

IMPROVING DETECTION OF CROSS-SITE SCRIPTING (XSS) ATTACKS

TOWARDS WEB APPLICATION THROUGH COMPREHENSIVE MACHINE

LEARNING ALGORITHMS

BASYIRATUL ULFA BINTI BAHARUDDIN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

 2

IMPROVING DETECTION OF CROSS-SITE SCRIPTING (XSS) ATTACKS

TOWARDS WEB APPLICATION THROUGH COMPREHENSIVE MACHINE

LEARNING ALGORITHMS

BASYIRATUL ULFA BINTI BAHARUDDIN

This report is submitted in partial fulfillment of the requirements for the Bachelor of

Computer Science (Computer Security) with Honours.

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2024

 4

DECLARATION

I hereby declare that this project report entitled

IMPROVING DETECTION OF CROSS-SITE SCRIPTING (XSS) ATTACKS

TOWARDS WEB APPLICATION THROUGH COMPREHENSIVE MACHINE

LEARNING ALGORITHMS

is written by me and is my own effort and that no part has been plagiarized without

citations.

Signature :

Student : Basyiratul Ulfa binti Baharuddin

Date : 02/09/2024

5

APPROVAL

I hereby declare that I have read this project report and found this project report is

sufficient in term of the scope and quality for the award of Bachelor of Computer

Science (Computer Security) with Honours.

Signature :

Supervisor : Profesor Madya Ts. Dr. Mohd Faizal Bin Abdollah

Date : 10 SEPTEMBER 2024

 6

DEDICATION

Dedicated to all my beloved and supporting family, friends and lecturers.

Thank you for your understanding and guidance.

May Allah bless.

 7

ACKNOWLEDGEMENTS

Bismillahirrahmanirrahim

Alhamdulillah, I extend my heartfelt gratitude to Allah Subhanahu wa Ta’ala for His

blessings of time, health, guidance and strength, which were essential during my journey

in finishing this Final Year Project which titled Improving Detection of Cross-Site

Scripting (XSS) Attacks towards Web Application through Comprehensive Machine

Learning Classifier/ Algorithm. This final year project report was prepared for Faculty of

Information and Communication Technology (FTMK), Universiti Teknikal Malaysia

Melaka (UTeM), as part of the requirement for final year student to complete the

undergraduate studies and earn a Bachelor of Computer Science degree.

I am deeply thankful to my parents, family members, friends, and those who have helped

me whether directly or indirectly. Their understanding, guidance, and unwavering support

have been invaluable during my journey in completing this final year project and report.

Their presence has been the cornerstone of my success in this journey.

I also want to express my sincere appreciation for my supervisor, Assoc. Prof. Dr. Mohd.

Faizal Abdollah for his belief in my abilities and determination. His constructive criticism,

patience and guidance have encouraged me to persevere and grow, shaping a new version

of me, to always continue to strive and move forward.

Above all, I wish everyone happiness, success and smooth sailing in their lives. May Allah

bless our lives, guiding us always on the right path.

 8

ABSTRACT

In today's rising digital world, Cross-Site Scripting (XSS) poses a significant

security threat to web applications, enabling attackers to inject malicious code that

compromise user data, hijack user sessions, and modify web content. Despite current

detection methods, many systems have significant false positive rates and are not

adaptable to new attack vectors. This study intends to improve XSS detection by using

Machine Learning approaches, in conjunction with various feature selection methods. The

study includes gathering and preprocessing a complete dataset, training and testing the

machine learning model, and evaluating its performance against various XSS attack

scenarios. The results indicate that the proposed method significantly improves detection

accuracy and reduces false positives, providing a robust solution for safeguarding web

applications. This study promotes online security by proposing a practical and adaptable

strategy for detecting XSS vulnerabilities. The findings of this study show the potential

for enhanced web application security and emphasize the need for future investigation of

machine learning techniques in threat detection.

 9

ABSTRAK

Dalam dunia digital yang semakin berkembang hari ini, Cross-Site Scripting (XSS)

merupakan ancaman keselamatan yang signifikan kepada aplikasi web, membolehkan

penyerang menyuntik kod berniat jahat yang boleh membahayakan data pengguna,

merampas sesi pengguna, dan mengubah kandungan web. Walaupun terdapat kaedah

pengesanan semasa, banyak sistem mempunyai kadar positif palsu yang tinggi dan tidak

boleh menyesuaikan diri dengan vektor serangan baharu. Kajian ini bertujuan untuk

meningkatkan pengesanan XSS dengan menggunakan pendekatan Pembelajaran Mesin,

bersama dengan pelbagai kaedah pemilihan ciri. Kajian ini merangkumi pengumpulan dan

prapemprosesan set data yang lengkap, melatih dan menguji model pembelajaran mesin,

dan menilai prestasinya terhadap pelbagai senario serangan XSS. Keputusan menunjukkan

bahawa kaedah yang dicadangkan meningkatkan ketepatan pengesanan dengan ketara dan

mengurangkan positif palsu, memberikan penyelesaian yang kukuh untuk melindungi

aplikasi web. Kajian ini mempromosikan keselamatan dalam talian dengan mencadangkan

strategi praktikal dan boleh disesuaikan untuk mengesan kerentanan XSS. Penemuan

kajian ini menunjukkan potensi untuk meningkatkan keselamatan aplikasi web dan

menekankan keperluan untuk penyelidikan lanjut mengenai teknik pembelajaran mesin

dalam pengesanan ancaman.

