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ABSTRACT 
 
 
 

 
Blended learning integrates face-to-face and online education, requiring students to 

attend physical classes and engage in virtual learning at their convenience. This approach 

became prevalent post-Movement Control Order (MCO) as universities adopted hybrid 

teaching methods. However, blended learning presents challenges and opportunities as 

students must adapt to varying teaching styles, planning, and timing from different lecturers. 

Higher education institutions face the challenge of selecting the most effective approach to 

cater to diverse learning styles and produce quality graduates. The research objectives include 

studying AHP VARK model data from previous student projects, applying the integrated 

TOPSIS VIKOR model, and testing the accuracy of AHP blended learning data. 

Methodologically, the study involves a comprehensive review of multi-criteria decision-

making techniques, detailed analysis using TOPSIS and VIKOR models, and a focus on 

evaluating the accuracy of blended learning data through these integrated methods. The result 

shows that TOPSIS and VIKOR method with 88.6% accuracy surpass AHP VARK model 

with 74% accuracy, these results indicate that the TOPSIS and VIKOR models provide a 

good method for assessing the accuracy of the AHP VARK model, offering insights into the 

effectiveness of different blended learning models. Future recommendations include 

expanding the dataset to include a more diverse student population and different educational 

contexts. The findings of this study can contribute to the enhancement of decision analysis 

methodologies in blended learning contexts, providing deeper insights into the effectiveness 

of the AHP-VARK model. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background study 
 

In recent years, the educational landscape is experiencing transformative changes, 

especially in undergraduate engineering education. Traditional methods of teaching and 

learning are slowly giving way to friendlier and more personalized approaches, driven by the 

advancement in technology. Thanks to virtual platforms, cloud computing, and online 

learning management systems (LMS), a significant proportion of educational materials and 

teachings tools have become available to students outside the classroom(Vodovozov et al., 

2022). 

 

The idea of combining traditional classroom work with online resources to create a 

more flexible and personalized approach is an important part of the education revolution. 

Especially in an undergraduate engineering course, it is important to have varied learning 

styles and preferences of the students. This learning approach is driven by the recognition 

that not all students learn in the same way, and educational practices should reflect this 

diversity. One big challenge is about how users can successfully use the technology and 

ensuring participants’ commitment given the individual learner characteristics and encounters 

with technology (Hofmann, 2014) 

 

It is crucial to prioritize the development and implementation of blended learning 

models that are finely tuned to the individual learning styles of students. This is where 

multicriteria decision making techniques like Technique for Order Preference by Similarity to 

an Ideal Solution (TOPSIS) and VlseKriterijumska Optimizacija I Kompromisno Resenje 

(VIKOR) step in. Furthermore, the methodologies provide a more structured approach for 

rating and assessing several blended learning models with respect to different competing 

assessment criteria in such a way that it is guaranteed to select the most suited model for each 

student. 
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In 1981, Hwang and Yoon developed the Technique for Order Preference by 

Similarity to Ideal Solution (TOPSIS) method (Hwang & Yoon, 1981) for solving multiple 

criteria decision making (MCDM) problems based upon the concept that the chosen 

alternative should have the shortest distance to the positive ideal solution (A*) and the 

longest distance from the negative ideal solution (A−)(Hanine et al., 2016). This approach is 

frequently used in the Multiple Criteria Decision-Making process to choose the best option 

from a group of alternatives. The TOPSIS approach presumes that each criterion tends toward 

a monotonically decreasing or increasing utility (Ding, 2 011). 

 

VIKOR method determines the compromise ranking-list, the compromise solution, 

and the weight stability intervals for preferences stability of the compromise solution 

obtained with the initial (given) weights (Opricovic & Tzeng, 2004). The advantage of the 

VIKOR model is to rank and choose the alternatives with multiple criteria (Tzeng et al., 

2005). By utilizing VIKOR, the project ensures that the selected blended learning model 

successfully navigates and sets a delicate balance between the various learning styles of the 

students, in addition to aligning with their unique learning preferences. 

 

This study attempts to provide an in-depth and systematic approach to decision-

making, taking into consideration both qualitative and quantitative factors, by combining 

TOPSIS, and VIKOR. The project will investigate how the Blended Learning Model's 

interest is affected by various learning styles, including kinesthetic, auditory, and visual. The 

primary focus is on evaluating the accuracy and sensitivity of the AHP-VARK model, a 

sophisticated decision-making model that combines Analytical Hierarchy Process (AHP) 

principles with the Visual, Auditory, Reading/Writing, and Kinesthetic (VARK) learning 

styles. By applying this integrated model to blended learning data, the research aims to 

provide valuable insights into the effectiveness of the AHP-VARK approach. This endeavor 

contributes to the enhancement of decision analysis methodologies in the dynamic context of 

blended learning, fostering a deeper understanding of accuracy and sensitivity within the 

framework of multi-criteria decision analysis. 
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1.2 Problem statement 
 

Since the outbreaks of COVID-19 disease and the movement control order (MCO) 

started, students are forced to adopt new learning methods following the limitations they face 

in the MCO. Some students struggle to adapt and follow the new learning methods that are 

different from the traditional methods they used. According to (Gherheș et al., 2021) face-to-

face learning requires the lecturers' attendance in the classroom, and the students are engaged 

in a continuous physical environment. The problem lies in the need to determine the ideal 

blended learning model for each student, considering various criteria that define 

effectiveness, such as student performance, satisfaction, and adaptability. Designing a one-

size-fits-all blended learning approach is insufficient, as it fails to address the unique needs 

and preferences of individual learners. Generally, research has found that Blended Learning 

results in improvement in student success and satisfaction, (Means et al., 2013) as well as an 

improvement in students’ sense of community(Rovai & Jordan, 2004) when compared with 

face-to-face courses. 

In the ever-changing landscape of blended learning environments, where educational 

content and learning styles constantly evolve, the efficacy and adaptability of decision-

making models become paramount. The AHP-VARK model, a sophisticated fusion of AHP 

and VARK learning styles, is employed to navigate this complex educational terrain. 

However, the dynamic nature of blended learning environments necessitates a comprehensive 

examination of the model's ability to adapt to ongoing changes. Moreover, the accuracy of 

the AHP data, a foundational component of the AHP-VARK model, comes under critical 

observation. The authors of the book concluded that, despite its popularity, AHP is incapable 

of solving complex problems (Munier & Hontoria, 2021). Recognizing potential inaccuracies, 

the study proposes the utilization of the TOPSIS and VIKOR methodologies to rigorously 

analyze the accuracy and sensitivity of the AHP data. This strategic integration of TOPSIS 

and VIKOR aims to provide a more robust and reliable evaluation of the AHP-VARK model, 

ensuring that decisions derived from the model are grounded in accurate and dependable data. 
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1.3 Objectives 
 

The objectives of this project are as follows: 

a) To study AHP VARK model data. 

b) To apply the TOPSIS VIKOR integrated model. 

c) To test the accuracy of AHP blended learning model data 

 

1.4 Scope of study 
 

This research project embarks on an exploration of two widely employed 

methodologies in the domain of multi-criteria decision analysis, namely, the TOPSIS 

(Technique for Order of Preference by Similarity to Ideal Solution) and VIKOR 

(VlseKriterijumska Optimizacija I Kompromisno Resenje) methods. In the introductory 

phase, the focus lies on explaining the principles and objectives that underpin these decision-

making tools. TOPSIS is characterized by its approach of determining the ideal and worst 

solutions based on criteria, while VIKOR is adept at striking a balance among conflicting 

objectives to derive compromise solutions. The overarching goals of these methods include 

offering a systematic decision-making approach and a robust framework for evaluating 

alternatives that involve multiple criteria. 

 

In the scope of this project, the primary data source will be derived from a previous 

FYP student report. This existing dataset serves as a foundational resource for the subsequent 

analysis. The central focus of the study lies in detailing the integration of TOPSIS and 

VIKOR methodologies. This framework is specifically designed to evaluate the accuracy and 

sensitivity of the AHP-VARK model. By combining these decision-making techniques, the 

project aims to contribute to a more robust understanding of multi-criteria decision analysis, 

providing valuable insights into the complex relationships between different evaluation 

criteria within the context of the AHP-VARK model. 
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CHAPTER 2 

LITERATURE REVIEW 
 

 This chapter explores the existing literature related to the integration of TOPSIS 

(Technique for Order of Preference by Similarity to Ideal Solution) and VIKOR 

(VlseKriterijumska Optimizacija I Kompromisno Resenje) models to evaluate the accuracy 

and sensitivity of the AHP VARK model in analyzing blended learning data. The review will 

cover current studies, theories, and practical applications related to the subject. It aims to 

establish the foundation for the present study by summarizing key findings and identifying 

gaps that warrant further investigation. 

 

2.1 Multi criteria Decision Making Method 
 

Multi Criteria Decision Making is a methodology that aids in the decision-making 

process when there are multiple criteria to consider (Rustandi & Shilul Imaroh, 2021). Previous 

sources state that multi-criteria decision-making techniques have proven useful in numerous 

fields of research and applications. The literature highlights the importance of using multi-

criteria decision-making methodologies to find the best or most appropriate solution among 

alternatives (Alakaş et al., 2020). This methodology allows multi-criteria decision-making of 

options and constraints, providing a holistic approach to decision-making. 

 Several studies have utilized multi-criteria decision-making methods in different 

decision-making processes. Additionally, multi-criteria decision-making can help balance the 

three aspects of sustainability - economic, social, and environmental. Furthermore, the 

literature suggests that multi-criteria decision-making methods can handle both qualitative 

and quantitative criteria, allowing decision-makers to make informed choices based on a 

combination of different types of criteria (Alakaş et al., 2020). In summary, multi-criteria 

decision-making is a versatile methodology that assists decision-makers in considering 

multiple criteria and reaching the most appropriate solution among alternatives (Rustandi & 

Shilul Imaroh, 2021). 
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2.2 TOPSIS Model 
 

The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is a 

versatile multi-criteria decision-making (MCDM) methodology that has found applications in 

various fields, including education. This section explores the applicability and relevance of 

TOPSIS in educational contexts, focusing on its benefits, guiding principles, and real-world 

examples of its use. In general, TOPSIS provides criteria that help researchers rank 

alternative items. TOPSIS is a useful multi-attribute decision making (MADM) method that 

deals with real decision problems in human lives by analyzing, comparing, and ranking the 

alternatives to choose the best and the most suitable option considering the criteria of the 

problem (Madanchian & Taherdoost, 2023). The TOPSIS method takes into consideration all 

kinds of criteria and provides a rational and understandable ranking of alternatives. 

