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ABSTRACT

With the rapid development of Internet of Things (IoT) technology, more and

more devices are connected to each other through the Internet, forming a large and

vulnerable network system. The widespread application and connectivity of these

devices enhance the risk of Botnet attacks. This paper aims to develop an intelligent

detection system to detect Botnet activities in the Internet of Things through artificial

intelligence algorithms to improve detection efficiency and accuracy. Through this

detection system, potential network attacks can be discovered and blocked in a timely

manner, effectively protecting the security of IoT devices and data. At the same time,

this will also promote the development of Botnet detection technology and improve

the security and stability of the network. The research also includes the analysis and

comparison of different features to optimize the feature selection process, and by

evaluating and comparing multiple machine learning classifiers, determine the most

effective classifier in the home IoT environment. These contributions not only

improve the overall performance of the Botnet detection system, but also provide

valuable data and empirical basis for future research.
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ABSTRAK

Dengan perkembangan pesat teknologi Internet of Things (IoT), semakin

banyak peranti disambungkan antara satu sama lain melalui Internet, membentuk

sistem rangkaian yang besar dan terdedah. Aplikasi dan ketersambungan meluas

peranti ini meningkatkan risiko serangan Botnet. Kertas kerja ini bertujuan untuk

membangunkan sistem pengesanan pintar untuk mengesan aktiviti Botnet dalam

Internet Perkara melalui algoritma kecerdasan buatan untuk meningkatkan kecekapan

dan ketepatan pengesanan. Melalui sistem pengesanan ini, kemungkinan serangan

rangkaian boleh ditemui dan disekat tepat pada masanya, dengan berkesan melindungi

keselamatan peranti dan data IoT. Pada masa yang sama, ini juga akan menggalakkan

pembangunan teknologi pengesanan Botnet dan meningkatkan keselamatan dan

kestabilan rangkaian. Penyelidikan ini juga termasuk analisis dan perbandingan ciri

yang berbeza untuk mengoptimumkan proses pemilihan ciri, dan dengan menilai dan

membandingkan berbilang pengelas pembelajaran mesin, tentukan pengelas yang

paling berkesan dalam persekitaran IoT rumah. Sumbangan ini bukan sahaja

meningkatkan prestasi keseluruhan sistem pengesanan Botnet, tetapi juga

menyediakan data berharga dan asas empirikal untuk penyelidikan masa depan.
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CHAPTER 01 : INTRODUCTION

1.1 Introduction

With the rapid development and popularization of Internet of Things (IoT)

technology, various devices in people's lives have begun to connect to each other

through the Internet, forming a large and fragile network system. From smart phones

to home appliances, to cameras, smart furniture, etc., the network connections of these

devices have brought convenience to people's lives, but they have also brought new

security risks(Kumar et al., 2019).

In this context, IoT devices face major security threats, one of which is Botnet

intrusion. A Botnet is a network composed of a large number of infected devices that

attackers can control to launch various network attacks, the most common of which is

distributed denial of service (DDoS) attacks(Nicholson, 2022).

The popularity and increased connectivity of IoT devices have led to an

increasing risk of Botnet attacks in the IoT. What is particularly noteworthy is that the

covert nature of this attack is even more prominent in the IoT environment. The

robot's disguised behaviour patterns and communication methods make it invisible in

IoT devices, especially common household devices like cameras. People often install

cameras for home security, and cameras connected to the Internet have become

targets. Robots often communicate with their controllers through covert

communication channels, which makes detecting robot activities more difficult

because they do not cause obvious alarms or unusual behaviour(Cut Alna Fadhilla et

al., 2023).

Therefore, timely detection and response to Botnet activity becomes critical.

Network traffic monitoring has become an important means to solve this problem. By

monitoring the communication traffic between devices, abnormal behaviours can be

found and potential Botnet infections can be identified, such as abnormal DNS data,

access to unfamiliar or blacklisted areas Names, frequent communication attempts, or

large amounts of unauthorized data access can all be signs of Botnet

activity(Stevanovic & Pedersen, 2014).
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Therefore, ensuring the security of IoT devices has become an urgent task.

The goal of this project is to develop an intelligent detection system to detect Botnet

activities in the Internet of Things, and to improve detection efficiency and accuracy

through artificial intelligence algorithms. By combining the intelligent detection

systems into firewall, potential network attacks can be discovered and blocked in time,

effectively protecting the security of IoT devices and data. At the same time, this will

also promote the progress and development of Botnet detection technology and

improve the security and stability of the network.

1.2 Problem Statement

Although the development of IoT technology has brought convenience to our

lives, with the widespread application and enhanced connectivity of IoT devices, the

risk of Botnet attacks is also increasing. In this context, how to effectively detect and

respond to Botnet activities in the Internet of Things has become an urgent problem to

be solved. As the number of IoT devices continues to increase, their security issues

have become increasingly prominent(Dange & Chatterjee, 2020). Especially in the

Internet of Things (IoT) environment, the concealment problem of Botnet attacks is

even more serious. This concealment mainly comes from the camouflage of the

behaviour patterns and communication methods of robots (bots). Among IoT devices,

robots may be hidden among a large number of home devices, especially cameras that

can be connected to a local area network. For home security reasons, many people

choose to install cameras at home, and IP cameras that can be connected to mobile

phones are the first choice. When the camera is able to connect to the network, it will

becomes a target for Botnet attacks. Bots often communicate with their controllers

through covert communication channels, such as leverage the normal communication

traffic of IoT devices or mimicking legitimate traffic. This hidden communication

pattern makes detecting bot activity more difficult because they do not cause obvious

alarms or unusual behaviour. Therefore, for Botnet attacks in IoT environments, it

becomes more challenging to detect and identify malicious behaviours in a timely

manner(Rajesh Kumar Yadav & Karamveer Karamveer, 2022).
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Table 1.1 Summary of Problem Statement

PS Problem Statement

PS1 In the IoT environment, the covert nature of Botnet attacks makes it

difficult to detect by using single feature.

1.3 Project Question

In the context of the rapid development of Internet of Things (IoT) technology,

ensuring the security of IoT devices has become an important task. Among them, how

to effectively detect Botnet activities in IoT using machine learning and what feature

can help to effectively detect Botnet activities in IoT. By answering these questions,

important references and solutions can be provided for building a safer and more

reliable IoT environment.

Table 1.2 Summary of Problem Question

PS PQ Problem Question

PS1 PQ1 How to effectively detect Botnet activities in IoT using Machine

Learning?

PQ2 What feature can help to effectively detect Botnet activities in IoT?

1.4 Project Objective

As this project is developed, a number of objectives are being discussed

Table 1.3 Summary of Problem Objective

PS PQ PO Problem Objective

PS1 PQ1 PO1 Identify the best feature selection for Botnet detection in IoT

network

PQ2 PO2 To develop and implement machine learning classifiers for

detecting Botnet in IoT environment

PO3 To select the best classifiers with higher accuracy in detecting

Botnet in IoT environment
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1.5 Project Scope

The project scope will be conducted based on the project objectives to ensure

the correct and organized flow of the project. The scope of the project include:

I. Dataset collection - collecting the data from the Botnet behaviour in IoT

environment.

II. Data preprocessing - pre-process the dataset before executing the algorithm for

missing values, noisy data, and other inconsistencies.

III. Feature selection - only choose the important features to enhance the accuracy of

the system.

IV. Training and testing machine learning classifiers - Use a dataset to train the

machine learning classifiers and test it using unseen data before to evaluating its

performance.

V. Performance evaluation - Validate the performance of machine learning classifiers

based on accuracy, precision, recall, and f1 score to compare with existing literature.

VI. Home IoT environment - Analysis and dataset is based on Home IoT environment
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1.6 Project Contribution

This project has made important contributions to botnet detection in home IoT

environments in many ways. First, through in-depth research and experiments, the

ability to detect botnets in home IoT environments has been improved. Second, by

analyzing and comparing different features, this project identified the best features for

detecting botnets in home IoT environments, thereby optimizing the feature selection

process and improving the accuracy and efficiency of detection. Finally, by evaluating

and comparing multiple machine learning classifiers, this project identified the most

effective machine learning classifier in home IoT environments. These contributions

not only improve the overall performance of botnet detection systems, but also

provide valuable data and empirical foundations for future research.

Table 1.4 Summary of Problem Contribution

PS PQ PO PC Problem Contribution

PS1 PQ1 PO1 PC1 Improve Botnet detection in Home IoT environment

PQ2 PO2 PC2 Identify best feature to detect Botnet in Home IoT

environment

PO3 PC3 Identify best Machine Learning classified in Home IoT

environment
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1.7 Report organization

Chapter 1: Introduction

This chapter introduces the initial part of the project, discussing the problem

statement, questions, and objectives. Additionally, the scope and contribution of the

project are covered. Briefly, this chapter will briefly discuss the background of the

project.

Chapter 2: Literature Review

This chapter describes the project in more detail, with supporting material drawn from

past projects and research papers.

Chapter 3: Methodology

This chapter describes the project methodology and how it was implemented and

executed. It also describes how to prioritize projects through to completion.

Chapter 4: Design

This chapter defines the user interface, requirements, and system design of the project.

Chapter 5: Implementation

This chapter discusses the processes, activities, and desired outputs involved in

software implementation.

Chapter 6: Testing

This chapter describes the activities involved in the software testing phase, the project

outcomes, and the performance of the Botnet detection system.

Chapter 7: Conclusion

This chapter will summarize and summarize the entire project, along with the

advantages and limitations involved. Future improvements and project contributions

will also be outlined in this chapter.
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1.8 Conclusion

With the continuous development and widespread application of Internet of

Things technology, people have ushered in the convenience of life, but also face the

challenge of security risks, especially the threat from Botnet attacks. In this context,

this project aims to solve the problem of how to effectively detect and respond to

Botnet activities in the Internet of Things, and proposes the goal of developing

intelligent detect tools and new algorithms. By deploying detect tools systems and

new algorithms to analyse and identify abnormal network traffic patterns, potential

network attacks can be discovered and blocked in time, and the security of IoT

devices can be protected. In addition, this project will promote the advancement of

Botnet detection technology and improve network security and stability.

Setting the project scope helps ensure that the project process is correct and

organized. Deploying an detect tools system in an IoT network can effectively

monitor network traffic and detect abnormal activities, thereby improving the overall

security of the IoT. At the same time, by developing new algorithms based on

artificial intelligence, Botnet activities in the Internet of Things can be identified more

accurately and efficiently, and threats can be detected and responded to in a timely

manner. This will provide important references and solutions for building a safer and

more reliable IoT environment and promote the healthy development of IoT

technology.
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CHAPTER 02 : LITERATURE REVIEW

2.1 Introduction

The rapid development of Internet of Things (IoT) technologies has brought

tremendous benefits and convenience to various fields such as healthcare,

transportation, and smart homes. However, with the popularity of IoT devices,

security vulnerabilities and threats have also increased accordingly. IoT devices often

lack strong security measures and are a prime target for malicious actors to exploit

these weaknesses. This chapter reviews the existing literature on intelligent detection

of IoT malware, focusing on the nature of IoT devices, the machine learning

techniques they use, feature selection techniques, and the datasets used. This review

will cover the characteristics of IoT systems, common attack vectors, and the

application of machine learning techniques in detecting IoT botnet activities.

2.2 Related Work/Previous Work

2.2.1 Internet of Things(IoT)

2.2.1.1 What is Internet of Things(IoT)

The Internet of Things (IoT) refers to a network of physical devices connected

through the Internet. These devices can be anything from household appliances to

industrial machinery to wearable. They are all capable of collecting and transmitting

data and can be controlled via the Internet(IBM, 2024).

The concept of the Internet of Things can be traced back to the 1990s, when

Kevin Ashton of MIT first proposed the concept of "Internet of Things". He believes

that with the popularization of radio frequency identification (RFID) technology,

more and more items will be connected to the Internet(Foote, 2022).

Bandyopadhyay & Sen(2011) pointed out that the Internet of Things (IoT) is a

rapidly developing technology, and its definition and understanding are also

constantly evolving. Nonetheless, IoT systems often have the following important

characteristics:
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i. Interconnectivity

a) One of the core features of the Internet of Things is the interconnectedness of

objects or devices. Whether they are sensors, home appliances, cars, or

industrial machines, all devices are able to connect, communicate, and

collaborate with each other through the Internet.

ii. Data Collection and Transmission

a) IoT devices collect a large amount of environmental data or operational data

through sensors and transmit it to the data processing center through the

network. The collection and transmission of these data are the basis for the

normal operation of the IoT system.

iii. Data Processing and Analysis

a) The data collected needs to be processed and analyzed to extract valuable

information. This process is usually performed on cloud or edge computing

devices and may involve big data analysis, machine learning and other

technologies.

iv. Real-time Capability

a) IoT systems often require real-time response and processing capabilities to

respond to environmental changes or emergencies in a timely manner. This

feature is particularly important in applications such as intelligent

transportation and telemedicine.

v. Intelligence

a) Through data analysis and artificial intelligence technology, IoT systems can

achieve intelligent decision-making and control. For example, smart home

systems can automatically adjust the operating status of home appliances

based on user behavior patterns.

vi. Scalability

a) IoT systems need to be scalable to cope with the increasing number of

devices and data volumes. This requires system architecture design to

support large-scale device access and data processing.
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vii. Security and Privacy

a) Since IoT devices and systems handle large amounts of sensitive data,

security and privacy protection are crucial features. Strong measures need to

be taken to prevent data leakage, tampering and unauthorized access.

viii. Heterogeneity

a) The Internet of Things encompasses various types of devices and

communication protocols and requires the ability to handle interoperability

issues between different devices and systems to achieve seamless

connectivity and data sharing.

ix. Dynamic Nature

a) The status and quantity of IoT devices and systems often change dynamically,

and it is necessary to have the ability to adapt to these changes, including the

addition and removal of devices, movement, status changes, etc.

x. Ecosystem Perspective

a) The Internet of Things is not just a simple connection of devices, but a

complex ecosystem including devices, networks, platforms, data and related

stakeholders. Understanding and managing this ecosystem is critical to IoT

success.

Since the 21st century, with the rapid development of Internet technology, the

Internet of Things has also developed rapidly. In 2015, the International

Telecommunications Union (ITU) released the "Global Standard for the Internet of

Things", laying the foundation for the development of the Internet of Things(ITU,

2019). In 2015, the Chinese government released the "Internet +" Action Plan, which

listed the Internet of Things as a key development area(China Government Network,

n.d.).

Lionel Sujay Vailshery(2023) predicts that the number of global Internet of

Things (IoT) devices will almost double by 2030, increasing from 15.1 billion units in

2020 to 29 billion units. IoT devices are used in all types of vertical industries and in

the consumer market, which accounted for approximately 60% of all IoT connected
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devices in 2020. This ratio is expected to remain at this level over the next decade.

Key industry verticals with more than 100 million connected IoT devices currently

include electricity, gas, steam and air conditioning, water supply and waste

management, retail and wholesale, transportation and warehousing, and government.

Overall, the number of IoT devices across all industry verticals is expected to grow to

more than 8 billion by 2030. The most important use cases for IoT devices in the

consumer sector are consumer internet and media devices such as smartphones, with

the number of IoT devices expected to grow to more than 17 billion by 2030. Other

use cases expected to exceed 1 billion IoT devices by 2030 include connected (self-

driving) cars, IT infrastructure, asset tracking and monitoring, and smart

grids(Vailshery, 2023).

Figure 2.1: Statistic reports the number of IoT devices from 2019 to 2030 (Vailshery,

2023)

IoT has a wide range of applications, including smart homes, smart cities,

industrial IoT, and healthcare. Smart home devices can automatically adjust

temperature, lighting, and security systems; smart cities can use IoT sensors to

monitor traffic, environment, and public safety; the industrial IoT can improve
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production efficiency and reduce costs; and the IoT can be used to monitor patient

health. conditions and provide remote medicine services(Gillis, 2023).

The architecture of the Internet of Things is usually divided into four layers,

namely the perception layer, network layer, data processing layer and application

layer. This structure helps to understand and implement the various components of the

IoT system and their functions. The following is a detailed explanation of this four-

layer structure:

i. Perception Layer(Gubbi et al., 2013)

a. The perception layer is the lowest layer of the IoT system and is responsible

for the interface between the physical world and the digital world.

b. This layer mainly includes various sensors and actuators for data collection

and equipment control.

c. Sensors collect environmental data (such as temperature, humidity, light

intensity, pressure, etc.) and convert these data into digital signals for

transmission to the upper layer.

d. For example: temperature sensor, humidity sensor, light sensor, RFID tag,

barcode scanner, etc.

ii. Network Layer(Xu et al., 2014)

a. The network layer is responsible for data transmission and is the bridge

between the perception layer and the data processing layer.

b. It includes various communication technologies and protocols, such as Wi-Fi,

Bluetooth, ZigBee, cellular networks (such as 4G/5G), etc., which are used to

transmit data collected by the perception layer to the data processing layer.

c. This layer also includes gateway devices that play an important role in

connecting local sensor networks to the larger Internet.

d. For example: Wi-Fi router, Bluetooth module, ZigBee device, cellular

gateway, etc.

iii. Data Processing Layer(Atzori et al., 2010)

a. The data processing layer is responsible for processing and storing data

transmitted by the network layer.
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b. It usually includes cloud computing platforms and data centers for large-scale

data storage, processing and analysis.

c. This layer may also use edge computing devices to process data close to the

data source to reduce latency and increase processing efficiency.

d. For example: cloud servers, database systems, edge computing devices, data

analysis platforms, etc.

iv. Application Layer(Miorandi et al., 2012)

a. The application layer is the top layer of the IoT system, directly facing users

and applications.

b. This layer provides various applications and services to make decisions and

control based on the data analyzed by the processing layer.

c. The application layer covers a wide range of IoT application fields, such as

smart home, smart transportation, smart medical care, industrial automation, etc.

d. For example: smart home control system, telemedicine system, smart city

management platform, Industrial Internet of Things (IIoT) applications, etc.

The key technologies of the Internet of Things include sensor technology,

communication technology, data processing technology and security technology.

Sensor technology is used to collect data, communication technology is used to

transmit data from the perception layer to the application layer, data processing

technology is used to process data and extract valuable information, and security

technology is used to protect the security of IoT devices and networks(Kumar et al.,

2019).

2.2.1.2 IoT security and threats

While the Internet of Things (IoT) brings great convenience and innovation, it

also faces many security challenges and threats. The following is a detailed discussion

of IoT security and threats, including attack sources and common attack types.

IoT devices usually collect and transmit large amounts of personal data and

sensitive information, which, if accessed without authorization or leaked, will cause

serious privacy and security issues. Khalid & Jhanjhi(2020) discussed four aspects of
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IoT security: data integrity, data sharing, authentication and access control, and

privacy protection.

I. Data integrity: Ensure that the data generated by the IoT system is not modified

without authorization and maintain the accuracy and reliability of the data.

II. Data sharing: Securely exchange data between devices, ensuring the

confidentiality and integrity of data during transmission.

III. Authentication and access control: Ensure that only authorized users and devices

can access system resources.

IV. Privacy protection: Protect data from illegal collection and use, and prevent data

leaks and privacy violations.

The sources of IoT attacks can be divided into devices, communication

channels and application software. Ivan Lee(2024) pointed out the following sources

of attacks:

i. Device: including the device's memory, firmware, network interface and physical

interface, etc. Attackers can exploit vulnerabilities in a device, such as outdated

components or unpatched vulnerabilities.

ii. Communication channels: Insecure communication channels can become the

target of attacks, and attackers can attack by eavesdropping or tampering with

communication data.

iii. Application software: Application software connected to IoT devices also

presents security risks. An attacker can gain access to a device or system by

exploiting vulnerabilities in application software.

Common attack types on IoT devices include the following:

I. Brute-force Password Attack: The attacker continuously tries various password

combinations to gain access to the system.

II. Distributed Denial of Service Attack (DDoS): Attackers use infected IoT devices

to form a Botnet and initiate a large number of requests to the target system,

causing the system to paralyze. Ivan Lee(2024) pointed out that this type of attack

has become increasingly common and easy to carry out.

III. Man-in-the-middle attack (MitM): An attacker steals or tamper with the data

transmitted between the device and the server by hijacking the communication

channel.
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IV. Privilege Escalation Attack: An attacker exploits vulnerabilities in the system or

device to elevate his or her privileges, thereby gaining complete control over the

device or system.

Zscaler ThreatLabz 2023 Enterprise IoT and OT Threat Report show the number

of malware attacks on IoT devices surged 400 percent compared to the 2022. IoT

botnet activity, a growing concern in the IoT space, continued to dominate, with the

Mirai and Gafgyt malware families accounting for 66% of attack payloads.

2.2.2 Botnet

2.2.2.1 What is Botnet?

Botnet is a network composed of a large number of computers controlled by

hackers. These computers are called "bots" and are often exploited by hackers to

perform various malicious activities(KasperSky, 2019). These activities include

sending spam, launching distributed denial-of-service (DDoS) attacks, stealing

sensitive data and spreading malware.

Bot networks pose a serious threat to Internet security. They can be used to

launch large-scale attacks, causing huge economic losses and social impact. For

example, in 2016, the "Mirai" robot network launched an attack on the US Internet

infrastructure, causing many websites and services to be paralysed(Cloudflare, 2023).

Typical Botnet creation and maintenance can be divided into four phases. First

is the initial infection stage, where computers can be infected in a variety of ways,

such as through actively exploited vulnerabilities, automated downloads of malware,

or execution by opening email attachments. Next comes the secondary injection phase,

where the infected host downloads and runs the bot code, becoming a true bot. This is

followed by the malicious activity phase, where the robot communicates with the

controller and receives commands to perform activities such as spam, DDoS and

scanning. Command communication can use IRC, HTTP, DNS or P2P protocols.

Finally, there is the maintenance and upgrade phase, where the robot continuously

upgrades its binaries. Botnets are classified based on their command and control
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architecture, for example, those that use the IRC protocol are called IRC-based

Botnets(Zhu et al., 2008).

Figure 2.2: Diagram showing general Botnet behaviour

With the rapid growth in the number of IoT devices, robotic networks are

paying more and more attention to IoT devices. IoT devices often lack security

protections and can be easily hacked and incorporated into bot networks. Once IoT

devices are infected, hackers can use them to perform a variety of malicious activities,

such as launching DDoS attacks, stealing sensitive data, and damaging critical

infrastructure(Tay, 2023).
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IoT Botnet Distributed Denial of Service(DDOS) traffic grew fivefold

between 2022 and 2023, driven by a rise in for-profit hacking groups run by

cybercriminals, since Russia’s invasion of Ukraine, Nokia’s latest threat intelligence

report found today. This traffic originates from large numbers of unsecured IoT

devices with the goal of disrupting telecom network services for millions of users.

This dramatic growth, coupled with increased consumer use of IoT devices around the

world, first emerged at the start of the Russia-Ukraine conflict but has since spread to

other parts of the world, with Botnet driven DDoS attacks being used to disrupt

telecom networks and other critical infrastructure and services. The number of IoT

devices (bots) involved in Botnet driven DDoS attacks has increased from around

200,000 in 2022 to around 1 million, generating more than 40% of all DDoS traffic

today (Nokia Threat Intelligence Report Finds Malicious IoT Botnet Activity Has

Sharply Increased | Nokia, 2023).

Using Slapper as an example to describe the process of P2P bot host infection.

Slapper's propagation method is similar to worm, but its operating principle is Botnet.

First, scans hosts on the network which using GET request packets to scan vulnerable

hosts, hoping to obtain the fingerprint of the host (operating system version, web

server version). Second, launch an attack on the detected vulnerable host, causing the

SSL buffer area of the attacked host to overflow. The victim host leaks the heap

pointer to the attacker. Third, launch a secondary attack on the vulnerable host.

Interestingly, this bot uses two buffer overflows instead of one. First time, locate the

location of the heap in the Apache process address space. The second time, inject its

attack cache and shell code(Arce & Levy, 2003).

There are two good reasons for dividing the attack into two phases which is

the attack cache must include the absolute address of the shell code, which is difficult

to predict. Because when the shell code is placed in memory, it is dynamically

allocated in the heap. In order to solve this problem, the bot first lets the server leak

the address where the shell code is finally allocated. Then the attack cache is patched

according to the address. Besides that, the attack will requires overwriting the

password field behind the key_arg[] cache in the password SSL_SESSION data

structure. The following is a more detailed introduction to these two stages. The first

stage, when establishing an SSL v2 connection, an excessively large parameter is
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deliberately placed, causing a buffer overflow. Open a connection to this port and

initiate an SSLv2 handshake. For example, sends a "hello" message to the client,

announces 8 different passwords (although, this bot only supports one of them) and

receives the server-side authentication message. Then send master key and key

parameters to the client, especially one key parameter that only allows a maximum of

8 bytes. When the packet data is parsed in the get_client_master_key() function in the

libssl library, the code does no bounds checking on the parameters and copies the

parameters to a fixed-length buffer in a heap-located SSL_SESSION data structure. In

this way, bytes of any size can overwrite the information after key_arg[], which can

make the SSL_SESSION structure memory-blocking. Hand-crafted fields are the key

to buffer overflows. Vulnerability explorers carefully cover these data fields without

seriously affecting the SSL handshake. The second stage, secondary use of buffer

overflow, executing shell code is divided into three steps. First, disrupt heap

management data. Second, abuse the free() library call to add arbitrary code to the

memory as an entry to free()'s own global offset table. Third, since free() is called a

second time, this time the control is redirected to the location of the shell code. The

attack cache used in the second overflow contains three parts which is the cache

behind key_arg[] of the SSL_SESSION data structure, 24 bytes of carefully

constructed data and 124 bytes shell code. When a buffer overflow occurs, all

members of the SSL_SESSION data structure behind the key_arg[] cache are

overwritten. Except for the password field, the numeric fields are filled with "A"

bytes, and the pointer fields are made empty. This field is restored to the original

leaked value.