 10

TABLE OF CONTENTS

DECLARATION .. 4

APPROVAL .. 5

DEDICATION .. 6

ACKNOWLEDGEMENTS ... 7

ABSTRACT .. 8

ABSTRAK ... 9

LIST OF TABLES .. 15

LIST OF FIGURES .. 17

CHAPTER 1: INTRODUCTION ... 20

1.1 INTRODUCTION .. 20

1.2 PROBLEM STATEMENT .. 21

1.3 PROJECT QUESTION .. 21

1.4 PROJECT OBJECTIVE .. 22

1.5 PROJECT SCOPE ... 22

1.6 PROJECT CONTRIBUTION ... 24

1.7 REPORT ORGANIZATION .. 24

1.8 CONCLUSION ... 26

 11

CHAPTER 2: LITERATURE REVIEW ... 27

2.1 INTRODUCTION .. 27

2.2 CROSS-SITE SCRIPTING (XSS) ATTACK .. 27

2.2.1 Nature and Impact of XSS attacks ... 27

2.2.2 Types of Cross-Site Scripting (XSS) Attacks ... 28

2.2.3 History of Cross-Site Scripting (XSS) attacks ... 31

2.2.4 Network Security Trends .. 32

2.3 WEB APPLICATION SECURITY .. 35

2.3.1 Introduction and Background to Web Application Security 35

2.3.2 Web Application Architecture .. 36

2.3.3 Web Vulnerabilities ... 37

2.3.4 Mitigation .. 38

2.4 MACHINE LEARNING .. 39

2.4.1 Introduction to Machine Learning ... 39

2.4.2 Types of Machine Learning Techniques .. 39

2.4.3 Machine Learning Classifiers ... 41

2.5 FEATURE SELECTION ... 44

2.5.1 Feature Selection Background .. 45

2.5.2 Classification of Feature Selection Techniques ... 45

2.6 DATASET ... 50

2.6.1 Labeling, Training, and Evaluation ... 50

2.6.2 Features/Attributes .. 51

2.6.3 Dataset sources ... 51

2.7 CONSIDERATION IN DETERMINING FEATURE SELECTION

METHODS FROM DATASET ATTRIBUTES .. 56

 12

2.8 RELATED WORK/PREVIOUS WORK ... 58

2.8.1 Detection of XSS in web applications using Machine Learning Classifiers

 ... 58

2.8.2 Machine Learning based Cross-site Scripting Detection in Online Social

Network .. 59

2.8.3 The Future of Web Security: XSS Detection through Machine Learning 60

2.8.4 Detecting Cross-Site Scripting Attack using Machine Learning Algorithms

 ... 61

2.8.5 A Detailed Survey on Recent XSS Web-Attacks machine Learning

Detection Techniques .. 62

2.8.6 Multiclass Classification of XSS Web Page Attack using Machine Learning

Techniques ... 63

2.8.7 Comparison of machine learning techniques for detecting malicious

webpages .. 64

2.8.8 Summarization of papers .. 64

2.9 CRITICAL VIEW ON CURRENT PROBLEM AND JUSTIFICATION 65

2.10 PROPOSE SOLUTION/FURTHER PROJECT ... 67

2.11 CONCLUSION ... 68

CHAPTER 3: METHODOLOGY .. 69

3.1 INTRODUCTION .. 69

3.2 PROJECT METHODOLOGY .. 69

3.3 PROJECT MILESTONES .. 71

3.4 FYP I Gantt Chart .. 73

3.5 FYP II Gantt Chart .. 74

3.6 CONCLUSION ... 74

CHAPTER 4: DESIGN .. 76

 13

4.1 INTRODUCTION .. 76

4.2 PROBLEM ANALYSIS ... 76

4.3 REQUIREMENT ANALYSIS .. 76

4.4 FEATURE SELECTION ... 78

4.5 MODEL TRAINING ... 80

4.6 CONCLUSION ... 81

CHAPTER 5: IMPLEMENTATION ... 82

5.1 INTRODUCTION .. 82

5.2 PROJECT ENVIRONMENT SETUP .. 82

5.2.1Data Preprocessing ... 83

5.2.2 Feature Selection .. 86

5.2.3 Split the dataset .. 89

5.2.4 Model Training ... 90

5.2.5 Classification (Model Evaluation) .. 91

5.3 CONCLUSION ... 94

CHAPTER 6: TESTING AND ANALYSIS .. 95

6.1 INTRODUCTION .. 95

6.2 TEST PLAN .. 95

6.2.1 Test Environment ... 95

6.2.2 Test Strategy ... 95

6.3 TEST DESIGN .. 95

6.4 RESULT AND ANALYSIS ... 97

6.4.1 Feature Selection: Information Gain .. 97

6.4.2 Feature Selection: Hybrid (IG and RFE) ... 101

6.4.3 Feature Selection: IG and SBS ... 102

 14

6.4.4 Feature Selection: IG and Lasso ... 103

6.4.5 Feature Selection: IG and PCA ... 105

6.4.6 Feature Selection: CC ... 106

6.4.7 Feature Selection: CC and PCA ... 107

6.4.8 Feature Selection: PCA ... 109

6.4.9 Feature Selection: Lasso and PCA ... 110

6.4.10 Feature Selection: Lasso .. 111

6.4.11 Feature Selection: Forward Selection and PCA...................................... 112

6.4.12 Feature Selection: Elastic Net ... 113

6.4.13 Feature Selection: Feature Importance ... 115

6.4.14 Feature Selection: RFE .. 116

6.5 COMPARISON WITH EXISTING WORKS ... 117

6.6 SUMMARIZATION ... 119

6.7 CONCLUSION ... 119

CHAPTER 7: PROJECT CONCLUSION .. 121

7.1 INTRODUCTION .. 121

7.2 PROJECT SUMMARIZATION ... 121

7.3 PROJECT CONTRIBUTION ... 122

7.4 PROJECT LIMITATION ... 122

7.5 FUTURE WORKS .. 122

REFERENCES ... 124

APPENDIX ... 128

 15

LIST OF TABLES

Table 1: Problem Statement ..21

Table 2: Project Question ..22

Table 3: Summary of Project Objectives ..22

Table 4: Summary of Project Contributions ...24

Table 5: Previous Work ..67

Table 6: Project Milestones ..75

Table 7: FYP I Gantt Chart ..76

Table 8: FYP II Gantt Chart ...77

Table 9: Top 5 features selected from IG ...104

Table 10: Top 5 features selected from IG and RFE ..105

Table 11: Top 5 features selected from IG and SBS ..106

Table 12: Top 5 features selected from IG and Lasso ..108

Table 13: Top 5 features selected from IG and PCA ..110

Table 14: Top 5 features selected CC ...111

Table 15: Top 5 features selected from CC and PCA ...112

Table 16: Top 5 features selected from PCA ..114

Table 17: Top 5 features selected from Lasso and PCA ...116

Table 18: Top 5 features selected from Lasso ..117

Table 19: Top 5 features selected from FS and PCA ...118

Table 20: Top 5 features selected from Elastic Net ..119

Table 21: Top 5 features selected from Feature Importance ..121

 16

Table 22: Top 5 features selected from RFE ..122

Table 23: Result comparison with previous work ..124

 17

LIST OF FIGURES

Figure 1: Flow of Reflected XSS Attack ..30

Figure 2: Flow of Stored XSS Attack ...31

Figure 3: Flow of DOM-Based Attack ...32

Figure 4: CVEs ...34

Figure 5: CVEs severity registered from November 2021 to January 202234

Figure 6: cont. of CVEs severity registered from November 2021 to January 202235

Figure 7: Vulnerability category distribution for CVEs registered from November 2021 to

January 2022 ...36

Figure 8: Overview of web architecture ...38

Figure 9: Types of web vulnerabilities ...39

Figure 10: Machine Learning Types ...41

Figure 11: the calculation for Entropy and Gini ...43

Figure 12: Example of a decision tree structure ...44

Figure 13: Calculation for the gap metric by Euclidean metric.......................................44

Figure 14: x gets appointed to the category with the largest likelihood calculation44

Figure 15: Random Forest structure ...45

Figure 16: Filter Methods Implementation ...47

Figure 17: Wrapper Methods Implementation ..48

Figure 18: Embedded Methods Implementation ...50

Figure 19: Agile Methodology ..74

 18

Figure 20: Proposed Framework ...81

Figure 21: Framework for XSS Detection ..86

Feature 22: Flowchart for the Data Preprocessing stage ..87

Figure 23: check duplicate row ...88

Figure 24: remove duplicate ...88

Figure 25: check missing value ...89

Figure 26: upsample minority class ..89

Figure 27: feature scaling process ...90

Figure 28: Flowchart of Feature Selection process ...91

Figure 29: Process of load the final dataset ..91

Figure 30: Process of separating the features and target ...92

Figure 31: One of example for feature selection process ...92

Figure 32: Process of printing the feature selected ...93

Figure 33: Process of printing the top 5 features selected ..93

Figure 34: Flowchart of Splitting the dataset ...94

Figure 35: Split dataset process ..94

Figure 36: Flowchart of Model Training stage ...95

Figure 37: Process of initialize and training the model ..95

Figure 38: Flowchart of Model Evaluation stage ...95

Figure 39: Predict of the test set ...96

Figure 40: Process of evaluating the model ..96

Figure 41: Example output for the model training ..97

Figure 42: Process of plotting the confusion matrix graph ...97

 19

Figure 43: Process of confusion matrix graph ..98

Figure 44: Output of evaluation model for all approaches ...101

Figure 45: Evaluation model for IG as feature selection (167 features)102

Figure 46: Evaluation model for IG as feature selection (67 features)103

Figure 47: Evaluation model for IG as feature selection (25 features)104

Figure 48: Evaluation model for IG and RFE as feature selection106

Figure 49: Evaluation model for IG and SBS as feature selection107

Figure 50: Evaluation model for IG and Lasso as feature selection109

Figure 51: Evaluation model for IG and PCA as feature selection110

Figure 52: Evaluation model for CC as feature selection ...112

Figure 53: Evaluation model for CC and PCA as feature selection113

Figure 54: Evaluation model for PCA as feature selection ..115

Figure 55: Evaluation model for Lasso and PCA as feature selection116

Figure 56: Evaluation model for Lasso as feature selection ...117

Figure 57: Evaluation model for Forward Selection and PCA as feature selection119

Figure 58: Evaluation model for Elastic Net as feature selection120

Figure 59: Evaluation model for Feature Importance as feature selection122

Figure 60: Evaluation model for RFE as feature selection ...123

 20

CHAPTER 1: INTRODUCTION

1.1 INTRODUCTION

All kinds of business web application vulnerability statistics are growing in recent

and new forms of hacker attacks. Well secured enterprise web applications are threatened

by smaller vulnerable webs misused by hackers in targeted attacks (Tamara Saad

Mohamed, 2020). Many developers also did not put a heartful focus into the web

development phase, which unluckily led to the rise of vulnerabilities inside one website,

(Divyam Goyala, Pulkit Jainb, Bharat Bhushanc, 2020). This lack of good practice is

considered a vulnerability. A hacker could easily take advantage of this flaw to execute

some malicious code on the systems, (Germán E. Rodríguez, Jenny G. Torres, Pamela

Flores, Diego E. Benavides, 2020). One of the most common cyber-attacks typically found

in web applications is Cross-site scripting (XSS), (Jalen Mack, Yen-Hung (Frank) Hu, and

Mary Ann Hoppa, 2019).

Cross-site scripting attack is a web application vulnerability, which allows

attackers to inject malicious code into a web page that other users can view. This attack

can steal sensitive info like session IDs and cookies, redirect users onto malicious sites, or

perform other malicious actions. (Jaydeep R. Tadhani, Vipul Vekariya, Vishal Sorathiya,

Samah Alshathri & Walid El-Shafai, 2024). With the help of injected code, an intruder or

attacker can gain unauthorized access to user data, which could allow them to impersonate

these users, perform illegal actions on the local computers of users and the network

equipment of their companies or change the configurations of their network and software.

(Mohammad Alsaffar, Saud Aljaloud, Badiea Abdulkarem Mohammed, Zeyad Ghaleb Al-

Mekhlafi, Tariq S. Almurayziq, Gharbi Alshammari, and Abdullah Alshammari, 2022).

Many network solutions only scan the headers of a user request while ignoring the payload.

Many programmers and computer security specialists have tried to mitigate these attacks

either through scanners, firewalls, encryption devices, (Jean Rosemond Dora, and Karol

Nemoga, 2021). On top of that, the number of cross-site script (XSS) injection attacks has

 21

increased from 470 in 2011 to 22,000 in April 2022, (Rakesh Kumar Singh, and Amar

Kumar Mohapatra, 2022).

Informally, the cause of XSS is a lack of input sanitization: user-chosen data

“escapes” into a page’s template and makes its way into the JavaScript engine, or modifies

the DOM, (José Carlos Pazos, Jean-Sébastien Légaré, Ivan Beschastnikh, and William

Aiello, 2020). A thorough analysis of Cross-Site Scripting vulnerabilities has been

presented in detail; the numerous forms of XSS assaults, how an attacker may exploit this

weakness, the results of an XSS attack, and the protective strategies established. However,

despite researchers’ efforts, XSS attacks can still disrupt web applications at a larger skill

irrespective of the fact that various tactics and approaches for preventing vulnerabilities

have been established, (Sonkarlay J. Y. Weamie, 2022).

1.2 PROBLEM STATEMENT

Cross-Site Scripting (XSS) attacks are a serious threat to web applications, as they

exploit vulnerabilities to compromise user data and system integrity. Existing XSS

detection approaches have limitations that can result in false positives or negatives,

emphasizing the need for more advanced detection methods. This research attempts to

improve XSS detection by experimenting various approach for feature selection and model

training, as well as assessing its efficiency against various types of XSS attacks. Table 1

shows the related problem statement towards the project.

Table 1: Problem Statement

PS Problem Statement

PS1 How can we enhance the detection of Cross-Site Scripting (XSS) attacks in

web applications, by incorporating selected Feature Selection Methods and

Model Training?

1.3 PROJECT QUESTION

 22

Based on the problem statement, four projects (PQ) are constructed in the project as shown

in Table 2 below.

Table 2: Project Question

PS PQ Project Question

PS1 PQ1 What are the existing XSS detection techniques and what limitations

do they have?

PQ2 How can these techniques be enhanced to address their limitations,

specifically through the incorporation of selected feature selection

methods and model training?

PQ3 How effective is the enhanced system or tool in detecting and

mitigating various forms of XSS attacks?

1.4 PROJECT OBJECTIVE

This project has four main objectives, which are to implement a robust and resilient

approach towards cross-site scripting (XSS) attack within the web application.

Table 3: Summary of Project Objectives

PS PQ PO Project Objective

PS1 PQ1 PO1 To analyze existing XSS detection techniques and identify

their limitations.

 PQ2 PO2 To propose enhancements to the existed techniques that

address their limitations, incorporating various selected feature

selection methods and model training.

 PQ3 PO3 To evaluate the performance and effectiveness of the enhanced

system or tool against various forms of XSS attacks.

1.5 PROJECT SCOPE

The scope of this project is:

 23

1. Dataset collection

: Collecting raw data from various sources of dataset. This list of datasets

then will be compared to choose the best dataset that contains a wide list

of features and attributes. During this procedure, we determine dataset

size, feature richness, and representativeness. The purpose is to develop

a list of prospective datasets for Cross-Site Scripting (XSS) detection.

2. Data preprocessing

: A comprehensive preparation is required before putting data into any

machine learning method. We deal with challenges including missing

values, noisy data, and outliers. Imputation, data cleaning, and

normalization techniques all help to prepare the dataset for model

training.

3. Feature selection

: Selecting the proper features has a big impact on model performance.

For that, a thoroughly study has been done towards the properties and

attributes of the selected dataset. Filter-based ranking, wrapper methods,

and embedding strategies are all useful for identifying the most relevant

features. The idea is to maintain informative elements while reducing

noise.

4. Training and testing machine learning algorithms

: With a preprocessed dataset, we train machine learning algorithms. The

proposed algorithms learn from the labelled data. We divided the dataset

into training and testing subsets to assess the model's performance.

Rigorous testing ensures that the classifier can accurately identify XSS

 24

attacks.

5. Performance evaluation

: To validate the system's effectiveness, we evaluate its performance using

appropriate measures. Metrics such as accuracy, precision, recall, F1-

score, and ROC-AUC provide information about the model's behavior.

We compare our findings to current literature to determine the system's

competitiveness.

1.6 PROJECT CONTRIBUTION

In today's rising interconnected digital landscape along with the rising of XSS

attacks, safeguarding web applications has become paramount. This project has made

important contributions to several issues which are derived from the project objectives

described in section 1.4, Table 3. The expected output of this project is to enhance the

detection of XSS attacks, thus reducing the statistic of the XSS attacks. The summary of

project contributions is illustrated in Table 4.

