

CAMPUS RIDE APPLICATION

MOHAMAD FIKRI BIN AHMAD FADZIL

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

i

CAMPUS RIDE APPLICATION

MOHAMAD FIKRI BIN AHMAD FADZIL

This report is submitted in partial fulfillment of the requirements for the

Bachelor of [Computer Science (Software Development)] with Honours.

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2024

ii

DECLARATION

I hereby declare that this project report entitled

[CAMPUS RIDE APPLICATION]

is written by me and is my own effort and that no part has been plagiarized

without citations.

STUDENT : ______________________________________ Date : 09 June 2024

(MOHAMAD FIKRI BIN AHMAD FADZIL)

I hereby declare that I have read this project report and found

this project report is sufficient in term of the scope and quality for the award of

 Bachelor of [Computer Science (Software Development)] with Honours.

SUPERVISOR : ______________________________________ Date : ________

TS. DR. LIZAWATI SALAHUDDIN

29/08/2024

iii

DEDICATION

By the time, I would like to express my gratitude to Almighty Allah for granting me

the strength and determination to plan, develop and complete this project by the end

of the semester. This project is dedicated to my loving family and friends, whose

unwavering support and encouragement have been my guiding light throughout this

journey. To my esteemed advisor, especially my supervisor, whose wisdom, guidance

and patience have been invaluable. To my fellow students, who inspire me every day

with their determination and perseverance. This project is for all of us who strive to

make our educational journey more efficient and affordable.

iv

ACKNOWLEDGEMENTS

I extend my deepest gratitude to my academic supervisor, Ts. Dr. Lizawati Binti

Salahuddin, for her unwavering support, guidance, and insightful feedback throughout

this project. Her expertise and encouragement have been invaluable. Special thanks to

my evaluators, Ts. Dr. Kasturi A/P Kanchymalay for their insightful feedback and

constructive criticism, which have significantly contributed to the refinement and

success of this work. I am profoundly grateful to my parents for their unwavering love,

encouragement, and belief in me. Their support has been the foundation of my success

and has motivated me to persevere through challenges. I also wish to acknowledge my

friends for their steadfast support, encouragement, and understanding during both the

triumphs and challenges of this journey. Their presence has made the completion of

FYP 1 more meaningful and memorable. Lastly, I express my heartfelt gratitude to

myself for the unwavering determination and countless hours of hard work invested in

this endeavor. This accomplishment stands as a testament to perseverance and

dedication.

v

ABSTRACT

This study focuses on e-hailing services, akin to conventional services like Grab and

Maxim. It addresses transportation challenges faced by students and leverages shared

ride services to improve efficiency and reduce costs. Frequently, students post on

unofficial university social media platforms seeking to share rides to save money. The

proposed solution is a system like current e-hailing services but with an added sharing

option, enabling students to easily find others to share rides with. The project process

involves analyzing existing studies on shared mobility and ride-sharing solutions in

academic environments, followed by designing and developing a prototype mobile

application featuring the ride-sharing option. The project was developed using an agile

methodology. The application was built with Flutter, and data is stored in Google

Firebase, an online database. The testing strategy involved getting user feedback by

demonstrating the application in an online meeting and providing a video for users to

watch and give their feedback. The final project has seven modules: user

authentication, wallet, ride history, search, sharing, live tracking, and Google APIs.

After testing, most users said that the application is easy to use, helps them save money

on e-hailing, and they enjoy using it. The implementation of this project is expected to

significantly reduce transportation costs for students and enhance efficiency with

higher ride occupancy rates, thereby decreasing the overall number of rides needed.

vi

ABSTRAK

Kajian ini memberi tumpuan kepada perkhidmatan e-hailing, seakan-akan

perkhidmatan konvensional seperti Grab dan Maxim. Ia menangani cabaran

pengangkutan yang dihadapi oleh pelajar dan menggunakan perkhidmatan

perkongsian perjalanan untuk meningkatkan kecekapan dan mengurangkan kos.

Selalunya, pelajar memuat naik permintaan di platform media sosial universiti tidak

rasmi untuk mencari rakan yang boleh berkongsi perjalanan bagi menjimatkan kos.

Penyelesaian yang dicadangkan adalah satu sistem seperti perkhidmatan e-hailing

semasa tetapi dengan pilihan perkongsian tambahan, yang membolehkan pelajar

dengan mudah mencari rakan untuk berkongsi perjalanan. Proses projek ini melibatkan

analisis kajian sedia ada mengenai mobiliti bersama dan penyelesaian perkongsian

perjalanan dalam persekitaran akademik, diikuti dengan reka bentuk dan

pembangunan prototaip aplikasi mudah alih yang menawarkan pilihan perkongsian

perjalanan. Projek ini dibangunkan menggunakan metodologi agile. Aplikasi ini dibina

dengan Flutter, dan data disimpan dalam Google Firebase, sebuah pangkalan data

dalam talian. Strategi pengujian melibatkan mendapatkan maklum balas pengguna

melalui demonstrasi aplikasi dalam mesyuarat dalam talian dan menyediakan video

untuk pengguna menonton serta memberi maklum balas. Projek akhir ini mempunyai

tujuh modul: pengesahan pengguna, dompet, sejarah perjalanan, carian, perkongsian,

penjejakan secara langsung, dan Google APIs. Selepas ujian, kebanyakan pengguna

menyatakan bahawa aplikasi ini mudah digunakan, membantu mereka menjimatkan

wang untuk e-hailing, dan mereka menikmati menggunakannya. Pelaksanaan projek

ini dijangka dapat mengurangkan kos pengangkutan bagi pelajar secara signifikan dan

meningkatkan kecekapan dengan kadar penggunaan perjalanan yang lebih tinggi,

sekaligus mengurangkan jumlah perjalanan yang diperlukan.

vii

TABLE OF CONTENTS

 PAGE

DECLARATION ... II

DEDICATION .. III

ACKNOWLEDGEMENTS ... IV

ABSTRACT ... V

ABSTRAK .. VI

TABLE OF CONTENTS ... VII

LIST OF TABLES .. XIII

LIST OF FIGURES .. XV

LIST OF ABBREVIATIONS ... XVIIII

LIST OF ATTACHMENTS ... XIXI

CHAPTER 1: INTRODUCTION ... 11

1.1 Introduction .. 1

1.2 Problem Statements ... 2

1.3 Objectives .. 2

1.4 Scopes .. 3

1.4.1 Modules to be developed ... 3

1.4.2 Target User .. 4

1.5 Project Significance ... 4

1.6 Expected Output... 5

viii

1.7 Conclusion ... 6

CHAPTER 2: LITERATURE REVIEW AND PROJECT METHODOLOGY . 7

2.1 Introduction .. 7

2.2 Facts and Findings ... 7

2.2.1 Domain .. 8

2.2.2 Existing System ... 8

2.2.3 Technique .. 10

2.3 Project Methodology .. 10

2.4 Project Requirement... 12

2.4.1 Software Requirements .. 12

2.4.2 Hardware Requirements .. 14

2.5 Project Schedules and Milestones .. 15

2.6 Conclusion ... 16

CHAPTER 3: ANALYSIS ... 17

3.1 Introduction .. 17

3.2 Problem Analysis ... 17

3.2.1 Overview of Current System ... 17

3.2.2 Overview of Proposed System ... 18

3.3 Requirement Analysis .. 21

3.3.1 Data Requirements ... 22

 3.3.1.1 Data Dictionary ... 22

3.3.2 Functional Requirements ... 25

3.3.3 Non-Functional Requirements ... 26

ix

3.3.4 Use Case Diagram ... 27

3.3.5 Sequence Diagram ... 28

3.4 Conclusion ... 28

CHAPTER 4: DESIGN ... 29

4.1 Introduction .. 29

4.2 High Level Design ... 29

4.2.1 System Architecture ... 29

4.2.2 User Interface Design .. 30

4.2.3 Conceptual and Logical Design ... 44

4.3 Conceptual and Logical Database Design ... 45

4.3.1 Software Design ... 46

4.3.2 Physical Design ... 47

4.4 Conclusion ... 48

 CHAPTER 5: IMPLEMENTATION .. 29

5.1 Introduction .. 49

5.2 Software Development Environment Setup... 49

5.2.1 Android Studio ... 49

5.2.2 Google Firebase ... 50

5.2.3 Programming Language ... 51

5.2.4 Environment Architecture ... 51

5.3 Software Configuration Management .. 52

5.3.1 Installation and Setup of Android Studio 52

5.3.2 Flutter Setup ... 58

5.3.3 Google Firebase Database Setup ... 61

x

5.4 Version Control Procedure .. 63

5.5 Implementation Status ... 64

5.6 Conclusion ... 65

CHAPTER 6: IMPLEMENTATION ... 29

6.1 Introduction .. 66

6.2 Test Plan... 66

6.2.1 Test Organization ... 66

6.2.2 Test Environment ... 67

 6.2.2.1 Environment Setup ... 68

 6.2.2.2 Application Software .. 68

 6.2.2.3 System Software ... 68

 6.2.2.4 System Hardware .. 69

6.2.3 Test Schedule ... 69

6.3 Test Stratergy ... 70

6.3.1 Dynamic Testing .. 70

6.3.2 User Acceptance Testing ... 70

6.4 Test Design .. 71

6.4.1 Test Description ... 71

 6.4.1.1 Test Description for User Authentication 72

 6.4.1.2 Test Description for Wallet Module 74

 6.4.1.3 Test Description for Ride History Module 75

 6.4.1.4 Test Description for Search Module 76

 6.4.1.1 Test Description for Sharing Module 77

 6.4.1.2 Test Description for Live Tracking Module 79

 6.4.1.3 Test Description for Google APIs 80

xi

6.4.2 Test Data for Dynamic Testing .. 81

 6.4.2.1 Test Data for User Authentication 81

 6.4.2.2 Test Data for Wallet Module .. 86

 6.4.2.3 Test Data for Ride History Module 88

 6.4.2.4 Test Data for Search Module .. 89

 6.4.2.5 Test Data for Sharing Module 90

 6.4.2.6 Test Data for Live Tracking Module 94

 6.4.2.7 Test Data for Google APIs ... 96

6.5 User Acceptance Testing ... 97

6.5.1 Questionnaires for User Acceptance Testing................................. 97

6.6 Test Result and Analysis .. 99

6.6.1 Test Result for Dynamic Testing ... 99

 6.6.1.1 Test Result for User Authentication 99

 6.6.1.2 Test Result for Wallet Module 100

 6.6.1.3 Test Result for Ride History Module 100

 6.6.1.4 Test Result for Search Module 101

 6.6.1.5 Test Result for Sharing Module 101

 6.6.1.6 Test Result for Live Tracking Module 102

 6.6.1.7 Test Result for Google APIs 102

 6.6.1.8 Summary of Recorded Test Case 102

6.6.2 User Acceptance Testing Analysis and Result 103

6.7 Conclusion ... 105

CHAPTER 7: PROJECT CONCLUSION .. 29

7.1 Introduction .. 106

7.2 Observation on Weakness and Strengths ... 106

7.2.1 System Strengths ... 106

xii

7.2.2 System Weakness .. 107

7.3 Propositions for Improvement ... 107

7.4 Project Contribution ... 107

7.5 Conclusion ... 108

REFERENCES ... 29

APPENDICES .. 29

xiii

LIST OF TABLES

 PAGE

Table 2.1: Table of comparison between current system and system developed ..9

Table 2.2: List of Hardware Requirement14

Table 3.1: Firebase Authentication Dictionary19

Table 3.2: User Data Dictionary20

Table 3.3: Ride History Data Dictionary20

Table 3.4: Wallet Data Dictionary21

Table 3.5: Transaction Data Dictionary21

Table 3.6: Driver Data Dictionary22

Table 3.7: Functional Requirement22

Table 3.8: Non-Functional Requirement23

Table 6.1: Test Organization67

Table 6.2: Application Software68

Table 6.3: System Software68

Table 6.4: System Hardware69

Table 6.5: Test Schedule69

Table 6.6: Test Case for User Authentication73

Table 6.7: Test Case for Wallet Module... ..74

Table 6.8: Test Case for Ride History Module75

Table 6.9: Test Case for Search Module76

Table 6.10: Test Case for Sharing Module77

Table 6.11: Test Case for Live Tracking79

Table 6.12: Test Case for Google APIs80

Table 6.13: User Acceptance Questoinnaires97

Table 6.14: Test Result for User Authentication99

xiv

Table 6.15: Test Case for Wallet Module... ..100

Table 6.16: Test Case for Ride History Module100

Table 6.17: Test Case for Search Module101

Table 6.18: Test Case for Sharing Module101

Table 6.19: Test Case for Live Tracking102

Table 6.20: Test Case for Google APIs102

Table 6.21: Summary of Recorded Test Case102

xv

LIST OF FIGURES

 PAGE

Figure 2.1: Screenshot of the Grab finding driver during peak hour 8

Figure 2.2: Screenshot of the Grab price during peak hour 9

Figure 2.3: Screenshot of the Procubex User Live Tracking 9

Figure 2.4: Agile Development Methodology .. 11

Figure 2.5: Android Studio IDE ... 13

Figure 2.6: Google Firebase .. 13

Figure 2.7: Gantt Chart for Campus Ride Application.. 16

Figure 3.1: Flowchart of the system (Part 1) ... 18

Figure 3.2: Flowchart of the system (Part 2) ... 19

Figure 3.3: Flowchart of the system (Part 3) ... 20

Figure 3.4: Use Case Diagram .. 27

Figure 3.5: Sequence Diagram .. 28

Figure 4.1: System Architecture of Campus Ride Application............................ 30

