDURE `driver_detail`(IN driver_id

BIGINT) BEGIN SELECT drivers.*,

users.email FROM drivers JOIN users ON

drivers.phone = users.phone WHERE

drivers.DriverID = driver_id; END;

To delete a bus record from the buses table

based on the provided bus_id, retrieves and

stores the associated DriverID, and returns a

success message

CREATE DEFINER=`root`@`localhost`

PROCEDURE `delete_bus`(IN bus_id INT)

BEGIN DECLARE driver_id INT;

SELECT DriverID INTO driver_id FROM

buses WHERE BusID = bus_id; DELETE

FROM buses WHERE BusID = bus_id;

SELECT CONCAT('Bus with BusID ',

bus_id, ' deleted successfully.') AS

Message; END;

67

5.3.4 Triggers

In UTeM Bus Scheduling Management System, triggers are used to maintain the integrity of

the information on the database.

Table 5.2: Triggers Query

Explanation Trigger Query

To prevent users from making multiple

bookings by checking if a user already has

an existing booking before allowing a new

one to be inserted.

CREATE DEFINER=`root`@`localhost`

TRIGGER `prevent_multiple_bookings`

BEFORE INSERT ON `bookings` FOR

EACH ROW BEGIN IF EXISTS (SELECT

1 FROM bookings WHERE UserID =

NEW.UserID) THEN SIGNAL

SQLSTATE '45000' SET

MESSAGE_TEXT = 'You can only book

one bus.'; END IF; END;

To prevent multiple check-ins by checking

if the user already has an active check-in

before allowing a new check-in to be

inserted

CREATE DEFINER=`root`@`localhost`

TRIGGER `prevent_multiple_checkins`

BEFORE INSERT ON `checkins` FOR

EACH ROW BEGIN DECLARE

active_checkin_count INT; SELECT

COUNT(*) INTO active_checkin_count

FROM checkins WHERE UserID =

NEW.UserID AND checkout_time IS

NULL; IF active_checkin_count > 0 THEN

SIGNAL SQLSTATE '45000' SET

MESSAGE_TEXT = 'You are already

checked in.'; END IF; END;

To ensure that a check-out operation is only

allowed if there is an active check-in (i.e., a

check-in where checkout_time is NULL).

CREATE DEFINER=`root`@`localhost`

TRIGGER `prevent_invalid_checkout`

BEFORE UPDATE ON `checkins` FOR

EACH ROW BEGIN DECLARE

active_checkin_count INT; IF

OLD.checkout_time IS NULL AND

NEW.checkout_time IS NOT NULL THEN

SELECT COUNT(*) INTO

active_checkin_count FROM checkins

WHERE UserID = OLD.UserID AND

checkout_time IS NULL; IF

active_checkin_count = 0 THEN SIGNAL

SQLSTATE '45000' SET

MESSAGE_TEXT = 'No check-in found to

check out.'; END IF; END IF; END;

is designed to automatically delete the GPS

data associated with a user after they check

out, provided that the check-in status was

previously 'work'.

CREATE DEFINER=`root`@`localhost`

TRIGGER

`delete_gps_data_after_checkout` AFTER

UPDATE ON `checkins` FOR EACH ROW

BEGIN IF NEW.checkout_time IS NOT

NULL AND OLD.status = 'work' THEN

68

DELETE FROM gps_data WHERE UserID

= NEW.UserID; END IF; END;

To ensure that before an UPDATE is made

to the external_buses table, the NumberPlate

is checked against existing entries in the

buses table. If a duplicate NumberPlate is

found, the update is blocked, and an error

message "Duplicate NumberPlate found in

buses table" is raised, preventing potential

conflicts or inconsistencies in the

NumberPlate data across the two tables

CREATE DEFINER=`root`@`localhost`

TRIGGER `check_number_plate_update`

BEFORE UPDATE ON `external_buses`

FOR EACH ROW BEGIN IF EXISTS

(SELECT 1 FROM buses WHERE

NumberPlate = NEW.NumberPlate) THEN

SIGNAL SQLSTATE '45000' SET

MESSAGE_TEXT = 'Duplicate

NumberPlate found in buses table'; END IF;

END;

5.3.5 Data Loading Process

 The UTeM Bus Scheduling Management System is a system that stores and processes

data to give drivers and users relevant information. All the data such as schedule details,

booking details, ticket details and driver location was stored in the database. In UTeM Bus

Scheduling Management System, the Extract, Transform, Load (ETL) process is utilized to

manage and process large volumes of both unstructured and structured data. Extraction

involves collecting and reading data from various database sources. Transformation

encompasses converting and preparing the data for storage in a different database. Loading

refers to the process of inserting the transformed data into the target database.

5.4 Implementation Status

Every module's description, the time needed to finish it, and the date of completion are all

included in the implementation status. This summary monitors the implementation process's

development.

Module Description Duration to

complete/days

Date

completes

User

Authentication

Module

To allow users to create secure

accounts with passwords, ensuring

that their personal information is

protected

10 25-04-2024

69

Searching and

Reporting

Module

To allow users to search the schedule

based on the location and time and

generate pdf from the page.

10 4-05-2024

Notification

Module

To allow users to receive notification

in real-time when administrator put

notifications

15 13-05-2024

Admin

Dashboard

Module

To allow administrator to manage the

data related bus scheduling system

based on the web -based system

15 28-05-2024

Tracking

Module

To allow users can track the location

of the drivers

15 12-06-2024

Booking

Module

To allow user can make booking at

the web-based system

15 28-06-2024

5.5 Conclusion

In summary, this chapter outlines the setup of the website development environment, detailing

the procedures for installing MySQL server, MySQL workbench, Laravel, and MySQL on a

Windows platform. It also covers the implementation of the database to manage the system's

processes. Additionally, the system will be developed based on business logic, incorporating

Data Definition Language (DDL) and Data Manipulation Language (DML) commands, as well

as stored procedures, triggers, and the creation of database tables and constraints.