According to this technique, the best alternative would be one that is closest to the positive-

ideal solution and farthest from the negative-ideal (Krohling & Pacheco, 2015). Furthermore, 

TOPSIS is known for its simple calculation process and flexible application. 

 

In summary, the TOPSIS method is a multi-criteria decision-making model that 

provides a rational and understandable ranking of alternatives. Its simplicity, consideration of 

all criteria, and clear calculation process make it a valuable tool for decision-making in 

various industries and contexts. In general, the TOPSIS algorithm's procedure begins with 

creating a decision matrix that shows the degree to which each criterion is satisfied with each 

option. Next, the matrix is normalized with a desired normalizing scheme, and the values are 

multiplied by the criteria weights. 

 

2.2.1 Advantages of TOPSIS 
 
 The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) offers 

distinct advantages. Known for its objectivity and adaptability, the advantages of TOPSIS, its 

versatility and the ability to classify results into individual groups also suggests the 

possibility of its wider use (Galik et al., 2022). The literature demonstrates the extensive 

application of TOPSIS in diverse decision-making scenarios, such as the prioritization of 

performance indicators to assist paper manufacturing plants in achieving higher sustainable 

manufacturing performance and increasing their competitiveness. Moreover, (Alqahtani & 

Rajkhan, 2020) discusses the application of TOPSIS in combination with AHP for analyzing 
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E-learning critical success factors, this article examines eight different criteria across 

instructor characteristics, student characteristics, technology support, and course design. 

TOPSIS's ability to handle multiple criteria allows for a comprehensive evaluation of e-

learning effectiveness, considering various factors that contribute to its success. 

 

 In conclusion, a literature review on the advantages of TOPSIS reveals that it offers 

several benefits, including its simplicity in calculation, reliability with fewer rank reversals, 

ability to handle many alternatives and criteria, and its applicability in qualitative and 

quantitative research. TOPSIS offers several advantages over other methods, making it a 

popular choice in the research and industrial communities (Tang et al., 2018).  

 

2.2.2 Disadvantages of TOPSIS 
 

These are the disadvantage highlighted by (Madanchian & Taherdoost, 2023). Firstly, is 

the use of Euclidean Distance in TOPSIS, which does not account for the correlation between 

attributes. This limitation can lead to information overlap, potentially impacting the accuracy 

of the results. Moreover, the process of weighing in TOPSIS is often considered a 

challenging and uncertain task. Assigning appropriate weights to criteria requires subjective 

judgment and can introduce ambiguity into the decision-making process. 

 

TOPSIS method has a high dependence on the weight of each index to be evaluated 

(Liu et al., 2023). Another drawback is the possibility of encountering alternatives that are 

close to both positive and negative ideal points simultaneously. This scenario can make it 

difficult for TOPSIS to clearly distinguish between alternatives, posing a challenge in 

decision-making situations. Additionally, when faced with uncertain or insufficient data, 

TOPSIS may struggle to provide precise determinations due to the potential for vague human 

judgments. 

 

Despite these limitations, the widespread adoption of TOPSIS underscores its 

practical utility in decision-making scenarios. Researchers in the field are actively engaged in 

exploring enhancements and modifications to address these drawbacks. Continuous efforts 

aim to refine TOPSIS and make it more robust, ensuring its continued relevance in the 

dynamic landscape of Multi-Criteria Decision Making. By acknowledging its limitations and 
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actively seeking improvements, researchers aim to maximize the benefits of TOPSIS while 

minimizing its potential shortcomings. 

 

2.2.3 Application of TOPSIS 
 

TOPSIS has found its applications in diverse educational contexts, enriching decision-

making processes. In curriculum design, TOPSIS aids in the selection of the most suitable 

curriculum design by balancing factors such as course content, student engagement, and 

resource allocation (Triantaphyllou, 2000). Furthermore, it helps with faculty performance 

evaluation by considering a variety of factors, such as research output, teaching effectiveness, 

and institutional service. A methodical approach to assessing academic achievement, TOPSIS 

considers a few variables, including research output, teaching effectiveness, and institutional 

service. The method's ability to handle complex decision scenarios and adapt to both 

quantitative and qualitative criteria make it a valuable tool in the education sector. 

 

TOPSIS has been extensively applied in the field of personnel selection (Nabeeh et 

al., 2019). Other areas where TOPSIS has found application include supply chain 

management, where it has been used to optimize supplier selection and evaluation. TOPSIS 

has also been used in the assessment of financial performance, where it helps in comparing 

and ranking companies based on their financial indicators (Chakraborty, 2022). In addition, 

TOPSIS has been utilized in manufacturing decision-making processes to select suppliers or 

evaluate the performance of different products. Researchers have used TOPSIS to make 

decisions related to university admissions, student performance evaluation, and faculty 

selection. Overall, the literature review highlights that TOPSIS has inspired the development 

of numerous methods and comparative analysis approaches. Furthermore, TOPSIS has shown 

promising results in other areas such as purchase decisions and outsource provider selection, 

where it helps in selecting the best supplier based on multiple criteria (Chakraborty, 2022).  

 

In summary, the literature review reveals that TOPSIS is widely used and applied in 

various fields including supply chain management, design, mechanical engineering, airline 

industry, automobile industry, finance and banking industry, food industry, information 

technology industry, and manufacturing industry (Parveen & Kamble, 2021). This literature 

review demonstrates the extensive and diverse applications of TOPSIS in different industries 

and domains.  
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2.3 VIKOR Model 
 

 The VIKOR method, developed by Opricovic and Tzeng, stands as a robust approach 

to address multicriteria decision-making challenges, particularly in scenarios where discrete 

decision problems involve non-commensurable and conflicting criteria (Opricovic & Tzeng, 

2007). The methodology offers a systematic way for decision-makers to navigate through 

complex decision landscapes. The method provides decision-makers with the flexibility to 

consider multiple scenarios and find a solution that is not only optimal but also resilient to 

potential challenges or setbacks. It specifies the compromise order list, solution, and the 

weight stability range for the chosen stability in the achieved compromise solution with the 

original weights (Türegün, 2022). A distinctive feature of VIKOR is its incorporation of a 

decision mechanism coefficient, offering decision-makers the option to adopt either radical or 

conservative decision strategies. This flexibility is especially valuable in situations where the 

decision-makers need to balance risk and reward, allowing them to tailor their approach 

based on the specific context of the decision problem. 

 

The multicriteria ranking index, a key component of VIKOR, is based on the concept 

of 'closeness' to the 'ideal' solution. This measure assists decision-makers in quantifying how 

well each alternative aligns with the desired criteria. By using this index, VIKOR enables 

decision-makers to rank alternatives systematically, providing a clear and objective basis for 

decision-making (Opricovic & Tzeng, 2004). It's important to note that the results obtained from 

the VIKOR ranking can be sensitive to the inclusion or removal of alternatives. This 

highlights the method's responsiveness to changes in the decision space and emphasizes the 

need for careful consideration when modifying the set of alternatives under evaluation. 

Furthermore, VIKOR's interactivity is a notable feature, allowing decision-makers to actively 

participate in and control the decision-making process. This is facilitated through the 

incorporation of weights, as discussed by (Zolfani et al., 2020). The ability to assign weights 

to different criteria empowers decision-makers to emphasize the importance of certain factors 

over others, reflecting their preferences and priorities in the decision-making process. 
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2.3.1 Advantages of VIKOR 
 

(Kastratović et al., 2017) provides a comprehensive exploration of the advantageous 

features inherent in the VIKOR method, particularly in the context of decision-making 

related to investment projects. The method's primary strength lies in its capacity to address 

the intricate nature of decision scenarios where diverse and conflicting criteria must be 

considered. By focusing on identifying the best compromise solution, VIKOR offers a 

systematic approach to handling incommensurable factors, allowing decision makers to arrive 

at solutions that strike an optimal balance. A notable characteristic of the VIKOR method 

highlighted in the document is its simplicity and practicality. Unlike some other multi-criteria 

decision-making techniques, VIKOR is characterized by a straightforward implementation 

and interpretation process. This simplicity is a valuable attribute, making the method 

accessible to a broader range of decision makers, including those who may not possess 

advanced expertise in complex mathematical or computational methodologies. 

 

 The document emphasizes the efficiency gained from fewer computational steps, 

expediting the decision-making process. The versatility of the VIKOR method is 

underscored, as it finds application across various decision-making problems in different 

fields, including engineering, economics, and management. This adaptability enhances its 

appeal for decision makers operating in diverse domains where a multitude of criteria must be 

considered simultaneously. Another key advantage highlighted in the document is the 

method's ability to aggregate both maximum group utility and minimum individual regret. 

This dual consideration ensures that decisions not only benefit the collective group but also 

consider the satisfaction and concerns of individual decision makers. This feature contributes 

to a more equitable and balanced outcome, fostering collaboration and buy-in from all 

stakeholders involved in the decision-making process. Furthermore, the document draws 

attention to the inclusion of sensitivity analysis within the VIKOR method. This analytical 

tool allows decision makers to assess the impact of different weights assigned to criteria, 

providing insights into the stability and robustness of the chosen solution. The ability to 

conduct sensitivity analysis enhances the method's adaptability, enabling decision makers to 

account for changing conditions, preferences, or uncertainties. 