Table 4: Summary of Project Contributions

PS PQ PO PC Project Contribution

PS1 PQ1 PO1 PC1 Thoroughly examine the existing XSS detection methods

and identify their limitations and areas of enhancement.

PO2 PC2 Proposed machine learning classifier and feature

selection method for XSS attack detection purpose.

PO3 PC3 Evaluate the performance and effectiveness of the

proposed methods and algorithms.

1.7 REPORT ORGANIZATION

Chapter 1: Introduction

 25

This chapter discusses the introduction, problem statement, project questions, project

objectives, project scopes, and project contributions for this project.

Chapter 2: Literature Review

This chapter discusses several past research papers and studies, focusing on the

implementation of machine learning methods and algorithms in detecting XSS attacks. It

covers the review of terminology to the project issues based on related studies, their

strengths, weaknesses and limits, the future development towards the project

experimented.

Chapter 3: Project Methodology

Chapter 3 illustrates the methodology applied to this project, providing a step-by-step

approach to the proposed work. The third chapter also includes a milestone, alongside the

Gantt chart to monitor the continuation of project development and implementation.

Chapter 4: Analysis and Design

Chapter 4 discusses the design aspects of the projects, and other consideration design. In

addition, we will investigate the expected outcomes of the system.

Chapter 5: Implementation

This chapter focuses on the project's implementation of various algorithms of machine

learning towards the chosen dataset. This also includes how the system's input and output

are generated prior to the final product.

Chapter 6: Testing

Chapter 6 describes the testing and evaluation of feature selection methods used in the

project to obtain the project’s outcome.

Chapter 7: Project Conclusion

 26

This chapter will conclude the whole project continuity and implementation, including

research summary, contributions, and limitations. Hence, a significant yet comprehensive

improvement will be made in this section.

1.8 CONCLUSION

Chapter 1 discussed the growing threat of Cross-Site Scripting (XSS) attacks and

the limits of current detection technologies. The chapter defines explicit project goals and

objectives, with an emphasis on analyzing, improving, integrating, and evaluating

advanced XSS detection systems. The project's scope comprises key phases such as dataset

collecting, data preprocessing, feature selection, classifier training and testing, and

performance evaluation. This foundation lays the groundwork for a more in-depth

examination in later chapters, with the goal of improving XSS detection and contributing

practical solutions to web application security.

 27

CHAPTER 2: LITERATURE REVIEW

2.1 INTRODUCTION

In this chapter, the research paper, articles and studies related to this project are

presented and will be discussed meticulously. The literature review serves to describe and

define the previous research conducted and is relatable to the project's topic. Thus, this

chapter will elucidate the fundamentals of Cross-Site Scripting (XSS) Attacks, how they

launched, the impact, as well as the comprehensive techniques and methods that are being

taken to detect such malicious attacks. This also serves as acknowledgement of the

previous researchers’ unwavering dedication to their work which was evident in every

hour spent in the lab, every data point analyzed, and hypothesis tested, embodying the

'blood, sweat, and tears' in the pursuit of knowledge and discovery. This extensive study

will surely help readers obtain a complete grasp of the project and its context within the

broader field of cybersecurity.

2.2 CROSS-SITE SCRIPTING (XSS) ATTACK

2.2.1 Nature and Impact of XSS attacks

The rising demand of the use of web applications in today’s digital era awakened

the public point of view, especially among the cybersecurity expert towards the integrity

of user data and the level of security provided. Over the years, there have been numerous

cases involving data breaches, phishing, ransomware, and more. Among these myriad

types of cyber threats, Cross-Site Scripting (XSS) attacks have emerged as a significant

concern, which often targets unsecured web applications.

Cross-Site Scripting (XSS) attacks have been recognized as one of the top 10

online application security risks by the Open Web Application Security Project (OWASP)

for decades. As the latest research quote that Cross-Site Scripting (XSS) attack lists as the

2nd most critical web application security attack (Banerjee R., Baksi A., Singh N., Bishnu

S.K., 2020). Cross-Site Scripting (XSS) is a process of malicious code injection attack

where attackers insert code into a website or online application to gain access or do harm.

 28

There is variety of payloads type that happen to be injected through the users’ browsers,

such as scripts and iframes. An occurrence of an attack like cross-site scripting allows an

attacker to evade the same-origin policy, which is designed to isolate different websites

from each other.

This kind of attack also enables attackers or hackers to steal the users’ private and

confidential information. In web-browsers or web applications, malicious script code is

executed and used to transfer the sensitive data to the third-party domain. The attacker can

also subsequently impersonate the user, performing illegal activities under the victim’s

account, such as social engineering attacks. The impact of this attack can be significant as

it does perform various malicious things such as steal session cookies, impersonate users,

deface websites, spread malware, phish for user credentials, and support social engineering

techniques. Thus, detection and preventing XSS attacks is crucial to ensure the safety of

data.

A cross-site Scripting (XSS) attack is clearly shown by the case of Timothy Barker,

a Canadian guy caught up in a complicated e-commerce scam. Barker's story, which

resembled triangulation fraud, involves unknowingly purchasing stuff from an internet

merchant who used stolen payment card info to buy goods from other stores. This plot

wrongly accused Barker and had serious ramifications, such as job loss and legal

uncertainty due to his criminal record. His example underlines the crucial need for

comprehensive detection and mitigation measures against XSS and other cyber threats, as

well as the severe real-world consequences for individuals and communities affected by

such security breaches.

2.2.2 Types of Cross-Site Scripting (XSS) Attacks

1. Non-Persistent (Reflected) XSS

This type of XSS attack occurs when the malicious script is embedded in a URL and

reflected off the web server. When a user visits this specific URL, the attack code will be

run and executed in the user’s browser (Alenzi K.F., Abbas O.A.B., 2022). The malicious

 29

script is not stored on the target server, hence the term “non-persistent”. It’s important to

note that the malicious script is executed when the user retrieves the manipulated URL.

Figure 1 shows the reflected XSS attack flow.

Figure 1: Flow of Reflected XSS Attack

2. Persistent (Stored) XSS

In a Persistent XSS attack, the malicious script is permanently stored on the target server,

such as in a database, message forum, comment field, etc. When a user visits any publicly

accessible area of a websites, which might be injected by malicious script, the browser

will retrieve and present the data. This will in turn execute the XSS attack stored in the

browser content (Alenzi K.F., Abbas O.A.B., 2022). Because the malicious script is stored

on the server and can affect multiple users, this type of attack can be more dangerous than

a non-persistent XSS attack. Figure 2 illustrates the flow of a typical Stored XSS attack.

 30

Figure 2: Flow of Stored XSS Attack

3. DOM-Based XSS

DOM-Based XSS attacks occur when a malicious script manipulates the Document Object

Model (DOM) of a webpage. The DOM allows the page to interact with JavaScript page

code, making the page more dynamic (Alenzi K.F., Abbas O.A.B., 2022). If the JavaScript

entry is not handled properly, then it also makes it possible for the malicious code to

change or manipulate the page. This script manipulates the webpage’s environment in the

client-side script, allowing the attacker to run arbitrary code in the user’s browser. Unlike

the other two types, the server’s response does not change in a DOM-based XSS attack.

Figure 3 illustrates the flow of DOM-based attack.

 31

Figure 3: Flow of DOM-Based Attack

2.2.3 History of Cross-Site Scripting (XSS) attacks

Cross-site scripting attacks have occurred since the 1990s. In January 2000, a

Microsoft security engineer coined the term "cross-site scripting". Today, XSS remains a

big danger to web applications. XSS attacks affect many popular social networking sites,

including Facebook, Twitter, and YouTube. According to Netsparker web security data,

cross-site scripting is a widespread vulnerability in web applications (Nagarjun, P., &

Shakeel, S., 2020).

XSS has passed several key milestones during its evolution. Microsoft's formal

reporting of XSS vulnerabilities in 1999 solidified its reputation in the security world. By

2003, OWASP had included XSS in its initial Top 10 list of online application

vulnerabilities, sparking efforts to limit its impact. Between 2005 and 2010, there was an

increase in awareness and study, which culminated in developments such as the W3C's

Content Security Policy (CSP) in 2013. Even in 2021, XSS remains a significant concern,

as evidenced by its presence in the latest OWASP Top 10 report. (Hannousse A.,

Yahiouche S., & Cherif M., 2022).

 32

In its early phases, XSS took advantage of a basic understanding of web security,

primarily targeting websites that lacked comprehensive input validation. Using the

simplicity of script injections, attackers might execute arbitrary JavaScript in users'

browsers, compromising sessions and sensitive data. Influential research articles, such as

CERT's 2002 review and OWASP's inclusion of XSS in its 2003 Top 10 list, sparked

advances in defense tactics. Seth Fogie et al.'s 2010 book "XSS Attacks: Cross Site

Scripting Exploits and Defense" provides in-depth analysis and mitigation approaches,

expanding the field's understanding. Countermeasures progressed over time from simple

input sanitization to advanced approaches like output escaping and the implementation of

Content Security Policy (CSP) in 2013, allowing developers to restrict browser resources

effectively. Today, developments in Web Application Firewalls (WAFs) and browser

security continue to strengthen defenses against real-time XSS attacks.

In conclusion, the history of XSS attacks demonstrates a constant conflict between

changing attack strategies and the development of advanced defense systems.

Understanding the historical backdrop of XSS, from its early detection to current online

security initiatives, provides insights into the ongoing attempts to protect web applications

from this persistent danger.

2.2.4 Network Security Trends

Between November 2021 and January 2022, XSS vulnerabilities accounted for

approximately 10.6% of all newly reported security concerns. This demonstrates the

prevalence of XSS and its continuous relevance as a threat vector in the cybersecurity

landscape (Guan Y., 2022). The severity of XSS vulnerabilities fluctuated greatly during

the observation period, with severe and high-severity vulnerabilities drawing a lot of

attention due to their potential for widespread exploitation. For example, vulnerabilities

listed in the research, such as CVE-2021-44228 and CVE-2021-45046, witnessed active

exploitation shortly after their disclosure, emphasizing the need of mitigating such risks

swiftly. Figure 4 shows the list of all CVEs that have been discussed.

 33

Figure 4: CVEs (Guan Y., 2022)

From November 2021 to January 2022, 6443 new Common Vulnerabilities and

Exposures (CVE) numbers were registered. The severity of those CVEs was examined by

relies on proof-of-concept (PoCs). Figure 5 and 6 illustrates the potential impact of the

vulnerabilities and their severity.

Figure 5: CVEs severity registered from November 2021 to January 2022

 34

Figure 6: cont. of CVEs severity registered from November 2021 to January 2022

Among newly announced Common Vulnerabilities and Exposures (CVEs), 31.3%

are local vulnerabilities that need prior access to compromised systems. The remaining

68.7% are remote vulnerabilities, which pose a risk to affected organizations worldwide.

Based on figure 7, notably, cross-site scripting (XSS) remains the most common

vulnerability, with an uptick in buffer overflow vulnerabilities throughout this period.

Denial-of-service assaults also increased in number, while the majority of XSS and denial-

of-service occurrences were medium or high intensity.

 35

Figure 7: Vulnerability category distribution for CVEs registered from November 2021

to January 2022

To summaries, XSS attacks continue to pose serious dangers to web application security,

as indicated by the prevalence and exploitation patterns highlighted in recent papers.