When the shell code is executed, it first looks for the socket for the TCP

connection to the attacking host. This process is performed by traversing all file

descriptors and calling getpeername() on each one until the TCP port matching the

shell code is successfully found. The shell code then copies the socket descriptor to

standard input, output, and error outlets. Next it attempts to gain root privileges by

calling setresuid() with a UID set to all zeros. Apache is usually started as root and

then switched to the unprivileged "Apache" identity using the setuid() function. In this

case, the setresuid() call will fail, because setuid(), contrary to seteuid(), is irreversible.

The creators of the shell code are fully aware of this fact, and the worm does not

require permissions to spread because it only needs to write to the /tmp folder. Finally,
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a standard shell "/bin/sh" is executed with the execve() system call. The worm

initiates a series of shell commands to upload itself to the server in UU-encoded form,

and then decodes, compiles, and executes itself. This recompilation of source code on

different platforms makes it more difficult to identify binary worm signatures. These

operations are performed in the /tmp folder, and the worm files are named something

like .uubugtraq, .bugtraq.c and .bugtraq. Note that the . before the file name is to hide

the file from being discovered by the simple ls command(Citronnelle2, 2015).

Figure 2.3 : Diagram for Slapper behaviour

2.2.2.2 Botnet Behaviour in Internet of Things(IoT)

An IoT Botnet consists of infected devices (called bots) that run malicious

code under the command and control (C&C) of the Botnet controller (Bertino & Islam,

2017). According to Alzahrani et al.(2020), these bots can spread throughout a

network by scanning the network range and exploiting known vulnerabilities or weak

credentials of the devices. After invading an unprotected device, the bot will embed

itself in the device and wait for instructions from the Botnet controller to perform

various malicious activities, including but not limited to:

i. DDoS attack: Sending a large number of illegal requests to the target device,

causing the device to be unable to process legitimate requests, thereby causing a

distributed denial of service (DDoS) attack.

ii. Cryptocurrency mining: Using the computing power of the device to mine

cryptocurrency.

iii. Password cracking: Trying to crack the password of the target system.
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iv. Sending spam: Sending large amounts of spam through infected devices.

v. Key logging: Recording the keystrokes of the device user to steal sensitive

information.

The first IoT Botnet, Linux.Hydra, was discovered in 2008 (Kishore Angrishi,

2017). However, it was not until the emergence of the Mirai Botnet in 2016 that the

security community truly realized the seriousness of IoT Botnets (Kolias et al., 2017).

In September 2016, a Mirai attack targeting the Krebs on Security blog generated 620

Gbps of traffic. The release of Mirai's original source code led to the development of

dozens of variants and inspired the creation of many other Botnets. For example, a

Mirai variant compromised the service provider Dyn, resulting in one of the largest

DDoS attacks in history.

IoT Botnets can attack in a variety of ways, and here are some common attack sources

and attack types:

I. Exploiting device vulnerabilities: Intrusion by scanning the network and

exploiting known vulnerabilities in the device.

II. Weak credential attacks: Gaining access to a device by guessing or cracking a

weak password.

III. Reflection attacks: Using IoT devices as reflectors for DDoS attacks, making the

attack difficult to track (Zheng & Yang, 2019).

2.2.2.3 Mirai Botnet Behaviour in Internet of Things(IoT)

Using a IoT Botnet which is Mirai as a example. Mirai targets Linux-based

IoT devices and creates a network of robots controlled by a command and control

(C&C) server. The attack is divided into two steps.

First, during discovery/infection phase, Mirai probes random blocks of IP

addresses for possible telnet connections. Once a potential victim is identified, Mirai

begins brute-force login attempts via a factory-set list of users and passwords. The

device using default settings will be identified and its IP address, along with

successful credentials, will be sent back to the C&C server(Tanaka & Yamaguchi,

2017).
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Second, once a device is infected and executes a malware binary, it is added to

the list of active bots to receive C&C commands and scanned to detect new victims. It

is worth mentioning that the malware binary is removed from the system along with

other competing processes, including other Mirai variants(Mirai Botnet Malware &

Its Impact on the IoT, n.d.).

Figure 2.4 : Diagram for Mirai behaviour
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2.2.2.4 Bashlite Botnet Behaviour in Internet of Things(IoT)

Using Bashlite, also know as Gafgyt is a botnet affecting Internet of Things

(IoT) devices and Linux-based systems. The malware aims to compromise and gain

control of these devices, often by exploiting weak or default passwords, as well as

known vulnerabilities. Gafgyt has been around since 2014 and has evolved into

multiple variants, each with its own set of features and capabilities, including the

ability to launch distributed denial of service (DDoS) attacks (Stanislav Gayvoronsky,

2024).

Bashlite is an Internet of Things (IoT) malware written in C that primarily

infects devices through brute force and exploitation. Its behaviors include:

i. Brute Force: Bashlite uses a built-in list of default Telnet and SSH credentials to

attempt to brute force the device.

ii. Exploit: Bashlite also exploits known vulnerabilities in the device firmware. For

example:

a) CVE-2017-18368: This vulnerability exists in the remote system log

forwarding function of Zyxel routers. Bashlite can exploit this vulnerability

through the lack of proper input validation.

b) CVE-2023-1389: This vulnerability affects TP-Link Archer devices. Bashlite

is able to execute unauthorized malicious commands in the national form of

the web management interface.

iii. Infected Devices: Once the device is infected, Bashlite downloads and executes a

script from a preconfigured address to collect the device's IP address and system

information.

iv. Connecting to C2 Server: After infecting a device, Bashlite connects to its

command and control server (C2) and receives instructions from the C2, such as

launching a flood attack on a specified target.

Some versions of Bashlite have a persistence mechanism that allows them to

continue running even if the device is restarted. Bashlite also has the ability to self-

propagate, scanning the Internet for devices with open ports and trying to access them

using default credentials(Marzano et al., 2018).
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Figure 2.5: Diagram for Bashlite behaviour
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2.2.3 Machine Learning Technique

In the context of detecting Botnets in IoT environments, machine learning has

important application value and broad prospects. Xiao et al., 2018 discussed the

importance of machine learning in IoT and introduced a variety of machine learning

methods. The following is an introduction to and application of these techniques:

i. Supervised Learning

a. Supervised learning is a machine learning method that uses labeled data to

train an algorithm. During the training process, the algorithm obtains input data

and its associated correct output labels, with the goal of teaching the algorithm to

accurately predict its labels when encountering new data. Common supervised

learning algorithms include:

i. Naive Bayes

ii. Random Forest

iii. Decision Tree

iv. Support Vector Machine (SVM)

b. These techniques are widely used for time series prediction, regression, and

classification tasks. Supervised learning has applications in many fields, such as

generating predictions and extracting valuable information from data (Gupta et al.,

2022).

ii. Unsupervised Learning

a. Unsupervised learning is a machine learning method that analyzes unlabeled

data, in which the algorithm has no predefined output labels. Its goal is to

discover patterns, relationships, or structures in the data. Unsupervised learning

algorithms work independently to discover hidden insights and cluster similar

data points together. Common unsupervised learning techniques include:

i. Clustering algorithms (such as K-means, hierarchical clustering)

ii. Dimensionality reduction methods (such as PCA and t-SNE)

b. These techniques are used in areas such as data mining, customer

segmentation, and market analysis (Amruthnath & Gupta, 2018).
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iii. Semi-supervised Learning

a. Semi-supervised learning is a hybrid machine learning technique that

combines labeled and unlabeled data for training. By using a large amount of

unlabeled data and a small amount of labeled data, semi-supervised learning can

improve the understanding and functionality of the model. The theoretical basis

of this method is that unlabeled data provides context and additional information

that helps enhance learning. Semi-supervised learning is very useful in practical

applications, especially when labeled data is expensive or difficult to obtain

(Yang et al., 2022).

iv. Reinforcement Learning

a. Reinforcement learning is a machine learning algorithm that mimics the

human learning process through trial and error. In this method, the agent interacts

with the environment and learns by choosing behaviors that maximize the

cumulative reward. Depending on the agent's behavior, it is rewarded or punished,

providing feedback. Due to its dynamic learning approach, reinforcement

learning is very effective in handling complex decision-making situations

(Akanksha et al., 2021).

2.2.4 Types of Dataset

Datasets play a vital role in building botnet detection systems. These datasets

provide rich training and testing data, allowing researchers to develop and evaluate

the effects of various machine learning and deep learning algorithms(Importance of

Datasets in Machine Learning and AI Research, n.d.).

According Moustafa & Slay(2015), UNSW-NB15 dataset is a labeled dataset

containing real network traffic, mainly used for network intrusion detection. The

dataset contains 49 features and 2,540,444 records, including 175,341 records in the

training set and 82,332 records in the test set. The data is divided into normal traffic

and abnormal traffic (including nine different attack types), including backdoor,

analysis, general, denial of service (DoS), vulnerability exploitation, reconnaissance,

worm, fuzz testing, and ShellCode. This dataset is widely used to evaluate and verify

the effectiveness of various machine learning methods in intrusion detection systems.
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The N_BaIoT dataset is captured from a testbed network and contains normal

and attack traffic of nine IoT devices, including two doorbells, thermostats, baby

monitors, four security cameras, and webcams. The dataset contains Mirai and

Bashlite attack traffic, with a total of 115 features. The dataset is characterized by an

unbalanced distribution of traffic and attack categories, and is often used to study

malware classification and intrusion detection of IoT devices(Abbasi et al., 2021).

MohammadNoor Injadat et al.(2020) express Bot-IoT-2018 dataset is

generated by designing a real IoT network environment, which contains three main

components: network platform, simulated IoT service, and feature extraction platform.

The entire dataset contains about 72 million records and 46 features. About 3.6

million records and 10 best features are usually used in research. The dataset is

mainly used to detect botnet attacks on IoT devices and is often used to evaluate the

effect of machine learning optimization frameworks.

The IoT-23 dataset focuses on detecting Mirai botnet attacks and contains

traffic data from three IoT devices (smart LED lights, Amazon Echo smart assistants,

and smart door locks). The dataset contains 19 features, and the data is divided into

normal traffic and malicious traffic. This dataset is often used in conjunction with

transfer learning methods to study the effectiveness of intrusion detection systems in

IoT environments(Dutta et al., 2020).

2.2.5 Features Selection Methods

Feature selection is primarily focused on removing non-informative or

redundant predictors from the model. Some predictive modeling problems have a

large number of variables that can slow the development and training of models and

require a large amount of system memory. Additionally, the performance of some

models can degrade when including input variables that are not relevant to the target

variable(Kuhn & Johnson, 2018).

According to Benkessirat & Benblidia(2019), Feature selection is a key step in

machine learning and data mining. It aims to extract the most representative and

discriminative features from the raw data to improve the performance and training
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efficiency of the model. Feature selection methods mainly include filtering, wrapping,

embedding and combination methods.

RHNS Jayathissa & MWP Maduranga(2022), talk about filtering method

selects by evaluating the statistical properties of each feature. The variance threshold

method selects features with variance greater than a certain threshold and filters out

features with too small variance because they have little impact on the classification

results. The correlation coefficient rule calculates the correlation coefficient between

each feature and the target variable and selects features with high correlation.

Common methods include Pearson correlation coefficient and mutual information.

The chi-square test is for classification problems. It uses the chi-square statistic to

measure the independence between features and labels and selects features with

higher chi-square values.

Yogesh Dhote et al.(2015) explain the wrapping method evaluates the effect of

features by training models. Recursive feature elimination (RFE) uses a specific

learning algorithm (such as linear regression, support vector machine) to train the

model and recursively delete features according to their importance until a

predetermined number is reached. Forward selection starts from an empty feature set

and gradually adds features that improve the model performance the most. Backward

elimination starts from the full feature set and gradually deletes features that have the

least impact on model performance.

Embedding methods integrate the feature selection process directly into model

training. Lasso regression achieves feature selection by introducing an L1

regularization term, which reduces the coefficients of some features to zero. Decision

trees and random forests select features based on feature importance scores such as

information gain and Gini coefficient(Yogesh Dhote et al., 2015).

MohammadNoor Injadat et al. (2020) explain Combination methods is

combine multiple feature selection techniques to achieve better results. For example,

use filtering methods to quickly filter out more important features, and then use

wrapping methods to further refine the selection; or use filtering methods for

preliminary screening, and then use embedding methods for final selection.
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2.2.5.1 Lasso Feature Selection Method

Lasso is a feature selection method based on linear regression. It achieves

feature selection by adding L1 regularization (i.e., penalizing the absolute value of the

coefficient) to the regression model, forcing some coefficients to approach zero. The

goal of Lasso is to minimize the prediction error while minimizing the number of

regression coefficients, so that the most important features can be automatically

selected(Queen & Emrich, 2021).

2.2.5.2 Random Projection Feature Selection Method

Random projection is a dimensionality reduction technique that achieves

feature selection or dimensionality reduction by projecting high-dimensional data into

a low-dimensional random subspace. This method uses a random matrix to linearly

transform the original data so that the projected data still maintains the structural

characteristics of the original data. Random projection follows the Johnson-

Lindenstrauss Lemma, which ensures that the distances between data points are not

distorted too much by random projection(Wang et al., 2019).

2.2.5.3 Chi-Square Filter Feature Selection Method

Chi-square test is a method for evaluating the independence between features

and target variables, especially for classification problems. It measures the degree of

deviation of the distribution of features from the distribution of the target variable by

calculating the chi-square statistic for each feature. The larger the chi-square value of

a feature, the stronger the association between the feature and the target variable, and

therefore the more valuable the feature is for classification(Dhalaria & Gandotra,

2020).

2.2.5.4 Recursive Feature Elimination (RFE) Feature Selection Method

RFE is an iterative feature selection method that retains the most valuable

features by continuously training the model, evaluating the importance of features,

and recursively removing those that are not important. In each iteration, RFE trains

the data using a specified learner (such as decision tree, linear regression, etc.) and

eliminates the lowest-scoring features based on the feature importance

score(Rukshani Puvanendran & Sharnidha Thangasundram, 2023).
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2.2.6 Performance Parameters

According to Rashedun Nobi Chowdhury et al.(2020), in the detection system,

performance parameters are used to evaluate the detection effect and classification

performance of the model. The following are the definitions and explanations of

commonly used performance parameters:

I. True Positive (TP): The number of correctly detected positive samples, that is, the

number of samples that are actually positive and correctly predicted as positive

by the model.

II. True Negative (TN): The number of correctly detected negative samples, that is,

the number of samples that are actually negative and correctly predicted as

negative by the model.

III. False Positive (FP): The number of negative samples that are incorrectly detected

as positive, that is, the number of samples that are actually negative but

incorrectly predicted as positive by the model.

IV. False Negative (FN): The number of positive samples that are incorrectly

detected as negative, that is, the number of samples that are actually positive but

incorrectly predicted as negative by the model.

Based on these basic parameters, the following key performance indicators

can be calculated:

i. Accuracy: Indicates the proportion of samples correctly predicted by the model to

the total number of samples. The formula is:

Figure 2.6 : Accuracy Formula
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ii. Recall: Also known as sensitivity, it indicates the proportion of samples that are

actually positive that are correctly predicted as positive. The formula is:

Figure 2.7 : Recall Formula

iii. Precision: It indicates the proportion of samples that are actually positive that are

predicted as positive. The formula is:

Figure 2.8 : Precision Formula

iv. F-Measure: It is the harmonic mean of precision and recall, which is used to

comprehensively evaluate the performance of the model. The common F-

Measure is the F1 score. The formula is:

Figure 2.9 : F1-Score Formula

These performance parameters can comprehensively evaluate the performance

of the model in the detection system. In the research of IoT botnet detection system,

these indicators are widely used to evaluate the effects of different machine learning

algorithms. For example, Garg et al. (2021) compared the performance of different

algorithms on the UNSW-NB15 dataset through these indicators, and Susanto et al.

(2020) used these indicators to evaluate the performance of different classifiers in the

N_BaIoT dataset.
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2.3 Related Paper

This section will provide an overview of the work related to Botnet detection

in IoT environment using machine learning.

Garg et al. (2021) introduced the use of machine learning algorithms to detect

intrusions and evaluate their accuracy in detecting malicious nodes. For this purpose,

the UNSW-NB15 dataset was used to implement an intrusion detection system (IDS).

The dataset contains labeled data of real network traffic, mainly divided into normal

and abnormal (including nine different attack types). Six algorithms were used,

including Decision Tree, Random Forest Gini, Support Vector Machine, Logistic

Regression, RandomForest IG, and Gaussian Naive Bayes. The experimental results

show that RandomForest IG has the highest accuracy of 92.63%.

Susanto et al. (2020) used the N_BaIoT dataset, which has an unbalanced

distribution of traffic and attack categories, containing normal traffic and attack traffic

(such as Mirai and Bashlite attacks) of nine IoT devices, with a total of 115 features.

Weka and Scikit-learn tools were used, and four classification methods were adopted:

Random Forest, Decision Tree, Naive Bayes, and Adaboost. The results show that

Random Forest has the highest classification accuracy of 99.99% in Scikit-learn and

100% in Weka .

Madhuri Gurunathrao Desai et al. (2021) used the N_BaIoT public dataset,

where each record contains 115 independent features. Through the feature selection

process, the researchers selected 10 features with the highest accuracy for model

building and evaluation. Unsupervised K-means clustering and supervised decision

tree methods were used. The experimental results show that when the amount of

normal data is larger than the amount of attack data, the hybrid method has higher

accuracy which is 99.13% and fewer false positive values when k=2.

MohammadNoor Injadat et al. (2020) proposed a machine learning-based

optimization framework that effectively detects botnet attacks on IoT devices by

combining the Bayesian Optimized Gaussian Process (BO-GP) algorithm and the

Decision Tree (DT) classification model. The Bot-IoT-2018 dataset used contains 72
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million records and 46 features, and about 3.6 million records and 10 best features

were used in the study. The experimental results show that the optimized DT model

outperforms the default model and the support vector machine (SVM) model in

various indicators which got 99.999% accuracy.

Rabhi et al. (2023) proposed a transfer learning-based intrusion detection

system for detecting IoT botnets and compared deep learning and transfer learning

models using artificial neural network (ANN) and long short-term memory network

(LSTM) algorithms. Two datasets were used: N-BaIoT as the source domain and IoT-

23 as the target domain. The results showed that the transfer learning model

outperformed the deep learning model and got 98% accuracy under both algorithms.

Guerra-Manzanares et al. (2019) used the N-BaIoT dataset, which contains

normal and malicious IoT traffic from 9 devices. 115 numerical features were defined

for each data point. The k-nearest neighbor (k-NN) and random forest (RF)

algorithms were used, and the results showed that the hybrid feature selection method

significantly reduced the computational time while maintaining a high detection rate

which 99.9% accuracy.

H Esha et al. (2023) used multiple datasets, including BoT-IoT, UNSW-NB15,

and ToN_IoT. The UNSW-NB15 dataset was finally selected and used. A variety of

classification algorithms were used, including Linear SVC, Decision Tree, Random

Forest, Logistic Regression, Gradient Boosting Decision Tree, and Ensemble Models.

The results show that the Linear SVC has the best accuracy which is 98.865.

Bahsi et al. (2018) used the N-BaIoT dataset captured in a laboratory

environment, simulating typical normal behaviors and attack cases. The dataset

contains network traffic statistics of IoT devices of 9 different application categories.

The results show that the decision tree classifier using three optimal features performs

well in terms of detection accuracy and interpretability and got 98.97% with 10

feature set size.

Susanto et al. (2021) used the N-BaIoT dataset, which was extracted by

statistical methods and contains 115 features and 89 files. These files include different
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types of network traffic data such as normal traffic, Mirai (Ack, Scan, Syn, Udp,

Udpplain) and Bashlite (Combo, Junk, Scan, TCP, UDP) attack traffic. The machine

learning algorithms used include Random Forest (RF), Decision Tree (DT), Adaboost

(AD), k-Nearest Neighbor (k-NN), and Gradient Boosting (GB). Experimental results

show that the use of decision tree classifier combined with random projection method

can reduce the number of features while still maintaining high accuracy and efficient

detection performance which got 100% accuracy.

2.4 Critical Review

Table 2.1 shows some previous works that have been done by various people

on IoT detection techniques using machine learning. The works have been categorized

according to the detection techniques' names. These research papers have been

reviewed to collect the studies about previous research and work implementing

algorithms in IoT detection using machine learning. It can help to understand project

scopes and system developments better.

Table 2.1 : Literature Review of Previous Works

Author Dataset Best Feature Selection Best Algorithm Accuracy

Garg et al.,

2021

UNSW-

NB15

None Random Forest

Gini

92.63%

Susanto et

al., 2020

N_BaIoT None Random Forest 99.99% in

Scikit-learn

100% in

Weka

Madhuri

Gurunathra

o Desai et

al., 2021

N_BaIoT Recursive Feature

Elimination(RFE)

K-means +

Decision Tree

99.13%

Mohammad

Noor

Injadat et

al., 2020

Bot-IoT-

2018

Recursive Feature

Elimination(RFE)

combination of

BO-GP and DT

classifier

99.99%
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Rabhi et al.,

2023

N-BaIoT

as source

domain,

IoT-23 as

target

domain

None Transfer

Learning with

LSTM

98%

Guerra-

Manzanares

et al., 2019

N_BaIoT Filter Method +

Wrapping Method +

Embedding Method

k-Nearest

Neighbors +

Random Forest

99.9%

H Esha et

al., 2023

UNSW-

NB15

Lasso Method Linear SVC 98.86%

Bahsi et al.,

2018

N-BaIoT Fisher’s Score Decision Tree 98.97% with

10 feature

set size

Susanto et

al., 2021

N-BaIoT Random Projection Decision Tree 100%

2.5 Proposed Solution

Table 2.1 summarizes the existing research and shows that N-BaIoT is

adopted by a large number of studies, so this project will use N-BaIoT as a dataset.

Recursive feature elimination (RFE), filtering method, and selection operator (Lasso)

will be used as feature selection to select the most suitable features in the dataset. In

addition, fire machine learning classifiers, namely linear SVC, random projection,

random forest (RF), decision tree (DT), and k-nearest neighbor (KNN) will be

implemented in the testing phase to determine the highest accuracy of this project.

The performance evaluation for measuring the accuracy, precision, recall, and f1

score of the classifier will be used at the end of the botnet detection framework using

machine learning methods.
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2.6 Conclusion

In summary, this chapter introduced the details of IoT botnet detection based

on machine learning, including the Internet of Things (IoT), botnets, botnets in IoT,

datasets used by existing works, feature selection methods, and machine learning

methods. In addition, related work shows how previous projects built the project, as

well as the step-by-step process of system development. A critical review gives an

overview of the existing work and will delve into the differences between the datasets

used. Finally, the solution proposed in this project uses the same dataset used in most

of the literature, and its performance will be evaluated in the testing chapter. The next

chapter will discuss the project approach to detecting botnets in IoT using machine

learning.
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CHAPTER 03 : PROJECT METHODOLOGY

3.1 Introduction

This chapter introduces the dataset used in this project, N_BaIoT. It also

discusses the project methodology that guided the project execution, namely the Agile

Development Methodology, and briefly describes the process of this methodology.

This methodology can be used as a roadmap to better understand what must be done

and how it should be done.

3.2 Dataset Used

The dataset use in this project is N-BaIoT which consists of data samples with

115 features. The datasets were collected through the port mirroring of IoT devices

with 9 device that authentically infected by Mirai and BASHLITE which are(Catillo

et al., 2023) :

i. Danmini - Doorbell

ii. Ennio - Doorbell

iii. Ecobee - Thermostat

iv. Philips B120N/10 - Baby Monitor

v. Provision PT-737E - Security Camera

vi. Provision PT-838 - Security Camera

vii. Simple Home XCS7-1002-WHT - Security Camera

viii. Simple Home XCS7-1003-WHT - Security Camera

ix. Samsung SNH 1011 N - Web cam

The benign data were captured immediately after setting the network to ensure

that the data was benign. For two types of packet sizes (only outbound/both outbound

and inbound), packet counts, and packet jitters, the times between packet arrival were

extracted for each statistical value. A total of 23 features were extracted for each of

the 5 time windows (100 ms, 500 ms, 1.5 s, 10 s, and 1 min), for a total of 115

features(Kim et al., 2020). Figure 3.1 shows the detailed features of this dataset.
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Figure 3.1 : Detailed features of the N-BaIoT dataset(Kim et al., 2020)

This dataset was chosen not only because it is the most commonly used

dataset in relevant literature, but also because it has the following advantages(Catillo

et al., 2023) (Abbasi et al., 2021):

I. Multi-device coverage: The N_BaIoT dataset covers 9 different IoT devices,

including doorbells, thermostats, baby monitors, cameras, and webcams. These

devices have different functions and network behaviors, which can fully reflect

the traffic characteristics in the IoT environment.

II. Multiple attack types: The dataset contains normal traffic and multiple attack

traffic, especially Mirai and Bashlite attacks. These attacks are common

malicious behaviors in the IoT environment and can be effectively used to study

and evaluate different intrusion detection methods.

III. Rich features: The N_BaIoT dataset provides 115 features, which cover various

statistical information and properties of the traffic, providing rich information for

machine learning models and helping to improve the accuracy and robustness of

detection.
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IV. Unbalanced data distribution: The traffic and attack categories of this dataset are

unevenly distributed, which is highly similar to the real IoT environment. By

training and testing on such a dataset, the applicability and performance of the

model in real scenarios can be improved.

V. Widely used and recognized: The N_BaIoT dataset is widely used and recognized

in many studies, with high credibility and practicality. Using such a recognized

dataset helps to compare and verify with other research results and promote the

progress of research.