70

CHAPTER VI

6. Testing

6.1 Introduction

Testing is a process designed to assess the functionality of a software application to

determine whether it meets the specified requirements and to identify any defects, ensuring the

system is as error-free as possible. This chapter focuses on the verification and validation of

the UTeM Bus Scheduling Management System. The primary objectives of testing the system

are:

i. To demonstrate that the system meets the user requirements.

ii. ii. To identify any bugs or faults in UTeM Bus Scheduling Management System

using various testing strategies.

Furthermore, a critical stage in the Database Life Cycle (DBLC) is system testing. A test

plan that describes the test's structure, timing, and setting is part of the system's testing process.

6.2 Test Plan

A test plan is a technical report that describes the objectives, scope, personnel,

software, hardware, test schedule, and deliverables of the test. It provides a thorough

71

description of the system's operations and procedures, outlining how each component will be

evaluated to make sure the system works as intended, find any defects, and determine its

limitations.

6.2.1 Test Organization

In the UTeM Bus Scheduling Management System, the test organization includes three types

of users: students, drivers, and administrators. Every kind of user will have both functional

and non-functional needs checked. Table 6.1 shows the testing procedures that these three

users go through according to their different roles.

Table 6.1 : User Responsibilities List

Tester ID Users Responsibilities

T1 Student • Testing the system

by using the

provided test script

• Examining the

student/user module

• Finding bugs and

defects

T2 Driver • Testing the system

by using the

provided test script

• Examining the driver

module

• Finding bugs and

defects

T3 Administrator • Testing the system

by using the

provided test script

• Examining the admin

module

72

• Finding bugs and

defects

6.2.2 Test Environment

The test environment consists of the hardware, software, operating system, tools, and network

configurations required for the testing teams to execute test cases. The hardware and software

requirements for the UTeM Bus Scheduling Management System test environment are listed

in Tables 6.2 and 6.3.

Table 6.2 : Test Environment

Environment Details Description

Laptop Acer Nitro 5

Processor Core i5 Intel

Mouse and Keyboard VGN

Random Access Memory (RAM) 16 GB

\

73

Table 6.3 : Test Environment Software List

Environment Description

Database MySQL

To administer data within the database table

operating on a server

Web Server Built-in php environment server

Php artisan server (cmd line)

Operating System/ Platform Windows 11

To administer the resources for computer

hardware and software, and then provide the

service or instrument needed to run

computer programs.

Web Browser Google Chrome

To run the Laravel source code and assess

the operation of the system interface

Visual Studio Code To manage Laravel framework

Microsoft Word 2024 / PowerPoint 2024 To draft the completed report and make a

PowerPoint show.

6.2.3 Test Schedule

A test schedule serves as a summary which lists the most important test deadlines and

milestones. To guarantee that system testing is completed on time, test activities are scheduled

according to predetermined dates. Estimating dates and making necessary adjustments are part

of creating the test schedule. The test schedule for the UTeM Bus Scheduling Management

System development is shown in Table 6.4.

74

Table 6.4 : Test Schedule

Testing Task Testing Activity Start Date End Date

Login Unit Testing,

Integration Testing

and User acceptance

15-7-2024 18-7-2024

Driver Registration Unit Testing,

Integration Testing

and User acceptance

19-7-2024 21-7-2024

Add Bus Unit Testing,

Integration Testing

and User acceptance

23-7-2024 25-7-2024

Manage User Unit Testing,

Integration Testing

and User acceptance

26-7-2024 27-7-2024

Manage Route Unit Testing,

Integration Testing

and User acceptance

28-7-2024 29-7-2024

Manage Bus

Schedule

Unit Testing,

Integration Testing

and User acceptance

30-7-2024 1-8-2024

Manage

Announcement

Unit Testing,

Integration Testing

and User acceptance

3-8-2024 6-8-2024

External Bus

Registration

Unit Testing,

Integration Testing

and User acceptance

7-8-2024 12-8-2024

Searching Schedule Unit Testing,

Integration Testing

and User acceptance

15-8-2024 16-8-2024

75

Booking Seats Unit Testing,

Integration Testing

and User acceptance

17-8-2024 20-8-2024

Driver Check-in Unit Testing,

Integration Testing

and User acceptance

21-8-2024 22-8-2024

Driver Check-out Unit Testing,

Integration Testing

and User acceptance

23-8-2024 24-8-2024

6.3 Test Strategy

A test strategy is a collection of instructions that describes test design and establishes

which modules should be tested, the method to be used, and if testing is required.

 A software testing technique called "black box" testing assesses a system's functioning

without revealing its core code structure. Typically, testers who are not familiar with

implementation or programming carry out this kind of testing. The goal of black box testing is

to evaluate the system's functional and non-functional needs. Usually, it is used in high-level

testing phases like user acceptance and system testing.

On the other side, White Box Testing entails testing the code's internal structure while

having a solid understanding of its architecture. Software developers, who require

implementation and programming skills, implement this strategy. The focus of white box

testing is on examining logic, branching, and code organisation. High-level testing stages like

unit and integration testing frequently use it.