Addressing XSS vulnerabilities necessitates a holistic approach that includes strong

coding principles, regular upgrades, and constant monitoring. By adopting preventive

measures and remaining informed about evolving threats, organizations can successfully

manage the dangers posed by XSS attacks and protect the integrity of their web

applications.

2.3 WEB APPLICATION SECURITY

2.3.1 Introduction and Background to Web Application Security

Web applications are the best Internet-based solution to provide online web services.

However, they also bring significant security challenges. Due to the extensive use of

websites and web applications, web vulnerabilities are continuously growing. A survey

conducted in 2019 found that nine of 10 web applications are vulnerable and that sensitive

data breaches are possible on 68% of web applications (Alaoui R. L. & Nfaoui E. H, 2022).

Hence, the implementation of robust defenses towards web-based

technologies are paramount against malicious attacks. Web applications security involves

 36

securing web applications from unauthorized access and malicious attacks that could

compromise their functionality, data integrity, and user privacy. The defenses become vital

as web applications are widely used for critical operations such as e-commerce and online

banking, that could possibly lead to financial losses and reputational damage.

Web applications, by their nature, are vulnerable to different attacks due to

flaws in design, development, and implementation. The research focuses on

vulnerabilities induced by poor security practices during the software development

lifecycle (Rafique S., Humayun M., Gul Z., Abbas A., & Javed H., 2015). These typical

vulnerabilities include Cross-Site Scripting (XSS), SQL Injection, and others from the

OWASP Top 10, as well as more advanced threats like Cross-Site Request Forgery

(CSRF). Each of the risks and vulnerabilities represents a potential entry point for

attackers to exploit, which might result in data breaches, unauthorized access, and

service disruption.

2.3.2 Web Application Architecture

Web-based applications are essential network solutions for providing standard web

services. They are developed using client and server-side approaches, with server-side

applications utilizing backend scripting languages like NET, PHP, and JEE, and client-

side applications using front-end scripting languages like CSS/HTML and JavaScript.

These applications are typically interconnected via HTTP protocol. Web applications have

become an integral part of daily life due to their accessibility and convenience.

However, their increased popularity can also lead to attackers compromising

critical services in sectors like healthcare, education, banking, and e-commerce (Alaoui R.

L. & Nfaoui E. H, 2022). Figure 8 shows the overview of the web architecture.

 37

Figure 8: Overview of web architecture

2.3.3 Web Vulnerabilities

Web application vulnerabilities are weaknesses or loopholes that can be exploited to cause

attacks. These vulnerabilities can be classified into three categories: improper input

validation, which involves incorrect validation and sanitization of user input, leading to

SQL injection and Cross-Site Scripting attacks. Improper session management, where web

sessions are not secured correctly, can cause Cross-Site Request Forgery (CSRF) and

session highjacking. Additionally, improper authorization and authentication

vulnerabilities involve logic flaws in access control policies and authentication functions,

resulting in broken access control and potential web attacks.

These vulnerabilities can lead to SQL injection, XSS, Cross-Site Request Forgery, and

session highjacking. Figure 9 shows the types of web vulnerabilities.

 38

Figure 9: Types of web vulnerabilities

2.3.4 Mitigation

To mitigate these vulnerabilities, several security procedures and techniques are

used throughout the web application's lifecycle. These include strict input validation to

sanities user inputs, strong authentication systems to validate user identities, granular

permission to manage access rights, and encryption to safeguard data at rest and in transit.

Collectively, these measures improve the application's resilience to common attack vectors.

Recent advances in machine learning (ML) have shown promise for improving

web application security. ML approaches can analyze large volumes of data to find

unusual patterns that indicate an attack, providing proactive defense capabilities. However,

important obstacles like model interpretability, training data quality, and adversarial

assaults stand in the way of properly applying machine learning for web security.

To summarize, while web application security evolves with technological

advancements and research breakthroughs, a comprehensive approach that incorporates

 39

robust security practices, effective use of tools, and leveraging the potential of machine

learning remains critical in protecting web applications from emerging threats.

2.4 MACHINE LEARNING

2.4.1 Introduction to Machine Learning

Machine learning (ML) is a subset of artificial intelligence (AI) that allows

computers to learn from data and improve performance over time without being explicitly

programmed. Its significance across domains stems from its ability to analyze vast

amounts of data, discover significant patterns, and generate data-driven predictions or

judgements. Machine learning algorithms are learned by analyzing enormous volumes of

data to detect patterns and make predictions or judgements. Rather than relying on explicit

programming instructions, they iteratively enhance their task performance through

experience. Key strategies include supervised learning, unsupervised learning, and

reinforcement learning.

In the context for the project, machine learning (ML) to detect XSS attacks by

identifying patterns in web page features that distinguish between benign and malicious

information. Improving web security through automated detection is significant, as it

reduces reliance on manual rule-based systems, which may overlook sophisticated threats.

2.4.2 Types of Machine Learning Techniques

Machine Learning algorithms are mainly divided into four categories: Supervised

learning, Unsupervised learning, Semi-supervised learning, and Reinforcement learning

(Sarker I. H., 2021). Figure 10 shows the types of Machine Learning Techniques,

classified by their categories.

 40

Figure 10: Machine Learning Types

1. Supervised Learning

Supervised learning is a machine learning process that converts input to output

using sample input-output pairs. It employs labeled training data and examples to derive

a function. Supervised learning is a task-driven strategy that achieves goals using a set of

inputs. Common tasks include data separation (classification) and data fitting (regression).

Text categorization, for example, predicts the class label or mood of a given piece of text,

such as a tweet or product review.

For Classification Algorithms, there are five methods which are Linear Classifier,

Support Vector Machines (SVM), Decision trees, k-Nearest Neighbors (k-NN), and

Random Forest. Meanwhile, in Regression Algorithms, there are three methods which are

Linear Regression, Logistic Regression, and Polynomial Regression.

2. Unsupervised Learning

Unsupervised learning analyses unlabeled datasets without human intervention,

resulting in a data-driven approach. This technique is commonly used to extract generative

features, find relevant trends and structures, group results, and conduct exploratory

analyses. Common unsupervised learning problems include clustering, density estimation,

feature learning, and dimensionality reduction. For Clustering Algorithms, there are three

methods which are k-means Clustering, Hierarchical Clustering, and DBSCAN (Density-

Based Spatial Clustering of Applications with Noise). Meanwhile Association Rule

Learning includes Apriori Algorithm which focuses on finding frequent item sets.

 41

3. Semi-supervised Learning

Semi-supervised learning combines supervised and unsupervised methods,

operating on labelled and unlabeled data. This falls between learning "without

supervision" and learning "with supervision." Semi-supervised learning can be effective

in situations where labelled data is few and unlabeled data is abundant.

Semi-supervised learning models aim to improve prediction accuracy compared to

labelled data alone. Thus, semi-supervised learning has applications such as machine

translation, fraud detection, data labelling, and text classification.

4. Reinforcement Learning

Reinforcement learning is a machine learning method that automatically evaluates

optimal behavior in a specific setting to increase efficiency. It is an environment-driven

technique. This sort of learning, based on reward or punishment, aims to use

environmental activists' insights to maximize benefit or reduce danger. This tool is

effective for training AI models to improve automation and efficiency in complex systems

like robotics, autonomous driving, manufacturing, and supply chain logistics. However, it

is not suitable for solving simple problems.

These methods include Q-learning, SARSA (State-Action-Reward-Sate-Action),

and Neural Networks.

2.4.3 Machine Learning Classifiers

1. Support Vector Machines (SVM) Classifier

Support vector machine (SVM) is a common technique in machine learning for

classification, regression, and other tasks. SVM area unit the foremost strong prediction

strategies supported applied math learning framework. It constructs a hyper-plane or set

of hyper-planes in high- or infinite-dimensional space, achieving strong separation based

 42

on the greatest distance from the nearest training data points. SVM is effective in high-

dimensional spaces and can behave differently based on different mathematical functions

called kernels. Popular kernel functions include linear, polynomial, radial basis function

(RBF), and sigmoid. However, SVM may not perform well when data sets contain more

noise.

2. Decision Trees Classifier

Decision tree (DT) is a renowned non-parametric supervised learning method used

for classification and regression tasks. It is based on ID3, C4.5, and CART algorithms.

Recently, BehavDT and IntrudTree by Sarker et al. are effective in user behavior analytics

and cybersecurity analytics. DT classifies instances by sorting down the tree from the root

to leaf nodes, checking the attribute defined by that node. The most popular criteria for

splitting are "gini" for Gini impurity and "entropy" for the mathematical information gain

as Figure 11. Meanwhile for Figure 12, it shows the example of decision tree structure.

Figure 11: the calculation for Entropy and Gini

 43

Figure 12: Example of a decision tree structure

3. k-Nearest Neighbors (k-NN) Classifier

K-Nearest Neighbours (KNN) is a type of "instance-based learning" or "lazy

learning" method that does not generalize. The method maintains training data instances

in n- dimensional space rather than creating a broad internal model. KNN classifies new

data points using similarity metrics, such as the Euclidean distance function. The

Classification is based on a simple majority vote among the k Nearest Neighbours of each

point. Figure 13 and Figure 14 show calculation for the gap metric and calculation to gets

x appoints to the category with the largest likelihood. It is relatively resistant to noisy

training data, and accuracy is dependent on data quality. The main challenge with KNN is

determining the ideal number of neighbors to consider. KNN can be used both for

classification as well as regression. (Sarker I. H., 2021).

Figure 13: Calculation for the gap metric by Euclidean metric

Figure 14: x gets appointed to the category with the largest likelihood calculation

 44

4. Random Forest Classifier

A random forest classifier is an ensemble classification technique used in machine

learning and data science for various applications. It uses "parallel ensembling" to fit

multiple decision tree classes in parallel on different dataset sub-samples, minimizing

overfitting and increasing prediction accuracy and control. This approach is typically more

accurate than a single decision tree-based model. The method combines bootstrap

aggregation (bagging) and random feature selection to build a series of decision trees with

controlled variation. It is adaptable to both classification and regression problems and

works well for both categorical and continuous values. The RF learning model with

multiple decision trees is typically more accurate than a single decision tree-based model.

Figure 15 illustrates the Random Forest Classifier Structure.

Figure 15: Random Forest structure

2.5 FEATURE SELECTION

Processing high-dimensional data in machine learning and data science is a hard

issue for researchers and developers. Dimensionality reduction, an unsupervised learning

technique, improves human interpretations, reduces computational costs, and simplifies

models to prevent overfitting and redundancy (Sarker I. H., 2021).

 45

2.5.1 Feature Selection Background

Feature selection, also known as variable attribute selection in data, is the process

of selecting a subset of unique features (variables, predictors) for use in machine learning

and data science models. The feature selection process aims to decrease the dimensionality,

computational cost, training time of the prediction model, extreme information loss, and

overfitting, which by selecting the optimal relevant features subset and ignoring the

redundant or irrelevant features. (Chandrashekar & Sahin, 2014) (Thajeel I. K., Hshim F.,

Samsudin K., & Hashim S.J., 2023).