VI. Open access: The dataset is public and researchers can easily access and use it,

which facilitates scientific research and development. At the same time, public

datasets also contribute to the transparency and reproducibility of research.

VII.High data quality: The N_BaIoT dataset is captured in a laboratory environment,

with high data quality and accuracy, and can provide reliable training and testing

data for machine learning models.

3.3 Methodology

This project will using Agile Development Methodology to development the

system because of (Chaudhari & Joshi, 2021) (Kuhrmann et al., 2021):

i. Flexibility and adaptability: Agile methods allow researchers to flexibly respond

to changing needs and environments during the development process. For

academic projects, research directions and technical requirements may change

with new discoveries or experimental results. Agile development can quickly

adjust plans and strategies to maintain the flexibility and adaptability of the

project.

ii. Iterative development: Development is carried out through short cycles

(iterations), and each iteration can produce a usable version. Iterative
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development helps to gradually realize system functions, gradually verify the

effectiveness of assumptions and algorithms, and reduce the risk of encountering

major problems during final integration.

iii. Continuous improvement: Agile development emphasizes continuous feedback

and improvement. By communicating with supervisors regularly, researchers can

reflect on and improve the development process, optimize system performance

and code quality. This is particularly important for academic projects, because the

detection effect and stability of the system can be gradually improved through

continuous experiments and evaluations.

iv. Results display and evaluation: After each iteration cycle, researchers can show

their supervisors to evaluate the current research results and adjust the research

direction and strategy if necessary to ensure the achievement of project goals.

Figure 3.2 : Agile Development Methodology Cycle (Brush & Silverthorne, 2022)

I. Meet: Meet and discuss with the supervisor regularly. The frequency of the

meeting can be determined according to the progress of the project, with the

purpose of discussing the progress of the project, sharing the challenges and

problems encountered, and obtaining feedback and guidance from the supervisor.

II. Plan: Make a plan for the time, including priority setting and scheduling.

Planning in agile development is an ongoing process, and new plans are made at

the beginning of each iteration.

III. Design: Design the system and obtain a clear blueprint.

IV. Develop: Develop code according to the design and gradually implement system

functions.
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V. Test: Test the developed functions to determine the current performance of the

system.

VI. Evaluate: Evaluate the results of each iteration cycle, analyze the performance

and effect of the system, and let the supervisor evaluate.

3.4 Project Milestones

Project milestones were specified actions or activities that needed to be

completed within set time frames for the project to succeed. These milestones were

essential for tracking progress and ensuring timely completion of tasks.

Table 3.1 : Project Milestone of FYP 1

WEEK ACTIVITY

W1

Select an appropriate project topic and potential supervisor

Meeting 1 for the proposal discussion with the supervisor for assessment,
verification, correction, and improvement before the proposal approval and
submission.

W2
Proposal approval and submission to the committee

Official List of Supervisors

W3
Proposal Presentation

Meeting 2 for the proposal presentation to the supervisor

W4 Chapter 1
Report Writing Progress 1 [PRJ-3]

W5

Chapter 2
Report Writing Progress 1 [PRJ-3]

Meeting 3 for the discussion of chapter 1

W6 Chapter 2
Report Writing Progress 1 [PRJ-3]
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Project Progress 1 [PRJ-2]

W7 Chapter 3

W8 MID-SEMESTER BREAK

W9

Chapter 3
Report Writing Progress 1 [PRJ-3]

Meeting 4 for the discussion of chapter 2

W10
Chapter 4

Project Progress 2 [PRJ-5]

W11
Chapter 4

PSM 1 Draft Report Preparation

W12 PSM 1 Draft Report Preparation

W13
PSM 1 Draft Report Preparation

Meeting 5 for the discussion of chapter 3

W14

PSM 1 Draft Report Submission to Supervisor and Evaluator

Report Evaluation [PRJ-9] [PRJ-10]

Meeting 6 for the discussion of chapter 4

W15
Demonstration with Supervisor [PRJ-8]

Demonstration with Evaluator [PRJ-7]

W16 Correction on the draft report based on the Supervisor and Evaluator's
comments during the presentation •

Table 3.2 : Project Milestone of FYP 2

WEEK ACTIVITY

W1 Discussion with supervisor for future planning
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Discussion with the supervisor for correction, and improvement from PSM1

W2 Chapter 5
Project Progress 1 [PRJ-1]

W3 Chapter 5
Project Progress 1 [PRJ-3]

W4 Chapter 6
Report Writing Progress 1 [PRJ-2]

W5

Chapter 6
Report Writing Progress 1 [PRJ-3]

Meeting for the discussion of chapter 5

Schedule for the presentation

W6

Chapter 7
Report Writing Progress 1 [PRJ-3]

Determination of student status (Continue/Withdraw)

PSM 2 Draft Report Preparation

W7 Demonstration with supervisor and evaluator

W8

Correction on the draft report based on the Supervisor and Evaluator's
comments during the final presentation session.

Submission of the final complete report, which is the updated & corrected
PSM2 report

W9

Submission of the final complete report, which is the updated & corrected
PSM2 report and Plagiarism Report etc. onto the OneDrive

End of PSM 2

3.5 Gantt Chart

The table 3.3 and 3.4 is Gantt chart that outlines the time spent on each phase

of the project, ensuring that all tasks were completed within the allocated period.
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Week

Progress

1 2 3 4 5 6 7 8 9 10 11 12 13 14

FYP Proposal

Project Progress 1

Report Writing

Progress 1

Project Progress 2

Report Writing

Progress 2

Report Evaluation

Table 3.3 : Gantt chart Final Year Project 1

Week

Progress

1 2 3 4 5 6 7 8

Chapter 5 - Project Progress

Chapter 5 - Report Writing Progress

Chapter 6 - Project Progress

Chapter 6 - Report Writing Progress

Chapter 7 - Project Progress

Chapter 7 - Report Writing Progress

Final Presentation

Table 3.4 : Gantt chart Final Year Project 2

3.6 Conclusion

In summary, this chapter outlined the project methodology for the system

development of the N_BaIoT dataset using an agile methodology. The six phases of

the agile methodology are meet, plan, design, develop, test, evaluation. In addition,

this chapter provides a visual representation of the project milestones and a Gantt

chart to effectively monitor and manage the activities involved in developing a Botnet

Detection in IoT using Machine Learning System. The next section describes the

analysis and design of the project in more detail.
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CHAPTER 04 : ANALYSIS AND DESIGN

4.1 Introduction

This chapter will introduce the data structure and flowchart of the machine

learning-based IoT botnet detection system.

4.2 Data Structure

Figure 4.1 : Data Structure for Botnet Detection System

I. Data Collection: This phase involves collecting data from various sources for

subsequent processing and analysis.

a) N-BaIoT: This project uses the N-BaIoT dataset. This dataset contains

normal and attack traffic from 9 types of IoT devices with a total of 115

features. These devices include doorbells, thermostats, baby monitors,
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security cameras, and webcams. The collection of the dataset includes

various statistical features of different time windows.

II. Data Preprocessing: This phase involves cleaning and preparing the collected

data to ensure its quality and consistency. Steps may include data cleaning,

handling missing values, data standardization or normalization, etc.

III. Feature Selection: In this step, the most representative and discriminative features

are selected to improve the performance and training efficiency of the model.

a) Recursive Feature Elimination (RFE): The number of features is gradually

reduced by recursively training the model and removing the least important

features.

b) Filtering Method: Important features are selected by evaluating the statistical

properties of each feature (such as variance, correlation coefficient).

c) Lasso (Least Absolute Shrinkage and Selection Operator): Features are

selected using L1 regularization, which achieves feature selection by

shrinking the coefficients of some features to zero.

IV. Training and Testing ML Classifiers: This stage uses the selected features to train

and test various machine learning models.

a) Linear SVC (Support Vector Classifier): Use linear support vector classifiers

for training and testing, suitable for linearly separable data.

b) Random Projection: Use random projection technology to reduce data

dimensions and perform classification.

c) Random Forest: Use the random forest algorithm to improve classification

accuracy and generalization ability by integrating multiple decision trees.

d) Decision Tree: Use the decision tree algorithm to make classification

decisions through a tree structure.

e) K-Nearest Neighbor (KNN): Use the K nearest neighbor algorithm to classify

according to the categories of the nearest K data points.

V. Performance Evaluation: This stage evaluates the performance of the model

through a variety of indicators to ensure the accuracy and effectiveness of the

model.
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a) Accuracy: Accuracy, which indicates the proportion of samples correctly

predicted by the model.

b) Recall: Recall rate, which indicates the proportion of actual positive class

samples that are correctly predicted as positive.

c) Precision: Precision rate, which indicates the proportion of samples predicted

as positive that are actually positive.

d) F1-Score: F1 score, the harmonic mean of precision and recall, used to

comprehensively evaluate the performance of the model

4.3 System Flowchart

In the development of Botnet Detection in IoT using Machine Learning

approach, this project proposed the framework as shown in Figure 4.2.

Figure 4.2 : Flowchart for Botnet Detection in IoT using Machine Learning
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4.3.1 Data Collection

This project conducted the experiment using the N_BaIoT dataset that

suggests real traffic data, gathered from 9 commercial IoT devices authentically

infected by Mirai and BASHLITE.

Total Size for this dataset is 8.14GB, get from

www.kaggle.com(https://www.kaggle.com/datasets/mkashifn/nbaiot-dataset). Figure

4.3 show a part of feature for this dataset.

Figure 4.3 : Part of N_BaIoT dataset feature

Feature information(Sundaram, 2023):

i. Stream aggregation:

a) H: ("Source IP" in N-BaIoT paper) Stats summarizing the recent traffic from

this packet's host (IP)

http://www.kaggle.com
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b) MI: ("Source MAC-IP" in N-BaIoT paper) Stats summarizing the recent

traffic from this packet's host (IP + MAC)

c) HH: ("Channel" in N-BaIoT paper) Stats summarizing the recent traffic

going from this packet's host (IP) to the packet's destination host.

d) HH_jit: ("Channel jitter" in N-BaIoT paper) Stats summarizing the jitter of

the traffic going from this packet's host (IP) to the packet's destination host.

e) HpHp: ("Socket" in N-BaIoT paper) Stats summarizing the recent traffic

going from this packet's host+port (IP) to the packet's destination host+port.

Example 192.168.4.2:1242 -> 192.168.4.12:80

ii. Time-frame (The decay factor Lambda used in the damped window):

a) How much recent history of the stream is capture in these statistics

i. L5, L3, L1, L0.1 and L0.01

iii. The statistics extracted from the packet stream:

a) weight: The weight of the stream (can be viewed as the number of items

observed in recent history)

b) mean: …

c) std: …

d) radius: The root squared sum of the two streams' variances

e) magnitude: The root squared sum of the two streams' means

f) cov: An approximated covariance between two streams

g) pcc: An approximated correlation coefficient between two streams

Figure 4.4 : Flowchart for Data Collection and Prepare
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4.3.2 Data Preprocessing

I. Get the dataset

a) First, download and get the N-BaIoT dataset from www.Kaggle.com. This

dataset contains normal traffic and attack traffic, covering 9 different IoT

devices and two Botnet attacks. The data collection of these devices includes

various statistical features in different time windows. Kaggle's data is saved

in CSV file format and has been cleaned. CSV file is a widely used text file

format that can be easily stored and transmitted(Tapsai, 2018).

II. Import necessary libraries

a) In order to preprocess the data, need to import some Python related libraries.

These libraries provide a wealth of functions and tools to help researchers

perform data manipulation, analysis, and visualization.

b) Required libraries:

i. Numpy: used to perform mathematical calculations and operate

multidimensional arrays. Numpy provides efficient array manipulation

methods and rich mathematical functions to facilitate the processing of

numerical data(Python, 2020).

ii. Pandas: used for data manipulation and analysis. Pandas provides

powerful data structures (such as DataFrame) that can easily clean,

transform, and analyze data(Python, 2020).

iii. Matplotlib and Seaborn: used for data visualization. Matplotlib is a 2D

drawing library. Seaborn is an advanced visualization library built on

Matplotlib. It provides a simpler API and richer drawing functions,

which helps to examine data distribution and characteristics(Python,

2020).

III. Loading the data set

a) Use the Pandas library to read the CSV file and load the data into a data frame

(DataFrame). DataFrame is a data structure in Pandas, which is similar to a

spreadsheet or SQL table and can be easily used for data manipulation and

analysis(Python, 2020).
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IV. Data standardization or normalization

a) In order to compare and calculate different features on the same scale, the data

needs to be standardized or normalized. This helps to eliminate the

dimensional differences between different features and improve the training

effect and performance of the model.

V. Encoding categorical data

a) If the data set contains categorical variables, these categorical variables need

to be converted to numerical form. Machine learning algorithms usually can

only process numerical data, so categorical variables need to be encoded.

VI. Data splitting

a) Split the data set into a training set and a test set. This is to ensure the

independence of model training and evaluation. Split it in a 70:30 ratio, that

is, 70% of the data is used to train the model and 30% of the data is used to

evaluate the model performance.

Figure 4.5 : Flowchart for Data Preprocessing

4.3.3 Feature Selection

Feature selection is an important step in data preprocessing. Its purpose is to

select the features that best represent and distinguish data categories, thereby

improving the performance of the model and the training efficiency. Feature selection

includes the following three methods in this project:

i. Recursive Feature Elimination (RFE)
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a) According to Chen & Jeong(2007), recursive feature elimination is a method

of recursively training a model and gradually reducing the number of features.

The specific steps are as follows:

i. Training model: First, train a base model (such as linear regression or

support vector machine) using all features.

ii. Calculate feature importance: Calculate the importance of each feature

based on the coefficients of the model or the feature importance score.

iii. Remove the least important features: Remove the features with the

lowest importance score.

b) Repeat the above steps: Repeat the above steps on the remaining feature set

until the predetermined number of features is reached.

c) This method can find the feature subset that contributes most to the model

performance through repeated training and screening.

ii. Chi-Square Filtering Method

a) Filtering methods select important features based on the statistical properties

of features and usually do not rely on any machine learning model. Common

filtering methods include(Cherrington et al., 2019):

i. Variance selection method: select features with variance greater than a

certain threshold and ignore features with smaller variance because they

have less impact on the target variable.

ii. Correlation coefficient method: calculate the correlation coefficient

between the feature and the target variable and select features with high

correlation.

iii. Chi-square test: for classification tasks, use the chi-square test to

measure the independence between the feature and the target variable

and select features with significant correlation.

b) This method is simple and fast and suitable for preliminary feature screening.

iii. Lasso (Least Absolute Shrinkage and Selection Operator)
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a) Lasso is a linear model based on L1 regularization. By adding regularization

terms, the coefficients of some features are reduced to zero, thereby

achieving feature selection(Muthukrishnan & Rohini, 2016). The specific

steps are as follows:

i. Training Lasso model: Add L1 regularization terms to the loss function

of the model and train the model.

ii. Feature coefficient shrinkage: L1 regularization will cause some feature

coefficients to become zero, thereby automatically selecting the features

that contribute most to the model.

iii. Select non-zero coefficient features: Finally, select those features with

non-zero coefficients as important features.

b) Lasso not only can handle multicollinearity problems, but also achieve feature

selection, which is very suitable for high-dimensional data sets.

iv. Random Projection

a. Random projection is a dimensionality reduction technique that randomly

projects high-dimensional data into a low-dimensional space, maintaining the

data structure while reducing computational complexity(Heidari et al., 2021).

The steps are as follows:

i. Use random projection technology to reduce the dimension of the data.

ii. Train and test classification models (such as SVM, KNN, etc.) on the

reduced-dimensional data.

v. Hybrid Feature Selection Method

a. Hybrid Feature Selection Method is a strategy that combines multiple feature

selection techniques, aiming to comprehensively utilize the advantages of each

method to improve the effectiveness of feature selection and the performance

of the model. Through this hybrid strategy, it is possible to maximize the

retention of important features related to the target variable while reducing the

data dimension (Hsu et al., 2011). The steps are as follows:
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i. Use multiple feature selection methods (such as Lasso, Random

Projection, Chi-Square, RFE, etc.) to select features separately.

ii. Combine the selected feature sets and select the best feature combination

through cross-validation or other evaluation indicators.

iii. Train and test the classification model (such as SVM, Random Forest,

KNN, etc.) on the selected best feature combination.

Figure 4.6 : Flowchart for Non-Hybrid Feature Selection

Figure 4.7 : Flowchart for Hybrid Feature Selection

4.3.4 Training and Testing Machine Learning Classifiers

After completing feature selection, use the selected features to train and test

different machine learning models to find the best classifier. This project includes the

following classifiers:
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I. Linear Support Vector Machine (Linear SVC)

b. Linear Support Vector Machine is a classification algorithm suitable for

linearly separable data(Dixit et al., 2020). The steps are as follows:

i. Train the linear support vector machine model using the training set.

ii. Adjust hyperparameters (such as regularization parameters) to

optimize model performance.

II. Random Forest

a. Random Forest is an ensemble learning method that improves classification

accuracy and generalization ability by integrating multiple decision

trees(Ashari & Broschat, 2019). The steps are as follows:

i. Use the training set to train multiple decision trees, and each tree is

trained on a randomly selected feature subset.

ii. Combining the prediction results of all decision trees, the majority

voting method is used to determine the final classification result.

III. Decision Tree

a. Decision tree is a classification algorithm based on tree structure. It achieves

classification by dividing the decision boundary in the feature space(Ashari &

Broschat, 2019). The steps are as follows:

i. Use the training set to train the decision tree model and select the

optimal features for data division.

ii. Prune to avoid overfitting and improve the generalization ability of the

model.

IV. K-Nearest Neighbor (KNN)

a. K-Nearest Neighbor is an instance-based learning algorithm. By calculating

the distance between the sample and each point in the training set, the K points

closest to the sample are selected for classification(Nahin Ul Sadad et al.,

2021). The steps are as follows:
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i. Select an appropriate K value (the number of nearest neighbors).

ii. Calculate the distance between the sample to be classified and all

samples in the training set.

iii. Select the K samples closest to the sample and determine the

classification result by majority voting.

4.3.5 Performance Evaluation

1. Select evaluation data : Use the test data set from the previous data splitting stage

to evaluate the model. Make sure that the test data is not used for model training

to ensure the authenticity and generalization of the evaluation results.

2. Calculate evaluation indicators : Predict the test data and calculate various

evaluation indicators. The number of various prediction results (true positive,

false positive, false negative, true negative) can be easily obtained through the

confusion matrix, so as to calculate the accuracy, recall, precision and F1-score.

3. Compare different models : Compare the evaluation results of each machine

learning model and select the model with the best performance.

4. Model adjustment and optimization : According to the evaluation results, adjust

the model's hyperparameters or perform further feature engineering to optimize

the model performance. Keep iterating this process until a satisfactory model is

obtained.
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Figure 4.8 : Flowchart for Machine Learning Classifier and Performance Evaluation

4.4 Conclusion

In summary, this chapter provides a comprehensive analysis and design of the

machine learning-based IoT botnet detection system. First, this chapter explains the

data structure of the system and details the collection, preprocessing, and feature

selection process of the N-BaIoT dataset. By using different feature selection methods,

such as recursive feature elimination (RFE), filtering methods, and Lasso, the

researchers were able to select the most representative features. Subsequently, the

researchers used these features to train and test a variety of machine learning

classifiers, including linear support vector machines (Linear SVC), random

projections, random forests, decision trees, and K-nearest neighbors (KNN). Finally,

the models were evaluated using metrics such as accuracy, recall, precision, and F1

score. The next chapter will focus on the implementation phase of the Botnet

detection system in home IoT devices.
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CHAPTER 05 : ANALYSIS AND DESIGN

5.1 Introduction

This chapter introduces the implementation of dataset description, data

preprocessing, feature selection, machine learning implementation, and performance

evaluation based on figure 4.1. This project will measure the model accuracy

evaluation to obtain the expected output.

5.2 Botnet Detection System Configuration Management

5.2.1 Dataset Collection

This project using N_BaIoT dataset from Kaggle.com, total 89 files, the file

with the name benign records normal traffic, file with mirai records Mirai attack

traffic and file with gafgyt records Bashlite attack(Bashlite also knows as gafgyt).

Figure 5.1 : Files of N_BaIoT Dataset

Using dataPrepare.py to combine all the files of N_BaIoT Dataset into

totalData.csv. The code is mainly used to read different types of network traffic data

(normal traffic and Mirai, Bashlite attack traffic), and then merge them into a large

data set and save it to a CSV file. The final output file contains all the merged data

and adds a Class label for each type of traffic to distinguish normal traffic from attack

traffic.
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i. Import necessary libraries

a) pandas (pd): A powerful data processing and analysis library, especially

suitable for processing structured data (such as CSV files).

b) glob: A library for finding file paths that match a certain pattern. The library

allows the use of wildcards to match file names.
import pandas as pd
import glob

Figure 5.2 : Coding for Import Necessary Libraries for Data Collection

ii. Define a data preparation function

a) A function called dataPrepare is defined to prepare the dataset.
def dataPrepare():

Figure 5.3 : Coding for dataPrepare function define

iii. Read normal traffic data

a) benign_files: Use the glob library to find all files ending with benign.csv in

the current directory. *benign.csv is a wildcard pattern that matches all files

whose names end with benign.csv.

b) benign_data: Use pd.read_csv() to read these files one by one and merge

them into a large DataFrame. pd.concat() is used to connect multiple

DataFrames, and ignore_index=True ensures that the merged DataFrame has

a continuous row index.

c) benign_data['Class'] = 0: Add a new column Class for the normal traffic data

and set its value to 0, indicating that these data are normal traffic.
benign_files = glob.glob("*benign.csv")
benign_data = pd.concat((pd.read_csv(file) for file in benign_files), ignore_index=True)
benign_data['Class'] = 0

Figure 5.4: Coding for Read normal traffic

iv. Reading Mirai attack data

a) This block of code is similar to reading normal traffic data, but it targets five

different types of Mirai attack data: ack, scan, syn, udp, and udpplain.

b) The files for each attack type are read separately and merged, and then a new

column Class is added to the data with a value of 1, indicating that this data

is attack traffic.
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mirai_ack_files = glob.glob("*mirai.ack.csv")
mirai_ack_data = pd.concat((pd.read_csv(file) for file in mirai_ack_files),

ignore_index=True)
mirai_ack_data['Class'] = 1
mirai_scan_files = glob.glob("*mirai.scan.csv")
mirai_scan_data = pd.concat((pd.read_csv(file) for file in mirai_scan_files),

ignore_index=True)
mirai_scan_data['Class'] = 1
mirai_syn_files = glob.glob("*mirai.syn.csv")
mirai_syn_data = pd.concat((pd.read_csv(file) for file in mirai_syn_files),

ignore_index=True)
mirai_syn_data['Class'] = 1
mirai_udp_files = glob.glob("*mirai.udp.csv")
mirai_udp_data = pd.concat((pd.read_csv(file) for file in mirai_udp_files),

ignore_index=True)
mirai_udp_data['Class'] = 1
mirai_udpplain_files = glob.glob("*mirai.udpplain.csv")
mirai_udpplain_data = pd.concat((pd.read_csv(file) for file in mirai_udpplain_files),

ignore_index=True)
mirai_udpplain_data['Class'] = 1

Figure 5.5 : Coding for Read Mirai Attack Traffic

v. Read Bashlite attack data

a) This part of the code is similar to processing Mirai attack data, processing

five different attack data of Bashlite (i.e. Gafgyt): combo, junk, scan, tcp and

udp.

b) The data of each attack type is also read and merged separately, and the Class

column is added with a value of 1, indicating attack traffic.
gafgyt_combo_files = glob.glob("*gafgyt.combo.csv")

gafgyt_combo_data = pd.concat((pd.read_csv(file) for file in gafgyt_combo_files),
ignore_index=True)

gafgyt_combo_data['Class'] = 1
gafgyt_junk_files = glob.glob("*gafgyt.junk.csv")
gafgyt_junk_data = pd.concat((pd.read_csv(file) for file in gafgyt_junk_files),

ignore_index=True)
gafgyt_junk_data['Class'] = 1
gafgyt_scan_files = glob.glob("*gafgyt.scan.csv")
gafgyt_scan_data = pd.concat((pd.read_csv(file) for file in gafgyt_scan_files),

ignore_index=True)
gafgyt_scan_data['Class'] = 1
gafgyt_tcp_files = glob.glob("*gafgyt.tcp.csv")
gafgyt_tcp_data = pd.concat((pd.read_csv(file) for file in gafgyt_tcp_files),

ignore_index=True)
gafgyt_tcp_data['Class'] = 1
gafgyt_udp_files = glob.glob("*gafgyt.udp.csv")
gafgyt_udp_data = pd.concat((pd.read_csv(file) for file in gafgyt_udp_files),

ignore_index=True)
gafgyt_udp_data['Class'] = 1

Figure 5.6 : Coding for Read Bashlite Attack Data

vi. Merge all data and save

a) frames: A list containing all data sets (normal data and various attack data).
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b) result: Use pd.concat() to merge all DataFrames in the list into one large

DataFrame and reset the row index (ignore_index=True).

c) result.to_csv('totalData.csv'): Save the merged data as totalData.csv file.

d) print("Starting to save data...") and print("Done for saving"): Print messages

to mark the start and end of the saving process.

e) print(result.shape): Print the shape (number of rows and columns) of the

merged data.

f) print(result.head()): Print the first five rows of the merged data for inspection.
frames = [benign_data, mirai_ack_data, mirai_scan_data, mirai_syn_data, mirai_udp_data,
mirai_udpplain_data, gafgyt_combo_data, gafgyt_junk_data, gafgyt_scan_data, gafgyt_tcp_data,
gafgyt_udp_data]

result = pd.concat(frames, ignore_index=True)
print("Starting to save data...")
result.to_csv('totalData.csv')
print("Done for saving")
print(result.shape)
print(result.head())

Figure 5.7 : Coding for Merge all data and save

vii. Main program part

a) if __name__ == '__main__': Make sure that the dataPrepare function is only

executed when the script is run directly, and not when it is imported by other

scripts.

b) dataPrepare(): Call the dataPrepare function defined above to perform the

data preparation process.

c) The following code segment reads the totalData.csv file just saved through

pandas, then removes the first column (redundant index column) and saves it

back to the same file. Finally, read and print the file contents again to ensure

that the data is saved correctly.
if __name__ == '__main__':

dataPrepare()

# using pandas to read csv file
data = pd.read_csv('totalData.csv')
data = data.iloc[:, 1:]
data.to_csv('totalData.csv', index=False)
data = pd.read_csv('totalData.csv')
print(data)

Figure 5.8 : Coding for function call and display
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Result of dataPrepare.py, total 7062606 rows and 116 columns of data save in

totalData.csv.