Unit Testing is a software testing level where individual components or units of the

software are tested to ensure that each performs as intended. In UTeM Bus Scheduling

Management System, unit modules such as user login and user registration were tested to verify

the functionality. For integration testing, it involves combining and testing individual units as

a group to identify faults in their interactions. In UTeM Bus Scheduling Management, this

means that after user fill out the registration form, the details of the username and password

are recorded, and they are directed to the main page of the website. The system must make sure

user able to check the schedules, bus tracking and booking status .

76

System testing assesses the integrated software as a whole to make sure it satisfies

predetermined standards.. In UTeM Bus Scheduling Management, the entire system flow was

tested to confirm that it operates according to the requirements outlined in Figure 3.2.

User Acceptance Testing is performed by the user to verify that the system meets the

agreed-upon requirements.

Table 6.5 : Type of test and test design techniques for white box and black box testing

 White Box Black Box

Type of Test Unit Testing

Evaluating discrete parts or

components of the software

to verify their functionality

aligns with expectations.

Integration Testing

Evaluating the interaction of

integrated units/modules to

detect faults in their

interfaces.

Functional Testing

Evaluating the software's

functions in accordance with

the defined requirements.

Non-Functional Testing

Evaluating factors include

performance, usability, and

security.

Acceptance Testing

Evaluating the software's

compliance with acceptance

criteria and its readiness for

deployment.

Test Design Techniques • Statement Coverage

• Branch Coverage

• Path Coverage

• Loop Testing

• Equivalence

Partitioning

• Boundary Value

Analysis

• Decision Table

Testing

77

• State Transition

Testing

• Use Case Testing

Figure 6.1 : Level of Testing

The many forms of testing and the associated test design methods for both White Box

and Black Box testing are shown in Table 6.5. Only White Box Testing is used in the UTeM

Bus Scheduling Management System.

For White Box Testing, techniques such as unit testing and integration testing are

employed. These techniques focus on verifying the correctness of data input types and ensuring

proper data storage and transfer between modules.

Equivalence partitioning analysis is utilised in Black Box Testing. Through the use of

this approach, different input situations may be effectively tested by dividing the software unit's

input data into divisions of equal data.

78

6.3.1 Classes of Tests

 The test class descriptions that are being implemented on the UTeM Bus Scheduling

Management System are listed below in various formats.

i. Error Handling Test

Ensuring that users may only submit suitable and correct data into the input forms is the aim

of this testing. For example, the "Age" field for profile updates is restricted to numeric values

only. The purpose of this testing is to ensure that users enter accurate data before it is entered

into the database and to indicate errors with missing or wrong data with an error message.

ii. Security Test

During the login procedure, security testing will be used to confirm and validate the user's

email address and password. In the system, the password that created is hashed and stored by

database. When user enter incorrect password, error message will be returned.

iii. Integration Test

The purpose of the integration test is to verify that, depending on the key in the data, the system

appropriately enters the data into the database. It is accomplished by going through every menu

item in the user interface. This testing was done in the UTeM Bus Scheduling Management

System to ensure that the data are correct and to focus on the data flow between the modules.

For example, only the driver check-in successfully, the data location only can appear in map at

user interface.

6.4 Test Design

To define and construct test suites for software testing, test designs are described. The goal of

the test design is to ensure that the specifications are fulfilled in a way that aligns with the

needs and desires of the customer. The test description and test data are the two components

that make up the test design.

6.4.1 Test Description

Every module test case has a test description that details the desired output result, the method

by which each test case is identified, the kind of testing, the preconditions, the test requirements,

and the step-by-step process. Tables 6.6 through 6.13 provide a detailed explanation of the test,

broken down by system module.

79

Table 6.6 : Test Description for User Login (student)

Test ID T001- Login

Testing

Type

Unit testing and integration testing

Test

Strategy

White box Testing

Text

Class

Security and error handling testing

Test

Case ID

Test Conditions Pre-

condition

Step Expected

Output

TC1_1 Verify that the

login process is

functioning

properly by

making sure that

access is only

allowed if the

password and

email given are

true.

The user's

password

and email

address are

correct.

1. Go to the login

screen.

2. Send a legitimate

email.

3. Enter a working

password.

4. Press the Login

button.

Authentication

successful

TC1_2 Verify the

functionality of the

login process.

Unavailable if the

email or password

fields are null.

 1. Go to the login

screen.

2. Press the Login

button

Failed to log in.

Show the error

message

“Please fill up

this field”

TC1_3 Verify the

functionality of the

login process. If

the password and

email given are not

valid, access is

prohibited.

 1. Access the login

page.

2. Submit a

legitimate email.

3. Submit a working

password.

4. Press the Login

button.

Failed to log in.

Show the

failure message

“These

credentials do

not match our

records”

80

Table 6.7 : Test Description of Registration for Driver Account

Test ID T002- Register Driver account

Testing

Type

Unit testing and integration testing

Test

Strategy

White box Testing

Pre-

condition

User must login as administrator

Test

Case ID

Test Conditions Step Expected Output

TC2_1 Verify that when

all the given data

is valid, you can

use the insert

driver account

function.

1. Open the page for adding

drivers.

2. Fill in the appropriate data

type in the fields labelled

"Name," "License Number,"

"phone," "email,"

"password," and "confirm

password."

3. Click the Add Driver button

Insert new driver

account successful

TC2_2 Verify that when

the input field is

blank, the insert

driver account

function is not

accessible.

1. Open the page for adding

drivers.

2. Click the Add Driver button

Insert driver

account failed.

Show the failure

message “Please

fill out this field”

at the input text

field

TC2_3 Verify that when

certain input data

types are invalid,

the driver account

insertion function

is deactivated.

.

1. Access the driver page.

2. Input the correct data types

into the "Name," "License

Number," "Phone," "Email,"

"Password," and "Confirm

Password" fields.