Figure 4.2: Login Page ... 31

Figure 4.3: Register Page ... 32

Figure 4.4: Home Page ... 33

Figure 4.5: Drawer ... 34

Figure 4.6: Wallet Page.. 35

Figure 4.7: Setting Page ... 36

Figure 4.8: History Page .. 37

Figure 4.9: Searching Page .. 38

Figure 4.10: Request Page ... 39

Figure 4.11: Finding Driver Page ... 40

Figure 4.12: Driver Found Page ... 41

xvi

Figure 4.13: Driver Arrived Confirmation Page ... 42

Figure 4.14: Live Tracking Page .. 43

Figure 4.15: Conceptual Database Design ... 44

Figure 4.16: Logical Database Design .. 45

Figure 4.17: Software Design .. 46

Figure 4.18: Entity Relationship Diagram ... 47

Figure 5.1: Android Studio IDE ... 49

Figure 5.2: Google Firebase .. 50

Figure 5.3: Flutter Programming Language ... 51

Figure 5.4: Google APIs ... 51

Figure 5.5: Places API.. 52

Figure 5.6: Cloud Firestore API ... 52

Figure 5.7: Map SDK For Android .. 53

Figure 5.8: Identity Toolkit API ... 53

Figure 5.9: Geocoding API .. 54

Figure 5.10: Directions API ... 54

Figure 5.11: Firebase Cloud Messaging API ... 55

Figure 5.12: Firebase Installations API ... 55

Figure 5.13: Environment Architecture ... 56

Figure 5.14: Android Studio Download Page .. 56

Figure 5.15: Android Studio Setup I ... 57

Figure 5.16: Android Studio Setup II ... 57

Figure 5.17: Android Studio Setup III ... 58

Figure 5.18: Android Studio Setup IV ... 58

Figure 5.19: Android Studio Setup V ... 59

Figure 5.20: Android Studio Setup VI ... 59

Figure 5.21: Android Studio Setup VII .. 60

Figure 5.22: Android Studio Setup VIII .. 60

Figure 5.23: Android Studio Setup IX ... 61

Figure 5.24: Android Studio Setup X ... 61

Figure 5.25: Android Studio Setup XI ... 62

Figure 5.26: Flutter Setup I ... 62

Figure 5.27: Flutter Setup II ... 63

Figure 5.28: Flutter Setup III .. 63

xvii

Figure 5.29: Flutter Setup IV .. 64

Figure 5.30: Flutter Setup V ... 64

Figure 5.31: Flutter Setup VI .. 65

Figure 5.32: Flutter Setup VII .. 65

Figure 5.33: Google Firebase Database Setup I .. 66

Figure 5.34: Google Firebase Database Setup II ... 66

Figure 5.35: Google Firebase Database Setup III ... 66

Figure 5.36: Google Firebase Database Setup IV ... 67

Figure 5.37: Google Firebase Database Setup V ... 67

Figure 5.38: Google Firebase Database Setup VI ... 67

Figure 6.1: Pie Chart of Questionnaire Question .. 107

Figure 6.2: Bar Chart of Questionnaire Question .. 108

Figure 6.3: Bar Chart of Questionnaire Question .. 108

Figure 6.4: Bar Chart of Questionnaire Question .. 109

Figure 6.5: Bar Chart of Questionnaire Question .. 109

Figure 6.6: Bar Chart of Questionnaire Question .. 110

Figure 6.7: Bar Chart of Questionnaire Question .. 110

Figure 6.8: Bar Chart of Questionnaire Question .. 111

Figure 6.9: Bar Chart of Questionnaire Question .. 111

Figure 6.10: Bar Chart of Questionnaire Question .. 112

Figure 6.11: Bar Chart of Questionnaire Question .. 112

Figure 6.12: Bar Chart of Questionnaire Question .. 113

Figure 6.13: Bar Chart of Questionnaire Question .. 113

Figure 6.14: Bar Chart of Questionnaire Question .. 114

Figure 6.15: Bar Chart of Questionnaire Question .. 114

Figure 6.16: Bar Chart of Questionnaire Question .. 115

Figure 6.17: Bar Chart of Questionnaire Question .. 115

Figure 6.18: Bar Chart of Questionnaire Question .. 116

Figure 6.19: Bar Chart of Questionnaire Question .. 116

Figure 6.20: Bar Chart of Questionnaire Question .. 117

Figure 6.21: Bar Chart of Questionnaire Question .. 117

Figure 6.22: Bar Chart of Questionnaire Question .. 118

Figure 6.23: Bar Chart of Questionnaire Question .. 118

xviii

LIST OF ABBREVIATIONS

FYP - Final Year Project

xix

LIST OF ATTACHMENTS

 PAGE

Appendix A: Demographic (User Information) .. 124

Appendix B: Demographic (Perceived Ease of Use) ... 125

Appendix C: Demographic (Perceived Usefulness) .. 126

Appendix D: Demographic (Capability) .. 127

Appendix E: Demographic (Trustworthiness) .. 128

Appendix F: Demographic (Attitude) .. 129

Appendix G: Demographic (Intention to Use)... 130

CHAPTER 1: INTRODUCTION

1.1 Introduction

In recent years, the rise of e-hailing services such as Grab and Maxim has

revolutionized urban transportation, providing convenient and efficient travel options

for users. However, despite the convenience, individual rides can be costly,

particularly for students who often operate on tight budgets. This project aims to

address the transportation challenges faced by students by introducing a shared ride

feature into the existing e-hailing framework. By enabling students to share rides, this

system seeks to reduce transportation costs and improve overall efficiency.

The background of this project stems from the observation that students

frequently use unofficial university social media platforms to coordinate shared rides

informally. While this method has helped some students save on transportation costs,

it is often inefficient and lacks a structured approach. Therefore, the proposed solution

is to develop a dedicated system within the e-hailing service that facilitates ridesharing

among students.

This project involves analyzing current shared mobility and ride-sharing

solutions in academic environments, designing a user-friendly mobile application

prototype, and implementing the ride-sharing feature. The goal is to create a

sustainable and cost-effective transportation solution for students, enhancing their

mobility while reducing the financial burden associated with individual rides. Through

this innovative approach, the project aims to foster a more collaborative and

economical transportation system within the university community.

2

1.2 Problem Statements

Existing hailing services present several challenges for students, particularly in

terms of convenience, expense, and reliability. The high cost associated with

individual rides often places a significant financial strain on students, who typically

have limited financial resources. Furthermore, the inconsistency and unreliability of

these services can lead to delays and missed appointments, complicating students'

schedules and daily routines. These issues underscore the necessity for a more cost-

effective and reliable transportation solution specifically tailored to the needs of

students.

Additionally, current e-hailing services lack features and discounts that would

attract students to use them more frequently. Many of these services do not offer

special pricing, or group ride options that cater to the student demographic, who are

consistently seeking ways to save money. The absence of such incentives reduces the

appeal of these services among students. This gap reveals a significant opportunity for

the development of a ride-sharing system that incorporates features specifically

designed to meet the financial and practical needs of students.

Finally, safety concerns remain a significant issue for students who utilize e-

hailing services. Reports of safety incidents and a general lack of trust in the security

measures provided by current services deter students from relying on them for their

transportation needs. Safety is a paramount concern for students, particularly those

traveling at night or in unfamiliar areas. Addressing these safety concerns through new

security features for increasing student usage and confidence in e-hailing services.

1.3 Objectives

I. To design a solution that facilitates students in getting e-hailing

services and enabling ridesharing for cost effectiveness and community

building.

II. To develop a student e-hailing service application using Flutter and

Firebase, integrating additional features such as live tracking and an

emergency button to enhance the transportation experience.

3

III. To test the functionality of the developed system.

1.4 Scopes

1.4.1 Modules to be developed.

I. Login Module

This module allows registered users to access the application by entering

their matric number and password.

II. Register Module

This module will register the new user by providing necessary information

and storing the data into the system database.

III. Searching Module

This module, user needs to input drop off locations and finding the

available driver to fulfill the requests.

IV. Wallet Module

This module allows users to manage their money within the app. User can

make payment using the funds in the wallets, reload the wallet, check their

balance and view transactions history.

V. Ride History Module

This module provides users with a detailed record of their past rides. It

includes information such as date, time, pickup and drop-off locations.

4

VI. Live Tracking Module

This module offers real-time tracking of the ride. Users can see the exact

location of their ride until they reach the destination.

VII. Sharing Module

This module helps users to find users who want to share their ride who have

similar routes.

VIII. Emergency Module

This module has an emergency button that users can press to alert the pre-

selected contacts just in case of danger.

IX. Rating Module

This module allows users to rate their ride experience and provide feedback

on drivers.

1.4.2 Target Users

The Campus Ride Application is designed for students who want to share rides

to reduce costs. Users can search for their destination, and the system will help them

find other users with the same pick-up and drop-off locations. If both parties agree to

share the ride, they can split the cost, making it more affordable for everyone involved.

1.5 Project Significance

The idea for the Campus Ride Application came from the common

transportation problems that students face. Many students find it hard to afford

transportation costs while also managing their studies and personal lives. Seeing many

students post on university social media to find ride-sharing partners showed the need

for a better solution. Additionally, the increasing focus on protecting the environment

and reducing pollution inspired the creation of a ride-sharing system to help make

5

campuses greener. This platform aims to make transportation easier, cheaper, and more

eco-friendly, improving the overall student experience.

1.6 Expected Output

The Campus Ride Application aims to meet the project's goals and solve

existing problems with smart solutions. With the ride-sharing system, students don't

have to post on unofficial university social media to find someone to share a ride with.

The app will automatically search its database to find suitable matches based on the

users' ride details like departure, destination, and preferred times. When the system

finds potential matches, it sends notifications to the users, asking if they want to share

the ride. This automatic matching saves users time and effort, making it easier to find

ride-sharing partners. If both users accept the ride-sharing offer, the app helps arrange

the ride, ensuring they both pay a reduced fare. This cost-saving feature helps students

manage their transportation expenses better, allowing them to use their budget for

other important needs. The Campus Ride Application makes transportation more

convenient and affordable for the student community.

1.7 Conclusion

The Campus Ride Application effectively addresses students' transportation

challenges by offering a convenient and cost-effective ride-sharing solution. By

automating the matching process and reducing fares, the app saves time and money,

promoting community and sustainability. This user-friendly tool enhances the overall

transportation experience for students.

CHAPTER 2: LITERATURE REVIEW AND PROJECT METHODOLOGY

2.1 Introduction

A literature review is an academic writing task that situates and showcases a

deep understanding of the academic literature on a particular topic. Unlike a mere

literature report, a literature review involves a critical evaluation of the sources. It

encompasses both the process of reading and writing about literature. On the other

hand, project methodology, also known as System Development Methodology (SDM),

is a standardized process used within organizations to complete all essential phases of

the software system life cycle. This includes planning, analysis, design, development,

implementation, testing, and maintenance. It is crucial for enterprises to employ a

systems development methodology when creating new systems.

2.2 Facts and Findings

The technique of gathering facts and findings in project management involves

the systematic collection of data and information from various sources, including

existing documents, research materials, observations, and prototypes. These facts and

findings are typically used to enhance the current system under development.

Employing fact-finding techniques is essential in the System Development Life Cycle,

as it facilitates the efficient and effective extraction of relevant information. This

section emphasizes the collection of information through comprehensive research and

studies. In this chapter, the facts and findings pertaining to the Campus Ride

Application will be detailed.

7

2.2.1 Domain

The Campus Ride Application operates within the transportation domain,

specifically focusing on student transportation needs. It addresses the unique

requirements of students for cost-effective and efficient ride-sharing solutions,

allowing users to search for nearby ride-sharing opportunities, schedule shared rides,

and receive information about ride-sharing options. By facilitating the efficient

management of ridesharing, the application helps reduce transportation costs and

improves convenience for students.

Additionally, the Campus Ride Application incorporates e-hailing services,

providing an on-demand transportation option where users can book rides through the

app. This integration ensures students have access to various transportation options,

including the ability to hail a ride instantly when no scheduled ride-sharing

opportunities are available. E-hailing services offer flexibility and convenience,

making it easier for students to get to their destinations promptly and safely.