Figure 5.9: Output of Data Prepare

5.2.2 Main Coding

Main.py code implements the complete process of feature selection and model

training, and saves the final results.

I. Import required libraries

a) from sklearnex import patch_sklearn: This line of code imports the

patch_sklearn function in the sklearnex library to speed up the operation of

scikit-learn.

b) patch_sklearn(): By calling the patch_sklearn() function, the scikit-learn

library is optimized to make some calculations faster, especially on Intel

hardware.

c) from scipy.stats import chi2_contingency: Import the chi2_contingency

function in the scipy.stats module, which is used to calculate the chi-square

test statistic for analyzing the correlation between two categorical variables.

d) from sklearn.model_selection import train_test_split: Import the

train_test_split function to split the data set into training and test sets.
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e) from sklearn.metrics import accuracy_score, recall_score, precision_score,

f1_score: Import four indicators for evaluating the performance of

classification models, including accuracy (accuracy_score), recall rate

(recall_score), precision (precision_score), F1 score (f1_score).

f) from sklearn.linear_model import LogisticRegression: Import the logistic

regression model (LogisticRegression), which is a commonly used

classification model.

g) from sklearn.feature_selection import SelectFromModel: Import the

SelectFromModel class, which is used to select features based on an existing

model.

h) from sklearn.preprocessing import StandardScaler: Import the

StandardScaler class, which is used to standardize features so that the mean

of each feature is 0 and the standard deviation is 1.

i) from sklearn.tree import DecisionTreeClassifier: Import the decision tree

classifier (DecisionTreeClassifier), which is a tree model for classification

tasks.

j) from sklearn.neighbors import KNeighborsClassifier: Imports

KNeighborsClassifier, a neighbor-based classification model.

k) from sklearn.feature_selection import RFE: Imports the Recursive Feature

Elimination (RFE) method for feature selection.

l) from sklearn.ensemble import RandomForestClassifier,

GradientBoostingClassifier: Imports RandomForestClassifier and

GradientBoostingClassifier, both of which are ensemble learning models for

classification tasks.

m) from sklearn.svm import LinearSVC: Imports the LinearSVC of the Support

Vector Machine for linearly separable classification tasks.

n) from sklearn import random_projection: Imports the random_projection

module for random projection dimensionality reduction.

o) import pandas as pd: Imports the pandas library for data processing,

especially for processing DataFrames.

p) import numpy as np: Import the numpy library, which is used for scientific

computing, especially for processing arrays and matrices.
from sklearnex import patch_sklearn
patch_sklearn()
from scipy.stats import chi2_contingency
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from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score
from sklearn.linear_model import LogisticRegression
from sklearn.feature_selection import SelectFromModel
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.feature_selection import RFE
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.svm import LinearSVC
from sklearn import random_projection

import pandas as pd
import numpy as np

Figure 5.10 : Coding for Import library for main.py

II. Main program entry & data loading

a) Detects whether the current script is running directly. If so, it executes the

subsequent code.

b) print("Start load data"): Prints a message indicating the start of data loading.

c) data = pd.read_csv('N_BaIoT/totalData.csv'): Uses pandas's read_csv

function to load the CSV file totalData.csv and stores it in the data variable.

d) print("Data loaded\n\nNow data preprocessing Start"): Prints a message

indicating that the data has been successfully loaded and data preprocessing

is about to start.
if __name__ == '__main__':

print("Start load data")
data = pd.read_csv('N_BaIoT/totalData.csv')
print("Data loaded\n\nNow data preprocessing Start")

Figure 5.11 : Coding for Main Program Entry and Data Loading

III. Data Preprocessing

a) x_train, x_test, y_train, y_test = dataPreprocessing(data): Call the previously

defined dataPreprocessing function to preprocess the data and divide it into

training and test sets. x_train and x_test are the feature data of the training

and test sets respectively, and y_train and y_test are the target variables of

the training and test sets respectively.

b) print("Data Preprocessing End"): Print a message indicating that data

preprocessing is complete.
x_train, x_test, y_train, y_test = dataPreprocessing(data)
print("Data Preprocessing End")

Figure 5.12 : Coding for Data Preprocessing Function Call
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IV. Define the number of features to be tested

a) max_features_list = [2, 3, 5, 10, 15]: Define a list containing different

numbers of features that will be used to test the performance of the model.

b) results = []: Initialize an empty list to store the final test results.
max_features_list = [2, 3, 5, 10, 15]
results = []

Figure 5.13 : Coding for Define Number of Features List

V. Create a dictionary of feature selection methods

a) feature_selection_methods: Create a dictionary with the key being the name

of the feature selection method and the value being the corresponding feature

selection function. These methods include Lasso, random projection, chi-

square test, recursive feature elimination (RFE), and hybrids of these

methods with other methods.
feature_selection_methods = {

'Lasso': lasso_feature_selection,
'Random Projection': random_projection_feature_selection,
'Chi-Square': chi_square_feature_selection,
'RFE': rfe_feature_selection,
'Lasso + Hybrid': lasso_hybrid_feature_selection,
'Random Projection + Hybrid': random_projection_hybrid_feature_selection,
'Chi-Square + Hybrid': chi_square_hybrid_feature_selection,
'RFE + Hybrid': rfe_hybrid_feature_selection

}

Figure 5.14 : Coding for Feature Selection Methods Dictionary

VI. Iterate over feature selection methods and store results

a) for method_name, feature_selection_function in

feature_selection_methods.items(): Iterate over each feature selection method

and its corresponding function in the dictionary.

b) print(f"\n{method_name} Feature Selection Start"): Prints a message

indicating the start of the current feature selection method.

c) selected_features_results_list = []: Initializes an empty list to store the results

of the current feature selection method.
for method_name, feature_selection_function in feature_selection_methods.items():

print(f"\n{method_name} Feature Selection Start")
selected_features_results_list = []

Figure 5.15 : Coding for Iterate over feature selection methods and store results
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VII. Handling hybrid feature selection methods

a) if method_name == 'Lasso + Hybrid': Check if the current method is a hybrid

method of Lasso.

b) lasso_rp_results, lasso_chi_results, lasso_rfe_results =

feature_selection_function(x_train, x_test, y_train, max_features_list): Call

the feature selection function of the Lasso hybrid method to obtain the

feature selection results of different combinations.

c) selected_features_results_list: Store the above results in a list, where each

element is a tuple containing the name of the submethod and its

corresponding result.

d) Other hybrid methods (random projection, chi-square test, RFE) are handled

similarly.
if method_name == 'Lasso + Hybrid':

lasso_rp_results, lasso_chi_results, lasso_rfe_results =
feature_selection_function(x_train, x_test, y_train, max_features_list)

selected_features_results_list = [
('Random Projection', lasso_rp_results),
('Chi-Square', lasso_chi_results),
('RFE', lasso_rfe_results)

]
elif method_name == 'Random Projection + Hybrid':

rp_lasso_results, rp_chi_results, rp_rfe_results =
feature_selection_function(x_train, x_test, y_train, max_features_list)

selected_features_results_list = [
('Lasso', rp_lasso_results),
('Chi-Square', rp_chi_results),
('RFE', rp_rfe_results)

]
elif method_name == 'Chi-Square + Hybrid':

chi_lasso_results, chi_rp_results, chi_rfe_results =
feature_selection_function(x_train, x_test, y_train, max_features_list)

selected_features_results_list = [
('Lasso', chi_lasso_results),
('Random Projection', chi_rp_results),
('RFE', chi_rfe_results)

]
elif method_name == 'RFE + Hybrid':

rfe_lasso_results, rfe_rp_results, rfe_chi_results =
feature_selection_function(x_train, x_test, y_train, max_features_list)

selected_features_results_list = [
('Lasso', rfe_lasso_results),
('Random Projection', rfe_rp_results),
('Chi-Square', rfe_chi_results)

]

Figure 5.16 : Coding for Handling hybrid feature selection method
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VIII. Handling non-hybrid feature selection methods

a) For non-hybrid methods, the feature selection function is called directly and

the results are added to selected_features_results_list.
else:

selected_features_results = feature_selection_function(x_train, x_test, y_train,
max_features_list)

selected_features_results_list.append((method_name, selected_features_results))
print(f"{method_name} Feature Selection End")

Figure 5.17 : Coding for handling non-hybrid feature selection method

IX. Train and evaluate the model using selected features

a) for sub_method_name, selected_features_results in

selected_features_results_list: Iterate over all feature selection sub-methods

and their corresponding results.

b) for num_features in max_features_list: For each sub-method, iterate over all

the number of features to be tested.

c) print(f"\nTrain and test model with {method_name} - {sub_method_name}-

selected features Start for {num_features} features"): Prints a message

indicating that model training and testing has started with the current number

of features.

d) performance= train_and_evaluate(selected_features_results[num_features][0],

selected_features_results[num_features][1], y_train, y_test): Calls the

train_and_evaluate function to train and evaluate the model using the

selected number of features and returns the performance metrics of the model.
for sub_method_name, selected_features_results in selected_features_results_list:

for num_features in max_features_list:
print(f"\nTrain and test model with {method_name} - {sub_method_name}-selected

features Start for {num_features} features")
performance = train_and_evaluate(selected_features_results[num_features][0],

selected_features_results[num_features][1], y_train, y_test)
print(f"Train and test model with {method_name} - {sub_method_name}-selected

features End for {num_features} features\n")

Figure 5.18 : Coding for train and evaluate

X. Display and store performance results

a) print(f"Performance with {method_name} + {sub_method_name} feature

selection ({num_features} features):"): Prints a message showing the

performance results for the current number of features.

b) for model, metrics in performance.items(): Iterates over the performance

results and prints the performance metrics for each model separately.
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c) results.append({...}): Stores the performance metrics for each model in the

results list for easy later saving.
print(f"Performance with {method_name} + {sub_method_name} feature selection

({num_features} features):")
for model, metrics in performance.items():

print(f"{model}: {metrics}")
results.append({
"Number of Features": num_features,
"Model": model,
"Feature Selection Method": f'{method_name} - {sub_method_name}',
"Accuracy(%)": metrics['Accuracy'] * 100,
"Recall(%)": metrics['Recall'] * 100,
"Precision(%)": metrics['Precision'] * 100,
"F1-Score(%)": metrics['F1-Score'] * 100
})

Figure 5.19 : Coding for display and store performance result

XI. Convert the results to a data frame and save it as an Excel file

a) results_df = pd.DataFrame(results): Convert the results list to a pandas data

frame for easy saving.

b) results_df.to_excel('result.xlsx', index=False): Save the result data frame to

an Excel file result.xlsx without saving the index column.

c) print("Results have been saved to result.xlsx"): Print a message indicating

that the results have been successfully saved to the Excel file.
results_df = pd.DataFrame(results)
results_df.to_excel('result.xlsx', index=False)
print("Results have been saved to result.xlsx")

Figure 5.20 : Coding for convert results into .xlsx file

5.2.3 Data Preprocessing

The main function of this Python code is to preprocess the data set, including

the separation of data features and target variables, the division of data sets, etc.

I. Define data preprocessing function

a) Define a function called dataPreprocessing to preprocess the input data set
def dataPreprocessing(data):

Figure 5.21 : dataPreprocessing function define
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II. Separation of features and target variables

a) x = data.iloc[:, data.columns != 'Class']: Extract all features from the dataset

(excluding the target variable Class column) and store them in the variable x.

i. data.iloc[:, data.columns != 'Class']: Use the iloc indexing method to

select all data that is not equal to the Class column, which is the feature

variable.

b) y = data.iloc[:, data.columns == 'Class'].values.ravel(): Extract the data of the

target variable (Class column) and convert it into a one-dimensional array

and store it in the variable y.

i. data.iloc[:, data.columns == 'Class']: Select the data of the Class column.

ii. .values.ravel(): Convert the extracted Class column data from a two-

dimensional form to a one-dimensional array form for subsequent

processing.
x = data.iloc[:, data.columns != 'Class']
y = data.iloc[:, data.columns == 'Class'].values.ravel()

Figure 5.22 : Coding for separation of feature and target variables

III. Dataset division

a) train_test_split(x, y, test_size=0.3, random_state=0): Use the train_test_split

function to split the dataset into training and test sets.

b) x: Feature variable.

c) y: Target variable.

d) test_size=0.3: Specifies that the test set accounts for 30% of the entire dataset.

e) random_state=0: Set the random seed to zero to ensure the repeatability of

the results.

f) x_train, x_test, y_train, y_test: Respectively represent the feature data of the

training set, the feature data of the test set, the label data of the training set,

and the label data of the test set.
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=0)

Figure 5.23 : Coding for dataset division

IV. Return preprocessed data

a) This line of code returns the training set and test set data to the caller, making

it easier to use these data for model training and evaluation.
return x_train, x_test, y_train, y_test

Figure 5.24 : Coding for return preprocessed data
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5.2.4 Feature Selection

This code defines 16 feature selection methods: Lasso, Random Projection,

Chi-Square, Recursive Feature Elimination (RFE), Lasso Hybrid (3 in total), Random

Projection Hybrid (3 in total), Chi-Square Hybrid (3 in total), RFE Hybrid (3 in total).

Each function receives the feature data of the training set and the test set, and returns

the selected feature data set based on the given list of the number of features.

5.2.4.1 Lasso

i. def lasso_feature_selection(x_train, x_test, y_train, max_features_list): defines a

function called lasso_feature_selection for feature selection using Lasso

regression. The function takes four parameters: training set feature data x_train,

test set feature data x_test, training set labels y_train, and a list max_features_list

containing the number of features to be selected.

ii. scaler = StandardScaler(): creates a StandardScaler object that standardizes the

data so that each feature has a mean of 0 and a variance of 1.

iii. x_train_scaled = scaler.fit_transform(x_train): standardizes and transforms the

training set feature data.

iv. x_test_scaled = scaler.transform(x_test): transforms the test set feature data using

the same standardizer (keeping the same standard).
def lasso_feature_selection(x_train, x_test, y_train, max_features_list):

scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(x_train)
x_test_scaled = scaler.transform(x_test)

Figure 5.25 : Coding for Lasso function define and data scale

v. x_train_scaled = pd.DataFrame(x_train_scaled, columns=x_train.columns):

Convert the standardized training set data to DataFrame format and keep the

original feature names.

vi. x_test_scaled = pd.DataFrame(x_test_scaled, columns=x_test.columns): Convert

the standardized test set data to DataFrame format and keep the original feature

names.
x_train_scaled = pd.DataFrame(x_train_scaled, columns=x_train.columns)
x_test_scaled = pd.DataFrame(x_test_scaled, columns=x_test.columns)

Figure 5.26 : Coding for convert standardized data into data frame

vii. results = {}: Initialize an empty dictionary to store training set and test set data

with different numbers of features.
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results = {}

Figure 5.27 : Coding for results dictionary variable define

viii. sel_ = SelectFromModel(LogisticRegression(C=0.05, penalty='l1',

solver='liblinear', random_state=10)): Use a logistic regression model with L1

regularization for feature selection. L1 regularization imposes a penalty on the

coefficients of some features, making the coefficients of some features become 0,

thereby performing feature screening.

ix. sel_.fit(x_train_scaled, y_train): Train this model on the standardized training

data.

x. all_selected_features = x_train_scaled.columns[(sel_.get_support())]: Get the

features selected by Lasso and store them as all_selected_features.
sel_ = SelectFromModel(LogisticRegression(C=0.05, penalty='l1', solver='liblinear',

random_state=10))
sel_.fit(x_train_scaled, y_train)
all_selected_features = x_train_scaled.columns[(sel_.get_support())]

Figure 5.28 : Coding for Lasso Model Setup and select feature

xi. for num_features in max_features_list: Traverse the given feature list.

xii. selected_features = all_selected_features[:num_features]: Select the first

num_features features.

xiii. print(f'Lasso selected top {num_features} features: {selected_features.tolist()}'):

  Print the first num_features features currently selected.

xiv. x_train_selected = x_train_scaled[selected_features]: Extract the selected features

in the training set.

xv. x_test_selected = x_test_scaled[selected_features]: Extract the selected features

in the test set.

xvi. results[num_features] = (x_train_selected, x_test_selected): Store the selected

training and test set data in the results dictionary, with the key being the number

of features and the value being the corresponding dataset.
for num_features in max_features_list:

selected_features = all_selected_features[:num_features]
print(f'Lasso selected top {num_features} features: {selected_features.tolist()}')
x_train_selected = x_train_scaled[selected_features]
x_test_selected = x_test_scaled[selected_features]
results[num_features] = (x_train_selected, x_test_selected)

Figure 5.29 : Coding for select feature based on feature list(2,3,5,10,15)
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xvii. return results: Returns a dictionary containing training set and test set data

with different numbers of features.
return results

Figure 5.30 : Coding for return results

Example Output :
Lasso Feature Selection Start

Lasso selected top 2 features: ['MI_dir_L0.1_weight', 'H_L0.1_weight']

Lasso selected top 3 features: ['MI_dir_L0.1_weight', 'H_L0.1_weight', 'HH_jit_L5_mean']

Lasso selected top 5 features: ['MI_dir_L0.1_weight', 'H_L0.1_weight', 'HH_L0.01_weight', 'HH_jit_L5_mean',

'HH_jit_L0.01_weight']

Lasso selected top 10 features: ['MI_dir_L0.1_weight', 'MI_dir_L0.01_weight', 'H_L0.1_weight', 'H_L0.01_weight',

'HH_L5_weight', 'HH_L0.01_weight', 'HH_L0.01_mean', 'HH_jit_L5_mean', 'HH_jit_L3_mean', 'HH_jit_L0.01_weight']

Lasso selected top 15 features: ['MI_dir_L5_weight', 'MI_dir_L1_weight', 'MI_dir_L0.1_weight', 'MI_dir_L0.01_weight',

'MI_dir_L0.01_mean', 'H_L0.1_weight', 'H_L0.01_weight', 'H_L0.01_mean', 'HH_L5_weight', 'HH_L0.01_weight',

'HH_L0.01_mean', 'HH_jit_L5_weight', 'HH_jit_L5_mean', 'HH_jit_L3_mean', 'HH_jit_L0.01_weight']

Lasso Feature Selection End

Figure 5.31 : Example Output for Lasso Feature Method

5.2.4.2 Random Projection

i. def random_projection_feature_selection(x_train, x_test, y_train,

max_features_list): defines a function called

random_projection_feature_selection, which is used to select features by random

projection. The parameters are the same as above.

ii. results = {}: initialize an empty dictionary to store the results.

iii. for num_features in max_features_list: traverse the given list of features.

iv. rp = random_projection.SparseRandomProjection(n_components=num_features):

creates a SparseRandomProjection object, specifying the dimension after

projection as num_features.

v. x_train_rp = rp.fit_transform(x_train): performs random projection on the

training data and transforms it to low-dimensional data.

vi. x_test_rp = rp.transform(x_test): performs the same transformation on the test

data.

vii. results[num_features] = (x_train_rp, x_test_rp): Store the converted training and

test set data in the results dictionary.

viii. return results: Returns the dictionary results containing the training and test set

data with different numbers of features.
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def random_projection_feature_selection(x_train, x_test, y_train, max_features_list):
results = {}

for num_features in max_features_list:
rp = random_projection.SparseRandomProjection(n_components=num_features)
x_train_rp = rp.fit_transform(x_train)
x_test_rp = rp.transform(x_test)
results[num_features] = (x_train_rp, x_test_rp)

return results

Figure 5.32 : Coding for Random Projection Feature Selection Method

Example Output :
Random Projection Feature Selection Start

Random Projection Feature Selection End

Figure 5.33 : Example output for Random Projection Feature Selection Method

Random Projection can’t display selected feature because it unlike feature

selection methods such as recursive feature elimination (RFE) or Lasso regularization,

Random Projection does not involve the process of selecting or screening features.

Instead of selecting a part of the original feature set, it combines all the original

features into new low-dimensional features in a random manner. The nature of this

combination determines that it is not possible to directly identify which original

features are retained or highlighted after projection(Johnson, 1984).

5.2.4.3 Chi Square

i. def chi_square_feature_selection(x_train, x_test, y_train, max_features_list):

defines a function called chi_square_feature_selection for selecting features

through chi-square test. The parameters are the same as above.

ii. results = {}: initialize an empty dictionary to store the results.

iii. chi_ls = []: initialize an empty list to store the p-value of each feature.

iv. for feature in x_train.columns: loop through each feature in the training set.

v. c = pd.crosstab(y_train, x_train[feature]): calculate the contingency table between

the target variable y_train and the current feature feature.

vi. p_value = chi2_contingency(c)[1]: perform a chi-square test, get the p-value, and

store it in p_value.

vii. chi_ls.append(p_value): add the p-value of the current feature to the chi_ls list.
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def chi_square_feature_selection(x_train, x_test, y_train, max_features_list):
results = {}

chi_ls = []
for feature in x_train.columns:

c = pd.crosstab(y_train, x_train[feature])
p_value = chi2_contingency(c)[1]
chi_ls.append(p_value)

Figure 5.34 : Coding for Chi-Square Filter function define and p_value calculate

viii. all_selected_features = pd.Series(chi_ls,

index=x_train.columns).sort_values(ascending=True).index: Convert the p-value

to a Series object with the index as the feature name. Sort by p-value in ascending

order and get the feature name list all_selected_features.

ix. for num_features in max_features_list: Traverse the given feature list.

x. selected_features = all_selected_features[:num_features]: Select the first

num_features features with the smallest p-value.

xi. print(f"Chi-Square selected top {num_features} features:

{selected_features.tolist()}"): Print the first num_features features currently

selected.

xii. x_train_selected = x_train[selected_features]: Extract the selected features in the

training set.

xiii. x_test_selected = x_test[selected_features]: Extract the selected features in the

test set.

xiv. results[num_features] = (x_train_selected, x_test_selected): Store the selected

training set and test set data in the results dictionary, with the key being the

number of features and the value being the corresponding data set.

xv. return results: Returns the dictionary results containing the training set and test

set data with different numbers of features.
all_selected_features = pd.Series(chi_ls,

index=x_train.columns).sort_values(ascending=True).index
for num_features in max_features_list:

selected_features = all_selected_features[:num_features]
print(f"Chi-Square selected top {num_features} features: {selected_features.tolist()}")
x_train_selected = x_train[selected_features]
x_test_selected = x_test[selected_features]
results[num_features] = (x_train_selected, x_test_selected)

return results

Figure 5.35 : Coding for select feature based on higher p_value and feature list
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Example Output :
Chi-Square Feature Selection Start

Chi-Square selected top 2 features: ['MI_dir_L5_weight', 'MI_dir_L5_mean']

Chi-Square selected top 3 features: ['MI_dir_L5_weight', 'MI_dir_L5_mean', 'MI_dir_L5_variance']

Chi-Square selected top 5 features: ['MI_dir_L5_weight', 'MI_dir_L5_mean', 'MI_dir_L5_variance', 'MI_dir_L3_weight',

'MI_dir_L3_mean']

Chi-Square selected top 10 features: ['MI_dir_L5_weight', 'MI_dir_L5_mean', 'MI_dir_L5_variance', 'MI_dir_L3_weight',

'MI_dir_L3_mean', 'MI_dir_L3_variance', 'MI_dir_L1_weight', 'MI_dir_L1_mean', 'MI_dir_L1_variance', 'MI_dir_L0.1_weight']

Chi-Square selected top 15 features: ['MI_dir_L5_weight', 'MI_dir_L5_mean', 'MI_dir_L5_variance', 'MI_dir_L3_weight',

'MI_dir_L3_mean', 'MI_dir_L3_variance', 'MI_dir_L1_weight', 'MI_dir_L1_mean', 'MI_dir_L1_variance', 'MI_dir_L0.1_weight',

'MI_dir_L0.1_mean', 'MI_dir_L0.1_variance', 'MI_dir_L0.01_weight', 'MI_dir_L0.01_mean', 'MI_dir_L0.01_variance']

Chi-Square Feature Selection End

Figure 5.36 : Example output for Chi-Square Feature Selection Method

5.2.4.4 Recursive Feature Elimination (RFE)

i. def rfe_feature_selection(x_train, x_test, y_train, max_features_list): defines a

function called rfe_feature_selection for selecting features through recursive

feature elimination (RFE). The parameters are the same as above.

ii. results = {}: initialize an empty dictionary to store the results.

iii. model = GradientBoostingClassifier(n_estimators=10, max_depth=4,

random_state=10): creates a gradient boosting classifier

GradientBoostingClassifier for feature selection. The model has 10 trees

(n_estimators=10) and the maximum depth of the tree is 4 (max_depth=4).
def rfe_feature_selection(x_train, x_test, y_train, max_features_list):

results = {}
model = GradientBoostingClassifier(n_estimators=10, max_depth=4, random_state=10)

Figure 5.37 : Coding for RFE function, results dictionary, model define

iv. max_features = max(max_features_list): Get the maximum value in

max_features_list, which is used to specify the maximum number of features to

be selected during recursive feature elimination (RFE).

v. selector = RFE(model, n_features_to_select=max_features, step=10): Create an

RFE object. model is the base model used to evaluate feature importance, and

n_features_to_select=max_features specifies the number of features that need to

be selected in the end. step=10 means that 10 features are eliminated (or the

ranking of these features is reduced) in each recursion.

vi. selector.fit(x_train, y_train): Train the RFE object using the training data x_train

and the labels y_train to determine the importance and ranking of the features.
max_features = max(max_features_list)
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selector = RFE(model, n_features_to_select=max_features, step=10)
selector.fit(x_train, y_train)

Figure 5.38 : Coding for select feature

vii. ranking = selector.ranking_: Get the ranking of each feature. A feature with a

value of 1 indicates that it is selected, and a feature with a larger value indicates

that it is less important.

viii. selected_features_ordered = x_train.columns[np.argsort(ranking)]: Sort the

features according to their ranking order and return a list of sorted feature names.