3. Enter invalid “email”

4. Click on Add Driver button

Insert driver

account failed.

Show the failure

message “Please

include an ‘@’ in

the email address.

TC2_4 Validate the

availability of the

update driver

account feature.

1. Navigate the edit driver page

2. Update the “License

Number”

3. Click on Update Driver

button

Update the driver

account successful

81

Table 6.8 : Test Description of Add Bus for Driver

Test ID T003- Add Buses for Driver

Testing

Type

Unit testing and integration testing

Test

Strategy

White box Testing

Pre-

condition

User must login as administrator

Test

Case ID

Test Conditions Step Expected Output

TC3_1 Verify that when

all input data are

legitimate, the bus

insertion function

is available.

1. Navigate the "Add Buses"

page.

2. Enter the correct data types

into the "Number Plate" and

"Capacity" input fields.

3. Select the "Add Buses"

button.

Insert new bus

successful

TC3_2 If there is nothing

entered in the input

fields, confirm that

the bus insertion

function is not

accessible.

1. Navigate the "Add Buses"

page.

2. Select the "Add Buses"

button without entering any

data.

Insert buses failed.

Show the failure

message “Please

fill out this field”

at the “Capacity”

input text field

TC3_3 Verify that the bus

update function is

available and

operating as

intended.

1. Navigate the "Edit Buses"

page.

2. Update the "Capacity" field.

3. Select the "Update Bus"

button.

Update the bus

successful

82

Table 6.9 : Test Description of User Content

Test ID T004- Manage User

Testing

Type

Unit testing and integration testing

Test

Strategy

White box Testing

Pre-

condition

User must login as administrator

Test

Case ID

Test Conditions Step Expected Output

TC4_1 Verify that when

all the supplied

data is legitimate,

the user update

function is usable.

1. Navigate the "User Content"

page.

2. Enter valid data into the

"Name," "Matric Number,"

"Age," "Phone," "Email,"

"Faculty," "Course," and

"Gender" input fields.

3. Select the "Update" button.

Update user detail

successful

TC4_2 Validate that the

user update

function is

unavailable if

entered input data

types are invalid.

1. Navigate the "User Content"

page.

2. Enter valid data into the

"Name," "Matric Number,"

"Age," "Phone," "Faculty,"

"Course," and "Gender"

fields.

3. Enter an invalid email in the

"Email" field.

4. Select the "Update" button.

Update user detail

failed. Show the

failure message

“Please include an

‘@’ in the email

address.”

TC4_3 Validate that the

user update

function is

available even if

some input data

remain

unchanged.

1. Navigate to the "User

Content" page.

2. Enter the same name for the

user as is currently in use.

3. Select the "Update" button.

Update user detail

failed. Show the

failure message

“The provided

name is already in

use.”

83

Table 6.10 : Test Description of Bus Route

Test ID T005- Add Route

Testing

Type

Unit testing and integration testing

Test

Strategy

White box Testing

Pre-

condition

User must login as administrator

Test

Case ID

Test Conditions Step Expected Output

TC5_1 Verify that when

all the supplied

data is valid, the

route insertion

function is

available.

1. Navigate the "Add

Route" page.

2. Enter valid data into the

"Origin," "Destination,"

and "Description" input

fields, and select

locations on the map for

both origin and

destination.

3. Select the "Add Route"

button.

Insert new route

successful

TC5_2 Validate that the

route insertion

function is

unavailable if no

data is entered into

the input fields.

1. Navigate the "Add

Route" page.

2. Select the "Add Route"

button without entering

any data.

Insert route failed.

Show the failure

message “Please fill

out this field” at the

“origin” input text

field

TC5_3 Validate that the

route insertion

function is

unavailable if no

location is selected

on the map.

1. Navigate to the "Add

Route" page.

2. Enter valid data into the

"Origin," "Destination,"

and "Description" fields.

3. Do not select a location

on the map.

4. Select the "Add Route"

button.

Insert route failed.

Show the failure

message “The origin

latitude, origin

longitude, destination

latitude, destination

longitude are

required.”

84

Table 6.11 : Test Description of Bus Schedule

Test ID T006- Add Bus Schedule

Testing

Type

Unit testing and integration testing

Test

Strategy

White box Testing

Pre-

condition

User must login as administrator

Test

Case ID

Test Conditions Step Expected Output

TC6_1 Verify that when

all the supplied

data is correct, the

schedule insertion

function is

available.

1. Navigate the "Add Bus"

page.

2. Enter valid data into the

"Time" and "Date" fields.

3. Select the available bus,

semester, and route.

4. Select the "Add

Schedule" button.

Insert new bus

schedule successful

TC6_2 Validate that the

schedule insertion

function is

unavailable if no

data is entered into

the input fields.

1. Navigate to the "Add

Schedule" page.

2. Select the "Add

Schedule" button without

entering any data.

Insert schedule failed.

Show the failure

message “Please fill

out this field” at the

“date” input text field

TC6_3 If the date entered

is past due,

confirm that the

schedule insertion

feature is not

accessible.

1. Navigate to the "Add

Schedule" page.

2. Enter a past date into the

"Date" field.

3. Select the "Add

Schedule" button.

Insert bus schedule

failed. The previous

dat3 cannot be

selected.

TC6_4 Validate that the

schedule update

function is

accessible and

operational.

1. Navigate to the "Update

Schedule" page.

2. Update the "Date" field.

3. Select the "Update

Schedule" button.