The application also raises awareness about the benefits of ride-sharing and e-

hailing, encouraging students to participate in shared transportation. By educating the

student body about the economic and environmental advantages of these services and

highlighting their role in fostering community connections, the Campus Ride

Application promotes sustainable transportation practices and enhances student

engagement.

2.2.2 Existing System

The Campus Ride Application is a comprehensive system designed to enable

students to share their rides, thereby reducing transportation costs and helping them

save money. This innovative solution addresses a gap in the current e-hailing services,

which typically do not offer ride-sharing features tailored to the needs of students.

As an example, if we take the currently used e-hailing service called Grab, and

a project by V3Cube where the application called Procubex User, there are some

weaknesses in this system which can be improvised in the Campus Ride. Grab system

will be very difficult to book during peak hour. This will result in long waiting times

8

causing inconvenience and frustration, especially for students who have tight

schedules for classes and other commitments. For Procubex User, although it has a

live tracking function, it lacks an emergency call button. If anything were to happen to

a student, having an emergency button would be extremely helpful, allowing students

to make a call even when they are scared. As an example, the figure 2.1 show that

finding driver take almost one hour.

Figure 2.1: Screenshot of the Grab finding driver during peak hour

Next is the unjust fare during surge. This problem is the fares are increasing

significantly during periods of high demand. This surge in pricing can lead to

prohibitively expensive fares for students who may already be operating on limited

budgets. Campus Ride Application offers more stable and predictable pricing by

promoting shared rides. As example, figure 2.2 showing that the price for 10Km route

that usually costs RM17 is increased to RM44 because of high demand.

9

Figure 2.2: Screenshot of the Grab price during peak hour

Figure 2.3: Screenshot of the Procubex User Live Tracking

10

Table 2.1 Table of comparison between current system and system developed

 Grab Procubex User Campus Ride

Application

Shared features No No Yes

Difficulty to book

during peak hour

Yes Yes No

Fares pricing Can be increased

during peak hour

More stable and

difficult to

increase

More stable and

difficult to increase

Live Tracking No No Yes

Emergency Button No No Yes

2.2.3 Technique

One technique to overcome the problems of the existing system is to implement

ride-sharing features. This allows users to share their rides, thereby decreasing the

overall cost.

Another solution is to design the system to automatically reject requests when

demand exceeds supply. This means that if a driver is busy, the system will promptly

reject the user’s request, preventing users from wasting time waiting for driver

confirmation.

Additionally, the system will ensure that prices remain consistent, even during

peak hours, so users are not subjected to higher fares when demand is high.

2.3 Project Methodology

There are several system development methods, like Agile, DevOps, Waterfall,

and Rapid Application Development. The Agile Development methodology is best for

11

this project because it allows for small, manageable steps, making it easy to adapt to

changes based on student needs. Agile focuses on continuous improvement,

collaboration, and regular user feedback, ensuring the application meets student

requirements effectively. This approach also enables quicker releases of functional

features, helping to address transportation issues for students sooner.

Figure 2.4 Agile Development Methodology

Figure 2.3 shows the model of Agile Development Methodology, which

consists of six steps: plan, design, develop, test, deploy, and review (What is Agile

Methodology, 2024).In the planning phase, the project team identifies the goals,

requirements, and tasks needed to develop the student e-hailing service. This involves

understanding the specific needs of students, such as cost-effective ride sharing, live

tracking, and emergency features. The team creates a detailed project roadmap,

outlining the steps required to achieve these goals and setting clear milestones for

progress.

During the design phase, the team focuses on creating a blueprint for the

application. This includes designing the user interface (UI) and user experience (UX)

to ensure the app is user-friendly and intuitive for students. The design process

involves creating wireframes, mockups, and prototypes to visualize how the app will

look and function, making sure it meets the students' expectations and preferences.

In the development phase, the team begins coding the application using Flutter

and Firebase. This step involves building the core features of the app, such as the ride-

sharing functionality, user accounts, and integration with mapping services for live

12

tracking. The developers work iteratively, focusing on small, manageable pieces of

work to ensure steady progress and maintain flexibility to adapt to changes.

The testing phase involves rigorously checking the functionality of the

application to ensure it works as intended. The team tests for bugs, performance issues,

and security vulnerabilities. They also gather feedback from a small group of students

to identify any usability issues and refine the app’s features. This step is crucial to

ensure the app provides a smooth and reliable experience for users.

Once the application has been thoroughly tested, it is deployed to a live

environment where students can start using it. The team ensures that the app is

available for download on relevant app stores and monitors its initial performance.

This phase also includes setting up the necessary infrastructure to support the app and

addressing any issues that arise during the initial rollout.

In the review phase, the team collects feedback from users and evaluates the

app’s performance. They identify areas for improvement and prioritize new features

based on user needs and suggestions. This continuous feedback loop allows the team

to plan the next iteration of development, ensuring the app evolves to better meet the

students' requirements and enhances their overall transportation experience.

2.4 Project Requirement

Project requirements are the features, functions, and tasks that need to be completed

for a project to be successful. They establish various objectives for stakeholders to

achieve and offer a clear set of guidelines for everyone involved to follow.

2.4.1 Software Requirements

In developing this system, preparing the software requirements in the initial phase is

crucial to ensure a smooth development process. For this project, the necessary

software requirements are listed below:

I. Android Studio IDE

13

Figure 2.5 Android Studio IDE

Figure 2.4 shows Android Studio as the official IDE for Android app

development, provided by Google. It offers a powerful code editor, visual

layout editor, and various testing and debugging tools. Features like real-

time code analysis, intelligent code completion, and an integrated emulator

make it easy to develop and test high-quality Android apps efficiently.

II. Google Firebase

Figure 2.6 Google Firebase

Figure 2.5 shows Google Firebase is a platform that provides various tools

and services to help developers build, improve, and grow their applications.

14

It offers backend services like real-time databases, authentication, cloud

storage, and hosting. Firebase also includes analytics, performance

monitoring, and crash reporting to help developers understand and improve

app performance. With its comprehensive suite of features, Firebase

simplifies the development process and enables developers to focus more

on building great user experiences.

2.4.2 Hardware Requirements

Each hardware component plays a specific role in supporting the research. Table 2.2

outlines the hardware components along with their respective descriptions.

15

Table 2.2 List of Hardware Requirements

Hardware Specification Description

Android Phone Android 11 and above The program will be

executed on an Android

phone.

Laptop Windows 10 Home

Single Language or

higher, with a

minimum of 16GB

RAM and an Intel

Core i5 9th Gen or

equivalent processor

or better.

A laptop will be used for a

variety of functions, such as

running software required for

program development and

helping with project

documentation.

USB Cable USB 2.0 with

supported data

transfer.

Before the program can be

launched, an Android phone

and laptop must be connected

via a USB cable.

2.5 Project Schedules and Milestones

A milestone is a specific point in a project's life cycle used to measure progress

toward the final goal. In project management, milestones indicate key events such as

the project's start and finish dates, external reviews and feedback, budget evaluations,

and the submission of major deliverables. Figure 2.6 shows the project schedule and

milestones for developing the Campus Ride system.

16

Figure 2.7 Gantt Chart for Campus Ride Application

2.6 Conclusion

This chapter offered a thorough examination of the literature pertinent to the

development of the Campus Ride Application, emphasizing the urgent necessity for

cost-effective and efficient student transportation solutions. It underscored the

significance of comprehending the domain, assessing current systems, and

implementing effective strategies to resolve identified challenges. Furthermore, the

chapter delineated the project methodology, emphasizing that the Agile Development

approach was the optimal choice for this project. The dynamic requirements of the

student body are well-suited to the methodology's emphasis on adaptability,

collaboration, and continuous improvement. Additionally, the development process

was guaranteed a clear roadmap by specifying the requisite software and hardware

requirements. Finally, the project schedule and milestones were established to assure

the successful implementation of the Campus Ride Application and to measure

progress. To effectively and efficiently address the transportation requirements of

students, this structured approach guarantees that the project is well-positioned.

CHAPTER 3: ANALYSIS

3.1 Introduction

The analysis phase in software development is the first step of the software

development life cycle (SDLC) in which the requirements and goals of the software

project are established and examined. During this phase, data will be collected and a

comprehensive analysis will be conducted on the issue domain, user requirements, and

current systems. This chapter presents an outline of the requirements gathered for both

the current system (referred to as the "as-is system") and the proposed system, which

is a Campus Ride Application. The requirements are described based on many factors,

including business processes, data flow diagrams, functional requirements, and non-

functional requirements.

3.2 Problem Analysis

The chapter 1.2 covers the problem statement. This part presents the problem

with the existing system and describes how the suggested system is to be implemented

based on the issue with the existing system.

3.2.1 Overview of Current System

For students, the Grab system as it stands now poses problems with dependability,

affordability, and convenience. Students with limited funds often cannot afford the

high travel costs. Furthermore, Grab does not provide group ride options or special

rates designed for students. The system currently offers features such as ride-hailing,

food delivery, package delivery, and digital payments, which are all accessible through

18

the Grab mobile app. The system flow typically involves users opening the app,

selecting the desired service, inputting their location and destination, and then

confirming the booking or order. Despite these features, students are discouraged from

utilizing Grab due to safety concerns, especially at night or in unfamiliar places.

Enhancing security measures and offering incentives tailored to students can help

address these problems and raise service confidence.

3.2.2 Overview of Proposed System

Figure 3.1 Flowchart of the system (Part 1)

19

Figure 3.2 Flowchart of the system (Part 2)

20

Figure 3.3 Flowchart of the system (Part 3)

Figure 3.1, 3.2 and 3.3 displays the suggested system flowchart for the Campus

Ride Application. This flowchart illustrates the progression of the flow system. In this

suggested system, users are required to log in before accessing the system. If they do

not have an account, they must first register. Upon successful login, the user is required

to input the drop-off location. If the specified location does not exist, the user must

input another location that is closest to the desired drop-off location. If the system

21

exists, it will generate a polyline representing the course of the ride, together with the

precise distance and price of the ride. Once the user confirms the ride, the system will

initiate the process of locating the closest available driver. Users have the option to

cancel their ride request if the price exceeds their budget. Once the driver is located,

the system will provide a prompt to the user, asking if they wish to install this driver.

When the user cancels, the system will propose an alternative driver. Once the driver

has been confirmed, the user must wait patiently until the driver arrives. At this point,

if the user decides to cancel the ride, they will be required to pay a penalty. Once the

driver has arrived, the user can monitor the ride in real-time on the tracking website.

This page is equipped with an emergency button to be used in case the user is in a

perilous situation. The system will autonomously initiate a phone call to the individual

designated by the user in their user profile. Upon completing the ride, the user is

required to make payment to the driver using either an e-wallet or cash. Additionally,

the user has the option to rate the driver. This ride will be recorded in the user's ride

history.

3.3 Requirement Analysis

Requirement analysis is the systematic procedure of comprehending, documenting,

and scrutinizing the necessities, goals, and limitations of a software project or system.

It entails the process of collecting, clarifying, and arranging the needs from different

stakeholders, such as clients, users, and other pertinent parties. The objective of

requirement analysis is to identify and specify the fundamental functionalities,

features, and qualities that the program or system must have to achieve the desired

goals. It aids in ascertaining the required functionalities and behaviours of the software

or system, as well as the limits and limitations that should be considered during the

development process. This section involves the comprehensive evaluation of all

essential tasks associated with requirements, including the creation of a data

dictionary, the establishment of functional requirements, and the specification of non-

functional needs. Furthermore, it entails requesting further explanation from the client

to obtain a precise comprehension of the comparative significance of various criteria.

22

3.3.1 Data Requirements

Data requirements pertain to the precise necessities and distinctive attributes of the

data that a software system or application necessitates to operate efficiently. These

requirements specify the necessary data components, their attributes, relationships,

and limitations for the system to function. Data requirements are usually established

during the requirement analysis stage of software development and are recorded to

ensure a precise comprehension of the data necessary to support the system's

functionality and objectives. The data dictionary will address the data requirements,

namely which tables and attributes should be stored in the database.

3.3.1.1 Data Dictionary

A data dictionary, usually referred to as a metadata repository, is a fundamental

element of a database management system (DBMS). It functions as a thorough catalog

or repository that offers intricate details on the data included within a database. For the

Campus Ride Application, I’m utilizing Firebase as my DBMS. Below are the data

definitions and descriptions for the application.

• Firebase Authentication

Table 3.1 shows the attributes that will be created in Firebase Authentication table

which are email and password.

Table 3.1 Firebase Authentication Dictionary

Field Name Data Format Constraint Description

Identifier xxxx@xxxx Not null User email

Password xxxxxxxxxx Not null User password

23

• Firebase Firestore User

Table 3.2 shows the attributes that will be created in User table which are name,

shared_Permission, emergencyNumber and fcmTokens.