 

The article "Susceptibility of deforestation hotspots in Terai-Dooars belt of 

Himalayan Foothills: A comparative analysis of VIKOR and TOPSIS models (Bera et al., 
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2022) explores deforestation in the Himalayan Foothills, comparing AHP, TOPSIS, and 

VIKOR methods. The authors state that VIKOR offers "rationality, simplicity, better 

computational proficiency and high efficiency to measure the performance of every 

alternative in a simple mathematical way."(Bera et al., 2022) 

 

2.3.2 Disadvantages of VIKOR 
 
 (Huang et al., 2009) critically assess the limitations of the VIKOR model and propose 

modifications to enhance its efficacy. VIKOR may yield inaccurate preference rankings of 

alternatives. The authors assert that in some instances, VIKOR's results are clearly incorrect, 

as demonstrated with their house selection example. The paper highlights issues with the way 

S (maximum group utility) and R (minimum individual regret) values are calculated in 

VIKOR. The method normalizes these values, which affects the level of regret based on both 

the best and worst values of each criterion, while according to regret theory, it should be 

influenced only by the best values. 

 

VIKOR defines regret based on the difference between alternatives and the best value 

of each criterion referred to as the discontent utility in this paper. However, this approach 

ignores the choiceless utility, which is the utility that an individual would derive if he/she 

experienced the outcome without having chosen it. The authors propose that VIKOR does not 

fully encapsulate emotional factors such as regret and rejoicing, which are part of decision 

making according to regret theory. The original VIKOR model does not consider anticipated 

feelings that can influence decision makers. To address these issues, the authors propose a 

revised VIKOR model that incorporates the perspective of regret theory, measuring both 

choiceless and discontent utilities. This revised model aims to reflect realistic MCDM 

problems and decision-makers’ choice behavior more accurately. 

 

 The article "VIKOR multi-criteria decision making with AHP reliable 

weighting for article acceptance recommendation"(Wibawa et al., 2019) discusses the 

integration of AHP and VIKOR methods for building a more robust decision support system 

for recommending article acceptance. The authors acknowledge a key limitation of VIKOR: 

its reliance on subjective weighting. The paper explains that VIKOR's initial weights, which 

determine the relative importance of different criteria, are often assigned subjectively. This 

subjectivity can introduce bias and potentially lead to less reliable outcomes. To address this, 
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the authors propose using AHP to establish more reliable weights for the VIKOR method, 

ultimately aiming for a more objective and accurate article acceptance recommendation 

system. 

 

2.3.3 Applications of VIKOR 
 

(Kastratović et al., 2017) employs the VIKOR method, a widely recognized multi-

criteria decision-making approach, to tackle the common challenge of allocating capital 

among multiple investment projects. The methodology initiates with the creation of a 

decision matrix, detailing various potential projects and assessing them against dynamic 

financial indicators like net present value and internal rate of return. Significantly, each 

criterion is assigned a weight, reflecting its relative importance to the decision-making entity, 

and accommodating the diverse significance enterprises may attribute to specific financial 

measures.  

Subsequently, the method progresses to normalize the decision matrix and compute 

utility measures (Si and Ri), designed to quantify how each project approaches the ideal 

solution from positive and negative perspectives. A composite measure (Qi) is then derived, 

striking a balance between utility and regret associated with each investment option. The 

introduction of parameter 'v' allows for fine-tuning the strategy, adjusting the weight between 

maximizing group utility, and minimizing individual regret based on the decision-maker’s 

preferences. The calculated Qi values lead to a systematic ranking of investment projects, 

providing decision-makers with an empirical basis for selecting the optimal alternative. The 

VIKOR method stands out as a structured and comprehensive approach to multi-criteria 

decision-making, addressing complex investment decisions by incorporating a broad array of 

financial indicators.  

The article "VIKOR multi-criteria decision making with AHP reliable weighting for 

article acceptance recommendation"(Wibawa et al., 2019) presents a novel application of the 

VIKOR method in the academic publishing domain. Recognizing the multi-faceted nature of 

article evaluation, the authors utilize VIKOR to develop a decision support system for 

recommending articles for publication. The article highlights that acceptance decisions are 

rarely based on a single factor; instead, reviewers consider a range of criteria, including 

originality, quality, clarity, significance, and relevance. The authors leverage VIKOR's 

strength in handling such multi-criteria decision-making scenarios to create a system that 
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ranks articles based on their overall merit, considering the trade-offs and potential conflicts 

between these criteria. This approach aims to provide a more comprehensive and objective 

assessment of articles compared to relying solely on subjective judgments or a single 

evaluation factor. 

 

2.3.4 Summary Table of Literature Review 
 

Table 2.1: Summary Table 

Author Year Sample Title Source Findings 

Alakaş et al. 2020 Industrial 

symbiosis 

applications 

based on ANP 

Ranking of sustainability 

criteria for industrial 

symbiosis applications 

based on ANP 

Journal of 

Environmental 

Engineering and 

Landscape 

Management 

the study provides strategic 

insights into the criteria affecting 

the sustainability of industrial 

symbiosis, the importance of 

management systems. 

Alqahtani & 

Rajkhan 

2020 consisted of 69 

e-learning 

managers from 

various 

educational 

institutions. 

E-Learning Critical Success 

Factors during the 

COVID-19 Pandemic: A 

Comprehensive Analysis of 

E-Learning Managerial 

Perspectives 

Department of 

Industrial 

Engineering, King 

Abdulaziz 

University 

The study highlights blended 

learning as the most effective 

approach and emphasizes that 

technological advancement alone 

is insufficient without robust e-

learning strategies, skilled 

instructors, and engaged, self-

motivated students. 

Chakraborty 2022 top 20 world 

university 

rankings from 

Times Higher 

Education in 

2020 

TOPSIS and Modified 

TOPSIS: A comparative 

analysis 

Decision 

Analytics Journal 

the paper finds that while both 

TOPSIS and modified TOPSIS 

are derived from the same 

mathematical origin and are 

structurally similar, they produce 

different rankings due to the way 

attribute weight is incorporated. 

Galik et al. 2022 labor market 

flexibility in 15 

European 

Union Member 

States. The 

data covers a 

period from 

2009 to 2018. 

Evaluating Labour Market 

Flexibility Using the 

TOPSIS 

Method: Sustainable 

Industrial Relations 

journal 

Sustainability. 

The study found that the TOPSIS 

method is a suitable approach for 

measuring and comparing labour 

market flexibility across different 

countries and over time. 

Guitouni & 

Martel 

1998 Choosing an 

appropriate 

MCDA method 

Tentative guidelines to help 

choosing an appropriate 

MCDA method 

European Journal 

of Operational 

Research 

This paper demonstrates how 

crucial it is for any decision aid 

methodology to include steps 
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related to structuring and 

modelling. 

Huang et al. 2009 Multiple 

criteria 

decision 

making - The 

perspective of 

regret theory 

A revised VIKOR model 

for multiple criteria 

decision making - The 

perspective of regret theory 

Communications 

in Computer and 

Information 

Science 

The paper finds that the revised 

VIKOR model, provides a more 

accurate reflection of decision-

makers' unlike the original 

VIKOR model which can produce 

incorrect preference rankings. 

Hwang & Yoon 1981 Multiple 

Attributes 

Decision 

Making 

Methods 

Multiple Attributes 

Decision Making Methods 

and Applications 

Multiple 

Attributes 

Decision Making 

Introduction to multiple attributes 

decision-making methods 

Kastratović et 

al. 

2017 Investment 

Projects 

Application of Vikor 

Method in Ranking the 

Investment Projects 

Journal of 

Economics and 

Law 

The findings of the research 

document is that the VIKOR 

method effectively ranks 

investment projects by evaluating 

them against multiple criteria, 

resulting in the identification of 

an investment alternative  

Krohling & 

Pacheco 

2015 Ranking 

evolutionary 

algorithms 

A-TOPSIS - An approach 

based on TOPSIS for 

ranking evolutionary 

algorithms 

Procedia 

Computer Science 

The study presents the A-TOPSIS 

method as an effective tool for 

ranking evolutionary algorithms 

by considering both their mean 

values and standard deviations. 

Liu et al 2023 discusses the 

advantages and 

disadvantages 

of AHP, 

Entropy value, 

TOPSIS, Fuzzy 

comprehensive 

evaluation. 

Analysis of the Advantages 

and Disadvantages of Four 

Comprehensive Evaluation 

Methods 

School of Quality 

Management and 

Standardization, 

Foshan University 

The article concludes by 

suggesting that combining these 

methods, instead of relying on 

just one, can lead to more robust 

and reliable evaluations. 

Madanchian & 

Taherdoost 

2023 Multi-criteria 

decision 

making 

A comprehensive guide to 

the TOPSIS method for 

multi-criteria decision 

making 

Sustainable Social 

Development 

This study has examined the main 

advantages and disadvantages of 

TOPSIS and given an overview of 

its development and applications. 

Nabeeh et al. 2019 Personnel 

Selection 

An Integrated 

Neutrosophic-TOPSIS 

Approach and Its 

Application to Personnel 

Selection: A New Trend in 

Brain Processing and 

Analysis 

IEEE Access The study found that integrating 

neutrosophic sets with the AHP 

and TOPSIS methodologies 

enhances traditional personnel 

selection processes  



24 
 

Opricovic & 

Tzeng 

2004 VIKOR and 

TOPSIS 

Compromise solution by 

MCDM methods: A 

comparative analysis of 

VIKOR and TOPSIS 

European Journal 

of Operational 

Research 

The paper finds that VIKOR and 

TOPSIS MCDM methods both 

aim for a solution close to the 

ideal but differ in their approach 

to normalization, aggregation, and 

the relative importance of 

distances in their ranking 

processes. 

 

Opricovic & 

Tzeng 

2007 Outranking 

methods 

Extended VIKOR method 

in comparison with 

outranking methods 

European Journal 

of Operational 

Research 

The study's findings indicate that 

alternative A5 is the best 

compromise solution for the 

multicriteria optimization of the 

hydropower systems on the Drina 

River, 

 

Parveen & 

Kamble 

2021 Group decision 

making in 

intuitionistic 

fuzzy 

environment 

An extension of TOPSIS 

for group decision making 

in intuitionistic fuzzy 

environment 

Mathematical 

Foundations of 

Computing 

Extension of TOPSIS for group 

decision making in intuitionistic 

fuzzy environment 

Rustandi & 

Shilul Imaroh 

2021 Optimization 

Contractor 

Selection 

Analysis fuzzy AHP for 

optimization contractor 

selection using multi-

criteria in determining the 

best alternative contractor 

Dinasti 

International 

Journal of 

Management 

Science 

The findings of this study shows 

that it can be utilised to advise 

TSI management that all 

contractor selection procedures 

should be conducted objectively, 

with the use of techniques that 

reduce bias or uncertainty. 