Update bus schedule

successful

85

Table 6.12 : Test Description of Manage Stop

Test ID T007- Manage Stop

Testing

Type

Unit testing and integration testing

Test

Strategy

White box Testing

Pre-

condition

User must login as administrator

Test

Case ID

Test Conditions Step Expected Output

TC7_1 Verify that when

all the supplied

data is legitimate,

you may access the

stop insertion

function.

.

1. Navigate the "Add Stop"

page.

2. Enter valid data into the

"Stop Name" and

"Location" fields.

3. Choose a picture for the

stop.

4. Select the "Add Stop"

button.

Insert new stop

information

successful

TC7_2 Validate that the

stop insertion

function is

unavailable if no

data is entered into

the input fields.

1. Navigate the "Add Stop"

page.

2. Select the "Add Stop"

button without entering

any data.

Insert stop failed.

Display the failure

message "Please fill

this field" appears in

the text box for

"name."

\

86

Table 6.13 : Test Description of Announcement

Test ID T008- Add Announcement

Testing

Type

Unit testing and integration testing

Test

Strategy

White box Testing

Pre-

condition

User must login as administrator

Test

Case ID

Test Conditions Step Expected Output

TC8_1 Verify that when

all of the supplied

data is legitimate,

the announcement

insertion function

is available.

1. Navigate to the "Add

Announcement" page.

2. Enter valid data into the

"Title," "Date," and

"Description" fields.

3. Select an available route.

4. Select the "Create

Announcement" button.

Insert new

announcement

successful

TC8_2 Validate that the

announcement

insertion function

is unavailable if no

data is entered into

the input fields.

1. Navigate to the "Add

Announcement" page.

2. Select the "Create

Announcement" button

without entering any data.

Insert announcement

failed. Show the

failure message

“Please fill out this

field” at the “title”

input text field

TC8_3 Validate that the

announcement

insertion function

is unavailable if

the date provided

is in the past.

1. Navigate to the "Add

Announcement" page.

2. Enter a past date in the

"Date Posted" field.

3. Select the "Create

Announcement" button.

Insert announcement

failed. The previous

data cannot be

selected.

TC8_4 Verify that the

feature for

updating

announcements is

available and

functioning.

1. Navigate to the "Update

Announcement" page.

2. Update the "Description"

field.

3. Select the "Update"

button.

Update

announcement

successful

87

Table 6.14 : Test Description of External Buses Registration

Test ID T009- Add External Buses

Testing

Type

Unit testing and integration testing

Test

Strategy

White box Testing

Pre-

condition

User must login as administrator

Test

Case ID

Test Conditions Step Expected Output

TC9_1 Validate that the

external buses

update function is

accessible and

operational.

1. Navigate to the "Update

Announcement" page.

2. Update the "Capacity"

field.

3. Select the "Update"

button.

Update external bus

information

successful

Table 6.15 : Test Description of Searching Schedule

Test ID T010- Searching schedule

Testing

Type

Unit testing and integration testing

Test

Strategy

White box Testing

Pre-

condition

User must login as normal user

Test

Case ID

Test Conditions Step Expected Output

TC10_1 Verify the

availability and

functionality of the

schedule search

feature.

1. Navigate to the main page

for the user.

2. Enter a valid destination

name.

3. Select the "Search"

button.

Show the details of

the schedules you are

searching for.

TC10_2 Verify that if no

data is given, the

search feature is

inaccessible.

1. Navigate to the main page

for the user.

2. Select the "Search"

button without entering

any data.

Searching function

failed. Show the

failure message

“Please fill out this

field” at the search

bar

88

Table 6.16 : Test Description of Booking Seats

Test ID T011- Bus Booking

Testing

Type

Unit testing and integration testing

Test

Strategy

White box Testing

Pre-

condition

User must login as normal user

Test

Case ID

Test Conditions Step Expected Output

TC11_1 Verify the

availability and

functionality of the

booking feature.

1. Navigate to the booking

page.

2. Select a seat.

3. Select the "Book Now"

button.

Booking successful.

TC11_2 Validate the

booking function

is Not available if

user book twice

time

1. Navigate to booking page

2. Select a seat after already

booked previously

3. Select the book now

button

Booking function

failed. Show the

failure message “You

can only book one

bus.”

89

Table 6.17 : Test Description for Driver Check-in

Test ID T012- Driver Check-in

Testing

Type

Unit testing and integration testing

Test

Strategy

White box Testing

Pre-

condition

User must login as driver

Test

Case ID

Test Conditions Step Expected Output

TC12_1 Verify that the

check-in feature is

operational.

1. Navigate to check-in page

2. Select check-in date

3. Select the OK from

confirmation box.

Check-in successful

TC12_2 Validate the

check-in function

is Not available if

user check-in

twice time

1. Navigate to check-in page

2. Select check-in date

3. Select the OK from

confirmation box.

Check-in function

failed. Show the

failure message “An

error occurred while

checking in.”

Table 6.18 : Test Description of Driver Check-out

Test ID T013- Driver Check-out

Testing

Type

Unit testing and integration testing

Test

Strategy

White box Testing

Pre-

condition

User must login as driver

Test

Case ID

Test Conditions Step Expected Output

TC13_1 Verify that the

checkout feature is

operational.

1. Navigate to check-out

page

2. Select check-out date

3. Select the OK from

confirmation box.

Check-out successful

TC13_2 Validate the

check-in function

is Not available if

1. Navigate to check-out

page

2. Select check-out date

Check-in function

failed. Show the

failure message “No

90

user check-out

twice time

3. Select the OK from

confirmation box.

check-in found to

check out.”