2.5.2 Classification of Feature Selection Techniques

1. Selection-based knowledge

Selection-based knowledge includes selecting features based on expertise in the

field rather than using formal feature selection procedures to determine the importance of

each feature. This method can result in biassed selection, perhaps ignoring the most

important elements for detecting XSS attacks. It frequently results in a narrow feature set

that may not capture all attack characteristics and lacks generalizability, as the chosen

features may be exclusive to a certain dataset or data type. Furthermore, this strategy might

be time-consuming when working with many features, making it ineffective.

Example of Selection-based Methods:

1. Manual selection based on Domain Expertise

: Experts carefully select relevant features based on their understanding of the

problem domain. This strategy is strongly reliant on expert judgement and may

require iterative refinement based on trial and error.

2. Expert-driven feature engineering

 46

: Domain specialists design new features or change existing ones based on their

knowledge of the data and problem domain. This can include modifying variables,

generating interaction terms, or deriving new features from raw data.

2. Filtering method

Filtering methods assess each attribute individually and assign scores or rankings

using criteria such as correlation coefficient, Information Gain (IG), Chi-square test, and

document frequency. These strategies exclude features that do not fit the criterion, hence

decreasing the feature set. For example, the correlation coefficient measures the strength

of the linear relationship between features and the target variable, IG measures entropy

reduction, the Chi-square test assesses categorical variable dependence, and document

frequency measures term occurrence in documents. Filtering approaches, on the other

hand, have the potential to miss significant feature interactions because they evaluate

features independently and may not perform well with huge feature sets. Figure 16 shows

the Filter Methods Implementation.

Figure 16: Filter Methods Implementation

Example of Filtering Methods:

1. Correlation Coefficients

: Determines the degree and direction of a linear relationship between two variables.

During feature selection, features having low correlation coefficients with the

target variable may be excluded.

2. Information Gain (IG)

: Measures the reduction in entropy (uncertainty) of the target variable when a

feature is known. The features that do the most to reduce ambiguity about the

objective are kept.

 47

3. Chi-square Test

: Assesses the independence of categorical variables. Feature selection discovers

features that are significantly related to the target variable.

4. Document Frequency (DF)

: Counts how many times a term appears in a set of documents. It is used in text

mining to exclude terms that are too uncommon or too prevalent.

3. Wrapper method

Wrapper approaches analyze subsets of features by training and testing the model

on each subset to determine the most relevant characteristics. Although this strategy is

computationally expensive due to the requirement to train and test the model several times,

it is frequently more effective than other methods since it considers feature interactions

and their impact on model performance. For example, the most significant features were

selected using Sequential Backward Selection (SBS) in conjunction with IG. Despite their

effectiveness, wrapper approaches' extensive search procedure has large processing costs.

Figure 17 illustrates the Wrapper Methods Implementation.

Figure 17: Wrapper Methods Implementation

Examples of Wrapper Methods:

1. Recursive Feature Elimination (RFE)

: Selects features by recursively considering smaller and smaller sets of features

and rating them in order of significance. It trains the model repeatedly,

 48

removing the least significant characteristics until the desired number of

features is achieved.

2. Sequential Feature Selection (SFS)

: Feature subsets are evaluated by adding features sequentially and analyzing

the impact on model performance. It begins with an empty collection of

features and adds the highest-performing feature at each phase.

3. Genetic Algorithm for feature selection

: The best collection of features is selected using evolutionary algorithms

influenced by natural selection. It creates a population of candidate feature

subsets, assesses their fitness using model performance, and develops the

population over time to optimize feature selection.

4. Embedded method

Embedded approaches embed feature selection into the model training process, so

it is part of the model creation rather than a separate pre-processing phase. Examples

include Multi-Objective Evolutionary Feature Selection (MOEFS), which selects the

fewest number of features, and approaches like CfsSubsetEval, which uses greedy search

and reinforcement learning algorithms to choose features based on classification error

rates. While embedded approaches can be effective and consider feature interactions, they

are sensitive to model and hyperparameter selection, and feature selection outcomes are

not always immediately interpretable. Figure 18 shows the Embedded Method

Implementation.

Figure 18: Embedded Methods Implementation

 49

Example of Embedded Methods:

1. LASSO (Least Absolute Shrinkage and Selection Operator)

: Adds a penalty proportionate to the absolute value of the coefficients,

reducing less significant values to zero. Features with nonzero coefficients are

chosen.

2. Decision Trees

: Creates a tree structure by recursively separating data based on characteristics,

with splits selected to maximize the homogeneity of the target variable within

each subset. Features at higher levels of the tree are usually more important.

3. Random Forest

: Decision tree ensembles are formed by training each tree on a bootstrap

sample of data and a random selection of features. Feature significance

is determined by how much each feature reduces impurity across all trees.

4. Gradient Boosting Machines (GBM)

: Sequentially builds an ensemble of weak learners (typically decision trees),

with each subsequent model fixing the preceding one's faults. Feature

significance is determined by how frequently features are employed during

boosting iterations.

5. Attention model

Attention models use weighted features to focus on the most relevant sections of

the incoming data. They are particularly useful in Natural Language Processing (NLP)

applications, where they are frequently used with techniques like as word2vec, Long

Short-Term Memory (LSTM), and Bidirectional LSTM (Bi-LSTM) networks to model

sequential data. Attention mechanisms solve the difficulty of collecting long-term

dependencies in data by allowing the network to focus on the most relevant sections of the

input sequence at each time step. Attention mechanisms have been shown to be effective

 50

in modelling language data in previous studies. However, the usefulness of attention

models for feature selection in non-NLP domains is not well documented.

Example of Attention Model Methods:

1. Self-Attention Mechanisms (used in Transformer models)

: Computes attention scores for all pairs of words in a sequence, considering word

dependencies regardless of location. It provides weights to words depending on

their relationship to one another.

2. Attention Layers in recurrent Neural Networks (RNNs), LSTM, and Bi-

LSTM

: Introduces attention mechanisms in recurrent neural networks for focusing on

relevant parts of the input stream. It applies weights to different time steps or words

based on their predictive value.

2.6 DATASET

Dataset in general is a structured collection of data points or observations. It serves

as the foundation for various data-driven tasks, including machine learning, statistical

analysis, and research. Meanwhile, in the context of Cross-Site Scripting (XSS) attacks

detection, a dataset specifically refers to a collection of labeled examples used for training

and evaluating machine learning models. Datasets in XSS attack detection are achieved

and extracted from various sources like web pages, in the form of HTML tags, JavaScript

code, and other myriad contextual information.

2.6.1 Labeling, Training, and Evaluation

Each instance in dataset is labeled, either as malicious (indicating an XSS attack)

or benign (safe). This labeling is part of the process to ensure that the machine learning

model learns to distinguish between harmful and harmless content. All the datasets will

eventually split into two subsets, which into training set and a test set. This training set is

to help machine learning recognize patterns that are associated with XSS attacks. This

 51

process is being evaluated by using performance metrics such as measuring accuracy,

precision, recall, and other metrics.

2.6.2 Features/Attributes

Various XSS datasets have been found in various research papers and articles.

Hence, the common datasets include HTML tags, Contextual Information, JavaScript code,

and others.

2.6.3 Dataset sources

The paper ‘Detection and Prevention Techniques for cross-site scripting attacks:

A Comprehensive review’ by Thajeel I. K., Samsudin K., Hashim S.J., & Hashim F., 2023’

provide a comprehensive review of several approaches for detecting and preventing XSS

attack. Here are some of the most utilized datasets linked with XSS attacks:

1. CIC-ODS 2017 Dataset

This well-known and comprehensive dataset, compiled by the Canadian Institute for

Cybersecurity (CIC), contains a variety of cyber threat data analysis, including XSS

attacks. This dataset has been used extensively in cybersecurity research to assess intrusion

detection systems and machine learning models. CIC-IDS 2017 serves as a benchmark

dataset for evaluating IDS and machine learning models across different types of cyber

threats, including XSS attacks.

Features/Attributes:

1. Network Traffic Metadata

: This category includes details like source IP, destination IP, and port numbers.

These attributes provide context about the communication flow.

2. Payloads

 52

: This category is extracted from HTTP requests and responses. Payloads contain

the actual content transmitted between client and server. Analyzing these payloads

helps identify potential XSS attacks.

3. Attack labels, which indicate whether an instance is an XSS attacks or not

: Each instance is labeled and either an XSS attack or benign. These labels serve

as ground truth for training and evaluating machine learning models.

2. XSSD Dataset

This dataset is a curated dataset focused on XSS attacks, created to help researchers in this

field. This dataset was used to train and evaluate machine learning models that detect XSS

assaults. XSSD is often used alongside other cybersecurity datasets but is tailored

specifically for XSS attacks, offering detailed examples that capture the nuances of XSS

payloads and attack vectors.

Features/Attributes:

1. URL and Parameter Details

: This category includes domain and path information, providing context about

web requests.

2. HTTP Request and Response Headers

: This header contains essential metadata exchanged during communications.

3. Content

: HTML Extracted from web pages or scripts, this content helps identify potential

vulnerabilities.

4. JavaScript code snippets

: These snippets play a critical role in detecting XSS attacks.

 53

3. Wooyun-Email-XSS-Dataset

This dataset included a sample of XSS attacks retrieved from email messages. This

contains real-world instances of XSS assaults that originate from email sources, which

may be utilized for analysis and model training. While specific to emails, it complements

other datasets by offering insights into XSS propagation via different communication

channels.

Features/Attributes:

1. Email headers

: These include sender information, receiver details, and the subject of the email.

Headers provide context about the communication and potential security risks.

2. Email body content

: The dataset captures both HTML and text parts of email bodies. Analyzing these

content segments helps identify any malicious payloads.

3. XSS payload examples extracted from emails

: Extracted from actual emails, these examples represent real-world attack

scenarios. They serve as valuable training data for detecting XSS vulnerabilities.

4. Kaggle XSS Dataset

Kaggle offers a dataset focused on XSS attacks that is frequently used by

researchers and practitioners to design and test detection methods. This dataset allows for

a comparative comparison of various detection approaches and algorithms. While specific

to Kaggle, it aligns with broader cybersecurity datasets and provides a diverse set of XSS

attack instances for training and evaluation.

Features/Attributes:

1. URLs and Associated Parameters

 54

: These features capture information about web addresses (URLs) and any

parameters associated with them. URLs play a crucial role in understanding the

context of web requests.

2. HTTP Request and Response Headers

: These headers contain metadata exchanged during communication between

clients (browsers) and servers. Analyzing headers helps identify potential security

risks.

3. HTML Content and JavaScript Snippet

: The dataset includes actual HTML content from web pages and snippets of

JavaScript code. These features allow for deeper analysis of potential

vulnerabilities.

4. XSS Payload Examples

: The dataset contains examples of XSS payloads with varying levels of complexity

and obfuscation. These real-world attack scenarios serve as valuable training data

for detecting XSS vulnerabilities.

5. Personalized Datasets from Researchers

Many researchers develop their own datasets based on their experiments and research

objectives. These datasets frequently include specialized samples or focus on specific

features of XSS assaults that are of interest to researchers. Personalized datasets

complement existing public datasets by providing tailored insights and addressing niche

aspects of XSS attacks.

Features/Attributes:

 55

1. Enhanced Metadata on HTTP Traffic and Payload Characteristics

: Researchers collect detailed information about network traffic, including source

IPs, destination IPs, ports, and payload sizes. Understanding traffic patterns aids

in identifying anomalies or potential security threats.