After sorting, the most important features are ranked first.
ranking = selector.ranking_
selected_features_ordered = x_train.columns[np.argsort(ranking)]

Figure 5.39 : Coding for ranking the feature selected

ix. for num_features in max_features_list: traverse the given number of features in

the list.

x. selected_features = selected_features_ordered[:num_features]: select the top

num_features features with the highest ranking.

xi. print(f'RFE selected top {num_features} features: {selected_features.tolist()}'):

  print the names of the top num_features features currently selected.

xii. results[num_features] = (x_train[selected_features], x_test[selected_features]):

extract these selected features in the training set and test set, and store them as

tuples in the results dictionary, with the key being the number of features and the

value being the corresponding feature subset data.

xiii. return results: returns a dictionary containing the training set and test set data

under different numbers of features.
for num_features in max_features_list:

selected_features = selected_features_ordered[:num_features]
print(f'RFE selected top {num_features} features: {selected_features.tolist()}')
results[num_features] = (x_train[selected_features], x_test[selected_features])

return results

Figure 5.40 : Coding for select top feature based on number feature list
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Example Output :
RFE Feature Selection Start

RFE selected top 2 features: ['MI_dir_L0.01_weight', 'MI_dir_L0.1_weight']

RFE selected top 3 features: ['MI_dir_L0.01_weight', 'MI_dir_L0.1_weight', 'H_L0.1_weight']

RFE selected top 5 features: ['MI_dir_L0.01_weight', 'MI_dir_L0.1_weight', 'H_L0.1_weight', 'H_L0.01_weight',

'HH_L0.01_magnitude']

RFE selected top 10 features: ['MI_dir_L0.01_weight', 'MI_dir_L0.1_weight', 'H_L0.1_weight', 'H_L0.01_weight',

'HH_L0.01_magnitude', 'HH_L0.01_radius', 'HH_L0.01_covariance', 'HH_L0.01_mean', 'HH_L0.1_mean',

'HH_jit_L0.01_variance']

RFE selected top 15 features: ['MI_dir_L0.01_weight', 'MI_dir_L0.1_weight', 'H_L0.1_weight', 'H_L0.01_weight',

'HH_L0.01_magnitude', 'HH_L0.01_radius', 'HH_L0.01_covariance', 'HH_L0.01_mean', 'HH_L0.1_mean',

'HH_jit_L0.01_variance', 'HpHp_L1_magnitude', 'HpHp_L0.01_radius', 'HH_jit_L0.01_mean', 'HH_L0.01_pcc',

'HH_jit_L3_variance']

RFE Feature Selection End

Figure 5.41 : Example output for RFE feature selection method

5.2.4.5 Hybrid Feature Selection Method

In lasso hybrid feature selection function, First, use StandardScaler to standardize the

training and test data. The purpose of standardization is to scale the feature data to a

range of mean 0 and standard deviation 1 to eliminate the impact of different

dimensions between features.
def lasso_hybrid_feature_selection(x_train, x_test, y_train, max_features_list):

scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(x_train)
x_test_scaled = scaler.transform(x_test)

Figure 5.42 : Coding for Lasso Hybrid function define and data scale

After standardization, convert the standardized data back to DataFrame format and

retain the original feature names. This will facilitate subsequent feature selection and

operations.
x_train_scaled = pd.DataFrame(x_train_scaled, columns=x_train.columns)
x_test_scaled = pd.DataFrame(x_test_scaled, columns=x_test.columns)

Figure 5.43 : Coding for convert data standardized into data frame

Initialize three dictionaries lasso_rp_results, lasso_chi_results, and lasso_rfe_results

to save the results of different feature selection methods.
lasso_rp_results = {}
lasso_chi_results = {}
lasso_rfe_results = {}

Figure 5.44 : Coding for Results dictionaries define

Lasso regression (logistic regression with L1 regularization) is used for feature

selection. SelectFromModel selects the most important features based on the model
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weights (L1 regularization). The final selected features are stored in

all_selected_features_lasso and used to filter the training and test data.
sel_ = SelectFromModel(LogisticRegression(C=0.05, penalty='l1', solver='liblinear',

random_state=10))
sel_.fit(x_train_scaled, y_train)
all_selected_features_lasso = x_train_scaled.columns[(sel_.get_support())]
x_train_selected_lasso = x_train_scaled[all_selected_features_lasso]
x_test_selected_lasso = x_test_scaled[all_selected_features_lasso]

Figure 5.45 : Coding for select feature by Lasso

The features selected by Lasso are further screened by the chi-square test. The chi-

square test selects the most significant features by calculating the correlation between

different categories and feature values. Finally, the features are sorted by p-value and

the feature list all_selected_features_chi is obtained.
chi_ls = []
for feature in x_train_selected_lasso.columns:

c = pd.crosstab(y_train, x_train_selected_lasso[feature])
p_value = chi2_contingency(c)[1]
chi_ls.append(p_value)

all_selected_features_chi = pd.Series(chi_ls,
index=x_train_selected_lasso.columns).sort_values(ascending=True).index

Figure 5.46 : Coding for select feature by Chi-Square

Use the recursive feature elimination (RFE) method for feature selection. First, build a

base model (here is GradientBoostingClassifier), and then recursively remove the

least important features until the required number of features max_features is reached.

The ranking result of each feature is obtained through the ranking_ attribute, and

selected_features_ordered arranges the features in the order of selection.
model = GradientBoostingClassifier(n_estimators=10, max_depth=4, random_state=10)
max_features = max(max_features_list)
selector = RFE(model, n_features_to_select=max_features, step=10)
selector.fit(x_train_selected_lasso, y_train)
ranking = selector.ranking_
selected_features_ordered = x_train_selected_lasso.columns[np.argsort(ranking)]

Figure 5.47 : Coding for select feature by RFE

For each number of features num_features in the given max_features_list, do the

following in order:

I. Select features using Random Projection, select num_features features from the

features filtered by Lasso, and save the results to lasso_rp_results.

II. Select features using Chi-Square, select num_features features from the features

filtered by Lasso, and save the results to lasso_chi_results.
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III. Select features using Recursive Feature Elimination (RFE), select num_features

features from the features filtered by Lasso, and save the results to

lasso_rfe_results.
for num_features in max_features_list:

# let random projection select feature from lasso
rp = random_projection.SparseRandomProjection(n_components=num_features)
x_train_rp = rp.fit_transform(x_train_selected_lasso)
x_test_rp = rp.transform(x_test_selected_lasso)
lasso_rp_results[num_features] = (x_train_rp, x_test_rp)
# let chi square filter select top feature from itself
selected_features_chi = all_selected_features_chi[:num_features]
print(f"Lasso + Chi-Square selected top {num_features} features:

{selected_features_chi.tolist()}")
x_train_selected_chi = x_train_selected_lasso[selected_features_chi]
x_test_selected_chi = x_test_selected_lasso[selected_features_chi]
lasso_chi_results[num_features] = (x_train_selected_chi, x_test_selected_chi)
# let rfe select top feature from itself
selected_features_rfe = selected_features_ordered[:num_features]
print(f'Lasso + RFE selected top {num_features} features:

{selected_features_rfe.tolist()}')
lasso_rfe_results[num_features] = (x_train_selected_lasso[selected_features_rfe],

x_test_selected_lasso[selected_features_rfe])

Figure 5.48 : Coding for Random Projection select feature and all feaute selection

method list out feature selected based on number feature list

Finally, three dictionaries, lasso_rp_results, lasso_chi_results and lasso_rfe_results,

are returned, which contain the feature selection results of different combination

methods respectively.
return lasso_rp_results, lasso_chi_results, lasso_rfe_results

Figure 5.49 : Coding for return result

The remaining three functions, random_projection_hybrid_feature_selection,

chi_square_hybrid_feature_selection, and rfe_hybrid_feature_selection, have similar

structures, but the order of feature selection is different.

 random_projection_hybrid_feature_selection: first perform random projection,

then Lasso, chi-square test, and RFE.

 chi_square_hybrid_feature_selection: first perform chi-square test, then Lasso,

random projection, and RFE.

 rfe_hybrid_feature_selection: first perform RFE, then Lasso, random projection,

and chi-square test.
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Example Output :
Lasso + Hybrid Feature Selection Start

Lasso + Chi-Square selected top 2 features: ['MI_dir_L5_weight', 'MI_dir_L5_mean']

Lasso + RFE selected top 2 features: ['MI_dir_L0.1_weight', 'MI_dir_L0.01_weight']

Lasso + Chi-Square selected top 3 features: ['MI_dir_L5_weight', 'MI_dir_L5_mean', 'MI_dir_L5_variance']

Lasso + RFE selected top 3 features: ['MI_dir_L0.1_weight', 'MI_dir_L0.01_weight', 'H_L5_mean']

Lasso + Chi-Square selected top 5 features: ['MI_dir_L5_weight', 'MI_dir_L5_mean', 'MI_dir_L5_variance',

'MI_dir_L3_variance', 'MI_dir_L1_weight']

Lasso + RFE selected top 5 features: ['MI_dir_L0.1_weight', 'MI_dir_L0.01_weight', 'H_L5_mean', 'H_L0.1_weight',

'H_L0.01_weight']

Lasso + Chi-Square selected top 10 features: ['MI_dir_L5_weight', 'MI_dir_L5_mean', 'MI_dir_L5_variance',

'MI_dir_L3_variance', 'MI_dir_L1_weight', 'MI_dir_L1_variance', 'MI_dir_L0.1_weight', 'MI_dir_L0.1_variance',

'MI_dir_L0.01_weight', 'MI_dir_L0.01_mean']

Lasso + RFE selected top 10 features: ['MI_dir_L0.1_weight', 'MI_dir_L0.01_weight', 'H_L5_mean', 'H_L0.1_weight',

'H_L0.01_weight', 'HH_L0.01_std', 'HpHp_L0.1_std', 'HpHp_L0.1_weight', 'HH_jit_L0.1_variance', 'HpHp_L5_magnitude']

Lasso + Chi-Square selected top 15 features: ['MI_dir_L5_weight', 'MI_dir_L5_mean', 'MI_dir_L5_variance',

'MI_dir_L3_variance', 'MI_dir_L1_weight', 'MI_dir_L1_variance', 'MI_dir_L0.1_weight', 'MI_dir_L0.1_variance',

'MI_dir_L0.01_weight', 'MI_dir_L0.01_mean', 'MI_dir_L0.01_variance', 'H_L5_weight', 'H_L5_mean', 'H_L5_variance',

'H_L3_variance']

Lasso + RFE selected top 15 features: ['MI_dir_L0.1_weight', 'MI_dir_L0.01_weight', 'H_L5_mean', 'H_L0.1_weight',

'H_L0.01_weight', 'HH_L0.01_std', 'HpHp_L0.1_std', 'HpHp_L0.1_weight', 'HH_jit_L0.1_variance', 'HpHp_L5_magnitude',

'HH_L0.01_radius', 'HH_L0.01_pcc', 'HH_L0.01_mean', 'HH_L0.1_std', 'HH_L0.1_pcc']

Lasso + Hybrid Feature Selection End

Figure 5.50 : Example output for Lasso Hybrid Feature Selection

5.2.4.6 Machine Learning Classifier and Performance Evaluation

The main function of this code is to train and evaluate different machine

learning models and return the performance indicators of each model.

i. A function called train_and_evaluate is defined to train and evaluate the model. It

receives four parameters:

 x_train: the feature data of the training set.

 x_test: the feature data of the test set.

 y_train: the label data (target variable) of the training set.

 y_test: the label data (target variable) of the test set.

ii. A dictionary called models is defined, which contains four different machine

learning models. Each model is associated with a string name:

 Decision Tree: decision tree model, using the DecisionTreeClassifier class.

 Random Forest: random forest model, using the RandomForestClassifier class.

 KNN: K nearest neighbor model, using the KNeighborsClassifier class.
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 Linear SVC: linear support vector machine model, using the LinearSVC class.

iii. The random_state=0 parameter is used to ensure that the results of the model are

the same each time it is run, that is, to set the random number seed for easy

reproduction of the results.
def train_and_evaluate(x_train, x_test, y_train, y_test):

models = {
'Decision Tree': DecisionTreeClassifier(random_state=0),
'Random Forest': RandomForestClassifier(random_state=0),
'KNN': KNeighborsClassifier(),
'Linear SVC': LinearSVC(random_state=0),

}

Figure 5.51 : Coding for train and evaluate function define and models define

iv. An empty dictionary performance is created to store the performance evaluation

results of each model.

v. Use a for loop to iterate over each model in the models dictionary. model_name is

the name of the model, and model is the corresponding model object.

vi. Output the name of the model currently being trained and evaluated in the console

so that the user knows the progress of the program.

vii. Call the fit method to fit the model to the training data, that is, train the model to

learn the relationship between the features and labels in the training data.

viii. Use the predict method to use the trained model to predict the data of the test set

and get the predicted label y_pred.
performance = {}

for model_name, model in models.items():
print(model_name + " Start")
model.fit(x_train, y_train)
y_pred = model.predict(x_test)

Figure 5.52 : Coding for performance dictionary define and looping for machine

learning algorithm execute

ix. Use different evaluation metrics to measure the performance of the model:

x. accuracy: Accuracy, which indicates the proportion of correctly classified by the

model, calculated using the accuracy_score function.

xi. recall: Recall, which indicates the proportion of all positive samples that the model

correctly identified, calculated using the recall_score function.
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xii. precision: Precision, which indicates the proportion of samples predicted by the

model as positive that are actually positive, calculated using the precision_score

function.

xiii. f1: F1 score, which is the harmonic mean of precision and recall, calculated using

the f1_score function.
accuracy = accuracy_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)

Figure 5.53 : Coding for calculate and performance results

xiv. Store the evaluation results of the current model in the performance dictionary.

The key of the dictionary is the model name, and the value is a sub-dictionary

containing various evaluation metrics.

xv. Output The training and evaluation process of the current model has been

completed.

xvi. The function returns the performance dictionary, which contains the performance

evaluation results of all models.
performance[model_name] = {

'Accuracy': accuracy,
'Recall': recall,
'Precision': precision,
'F1-Score': f1

}
print(model_name + " Done")

return performance

Figure 5.54 : Coding for store performance results and return



82

Example Output :
Train and test model with Random Projection-selected features Start for 2 features

Decision Tree Start

Decision Tree Done

Random Forest Start

Random Forest Done

KNN Start

KNN Done

Linear SVC Start

Linear SVC Done

Train and test model with Random Projection-selected features End for 2 features

Performance with Random Projection feature selection (2 features):

Decision Tree: {'Accuracy': 0.995746612912513, 'Recall': np.float64(0.9986523912369563), 'Precision':

np.float64(0.9967361458802664), 'F1-Score': np.float64(0.9976933484379935)}

Random Forest: {'Accuracy': 0.9913771213838894, 'Recall': np.float64(0.9959141322142544), 'Precision':

np.float64(0.9947306117372859), 'F1-Score': np.float64(0.9953220201498797)}

KNN: {'Accuracy': 0.9935613951789283, 'Recall': np.float64(0.9976685856000573), 'Precision':

np.float64(0.9953520875476127), 'F1-Score': np.float64(0.9965089903351083)}

Linear SVC: {'Accuracy': 0.9217715649840332, 'Recall': np.float64(0.999943636135386), 'Precision':

np.float64(0.9217626281567439), 'F1-Score': np.float64(0.9592628084524468)}

Figure 5.55 : Example Output for performance of Random Project Feature Selection
in all machine learning method

5.3 Conclusion

In summary, this chapter detailed the step-by-step process of developing an

IoT Botnet Detection in Home IoT Environment using Machine Learning. The entire

process began with Kaggle data collection, followed by comprehensive data

preprocessing, feature selection, training and testing of machine learning classifiers,

and finally a comprehensive performance evaluation. Throughout the implementation,

the accuracy of sixteen classifiers was measured, which will serve as a valuable basis

for comparison with existing literature in the next chapter. This chapter also showed

how the system development of this project was successfully completed, providing a

framework for further research. Detail coding and output already put in appendix.
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CHAPTER 06 : TESTING

6.1 Introduction

This section will explain the results of project tests the system’s ability to

accurately detect Botnet from Home IoT Environment. This section also determines

whether the top feature selection method and top machine learning classifiers Model.

6.2 TOP Feature Selection Method and Machine Learning Classifiers Model

Table 6.1: Top 3 Results with highest accuracy in each feature selected situation
Number

of

Features

Selected

Model Feature Selection Method Accuracy

(%)

Recall

(%)

Precision

(%)

F1-Score

(%)

2 Decision Tree Chi-Square + RFE 99.9934 99.9986 99.9942 99.9964

2 Decision Tree RFE + Chi-Square 99.9883 99.9975 99.9899 99.9937

2 Decision Tree RFE 99.9883 99.9975 99.9899 99.9937

3 Decision Tree Chi-Square + RFE 99.9973 99.9994 99.9976 99.9985

3 Decision Tree Lasso + RFE 99.9947 99.9988 99.9954 99.9971

3 Decision Tree Chi-Square + Random

Projection

99.9933 99.9988 99.9939 99.9964

5 Decision Tree Chi-Square + RFE 99.9973 99.9994 99.9976 99.9985

5 Decision Tree Random Projection 99.9972 99.9995 99.9975 99.9985

5 Decision Tree RFE 99.9969 99.9991 99.9975 99.9983

10 Decision Tree Lasso 99.9994 99.9998 99.9995 99.9997

10 Decision Tree Random Projection 99.9991 99.9999 99.9991 99.9995

10 Decision Tree Random Projection + RFE 99.9990 99.9997 99.9992 99.9995

15 Decision Tree RFE 99.9999 99.9999 99.9999 99.9999

15 Decision Tree Lasso 99.9994 99.9999 99.9995 99.9997

15 Decision Tree Random Projection + RFE 99.9991 100 99.9990 99.9995

I. 2-feature selection case

a) In the case of 2-feature selection, Chi-Square + Recursive Feature

Elimination(RFE) method performs best, achieving 99.9934% accuracy and

99.9986% recall. This shows that this method is very effective in selecting

the two most discriminative features from the original data, ensuring efficient

classification performance.
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b) Recursive Feature Elimination(RFE) + Chi-Square method performs closely

behind, with an accuracy of 99.9883%. Although slightly lower than Chi-

Square + Recursive Feature Elimination(RFE), its recall is still close to

perfect, reaching 99.9975%. This shows that this method can also effectively

select key features and has a slightly different processing order, but still

maintains excellent classification results.

c) Recursive Feature Elimination(RFE) method alone also achieved a high

accuracy of 99.9883% and a recall of 99.9975%. This shows that RFE, as a

feature selection technique, can well identify effective feature combinations

with a small number of features and ensure the excellent performance of the

model.

II. 3 feature selection cases

a) When the number of features increases to 3, the Chi-Square + Recursive

Feature Elimination(RFE) method continues to maintain its superior

performance with an accuracy of 99.9973%. This result shows that with one

more feature, the method can still robustly select the most meaningful

features to ensure the efficiency of the model.

b) The Lasso + Recursive Feature Elimination(RFE) method also performs very

well with an accuracy of 99.9947%. By combining Lasso regularization with

recursive feature elimination, this method has strong robustness in feature

selection, especially when dealing with fewer features, it can still maintain a

high level of classification accuracy.

c) The Chi-Square + Random Projection method performs slightly worse than

the previous two when selecting 3 features, but still has a high accuracy of

99.9933%. This shows that by combining statistical screening and

dimensionality reduction techniques, this method can find important features

and effectively compress the feature space, thereby maintaining high

performance.

III. 5 feature selection case

a) When selecting 5 features, the Chi-Square + Recursive Feature

Elimination(RFE) method continues to show its stability and excellent

performance, maintaining a high accuracy of 99.9973%. This shows that this
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method can still ensure the efficiency and accuracy of the model in the case

of more features.

b) The performance of the Random Projection method alone is also very close,

with an accuracy of 99.9972%. This shows that this dimensionality reduction

method can effectively reduce dimensions in the case of multiple features

while maintaining the integrity of information, thereby maintaining a high

level of classification performance.

c) Recursive Feature Elimination(RFE) still performs well with 5 feature

selections, with an accuracy of 99.9969%. Although slightly lower than the

first two, its recall and F1-Score are still very high, indicating that this

method still has good selection ability when dealing with complex features.

IV. 10 feature selections

a) When the number of features increases to 10, the Lasso method performs

well with an accuracy of 99.9994%. This performance shows that Lasso can

effectively prevent overfitting when dealing with high-dimensional data

while maintaining high accuracy and robustness of the model.

b) Random Projection still performs well with 10 feature selections, with an

accuracy of 99.9991%. This shows that when dealing with more features, this

method can effectively compress high-dimensional space to low-dimensional

space while retaining key information to ensure classification performance.

c) Combining Random Projection with Recursive Feature Elimination(RFE)

also achieves a very high accuracy (99.9990%). This shows that combining

dimensionality reduction technology with feature elimination technology can

further optimize the effect of feature selection, thereby improving model

performance.

V. 15 feature selection cases

a) When the number of features increases to 15, the Recursive Feature

Elimination(RFE) method shows a near-perfect classification ability with an

accuracy of 99.9999%. This shows that RFE can still select the most valuable

features when dealing with a large number of features, ensuring the top

performance of the classifier.
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b) The Lasso method continues to perform well with an accuracy of 99.9994%

when 15 features are selected. This further proves the advantage of Lasso in

high-dimensional feature selection, which can effectively improve the

robustness of the model and prevent overfitting.

c) The method combining Random Projection and Recursive Feature

Elimination(RFE) also performed well when selecting 15 features, with an

accuracy of 99.9991%. This shows that the combined method can effectively

extract key features when dealing with large-scale feature selection tasks

while ensuring the efficiency and accuracy of the model.

Based on table 6.1, researcher ensure that Decision Tree is the best machine

learning classifiers model compare with Linear SVC, k-Nearest Neighbour(KNN),

and Random Forest.

6.3 TOP Feature

Table 6.2: Feature Selected by each Top Feature Selection Method
Number of

feature

selected

Feature Selection

Method with

hightest accuracy

Feature Selected

2 Chi-Square + RFE ‘MI_dir_L0.01_weight', 'MI_dir_L0.01_mean'

3 Chi-Square + RFE ‘MI_dir_L0.01_weight', 'MI_dir_L0.01_mean', 'MI_dir_L0.1_weight'

5 Chi-Square + RFE
‘MI_dir_L0.01_weight', 'MI_dir_L0.01_mean', 'MI_dir_L0.1_weight',

'H_L0.01_weight', 'H_L0.01_mean'

10 Lasso

‘MI_dir_L0.1_weight', 'MI_dir_L0.01_weight', 'H_L0.1_weight',

'H_L0.01_weight', 'HH_L5_weight', 'HH_L0.01_weight',

'HH_L0.01_mean', 'HH_jit_L5_mean', 'HH_jit_L3_mean',

'HH_jit_L0.01_weight'

15 RFE

‘MI_dir_L0.01_weight', 'MI_dir_L0.1_weight', 'H_L0.1_weight',

'H_L0.01_weight', 'HH_L0.01_magnitude', 'HH_L0.01_radius',

'HH_L0.01_covariance', 'HH_L0.01_mean', 'HH_L0.1_mean',

'HH_jit_L0.01_variance', 'HpHp_L1_magnitude', 'HpHp_L0.01_radius',

'HH_jit_L0.01_mean', 'HH_L0.01_pcc', 'HH_jit_L3_variance'

Based on table 6.2, the top 5 feature in N_BaIoT Dataset is

‘MI_dir_L0.01_weight’, ‘MI_dir_L0.1_weight’, ‘H_L0.01_weight’,

‘HH_L0.01_mean’, ‘H_L0.1_weight’.
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i. MI_dir_L0.01_weight, This feature represents the weight of the packet flow from

a specified host (based on IP and MAC addresses) in a very short time (100ms).

The weight of the flow can be regarded as the number of packets observed in this

time window, so this feature captures the intensity of network activity of the

source host in a very short time.

ii. MI_dir_L0.1_weight, This feature represents the weight of the packet flow from

a specified host (based on IP and MAC addresses) in a slightly longer short time

(500ms). Compared with L0.01, this feature captures the intensity of network

activity of the source host in a slightly longer window.

iii. H_L0.01_weight, This feature reflects the weight of network traffic from a

specific IP address in a very short time (100ms). This feature captures the traffic

activity of a specified host (based on IP address) in a very short time range,

representing the network load during this period.

iv. HH_L0.01_mean, Explanation: This feature represents the mean value of the

traffic from a specific host (source IP) to the destination host in a very short time

(100ms). This feature measures the average level of network communication

strength from the source host to the destination host in a short time window.

v. H_L0.1_weight, This feature represents the weight of network traffic from a

specific IP address in a shorter time (500ms). This reflects the strength and

frequency of network traffic generated by a specified host (based on IP address)

in this shorter time range.