1.4.3 Test Data and Test Result

Table 6.19: Test Data of User Login

Test Data ID Email Password

TD1_1 yan@gmail.com abcd123

TD1_2

TD1_3 yan@gmail.com 1234

Table 6.20 : Test Data of Registration for Driver Account

Test

Data

ID

Name License

number

Phone Email Password

TD2_1 Ho Min Yan NB001135 01139483321 hominyan1100@gmail.com abcd1234

TD2_2

TD2_3 Ho Min Yan NB001135 01139483321 hominyan1100gmail.com abcd1234

TD2_4 NB001231

Table 6.21 : Test Data of Add Bus for Driver

Test Data ID Number Plate Capacity

TD3_1 NPA 3214 40

TD3_2

TD3_3 44

Table 6.22 : Test Data of User Content

Test Data

ID

Name Matric

Number

Age Phone Email Faculty Course Gender

TD4_1 B0321101256

TD4_2 lang

gmail.com

TD4_3 Ho Jia

Qing

91

Table 6.23 : Test Data of Bus Route

Test Data ID Origin Destination Description Location

TD5_1 UTeM Bukit Beruang From UTeM back

bukit beruang

“Choose at map”

TD5_2

TD5_3 UTeM Bukit Beruang From UTeM back

bukit beruang

Table 6.24 : Test Data of Bus Schedule

Test Data ID Date Time Bus Semester Route

TD6_1 2024-08-23 10:57:00 15 Week 1 to

Week 7

From UTeM

back bukit

beruang

TD6_2

TD6_3 2024-07-28

TD6_4 2024-08-24 11:00:00

Table 6.25 : Test Data of Manage Stop

Test Data ID Stop Name Location Picture Location

TD7_1 Bus Stop near

ixora

Bukit Beruang Bus_stop.jpg “choose in map”

TD7_2

Table 6.26 : Test Data of Announcement

Test Data ID Title Description Dated Posted Route

TD8_1 Bus Late Bus Driver Sick 24/08/2024 From UTeM back

Bukit Beruang

TD8_2

TD8_3 22/

TD8_4 Have traffic jam

92

Table 6.27 : Test Data of External Buses Registration

Test Data ID Number Plate Capacity Zone Departure Date

TD9_1 40

Table 6.28 : Test Data of Searching Schedule

Test Data ID Input

TD10_1 Bukit Beruang

TD10_2 1122

Table 6.29 : Test Data of Booking Seats

Test Data ID Select

TD11_1

TD11_2

Table 6.30 : Test Data of Driver Check-in

Test Data ID Select

TD12_1

TD12_2

Table 6.31 : Test Data of Driver Check-out

Test Data ID Select

TD13_1

TD13_2

1A 2A

1A 2A

23 24

23 24

23 24

23 24

93

1.5 Test Result and Analysis

Table 6.32 : Test Result of User Login

Test Case ID Test Data ID Expected Result Actual Result Pass/Fail

TC1_1 TD1_1 Authentication

successful

Authentication

successful

Pass

TC1_2 TD1_2 Failed to log in.

Show the failure

message “Please

fill up this field”

Show the failure

message “Please

fill up this field”

Pass

TC1_3 TD1_3 Failed to log in.

Show the failure

message “These

credentials do not

match our

records”

Show the failure

message “These

credentials do not

match our

records”

Pass

Table 6.33 : Test Result of Registration for Driver Account

Test Case ID Test Data ID Expected Result Actual Result Pass/Fail

TC2_1 TD2_1 Insert new driver

account

successful

Display success

message “Driver

added

successfully.”

Pass

TC2_2 TD2_2 Insert driver

account failed.

Show the failure

message “Please

fill out this field”

at the input text

field

Show the failure

message “Please

fill out this field”

at the input text

field

Pass

TC2_3 TD2_3 Insert driver

account failed.

Show the failure

message “Please

include an ‘@’ in

the email address.

Show the failure

message “Please

include an ‘@’ in

the email address.

Pass

TC2_4 TD2_4 Update the driver

account

successful

Display success

message “Driver

updated

successfully”

Pass

94

Table 6.34 : Test Result of Add Bus for Driver

Test Case ID Test Data ID Expected Result Actual Result Pass/Fail

TC3_1 TD3_1 Insert new bus

successful

Display success

message “Bus

created

successfully.”

Pass

TC3_2 TD3_2 Insert buses

failed. Show the

failure message

“Please fill out

this field” at the

“Capacity” input

text field

Show the failure

message “Please

fill out this field”

at the “Capacity”

input text field

Pass

TC3_3 TD3_3 Update the bus

successful

Display success

message “Bus

updated

successfully.”

Pass

Table 6.35 : Test Result of User Content

Test Case ID Test Data ID Expected Result Actual Result Pass/Fail

TC4_1 TD4_1 Update user detail

successful

Display success

message “User

updated

successfully”

Pass

TC4_2 TD4_2 Update user detail

failed. Show the

failure message

“Please include an

‘@’ in the email

address.”

Show the failure

message “Please

include an ‘@’ in

the email

address.”

Pass

TC4_3 TD4_3 Update user detail

failed. Show the

failure message

“The provided

name is already in

use.”

Show the failure

message “The

provided name is

already in use.”

Pass

95

Table 6.36 : Test Result of Bus Route

Test Case ID Test Data ID Expected Result Actual Result Pass/Fail

TC5_1 TD5_1 Insert new route

successful

Display success

message “Route

created

successfully.”

Pass

TC5_2 TD5_2 Insert route failed.

Show the failure

message “Please

fill out this field”

at the “origin”

input text field

Show the failure

message “Please

fill out this field”

at the “origin”

input text field

Pass

TC5_3 TD5_3 Insert route failed.

Show the failure

message “The

origin latitude,

origin longitude,

destination

latitude,

destination

longitude are

required.”