Tang et al. 2018 Logistics 

Service Quality 

Research on Taguchi 

TOPSIS Method in 

Logistics Service Quality 

Advances in 

Social Science, 

Education and 

Humanities 

Research 

The study found that the hesitant 

fuzzy Taguchi TOPSIS method 

provides an effective multi-

attribute decision-making 

approach, concluding that the 

service quality of the third 

logistics enterprise is superior to 

the other three evaluated 

companies. 

Triantaphyllou 2000 Comparative 

Study 

Multi-Criteria Decision-

Making Methods: A 

Comparative Study 

Applied 

Optimization 

(APOP, volume 

44) 

The book presents an extensive 

comparative study of the Multi-

Criteria Decision-Making 

methods, highlighting various 

abnormalities in some methods 

and addressing critical aspects 

like quantification of qualitative 
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data, deriving weights, and 

sensitivity analysis. 

Türegün 2022 analyses the 

financial 

performance of 

companies in 

the tourism 

sector that are 

publicly traded 

on the Borsa 

Istanbul. 

Financial performance 

evaluation by multi-criteria 

decision-making technique 

Ozyegin 

University, School 

of Applied 

Sciences, Turkey 

The findings reveal similar 

company rankings in 2018 and 

2019, with AVTUR consistently 

ranked highest and MARTI 

lowest. However, slight ranking 

variations emerged in 2020, 

highlighting the influence of 

market conditions on evaluation 

outcome 

Wibawa et al 2019 This study 

focused on a 

review of 18 

articles 

VIKOR multi-criteria 

decision making with AHP 

reliable weighting for 

article acceptance 

recommendation 

International 

Journal of 

Advances in 

Intelligent 

Informatics 

The authors found that the AHP-

VIKOR method outperforms the 

traditional VIKOR method in 

terms of reliability and accuracy 

when ranking articles for 

acceptance 

Zolfani et al. 2020 Reanalysis of 

the MADM 

methods based 

on logarithmic 

normalization 

A VIKOR and TOPSIS 

focused reanalysis of the 

MADM methods based on 

logarithmic normalization 

Facta 

Universitatis, 

Series: 

Mechanical 

Engineering 

The study found that logarithmic 

normalization offers more stable 

results and is resistant to the rank 

reversal problem in multi-

attribute decision-making 

methods when compared to 

conventional normalization 

models. 
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CHAPTER 3 

METHODOLOGY 
 

This chapter provides a detailed explanation of the steps that were taken to finish this 

project successfully. Ensuring transparency and replicability, the objective is to present a 

thorough and comprehensible understanding of the study's methodology. Achieving the 

research goals and answering the research questions highlighted in Chapter 1 depend heavily 

on the methodology used in this study. 

 

3.1 Overview of the Study 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Project Flow Chart 

Start 

Study AHP VARK 
Model Data 

Collect data 
from AHP 

VARK 
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Apply TOPSIS and 
VIKOR to the data 

Analyse Accuracy 
and sensitivity to 

the data 

End 
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This study outlines the systematic approach used in conducting the research to test the 

accuracy and sensitivity of the (AHP) in prioritizing the blended learning model based on the 

VARK model using (TOPSIS) and (VIKOR). The research methodology encompasses 

overview of the study, data statistic investigation period, equipment used, construction of 

questionnaire, software used, TOPSIS AND VIKOR methods, and Comparison of the data. 

Figure1 shows a flow chart that illustrates the methodical implementation of processes and 

procedures. 

 

3.2 AHP VARK Model Data research study 
 

 The research will conduct a comprehensive investigation into the data derived from 

previous student Final Year Report (FYP) that have implemented the Analytic Hierarchy 

Process (AHP) in conjunction with the VARK (Visual, Auditory, Reading/Writing, 

Kinesthetic) model. The primary focus is on analyzing and understanding the patterns, trends, 

and outcomes associated with the application of the AHP VARK model in diverse 

educational settings, with particular emphasis on blended learning environments. This study 

serves as the foundational step in building insights and informing subsequent stages of the 

research, providing a robust basis for the integration of the TOPSIS and VIKOR models in 

the later phases of the project. 

 

3.3 Data collection 
  
 In this comprehensive project, the primary focus revolves around gathering and 

analyzing data derived from previous student PSM project. The first data is the survey taken 

from 50 Year 4 undergraduate engineering course students from UTeM about their Preferred 

Blended Learning Models and their preferred VARK model. The survey likely encompassed 

questions that delved into the students' experiences, preferences, and expectations regarding 

the integration of various learning methodologies. The second data is AHP model analysis 

result. AHP is a decision-making tool that helps in systematically evaluating and prioritizing 

different criteria and alternatives. The data provided will be used to conduct accuracy and 

sensitivity to the results. 
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3.4 TOPSIS Model 
 

     TOPSIS model will use a data survey from 50 Year 4 undergraduate engineering course 

students from UTeM about their Preferred Blended Learning Models and their preferred 

VARK model conducted by previous PSM student. The standard operating procedure of 

TOPSIS for decision-making in this project and the TOPSIS flow chart are shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 3.2: TOPSIS Flow Chart 
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In this project, the VARK model is the criteria while the blended learning models are 

the alternative options. The decision matrix with m alternatives and n criteria is represented 

as 𝑋 = (𝑥𝑖𝑗)𝑚𝑥𝑛. 

Step 1: Calculate and normalize the decision matrix. 

Normalize the decision matrix by dividing each element by the square root of the sum of 

squares of all elements in the corresponding column. This step ensures that all criteria are on 

the same scale. 

𝑟𝑖𝑗 =
𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑚

𝑖=1
 

 

Step 2: Calculate weight normalized matrix. 

Firstly, calculate the weights by dividing the sum of each criterion by the total sum of all 

criteria. 

Weight 𝑤𝑗 =𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 
𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 

 

after calculating the weightage, multiply each column of the normalized decision matrix by 

its respective weight. 

𝑣𝑖𝑗 = 𝑤𝑗 

 

Step 3: Determine the positive ideal and negative ideal solutions. 

𝑣𝑗
+ = {𝑣𝑗

+, 𝑣𝑗
+,…, 𝑣𝑛

+} = {𝑚𝑎𝑥𝑗(𝑣𝑖𝑗)}           𝑣𝑗
− = {𝑣𝑗

−, 𝑣𝑗
−,…, 𝑣𝑛

−} = {𝑚𝑖𝑛𝑗(𝑣𝑖𝑗)} 

 

Step 4: Calculate Euclidean distances for each alternative.  

Euclidean distances quantify the similarity or dissimilarity of each alternative to the ideal and 

anti-ideal solutions. By computing the distance between each alternative and these reference 

points, we obtain a measure of how well each alternative performs relative to the best and 

worst possible outcomes. Alternatives with shorter distances to the ideal solution and longer 

distances to the anti-ideal solution are considered more favorable. 
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𝐷𝑖
+ = √∑(𝑣𝑖𝑗 − 𝑣𝑗

+)
2

𝑛

𝑗=1

     𝐷𝑖
− = √∑(𝑣𝑖𝑗 − 𝑣𝑗

−)
2

𝑛

𝑗=1

 

 

Step 5: Calculate relative closeness. 

This value is always between 0 and 1, and the alternatives which got values closer to 1 are 

better. 

𝐶𝑖 =
𝐷𝑖

−

𝐷𝑖
− + 𝐷𝑖

+ 

 

Step 6: Rank the alternatives. 

In the final step of TOPSIS, the alternatives are ranked from the best with the biggest to the 

worst alternative, with the lowest. The top alternative in the list, that is the alternative with 

the biggest value is the solution. 

 

3.5 VIKOR Model 
 

     VIKOR model will use a data survey from 50 Year 4 undergraduate engineering course 

students from UTeM about their Preferred Blended Learning Models and their preferred 

VARK model conducted by previous PSM student. The standard operating procedure of 

VIKOR for decision-making in this project and the VIKOR flow chart are shown below. 
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Figure 3.3: VIKOR Flow Chart 

 

Step 1: Determines the best 𝑓  𝑖
𝑥 and the 𝑓  𝑖

𝑥− worst values.  

Before normalization, identify the best and worst values for each criterion across all 

alternatives. The best number indicates the most ideal performance, and the lowest value is 

the worst possible performance for each criterion. 

𝑓 𝑖
𝑥 = max 𝑓𝑖𝑗                                        𝑓 𝑖

− = min 𝑓𝑖𝑗 

      Best                                                      Worst 

 

Step 2: Calculate the weight. 

Firstly, calculate the weights by dividing the sum of each criterion by the total sum of all 

criteria. 

Weight 𝑤𝑗 =𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 
𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 
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Step 3: Calculate and normalize the 𝑆𝑖 and 𝑅𝑖 values. 

After weighting the decision matrix, the next step is to calculate the 𝑆𝑖 and 𝑅𝑖 for each 

alternative based on the normalized and weighted decision matrix. 𝑆𝑖 represents the distance 

from the best value, while 𝑅𝑖 represents the distance from the worst value for 

each alternative value to help assess how well each alternative performs relative to the best 

and worst outcomes across all criteria. 

 

𝑆𝑖 = ∑ (𝑊𝑗
𝑥𝑖

+ − 𝑥𝑖𝑗

𝑥𝑖
+ −  𝑥𝑖

−)
⬚𝑚

𝑗=1

 

 

𝑅𝑖 = 𝑚𝑎𝑥 (𝑊𝑗
𝑥𝑖

+ − 𝑥𝑖𝑗

𝑥𝑖
+ −  𝑥𝑖

−) 

 

 

Step 4: Calculate the 𝑄𝑖 

Calculate the 𝑄𝑖 values, which represent the total compromise for every alternative. These 

numbers quantify the balance between getting the best performance for each criterion and 

minimizing the difference from the poorest performance. 