6.4 Comparison with the existing works

Table 6.3: Comparison with the existing works
References Feature Selection

Method

Number

of feature

selected

Best Model Accuracy

Bahsi et al., 2018 Fisher’s Score 10 Decision Tree 98.97%

Proposed Chi-Square + RFE 2 Decision Tree 99.9934%
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Proposed Chi-Square + RFE 3 Decision Tree 99.9973%

Proposed Chi-Square + RFE 5 Decision Tree 99.9973%

Proposed Lasso 10 Decision Tree 99.9994%

Proposed RFE 15 Decision Tree 99.9999%

Table 6.3 shows the comparison between the proposed project and the existing

work. According to this table, the proposed project achieved higher accuracy which is

minimum 99.99% in all number of feature selected using same machine learning

classifiers model.

From Table 6.3, also know about when 15 features are selected, the

performance is better than when 10, 5, 3, or 2 features are selected. There are several

main reasons:

I. Feature diversity and increased information

a) As the number of features increases, the model can access more information.

The goal of feature selection is to remove redundant or irrelevant features

while retaining features that have predictive power for the target variable.

When the number of features selected is 15, it may cover a wider range of

patterns and correlations in the data, allowing the model to better understand

the complex relationships in the data. Therefore, compared to selecting fewer

features (such as 2 or 3 features), using 15 features can provide more

information to help the model make more accurate predictions.

II. Avoid underfitting

a) Too few features may cause the model to fail to capture key patterns in the

data, resulting in insufficient performance of the model. This situation is

often referred to as "underfitting". When there are only 2 or 3 features, the

model may not be able to fully describe the complex relationships in the data,

resulting in degraded performance. 15 features can provide enough

information to reduce the risk of underfitting, thereby making the model

perform better.

III. Capture complex feature interactions

a) Some complex classification problems, especially tasks like Botnet detection,

may involve complex interactions between multiple features. A small
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number of features may not be able to fully capture these interaction effects.

Selecting 15 features allows the model to better capture these interactions,

thereby improving the model's classification accuracy and overall

performance.

IV. Balance of feature selection

a) During the feature selection process, it is necessary to find a balance between

retaining enough information and avoiding noise features. According to the

results of this project, 15 features seem to be an ideal balance point, which

avoids insufficient information due to too few features and too much noise

due to too many features. This balance enables the model to achieve the best

classification performance.

6.5 Conclusion

In the analysis of feature selection and classification performance, different feature

selection methods were used and tested for different numbers of features (2, 3, 5, 10,

and 15). In the case of 2 feature selection, the Chi-Square + RFE method performed

best, achieving an accuracy of 99.9934%, while the RFE + Chi-Square and RFE

methods followed closely with an accuracy of 99.9883%. When the number of

features increased to 3, Chi-Square + RFE continued to perform well, achieving an

accuracy of 99.9973%, while Lasso + RFE and Chi-Square + Random Projection

methods achieved high accuracies of 99.9947% and 99.9933%, respectively. As the

number of features increased to 5, Chi-Square + RFE and Random Projection

methods achieved high accuracies of 99.9973% and 99.9972%, respectively, while the

RFE method also performed well with an accuracy of 99.9969%. When the number of

features increased to 10, the Lasso method performed excellently, with an accuracy of

99.9994%, while the Random Projection and Random Projection + RFE methods

achieved accuracies of 99.9991% and 99.9990%, respectively. Finally, with 15

features selected, the RFE method performed best with a near-perfect accuracy of

99.9999%, while the Lasso and Random Projection + RFE methods achieved high

accuracies of 99.9994% and 99.9991%, respectively. These results show that under

different numbers of features, various methods have demonstrated excellent feature

selection capabilities and classification performance, especially RFE, Chi-Square +

RFE, and Lasso methods, which are stable under various numbers of features,
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ensuring the efficiency and accuracy of the model. The best classifier is undoubtedly

the Decision Tree. Full results already put in appendix.

CHAPTER 07 : CONCLUSION

7.1 Introduction

This chapter provides a overview of the project, compare the achievement

with the objective and potential future works.

7.2 Project Achievement

Project objective is identify the best feature selection method, develop and

implement machine learning classifiers, and select the best classifiers with higher

accuracy in detecting Botnet in home IoT environment. Figure 7.1 list out the top 10

result get from this project.

Table 7.1: TOP 10 Result List
Number

of
Features
Selected

Model Feature Selection Method Accuracy
(%)

Recall
(%)

Precision
(%)

F1-
Score
(%)

15 Decision Tree RFE 99.9999 99.9999 99.9999 99.9999
10 Decision Tree Lasso 99.9994 99.9998 99.9995 99.9997
15 Decision Tree Lasso 99.9994 99.9999 99.9995 99.9997
10 Decision Tree Random Projection 99.9991 99.9999 99.9991 99.9995
15 Decision Tree Random Projection + RFE 99.9991 100 99.9990 99.9995
15 Decision Tree RFE + Random Projection 99.9991 99.9999 99.9990 99.9995
10 Decision Tree Random Projection + RFE 99.9990 99.9997 99.9992 99.9995
15 Decision Tree Random Projection 99.9989 99.9997 99.9991 99.9994
10 Decision Tree Random Projection + Lasso 99.9982 99.9997 99.9983 99.9990
15 Decision Tree Lasso + Chi-Square 99.9981 99.9997 99.9982 99.9989
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7.2.1 Best Feature Selection Method

Based on table 7.1, Recursive Feature Elimination (RFE) has proven to be the

best feature selection method with its almost perfect accuracy and F1 score.

def rfe_feature_selection(x_train, x_test, y_train, max_features_list):
results = {}

# Build initial model
model = GradientBoostingClassifier(n_estimators=10, max_depth=4, random_state=10)

# Use RFE select feature
max_features = max(max_features_list)
selector = RFE(model, n_features_to_select=max_features, step=10)
selector.fit(x_train, y_train)

# Get the ranking of features
ranking = selector.ranking_
selected_features_ordered = x_train.columns[np.argsort(ranking)]

# Get and show selected features for each required number of features
for num_features in max_features_list:

selected_features = selected_features_ordered[:num_features]
print(f'RFE selected top {num_features} features: {selected_features.tolist()}')
results[num_features] = (x_train[selected_features], x_test[selected_features])

return results

Figure 7.1 : Coding for RFE feature selection

In the above code, Recursive Feature Elimination (RFE) is used as a feature

selection method to iteratively train the model and gradually eliminate unimportant

features to finally select the most valuable features. In the case of selecting 15

features, RFE method proves to be the best feature selection method for the following

reasons:

i. Gradient Boosting Classifier model is gradually eliminated by RFE, eliminating

the least important features in each iteration. This process continues until the

required number of features are left. In this process, RFE can accurately identify

which features are critical to the model's predictive ability.

ii. Combined with Gradient Boosting Model, RFE is combined with Gradient

Boosting Classifier as the base model. This combination can fully utilize the

advantages of the gradient boosting model, allowing RFE to effectively evaluate

the importance of features at each step. The gradient boosting model can provide
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a more accurate feature importance assessment when dealing with high-

dimensional data due to its powerful learning ability.

iii. Excellent performance of selecting 15 features, when RFE finally selects 15

features, these features are considered to be the most helpful for the classification

task. By sorting the features using np.argsort(ranking) and selecting the top 15

features, the RFE method ensures that the combination of these features can

provide the best classification performance for the model. This is why in the

evaluation results, the model performance reached a near-perfect level when the

15 features selected by RFE were used.

iv. Balancing performance and complexity when the number of features reaches 15,

RFE can not only ensure the high performance of the model, but also effectively

control the complexity of the model. Compared with using more or fewer features,

this combination of 15 features shows the best balance between performance and

complexity, and is therefore considered the best choice.

In summary, RFE combines the gradient boosting model to gradually select

the most important features in multiple rounds of iterations. The 15 features finally

selected perform well in the classification task, making RFE the best feature selection

method in this case.
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7.2.2 Develop and Implement Machine Learning Classifiers

Figure 7.2 : Data Structure for Botnet Detection System

This project completed the development and implementation of machine

learning classifiers through the following steps:

I. Dataset Collection:

 First, the N-BaIoT dataset was selected as the basic data for analysis. This

step is the starting point of the project to ensure that the project has enough

data to train and test the model.

II. Data Preprocessing:

 After the dataset is collected, the data is preprocessed to ensure that the data

is suitable for training machine learning models.

III. Feature Selection:

 In the feature selection process, a variety of methods are used, including

Lasso, Recursive Feature Elimination (RFE) and dimensionality reduction
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methods (such as random projection) and their mixed use, a total of 16

feature selection methods. These methods help the project extract the most

representative features from the data, thereby improving the training

efficiency and prediction accuracy of the model.

IV. Training and Testing Machine Learning Classifiers:

 After selecting features, the project used a variety of machine learning

models to train and test the data, including Linear SVC, Decision Tree,

Random Forest, and K-Nearest Neighbor. These models represent different

algorithmic ideas and can process and analyze data from different angles.

V. Performance Evaluation:

 Finally, the performance of each model was evaluated, using indicators such

as Accuracy, Recall, Precision, and F1-Score to quantify the classification

effect of the model. These evaluation indicators help people understand the

performance of the model in practical applications.

Through these steps, the project successfully developed and implemented

multiple machine learning classifiers.

7.2.3 Best Machine Learning Classifiers

Based on table 7.1, the top 10 result all using Decision Tree Classifiers Model

and this situation has proven Decision Tree is the best Machine Learning Classifiers

Model. The reasons why Decision Tree is considered the best classifier can be

summarized as follows:

i. Handling complex feature interactions:

 Decision trees can effectively handle complex interactions between features.

In the N_BaIoT dataset, there are nonlinear relationships between features,

and decision trees can capture these complex interactions by recursively

splitting data, thereby improving classification accuracy.

ii. Efficient handling of class imbalance:

 In the N_BaIoT dataset, there is a class imbalance problem between normal

traffic and Botnet traffic. Decision trees can adapt to this imbalance by
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adjusting the node splitting criteria, thereby maintaining high efficiency in

identifying the minority class (normal traffic).

iii. Less parameter tuning requirements:

 Compared to other complex machine learning models, such as random

forests or support vector machines, decision trees are less sensitive to

hyperparameters and do not require a lot of parameter tuning. This makes the

training and application of decision tree models on datasets simpler and more

straightforward.

In summary, in Botnet Detection System project, the decision tree model has

become the best performing classifier through its ability to handle complex feature

interactions, adaptability to class imbalance, and less parameter tuning requirements.

7.3 Future Work

As for the direction of future work, can consider developing a real-time

detection system, deploying the model in a real environment, and building a system

that can analyze network traffic and detect Botnet activities in real time. This can

achieve immediate threat response and protect network security. The system can also

be embedded in a firewall or IDS for use in conjunction with it, and a user-friendly

interface can be developed to build an easy-to-use user interface to facilitate security

personnel to monitor and analyze Botnet activities. The interface can include real-time

traffic monitoring, detection reports, and visualization tools.

7.4 Conclusion

Through the implementation of this project, multiple machine learning

classifiers were successfully developed and implemented, and the best classifier for

detecting Botnet traffic in a home IoT environment was determined through a

comprehensive performance evaluation. In terms of feature selection, the combination

of the RFE method and the gradient boosting model demonstrated its strong ability in

high-dimensional data processing, especially when selecting 15 key features, which

can significantly improve the accuracy and prediction performance of the model. In

the selection of classifiers, the decision tree model has become the best choice for
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detecting Botnet traffic due to its excellent performance, less parameter tuning

requirements, and effective processing of complex feature interactions.

Future work will focus on developing a real-time detection system to deploy

the model in a real environment to achieve real-time monitoring of network traffic

and rapid detection of Botnet activities. At the same time, by building a user-friendly

interface, security personnel can monitor and analyze network security threats more

efficiently. These further research and development work will help improve the

practicality and scalability of the system, so that it can maintain efficient threat

detection capabilities in a diverse network environment.
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Appendix(dataPrepare.py)

import pandas as pd
import glob

def dataPrepare():
# read normal traffic data。
benign_files = glob.glob("*benign.csv")
benign_data = pd.concat((pd.read_csv(file) for file in benign_files), ignore_index=True)
benign_data['Class'] = 0

# read mirai attack data
mirai_ack_files = glob.glob("*mirai.ack.csv")
mirai_ack_data = pd.concat((pd.read_csv(file) for file in mirai_ack_files),

ignore_index=True)
mirai_ack_data['Class'] = 1
mirai_scan_files = glob.glob("*mirai.scan.csv")
mirai_scan_data = pd.concat((pd.read_csv(file) for file in mirai_scan_files),

ignore_index=True)
mirai_scan_data['Class'] = 1
mirai_syn_files = glob.glob("*mirai.syn.csv")
mirai_syn_data = pd.concat((pd.read_csv(file) for file in mirai_syn_files),

ignore_index=True)
mirai_syn_data['Class'] = 1
mirai_udp_files = glob.glob("*mirai.udp.csv")
mirai_udp_data = pd.concat((pd.read_csv(file) for file in mirai_udp_files),

ignore_index=True)
mirai_udp_data['Class'] = 1
mirai_udpplain_files = glob.glob("*mirai.udpplain.csv")
mirai_udpplain_data = pd.concat((pd.read_csv(file) for file in mirai_udpplain_files),

ignore_index=True)
mirai_udpplain_data['Class'] = 1

#read gafgyt attack data
gafgyt_combo_files = glob.glob("*gafgyt.combo.csv")
gafgyt_combo_data = pd.concat((pd.read_csv(file) for file in gafgyt_combo_files),

ignore_index=True)
gafgyt_combo_data['Class'] = 1
gafgyt_junk_files = glob.glob("*gafgyt.junk.csv")
gafgyt_junk_data = pd.concat((pd.read_csv(file) for file in gafgyt_junk_files),

ignore_index=True)
gafgyt_junk_data['Class'] = 1
gafgyt_scan_files = glob.glob("*gafgyt.scan.csv")
gafgyt_scan_data = pd.concat((pd.read_csv(file) for file in gafgyt_scan_files),

ignore_index=True)
gafgyt_scan_data['Class'] = 1
gafgyt_tcp_files = glob.glob("*gafgyt.tcp.csv")
gafgyt_tcp_data = pd.concat((pd.read_csv(file) for file in gafgyt_tcp_files),

ignore_index=True)
gafgyt_tcp_data['Class'] = 1
gafgyt_udp_files = glob.glob("*gafgyt.udp.csv")
gafgyt_udp_data = pd.concat((pd.read_csv(file) for file in gafgyt_udp_files),

ignore_index=True)
gafgyt_udp_data['Class'] = 1

#combine normal data and attack data
frames = [benign_data, mirai_ack_data, mirai_scan_data, mirai_syn_data, mirai_udp_data,

mirai_udpplain_data, gafgyt_combo_data, gafgyt_junk_data, gafgyt_scan_data, gafgyt_tcp_data,
gafgyt_udp_data]
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result = pd.concat(frames, ignore_index=True)
print("Starting to save data...")
result.to_csv('totalData.csv')
print("Done for saving")
print(result.shape)
print(result.head())

if __name__ == '__main__':
dataPrepare()

# using pandas to read csv file
data = pd.read_csv('totalData.csv')
data = data.iloc[:, 1:]
data.to_csv('totalData.csv', index=False)
data = pd.read_csv('totalData.csv')
print(data)
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Appendix(main.py)

from sklearnex import patch_sklearn
patch_sklearn()
from scipy.stats import chi2_contingency
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score
from sklearn.linear_model import LogisticRegression
from sklearn.feature_selection import SelectFromModel
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.feature_selection import RFE
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.svm import LinearSVC
from sklearn import random_projection

import pandas as pd
import numpy as np

def dataPreprocessing(data):
# Separate out the features x and output variable y
x = data.iloc[:, data.columns != 'Class']
y = data.iloc[:, data.columns == 'Class'].values.ravel()

# Dataset division: Divide the dataset into 70% for training and 30% for testing
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=0)

return x_train, x_test, y_train, y_test

# feature selection function
def lasso_hybrid_feature_selection(x_train, x_test, y_train, max_features_list):

# standard the feature
scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(x_train)
x_test_scaled = scaler.transform(x_test)

# convert the standarded data into Data Frame and keep the feature name
x_train_scaled = pd.DataFrame(x_train_scaled, columns=x_train.columns)
x_test_scaled = pd.DataFrame(x_test_scaled, columns=x_test.columns)

lasso_rp_results = {}
lasso_chi_results = {}
lasso_rfe_results = {}

# let lasso to select feature
sel_ = SelectFromModel(LogisticRegression(C=0.05, penalty='l1', solver='liblinear',

random_state=10))
sel_.fit(x_train_scaled, y_train)
all_selected_features_lasso = x_train_scaled.columns[(sel_.get_support())]
x_train_selected_lasso = x_train_scaled[all_selected_features_lasso]
x_test_selected_lasso = x_test_scaled[all_selected_features_lasso]

# let chi square feature filter select feature from lasso
chi_ls = []
for feature in x_train_selected_lasso.columns:

c = pd.crosstab(y_train, x_train_selected_lasso[feature])
p_value = chi2_contingency(c)[1]
chi_ls.append(p_value)
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all_selected_features_chi = pd.Series(chi_ls,
index=x_train_selected_lasso.columns).sort_values(ascending=True).index

# let rfe select feature from lasso
# Build initial model
model = GradientBoostingClassifier(n_estimators=10, max_depth=4, random_state=10)
# Use RFE select feature
max_features = max(max_features_list)
selector = RFE(model, n_features_to_select=max_features, step=10)
selector.fit(x_train_selected_lasso, y_train)
# Get the ranking of features
ranking = selector.ranking_
selected_features_ordered = x_train_selected_lasso.columns[np.argsort(ranking)]

for num_features in max_features_list:
# let random projection select feature from lasso
rp = random_projection.SparseRandomProjection(n_components=num_features)
x_train_rp = rp.fit_transform(x_train_selected_lasso)
x_test_rp = rp.transform(x_test_selected_lasso)
lasso_rp_results[num_features] = (x_train_rp, x_test_rp)

# let chi square filter select top feature from itself
selected_features_chi = all_selected_features_chi[:num_features]
print(f"Lasso + Chi-Square selected top {num_features} features:

{selected_features_chi.tolist()}")
x_train_selected_chi = x_train_selected_lasso[selected_features_chi]
x_test_selected_chi = x_test_selected_lasso[selected_features_chi]
lasso_chi_results[num_features] = (x_train_selected_chi, x_test_selected_chi)

# let rfe select top feature from itself
selected_features_rfe = selected_features_ordered[:num_features]
print(f'Lasso + RFE selected top {num_features} features:

{selected_features_rfe.tolist()}')
lasso_rfe_results[num_features] = (x_train_selected_lasso[selected_features_rfe],

x_test_selected_lasso[selected_features_rfe])

return lasso_rp_results, lasso_chi_results, lasso_rfe_results

def random_projection_hybrid_feature_selection(x_train, x_test, y_train, max_features_list):
rp_lasso_results = {}
rp_chi_results = {}
rp_rfe_results = {}

# let random projection to select feature first
rp = random_projection.SparseRandomProjection(n_components=57)
x_train_selected_rp = rp.fit_transform(x_train)
x_test_selected_rp = rp.transform(x_test)

# Convert numpy arrays to DataFrame
x_train_selected_rp = pd.DataFrame(x_train_selected_rp, columns=[f"RP_Feature_{i}" for i

in range(x_train_selected_rp.shape[1])])
x_test_selected_rp = pd.DataFrame(x_test_selected_rp, columns=[f"RP_Feature_{i}" for i in

range(x_test_selected_rp.shape[1])])

# let lasso selection feature from random projection
print("Lasso Selection Start")
scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(x_train_selected_rp)
x_test_scaled = scaler.transform(x_test_selected_rp)
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x_train_scaled = pd.DataFrame(x_train_scaled, columns=[f"RP_Feature_{i}" for i in
range(x_train_scaled.shape[1])])

x_test_scaled = pd.DataFrame(x_test_scaled, columns=[f"RP_Feature_{i}" for i in
range(x_test_scaled.shape[1])])

sel_ = SelectFromModel(LogisticRegression(C=0.05, penalty='l1', solver='liblinear',
random_state=10))

sel_.fit(x_train_scaled, y_train)
all_selected_features_lasso = x_train_scaled.columns[(sel_.get_support())]

# let chi squeare select feature from random projection
print("Chi Squeare Selection Start")
chi_ls = []
for feature in x_train_selected_rp.columns:

c = pd.crosstab(y_train, x_train_selected_rp[feature])
p_value = chi2_contingency(c)[1]
chi_ls.append(p_value)

all_selected_features_chi = pd.Series(chi_ls,
index=x_train_selected_rp.columns).sort_values(ascending=True).index

# let rfe select feature from random projection
print("RFE Selection Start")
# Build initial model
model = GradientBoostingClassifier(n_estimators=10, max_depth=4, random_state=10)
# Use RFE select feature
max_features = max(max_features_list)
selector = RFE(model, n_features_to_select=max_features, step=10)
selector.fit(x_train_selected_rp, y_train)
# Get the ranking of features
ranking = selector.ranking_
selected_features_ordered = x_train_selected_rp.columns[np.argsort(ranking)]

for num_features in max_features_list:
# let lasso select the top feature
lasso_selected_features = all_selected_features_lasso[:num_features]
print(f'Random Projection + Lasso selected top {num_features} features:

{lasso_selected_features.tolist()}')
x_train_selected_lasso = x_train_scaled[lasso_selected_features]
x_test_selected_lasso = x_test_scaled[lasso_selected_features]
rp_lasso_results[num_features] = (x_train_selected_lasso, x_test_selected_lasso)

# let chi squeare select the top feature
chi_selected_features = all_selected_features_chi[:num_features]
print(f"Random Projection + Chi-Square selected top {num_features} features:

{chi_selected_features.tolist()}")
x_train_selected_chi = x_train_selected_rp[chi_selected_features]
x_test_selected_chi = x_test_selected_rp[chi_selected_features]
rp_chi_results[num_features] = (x_train_selected_chi, x_test_selected_chi)

# let rfe select top feature from itself
selected_features_rfe = selected_features_ordered[:num_features]
print(f'Random Projection + RFE selected top {num_features} features:

{selected_features_rfe.tolist()}')
rp_rfe_results[num_features] = (x_train_selected_rp[selected_features_rfe],

x_test_selected_rp[selected_features_rfe])

return rp_lasso_results, rp_chi_results, rp_rfe_results

def chi_square_hybrid_feature_selection(x_train, x_test, y_train, max_features_list):
chi_lasso_results = {}
chi_rp_results = {}
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chi_rfe_results = {}

# chi square filter feature selection
print("Chi Square Filter Feature Selection Start")
chi_ls = []
for feature in x_train.columns:

c = pd.crosstab(y_train, x_train[feature])
p_value = chi2_contingency(c)[1]
chi_ls.append(p_value)

# Select top 57 features based on p-value
all_selected_features_chi = pd.Series(chi_ls,

index=x_train.columns).sort_values(ascending=True).index
chi_selected_features = all_selected_features_chi[:57]
x_train_selected_chi = x_train[chi_selected_features]
x_test_selected_chi = x_test[chi_selected_features]

# let lasso selection feature from chi square filter
print("Lasso Selection Start")
scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(x_train_selected_chi)
x_test_scaled = scaler.transform(x_test_selected_chi)

x_train_scaled = pd.DataFrame(x_train_scaled, columns=x_train_selected_chi.columns)
x_test_scaled = pd.DataFrame(x_test_scaled, columns=x_test_selected_chi.columns)

sel_ = SelectFromModel(LogisticRegression(C=0.05, penalty='l1', solver='liblinear',
random_state=10))

sel_.fit(x_train_scaled, y_train)
all_selected_features_lasso = x_train_scaled.columns[(sel_.get_support())]

# let rfe select feature from chi square filter
print("RFE Selection Start")
# Build initial model
model = GradientBoostingClassifier(n_estimators=10, max_depth=4, random_state=10)
# Use RFE select feature
max_features = max(max_features_list)
selector = RFE(model, n_features_to_select=max_features, step=10)
selector.fit(x_train_selected_chi, y_train)
# Get the ranking of features
ranking = selector.ranking_
selected_features_ordered = x_train_selected_chi.columns[np.argsort(ranking)]

for num_features in max_features_list:
# let lasso select the top feature from itself
lasso_selected_features = all_selected_features_lasso[:num_features]
print(f'Chi Square Filter + Lasso selected top {num_features} features:

{lasso_selected_features.tolist()}')
x_train_selected_lasso = x_train_scaled[lasso_selected_features]
x_test_selected_lasso = x_test_scaled[lasso_selected_features]
chi_lasso_results[num_features] = (x_train_selected_lasso, x_test_selected_lasso)

# let random projection select feature from chi square
rp = random_projection.SparseRandomProjection(n_components=num_features)
x_train_rp = rp.fit_transform(x_train_selected_chi)
x_test_rp = rp.transform(x_test_selected_chi)
chi_rp_results[num_features] = (x_train_rp, x_test_rp)

# let rfe select top feature from itself
selected_features_rfe = selected_features_ordered[:num_features]
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print(f'Chi Square Filter + RFE selected top {num_features} features:
{selected_features_rfe.tolist()}')

chi_rfe_results[num_features] = (x_train_selected_chi[selected_features_rfe],
x_test_selected_chi[selected_features_rfe])

return chi_lasso_results, chi_rp_results, chi_rfe_results

def rfe_hybrid_feature_selection(x_train, x_test, y_train, max_features_list):
rfe_lasso_results = {}
rfe_rp_results = {}
rfe_chi_results = {}