Table 3.2 User Data Dictionary

User

Field Name Data Type Data Format Description

name String xxxxx User fullname

shared_permission Boolean True/False User share

permission

emergencyNumber String xxxxx User emergency

number to call

fcmTokens String xxxxx User’s FCM

Token to show

notification

• Firebase Firestore Ride History

Table 3.3 shows the attributes that will be created in Ride History table which are

date, from, to and status.

Table 3.3 Ride History Data Dictionary

Ride History

Field Name Data Type Data Format Description

date Timestamps Date and Time User ride

timestamp

from String xxxxx User pickup

location

to String xxxxx User drop off

location

status String xxxxx User ride status

24

• Firebase Firestore Wallet

Table 3.4 shows the attributes that will be created in Wallet table which are date,

from, to and status.

Table 3.4 Wallet Data Dictionary

Ride History

Field Name Data Type Data Format Description

totalBalance Number xxxx User e-wallet

balance

lastUpdated Timestamps Date and Time User last balance

reload

to String xxxxx User drop off

location

• Firebase Firestore Transaction History

Table 3.5 shows the attributes that will be created in Transaction History table

which are amount, name, time and type.

Table 3.5 Transaction History Data Dictionary

Ride History

Field Name Data Type Data Format Description

amount Number xxxx Amount enter or

out from wallet

name String xxxx Title for the

transaction

time Timestamps Date and Time User transaction

made

type String xxxx Value to

determine if the

amount is enter or

out from wallet

25

• Firebase Firestore Driver

Table 3.6 shows the attributes that will be created in Transaction History table

which is name.

Table 3.6 Driver Data Dictionary

Ride History

Field Name Data Type Data Format Description

name String xxxx Fullname of the

driver

3.3.2 Functional Requirements

Functional requirements are precise and detailed descriptions of the actions,

tasks, or capabilities that a system, program, or product must have to effectively serve

its intended purpose and satisfy the requirements of its users. These requirements

delineate the operational behavior and capabilities of the system, specifying its

expected actions or performance in different contexts. Table 3.7 displays the

Functional Requirements of the Campus Ride Application.

Table 3.7 Functional Requirements

FR No. Module Functional Requirement

FR01 Login Module Users need to enter Matric Number and

Password before entering the system

FR02 Registration Module Users need to enter Full name, Matric Number,

Password and Confirm Password to register

new account into system.

FR03 Home Page System displays the location of user in the

map.

FR04 Searching Module Users need to enter Drop Off location to start

using the service.

FR05 Live Tracking Module Users can monitor current ride on the map.

26

FR06 Emergency Module Users can click Emergency Button to quickly

call the number that has been setup in profile.

FR07 Wallet Module Users can track current balance in e-wallet and

monitor transaction history made using wallet.

3.3.3 Non-Functional Requirements

Non-functional requirements, commonly referred to as quality attributes or system

qualities, are the specific criteria that establish the overall behaviour, performance, and

characteristics of a system, software, or product. Nonfunctional requirements differ

from functional requirements in that they specify the desired behaviour and

performance of the system in terms of other attributes, rather than specific capabilities.

Table 3.8 displays the Non-Functional Requirements of the Campus Ride Application.

Table 3.8 Non-Functional Requirements

NFR No. Non-Functional Requirements

NFR01 The system should provide search results and display ride options

within 2 seconds.

NFR02 The application should be compatible with mobile operating

systems (iOS, Android).

NFR03 The application should load within 3 seconds on a standard mobile

internet connection.

NFR04 The system should handle errors gracefully, providing meaningful

error messages and allowing users to retry actions where

appropriate.

27

3.3.4 Use Case Diagram

Figure 3.4 Use Case Diagram

Figure 3.2 depicts the Use Case Diagram of the Campus Ride Application. A use case

diagram is a graphical depiction of the functional specifications of a system, program,

or product. It demonstrates the exchanges between actors (users or external systems)

and the system, highlighting the different scenarios or activities carried out by the

actors within the system.

28

3.3.5 Sequence Diagram

Figure 3.5 Sequence Diagram

Figure 3.2 depicts the sequence diagram of the Campus Ride Application. The

user assumes the role of the actor in this diagram, which also demonstrates the flow of

the system with its main module.

3.4 Conclusion

The problems with analysis, functional requirements, and non-functional needs

will be covered in end of this chapter. This chapter aims to analyse the present system

to help the developer improve the system more smoothly by pointing up and fixing

possible problems.

CHAPTER 4: DESIGN

4.1 Introduction

The design of a software system refers to the systematic process of creating a detailed

plan or blueprint. Prior to commencing the actual implementation of the software

application, it is essential to make decisions regarding its architecture, components,

and overall structure. Software system design is to ensure that a system is capable of

being expanded, easily controlled, meets the desired functional requirements, and

performs efficiently.

4.2 High Level Design

High-level design (HLD) refers to the process of creating a detailed and

overarching plan for the structure and concept of a software system or application. The

main emphasis is on the overall architecture, modules, and their interconnections,

without delving into the technical implementation details. This section provides an

overview of the system's high-level design, which includes the architecture, user

interface design, and database design.

4.2.1 System Architecture

System architecture refers to the conceptual structure and organization of a

software system or application. The purpose of the document is to define the basic

framework, elements, and their interconnections, serving as a blueprint for the design

and development of the system.System architecture provides a comprehensive view of

the system, highlighting its key components and their interrelationships.Users will

30

access and interact with the Campus Ride Application through mobile devices. User

input data will be kept in the online database, specifically Google Firebase. The

system's architecture is depicted below.

Figure 4.1 System Architecture of Campus Ride Application

Figure 4.1 shows the system architecture for Campus Ride Application which

retrieve and fetch data from Firebase database.

4.2.2 User Interface Design

User interface design encompasses the activities involved in the creation and

arrangement of the visual and interactive components of a system product, which

facilitate user interaction. The main objective is to improve the user experience (UX)

by creating a visually attractive, intuitive, and user-friendly interface. This section will

provide an explanation of the UI design screenshots of the Blood Care Application.

31

Figure 4.2 Login Page

Figure 4.2 shows that on the Login Page, the user needs to enter their Username

and password to authenticate their identity and access the system.

32

Figure 4.3 Register Page

Figure 4.3 shows that on the Register Page, the user needs to enter their matrix

number, full name, password, and confirm password to create a new account.

33

Figure 4.4 Homepage

Figure 4.4 show the homepage of the application to the user where user can

click on the search drop off to start searching for the drop off location.

34

Figure 4.5 Drawer

Figure 4.5 shows the drawer of the application where the user can navigate to

other pages within the application.

35

Figure 4.6 Wallet Page

 Figure 4.6 shows the e-wallet page where the user can track their balance and

transaction history. Green indicates funds entered, while red indicates funds used.

36

Figure 4.7 Setting Page

Figure 4.7 shows the settings page where the user can edit their profile, adjust

privacy settings, manage notification preferences, change their password, and view the

terms and conditions..

37

Figure 4.8 History Page

 Figure 4.8 displays the history of ride requests. It includes details of all ride

requests, even if they have been canceled.

38

Figure 4.9 Searching Page

Figure 4.9 shows the drop-off location search page. Here, the user can enter

any place name, and the system will provide an autocomplete list based on the input.

The user can then click on a suggestion to proceed with the ride booking.

39

Figure 4.10 Request Page

Figure 4.10 shows the request page. Here, the user can see the price and

distance to the drop-off location, and enter the total number of passengers before

requesting the ride.

40

Figure 4.11 Finding Driver Page

Figure 4.11 shows the system searching for an available driver.

41

Figure 4.12 Driver Found Page

Figure 4.12 shows that the system has found a driver. If the user does not want

the assigned driver, they can cancel the ride and start a new request.

42

Figure 4.13 Driver Arrived Confirmation

Figure 4.13 shows that the driver is on their way to the drop-off location. The

user needs to click the "Driver Arrived" button to inform the system that the driver has

arrived.

43

Figure 4.14 Live Tracking Page

Figure 4.14 shows the live tracking page where the user can monitor their

location and ensure the correct path is being followed. The user can click the SOS

button to immediately call the contact set up in their profile if they feel unsafe.

44

4.2.3 Conceptual and Logical Database Design

Figure 4.15 Conceptual Database Design

Figure 4.15 shows the conceptual database design for Campus Ride

Application. The design consists of seven entities which are User, Balance, Personal

Information, Drop Off Location, System, Get User FCM Token, and Driver. User can

reload the balance, insert the personal information, search the drop off location and

rate the driver. The system will save the drop off location into the ride history and

system will automatically save the user FCM token into database.

45

Figure 4.16 Logical Database Design

Figure 4.16 depicts the logical database design of Campus Ride Application

that consists of five entities and every entity has their own attributes in the table.

4.3 Conceptual and Logical Database Design

Detailed design is the stage in which the overall structure and specifications of

a software system are transformed into a more intricate and precise design. It entails

developing the technical blueprint or strategy for executing the software solution. This

section will provide a comprehensive explanation of the intricate design of the Blood

Care Application.

46

4.3.1 Software Design

Figure 4.17 Software Design

Figure 4.17 shows the class diagram for Blood Care Application which displays seven

tables which show all the attributes contained for each of the tables.

47

4.3.2 Physical Design

Figure 4.18 Entity Relationship Diagram

Figure 4.18 displays the Entity Relationship Diagram (ERD) for the Campus Ride

Application. This Entity-link Diagram (ERD) illustrates the specific link between each

table and the attributes associated with each table.

48

4.4 Conclusion

In this chapter, the design of the project was delineated, encompassing an

Entity Relationship Diagram for both the Conceptual and Logical Design. The

system's architecture, Graphic User Interface (GUI), and Database Design were all

discussed in a comprehensive manner. The output obtained can be directly employed

for the development of programming languages.

Before starting system development, it is essential to complete the design

process. This step facilitates the developer in determining the most suitable techniques

and tactics to utilize prior to moving forward with the implementation phase. Software

design can be accomplished using several methodologies. An effective design can

result in a successful development phase.

CHAPTER 5: IMPLEMENTATION

5.1 Introduction

All the planning and designing will begin to manifest as the actual product

during system installation. The team members will focus on creating, testing,

debugging, and installing compilers all tasks necessary to construct the system.

Ensuring that the finished product functions as intended during the design phase is the

aim of implementation.

5.2 Software Development Environment Setup

5.2.1 Android Studio

Figure 5.1 Android Studio IDE

Android Studio is the primary software development environment utilized in

the creation of the Campus Ride Application, as seen in Figure 5.1. An integrated

development environment (IDE) designed especially for creating Android apps is

50

called Android Studio. It is the official platform for creating Android apps, and

developers use it extensively for development, testing, and debugging. A

comprehensive suite of tools and capabilities is provided by Android Studio to

facilitate the development process and assist developers in producing high-calibre

Android apps. It is continually being updated and enhanced, which makes it a useful

resource for Android app developers. It makes the process of creating apps simpler

and offers a wealth of information and documentation to support developers of all

experience levels.

5.2.2 Google Firebase

Figure 5.2 Google Firebase

Figure 5.2 illustrates the tools and services that Google Firebase, a cloud-based

platform, offers for developing mobile and web applications. It offers a NoSQL cloud-

based database called Firebase Realtime Database, but it's not just a database

administration tool like phpMyAdmin. Applications that require real-time changes,

such chat apps or collaboration tools, are best suited for this database. Firebase

Realtime Database is scalable and adaptable since it saves data as JSON objects, in

contrast to conventional relational databases. Other database choices provided by

Firebase include Cloud Firestore, a document-oriented database with powerful query

capabilities and offline support. Developers creating contemporary apps frequently use

Firebase because of its interoperability with other services like cloud storage, hosting,

and authentication.

51

5.2.3 Programming Language

Figure 5.3 Flutter Programming Language

Figure 5.3 displays the programming languages that are employed in this

system. Flutter, a cross-platform UI software development kit renowned for its quick

development and expressive UI capabilities, is mostly used in the program's

development. Flutter is built on top of Dart, a contemporary object-oriented language

that makes app development quick and easy.

5.2.4 Google APIs

Figure 5.4 Google APIs

Figure 5.4 shows the APIs used to complete this project, which are Google

APIs. Google APIs were chosen because they offer several advantages. They are easy

to integrate into the project and there are many tutorials online to help with the process.

If any issues arise, there is also support and a community available for assistance.

52

Figure 5.5 Places API

Figure 5.5 showing the Google Places API is a tool that helps find information

about places around the world. It can be used to search for places like restaurants or

shops, get details about them, and even see photos and reviews. This API is useful for

apps that need to show nearby places or help users choose a location.

Figure 5.6 Cloud Firestore API

Figure 5.6 showing the Cloud Firestore API is a service that helps store and

manage data in the cloud. It allows developers to save and retrieve data in real-time,

making it easy to build apps that need to update information quickly. The API is

especially useful for apps that require real-time syncing of data across multiple users

and devices.