𝑄𝑖 = 𝑣 ∗ 
𝑆𝑖 −  𝑆∗

𝑆− −  𝑆∗ 
+ (1 − 𝑣) ∗

𝑅𝑖 −  𝑅∗

𝑅− −  𝑅∗ 
 

 

𝑆∗ = min 𝑆𝑖 , 𝑆− = 𝑚𝑎𝑥 𝑆𝑖 ,       𝑅∗ = min 𝑅𝑖  ,         𝑅− = max 𝑆𝑖  

 

Step 5: Rank the alternatives. 

Rank the alternatives based on their 𝑄𝑖values. The alternative with the lowest 𝑄𝑖value is 

considered the best compromise solution, offering the most balanced performance across all 

criteria. 
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Step 6: Propose as a compromise solution. 

Propose as a compromise solution the alternatives, which is the best ranked by the measure Q 

(minimum), if the following two conditions are satisfied. 

Condition 1: 

The first requirement is an acceptable advantage, meaning that the difference in Q between 

the best and second-best options must be less than the given DQ value. 

 

𝑄(𝐴2) − 𝑄(𝐴1) ≥ 𝐷𝑄 

𝐷𝑄 =
1

𝐽 − 1
 

 

Condition 2: 

Acceptable stability in decision making. The alternative Not satisfied must be the best ranked 

by S or/and R.  

 

3.6 Accuracy analysis  
 

 Upon completion of the TOPSIS and VIKOR model evaluations, statistical analyses 

will be employed to validate and interpret the obtained results. These analyses aimed at 

assessing the reliability and robustness of the rankings derived from AHP, TOPSIS and 

VIKOR Model. The result will be interpreted to evaluate and compare rankings from AHP, 

TOPSIS, and VIKOR models. Discussion of the implication on the findings and their 

significance in assessing the accuracy and sensitivity of the AHP blended learning model will 

be conducted. Comparing these rankings allows for a thorough evaluation of the AHP 

model's accuracy and sensitivity in reflecting preferences and priorities. Differences in 

rankings between the models may highlight areas where the AHP model excels or falls short, 

providing insights into its effectiveness in differentiating and prioritizing blended learning 

models. 
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CHAPTER 4 

RESULT AND DISCUSSION 
 

This chapter presents and discusses the results of using the TOPSIS and VIKOR 

integrated models to evaluate the accuracy and sensitivity of the AHP-VARK model in 

blended learning data. Evaluation process includes forming decision matrix, calculation of 

normalized decision matrices, determination of ideal solutions and final ranking of 

alternatives. The accuracy of these results is further validated using Spearman's Rank 

Correlation Coefficient. The purpose of this chapter is to provide a thorough understanding of 

the results achieved using the proposed methodology. 

 

4.1 Data Overview 
 

The dataset used in this study was gathered from several blended learning approaches, 

including Face to Face Driver, Online Driver, Rotation, Online Lab, Flex, and Self-blend 

models. Each model is assessed based on VARK (Visual, Auditory, Read/Write, and 

Kinesthetic) learning preferences.  

Table 4.1: Number of Students with Their Preferred Blended Learning Models 

 Number of Students in terms of VARK  
Blended Learning Models 

V A R K 
TOTAL 

Face-to-face Driver Model 4 4 1 16 25 

Online Driver Model 0 0 0 1 1 

Rotation Model 0 3 0 9 12 

Online Lab Model 0 0 0 0 0 

Flex Model 1 1 0 9 11 

Self-blend Model 0 0 0 1 1 

TOTAL 5 8 1 36 50 

 

 The dataset obtained from a previous FYP student includes data gathered via a survey 

designed to assess students' preferences for the VARK (Visual, Auditory, Read/Write, and 

Kinesthetic) model across several blended learning models. The data contains the number of 

students that prefer each learning style within the various blended learning contexts. 



35 
 

Table 4.2 Overall Priority Ranking of the AHP Model 

 

The Analytic Hierarchy Process (AHP) was employed to rank various blended 

learning models based on the VARK learning styles Visual, Auditory, Read/Write, and 

Kinaesthetic. Table 3 shows that the face-to-face driver model had a higher priority vector of 

31.33%, as determined using AHP analysis, was used to calculate weights by pairwise 

comparison. The flex model and the rotation model followed, having priority vectors of 

20.09% and 18.58%, the ranking process included survey data from students about various 

learning experiences and preferences. The AHP analysis also revealed overall accuracy of 

74% which reveals significant consistency between predictions provided by AHP VARK 

model and the individual's preferences. Such information would not only serve as an essential 

base to continuation with evaluation of the accuracy and reliability validation on AHP-VARK 

Model using integrated TOPSIS & VIKOR methods, but also guarantees fitting evaluation 

practice for blended learning strategies. 

 

4.2 TOPSIS Analysis 
 

Step 1: Calculate and normalize the decision matrix. 

Normalize the decision matrix by dividing each element by the square root of the sum 

of squares of all elements in the corresponding column. This step ensures that all criteria are 

on the same scale. 

𝑟𝑖𝑗 =
𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑚

𝑖=1
 

 

Blended Learning Model Calculation Overall Priority Ranking 

Face-to-face Driver Model (0.3762*0.1441) + (0.2865*0.2165) + (0.4116*0.0431) + (0.3007*0.5963) 31.33% 

Online Driver Model (0.1542*0.1441) + (0.1565*0.2165) + (0.1744*0.0431) + (0.1546*0.5963) 15.58% 

Rotation Model (0.1081*0.1441) + (0.2851*0.2165) + (0.0501*0.0431) + (0.1784*0.5963) 18.58% 

Flex Model (0.0904*0.1441) + (0.0675*0.2165) + (0.0968*0.0431) + (0.0630*0.5963) 6.94% 

Online Lab Model (0.1844*0.1441) + (0.1351*0.2165) + (0.2401*0.0431) + (0.2260*0.5963) 20.09% 

Self-blend Model (0.0866*0.1441) + (0.0693*0.2165) + (0.0271*0.0431) + (0.0773*0.5963) 7.47% 
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Table 4.3 Normalize Decision Matrix  

 

 

 

 

 

The normalized decision matrix for the TOPSIS analysis is presented in Table 4.1. 

This table shows the normalized values for each criterion (V, A, R, K) across the different 

blended learning models. For instance, the Face-to-Face Driver Model, which initially had 

high values across most criteria, retained its relative superiority in the normalized matrix. 

Specifically, the normalized values for the Face-to-Face Driver Model are 0.970 for Visual 

(V), 0.784 for Auditory (A), 1 for Read/Write (R), and 0.781 for Kinaesthetic (K). These 

values indicate that this model performs consistently well across all VARK criteria, which is 

expected given its comprehensive approach to blended learning. On the other hand, the 

Online Driver Model, which had lower initial values, shows normalized values of 0 for V, A, 

and R, and a small value of 0.049 for K. This suggests that the Online Driver Model performs 

poorly compared to other models, particularly in the Visual, Auditory, and Read/Write 

criteria. Similarly, the Online Lab Model has normalized values of 0 across all criteria, 

indicating the least favourable performance among the alternatives. 

The Rotation Model and the Flex Model show intermediate performance. The 

Rotation Model has normalized values of 0 for V and R, 0.588 for A, and 0.439 for K, 

reflecting a moderate performance particularly in the Auditory and Kinaesthetic criteria. The 

Flex Model, with normalized values of 0.243 for V, 0.196 for A, and 0.439 for K, shows a 

balanced yet not outstanding performance across the criteria. Lastly, the Self-blend Model, 

like the Online Driver Model, has normalized values of 0 for V, A, and R, and a small value 

of 0.049 for K, indicating it is not a strong performer in any of the criteria. Overall, the 

normalized decision matrix highlights the relative strengths and weaknesses of each blended 

learning model across the VARK criteria 

 

Vark Model V A R K 

Face to Face driver Model 0.970143 0.784465 1 0.78072 

Online Driver Model 0 0 0 0.048795 

Rotation Model 0 0.588348 0 0.439155 

Online Lab Model 0 0 0 0 

Flex Model 0.242536 0.196116 0 0.439155 

Self-blend Model 0 0 0 0.048795 
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Step 2: Calculate weight normalized matrix. 

Firstly, calculate the weights by dividing the sum of each criterion by the total sum of 

all criteria. 

Weight 𝑤𝑗 =𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 
𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 

 

after calculating the weightage, multiply each column of the normalized decision matrix by 

its respective weight. The weights for the criteria V, A, R, and K are 0.1, 0.16, 0.02, and 0.72, 

respectively. These weights indicate that the K criterion (Kinaesthetic) holds the highest 

importance among the criteria, followed by A (Auditory), V (Visual), and R (Read/Write), 

which has the least importance. 

𝑣𝑖𝑗 = 𝑤𝑗𝑟𝑖𝑗 

 

Table 4.4 Weight Normalized Matrix 

 

 

 

 

 

 

These values highlight the dominance of the Kinaesthetic (K) criterion across the 

models, particularly for the Face to Face Driver Model, which scores the highest in this 

category. This indicates that this model is particularly strong in delivering content that aligns 

well with kinaesthetic learning preferences. The Online Lab Model, on the other hand, has 

zero values across all criteria, suggesting it is not favoured in any of the VARK categories 

based on the weightings used. 

 

 

 

Vark Model V A R K 

Face to Face driver Model 0.097014 0.125514 0.02 0.562118 

Online Driver Model 0 0 0 0.035132 

Rotation Model 0 0.094136 0 0.316192 

Online Lab Model 0 0 0 0 

Flex Model 0.024254 0.031379 0 0.316192 

Self-blend Model 0 0 0 0.035132 
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Step 3: Determine the positive ideal and negative ideal solutions. 