# let rfe to select feature first
print("RFE Feature Selection Start")
# Build initial model
model = GradientBoostingClassifier(n_estimators=10, max_depth=4, random_state=10)
# Use RFE select feature
selector = RFE(model, n_features_to_select=57, step=10)
selector.fit(x_train, y_train)
# Get the ranking of features
ranking = selector.ranking_
selected_features = x_train.columns[np.argsort(ranking)]
x_train_selected_rfe = x_train[selected_features]
x_test_selected_rfe = x_test[selected_features]

# let lasso selection feature from RFE
print("Lasso Feature Selection Start")
scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(x_train_selected_rfe)
x_test_scaled = scaler.transform(x_test_selected_rfe)

x_train_scaled = pd.DataFrame(x_train_scaled, columns=x_train_selected_rfe.columns)
x_test_scaled = pd.DataFrame(x_test_scaled, columns=x_test_selected_rfe.columns)

sel_ = SelectFromModel(LogisticRegression(C=0.05, penalty='l1', solver='liblinear',
random_state=10))

sel_.fit(x_train_scaled, y_train)
all_selected_features_lasso = x_train_scaled.columns[(sel_.get_support())]

# let chi square feature filter select feature from RFE
print("Chi-Square Filter Feature Selection Start")
chi_ls = []
for feature in x_train_selected_rfe.columns:

c = pd.crosstab(y_train, x_train_selected_rfe[feature])
p_value = chi2_contingency(c)[1]
chi_ls.append(p_value)

all_selected_features_chi = pd.Series(chi_ls,
index=x_train_selected_rfe.columns).sort_values(ascending=True).index

for num_features in max_features_list:
# let random projection select feature from rfe
rp = random_projection.SparseRandomProjection(n_components=num_features)
x_train_rp = rp.fit_transform(x_train_selected_rfe)
x_test_rp = rp.transform(x_test_selected_rfe)
rfe_rp_results[num_features] = (x_train_rp, x_test_rp)

# let lasso select the top feature
lasso_selected_features = all_selected_features_lasso[:num_features]
print(f'RFE + Lasso selected top {num_features} features:

{lasso_selected_features.tolist()}')
x_train_selected_lasso = x_train_scaled[lasso_selected_features]
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x_test_selected_lasso = x_test_scaled[lasso_selected_features]
rfe_lasso_results[num_features] = (x_train_selected_lasso, x_test_selected_lasso)

# let chi squeare select the top feature
chi_selected_features = all_selected_features_chi[:num_features]
print(f"RFE + Chi-Square selected top {num_features} features:

{chi_selected_features.tolist()}")
x_train_selected_chi = x_train_selected_rfe[chi_selected_features]
x_test_selected_chi = x_test_selected_rfe[chi_selected_features]
rfe_chi_results[num_features] = (x_train_selected_chi, x_test_selected_chi)

return rfe_lasso_results, rfe_rp_results, rfe_chi_results

def lasso_feature_selection(x_train, x_test, y_train, max_features_list):
# standard the feature
scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(x_train)
x_test_scaled = scaler.transform(x_test)

# convert the standarded data into Data Frame and keep the feature name
x_train_scaled = pd.DataFrame(x_train_scaled, columns=x_train.columns)
x_test_scaled = pd.DataFrame(x_test_scaled, columns=x_test.columns)

results = {}

# let lasso to select feature
sel_ = SelectFromModel(LogisticRegression(C=0.05, penalty='l1', solver='liblinear',

random_state=10))
sel_.fit(x_train_scaled, y_train)
all_selected_features = x_train_scaled.columns[(sel_.get_support())]

# show selected feature
for num_features in max_features_list:

selected_features = all_selected_features[:num_features]
print(f'Lasso selected top {num_features} features: {selected_features.tolist()}')
x_train_selected = x_train_scaled[selected_features]
x_test_selected = x_test_scaled[selected_features]
results[num_features] = (x_train_selected, x_test_selected)

return results

def random_projection_feature_selection(x_train, x_test, y_train, max_features_list):
results = {}

for num_features in max_features_list:
rp = random_projection.SparseRandomProjection(n_components=num_features)
x_train_rp = rp.fit_transform(x_train)
x_test_rp = rp.transform(x_test)
results[num_features] = (x_train_rp, x_test_rp)

return results

def chi_square_feature_selection(x_train, x_test, y_train, max_features_list):
results = {}

chi_ls = []
for feature in x_train.columns:

c = pd.crosstab(y_train, x_train[feature])
p_value = chi2_contingency(c)[1]
chi_ls.append(p_value)
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# Select top features based on p-value
all_selected_features = pd.Series(chi_ls,

index=x_train.columns).sort_values(ascending=True).index
for num_features in max_features_list:

selected_features = all_selected_features[:num_features]
print(f"Chi-Square selected top {num_features} features: {selected_features.tolist()}")
x_train_selected = x_train[selected_features]
x_test_selected = x_test[selected_features]
results[num_features] = (x_train_selected, x_test_selected)

return results

def rfe_feature_selection(x_train, x_test, y_train, max_features_list):
results = {}

# Build initial model
model = GradientBoostingClassifier(n_estimators=10, max_depth=4, random_state=10)

# Use RFE select feature
max_features = max(max_features_list)
selector = RFE(model, n_features_to_select=max_features, step=10)
selector.fit(x_train, y_train)

# Get the ranking of features
ranking = selector.ranking_
selected_features_ordered = x_train.columns[np.argsort(ranking)]

# Get and show selected features for each required number of features
for num_features in max_features_list:

selected_features = selected_features_ordered[:num_features]
print(f'RFE selected top {num_features} features: {selected_features.tolist()}')
results[num_features] = (x_train[selected_features], x_test[selected_features])

return results

# model train and test
def train_and_evaluate(x_train, x_test, y_train, y_test):

models = {
'Decision Tree': DecisionTreeClassifier(random_state=0),
'Random Forest': RandomForestClassifier(random_state=0),
'KNN': KNeighborsClassifier(),
'Linear SVC': LinearSVC(random_state=0),

}

performance = {}

for model_name, model in models.items():
print(model_name + " Start")
model.fit(x_train, y_train)
y_pred = model.predict(x_test)

accuracy = accuracy_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)

performance[model_name] = {
'Accuracy': accuracy,
'Recall': recall,
'Precision': precision,
'F1-Score': f1
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}
print(model_name + " Done")

return performance

if __name__ == '__main__':
# load data
print("Start load data")
data = pd.read_csv('N_BaIoT/totalData.csv')
print("Data loaded\n\nNow data preprocessing Start")
x_train, x_test, y_train, y_test = dataPreprocessing(data)
print("Data Preprocessing End")

# number of feature want to test
max_features_list = [2, 3, 5, 10, 15]
results = []

# create dictionary for feature selection function
feature_selection_methods = {

'Lasso': lasso_feature_selection,
'Random Projection': random_projection_feature_selection,
'Chi-Square': chi_square_feature_selection,
'RFE': rfe_feature_selection,
'Lasso + Hybrid': lasso_hybrid_feature_selection,
'Random Projection + Hybrid': random_projection_hybrid_feature_selection,
'Chi-Square + Hybrid': chi_square_hybrid_feature_selection,
'RFE + Hybrid': rfe_hybrid_feature_selection

}

# function call for feature selection function, and store result into
selected_features_results_list

for method_name, feature_selection_function in feature_selection_methods.items():
print(f"\n{method_name} Feature Selection Start")
selected_features_results_list = []
if method_name == 'Lasso + Hybrid':

lasso_rp_results, lasso_chi_results, lasso_rfe_results =
feature_selection_function(x_train, x_test, y_train, max_features_list)

selected_features_results_list = [
('Random Projection', lasso_rp_results),
('Chi-Square', lasso_chi_results),
('RFE', lasso_rfe_results)

]
elif method_name == 'Random Projection + Hybrid':

rp_lasso_results, rp_chi_results, rp_rfe_results =
feature_selection_function(x_train, x_test, y_train, max_features_list)

selected_features_results_list = [
('Lasso', rp_lasso_results),
('Chi-Square', rp_chi_results),
('RFE', rp_rfe_results)

]
elif method_name == 'Chi-Square + Hybrid':

chi_lasso_results, chi_rp_results, chi_rfe_results =
feature_selection_function(x_train, x_test, y_train, max_features_list)

selected_features_results_list = [
('Lasso', chi_lasso_results),
('Random Projection', chi_rp_results),
('RFE', chi_rfe_results)

]
elif method_name == 'RFE + Hybrid':

rfe_lasso_results, rfe_rp_results, rfe_chi_results =
feature_selection_function(x_train, x_test, y_train, max_features_list)
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selected_features_results_list = [
('Lasso', rfe_lasso_results),
('Random Projection', rfe_rp_results),
('Chi-Square', rfe_chi_results)

]
else:

selected_features_results = feature_selection_function(x_train, x_test, y_train,
max_features_list)

selected_features_results_list.append((method_name, selected_features_results))
print(f"{method_name} Feature Selection End")

# train model using feature selected
for sub_method_name, selected_features_results in selected_features_results_list:

for num_features in max_features_list:
print(f"\nTrain and test model with {method_name} - {sub_method_name}-selected

features Start for {num_features} features")
performance = train_and_evaluate(selected_features_results[num_features][0],

selected_features_results[num_features][1], y_train, y_test)
print(f"Train and test model with {method_name} - {sub_method_name}-selected

features End for {num_features} features\n")

# Show results for current feature count
print(f"Performance with {method_name} + {sub_method_name} feature selection

({num_features} features):")
for model, metrics in performance.items():

print(f"{model}: {metrics}")
results.append({
"Number of Features": num_features,
"Model": model,
"Feature Selection Method": f'{method_name} - {sub_method_name}',
"Accuracy(%)": metrics['Accuracy'] * 100,
"Recall(%)": metrics['Recall'] * 100,
"Precision(%)": metrics['Precision'] * 100,
"F1-Score(%)": metrics['F1-Score'] * 100
})

# convert result into Data Frame
results_df = pd.DataFrame(results)

# save result into csv file
results_df.to_excel('result.xlsx', index=False)

print("Results have been saved to result.xlsx")
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Appendix(Full Result)

Number
of

Features
Selected

Model Feature Selection Method Accuracy
(%)

Recall
(%)

Precision
(%)

F1-
Score
(%)

2 Decision Tree Chi-Square 99.5412 99.9744 99.5295 99.7515

2 Decision Tree Chi-Square + Lasso 96.9377 99.9180 96.8567 98.3636

2 Decision Tree Chi-Square + Random Projection 99.6278 99.9631 99.6340 99.7983

2 Decision Tree Chi-Square + RFE 99.9934 99.9986 99.9942 99.9964

2 Decision Tree Lasso 99.8663 99.9674 99.8875 99.9274

2 Decision Tree Lasso + Chi-Square 99.0803 99.9753 99.0353 99.5031

2 Decision Tree Lasso + Random Projection 99.5747 99.8652 99.6736 99.7693

2 Decision Tree Lasso + RFE 99.9851 99.9970 99.9869 99.9919

2 Decision Tree Random Projection 99.9881 99.9975 99.9894 99.9935

2 Decision Tree Random Projection + Chi-Square 99.8048 99.9331 99.8551 99.8941

2 Decision Tree Random Projection + Lasso 92.8935 99.9664 92.8641 96.2845

2 Decision Tree Random Projection + RFE 99.5016 99.9017 99.5587 99.7299

2 Decision Tree RFE 99.9883 99.9975 99.9899 99.9937

2 Decision Tree RFE + Chi-Square 99.9883 99.9975 99.9899 99.9937

2 Decision Tree RFE + Lasso 99.9851 99.9970 99.9868 99.9919

2 Decision Tree RFE + Random Projection 99.9358 99.9821 99.9482 99.9652

2 KNN Chi-Square 99.7380 99.9269 99.7889 99.8579

2 KNN Chi-Square + Lasso 98.5423 99.7299 98.7011 99.2128

2 KNN Chi-Square + Random Projection 99.2890 99.9461 99.2867 99.6153

2 KNN Chi-Square + RFE 99.9732 99.9825 99.9884 99.9855

2 KNN Lasso 99.9015 99.9446 99.9485 99.9466

2 KNN Lasso + Chi-Square 99.6645 99.8637 99.7723 99.8180

2 KNN Lasso + Random Projection 99.3561 99.7669 99.5352 99.6509

2 KNN Lasso + RFE 99.9470 99.9720 99.9704 99.9712

2 KNN Random Projection 99.4999 99.8573 99.6008 99.7289

2 KNN Random Projection + Chi-Square 99.4999 99.8572 99.6008 99.7289

2 KNN Random Projection + Lasso 99.6754 99.8904 99.7575 99.8239

2 KNN Random Projection + RFE 99.0104 99.8010 99.1304 99.4646

2 KNN RFE 99.9575 99.9795 99.9744 99.9777

2 KNN RFE + Chi-Square 99.9575 99.9795 99.9744 99.9769

2 KNN RFE + Lasso 99.9470 99.9720 99.9704 99.9712

2 KNN RFE + Random Projection 99.9081 99.9913 99.9090 99.9501

2 Linear SVC Chi-Square 92.8824 99.8535 92.9438 96.2748

2 Linear SVC Chi-Square + Lasso 92.1305 99.9776 92.1462 95.9023

2 Linear SVC Chi-Square + Random Projection 93.0592 99.9935 92.9978 96.3689

2 Linear SVC Chi-Square + RFE 92.1098 100 92.1098 95.8928

2 Linear SVC Lasso 92.1098 100 92.1098 95.8928

2 Linear SVC Lasso + Chi-Square 92.8822 99.8533 92.9438 96.2747

2 Linear SVC Lasso + Random Projection 92.1772 99.9944 92.1763 95.9263

2 Linear SVC Lasso + RFE 92.1098 100 92.1098 95.8928
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2 Linear SVC Random Projection 92.8246 100 92.7730 96.2510

2 Linear SVC Random Projection + Chi-Square 46.7684 46.8690 90.9557 61.8612

2 Linear SVC Random Projection + Lasso 92.1098 100 92.1098 95.8928

2 Linear SVC Random Projection + RFE 92.2453 99.9984 92.2360 95.9605

2 Linear SVC RFE 92.1098 100 92.1098 95.8928

2 Linear SVC RFE + Chi-Square 92.1098 100 92.1098 95.8928

2 Linear SVC RFE + Lasso 92.1098 100 92.1098 95.8928

2 Linear SVC RFE + Random Projection 92.2800 100 92.2668 95.9779

2 Random Forest Chi-Square 99.5877 99.7929 99.7595 99.7762

2 Random Forest Chi-Square + Lasso 98.5083 99.6735 98.7194 99.1942

2 Random Forest Chi-Square + Random Projection 98.6507 99.5452 98.9954 99.2696

2 Random Forest Chi-Square + RFE 99.9531 99.9576 99.9915 99.9745

2 Random Forest Lasso 99.8106 99.9299 99.8646 99.8972

2 Random Forest Lasso + Chi-Square 99.5841 99.7981 99.7504 99.7743

2 Random Forest Lasso + Random Projection 99.1377 99.5914 99.4731 99.5322

2 Random Forest Lasso + RFE 99.9098 99.9409 99.9612 99.9510

2 Random Forest Random Projection 99.7724 99.9444 99.8087 99.8765

2 Random Forest Random Projection + Chi-Square 99.3072 99.8258 99.4243 99.6247

2 Random Forest Random Projection + Lasso 99.5595 99.8155 99.7066 99.7610

2 Random Forest Random Projection + RFE 97.8678 98.8517 98.8337 98.8427

2 Random Forest RFE 99.8249 99.9439 99.8661 99.9050

2 Random Forest RFE + Chi-Square 99.8249 99.9439 99.8661 99.9050

2 Random Forest RFE + Lasso 99.8249 99.9439 99.8661 99.9050

2 Random Forest RFE + Random Projection 99.8050 99.9353 99.8531 99.8942

3 Decision Tree Chi-Square 99.7734 99.9932 99.7613 99.8771

3 Decision Tree Chi-Square + Lasso 98.0257 99.9961 97.9052 98.9396

3 Decision Tree Chi-Square + Random Projection 99.9933 99.9988 99.9939 99.9964

3 Decision Tree Chi-Square + RFE 99.9973 99.9994 99.9976 99.9985

3 Decision Tree Lasso 99.9858 99.9913 99.9933 99.9923

3 Decision Tree Lasso + Chi-Square 99.1447 99.9939 99.0859 99.5378

3 Decision Tree Lasso + Random Projection 99.8631 99.9548 99.8966 99.9257

3 Decision Tree Lasso + RFE 99.9947 99.9988 99.9954 99.9971

3 Decision Tree Random Projection 99.9789 99.9930 99.9841 99.9885

3 Decision Tree Random Projection + Chi-Square 99.9578 99.9821 99.9721 99.9771

3 Decision Tree Random Projection + Lasso 99.9909 99.9981 99.9921 99.9951

3 Decision Tree Random Projection + RFE 99.9341 99.9860 99.9425 99.9642

3 Decision Tree RFE 99.9883 99.9973 99.9900 99.9937

3 Decision Tree RFE + Chi-Square 99.9883 99.9973 99.9900 99.9937

3 Decision Tree RFE + Lasso 99.9864 99.9968 99.9884 99.9926

3 Decision Tree RFE + Random Projection 99.9916 99.9977 99.9931 99.9954

3 KNN Chi-Square 99.8268 99.9653 99.8469 99.9061

3 KNN Chi-Square + Lasso 99.6885 99.9601 99.7025 99.8311

3 KNN Chi-Square + Random Projection 99.9879 99.9977 99.9891 99.9934

3 KNN Chi-Square + RFE 99.9909 99.9953 99.9948 99.9951
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3 KNN Lasso 99.9602 99.9822 99.9746 99.9784

3 KNN Lasso + Chi-Square 99.8024 99.9412 99.8444 99.8928

3 KNN Lasso + Random Projection 99.8263 99.9641 99.8474 99.9057

3 KNN Lasso + RFE 99.9784 99.9876 99.9889 99.9883

3 KNN Random Projection 99.6032 99.9241 99.6462 99.7849

3 KNN Random Projection + Chi-Square 99.4999 99.8572 99.6008 99.7289

3 KNN Random Projection + Lasso 99.7665 99.9833 99.7637 99.8734

3 KNN Random Projection + RFE 99.6335 99.8919 99.7107 99.8012

3 KNN RFE 99.9577 99.9795 99.9746 99.9770

3 KNN RFE + Chi-Square 99.9577 99.9795 99.9746 99.9770

3 KNN RFE + Lasso 99.9444 99.9712 99.9684 99.9698

3 KNN RFE + Random Projection 99.4999 99.8573 99.6008 99.7289

3 Linear SVC Chi-Square 92.8135 99.7373 92.9719 96.2359

3 Linear SVC Chi-Square + Lasso 92.6447 99.9510 92.6438 96.1588

3 Linear SVC Chi-Square + Random Projection 73.6829 71.6635 99.6732 83.3789

3 Linear SVC Chi-Square + RFE 95.0363 99.9498 94.9295 97.3750

3 Linear SVC Lasso 99.9276 99.9597 99.9618 99.9607

3 Linear SVC Lasso + Chi-Square 92.8662 99.7984 92.9726 96.2647

3 Linear SVC Lasso + Random Projection 92.2316 99.9982 92.2235 95.9536

3 Linear SVC Lasso + RFE 94.9297 99.9449 94.8294 97.3200

3 Linear SVC Random Projection 78.6828 83.5401 92.5925 87.8337

3 Linear SVC Random Projection + Chi-Square 46.7684 46.8690 90.9557 61.8612

3 Linear SVC Random Projection + Lasso 92.2017 100 92.1946 95.9388

3 Linear SVC Random Projection + RFE 53.2234 57.7489 87.1270 69.4593

3 Linear SVC RFE 92.1098 100 92.1098 95.8928

3 Linear SVC RFE + Chi-Square 92.1098 100 92.1098 95.8928

3 Linear SVC RFE + Lasso 92.1098 100 92.1098 95.8928

3 Linear SVC RFE + Random Projection 92.1614 100 92.1573 95.9186

3 Random Forest Chi-Square 99.8181 99.9343 99.8683 99.9013

3 Random Forest Chi-Square + Lasso 99.5552 99.9356 99.5829 99.7590

3 Random Forest Chi-Square + Random Projection 99.9045 99.9777 99.9187 99.9482

3 Random Forest Chi-Square + RFE 99.9788 99.9854 99.9916 99.9885

3 Random Forest Lasso 99.9396 99.9586 99.9758 99.9672

3 Random Forest Lasso + Chi-Square 99.8150 99.9340 99.8652 99.8996

3 Random Forest Lasso + Random Projection 99.8097 99.9231 99.8703 99.8967

3 Random Forest Lasso + RFE 99.9646 99.9672 99.9944 99.9808

3 Random Forest Random Projection 99.9068 99.9682 99.9306 99.9494

3 Random Forest Random Projection + Chi-Square 99.7378 99.9093 99.8063 99.8578

3 Random Forest Random Projection + Lasso 99.9213 99.9543 99.9602 99.9573

3 Random Forest Random Projection + RFE 99.8129 99.8934 99.9035 99.8984

3 Random Forest RFE 99.9102 99.9365 99.9660 99.9512

3 Random Forest RFE + Chi-Square 99.9102 99.9365 99.9660 99.9512

3 Random Forest RFE + Lasso 99.9102 99.9365 99.9660 99.9512

3 Random Forest RFE + Random Projection 99.8439 99.9671 99.8636 99.9153
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5 Decision Tree Chi-Square 99.8907 99.9974 99.8841 99.9407

5 Decision Tree Chi-Square + Lasso 99.9276 99.9986 99.9229 99.9607

5 Decision Tree Chi-Square + Random Projection 99.9788 99.9977 99.9793 99.9885

5 Decision Tree Chi-Square + RFE 99.9973 99.9994 99.9976 99.9985

5 Decision Tree Lasso 99.9963 99.9993 99.9967 99.9980

5 Decision Tree Lasso + Chi-Square 99.9061 99.9983 99.8999 99.9491

5 Decision Tree Lasso + Random Projection 99.9834 99.9958 99.9862 99.9910

5 Decision Tree Lasso + RFE 99.9947 99.9989 99.9954 99.9971

5 Decision Tree Random Projection 99.9972 99.9995 99.9975 99.9985

5 Decision Tree Random Projection + Chi-Square 99.9892 99.9955 99.9928 99.9942

5 Decision Tree Random Projection + Lasso 99.9956 99.9993 99.9960 99.9976

5 Decision Tree Random Projection + RFE 99.9967 99.9993 99.9971 99.9982

5 Decision Tree RFE 99.9969 99.9991 99.9975 99.9983

5 Decision Tree RFE + Chi-Square 99.9935 99.9987 99.9942 99.9965

5 Decision Tree RFE + Lasso 99.9945 99.9992 99.9949 99.9970

5 Decision Tree RFE + Random Projection 99.9952 99.9993 99.9955 99.9974

5 KNN Chi-Square 99.8698 99.9811 99.8777 99.9294

5 KNN Chi-Square + Lasso 99.9689 99.9801 99.9861 99.9831

5 KNN Chi-Square + Random Projection 99.9247 99.9949 99.9233 99.9591

5 KNN Chi-Square + RFE 99.9908 99.9949 99.9952 99.9950

5 KNN Lasso 99.9834 99.9947 99.9873 99.9909

5 KNN Lasso + Chi-Square 99.9556 99.9802 99.9716 99.9759

5 KNN Lasso + Random Projection 99.9714 99.9946 99.9744 99.9845

5 KNN Lasso + RFE 99.9773 99.9858 99.9895 99.9877

5 KNN Random Projection 99.9146 99.9724 99.9349 99.9536

5 KNN Random Projection + Chi-Square 99.4999 99.8572 99.6008 99.7289

5 KNN Random Projection + Lasso 99.8759 99.9902 99.8752 99.9327

5 KNN Random Projection + RFE 99.9200 99.9738 99.9394 99.9566

5 KNN RFE 99.9892 99.9949 99.9933 99.9941

5 KNN RFE + Chi-Square 99.9788 99.9948 99.9822 99.9885

5 KNN RFE + Lasso 99.9869 99.9937 99.9921 99.9929

5 KNN RFE + Random Projection 99.9145 99.9719 99.9353 99.9536

5 Linear SVC Chi-Square 93.4050 99.7613 93.5123 96.5358

5 Linear SVC Chi-Square + Lasso 95.4458 99.8549 95.4142 97.5841

5 Linear SVC Chi-Square + Random Projection 91.4415 98.9575 92.3054 95.5158

5 Linear SVC Chi-Square + RFE 92.1098 100 92.1098 95.8928

5 Linear SVC Lasso 99.9289 99.9588 99.9640 99.9614

5 Linear SVC Lasso + Chi-Square 93.9863 99.8706 93.9782 96.8348

5 Linear SVC Lasso + Random Projection 94.0539 99.8737 94.0405 96.8694

5 Linear SVC Lasso + RFE 94.9371 99.9448 94.8368 97.3238

5 Linear SVC Random Projection 94.0204 99.9699 93.9287 96.8552

5 Linear SVC Random Projection + Chi-Square 46.7684 46.8690 90.9557 61.8612

5 Linear SVC Random Projection + Lasso 92.5477 99.9811 92.5298 96.1112

5 Linear SVC Random Projection + RFE 92.1992 99.9994 92.1927 95.9375
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5 Linear SVC RFE 94.3264 99.9496 94.2398 97.0108