Show the failure

message “The

origin latitude,

origin longitude,

destination

latitude,

destination

longitude are

required.”

Pass

Table 6.37 : Test Result of Bus Schedule

Test Case ID Test Data ID Expected Result Actual Result Pass/Fail

TC6_1 TD6_1 Insert new bus

schedule

successful

Display success

message

“Schedule created

successfully.”

Pass

TC6_2 TD6_2 Insert schedule

failed. Show the

failure message

“Please fill out

this field” at the

“date” input text

field

Show the failure

message “Please

fill out this field”

at the “date” input

text field.

Pass

TC6_3 TD6_3 Insert bus

schedule failed.

The previous date

cannot be

selected.

There are not

allow choose

previous date

Pass

96

TC6_4 TD6_4 Update bus

schedule

successful

Display success

message

“Schedule

updated

successfully!”

Pass

Table 6.38 : Test Result of Manage Stop

Test Case ID Test Data ID Expected Result Actual Result Pass/Fail

TC7_1 TD7_1 Insert new stop

information

successful

Display success

message “Stop

created

successfully.”

Pass

TC7_2 TD7_2 Insert stop failed.

Show the failure

message “Please

fill out this field”

at the “name”

input text field

Show the failure

message “Please

fill out this field”

at the “name”

input text field

Pass

Table 6.39 : Test Result of Announcement

Test Case ID Test Data ID Expected Result Actual Result Pass/Fail

TC8_1 TD8_1 Insert new

announcement

successful

Display success

message

“Announcement

created

successfully.”

Pass

TC8_2 TD8_2 Insert

announcement

failed. Show the

failure message

“Please fill out

this field” at the

“title” input text

field

Show the failure

message “Please

fill out this field”

at the “title” input

text field.

Pass

TC8_3 TD8_3 Insert

announcement

failed. The

previous data

cannot be

selected.

Only allowed

choose today at

the “date” input

text.

Pass

97

TC8_4 TD8_4 Update

announcement

successful

Display success

message

“Announcement

updated

successfully.”

Pass

Table 6.40 : Test Result of External Buses Registration

Test Case ID Test Data ID Expected Result Actual Result Pass/Fail

TC9_1 TD9_1 Update external

bus information

successful

Display success

message

“External bus

updated

successfully.”

Pass

Table 6.41 : Test Result of Searching Schedule

Test Case ID Test Data ID Expected Result Actual Result Pass/Fail

TC10_1 TD10_1 Show the details

of the schedules

you are searching

for.

Show the details

of the schedules

you are searching

for.

Pass

TC10_2 TD10_2 Searching

function failed.

Show the failure

message “Please

fill out this field”

at the search bar

Show the failure

message “Please

fill out this field”

at the search bar

Pass

98

Table 6.42 : Test Result of Booking Seats

Test Case ID Test Data ID Expected Result Actual Result Pass/Fail

TC11_1 TD11_1 Booking

successful.

Display success

message

“Booking

confirmed

successfully.”

Pass

TC11_2 TD11_2 Booking function

failed. Show the

failure message

“You can only

book one bus.”

Show the failure

message “You

can only book one

bus.”

Pass

Table 6.43 : Test Result of Driver Check-in

Test Case ID Test Data ID Expected Result Actual Result Pass/Fail

TC12_1 TD12_1 Check-in

successful

Display success

message “Check-

in successful.”

Pass

TC12_2 TD12_2 Check-in function

failed. Show the

failure message

“An error

occurred while

checking in.”

Show the failure

message “An

error occurred

while checking

in”

Pass

99

Table 6.44 : Test Result of Driver Check-out

Test Case ID Test Data ID Expected Result Actual Result Pass/Fail

TC13_1 TD13_1 Check-out

successful

Display success

message

“Checkout

successful”

Pass

TC13_2 TD13_2 Check-in function

failed. Show the

failure message

“No check-in

found to check

out.”

Show the failure

message “No

check-in found to

check out.”

Pass

6.6 Conclusion

In summary, a crucial stage of the Database Life Cycle (DBLC) is system testing. Errors and

faults must be found early on and addressed by the DBLC testing phase. The testing

approaches—white-box—have been used in the UTeM bus schedule management system.

The test schedule, test descriptions, and test results are all included in this chapter.

100

CHAPTER VII

7. CONCLUSION

7.1 Introduction

The general conclusion for the UTeM Bus Scheduling Management System will be covered

in this chapter, along with a critique of its advantages and disadvantages. This chapter will

also describe and expound on recommendations for enhancements that stem from the

examination of the project's strengths and weaknesses and contributions.

7.2 Observation Weakness and Strengths

Every method has its benefits and drawbacks. The UTeM Bus Scheduling Management

System's qualify are described in section 7.2.1, while its shortcomings were discussed in part

7.2.2.

101

7.2.1 Strengths

The strengths of the system are:

i. Convenience

The web-based system offers significant benefits to all three types of users. For example,

it provides convenience by allowing users to access the system from any location and at

any time. UTeM Bus Scheduling Management allow administrator to manage the schedule

information and view the buses information. The system normal user can search the

schedules information and make booking for seats when certain date. When there are any

notifications, the user can check from the system. For driver, they allowed to check-in and

check-out to record their attendance, When drivers had done check-in , normal user able to

check their location at map .

ii. Human Error Reduction

UTeM Bus Scheduling Management is using trigger and stored procedure to store schedule

data into system. The trigger makes sure the number plate of bus cannot insert repeated,

make it unique. Trigger also used at check-in and check-out functions to prevent driver can

check-in twice times. Besides that , administrator can view the graph at the main page of

the admin system.