53

Figure 5.7 Maps SDK for Android

Figure 5.7 showing the Maps SDK for Android is a tool that lets developers

add interactive maps to their Android apps. It allows users to view maps, explore

locations, and get directions. The SDK also supports features like zooming, panning,

and displaying markers to highlight specific points on the map, making it useful for

apps that need location-based services.

Figure 5.8 Identity Toolkit API

Figure 5.8 showing the Identity Toolkit API is a service that helps manage user

authentication in apps. It allows developers to easily add sign-up, sign-in, and

password management features. This API supports different authentication methods,

like email and password, social media logins, and more, making it simple and secure

for users to access the app.

54

Figure 5.9 Geocoding API

Figure 5.9 showing the Geocoding API converts addresses into geographic

coordinates (latitude and longitude) and vice versa. This means you can use it to find

the exact location of an address or get an address from a set of coordinates. It's useful

for applications that need to display locations on a map or perform location-based

searches.

Figure 5.10 Directions API

Figure 5.10 showing the Directions API provides routes and directions between

locations. It helps calculate the best path from one place to another, including turn-by-

turn navigation. This API can also consider traffic conditions and offer alternative

routes, making it useful for apps that need to guide users or plan travel routes.

55

Figure 5.11 Firebase Cloud Messaging API

Figure 5.11 showing the Firebase Cloud Messaging (FCM) API allows

developers to send notifications and messages to users' devices. It supports sending

messages to single devices, groups of devices, or topics, and can include various types

of content, like text or multimedia. This API is useful for keeping users informed and

engaged with real-time updates and notifications.

Figure 5.12 Firebase Installations API

Figure 5.12 showing the Firebase Installation API helps manage unique

identifiers for your app's installations. It generates and handles installation IDs that are

used to track and manage app instances. This is useful for services like Firebase Cloud

Messaging, which need to identify devices or app instances for sending targeted

notifications or data.

56

5.2.5 Environment Architecture

Figure 5.13 Environment Architecture

The system's environmental architecture is made up of two main parts: the

mobile application and the Firebase server. The mobile application has two layers:

tools and communication. The tools layer uses Google Maps API for location tracking

and a location service to get the device's location. The communication layer includes

a Firebase package and client, which help the app connect with Firebase services. On

the server side, Firebase provides services like authentication, storage, and Firestore,

a database that stores and syncs data in real-time. Together, these parts allow the app

to work smoothly and securely.

5.3 Software Configuration Management

5.3.1 Installation and Setup of Android Studio

Figure 5.14 Android Studio Download Page

57

• Download Android Studio installer from the link: Download Android Studio

& App Tools - Android Developers

• Run the installer file.

Figure 5.15 Android Studio Setup I

• Click “Next” button. Follow the default configuration given until the

installation is finished.

Figure 5.16 Android Studio Setup II

https://developer.android.com/studio
https://developer.android.com/studio

58

Figure 5.17 Android Studio Setup III

Figure 5.18 Android Studio Setup IV

59

Figure 5.19 Android Studio Setup V

• The installation is done and click “Finish” to open Android Studio.

Figure 5.20 Android Studio Setup VI

• Upon opening the Android Studio, it has another setup wizard to be done. Click

“Next” to continue. Follow the default configuration till the setup is done.

60

Figure 5.21 Android Studio Setup VII

Figure 5.22 Android Studio Setup VIII

61

Figure 5.23 Android Studio Setup IX

• Accept the Terms and Conditions and click Finish. Android Studio will start to

download its component. Stay still until the installation is complete.

Figure 5.24 Android Studio Setup X

• Click “More Actions” and select SDK Manager.

62

Figure 5.25 Android Studio Setup X1

• In SDK Platform tab, ensure it use the latest Android API. Click “OK” and the

installation is done.

5.3.2 Flutter Setup

Figure 5.26 Flutter Setup I

• Go to this link Make Android apps | Flutter and download Flutter zip file.

https://docs.flutter.dev/get-started/install/windows/mobile

63

Figure 5.27 Flutter Setup II

• On this Android Studio start page, click Plugins.

Figure 5.28 Flutter Setup III

• Install Flutter plugin. Accept if any prompt occurrence. Wait until Android

Studio asks to restart itself.

64

Figure 5.29 Flutter Setup IV

• Extract zip files downloaded from Flutter page and put it in C: drive (optional).

 Figure 5.30 Flutter Setup V

• Go to Android Studio and click New Flutter Project.

65

Figure 5.31 Flutter Setup VI

• Make sure on the left side you click Flutter Generators. Click on the three dots

and select the files extracted before. Click “OK” and “Next”.

Figure 5.32 Flutter Setup VII

• Type the project name according to your choices. To construct an Android app,

select Java as the Android Language and check Android only. Check iOS

together if you also wish to build for iOS. Click “Create” and wait till it is

finished.

66

5.3.3 Google Firebase Database Setup

Figure 5.33 Google Firebase Database Setup I

• Go to the Google Firebase Home Page at Firebase | Google's Mobile and Web

App Development Platform and click on “Get Started” button.

Figure 5.34 Google Firebase Database Setup II

• Click on “Create a project” to start creating a new project.

Figure 5.35 Google Firebase Database Setup III

• Enter the project name you wish to use. Then click Continue.

https://firebase.google.com/
https://firebase.google.com/

67

Figure 5.36 Google Firebase Database Setup IV

• Click Continue. Make sure to Enable Google Analytics.

Figure 5.37 Google Firebase Database Setup V

• Choose Default Account for Firebase then click Create project. Wait till it

finishes and go to the console of the project.

Figure 5.38 Google Firebase Database Setup VI

• This is the console showing the project creation is successful.

68

5.4 Version Control Procedure

The project will have its source code version maintained by routinely backing

it up to an external flash drive. Every change made, this backup will take place, and

after each backup, the version number will increase by one. For example, the version

v1.0 will change to v1.1 in the following backup. This procedure is in place to protect

against any potential mishaps that can cause the project or folder to get lost or

corrupted. Using these backups is a preventative approach to lessen these hazards.

5.5 Implementation Status

No Module Name Description Duration

to

Complete

1 Login Module • System will require users to log in

before access the application

• Require matrix number and password

• Logout functionality will redirect users

to login page.

5 days

2 Register

Module

• Users need to register their account

before using the system

• Registration will require a valid matric

number, username and password.

• Users must confirm their password

during registration.

5 days

3 Searching

Module

• System will search for available

drivers to give a ride to the users.

6 days

4 Wallet Module • Users can manage their in-app wallet

balance.

• This module allows users to reload e-

wallets.

• E-Wallet shows transactions history

and current balance.

7days

69

5 Ride History

Module

• The system will display a history of all

rides taken by the user.

• Each entry includes ride details such as

date, time, drop and pickup location.

• Users can view ride history data.

3 days

6 Live Tracking

Module

• The system provides real-time tracking

of the user’s ride.

• Users can view the current location of

their self during ride on the map.

7 days

7 Sharing Module • Users can share the ride details with

others.

• Ride sharing option are available for

multiple users going in the same

direction.

10 days

8 Google APIs • This module integrates Google APIs

for mapping, location, and route

services. It uses Google Maps for

tracking rides, Google Places for

selecting locations, and Google

Directions for finding the best routes.

4 days

5.6 Conclusion

In summary, this implementation phase usually comes after the project's

planning and design stages and before the closing and assessment phases. This

dynamic phase calls for thorough coordination and supervision to guarantee that the

project's goals are met successfully and efficiently.

CHAPTER 6: TESTING

6.1 Introduction

In this chapter, the Campus Ride Application will go through software testing.

This stage is where the software product is carefully tested to find and fix any mistakes

or problems before it is given to users or clients. This step makes sure that the software

meets the set requirements, works as expected, and gives a good and reliable

experience for users. The goal of this testing phase is to make sure the application

works correctly without any errors.

6.2 Test Plan

A test plan describes the method, scope, objectives, resources, and timeline for

testing a software application or system. It serves as a roadmap for testing throughout

the Software Development Life Cycle (SDLC). A strong test plan ensures that testing

is systematic, planned, and meets the project's goals and needs. It also acts as a valuable

reference for everyone to understand the testing objectives, steps, and expectations,

resulting in more effective and successful testing.

6.2.1 Test Organization

A test organization establishes the roles and responsibilities for various tasks within

the testing process. It describes the roles, facilities, and actions associated with testing.

It also specifies the skills and knowledge required by persons performing these tasks.

This section has two primary aims. The tester should focus on the first goal while

reviewing both. The test manager is responsible for ensuring that the project proceeds

smoothly. Meanwhile, the tester will evaluate the system based on its assigned

71

interface and functionality. The results of these tests will be recorded for future

development.

Tester_ID Name Roles Responsibilities

T01 Fikri Fadzil App Developer Creating the

application's front

and back ends,

executing it,

integrating it, and

doing testing

T02 Badrul Muhymin Sofware Tester Responsible for

testing how the

modules of the

application work

and do not work.

T03 Khalis Zakwan End User Responsible for

testing the

application as if

you were the user.

Table 6.1 Test Organization

6.2.2 Test Environment

An environment that is managed and configured to replicate real-world

software application or system usage situations is called a test environment. It provides

a platform for testing the software's functionality and performance to make sure it

works as planned before it's distributed to end users or put into production. Test

environments are necessary to do comprehensive and accurate testing without

modifying the real operational environment.

72

6.2.2.1 Environment Setup

The environment's configuration serves as a framework for monitoring the

testing of this mobile application, which is done to ensure that each module is

operating as intended.

6.2.2.2 Application Software

The term "application software" describes a computer program designed to

carry out a specific job independent of computer-related duties, often for end-user

usage. The Campus Ride Application's compatible applications are listed in the table

below. The application software utilized to create this Blood Care Mobile Application

is displayed in Table 6.2.

Application Software

User Authentication

Wallet Module

Ride History

Search Module

Sharing Module

Live Tracking Module

Google APIs

Table 6.2 Application Software

6.2.2.3 System Software

This mobile application was created using several different software tools. The

Campus Ride Application was created using the software shown in the table below.

The System Software utilized to create the Campus Ride Application is displayed in

Table 6.

System Software

Android Studio

Android Emulator

Microsoft Edge

Table 6.3 System Software

73

6.2.2.4 System Hardware

The System Hardware utilized to create this Blood Care Mobile Application is

displayed in Table 6.4.

System Hardware

Acer Nitro 5

Poco F4 GT

USB Type-C

Custom PC

Table 6.4 System Hardware

6.2.3 Test Schedule

A test schedule, in the testing phase of a software development project, is a

detailed plan that details the scheduling and sequencing of activities to be completed

for testing. It includes information on who will oversee them, when certain testing

tasks will be completed, and an estimate of how long each task will take. The test

schedule guarantees that testing activities are organized, executed well, and completed

within the allotted time frame, making it a crucial component of the project calendar.

The Campus Ride Application's test schedule is displayed in Table 6.5.

Testing Module Start Date End Date Duration

User

Authentication

6/8/2024 7/8/2024 1 Day

Wallet Module 8/8/2024 9/8/2024 1 Day

Ride History 10/8/2024 11/8/2024 1 Day

Search Module 12/8/2024 13/8/2024 1 Day

Sharing Module 14/8/2024 15/8/2024 1 Day

Live Tracking

Module

16/8/2024 17/8/2024 1 Day

Google APIs 18/8/2024 19/8/2024 1 Day

Table 6.5 Test Schedule

74

6.3 Test Strategy

A Test Strategy is a detailed document in software testing that clearly defines the

approach and goals for testing a software application. It answers important questions

like what needs to be achieved and how it will be done. In this phase, two types of

testing will be performed: dynamic testing and user acceptance testing. The user

acceptance testing will involve gathering feedback from end users through

questionnaires.

6.3.1 Dynamic Testing

Dynamic testing is a way to check how a software application behaves when it

is running. Unlike static testing, which looks at the code and documents without

running the software, dynamic testing focuses on how the software works in real-time.

For the Campus Ride Application, only Black Box testing has been done in dynamic

testing.

Black box testing is a method where the tester does not need to know how the

system works inside. The tester gives input to the system and watches the output. This

helps to see how the system responds to different user actions and finds issues like

response time, usability, and reliability problems.

6.3.2 User Acceptance Testing

User Acceptance Testing (UAT), also called application testing or end-user

testing, is an important step in the software development process. In this phase, the

software is tested by its intended users in a real-world setting. UAT usually happens

at the end of the software testing process, just before the software is officially released

to its target users. The main goal of UAT is to make sure the software can perform

real-world tasks as expected according to the development criteria.

During UAT, users get a chance to use the software before it is officially

released. This helps identify any features that might have been missed or any potential

issues. UAT can be done in different ways, such as using volunteers from within the

organization, involving paid testers, or offering a test version for free download. The

75

feedback from these users is then sent to the development team, who make any final

changes needed before the software is launched.

UAT is effective in ensuring the software is of good quality and stays within

budget and deadlines. It also improves transparency with end users. By allowing real

interactions with real scenarios and data, UAT can confirm whether the software meets

business needs if it is done successfully.