2. Contextual Information Specific to the Researcher’s Experimental Setup

: This context may involve specific web applications, user behaviors, or

environmental factors. Researchers tailor their datasets to match the conditions

relevant to their experiments.

3. Fine-Grained Annotations and Label for Detailed Analysis

: Labels go beyond binary (e.g., attack vs. benign) and provide nuanced

information. Annotations may include severity levels, attack types, or specific

vulnerability details.

6. Other publicly Available Datasets

Various other datasets are available on platforms such as GitHub, research repositories,

and cybersecurity forums. These datasets help to increase the collective knowledge and

understanding of XSS attack patterns and detection strategies. Below are the publicly

available well-known datasets that researchers may explore for XSS attack detection:

1. OWASP Top Ten:

: While not a dataset per se, OWASP provides a list of common web application

security risks, including XSS, which can guide feature selection based on known

attack vectors and mitigation strategies.

2. VX Vault, PhishTank, XSSed Archive

 56

: These repositories provide real-world examples and statistics related to XSS

attacks, offering insights into emerging threats and attack patterns.

3. Research Publications

: Often accompanied by supplementary materials, research papers publish datasets

used in experiments, allowing replication and further exploration of findings.

2.7 CONSIDERATION IN DETERMINING FEATURE SELECTION

METHODS FROM DATASET ATTRIBUTES

When designing feature selection approaches for XSS attack detection, it is critical

to examine a variety of factors to ensure effective model performance and generalizability.

Key aspects include dataset features, attack variability, data quality, model requirements,

and community insights:

1. Dataset Features

Evaluating the types of characteristics available in a dataset is critical. XSS attacks are

detected using features such as HTTP headers, URL structures, and HTML and JavaScript

content. Understanding which features are most important and considering feature

engineering to create more valuable features can dramatically improve detection

capabilities.

2. Attack Variability

XSS attacks can vary greatly in sophistication and obfuscation. To effectively generalize

feature selection algorithms, the dataset must include a wide range of XSS payloads and

attack scenarios. Additionally, recording contextual information such as session details

and user-agent data might aid in distinguishing between legitimate and fraudulent behavior.

3. Data Quality and Labeling

 57

The accuracy of feature selection and model training depends on the quality and reliability

of the dataset's labels or annotations. To reduce biases and optimize performance across

both groups, imbalances in the dataset must be addressed, such as fewer XSS attack

occurrences than benign traffic.

4. Model Requirements and Constraints

Consider the computational cost of feature selection approaches. Large datasets are best

suited to computationally efficient techniques such as filtering. Model interpretability is

also vital, therefore utilizing feature selection methods that provide information on feature

importance and contributions to model predictions.

5. Experimental Validation and Benchmarking

Validate feature selection approaches with rigorous experimentation and comparison to

known measures like precision, recall, and F1-score. Ensuring that selected features

generalize effectively across XSS attack datasets and real-world scenarios improves model

adaptability to a variety of contexts.

6. Community Insights and Best Practices

Use insights from cybersecurity community forums, research articles, and collaborative

repositories such as Kaggle and GitHub. Community input can help identify beneficial

methods and potential hazards, driving improved feature selection decisions.

Conclusion

Effective feature selection for detecting XSS attacks requires a thorough understanding of

dataset properties, attack variability, data quality, and model specifications. By

systematically examining these factors, researchers and developers can use robust feature

selection approaches to increase the accuracy and reliability of XSS detection systems in

real-world applications.

 58

2.8 RELATED WORK/PREVIOUS WORK

2.8.1 Detection of XSS in web applications using Machine Learning Classifiers

This paper has been focused on detecting Cross-Site Scripting (XSS) attacks in web

applications using machine learning classifiers. Cross-site scripting is known for the attack,

in which malicious scripts are injected into trusted websites for illegal purposes like

stealing cookies, impersonating users, and more. As the paper aims to develop an effective

yet comprehensive method in identifying XSS attacks, both types of web pages, which are

benign and malicious, are being operated throughout this study.

Machine Learning Classifier used in this paper includes Support Vector Machine

(SVM), K-Nearest Neighbors (KNN), Radom Forest, and Logistic Regression. In the

meantime, a set of features selected were based on their relevance to XSS attacks, such as

the presence of malicious JavaScript, doubled characters, special characters, server- side

validation, content-length, and number of keywords.

The dataset comprised both benign and malicious web pages, with 70% used for

training and 30% for testing in the first trial. A second experiment is being held using

tenfold cross-validation to reduce sampling bias. Alongside this experiment, all the

classifiers are being evaluated using performance metrics such as recall, precision,

accuracy, and the F-measure. Thus, the Random Forest Classifier has the highest accuracy

of 98%, with a recall of 0.99 and an F-measure of 0.955, showing greater effectiveness in

detecting XSS attacks.

Despite the outstanding accuracy, the study recognizes opportunities for

development by including more advanced features and investigating further machine

learning and deep learning methods. While all classifiers performed outstandingly, with

over 90% accuracy, the Random Forest classifier stood out as the most successful. The

findings indicate that machine learning techniques can considerably improve online

application security by correctly identifying and mitigating XSS threats.

 59

In a nutshell, the study shows that machine learning classifiers, notably Random

Forest, can detect XSS attacks with high accuracy. This method can be used in real time

to detect dangerous scripts or URLs, helping to improve web application security. Future

study will focus on increasing feature representation and developing more complex

algorithms to improve detection accuracy and precision.

2.8.2 Machine Learning based Cross-site Scripting Detection in Online Social

Network

The primary purpose of this study is to establish a machine learning-based method

for detecting cross-site scripting (XSS) attacks in online social networks (OSNs).

Considering the danger of XSS attacks towards OSNs, which are caused by user-generated

content, the study concentrated on recognizing and classifying essential webpage elements

to detect malicious content effectively. The study consists of processes such as extracting

features, creating classification models, and assessing their performance.

There are two types of feature extraction that had been used in this study which are

similarity-based features (keywords, JavaScript, HTML tags, and URLs) and difference-

based features (which use OSN network topology to measure suspicious data distribution).

The dataset consists of 29,046 benign samples from the DMOZ database and 21,998

malicious samples from the XSSed database and weibo.com, which represented XSS

worm cases in OSNs.

Two machine learning algorithms are being used to create the classification

models; ADTree and AdaBoost.M1. Performance metrics used are quite similar to the first

paper, which are recall, recall, and F-measures. In result, both the algorithm resulting in

high accuracy; ADTree is 0.938, meanwhile AdaBosst.M1 is 0.941. Both similarity-based

and difference-based characteristics were useful, particularly in simulated OSN situations.

Despite the positive findings, the study admits limitations, such as the dependence

for real-world testing and real-time detection capabilities. Future research directions

include adding new features, increasing real-time identification, and investigating

 60

different machine learning algorithms. The study indicates that machine learning can

greatly improve XSS detection in OSNs, indicating the feasibility of the proposed

approach.

2.8.3 The Future of Web Security: XSS Detection through Machine Learning

This paper examines the growing importance of mitigating cross-site scripting

(XSS) attacks in web applications using machine learning algorithm techniques. XSS

attacks represent substantial concerns since they inject malicious scripts into web pages,

jeopardizing user data and application integrity. The project intends to improve web

security by utilizing machine learning algorithms such as neural networks, decision trees,

SVM, random forests, naive Bayes, KNN, and logistic regression. These algorithms

analyze information retrieved from URLs and JavaScript code, allowing for the detection

of XSS attack patterns.

The study relies heavily on feature selection, which focuses on extracting

significant characteristics from web content to determine between genuine and malicious

inputs. While the precise datasets utilized for training and evaluation are not explicitly

stated, the study emphasizes the ML models' efficiency in detecting XSS vulnerabilities.

The performance of these models is assessed using evaluation metrics such as accuracy,

precision, recall, and even AUC.

However, the study notices challenge such as the difficulty in responding to new

XSS attack approaches, inherent false positive/negative rates, and the necessity for

ongoing upgrades to retain effectiveness against developing threats. Future research

directions suggest using AI and machine learning to construct more adaptable and

preemptive web security measures. This includes improving natural language processing

for better script analysis, safeguarding IoT devices with ML-driven defenses, utilizing

blockchain for greater data integrity, and investigating quantum computing's potential for

real-time threat detection.

 61

Lastly, the study emphasizes the importance of machine learning (ML) in

protecting web applications from XSS attacks, as well as ongoing efforts to develop

proactive defense systems. By leveraging ML's adaptive capabilities and integrating with

upcoming technologies, researchers hope to create a robust cybersecurity framework

capable of efficiently tackling current and future concerns.

2.8.4 Detecting Cross-Site Scripting Attack using Machine Learning Algorithms

This paper starts by utilizing several supervised learning models to detect Cross-

site Scripting (XSS) attacks. The models or methods consist of Decision Tree Classifier,

Random Forest Classifier, Support Vector Machine (SVM), K-Nearest Neighbor (KNN),

and Naive Bayes Classifier. The Decision Tree and Random Forest Classifier had the best

result in the performance metrics which with highest precision, recall, and F1- scores, with

just 19 and 12 misclassified samples, respectively. They also achieved precision of

99.905% and 99.940% respectively.

The whole performance of these models was assessed using various metrics,

including accuracy, precision, recall, F! Score, mean absolute error, and root mean squared

error. While the Decision Tree and Random Forest models performed admirably, the SVM

and KNN models did equally well though they have slightly higher misclassification rates.

However, the Naive Bayes Classifier has much poorer performance metrics, illustrating

limitations in reliably detecting XSS attacks.

Future Work and Recommendations The study recommends future research

directions, such as using sophisticated variations of Naive Bayes or ensemble techniques

like stacking and boosting to increase classification performance. There is also interest in

designing other Document Object Model (DOM)-based behaviors to identify other sorts

of injection issues, such as SQL injection. Furthermore, the study looks at the possibilities

of soft computing approaches like evolutionary algorithms and neural networks for future

implementation tactics.

 62

In conclusion, the study highlights the significance of supervised machine learning

techniques in detecting XSS threats. Among the models tested, the Decision Tree classifier

demonstrated the highest accuracy, highlighting machine learning's potential for

improving web application security against XSS attacks.

2.8.5 A Detailed Survey on Recent XSS Web-Attacks machine Learning Detection

Techniques

This study provides a comprehensive survey of machine learning methods

employed in detecting Cross-site Scripting (XSS) attacks on web applications. This

research aims to analyze the efficiency of various algorithms and approaches in

minimizing these vulnerabilities. The methods involve thorough literature research, an

examination of metaheuristic algorithms such as Genetic Algorithms mixed with machine

learning, and a comparison of various algorithms and feature selection strategies.

The results reveal detection accuracies of up to 95.4% with minimal false positive

rates, indicating encouraging results for XSS detection models. Despite these gains, the

report illustrates many limits. Challenges include adjusting models to new and diversified

XSS attack types, restricted access to extensive datasets, and the possibility of large false

positive rates in some detection systems.

Main Algorithms and Features J48 Decision Tree, Naive Bayes, and metaheuristic

algorithms such as Particle Swarm Optimization are among the key algorithms covered,

with each being evaluated on measures such as accuracy, recall, and precision. The

importance of features is stressed, emphasizing the important function of JavaScript events,

URL patterns, and HTML elements in identifying XSS vulnerabilities.