5 Linear SVC RFE + Chi-Square 92.0811 99.9458 92.1254 95.8764

5 Linear SVC RFE + Lasso 93.1481 99.9795 93.0927 96.4133

5 Linear SVC RFE + Random Projection 23.7532 18.4106 93.9342 30.7872

5 Random Forest Chi-Square 99.8858 99.9733 99.9028 99.9380

5 Random Forest Chi-Square + Lasso 99.9855 99.9901 99.9942 99.9921

5 Random Forest Chi-Square + Random Projection 99.9720 99.9922 99.9774 99.9848

5 Random Forest Chi-Square + RFE 99.9724 99.9868 99.9832 99.9850

5 Random Forest Lasso 99.9487 99.9497 99.9946 99.9721

5 Random Forest Lasso + Chi-Square 99.9189 99.9832 99.9288 99.9560

5 Random Forest Lasso + Random Projection 99.9857 99.9890 99.9955 99.9923

5 Random Forest Lasso + RFE 99.9634 99.9691 99.9911 99.9801

5 Random Forest Random Projection 99.9903 99.9950 99.9945 99.9947

5 Random Forest Random Projection + Chi-Square 99.9123 99.9452 99.9596 99.9524

5 Random Forest Random Projection + Lasso 99.9745 99.9894 99.9829 99.9862

5 Random Forest Random Projection + RFE 99.9910 99.9964 99.9939 99.9951

5 Random Forest RFE 99.9618 99.9674 99.9911 99.9792

5 Random Forest RFE + Chi-Square 99.8572 99.9601 99.8850 99.9225

5 Random Forest RFE + Lasso 99.9453 99.9745 99.9662 99.9703

5 Random Forest RFE + Random Projection 99.9946 99.9983 99.9958 99.9971

10 Decision Tree Chi-Square 99.9958 99.9994 99.9961 99.9977

10 Decision Tree Chi-Square + Lasso 99.9980 99.9996 99.9982 99.9989

10 Decision Tree Chi-Square + Random Projection 99.9964 99.9991 99.9970 99.9980

10 Decision Tree Chi-Square + RFE 99.9975 99.9996 99.9977 99.9987

10 Decision Tree Lasso 99.9994 99.9998 99.9995 99.9997

10 Decision Tree Lasso + Chi-Square 99.9977 99.9995 99.9981 99.9988

10 Decision Tree Lasso + Random Projection 99.9965 99.9994 99.9968 99.9981

10 Decision Tree Lasso + RFE 99.9978 99.9996 99.9980 99.9988

10 Decision Tree Random Projection 99.9991 99.9999 99.9991 99.9995

10 Decision Tree Random Projection + Chi-Square 99.9974 99.9991 99.9980 99.9986

10 Decision Tree Random Projection + Lasso 99.9982 99.9997 99.9983 99.9990

10 Decision Tree Random Projection + RFE 99.9990 99.9997 99.9992 99.9995

10 Decision Tree RFE 99.9980 99.9996 99.9983 99.9989

10 Decision Tree RFE + Chi-Square 99.9978 99.9995 99.9981 99.9988

10 Decision Tree RFE + Lasso 99.9978 99.9996 99.9981 99.9988

10 Decision Tree RFE + Random Projection 99.9969 99.9993 99.9973 99.9983

10 KNN Chi-Square 99.9833 99.9962 99.9857 99.9909

10 KNN Chi-Square + Lasso 99.9947 99.9978 99.9964 99.9971

10 KNN Chi-Square + Random Projection 99.9914 99.9974 99.9932 99.9953

10 KNN Chi-Square + RFE 99.9881 99.9933 99.9938 99.9935

10 KNN Lasso 99.9956 99.9988 99.9964 99.9976

10 KNN Lasso + Chi-Square 99.9915 99.9967 99.9941 99.9954

10 KNN Lasso + Random Projection 99.9926 99.9988 99.9932 99.9960

10 KNN Lasso + RFE 99.9911 99.9954 99.9949 99.9952
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10 KNN Random Projection 99.9164 99.9694 99.9398 99.9546

10 KNN Random Projection + Chi-Square 99.4998 99.8572 99.6007 99.7288

10 KNN Random Projection + Lasso 99.9909 99.9984 99.9918 99.9951

10 KNN Random Projection + RFE 99.9546 99.9885 99.9622 99.9754

10 KNN RFE 99.4961 99.8561 99.5979 99.7268

10 KNN RFE + Chi-Square 99.9907 99.9948 99.9951 99.9949

10 KNN RFE + Lasso 99.9924 99.9973 99.9944 99.9959

10 KNN RFE + Random Projection 99.6967 99.8999 99.7712 99.8355

10 Linear SVC Chi-Square 93.1760 99.9591 93.1353 96.4266

10 Linear SVC Chi-Square + Lasso 97.3752 99.9286 97.2950 98.5942

10 Linear SVC Chi-Square + Random Projection 95.0234 99.8844 94.9728 97.3666

10 Linear SVC Chi-Square + RFE 92.9764 99.9946 92.9193 96.3272

10 Linear SVC Lasso 99.9326 99.9526 99.9743 99.9634

10 Linear SVC Lasso + Chi-Square 97.3067 99.9290 97.2242 98.5581

10 Linear SVC Lasso + Random Projection 97.9373 99.8827 97.9196 98.8914

10 Linear SVC Lasso + RFE 98.1992 99.9644 98.1160 99.0316

10 Linear SVC Random Projection 68.2754 65.9757 99.3706 79.3010

10 Linear SVC Random Projection + Chi-Square 46.7684 46.8690 90.9557 61.8612

10 Linear SVC Random Projection + Lasso 99.4204 99.6468 99.7238 99.6853

10 Linear SVC Random Projection + RFE 96.3325 99.8658 96.2903 98.0455

10 Linear SVC RFE 92.1103 100 92.1102 95.8931

10 Linear SVC RFE + Chi-Square 97.9686 99.9633 97.8766 98.9089

10 Linear SVC RFE + Lasso 98.8555 99.9446 98.8262 99.3822

10 Linear SVC RFE + Random Projection 47.8448 46.8690 93.0663 62.3420

10 Random Forest Chi-Square 99.9948 99.9969 99.9974 99.9972

10 Random Forest Chi-Square + Lasso 99.9968 99.9982 99.9984 99.9983

10 Random Forest Chi-Square + Random Projection 99.9969 99.9986 99.9980 99.9983

10 Random Forest Chi-Square + RFE 99.9908 99.9934 99.9966 99.9950

10 Random Forest Lasso 99.9920 99.9944 99.9970 99.9957

10 Random Forest Lasso + Chi-Square 99.9973 99.9986 99.9985 99.9985

10 Random Forest Lasso + Random Projection 99.9974 99.9977 99.9994 99.9986

10 Random Forest Lasso + RFE 99.9910 99.9921 99.9982 99.9951

10 Random Forest Random Projection 99.9962 100 99.9958 99.9979

10 Random Forest Random Projection + Chi-Square 99.9927 99.9974 99.9947 99.9961

10 Random Forest Random Projection + Lasso 99.9955 99.9998 99.9952 99.9975

10 Random Forest Random Projection + RFE 99.9974 99.9996 99.9976 99.9986

10 Random Forest RFE 99.9859 99.9879 99.9968 99.9923

10 Random Forest RFE + Chi-Square 99.9912 99.9923 99.9982 99.9952

10 Random Forest RFE + Lasso 99.9823 99.9842 99.9966 99.9904

10 Random Forest RFE + Random Projection 99.9932 99.9958 99.9967 99.9963

15 Decision Tree Chi-Square 99.9980 99.9998 99.9981 99.9989

15 Decision Tree Chi-Square + Lasso 99.9980 99.9998 99.9981 99.9989

15 Decision Tree Chi-Square + Random Projection 99.9954 99.9995 99.9954 99.9975

15 Decision Tree Chi-Square + RFE 99.9977 99.9995 99.9980 99.9987

15 Decision Tree Lasso 99.9994 99.9999 99.9995 99.9997
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15 Decision Tree Lasso + Chi-Square 99.9981 99.9997 99.9982 99.9989

15 Decision Tree Lasso + Random Projection 99.9965 99.9989 99.9973 99.9981

15 Decision Tree Lasso + RFE 99.9979 99.9996 99.9981 99.9988

15 Decision Tree Random Projection 99.9989 99.9997 99.9991 99.9994

15 Decision Tree Random Projection + Chi-Square 99.9971 99.9989 99.9980 99.9984

15 Decision Tree Random Projection + Lasso 99.9977 99.9994 99.9981 99.9988

15 Decision Tree Random Projection + RFE 99.9991 100 99.9990 99.9995

15 Decision Tree RFE 99.9999 99.9999 99.9999 99.9999

15 Decision Tree RFE + Chi-Square 99.9979 99.9995 99.9982 99.9989

15 Decision Tree RFE + Lasso 99.9976 99.9994 99.9981 99.9987

15 Decision Tree RFE + Random Projection 99.9991 99.9999 99.9990 99.9995

15 KNN Chi-Square 99.9932 99.9995 99.9931 99.9963

15 KNN Chi-Square + Lasso 99.9946 99.9977 99.9964 99.9971

15 KNN Chi-Square + Random Projection 99.9930 99.9989 99.9935 99.9962

15 KNN Chi-Square + RFE 99.9916 99.9949 99.9960 99.9954

15 KNN Lasso 99.9962 99.9992 99.9967 99.9979

15 KNN Lasso + Chi-Square 99.9921 99.9964 99.9950 99.9957

15 KNN Lasso + Random Projection 99.9948 99.9987 99.9956 99.9972

15 KNN Lasso + RFE 99.9913 99.9960 99.9946 99.9953

15 KNN Random Projection 99.7096 99.9123 99.7728 99.8425

15 KNN Random Projection + Chi-Square 99.7099 99.9109 99.7745 99.8426

15 KNN Random Projection + Lasso 99.9909 99.9984 99.9918 99.9951

15 KNN Random Projection + RFE 99.9116 99.9653 99.9388 99.9520

15 KNN RFE 99.5217 99.8624 99.6192 99.7407

15 KNN RFE + Chi-Square 99.9919 99.9959 99.9953 99.9956

15 KNN RFE + Lasso 99.9940 99.9982 99.9953 99.9967

15 KNN RFE + Random Projection 99.7146 99.9264 99.7641 99.8452

15 Linear SVC Chi-Square 95.5785 99.9599 95.4544 97.6552

15 Linear SVC Chi-Square + Lasso 97.4311 99.9284 97.3527 98.6237

15 Linear SVC Chi-Square + Random Projection 95.4976 99.9287 95.4015 97.6126

15 Linear SVC Chi-Square + RFE 97.8582 99.9760 97.7500 98.8505

15 Linear SVC Lasso 99.9379 99.9561 99.9765 99.9663

15 Linear SVC Lasso + Chi-Square 97.4135 99.9284 97.3346 98.6144

15 Linear SVC Lasso + Random Projection 99.8628 99.9307 99.9203 99.9255

15 Linear SVC Lasso + RFE 98.5067 99.9648 98.4382 99.1956

15 Linear SVC Random Projection 97.6914 99.9738 97.5792 98.7620

15 Linear SVC Random Projection + Chi-Square 46.5258 46.8504 90.5223 61.7445

15 Linear SVC Random Projection + Lasso 99.6919 99.7136 99.9519 99.8326

15 Linear SVC Random Projection + RFE 96.3685 99.9817 96.2233 98.0665

15 Linear SVC RFE 92.9467 99.9872 92.8974 96.3120

15 Linear SVC RFE + Chi-Square 98.2969 99.9677 98.2152 99.0837

15 Linear SVC RFE + Lasso 98.8764 99.9519 98.8412 99.3935

15 Linear SVC RFE + Random Projection 96.5414 99.9746 96.4037 98.1567

15 Random Forest Chi-Square 99.9976 99.9988 99.9987 99.9987

15 Random Forest Chi-Square + Lasso 99.9978 99.9993 99.9984 99.9988

15 Random Forest Chi-Square + Random Projection 99.9974 99.9994 99.9977 99.9986
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15 Random Forest Chi-Square + RFE 99.9976 99.9991 99.9983 99.9987

15 Random Forest Lasso 99.9967 99.9997 99.9967 99.9982

15 Random Forest Lasso + Chi-Square 99.9980 99.9996 99.9982 99.9989

15 Random Forest Lasso + Random Projection 99.9975 99.9985 99.9988 99.9986

15 Random Forest Lasso + RFE 99.9924 99.9933 99.9984 99.9958

15 Random Forest Random Projection 99.9969 99.9993 99.9973 99.9983

15 Random Forest Random Projection + Chi-Square 99.9936 99.9981 99.9950 99.9965

15 Random Forest Random Projection + Lasso 99.9971 99.9997 99.9971 99.9984

15 Random Forest Random Projection + RFE 99.9980 99.9996 99.9982 99.9989

15 Random Forest RFE 99.9947 99.9961 99.9982 99.9971

15 Random Forest RFE + Chi-Square 99.9933 99.9944 99.9984 99.9964

15 Random Forest RFE + Lasso 99.9828 99.9841 99.9972 99.9907

15 Random Forest RFE + Random Projection 99.9974 99.9984 99.9988 99.9986
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Appendix(Feature Selected)

Number of

Features

Selected

Feature Selection Method Feature Selected

2
Chi-Square MI_dir_L5_weight', 'MI_dir_L5_mean'

2
Chi-Square + Lasso MI_dir_L5_weight', 'MI_dir_L5_variance'

2

Chi-Square + Random

Projection
N/A

2
Chi-Square + RFE MI_dir_L0.01_weight', 'MI_dir_L0.01_mean'

2
Lasso MI_dir_L0.1_weight', 'H_L0.1_weight'

2
Lasso + Chi-Square MI_dir_L5_weight', 'MI_dir_L5_mean'

2
Lasso + Random Projection N/A

2
Lasso + RFE MI_dir_L0.1_weight', 'MI_dir_L0.01_weight'

2
Random Projection N/A

2

Random Projection + Chi-

Square
N/A

2
Random Projection + Lasso N/A

2
Random Projection + RFE N/A

2
RFE MI_dir_L0.01_weight', 'MI_dir_L0.1_weight'

2
RFE + Chi-Square MI_dir_L0.01_weight', 'MI_dir_L0.1_weight'

2
RFE + Lasso MI_dir_L0.01_weight', 'MI_dir_L0.1_weight'

2
RFE + Random Projection N/A

3
Chi-Square MI_dir_L5_weight', 'MI_dir_L5_mean', 'MI_dir_L5_variance'

3
Chi-Square + Lasso MI_dir_L5_weight', 'MI_dir_L5_variance', 'MI_dir_L1_weight'

3

Chi-Square + Random

Projection
N/A
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3
Chi-Square + RFE MI_dir_L0.01_weight', 'MI_dir_L0.01_mean', 'MI_dir_L0.1_weight'

3
Lasso MI_dir_L0.1_weight', 'H_L0.1_weight', 'HH_jit_L5_mean'

3
Lasso + Chi-Square MI_dir_L5_weight', 'MI_dir_L5_mean', 'MI_dir_L5_variance'

3
Lasso + Random Projection N/A

3
Lasso + RFE MI_dir_L0.1_weight', 'MI_dir_L0.01_weight', 'H_L5_mean'

3
Random Projection N/A

3

Random Projection + Chi-

Square
N/A

3
Random Projection + Lasso N/A

3
Random Projection + RFE N/A

3
RFE MI_dir_L0.01_weight', 'MI_dir_L0.1_weight', 'H_L0.1_weight'

3
RFE + Chi-Square MI_dir_L0.01_weight', 'MI_dir_L0.1_weight', 'H_L0.1_weight'

3
RFE + Lasso MI_dir_L0.01_weight', 'MI_dir_L0.1_weight', 'H_L0.1_weight'

3
RFE + Random Projection N/A

5
Chi-Square

MI_dir_L5_weight', 'MI_dir_L5_mean', 'MI_dir_L5_variance',

'MI_dir_L3_weight', 'MI_dir_L3_mean'

5
Chi-Square + Lasso

MI_dir_L5_weight', 'MI_dir_L5_variance', 'MI_dir_L1_weight',

'MI_dir_L1_mean', 'MI_dir_L1_variance'

5

Chi-Square + Random

Projection
N/A

5
Chi-Square + RFE

MI_dir_L0.01_weight', 'MI_dir_L0.01_mean', 'MI_dir_L0.1_weight',

'H_L0.01_weight', 'H_L0.01_mean'

5
Lasso

MI_dir_L0.1_weight', 'H_L0.1_weight', 'HH_L0.01_weight',

'HH_jit_L5_mean', 'HH_jit_L0.01_weight'

5
Lasso + Chi-Square

MI_dir_L5_weight', 'MI_dir_L5_mean', 'MI_dir_L5_variance',

'MI_dir_L3_variance', 'MI_dir_L1_weight'

5
Lasso + Random Projection N/A

5
Lasso + RFE

MI_dir_L0.1_weight', 'MI_dir_L0.01_weight', 'H_L5_mean',

'H_L0.1_weight', 'H_L0.01_weight'

5
Random Projection N/A
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5

Random Projection + Chi-

Square
N/A

5
Random Projection + Lasso N/A

5
Random Projection + RFE N/A

5
RFE

MI_dir_L0.01_weight', 'MI_dir_L0.1_weight', 'H_L0.1_weight',

'H_L0.01_weight', 'HH_L0.01_magnitude'

5
RFE + Chi-Square

MI_dir_L0.01_weight', 'MI_dir_L0.1_weight', 'H_L0.1_weight',

'H_L3_weight', 'H_L0.01_weight'

5
RFE + Lasso

MI_dir_L0.01_weight', 'MI_dir_L0.1_weight', 'H_L0.1_weight',

'H_L0.01_weight', 'HH_L0.01_radius'

5
RFE + Random Projection N/A

10

Chi-Square

MI_dir_L5_weight', 'MI_dir_L5_mean', 'MI_dir_L5_variance',

'MI_dir_L3_weight', 'MI_dir_L3_mean', 'MI_dir_L3_variance',

'MI_dir_L1_weight', 'MI_dir_L1_mean', 'MI_dir_L1_variance',

'MI_dir_L0.1_weight'

10

Chi-Square + Lasso

MI_dir_L5_weight', 'MI_dir_L5_variance', 'MI_dir_L1_weight',

'MI_dir_L1_mean', 'MI_dir_L1_variance', 'MI_dir_L0.1_weight',

'MI_dir_L0.1_mean', 'MI_dir_L0.1_variance', 'MI_dir_L0.01_weight',

'MI_dir_L0.01_mean'

10

Chi-Square + Random

Projection
N/A

10

Chi-Square + RFE

MI_dir_L0.01_weight', 'MI_dir_L0.01_mean', 'MI_dir_L0.1_weight',

'H_L0.01_weight', 'H_L0.01_mean', 'H_L0.1_weight', 'HH_L5_radius',

'HH_L0.1_covariance', 'HH_L1_radius', 'HH_L0.1_weight'

10

Lasso

MI_dir_L0.1_weight', 'MI_dir_L0.01_weight', 'H_L0.1_weight',

'H_L0.01_weight', 'HH_L5_weight', 'HH_L0.01_weight', 'HH_L0.01_mean',

'HH_jit_L5_mean', 'HH_jit_L3_mean', 'HH_jit_L0.01_weight'

10

Lasso + Chi-Square

MI_dir_L5_weight', 'MI_dir_L5_mean', 'MI_dir_L5_variance',

'MI_dir_L3_variance', 'MI_dir_L1_weight', 'MI_dir_L1_variance',

'MI_dir_L0.1_weight', 'MI_dir_L0.1_variance', 'MI_dir_L0.01_weight',

'MI_dir_L0.01_mean'

10
Lasso + Random Projection N/A

10

Lasso + RFE

MI_dir_L0.1_weight', 'MI_dir_L0.01_weight', 'H_L5_mean',

'H_L0.1_weight', 'H_L0.01_weight', 'HH_L0.01_std', 'HpHp_L0.1_std',

'HpHp_L0.1_weight', 'HH_jit_L0.1_variance', 'HpHp_L5_magnitude'

10
Random Projection N/A

10

Random Projection + Chi-

Square
N/A
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10
Random Projection + Lasso N/A

10
Random Projection + RFE N/A

10

RFE

MI_dir_L0.01_weight', 'MI_dir_L0.1_weight', 'H_L0.1_weight',

'H_L0.01_weight', 'HH_L0.01_magnitude', 'HH_L0.01_radius',

'HH_L0.01_covariance', 'HH_L0.01_mean', 'HH_L0.1_mean',

'HH_jit_L0.01_variance'

10

RFE + Chi-Square

MI_dir_L0.01_weight', 'MI_dir_L0.1_weight', 'H_L0.1_weight',

'H_L3_weight', 'H_L0.01_weight', 'HH_L0.01_radius',

'HH_L0.01_covariance', 'HH_L1_magnitude', 'HH_L0.01_magnitude',

'HH_L0.1_mean'

10

RFE + Lasso

MI_dir_L0.01_weight', 'MI_dir_L0.1_weight', 'H_L0.1_weight',

'H_L0.01_weight', 'HH_L0.01_radius', 'HH_L0.01_covariance',

'HH_L0.01_magnitude', 'HH_L1_radius', 'HH_L0.01_mean', 'HpHp_L3_std'

10
RFE + Random Projection N/A

15

Chi-Square

MI_dir_L5_weight', 'MI_dir_L5_mean', 'MI_dir_L5_variance',

'MI_dir_L3_weight', 'MI_dir_L3_mean', 'MI_dir_L3_variance',

'MI_dir_L1_weight', 'MI_dir_L1_mean', 'MI_dir_L1_variance',

'MI_dir_L0.1_weight', 'MI_dir_L0.1_mean', 'MI_dir_L0.1_variance',

'MI_dir_L0.01_weight', 'MI_dir_L0.01_mean', 'MI_dir_L0.01_variance'

15

Chi-Square + Lasso

MI_dir_L5_weight', 'MI_dir_L5_variance', 'MI_dir_L1_weight',

'MI_dir_L1_mean', 'MI_dir_L1_variance', 'MI_dir_L0.1_weight',

'MI_dir_L0.1_mean', 'MI_dir_L0.1_variance', 'MI_dir_L0.01_weight',

'MI_dir_L0.01_mean', 'MI_dir_L0.01_variance', 'H_L5_weight',

'H_L5_variance', 'H_L1_weight', 'H_L1_mean'

15

Chi-Square + Random

Projection
N/A

15

Chi-Square + RFE

MI_dir_L0.01_weight', 'MI_dir_L0.01_mean', 'MI_dir_L0.1_weight',

'H_L0.01_weight', 'H_L0.01_mean', 'H_L0.1_weight', 'HH_L5_radius',

'HH_L0.1_covariance', 'HH_L1_radius', 'HH_L0.1_weight',

'HH_L0.1_magnitude', 'HH_L0.1_mean', 'HH_L0.1_radius',

'HH_L1_weight', 'HH_L5_magnitude'

15

Lasso

MI_dir_L5_weight', 'MI_dir_L1_weight', 'MI_dir_L0.1_weight',

'MI_dir_L0.01_weight', 'MI_dir_L0.01_mean', 'H_L0.1_weight',

'H_L0.01_weight', 'H_L0.01_mean', 'HH_L5_weight', 'HH_L0.01_weight',

'HH_L0.01_mean', 'HH_jit_L5_weight', 'HH_jit_L5_mean',

'HH_jit_L3_mean', 'HH_jit_L0.01_weight'

15

Lasso + Chi-Square

MI_dir_L5_weight', 'MI_dir_L5_mean', 'MI_dir_L5_variance',

'MI_dir_L3_variance', 'MI_dir_L1_weight', 'MI_dir_L1_variance',

'MI_dir_L0.1_weight', 'MI_dir_L0.1_variance', 'MI_dir_L0.01_weight',

'MI_dir_L0.01_mean', 'MI_dir_L0.01_variance', 'H_L5_weight',

'H_L5_mean', 'H_L5_variance', 'H_L3_variance'
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15
Lasso + Random Projection N/A

15

Lasso + RFE

MI_dir_L0.1_weight', 'MI_dir_L0.01_weight', 'H_L5_mean',

'H_L0.1_weight', 'H_L0.01_weight', 'HH_L0.01_std', 'HpHp_L0.1_std',

'HpHp_L0.1_weight', 'HH_jit_L0.1_variance', 'HpHp_L5_magnitude',

'HH_L0.01_radius', 'HH_L0.01_pcc', 'HH_L0.01_mean', 'HH_L0.1_std',

'HH_L0.1_pcc'

15
Random Projection N/A

15

Random Projection + Chi-

Square
N/A

15
Random Projection + Lasso N/A

15
Random Projection + RFE N/A

15

RFE

MI_dir_L0.01_weight', 'MI_dir_L0.1_weight', 'H_L0.1_weight',

'H_L0.01_weight', 'HH_L0.01_magnitude', 'HH_L0.01_radius',

'HH_L0.01_covariance', 'HH_L0.01_mean', 'HH_L0.1_mean',

'HH_jit_L0.01_variance', 'HpHp_L1_magnitude', 'HpHp_L0.01_radius',

'HH_jit_L0.01_mean', 'HH_L0.01_pcc', 'HH_jit_L3_variance'

15

RFE + Chi-Square

MI_dir_L0.01_weight', 'MI_dir_L0.1_weight', 'H_L0.1_weight',

'H_L3_weight', 'H_L0.01_weight', 'HH_L0.01_radius',

'HH_L0.01_covariance', 'HH_L1_magnitude', 'HH_L0.01_magnitude',

'HH_L0.1_mean', 'HH_L1_radius', 'HH_L0.01_mean', 'HpHp_L3_radius',

'HpHp_L3_magnitude', 'HpHp_L3_std'

15

RFE + Lasso

MI_dir_L0.01_weight', 'MI_dir_L0.1_weight', 'H_L0.1_weight',

'H_L0.01_weight', 'HH_L0.01_radius', 'HH_L0.01_covariance',

'HH_L0.01_magnitude', 'HH_L1_radius', 'HH_L0.01_mean',

'HpHp_L3_std', 'HpHp_L5_weight', 'HpHp_L0.1_radius', 'HpHp_L0.1_std',

'HpHp_L0.1_pcc', 'HpHp_L0.01_pcc'

15
RFE + Random Projection N/A
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