6.4 Test Design

The process of creating test cases to check a software system's functionality is

called test design. It is a crucial step in the software testing process because it ensures

that the tests are thorough and effective at finding flaws.

6.4.1 Test Description

The test description section is used to confirm that the system function

produces the expected result. Each test description includes a unique identifier, a

description, and the expected outcome of the system. The following table lists the test

cases for each module. For this Campus Ride Application, the tests are conducted by

the end user, Khalis Zakwan, and our team’s Software Tester, Badrul Muhymin. The

test is run in a testing environment where the testers are given time to test the data

according to the test schedule.

6.4.1.1 Test Description for User Authentication

Table 6.6 presents the test case for User Authentication, which includes the

Module, Test Case ID, Test Case, and the Expected Result.

Module Test Case ID Description Expected Result

76

Login

UAL001 To check the login

functionality, if the

user logs into the

system using the

correct username

and password.

Login page

redirected to Home

Page without any

issue occurs.

UAL002 To check the login

functionality, if the

user logs into the

system using the

incorrect username

and password

An alert dialog will

appear, indicating

that the user

credentials used

are incorrect.

UAL003 To check the

functionality, if the

user does not fill

the username field.

An alert dialog will

appear, indicating

that the user

credentials used

are incorrect

UAL004 To check the

functionality, if the

user does not fill

the password field.

An alert dialog will

appear, indicating

that email

formatted address

is bad.

UAR001 To check the

functionality, if the

account can be

signed up using a

matric number,

name, password

and confirm

password.

A message will

appear, indicating

that registration is

successful and

directing the user

to the login page.

UAR002 To check the

functionality if the

A message will

appear for empty

fields, reminding

77

Register

matric number

field is empty

the user to fill them

out before

registering.

UAR003 To check the

functionality if the

full name field is

empty.

A message will

appear for empty

fields, reminding

the user to fill them

out before

registering.

UAR004 To check the

functionality if the

password is empty

A message will

appear for empty

fields, reminding

the user to fill them

out before

registering.

UAR005 To check the

functionality if the

confirm password

is empty

A message will

appear for empty

fields, reminding

the user to fill them

out before

registering.

UAR006 To check the

functionality if the

password and

confirm password

do not match.

A message will

appear indicating

that the password

and confirm

password do not

match.

Table 6.6 Test Case for User Authentication

6.4.1.2 Test Description for Wallet Module

Table 6.7 presents the test case for Wallet Module, which includes the Module,

Test Case ID, Test Case, and the Expected Result.

78

Module Test Case ID Description Expected Result

Wallet

WM001 To check the

display of e-wallet

balance when the

user accesses the

wallet page.

The wallet page

should show the

current e-wallet

balance correctly

without any issues.

WM002 To check the

functionality of the

reload button when

pressed by the

user.

The reload button

should update the

e-wallet balance to

reflect any changes

and the updated

balance should be

displayed.

WM003 To check the

display of

transaction history.

The transaction

history section

should list all

previous

transactions

accurately.

WM004 To check the

behavior when no

transaction history

exists.

The transaction

history section

should display a

message indicating

that there are no

transactions

available.

Table 6.7 Test Case for Wallet Module

6.4.1.3 Test Description for Ride History Module

Table 6.8 presents the test case for Ride History, which includes the Module,

Test Case ID, Test Case, and the Expected Result.

Module Test Case ID Description Expected Result

79

Ride History

RH001 To check the

display of ride

history with

successful rides.

The ride history

should list all

successful rides

with details

including date,

time, pickup

location, and drop-

off location

accurately

displayed.

RH002 To check the

display of ride

history with

cancelled rides.

The ride history

should list all

cancelled rides

with details

including date,

time, pickup

location, and drop-

off location

accurately

displayed, and

indicate that the

ride was cancelled.

RH003 To check the

behavior when no

ride history exists.

The ride history

section should

display a message

indicating that no

rides are available

or no ride history

exists.

Table 6.8 Test Case for Ride History Module

80

6.4.1.4 Test Description for Search Module

Table 6.9 presents the test case for Search Module, which includes the Module,

Test Case ID, Test Case, and the Expected Result.

Module Test Case ID Description Expected Result

Search Module

SEM001 To check the auto-

filled place

suggestions when

the user starts

typing the drop-off

location.

The system should

display relevant

place suggestions

based on the user’s

input in a

dropdown list.

SEM002 To test the

selection of a place

from the

suggestion list.

When the user

clicks on a location

from the

suggestion list, the

system should

populate the drop-

off location field

with the selected

place and redirect

or update the page

to reflect the

chosen location.

SEM003 To verify that the

suggestion list is

updated

dynamically as the

user types more

characters.

The suggestion list

should update in

real-time based on

the input, showing

relevant

suggestions as the

user types.

Table 6.9 Test Case for Search Module

81

6.4.1.5 Test Description for Sharing Module

Table 6.10 presents the test case for Sharing Module, which includes the

Module, Test Case ID, Test Case, and the Expected Result.

Module Test Case ID Description Expected Result

Sharing Module

SHM001 To check if the

system lists all

matching orders

where pickup and

drop-off locations

are the same.

The system should

display a list of

matching orders

with the same

pickup and drop-

off locations for

both parties if they

have enabled ride-

sharing

permission.

SHM002 To verify the

functionality of

selecting a person

to share a ride with

The first person

should be able to

select a matching

order from the list

and choose with

whom they want to

share the ride.

SHM003 To check if the

second person

receives a ride-

sharing request.

The second person

should receive a

notification or

prompt for the

ride-sharing

request from the

first person,

detailing the

shared ride

information.

82

SHM004 To test the

approval process

for the ride-sharing

request.

The second person

should have the

option to approve

or decline the ride-

sharing request. If

they approve, the

system should

proceed with the

ride-sharing

process.

SHM005 To ensure the price

is correctly divided

between both

parties if the ride-

sharing request is

approved.

If the ride-sharing

request is

approved, the total

price of the ride

should be divided

by two, with each

person being

charged half the

original price.

SHM006 To verify the

behavior when

either party has not

enabled ride-

sharing

permissions in

their settings.

If either party has

not enabled the

ride-sharing

permission, the

ride-sharing option

should not be

available, and no

matching orders

should be listed.

SHM007 To test the scenario

where no matching

orders are

available for ride-

sharing.

If there are no

orders with the

same pickup and

drop-off locations,

the system should

83

inform the user

that no matching

rides are available

for sharing.

Table 6.10 Test Case for Sharing Module

6.4.1.6 Test Description for Live Tracking Module

Table 6.11 presents the test case for Live Tracking Module, which includes the

Module, Test Case ID, Test Case, and the Expected Result.

Module Test Case ID Description Expected Result

Live Tracking

Module

LTM001 To verify that the

user’s location is

tracked in real-

time from the start

to the drop-off

location.

To verify that the

user’s location is

tracked in real-

time from the start

to the drop-off

location.

LTM002 To check the

accuracy of the

location tracking

during the trip.

The displayed

location on the live

tracking map

should be accurate

and reflect the

user’s actual

position in real-

time.

LTM003 To test the

functionality of the

emergency button

on the live tracking

page.

Pressing the

emergency button

should initiate a

call to the person

saved in the

database as the

emergency contact

for the user.

84

Table 6.11 Test Case for Live Tracking Module

6.4.1.7 Test Description for Google APIs

Table 6.12 presents the test case for Google APIs, which includes the Module,

Test Case ID, Test Case, and the Expected Result.

Module Test Case ID Description Expected Result

Google APIs

GA001 To verify that the

Google Map is

displayed correctly

on the page.

The map should

load and display

correctly on the

page, centered on

the specified

location or default

location if not

provided.

GA002 To check the

functionality of the

auto-complete

location feature.

As the user types

into the location

input field, the

auto-complete

suggestions should

appear, offering

relevant locations

based on the input.

Table 6.12 Test Case for Google APIs

6.4.2 Test Data for Dynamic Testing

Test data is the information given to a software program during testing. This data either affects how the software runs or is affected by it.

Test data has two main uses: first, in positive testing, it checks if the software gives the right results with certain inputs; second, in negative testing,

it tests how the software handles unusual or unexpected inputs.

6.4.2.1 Test Data for User Authentication

System : Campus Ride Application Version : v1

Module/Unit : User Authentication Revision : -

Processed by : Khalis Zakwan Date : 6/8/2024

Test Case ID Test Scenario Test Steps Test Data Expected Results

UAL001 Login to the system using

valid credentials

1. Enter matric

number and

password.

2. Login to the

system by pressing

login button.

Matric number:

b032210001

Password: 111111

Login successfully and

directed to the home page

of the application.

86

UAL002 Login to the system using

invalid credentials

1. Enter matric

number with

wrong password or

wrong matric

number with valid

password

2. Login to the

system by pressing

login button

Matric number:

b03221001

Password: 111112

Alert dialog showing up

indicating the login

credentials is invalid.

UAL003 Login to the system

without fill in the matric

number

1. Enter password

only

2. Login to the

system by pressing

login button.

Matric number:

Password: 111111

Alert dialog showing up

indication the login

credentials is invalid.

UAL004 Login to the system

without fill in the

password

1. Enter matric

number only

2. Login to the

system by pressing

login button.

Matric number:

b032210001

Password:

Alert dialog showing up

indication the login

credentials is invalid

87

UAR001 Register account with

valid information

1. Enter all the

information

needed.

2. Register the

account by

pressing register

button.

Matric number:

b032210002

Full name: Husna

Password: 111111

Confirm Password:

111111

A register successful

message will shown up

and redirect to the login

page.

UAR002 Register account with

empty matric number

1. Enter all the

information

needed except

matric number

2. Register the

account by

pressing register

button

Matric number:

Fullname: Husna

Password: 111111

Confirm Password:

111111

A message appeared for

empty field to remind user

that the field is still empty.

UAR003 Register account with

empty full name

1. Enter all the

information

needed except full

name

Matric number:

b032210002

Fullname:

Password: 111111

A message appeared for

empty field to remind user

that the field is still empty.

88

2. Register the

account by

pressing register

button

Confirm Password:

111111

UAR004 Register account with

empty password

1. Enter all the

information

needed except

password.

2. Register the

account by

pressing register

button

Matric number:

b032210002

Fullname: Husna

Password:

Confirm Password:

111111

A message appeared for

empty field to remind user

that the field is still empty.

UAR005 Register account with

empty confirm password

1. Enter all the

information

needed except

confirm password.

2. Register the

account by

Matric number:

b032210002

Fullname: Husna

Password: 111111

Confirm Password:

A message appeared for

empty field to remind user

that the field is still empty.

89

pressing register

button

UAR006 Register account but

unmatched password and

confirm password.

1. Enter all the

information

needed except

matric number

2. Register the

account by

pressing register

button

Matric number:

b032210002

Fullname: Husna

Password: 111111

Confirm Password:

111112

A message will appear

indicating that the

password and confirm

password do not match.

90

6.4.2.2 Test Data for Wallet Module

System : Campus Ride Application Version : v1

Module/Unit : User Authentication Revision : -

Processed by : Khalis Zakwan Date : 8/8/2024

Test Case ID Test Scenario Test Steps Test Data Expected Results

WM001 Checking the e-wallet

balance.

1. Open drawer on

home page and

click on wallet

Balance: RM0.00 E-Wallet balance should

be 0 align with the test

data.

WM002 Reloading the e-wallet 1. Open drawer on

home page and

click on wallet

2. Click on the

Reload button.

3. Insert amount to

reload e-wallet

Amount: RM50.00 Balance should

immediately update to the

total of the amount

reloaded and last balance.

WM003 Inspecting the transaction

history

1. Open drawer on

home page and

click on wallet

- All the transaction must be

recorded in the history.

91

2. Slide down the

transaction history

under the reload

button to view it.

WM004 Inspecting the transaction

history even does not

reload any amount

1. Open drawer on

home page and

click on wallet

2. Slide down to see

the transaction

history

- A message indicated that

no transaction has been

made must be shown there.

92

6.4.2.3 Test Data for Ride History Module

System : Campus Ride Application Version : v1

Module/Unit : User Authentication Revision : -

Processed by : Khalis Zakwan Date : 10/8/2024

Test Case ID Test Scenario Test Steps Test Data Expected Results

RH001 Inspecting the record of the

ride

1. Open drawer on the

homepage and

click on ride

history

- All the ride history must be

shown there

RH002 Inspecting the record of the

cancelled ride

1. Open drawer on the

homepage and

click on ride

history

- All the cancelled ride

history must be shown

there

RH003 Inspecting the ride history

even there is no ride has

been made

1. Open drawer on the

homepage and

click on ride

history

- A message indicated that

no ride has been made

must be shown there.