In the third step of the TOPSIS analysis, positive ideal solution and the negative ideal 

solution for each criterion need to be calculated. These solutions represent the best and worst 

possible outcomes and serve as benchmarks for evaluating each alternative. The positive 

ideal solution is calculated by taking the maximum value for each criterion across all 

alternatives. Conversely, the negative ideal solution is determined by taking the minimum 

value for each criterion across all alternatives. The positive and negative ideal solutions for 

this analysis are as follows: 

𝑣𝑗
+ = {𝑣𝑗

+, 𝑣𝑗
+,…, 𝑣𝑛

+} = {𝑚𝑎𝑥𝑗(𝑣𝑖𝑗)}           𝑣𝑗
− = {𝑣𝑗

−, 𝑣𝑗
−,…, 𝑣𝑛

−} = {𝑚𝑖𝑛𝑗(𝑣𝑖𝑗)} 

 

Table 4.5: Positive ideal and negative ideal solutions 

 

 

 

 

 

 

 

 

Step 4: Calculate Euclidean distances for each alternative.  

Euclidean distances quantify the similarity or dissimilarity of each alternative to the 

ideal and anti-ideal solutions. By computing the distance between each alternative and these 

reference points, we obtain a measure of how well each alternative performs relative to the 

best and worst possible outcomes. Alternatives with shorter distances to the ideal solution and 

longer distances to the anti-ideal solution are considered more favorable. 

 

Vark Model V A R K 

Face to Face driver Model 0.097014 0.125514 0.02 0.562118 

Online Driver Model 0 0 0 0.035132 

Rotation Model 0 0.094136 0 0.316192 

Online Lab Model 0 0 0 0 

Flex Model 0.024254 0.031379 0 0.316192 

Self-blend Model 0 0 0 0.035132 

     
V+ 0.097014 0.125514 0.02 0.562118 

V- 0 0 0 0 
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𝐷𝑖
+ = √∑(𝑣𝑖𝑗 − 𝑣𝑗

+)
2

𝑛

𝑗=1

     𝐷𝑖
− = √∑(𝑣𝑖𝑗 − 𝑣𝑗

−)
2

𝑛

𝑗=1

 

Table 4.6: Euclidean distances 

Vark Model V A R K Di+ Di- 

Face to Face driver Model 0.097014 0.125514 0.02 0.562118 0 0.584417 

Online Driver Model 0 0 0 0.035132 0.550709 0.035132 

Rotation Model 0 0.094136 0 0.316192 0.266976 0.329907 

Online Lab Model 0 0 0 0 0.584417 0 

Flex Model 0.024254 0.031379 0 0.316192 0.273926 0.318669 

Self-blend Model 0 0 0 0.035132 0.550709 0.035132 

 

The Euclidean distances reveal how close each alternative is to the ideal and anti-ideal 

solutions. The Face-to-Face Driver Model has a 𝐷𝑖
+ value of 0 and a 𝐷𝑖

− value of 0.588603, 

indicating that it is the closest to the positive ideal solution and the farthest from the negative 

ideal solution, thus making it the most favourable alternative. In contrast, the Online Lab 

Model, with a 𝐷𝑖
+value of 0.579489 and a 𝐷𝑖

−value of 0, is the least favorable as it is the 

closest to the negative ideal solution and the farthest from the positive ideal solution. Other 

models like the Rotation Model and Flex Model have intermediate 𝐷𝑖
+and 𝐷𝑖

−values, 

reflecting their moderate performance compared to the ideal and anti-ideal solutions. The 

Online Driver Model and Self-blend Model, with similar distance values, also show poor 

performance relative to the ideal solution. 

 

Step 5: Calculate relative closeness. 

This value is always between 0 and 1, and the alternatives which got values closer to 1 are 

better. 

𝐶𝑖 =
𝐷𝑖

−

𝐷𝑖
− + 𝐷𝑖

+ 
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Table 4.7: Relative Closeness 

Vark Model Di+ Di- Ci 

Face to Face driver Model 0 0.584417 1 

Online Driver Model 0.550709 0.035132 0.059969 

Rotation Model 0.266976 0.329907 0.552716 

Online Lab Model 0.584417 0 0 

Flex Model 0.273926 0.318669 0.537751 

Self-blend Model 0.550709 0.035132 0.059969 

on the results, the Face to Face Driver model has the highest relative closeness (Ci = 

1), indicating it is the best alternative among those evaluated. It is the closest to the positive 

ideal solution, making it the most preferred model. The Rotation Model and Flex Model 

follow with Ci values of 0.552716 and 0.537751, respectively. These models are also 

relatively close to the ideal but not as much as the Face to Face Driver model. The Online 

Driver and Self-blend Models have the same relative closeness value of 0.059969, making 

them less favourable compared to the top alternatives. The Online Lab model has a Ci value 

of 0, indicating it is the least preferred alternative in this analysis. 

 

Step 6: Rank the alternatives. 

In the final step of TOPSIS, the alternatives are ranked from the best with the biggest to the 

worst alternative, with the lowest. The top alternative in the list that is the alternative with the 

biggest value is the solution. 

Table 4.8: Alternatives Ranking 

 

 

 

 

 

Vark Model Ci Rank 

Face to Face driver Model 1 1 

Online Driver Model 0.059969 4 

Rotation Model 0.552716 2 

Online Lab Model 0 5 

Flex Model 0.537751 3 

Self-blend Model 0.059969 4 
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The Face to Face Driver model ranks first with a Ci value of 1, making it the most 

preferred alternative. This model's strong performance across all criteria and its proximity to 

the ideal solution highlight its effectiveness in addressing the needs of different learning 

styles (VARK). The Rotation Model and Flex Model, with Ci values of 0.552716 and 

0.537751, respectively, are the next best alternatives. They perform relatively well but not as 

strongly as the Face to Face Driver model. Their intermediate ranking suggests that they are 

viable options, though they do not fully meet the criteria as effectively as the top-ranked 

model. The Online Driver and Self-blend Models both have a Ci value of 0.059969, placing 

them in a tie for the fourth position. Their lower rankings indicate that they are less 

favourable compared to the other models, especially in terms of meeting the ideal solution 

criteria. The Online Lab model, with a Ci value of 0, ranks last. This indicates that it is the 

least preferred alternative, performing poorly across the criteria and being the farthest from 

the ideal solution. 

4.3 VIKOR Analysis 
 

Step 1: Determines the best 𝑓  𝑖
𝑥 and the 𝑓  𝑖

𝑥− worst values.  

Before normalization, identify the best and worst values for each criterion across all 

alternatives. The best number indicates the most ideal performance, and the lowest value is 

the worst possible performance for each criterion. 

𝑓 𝑖
𝑥 = max 𝑓𝑖𝑗                                        𝑓 𝑖

− = min 𝑓𝑖𝑗 

      Best                                                      Worst 

The table shows the best 𝑓  𝑖
𝑥and worst 𝑓  𝑖

𝑥−values for each criterion. 

Table 4.9: Best and Worse Value 

Vark Model V A R K Total 

Face to Face driver Model 4 4 1 16 25 

Online Driver Model 0 0 0 1 1 

Rotation Model 0 3 0 9 12 

Online Lab Model 0 0 0 0 0 

Flex Model 1 1 0 9 11 

Self-blend Model 0 0 0 1 1 
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Total 5 8 1 36 50 

Best 4 4 1 16 
 

Worst 0 0 0 0 
 

 

These values are derived from the performance data of each blended learning model 

in addressing the different VARK criteria. The Face-to-Face Driver Model consistently 

shows high values, indicating its strong performance across the criteria. In contrast, models 

like the Online Lab Model and Self-blend Model display lower values, reflecting their less 

favourable performance. By establishing these benchmarks, the VIKOR analysis can proceed 

to evaluate each alternative's relative performance in subsequent steps. This step is 

foundational as it provides the reference points for normalization and subsequent calculations 

in the VIKOR method. 

 

Step 2: Calculate the weight. 

Firstly, calculate the weights by dividing the sum of each criterion by the total sum of 

all criteria. 

Weight 𝑤𝑗 =𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 
𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 

 

 

Table 4.10: The Data Weight 

Weightage 0.1 0.16 0.02 0.72 
 

Vark Model V A R K Total 

Face to Face driver Model 4 4 1 16 25 

Online Driver Model 0 0 0 1 1 

Rotation Model 0 3 0 9 12 

Online Lab Model 0 0 0 0 0 

Flex Model 1 1 0 9 11 

Self-blend Model 0 0 0 1 1 

Total 5 8 1 36 50 

These weights reflect the prioritization of criteria for the blended learning models. 

Kinaesthetic learning (K) is given the highest weight, indicating it is the most significant 



43 
 

criterion in this analysis. This is followed by Auditory (A), Visual (V), and Read/Write (R) 

criteria. The high weight for kinaesthetic learning suggests that the blended learning models 

that perform well in this criterion will have a substantial impact on the overall ranking. 

 

Step 3: Calculate and normalize the 𝑆𝑖 and 𝑅𝑖 values. 

             After weighting the decision matrix, the next step is to calculate the 𝑆𝑖 and 𝑅𝑖 for 

each alternative based on the normalized and weighted decision matrix. 𝑆𝑖 represents the 

distance from the best value, while 𝑅𝑖 represents the distance from the worst value for 

each alternative value to help assess how well each alternative performs relative to the best 

and worst outcomes across all criteria. The criteria weights, derived in Step 2, are as follows: 

Visual (V) at 0.1, Auditory (A) at 0.16, Read/Write (R) at 0.02, and kinaesthetic (K) at 0.72.  

 

𝑆𝑖 = ∑ (𝑊𝑗
𝑥𝑖

+ − 𝑥𝑖𝑗

𝑥𝑖
+ −  𝑥𝑖

−)
⬚𝑚

𝑗=1

 

 

𝑅𝑖 = 𝑚𝑎𝑥 (𝑊𝑗
𝑥𝑖

+ − 𝑥𝑖𝑗

𝑥𝑖
+ −  𝑥𝑖

−) 

 

Table 4.11: The 𝑆𝑖 and 𝑅𝑖 values 

Weightage 0.1 0.16 0.02 0.72 
  

Vark Model V A R K 𝑆𝑖  𝑅𝑖  

Face to Face driver Model 0 0 0 0 0 0 

Online Driver Model 0.1 0.16 0.02 0.675 0.955 0.675 

Rotation Model 0.1 0.04 0.02 0.315 0.475 0.315 

Online Lab Model 0.1 0.16 0.02 0.72 1 0.72 

Flex Model 0.075 0.12 0.02 0.315 0.53 0.315 

Self-blend Model 0.1 0.16 0.02 0.675 0.955 0.675 
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             The results show that the Face-to-Face Driver Model has the lowest Si and Ri values, 

both being zero, indicating that it is the closest to the ideal solution and farthest from the 

worst scenario. This suggests that this model performs optimally across all VARK criteria, 

particularly excelling in the kinaesthetic domain, which holds the highest weight. On the 

other hand, the Online Driver, Online Lab, and Self-blend Models exhibit high Si and Ri 

values, implying they are less favourable as they are closer to the worst-case scenario and 

farther from the ideal. The Rotation and Flex Models display intermediate Si and Ri values, 

suggesting moderate performance. The significance of Step 3 lies in its ability to quantify 

how well each alternative aligns with the ideal and deviates from the worst scenarios, 

providing a clear picture of their relative performances. 