Ahead to the future, the study proposes new research directions, such as

investigating semi-supervised and deep learning algorithms to improve detection accuracy.

It suggests further research into hybrid solutions that combine metaheuristics and machine

learning to better flexibility and resilience to developing XSS attack strategies. In

conclusion, while great progress has been made, further research is required to develop

 63

more effective and resilient XSS detection systems to protect online applications against

malicious exploitation.

2.8.6 Multiclass Classification of XSS Web Page Attack using Machine Learning

Techniques

This study “Multiclass Classification of XSS Web page Attack using Machine

Learning Techniques” addresses the critical challenge of detecting XSS attacks on web

pages using machine learning approaches. The primary objective is to identify whether

web sites are benign or malicious by extracting information from both web documents and

URLs. To do this, the study uses three classifiers: Naive Bayes, Decision Tree, and Multi-

Layer Perceptron, and evaluates their performance using 10-fold cross-validation.

Results illustrate that MLP and Decision Tree classifiers beat Naive Bayes, with

MLP obtaining high accuracy rates of 96.20%. Performance parameters such as accuracy,

model building time, and error measurements such as mean absolute error and root mean

squared error are used to evaluate classifier efficacy, demonstrating MLP's ability in

handling XSS classification jobs. However, the study acknowledges many limitations,

including potential constraints owing to dataset size and the specificity of the XSS attack

types evaluated, which may affect the findings' generalizability.

In terms of algorithm selection, Naive Bayes, Decision Tree, and Multi-Layer

Perceptron were chosen for their practicality for multiclass classification tasks and

previous success in similar investigations. The report suggests future research approaches

that focus on investigating fresh traits and assault kinds to improve detection skills. It also

advises that studies be expanded to include more diverse datasets to increase accuracy and

efficiency.

Overall, the study emphasizes the importance of feature extraction from web pages

and URLs in improving XSS attack detection approaches. It provides useful insights into

increasing web security using machine learning approaches, highlighting their potential

for reducing XSS assaults.

 64

2.8.7 Comparison of machine learning techniques for detecting malicious

webpages

The study evaluates various machine learning algorithms for detecting potentially

harmful websites, with a focus on their ability to distinguish between valid and malicious

URLs or pages. It addresses the major cybersecurity dilemma by analyzing algorithms like

SVM, decision trees, and neural networks. The study focuses on feature- rich datasets that

include textual, structural, and visual features retrieved from online pages, which are

critical for accurately modelling hazardous behaviors.

The models' efficiency in identifying malicious actions is evaluated using

performance metrics such as accuracy, precision, recall, and F1-score. Cross-validation

procedures are used to guarantee that the results are resilient by evaluating the models

against several subsets of the dataset. Despite the hopeful results, the study admits some

limitations, including potential biases in the dataset, which may affect the generalizability

of the findings.

Furthermore, the interpretability of the models and the difficulty of describing

feature importance are emphasized as issues that require further investigation. The

conclusion emphasizes the importance of the findings for improving cybersecurity

measures and offers future research paths, such as developing more interpretable models

and incorporating emerging threat detection approaches.

Finally, the study provides useful insights into the use of machine learning to detect

dangerous websites, including a comparison of several algorithms and datasets. It

emphasizes the necessity for ongoing research to solve the stated shortcomings and

increase the field's ability to successfully combat growing cybersecurity threats.

2.8.8 Summarization of papers

Based on the papers above, it is crystal clear that machine learning techniques,

such as Decision Trees, Random Forests, Support Vector Machines, K-Nearest Neighbors,

 65

and Naive Bayes, are crucial in detecting Cross-Site Scripting (XSS) attacks. Random

Forest method or classifier surprisedly had resulted for the highest accuracy in the

detection of XSS attack, that been highlighted in most of the paper, which are 99.940% of

the precision and lowest number of misclassifications. However, challenges like adapting

models to diverse attack types, limited dataset availability, and high false positive rates

persist. The papers emphasize the need for ongoing research to improve accuracy,

efficiency, and adaptability of these models to evolving cybersecurity threats. Future

directions include exploring semi-supervised and deep learning approaches, developing

interpretable models, and incorporating emerging threat detection techniques.

2.9 CRITICAL VIEW ON CURRENT PROBLEM AND JUSTIFICATION

Table 5 shows some previous works that have been carried out by various researchers

focusing on detecting Cross-Site Scripting (XSS) Attack using various methods in

Machine Learning. These works have been categorized according to their methodologies,

techniques, parameters/attributes, and software/hardware.

Table 5: Previous work

No Paper Methodologies Techniques Attributes Software/Hard
ware

1 Detection of
XSS in web
applications
using Machine
Learning
Classifiers by
Raima Banerjee,
Aritra Baksi,
Nidhi Singh,
Soham Kanti
Bishnu (2020)

1. Text Mining-
Based Approach

2. Client-Side
Detection
3. Structures
Supported
Normal and
Malicious
JavaScript Code

1. Machine
Learning
classifiers (SVM,
KNN, Random
Forest, and
Logistic
Regression)
2. Feature
Extraction
3. Dataset
Extraction

1. URLs
Features

2. JavaScript
Features

1. Python 3.7.4
2. Sci-kit

2 Machine
Learning based
Cross-site
Scripting
Detection in
Online Social
Network by Rui
Wang, Xiaoqi
Jia, Qinlei Li,

1.Feature
Extraction
2. Webpage
Collection
3. Classification
Model Building

1. ADTree and
AdaBoost
algorithms

2. 10-fold Cross-
Validation
Feature
Grouping

1. Keyword
Features
2. JavaScript
Features
3. HTML Tag
Features
4. URL Features

1. Weka (data
mining toolkit)

 66

Shengzhi Zhang
(2014)

3 The Future of
Web Security:
XSS Detection
through Machine
Learning by
Ritika Bansal
(2023)

1. Supervised
Learning
Algorithms
(SVM, neural
networks, and
decision trees) 2.
Ensemble
Learning
Methods 3.
Genetic
Algorithms and
Reinforcement
Learning.

1. Feature
Extraction 2.
Anomaly
Detection
3.Content
Security Policy
(CSP)

1. URL Features
2. JavaScript
code Features
User Interaction
Patterns

1. Machine
Learning
Frameworks
(TensorFlow,
Scikit-learn) 2.
Web Security
Tools (Burp
Suite, OWASP
ZAP) 3. Dev
Environments
(VS Code,
PyCharm)

4 Detecting Cross-
Site Scripting
Attack using
Machine
Learning
Algorithms by S
Karthika, G
Padmavathi,
Roshni A, and S
Varshini (2024)

1. Data
Collection
2. Data Pre-
processing
3. Feature
Selection

1. Machine
Learning
algorithms
(Naive Bayes,
KNN, Decision
trees, Random
Forest, SVM)
2. Performance
Metrics

3. Data
Importing

Datasets consist
of 10100 rows
and feature
attributes of 68
columns

Datasets consist
of 10100 rows
and feature
attributes of 68
columns

5 A Detailed
Survey on
Recent XSS
Web-Attacks
machine
Learning
Detection
Techniques by
Jasleen Kaur &
Dr Urvashi Garg
(2021)

1. Data
Collection
2. Data Pre-
processing
3. Feature
Selection

1. Machine
Learning
algorithms
(Naive Bayer,
KNN, Decision
Trees, Random
Forest, and
SVM)
2. Performance
Metrics
3. Data
Importing

Datasets consist
of 10100 rows
and feature
attributes of 68
columns

Datasets: Kaggle
Community

6 Multiclass
Classification of
XSS Web Page
Attack using
Machine
Learning
Techniques by S.
Krishnaveni &
K.
Sathiyakumari
(2013)

1. Cross-site
Scripting (XSS)
Attack Detection
2. Feature
Extraction
3. Machine
Learning
Techniques
(Naive Bayes,
Decision Tree,
and MLP)

1. Naive Bayes
2. Decision Tree
3. Multi-Layer
Perceptron
(MLP)

1. Script-based
features
2. Core contents
3. DOM objects

1. Weka (open-
source data
mining tool)

7 Comparison of
machine learning
techniques for
detecting
malicious
webpages by

1. Cross-site
Scripting (XSS)
Attack Detection
2. Feature
Extraction
3. Machine
Learning

1. Naive Bayes
2. Decision Tree
3. Multi-Layer
Perceptron
(MLP)

1. Script-based
features
2. Core contents
3. DOM objects

1. Weka (open-
source data
mining tool)

 67

H.B. Kazemin,
S. Ahmed (2014)

Techniques
(Naive Bayes,
Decision Tree,
and MLP)

2.10 PROPOSE SOLUTION/FURTHER PROJECT

Based on a critical review of existing work in Table 5, this proposal recommends

employing the hybrid combinations of Random Forest algorithm and XGBoost to improve

the identification of Cross-Site Scripting (XSS) threats. Random Forest, an ensemble

learning method that combines multiple decision trees, results in a more accurate and

robust model, lowering the danger of overfitting. Its ability to rate the value of various

items is critical for detecting XSS, which involves identifying essential qualities like URL

patterns, JavaScript features, and HTML tags. Meanwhile XGBoost is known for its high

performance and accuracy. XGBoost includes Lasso and Ridge techniques, which will be

help in encountering overfitting issues during the training.

For this project, a combination of comprehensive feature selection methods and

Random Forest's built-in feature significance will be utilized to select features, ensuring

that only the most relevant ones are used for model training. Consideration in choosing

the best feature selection method for pairing with selected machine learning classifier is

crucial in producing high accuracy of result. Thus, this matter has been properly

highlighted in section 2.7.

The Random Forest classifier is justified by its accuracy and robustness, as it

effectively handles complex and variable XSS attack patterns while minimizing

overfitting. Its feature importance ranking determines the most important qualities for

identification, and its capacity to manage imbalanced datasets using bootstrapping and

majority voting eliminates bias towards the dominant class. Additionally, Random

Forest's scalability makes it suitable for real-world applications with high data volumes,

such as online security. Integration with well-known machine learning frameworks

such as Scikit-learn and TensorFlow improves its practicality and usefulness.

 68

Combining both methods as model training in the project could resulting in a

powerful performance as both offering significant strength in the form of detecting XSS

attacks. This jumping stone will help in enhancing the detection accuracy and efficiency,

thus providing a comprehensive solution for web security.

2.11 CONCLUSION

In essence, this project advocates for the use of the Random Forest algorithm and

XGBoost to improve the detection of Cross-Site Scripting (XSS) threats. Random Forest’s

precision and robustness, combined with XGBoost’s high performance and accuracy,

make this hybrid approach an excellent choice for dealing with complicated attack patterns

while minimizing overfitting hazards. By integrating extensive feature selection methods

with Random Forest's intrinsic feature relevance ranking, we ensure that only relevant

features are used to train models. Furthermore, Random Forest's scalability and XGBoost

regularization techniques makes it suitable for real-world applications, particularly in

online security environments. Its smooth interaction with popular machine learning

frameworks like Scikit-learn and TensorFlow makes it even more useful. When

implementing this strategy, we prioritize accuracy, relevance, and adaptation to different

situations.