93

6.4.2.4 Test Data for Searching Module

System : Campus Ride Application Version : v1

Module/Unit : User Authentication Revision : -

Processed by : Khalis Zakwan Date : 12/8/2024

Test Case ID Test Scenario Test Steps Test Data Expected Results

SEM001 Checking the auto-filled

suggestion of the search

function

1. Click on search bar

at the homepage

2. Insert the place to

be the drop off

location

Place: UTeM Satria

Key insert: Satria

Auto filled system wil

suggest “UTeM Satria” on

the suggestion list even

user just insert Satria on

the search bar

SEM002 Select one of the locations

on the suggestion list as

drop off location

1. Click on search bar

at the homepage

2. Insert the place to

be the drop off

location

3. Click on the

location in the

suggestion list

Place: UTeM Satria System will make the

location selected as the

drop off location and

proceed to the searching

driver.

94

SEM003 Ensure the suggestion list

update dynamically with

the user input

1. Click on search bar

at the homepage

2. Insert the place to

be the drop off

location

First key insert: U

Second key insert: T

The system should

immediately suggest a

place that starts with "UT"

as soon as the user types

the letter "T".

6.4.2.5 Test Data for Sharing Module

System : Campus Ride Application Version : v1

Module/Unit : User Authentication Revision : -

Processed by : Khalis Zakwan Date : 14/8/2024

Test Case ID Test Scenario Test Steps Test Data Expected Results

SHM001 List out all the matching

order available

1. Search for the drop

off location

2. Click the location

on the suggestion

list

Drop off location: UTeM

Satria

Pickup Location: FTMK

Account holder: Syakirin

Matching Order: Hayati

Accountholder can see all

the matching order that can

be share the ride.

95

3. System will list the

matching order

SHM002 Selecting the person to

share with

1. Search for the drop

off location

2. Click the location

on the suggestion

list

3. System will list the

matching order

4. Click on the

selected user to

share with

Drop off location: UTeM

Satria

Pickup Location: FTMK

Account holder: Syakirin

Matching Order: Hayati

The accountholder has

chosen the person to share

the ride with, and the

system should record the

request.

SHM003 Sharing request

notification should appear

on the other person's

device.

1. Wait for the

notification to

appear on the

selected person's

device.

- The selected person’s

device must display a

notification informing

them that there is a sharing

request for their ride.

96

SHM004 Approve or reject the

approval of the sharing

request

1. Wait for the

notification to

appear on the

selected person's

device.

2. Click on the

notification to

make the approval

appear

3. Click Approve or

Reject button for

the sharing request.

Requester: Syakirin

Approval Given by: Hayati

Approval status: Approve

Both will share the ride if

the approval status is

approved and does not

share if the approval status

is declined.

SHM005 Ensure the fare of the

rides is deducted when

sharing the ride

1. Wait for the

notification to

appear on the

selected person's

device.

2. Click on the

notification to

Requester: Syakirin

Approval Given by: Hayati

Approval status: Approve

The initial fare will be split

in half, with each account

paying an equal share.

97

make the approval

appear

3. Click Approve

button to share the

ride

SHM006 Verify sharing settings if

the sharing permission is

turned off.

1. Turn off sharing

permission of the

user setting

2. Find a ride

Sharing permission: False

Drop off location: UTeM

Satria

The system will not

display any matching

orders because the sharing

permission is turned off.

SHM007 No matching order are

available for ridesharing

1. Search and select

for a drop off

location

Drop off location: UTeM

Satria

Pickup location: FTMK

The system will not

display any matching

orders if none are

available.

98

6.4.2.6 Test Data for Live Tracking Module

System : Campus Ride Application Version : v1

Module/Unit : User Authentication Revision : -

Processed by : Khalis Zakwan Date : 16/8/2024

Test Case ID Test Scenario Test Steps Test Data Expected Results

LTM001 Verifying the user’s

location is tracked in real-

time from the start to the

drop-off location.

1. Request for a ride

2. Confirm ride with

the driver

3. Wait for the driver

arrival

4. Trip start

Drop off location: UTeM

Satria

Pickup Location: FTMK

The user can track their

location on the live

tracking page.

LTM002 Checking the accuracy of

the live tracking feature

1. Request for a ride

2. Confirm ride with

the driver

3. Wait for the driver

arrival

4. Trip start

Drop off location: UTeM

Satria

Pickup Location: FTMK

Live tracking will refresh

every second to ensure

accuracy.

99

LTM003 Testing the emergency

button

1. Request for a ride

2. Confirm ride with

the driver

3. Wait for the driver

arrival

4. Trip start

5. Click the

emergency button

Drop off location: UTeM

Satria

Pickup Location: FTMK

The user’s device will

immediately open the

default phone app, with the

number already displayed,

ready for the call button to

be clicked to make the call.

100

6.4.2.7 Test Data for Google APIs

System : Campus Ride Application Version : v1

Module/Unit : User Authentication Revision : -

Processed by : Khalis Zakwan Date : 18/8/2024

Test Case ID Test Scenario Test Steps Test Data Expected Results

GA001 Verifying the Google Map

is displayed correctly on

the home page

1. Login to the system

2. Google Map is on

the homepage

- The map should load and

display accurately without

any error

GA002 Checking the auto

complete location feature

1. Click on the search

bar at the home

page

2. Enter the drop-off

location without

typing it in full.

Key search: UTeM The auto-complete feature

should list all suggestions

for places that start with

"UTeM."

6.5 User Acceptance Testing

User Acceptance Testing (UAT), also known as acceptance testing, is a crucial

phase in software development. It is the final testing stage before the software is

released to users or customers. The primary goal of UAT is to ensure that the software

is ready for real-world use and performs as expected. For this UAT, feedback was

gathered from 32 participants through questionnaires distributed via Google Forms.

The testing took place over 5 days, from August 15, 2024, to August 20, 2024. The

participants were primarily UTeM students, including friends and their acquaintances.

The testing process included live sessions on Discord, where users interacted with the

app in real-time, as well as watching a video that showcased the app's features.

Responses and feedback were collected using Google Forms, enabling users to share

their opinions and experiences with the application.

6.5.1 Questionnaires for User Acceptance Testing

The survey, created using Google Forms, consists of 24 questions divided into

six sections. These sections cover respondent information, their evaluation of the

system's ease of use and usefulness, the system's features, its reliability, and their

overall attitude toward the system. The survey will be shared with people nearby

through social media platforms. Table 6.13 displays the questionnaires provided to the

end users.

No Questions Section

1 Gender Respondent Information

2 Age Respondent Information

3 The Campus Ride app is flexible to interact

with.

Perceived Ease of Use

(EU)

4 I find it easy to get the Campus Ride app to do

what I want to do.

Perceived Ease of Use

(EU)

5 It is easy to become skilled at using the

Campus Ride app.

Perceived Ease of Use

(EU)

6 I find the Campus Ride app easy to use. Perceived Ease of Use

(EU)

102

7 Interaction with the Campus Ride app is clear

and understandable.

Perceived Ease of Use

(EU)

8 Using the Campus Ride app enables me to

easily find and share rides.

Perceived Usefulness

(PU)

9 I find the Campus Ride app useful for my daily

commute.

Perceived Usefulness

(PU)

10 Using the Campus Ride app enhances my

effectiveness in organizing my rides.

Perceived Usefulness

(PU)

11 The Campus Ride app makes it easier to

connect with other students for shared rides.

Perceived Usefulness

(PU)

12 The Campus Ride app makes it easier to

reduce travel costs and time.

Perceived Usefulness

(PU)

13 The Campus Ride app provides clear

instructions for find and offering rides.

Capability (CP)

14 Adding or searching for ride details is

straightforward in the Campus Ride app.

Capability (CP)

15 The features of the Campus Ride app meet my

ride-sharing needs.

Capability (CP)

16 I trust the Campus Ride app to keep my ride

details secure.

Trustworthiness (TW)

17 The Campus Ride app provides security for

my personal information.

Trustworthiness (TW)

18 I feel safe sharing my ride information using

the Campus Ride app.

Trustworthiness (TW)

19 I enjoy using the Campus Ride app. Attitude (ATT)

20 It is convenient for me to use the Campus Ride

app.

Attitude (ATT)

21 I find it desirable to learn more about using the

Campus Ride app.

Attitude (ATT)

22 I intend to use the Campus Ride app for my

daily commute.

Intention to Use (IU)

23 I plan to continue using the Campus Ride app

to share rides with others.

Intention to Use (IU)

103

24 I will recommend the Campus Ride app to my

friends and classmates.

Intention to Use (IU)

Table 6.13 User Acceptance Questionnaires

6.6 Test Result and Analysis

The software testing process should include both test results and analysis. This

involves evaluating the outcomes of the tests and interpreting the data collected to gain

insights into the functionality and quality of the software. In summary, test results and

analysis are essential in the software development lifecycle because they provide

valuable information about the software's performance, reliability, and adherence to

specifications. These efforts help create a more dependable product for end users while

also improving the overall quality of the software over time.

6.6.1 Test Result for Dynamic Testing

All the test cases that were developed have passed successfully, with no failures

reported.

6.6.1.1 Test Result for User Authentication

Table 6.14 shows the Test Result and Analysis for User Authentication.

Test Case ID Actual Result Pass Fail

UAL001 Login Successfully and screen directed

to the home page.

✓

UAL002 Alert dialog showing up indicating the

login credentials is invalid.

✓

UAL003 Alert dialog showing up indicating the

login credentials is invalid.

✓

UAL004 Alert dialog showing up indicating the

login credentials is invalid.

✓

UAR001 A register successful message will show

up and redirect to the login page.

✓

UAR002 A message appeared for empty field to

remind user that the field is still empty

✓

104

UAR003 A message appeared for empty field to

remind user that the field is still empty

✓

UAR004 A message appeared for empty field to

remind user that the field is still empty

✓

UAR005 A message appeared for empty field to

remind user that the field is still empty

✓

UAR006 A message will appear indicating that the

password and confirm password do not

match.

✓

Table 6.14 Test Result and Analysis for User Authentication

6.6.1.2 Test Result for Wallet Module

Table 6.15 shows the Test Result and Analysis for Wallet Module.

Test Case ID Actual Result Pass Fail

WM001 E-Wallet balance is RM0.00 ✓

WM002 Balance update immediately after

reloading the e-wallet.

✓

WM003 All transaction recorded in the

transaction history.

✓

WM004 A message appears in the transaction list

showing that no transaction has been

made.

✓

Table 6.15 Test Result and Analysis for Wallet Module

6.6.1.3 Test Result for Ride History Module

Table 6.16 shows the Test Result and Analysis for Ride History.

Test Case ID Actual Result Pass Fail

RH001 All ride history is listed ✓

RH002 All cancelled ride history is listed ✓

105

RH003 A message appears in the transaction list

showing that no ride has been made.

✓

Table 6.16 Test Result and Analysis for Ride History Module

6.6.1.4 Test Result for Searching Module

Table 6.17 shows the Test Result and Analysis for Searching Module.

Test Case ID Actual Result Pass Fail

SEM001 Auto completed place prediction ran

successfully.

✓

SEM002 Selected location registered as drop off

location.

✓

SEM003 The place which does not same as the

user input removed immediately in auto

completed place prediction list.

✓

Table 6.17 Test Result and Analysis for Searching Module

6.6.1.5 Test Result for Sharing Module

Table 6.18 shows the Test Result and Analysis for Sharing Module.

Test Case ID Actual Result Pass Fail

SHM001 All matching order listed in the list. ✓

SHM002 The selected person to share with can be

chosen.

✓

SHM003 A notification appeared on the selected

person devices.

✓

SHM004 Approval request permission given and

immediately inform the requester either

the result is approved or rejected.

✓

106

SHM005 The fare indeed split into half and equal

share.

✓

SHM006 Matching order list does not appear since

the sharing permission is turned off.

✓

SHM007 Matching order list does not appear since

there is no matching order available.

✓

Table 6.18 Test Result and Analysis for Sharing Module

6.6.1.6 Test Result for Live Tracking Module

Table 6.19 shows the Test Result and Analysis for Live Tracking Module.

Test Case ID Actual Result Pass Fail

LTM001 Live tracking of the current user location

tracked

✓

LTM002 The accuracy is accurate since it

refreshes every second

✓

LTM003 Phone app open immediately after click

the emergency button

✓

Table 6.19 Test Result and Analysis for Live Tracking Module

6.6.1.7 Test Result for Google APIs

Table 6.20 shows the Test Result and Analysis for Google APIs.

Test Case ID Actual Result Pass Fail

GA001 Google Map load accurately ✓

GA002 Auto complete place prediction function

well.

✓

Table 6.20 Test Result and Analysis for Google APIs

6.6.1.8 Summary of Recorded Test Case

Test Case Total Success

User Authentication 10

107

Wallet Module 4

Ride History Module 3

Searching Module 3

Sharing Module 7

Live Tracking Module 3

Google APIs 2

Total 32

Table 6.21 Summary of Recorded Test Case

Table 6.21 shows the summary of recorded test case for Campus Ride

Application Testing. There are a total of 7 test cases with a total of 32 total success of

testing conducted

6.6.2 User Acceptance Testing Analysis and Result

Figure 6.1 Pie Chart of Questionnaire Question

Figure 6.1 shows how a group of people is divided by gender and age. Among all the

participants, 53.1% are male, and 46.9% are female. When looking at age, 46.9% of

the group are between 19-21 years old, another 46.9% are between 22-25 years old,

and 6.3% are 26 years old or older. This provides a clear view of the gender and age

distribution within the group.