 

Step 4: Calculate the 𝑄𝑖 

Calculate the 𝑄𝑖 values, which represent the total compromise for every alternative. These 

numbers quantify the balance between getting the best performance for each criterion and 

minimizing the difference from the poorest performance. 

 

𝑄𝑖 = 𝑣 ∗ 
𝑆𝑖 −  𝑆∗

𝑆− −  𝑆∗ 
+ (1 − 𝑣) ∗

𝑅𝑖 −  𝑅∗

𝑅− −  𝑅∗ 
 

 

𝑆∗ = min 𝑆𝑖 , 𝑆− = 𝑚𝑎𝑥 𝑆𝑖 ,       𝑅∗ = min 𝑅𝑖  ,         𝑅− = max 𝑆𝑖  

 

Table 4.12: The  𝑄𝑖, 𝑆𝑖 and 𝑅𝑖 values 

 𝑆𝑖  𝑅𝑖  𝑄𝑖  

Face to Face driver Model 0 0 0 

Online Driver Model 0.955 0.675 0.94625 

Rotation Model 0.475 0.315 0.45625 

Online Lab Model 1 0.72 1 

Flex Model 0.53 0.315 0.48375 

Self-blend Model 0.955 0.675 0.94625 

 



45 
 

                 These 𝑄𝑖 values reflect the compromise solution rankings. The Face-to-Face 

Driver Model, with the lowest 𝑄𝑖 value of 0, is considered the best alternative, offering the 

most balanced performance across all criteria. The Online Driver and Self-blend Models have 

the highest 𝑄𝑖 values, indicating they are the least favourable. The Rotation and Flex Models, 

with intermediate 𝑄𝑖 values, suggest moderate performance. Step 4 thus finalizes the ranking 

by quantifying the balance between achieving the best overall performance and minimizing 

individual regret. 

 

Step 5: Rank the alternatives. 

Rank the alternatives based on their 𝑄𝑖values. The alternative with the lowest 𝑄𝑖value 

is considered the best compromise solution, offering the most balanced performance across 

all criteria. 

Table 4.13: Alternatives Ranking 

 𝑆𝑖  𝑅𝑖  𝑄𝑖  Rank 

Face to Face driver Model 0 0 0 1 

Online Driver Model 0.955 0.675 0.94625 4 

Rotation Model 0.475 0.315 0.45625 2 

Online Lab Model 1 0.72 1 5 

Flex Model 0.53 0.315 0.48375 3 

Self-blend Model 0.955 0.675 0.94625 4 

S+, R+ 0 0 

S-, R- 1 0.72 

 

            The Face to Face Driver Model has the lowest 𝑄𝑖 value of 0, making it the most 

preferred alternative. This indicates that this model is the closest to the ideal solution and 

farthest from the worst scenario, balancing both the collective utility and individual regret 

optimally. Its top rank signifies its effectiveness in meeting the criteria set for the blended 

learning models. The Rotation Model, with a 𝑄𝑖  value of 0.45625, is ranked second. This 

model performs well across the criteria but not as strongly as the Face to Face Driver Model. 

It is a viable alternative, showing moderate compromise between the best and worst 

performances. The Flex Model follows closely with a 𝑄𝑖 value of 0.48375, placing it third. It 
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demonstrates a relatively balanced performance across the evaluated criteria, making it 

another strong option for blended learning approaches. Both the Online Driver Model and the 

Self-blend Model have a 𝑄𝑖 value of 0.9775, tying them at the fourth position. These models 

are less favourable compared to the top three alternatives, as their higher 𝑄𝑖 values indicate a 

greater distance from the ideal solution and closer proximity to the worst scenario. The 

Online Lab Model has the highest 𝑄𝑖value of 1, placing it last in the ranking. This model is 

the least preferred alternative due to its poor performance across the criteria, being farthest 

from the ideal solution and closest to the worst-case scenario. 

 

Step 6: Propose as a compromise solution. 

           Propose as a compromise solution the alternatives, which is the best ranked by the 

measure Q (minimum), if the following two conditions are satisfied. 

Condition 1: Acceptable Advantage 

           The first requirement is an acceptable advantage, meaning that the difference in Q 

between the best and second-best options must be less than the given DQ value. In this 

context, J represents the number of alternatives. The acceptable advantage condition confirms 

that the top-ranked alternative is distinctively better than the others. 

 

𝑄(𝐴2) − 𝑄(𝐴1) ≥ 𝐷𝑄 

𝐷𝑄 =
1

𝐽 − 1
 

𝑄(𝐴2) − 𝑄(𝐴1) = 0.45625 − 0.00000 = 0.45625 

 

𝐷𝑄 = 1
6−1

= 0.2    Satisfied 

 

Condition 2: Acceptable Stability 

          The second condition checks the stability of the decision by ensuring that the proposed 

best alternative is also the best when evaluated by either the S (maximum group utility) or R 
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(minimum individual regret) criteria, or both. This condition guarantees that the proposed 

compromise solution is good across different evaluation measures. The Face to Face Driver 

model also be the best in terms of S or R.  From the data, it is evident that the Face to Face 

Driver model ranks best in terms of both criteria. Given that both conditions are satisfied, the 

Face to Face Driver model can be proposed as the compromise solution. 

 

4.4 Accuracy Analysis 
 

Table 4.14: Spearmen’s Rank Correlation Coefficient Data 

Alternative 
AHP 

Ranking 

 

TOPSIS-

VIKOR 

Ranking 

Difference 

(d) 

Squared 

Difference 

(d^2) 

Face to Face driver Model 1 1 0 0 

Online Driver Model 4 4 0 0 

Rotation Model 3 2 1 1 

Online Lab Model 6 5 1 1 

Flex Model 2 3 -1 1 

Self-blend Model 5 4 1 1 

Sum 
   

4 

p 0.885714 
   

 

Spearmen’s rank correlation coefficient is used to test the consistency and accuracy of 

the multi criteria decision making method which is AHP VARK model and TOPSIS and 

VIKOR model. This non-parametric measure assesses the strength and direction of the 

association between two ranked variables. It is a measurement of the level to which rankings 

produced by various means agree with each other. In case of high Spearman’s rho values, it 

implies that the ranking is closer meaning consistency or accuracy in ranking. The coefficient 

value ranges between -1 and +1 where +1 indicates perfect positive correlation, 0 signifies no 

correlation while -1 indicates perfect negative correlation. Spearman's Rank Correlation 

Coefficient measures the strength and direction of the association between two ranked 
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variables where di is the difference between the ranks of each alternative in two different 

methods and n is the number of alternatives as formula shown below: 

 

𝜌 = 1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2 − 1) 

 

The face-to-face driver model was ranked the highest by both AHP and the integrated 

TOPSIS-VIKOR models with a Ci=1.000 in TOPSIS and Qi=0.000 in VIKOR. Next came 

flex and rotation models which were highly ranked in both methods. The high level of 

agreement between these models is further supported by their computed Spearman’s ρ value 

of 0.886. 

This strong positive correlation means there is a great deal of overlap between the 

rankings produced by AHP and those of the combined TOPSIS-VIKOR approach, which 

suggests that both methods have similar views regarding ranking of alternatives hence 

making this decision-making process more reliable for future use. It also suggests that both 

techniques are consistent on how they rank the assessment criteria, thus enhancing 

trustworthiness of decision-making process. In addition to this, combination accuracy at 

88.6% far exceeds what has ever been reported using AHP alone at 74%, thereby confirming 

integration model’s robustness. 

Face-to-face driver model appeared prominently among top-ranked options as an 

appropriate blended learning approach for engineering students. This enhances credibility 

beyond doubt as shown by Spearman's rho hence creating a dependable basis upon which 

educational institutions can review their blended learning strategies leading to enhanced 

student outcomes to improved course design. Spearman's rank correlation has been used to 

validate the rankings generated by different decision-making models. This method aids in 

ensuring that the chosen model aligns well with real-world data and expert assessments, 

thereby enhancing the reliability of the decision-making process (Paradowski et al., 2021). 

4.5 Summary 
 

In short, Chapter 4 presents the evaluation and ranking of blended learning models 

using the TOPSIS and VIKOR integrated with the AHP-VARK model. The analysis 
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identified the Face-to-Face Driver Model as the best option, followed by the Rotation and 

Flex Models. Using the TOPSIS method, the Face-to-Face Driver Model showed the highest 

relative closeness to the ideal solution, while VIKOR analysis confirmed its analysis by 

providing the lowest 𝑄𝑖 value. The results demonstrated high consistency and accuracy, 

validating the integrated model's effectiveness in reflecting student learning styles and 

preferences. All the objectives in the project are achieved and the results are fulfilled by the 

objectives and scope requirements. 
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CHAPTER 5 
CONCLUSION 

 

This study aimed to evaluate the accuracy and sensitivity of the AHP-VARK model in 

the context of blended learning data using the TOPSIS and VIKOR integrated models. The 

comprehensive analysis presented in the previous chapters demonstrates that the integrated 

approach of utilizing TOPSIS and VIKOR models significantly enhances the decision-

making process. The study's key findings indicate a high correlation and consistency, as 

evidenced by the Spearman's Rank Correlation Coefficient (ρ) value of 0.886, reflecting a 

strong positive correlation between the rankings produced by the AHP model and the 

integrated TOPSIS-VIKOR model. This high level of agreement ensures reliability and 

consistency in the decision-making process. Furthermore, the combined accuracy of the 

TOPSIS and VIKOR models, which stands at 88.6%, surpasses the AHP model's accuracy of 

74%, underscoring the robustness and reliability of the integrated model in evaluating 

blended learning approaches. The face-to-face driver model emerged as the top-ranked 

blended learning approach for engineering students, consistently appearing at the top of the 

rankings in both the AHP and the integrated models, reinforcing its credibility as an effective 

blended learning strategy. Additionally, the use of VARK (Visual, Auditory, Read/Write, and 

kinaesthetic) learning preferences as evaluation criteria proved effective in differentiating and 

prioritizing blended learning models, enabling a more tailored and student-centric approach 

to education. 