7.2.2 Weakness

i. Recovery and backup features

The system lacks automatic recovery and backup features. If an administrator accidentally

deletes data, it may not be recoverable.

ii. Training Requirement for Administrator

Administrator may need training to effectively manage the system, which could require

additional time and resources. That is because the admin side system had a lot of function

like insert the bus information and assign the schedules. The administrator can use the

system effectively after he was trained.

102

iii. Dependence on Internet Connectivity

The system requires an internet connection to function, which can be a limitation for users

in areas with poor or no internet access. The system requires a strong internet connection

to check the driver location at the map

7.3 Proposition of Improvement

The following are proposed actions for enhancing the UTeM Bus Scheduling Management

System, based on the identified strengths and weaknesses:

i. Implement Automatic Recovery and Backup Features

To address the lack of recovery and backup features, it is recommended to implement

automatic backup mechanisms. This will ensure that all data is regularly backed up and can

be easily restored in case of accidental deletion or system failure. Cloud-based backup

solutions could be explored for this purpose, providing a secure and reliable method for

data recovery

ii. Enhanced Training Programs for Administrators

To ensure that administrators can effectively manage the system, it is essential to develop

comprehensive training programs. These programs should cover all aspects of the system,

including bus information management, schedule assignments, and troubleshooting

common issues. Additionally, providing administrators with user-friendly manuals and

ongoing support can help them adapt quickly to the system.

iii. Optimize Internet Connectivity Requirements

Considering the system's dependence on a stable internet connection, efforts should be

made to optimize the system to function efficiently even in low-bandwidth scenarios.

Introducing offline functionality for certain features, such as schedule viewing and ticket

booking, could reduce the system's reliance on continuous internet connectivity.

Additionally, implementing data compression techniques and optimizing the map tracking

feature for lower bandwidth usage could improve the system’s performance in areas with

poor connectivity

103

7.4 Contribution

The UTeM Bus Scheduling Management System significantly enhances transportation

management at the university by streamlining bus scheduling and resource allocation,

improving the user experience for students and staff through real-time tracking and online

booking, and supporting data-driven decision-making. It facilitates better communication with

integrated announcements and notifications, ensuring users are always informed about updates.

Additionally, the system contributes to UTeM's sustainability goals by optimizing bus usage,

reducing fuel consumption, and lowering carbon emissions, all of which contribute to a more

efficient and environmentally friendly transportation system.

7.5 Conclusion

 In conclusion, the objectives and scope outlined in Chapter 1 of the project have been

successfully achieved. The UTeM Bus Scheduling Management System aims to replace the

paper-based system with a web-based platform, minimize human errors in updating bus

schedules, provide easy access to bus schedule information, and generate various types of

graphs. The Database Life Cycle (DBLC) methodology was employed, covering phases such

as database initial research, design, implementation and loading, training and evaluation,

operations, and maintenance. Throughout the development process, testing was conducted to

identify and resolve issues within the system. Ultimately, the system has met both the

functional and non-functional requirements. However, some areas still require improvement

for future use. The system fulfils the requirements for a Bachelor of Computer Science

(Database Management) degree and has been successfully completed. Additionally, the

system’s contributions may be integrated into the university's future scheduling processes.

.

104

References

Altexsoft. (2022, July 26). Non-functional Requirements: Examples, Types, How to

Approach. AltexSoft. https://www.altexsoft.com/blog/non-functional-requirements/

Black Box Vs White Box Testing. (n.d.). Www.practitest.com.

https://www.practitest.com/resource-center/article/black-box-vs-white-box-testing/

Weerasuriya, A. (2023, February 9). The Database System Development Life Cycle (DBLC)

- Ayeshan weerasuriya - Medium. Medium. https://medium.com/@ayeshanweerasuriya/the-

database-system-development-life-cycle-dblc-d4c6f3518195

What is a Data Flow Diagram. (n.d.-b). Lucidchart. https://www.lucidchart.com/pages/data-

flow-diagram

Laravel - Installation. (n.d.). https://www.tutorialspoint.com/laravel/laravel_installation.htm

Bus Management System Project Idea For Final Year. (2023, February 18).

LovelyCoding.org. https://www.lovelycoding.org/bus-management-

system/?srsltid=AfmBOoqYyKn_QnDpvOyvoMSg9YMrnQqoT6x_gDPIKzPBYMTPsHyP-

m-a

Vpadmin. (2023, October 10). Navigating System Complexity: A Comprehensive Guide to

Data Flow Diagram Levels - Visual Paradigm Guides. Visual Paradigm Guides.

https://guides.visual-paradigm.com/navigating-system-complexity-a-comprehensive-guide-

to-data-flow-diagram-levels/

105

8. .Appendix

Figure 8.1 : Login Page

Figure 8.2 : Add Driver

106

Figure 8.3 : Add Bus

Figure 8.4 : Add Schedule

107

Figure 8.5 : Add Route

Figure 8.6 : Add Stop

108

Figure 8.7 : Assign Schedule

Figure 8.8 : Add Announcement

109

Figure 8.9 : Admin Dashboard

Figure 8.10 : Driver Detail

110

Figure 8.11 : Driver Report

Figure 8.12 : View User

111

Figure 8.13 : View Schedule

Figure 8.14 : View Announcement

112

Figure 8.15 : View External Bus

Figure 8.16 : User View Schedule

113

Figure 8.17 : List All Stops

Figure 8.18 : Bus Seat Booking Page

114

Figure 8.19 : User View Ticket

Figure 8.20 : Driver Check-in / Check-out Page

115

Figure 8.21 : Driver Tracking

Figure 8.22 : Driver Attendance