108

Figure 6.2 Bar Chart of Questionnaire Question

Figure 6.2 represents those 10 respondents strongly agree that the system is

flexible to interact with while 12 respondents is agreed, 5 respondents is neutral, 4

respondents is disagreeing, and 1 respondent is totally disagreed.

Figure 6.3 Bar Chart of Questionnaire Question

Figure 6.3 represents those 11 respondents strongly agree that it easy to get the

system do what they want to do while 8 respondents is agreed, 9 respondents is neutral,

3 respondents is disagreeing, and 1 respondent is totally disagreed.

109

Figure 6.4 Bar Chart of Questionnaire Question

Figure 6.4 represents those 14 respondents strongly agree that it is easy to

become skilled at using the system while 8 respondents is agreed, 4 respondents is

neutral, 5 respondents is disagreeing, and 1 respondent is totally disagreed.

Figure 6.5 Bar Chart of Questionnaire Question

Figure 6.5 represents those 14 respondents strongly agree that the system is

easy to use while 8 respondents is agreed, 6 respondents is neutral, 3 respondents is

disagreeing, and 1 respondent is totally disagreed.

110

Figure 6.6 Bar Chart of Questionnaire Question

Figure 6.6 represents those 14 respondents strongly agree that the interaction

with the system is clear and understandable while 7 respondents is agreed, 4

respondents is neutral, 4 respondents is disagreeing, and 1 respondent is totally

disagreed.

Figure 6.7 Bar Chart of Questionnaire Question

Figure 6.7 represents those 11 respondents strongly agree that the system help

them to easily find and share ride while 8 respondents is agreed, 5 respondents is

neutral, 4 respondents is disagreeing, and 4 respondent is totally disagreed.

111

Figure 6.8 Bar Chart of Questionnaire Question

Figure 6.8 represents those 12 respondents strongly agree that the system is

useful for their daily commute while 6 respondents is agreed, 7 respondents is neutral,

4 respondents is disagreeing, and 3 respondent is totally disagreed.

Figure 6.9 Bar Chart of Questionnaire Question

Figure 6.9 represents those 9 respondents strongly agree that the system can

enhance their effectiveness in organizing their rides while 8 respondents is agreed, 8

respondents is neutral, 5 respondents is disagreeing, and 2 respondent is totally

disagreed.

112

Figure 6.10 Bar Chart of Questionnaire Question

Figure 6.10 represents those 11 respondents strongly agree that the system can

makes it easier to connect with other student for shared rides while 8 respondents is

agreed, 5 respondents is neutral, 6 respondents is disagreeing, and 2 respondent is

totally disagreed.

Figure 6.11 Bar Chart of Questionnaire Question

Figure 6.11 represents those 12 respondents strongly agree that the system can

easier their ride to reduce travel costs and time while 10 respondents is agreed, 4

respondents is neutral, 3 respondents is disagreeing, and 3 respondent is totally

disagreed.

113

Figure 6.12 Bar Chart of Questionnaire Question

Figure 6.12 represents those 12 respondents strongly agree that the provides

clear instructions for find and offering rides while 8 respondents is agreed, 5

respondents is neutral, 6 respondents is disagreeing, and 1 respondent is totally

disagreed.

Figure 6.13 Bar Chart of Questionnaire Question

Figure 6.13 represents those 11 respondents strongly agree that searching for

ride details is straightforward in the system while 9 respondents is agreed, 6

respondents is neutral, 5 respondents is disagreeing, and 1 respondent is totally

disagreed.

114

Figure 6.14 Bar Chart of Questionnaire Question

Figure 6.14 represents those 12 respondents strongly agree that the system meet

their ride sharing needs while 7 respondents is agreed, 8 respondents is neutral, 4

respondents is disagreeing, and 1 respondent is totally disagreed.

Figure 6.15 Bar Chart of Questionnaire Question

Figure 6.15 represents those 11 respondents strongly agree that the system keep

their ride details secure while 9 respondents is agreed, 5 respondents is neutral, 5

respondents is disagreeing, and 2 respondent is totally disagreed.

115

Figure 6.16 Bar Chart of Questionnaire Question

Figure 6.16 represents those 10 respondents strongly agree that the provides

security for their personal information while 8 respondents is agreed, 8 respondents is

neutral, 4 respondents is disagreeing, and 2 respondent is totally disagreed.

Figure 6.17 Bar Chart of Questionnaire Question

Figure 6.17 represents those 9 respondents strongly agree that fell safe sharing

their ride information while using the system while 11 respondents is agreed, 5

respondents is neutral, 6 respondents is disagreeing, and 1 respondent is totally

disagreed.

116

Figure 6.18 Bar Chart of Questionnaire Question

Figure 6.18 represents those 9 respondents strongly agree that they enjoy using

the system while 7 respondents is agreed, 10 respondents is neutral, 5 respondents is

disagreeing, and 1 respondent is totally disagreed.

Figure 6.19 Bar Chart of Questionnaire Question

Figure 6.19 represents those 13 respondents strongly agree that it convenient

for them to use the system while 8 respondents is agreed, 3 respondents is neutral, 6

respondents is disagreeing, and 2 respondent is totally disagreed.

117

Figure 6.20 Bar Chart of Questionnaire Question

Figure 6.20 represents those 13 respondents strongly agree that it is desirable

to learn more about using the system while 7 respondents is agreed, 7 respondents is

neutral, 4 respondents is disagreeing, and 1 respondent is totally disagreed.

Figure 6.21 Bar Chart of Questionnaire Question

Figure 6.21 represents those 11 respondents strongly agree that they intend to

use the system for their daily commute while 6 respondents is agreed, 6 respondents

is neutral, 8 respondents is disagreeing, and 1 respondent is totally disagreed.

118

Figure 6.22 Bar Chart of Questionnaire Question

Figure 6.22 represents those 11 respondents strongly agree that they plan to

continue using the system to share the rides with others while 9 respondents is agreed,

6 respondents is neutral, 4 respondents is disagreeing, and 2 respondent is totally

disagreed.

Figure 6.23 Bar Chart of Questionnaire Question

Figure 6.23 represents those 12 respondents strongly agree that they will

recommend the system with their friends and classmates while 10 respondents is

agreed, 3 respondents is neutral, 5 respondents is disagreeing, and 2 respondent is

totally disagreed.

119

6.7 Conclusion

In summary, this testing phase is important for making sure the software is of

good quality and works well for users. It helps reduce the chance of defects reaching

end-users and ensures a positive experience with the Campus Ride Application. This

phase happens after the software is developed but before it is released. The main goal

is to find and fix any problems or inconsistencies to make the software better and more

reliable.

CHAPTER 7: PROJECT CONCLUSION

7.1 Introduction

This chapter wraps up the entire project by discussing its strengths,

weaknesses, and areas for improvement. It also highlights opportunities for

enhancement and explains how the project contributes to the target users.

7.2 Observation on Weakness and Strengths

Observing the system's weaknesses and strengths is essential for understanding

its capabilities. The details of these weaknesses and strengths will be further explained

in the points below.

7.2.1 System Strengths

The strengths of Campus Ride include the convenience of having its own e-

wallet, so users don’t need to rely on FPX or debit cards, which saves time when

making payments. The app also allows users to view the driver’s details before

confirming them as their driver. This means that if a driver has received bad reviews

or feedback, users can choose to avoid them and find a new driver. Another benefit is

that the app enables users to share rides with others, helping to reduce costs and save

money. Additionally, before sharing a ride, users can get to know some details about

the person they’ll be riding with, which adds a layer of comfort. The system also offers

live tracking, allowing users to monitor their location in real time.

121

7.2.2 System Weakness

The Campus Ride application has several weaknesses. One issue is that the app

needs to be connected to the university's database to make sure student data is accurate

and to prevent misuse, like someone registering with another student's matric number.

Another problem is that users cannot set their own drop-off location, as it is

automatically set to their current location. Users also cannot make ride bookings in

advance. The details about the current location are also not very user-friendly.

Additionally, the ride-sharing feature only works if the drop-off and pick-up locations

are the same. If the system detects that the locations are even slightly different, the

feature cannot be used. Finally, there is no payment gateway in the app yet, so the e-

wallet is not functional and can't be used for real payments.

7.3 Propositions for Improvement

To improve the Campus Ride application, it should allow users to set their own

drop-off locations instead of automatically using the current location. Adding an

option to book rides in advance would make the app more convenient. The app should

also show clearer location details that are easier for users to understand. The ride-

sharing feature could be improved by allowing users to share rides even if the pick-up

and drop-off locations are close but not the same. To prevent misuse, the app should

connect better with the university’s database to ensure accurate student data. Finally,

a payment gateway should be added to make the e-wallet functional for real payments.

7.4 Project Contribution

This system has great potential for students because it allows certified users to

take advantage of cost-saving features. By using the app, students can share rides and

reduce their travel expenses. This helps them save money and manage their budget

more effectively. The app makes it easier for students to find affordable transportation

options, making it a useful tool for cutting down on daily commuting costs.

122

7.5 Conclusion

To conclude the Campus Ride project, there are many ways to improve and

refine the app in the future, which will require more time. Even so, the app has already

been very beneficial for users by meeting the needs. The Software Development Life

Cycle used during development was very helpful in completing the project. Campus

Ride was developed over 14 weeks and met its main goals. Although it works well, its

design could be improved. Making these changes will help make the system completer

and more effective, but this will need additional time and effort.

REFERENCES

Grab Clone - Start your Business with Super App in 7 Days. (n.d.). V3cube.

https://www.v3cube.com/grab-clone/

Kaushik, V. (2024, March 31). Mastering Flutter UI: Tips for designing Intuitive user

experiences. Medium. https://medium.com/@kaushikvikas/mastering-flutter-

ui-tips-for-designing-intuitive-user-experiences-5bc3ba0a8d3c

Davisson, K. (2021, December 7). Adding Google Maps to Flutter - flutter - medium.

Medium. https://medium.com/flutter/google-maps-and-flutter-cfb330f9a245

Mail, M. (2023, January 17). Grab Malaysia raises fare prices per minute and this is

why. Malay Mail.

https://www.malaymail.com/news/malaysia/2023/01/17/grab-malaysia-

raises-fare-prices-per-minute-and-this-is-

why/50665#:~:text=For%20example%2C%20a%2010%20km,9am%20and

%205pm%20to%208pm.

Sabirov, R. (2023, December 28). A guide to black box testing vs white box testing.

Qase Blog. https://qase.io/blog/black-box-vs-white-box-testing/

M,Fikri. (2024, August 20). Campus Ride Demonstration [Video]. YouTube.

https://youtu.be/hkrRN4gUSGQ

https://www.v3cube.com/grab-clone/
https://medium.com/@kaushikvikas/mastering-flutter-ui-tips-for-designing-intuitive-user-experiences-5bc3ba0a8d3c
https://medium.com/@kaushikvikas/mastering-flutter-ui-tips-for-designing-intuitive-user-experiences-5bc3ba0a8d3c
https://medium.com/flutter/google-maps-and-flutter-cfb330f9a245
https://www.malaymail.com/news/malaysia/2023/01/17/grab-malaysia-raises-fare-prices-per-minute-and-this-is-why/50665#:~:text=For%20example%2C%20a%2010%20km,9am%20and%205pm%20to%208pm
https://www.malaymail.com/news/malaysia/2023/01/17/grab-malaysia-raises-fare-prices-per-minute-and-this-is-why/50665#:~:text=For%20example%2C%20a%2010%20km,9am%20and%205pm%20to%208pm
https://www.malaymail.com/news/malaysia/2023/01/17/grab-malaysia-raises-fare-prices-per-minute-and-this-is-why/50665#:~:text=For%20example%2C%20a%2010%20km,9am%20and%205pm%20to%208pm
https://www.malaymail.com/news/malaysia/2023/01/17/grab-malaysia-raises-fare-prices-per-minute-and-this-is-why/50665#:~:text=For%20example%2C%20a%2010%20km,9am%20and%205pm%20to%208pm
https://qase.io/blog/black-box-vs-white-box-testing/
https://youtu.be/hkrRN4gUSGQ

124

APPENDICES

Appendix A: Demographic (User Information)

125

Appendix B: Demographic (Perceived Ease of Use)

126

Appendix C: Demographic (Perceived Usefulness)

127

Appendix D: Demographic (Capability)

128

Appendix E: Demographic (Trustworthiness)

129

Appendix F: Demographic (Attitude)

130

Appendix G: Demographic (Intention to Use)

UNIVERS~TI TEKNIKAL MALAYSIA MELAKA