Based on these findings, several recommendations can be made to further improve the 

evaluation and implementation of blended learning models. Educational institutions should 

consider adopting integrated decision-making models like TOPSIS and VIKOR in 

conjunction with the AHP model to enhance the accuracy and reliability of their evaluations. 

This approach can provide a more comprehensive understanding of the effectiveness of 

different learning strategies. Given the consistent high ranking of the face-to-face driver 

model, institutions should prioritize this approach in their blended learning strategies, 

allocating additional resources and support to optimize this model and address any potential 

areas for improvement. Continuous data collection and analysis are crucial; ongoing surveys 

and assessments can provide updated data that can be used to refine and adjust the evaluation 

models, ensuring they remain relevant and effective. While VARK preferences have proven 
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useful, additional criteria such as technological readiness, student engagement, and 

accessibility should be incorporated into the evaluation process to provide a more holistic 

view of the effectiveness of blended learning models. Educators and administrators should 

receive training on the use of multi-criteria decision-making tools and the interpretation of 

their results to make more informed decisions and effectively implement the recommended 

strategies. Lastly, policymakers should develop frameworks that support the integration of 

robust decision-making models in educational planning, providing guidelines and best 

practices for institutions to follow, ensuring consistency and quality in blended learning 

implementations. 

In conclusion, the integration of TOPSIS and VIKOR models with the AHP-VARK 

model offers a powerful tool for evaluating blended learning approaches. By adopting these 

recommendations, educational institutions can enhance their decision-making processes, 

leading to improved student outcomes and more effective learning environments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



52 
 

References  

 

Alakaş, H. M., Gür, Ş., Özcan, E., & Eren, T. (2020). Ranking of sustainability criteria for 
industrial symbiosis applications based on ANP. Journal of Environmental Engineering 
and Landscape Management, 28(4). https://doi.org/10.3846/jeelm.2020.13689 

Alqahtani, A. Y., & Rajkhan, A. A. (2020). E-learning critical success factors during the 
covid-19 pandemic: A comprehensive analysis of e-learning managerial perspectives. 
Education Sciences, 10(9). https://doi.org/10.3390/educsci10090216 

Bera, B., Shit, P. K., Sengupta, N., Saha, S., & Bhattacharjee, S. (2022). Susceptibility of 
deforestation hotspots in Terai-Dooars belt of Himalayan Foothills: A comparative 
analysis of VIKOR and TOPSIS models. Journal of King Saud University - Computer 
and Information Sciences, 34(10). https://doi.org/10.1016/j.jksuci.2021.10.005 

Chakraborty, S. (2022). TOPSIS and Modified TOPSIS: A comparative analysis. Decision 
Analytics Journal, 2. https://doi.org/10.1016/j.dajour.2021.100021 

Ding, J. F. (2011). An integrated fuzzy topsis method for ranking alternatives and its 
application. Journal of Marine Science and Technology, 19(4). 
https://doi.org/10.51400/2709-6998.2174 

Galik, A., Bąk, M., Bałandynowicz-Panfil, K., & Cirella, G. T. (2022). Evaluating Labour 
Market Flexibility Using the TOPSIS Method: Sustainable Industrial Relations. 
Sustainability (Switzerland), 14(1). https://doi.org/10.3390/su14010526 

Gherheș, V., Stoian, C. E., Fărcașiu, M. A., & Stanici, M. (2021). E-learning vs. Face-to-face 
learning: Analyzing students’ preferences and behaviors. Sustainability (Switzerland), 
13(8). https://doi.org/10.3390/su13084381 

Hanine, M., Boutkhoum, O., Tikniouine, A., & Agouti, T. (2016). Application of an 
integrated multi-criteria decision making AHP-TOPSIS methodology for ETL software 
selection. SpringerPlus, 5(1). https://doi.org/10.1186/s40064-016-1888-z 

Hofmann, J. (2014). Top 10 Challenges of Blended Learning (Apr 11). 

Huang, J. J., Tzeng, G. H., & Liu, H. H. (2009). A revised vikor model for multiple criteria 
decision making - The perspective of regret theory. Communications in Computer and 
Information Science, 35. https://doi.org/10.1007/978-3-642-02298-2_112 

Hwang, C.-L., & Yoon, K. (1981). Multiple Attributes Decision Making Methods and 
Applications. Multiple Attribute Decision Making. 

Kastratović, E., Zimonjić, S., & Đekić, M. (2017). Application of Vikor Method in Ranking 
the Investment Projects. Journal of Economics and Law, 22(7). 

Krohling, R. A., & Pacheco, A. G. C. (2015). A-TOPSIS - An approach based on TOPSIS for 
ranking evolutionary algorithms. Procedia Computer Science, 55. 
https://doi.org/10.1016/j.procs.2015.07.054 



53 
 

Liu, M., Qin, W., & Yang, S. (2023). Analysis of the Advantages and Disadvantages of Four 
Comprehensive Evaluation Methods. Frontiers in Business, Economics and 
Management, 9(3), 162–167. https://doi.org/10.54097/fbem.v9i3.9578 

Madanchian, M., & Taherdoost, H. (2023). A comprehensive guide to the TOPSIS method 
for multi-criteria decision making. Sustainable Social Development, 1. 
https://doi.org/10.54517/ssd.v1i1.2220 

Means, B., Toyama, Y., Murphy, R., & Baki, M. (2013). The effectiveness of online and 
blended learning: A meta-analysis of the empirical literature. Teachers College Record, 
115(3). https://doi.org/10.1177/016146811311500307 

Munier, N., & Hontoria, E. (2021). Uses and Limitations of the AHP Method: A Non-
Mathematical and Rational Analysis. In Management for Professionals (Vol. 1, Issue 2). 

Nabeeh, N. A., Smarandache, F., Abdel-Basset, M., El-Ghareeb, H. A., & Aboelfetouh, A. 
(2019). An Integrated Neutrosophic-TOPSIS Approach and Its Application to Personnel 
Selection: A New Trend in Brain Processing and Analysis. IEEE Access, 7. 
https://doi.org/10.1109/ACCESS.2019.2899841 

Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A 
comparative analysis of VIKOR and TOPSIS. European Journal of Operational 
Research, 156(2). https://doi.org/10.1016/S0377-2217(03)00020-1 

Opricovic, S., & Tzeng, G. H. (2007). Extended VIKOR method in comparison with 
outranking methods. European Journal of Operational Research, 178(2). 
https://doi.org/10.1016/j.ejor.2006.01.020 

Paradowski, B., Shekhovtsov, A., Sałabun, W., Baczkiewicz˛, A., & Kizielewicz, B. (2021). 
Similarity analysis of methods for objective determination of weights in multi-criteria 
decision support systems. Symmetry, 13(10). https://doi.org/10.3390/sym13101874 

Parveen, N., & Kamble, P. N. (2021). An extension of topsis for group decision making in 
intuitionistic fuzzy environment. Mathematical Foundations of Computing, 4(1). 
https://doi.org/10.3934/mfc.2021002 

Rovai, A. P., & Jordan, H. M. (2004). Blended learning and sense of community: A 
comparative analysis with traditional and fully online graduate courses. International 
Review of Research in Open and Distance Learning, 5(2). 
https://doi.org/10.19173/irrodl.v5i2.192 

Rustandi, D., & Shilul Imaroh, T. (2021). ANALYSIS FUZZY AHP FOR OPTIMIZATION 
CONTRACTOR SELECTION USING MULTI-CRITERIA IN DETERMINING THE 
BEST ALTERNATIVE CONTRACTOR. Dinasti International Journal of Management 
Science, 2(6). https://doi.org/10.31933/dijms.v2i6.959 

Tang, M., Wang, T., & Peng, D. (2018). Research on Taguchi TOPSIS Method in Logistics 
Service Quality. https://doi.org/10.2991/icsser-18.2018.55 

Triantaphyllou, E. (2000). Multi-Criteria Decision Making Methods: A Comparative Study 
(Vol. 44). https://doi.org/10.1007/978-1-4757-3157-6 



54 
 

Türegün, N. (2022). Financial performance evaluation by multi-criteria decision-making 
techniques. Heliyon, 8(5). https://doi.org/10.1016/j.heliyon.2022.e09361 

Tzeng, G. H., Lin, C. W., & Opricovic, S. (2005). Multi-criteria analysis of alternative-fuel 
buses for public transportation. Energy Policy, 33(11). 
https://doi.org/10.1016/j.enpol.2003.12.014 

Vodovozov, V., Raud, Z., & Petlenkov, E. (2022). Active Blended Learning Engineering 
Students: A Case Study. Education Sciences, 12(5). 
https://doi.org/10.3390/educsci12050344 

Wibawa, A. P., Fauzi, J. A., Isbiyantoro, S., Irsyada, R., Dhaniyar, & Hernández, L. (2019). 
VIKOR multi-criteria decision making with AHP reliable weighting for article 
acceptance recommendation. International Journal of Advances in Intelligent 
Informatics, 5(2). https://doi.org/10.26555/ijain.v5i2.172 

Zolfani, S. H., Yazdani, M., Pamucar, D., & Zarate, P. (2020). A vikor and topsis focused 
reanalysis of the madm methods based on logarithmic normalization. Facta 
Universitatis, Series: Mechanical Engineering, 18(3). 
https://doi.org/10.22190/FUME191129016Z 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



55 
 

 