 69

CHAPTER 3: METHODOLOGY

3.1 INTRODUCTION

This chapter provides a comprehensive overview of the project methodology,

which serves as the backbone for conducting our study. It meticulously outlines the various

stages, processes, and strategies that have been strategically designed to ensure the

efficient and successful achievement of the project’s objectives. To provide a clear and

dynamic understanding of the project’s progression, this project employs the Agile

approach. Renowned for its iterative and flexible design, the Agile approach allows us to

tackle complex processes in manageable, incremental tasks. This ensures that each phase

of the project is continuously refined based on feedback and learning, thereby maintaining

a high standard of adaptability and quality throughout the study.

3.2 PROJECT METHODOLOGY

This image in Figure 19 presents the Agile methodology, a highly effective

approach for managing machine learning projects. The Agile methodology is depicted as

a circular diagram with six key phases: Plan, Design, Develop, Test, Deploy, and Review.

This cyclical process emphasizes the iterative and incremental nature of Agile, making it

ideal for the exploratory and experimental nature of machine learning. Each phase

represents a critical step in the project lifecycle.

 70

Figure 19: Agile Methodology

3.2.1 Plan

The planning stage is the foundation of the entire project. In the context of the project, this

stage involves the critical step of ‘Raw Data Collection’. This is where the project

meticulously gathers all the necessary data for the project, which could range from logs

and user inputs to any other form of data that is relevant to the project.

3.2.2 Design

The design stage is where the ‘Feature Collection’ and ‘Feature Extraction’ steps come

into play. Here, the process is embarking on identifying and collecting the features from

the raw data. This process involves steps like data cleaning, data transformation,

upsampling minority, and feature scaling. Furthermore, engagement in the process of

feature extraction, which is the reduction of the number of resources required to describe

a large set of data accurately. This step is pivotal as it directly impacts the performance of

the machine learning model. This model involves experimenting various feature selection

methods to enhance and improving the performance of machine learning approach.

 71

3.2.3 Develop

The development stage involves the ‘Feature Selection’ and ‘Data Splitting’ steps. During

feature selection, this project strategically chooses the most important features that

contribute significantly to the prediction variable or output. Having irrelevant features in

the data can decrease the accuracy of the models and make your model learn based on

irrelevant features. Once the features are selected, the data is split into “Training data” and

“Test data”, setting the stage for the next phase.

3.2.4 Test

The testing stage corresponds to the ‘Model Training’ step. Here, various machine learning

classifiers such as Logistic Regression, Random Forest, XGBoost, Multilayer Perceptron

(MLP), Support Vector Machine (SVM) are employed to train the model using the training

data. This stage ensures that the model is well-equipped to make accurate predictions.

3.2.5 Deploy

The deployment stage involves the ‘Classification’ step. This is the final step where the

scripts are classified as either “Malicious/Benign” based on the trained model. This stage

marks the transition of the model from the development phase to the real-world application.

3.2.6 Review

The review stage involves evaluating the performance of the model using the test data and

refining the model based on the results. This could involve going back to previous stages

like ‘Develop’ or ‘Design’ to adjust the features or the model parameters. This stage

ensures that the model is continuously improved and adapted to meet the evolving

requirements.

3.3 PROJECT MILESTONES

Project milestones as in Table 6 indicate substantial progress or completion of a key

 72

deliverable or phase. Milestones are defined during project planning and used to track

progress throughout the lifecycle. They establish a defined plan and framework for

project execution, ensuring it stays on track and meets objectives. Tables 6 and 7 display

the project milestones for final year projects 1 and 2, respectively.

Table 6: Project Milestones

Week Activity

1 Proposal Discussion

Evaluation and verification of the proposal

2 Correction and Improvement of the proposal

Confirmation of chosen supervisor

3

Submission of Proposal to ePSM system

Beginning of article and research paper collection based on the chosen topic

4 Listing of summarizations of related research papers

5 Discussion on guidelines of Chapter 1 and Chapter 2

6 Chapter 1

7 MID SEMESTER BREAK

8 Chapter 2

9 Discussion on project progress and changes on report.

10 Discussion on guidelines of Chapter 3

11 Chapter 3 & Chapter 4

12 Project Demonstration & FYP1 Report

13 Project Demonstration & FYP1 Report

14 FINAL FYP I PRESENTATION

Report Submission & Presentation

15 Make changes to project according to comments from evaluator during

the presentation.

 73

16 Chapter 5 and discussion regarding Machine Learning frameworks and

detection methods

17 Chapter 6

18 Discussion and modification of Chapter 6

19 Chapter 7

20 Completing and making adjustment of final report

21 Project demonstration and final discussion with supervisor

22 FINAL FYP II PRESENTATION

Report Submission & presentation

3.4 FYP I Gantt Chart

Table 7: FYP I Gantt Chart

No Activity Week

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 Meeting with

supervisor

2 Proposal

Improvement

3 Proposal

submission

4 Design the system

5 System

development

6 Implementation of

project

7 System Testing &

Analysis

 74

8 System

maintenance

9 Final report

preparations

10

Presentation and

report submission

3.5 FYP II Gantt Chart

Table 8: FYP II Gantt Chart

N

o

Activity Week

16 17 18 19 20 21 22

1 System correction

2 Meeting with supervisor and project demo

3 Report Correction

4 Meeting with supervisor

5 Report Correction

6 Meeting with supervisor

7 Final report preparations

8 Presentation and report submission

3.6 CONCLUSION

In conclusion, this chapter presents a full illustration of the project methodology,

which precisely implements the Agile approach's six stages: plan, design, develop, test,

deploy, and review. Each stage is critical to the project's progress, ensuring a structured

and dynamic approach. Furthermore, this chapter includes a visual representation of the

project milestones, providing a clear roadmap for the project's progress. It also introduces

the planned Gantt chart, a strategic tool for monitoring project progress and ensuring its

implementation. This thorough methodology and strategic planning highlight our

commitment to achieve the project's objectives efficiently and precisely.

 75

 76

CHAPTER 4: DESIGN

4.1 INTRODUCTION

This chapter covers project problem analysis and gathering information of

requirements. The analysis starts with a problem analysis. The analysis refines and

clarifies an incomplete or informal statement, revealing ambiguities and inconsistencies.

Analyzing the problem and identifying its features is crucial for improving product quality.

4.2 PROBLEM ANALYSIS

Cross-Site Scripting (XSS) attacks are becoming more common and dangerous in

today's digital environment. As web applications become more complicated and

interconnected, they provide a wider target for these attacks. XSS attacks leverage web

application vulnerabilities to inject malicious scripts into web pages visited by

unsuspecting visitors. These scripts can access sensitive data such as session cookies,

allowing attackers to impersonate users and do activities on their behalf. The ramifications

can vary from data theft to web content manipulation, all of which undermine user

confidence and security. Despite efforts to counteract these attacks using input validation,

output encoding, and security headers, the increasing sophistication of attack vectors

remains a serious concern. In the digital age, where online interactions are pervasive, the

possibility of XSS attacks emphasizes the crucial importance of strong web application

security mechanisms and ongoing monitoring.

4.3 REQUIREMENT ANALYSIS

In developing this project using a comprehensive machine-learning approach, this project

proposed a framework as shown in figure 20.

 77

Figure 20: Proposed Framework

From figure 20, the proposed framework for the detection of XSS attack using machine

learning consists of seven steps.

1. Raw Data: This is the initial stage where all the necessary data for the project is

collected. This could be in the form of logs, user input, or any other form of data

relevant to your project.

2. Feature Collection: In this step, we identify and collect the features from the raw

data. This could involve processes like data cleaning, upsampling minority, and

feature scaling.

 78

3. Feature Extraction: This is the process of reducing the number of resources

required to describe a large set of data accurately. This step is crucial as it directly

impacts the performance of the machine learning model.

4. Feature Selection: This step involves selecting the most important features that

contribute to the prediction variable or output in which you are interested. Having

irrelevant features in the data can decrease the accuracy of the models and make

the model learn based on irrelevant features.

5. Data Splitting: Once the features are selected, the data is split into “Training data”

and “Test data”. The training data is used to train the machine learning model while

the test data is used to evaluate the model's performance.

6. Model Training: In this step, various machine learning classifiers such as

Logistic Regression, Random Forest, XGBoost, Multilayer Perceptron (MLP),

Support Vector Machine (SVM) are used to train the model using the training data.

7. Classification: The final step is to classify the scripts as either “Malicious/Benign”

based on the trained model.

4.4 FEATURE SELECTION

In this project, various approach of feature selection was implemented. These

methods include Information Gain (IG) with different number of features (25, 67, 167),

IG and Recursive Feature Elimination (RFE), IG and Sequential Backward Selection

(SBS), IG and Lasso, IG and Principal Component Analysis (PCA), PCA, Lasso, Lasso

and PCA, Forward Selection and PCA, Elastic Net, Feature Importance, and RFE with

different numbers of features (10, 15, 3, and 2). Among this approach, the combination of

Information Gain (IG) with highest feature selected (167) as feature selection and hybrid

combination of model training (Random Forest (RF) and XGBoost achieved the highest

accuracy of performance.

 79

All the list of approach was actually under three types of feature selection types,

which are filter method, wrapper method, and embedded method. Each type of the feature

selection is actually offering different strength but aims for the same goal. As for the filter

method, this method is quick, computationally efficient, and easy to apply, making them

ideal for huge datasets. They rank characteristics according to statistical criteria such as

correlation, mutual information, and chi-squared scores. They are model agnostic since

they do not use any machine learning algorithms, making them appropriate for

preprocessing prior to applying any model. Examples include Information Gain (IG) and

the Correlation Coefficient (CC), which quantify the reduction in entropy or uncertainty

caused by separating data based on a characteristic.

Next, wrapper methods are machine learning approaches that enable personalized

feature selection by training a model on each subset of a feature collection. This strategy

improves forecast accuracy by taking into account the interactions between features and

the model. Wrapper techniques are adaptable and may be applied with any machine

learning algorithm. Some examples are Recursive Feature Elimination (RFE), Sequential

Forward Selection, and Sequential Backward Selection. These approaches operate by

analyzing feature subsets, modifying the number of features, and ensuring that the optimal

number of features is achieved.

Furthermore, embedded methods are a model training methodology that

incorporates feature selection into the model training process, decreasing overfitting by

selecting only relevant features. They are computationally efficient since feature selection

is part of the model training procedure. Embedded approaches include Lasso

Regularization (L1), which adds a penalty to the absolute value of coefficients to

successfully execute feature selection, and Ridge Regularization (L2), which prevents

overfitting by introducing a penalty proportional to the square of coefficient magnitudes.

Decision trees and ensemble approaches, such as Random Forest and XGBoost, assign

feature relevance scores depending on their utility in lowering impurities.

 80

In summary, this project used a variety of feature selection approaches to

determine the most important attributes for identifying Cross-Site Scripting (XSS) threats.

The combination of Information Gain (IG) with the hybrid model of Random Forest (RF)

and XGBoost produced the best results and a great performance. The following chapter

will go over further experiments, analyses, and outcomes.

4.5 MODEL TRAINING

In this project, various approach of model training was implemented. The method

includes Random Forest classifier (RF), XGBoost, Support Vector Mechanism (SVM),

and Multilayer Perceptron (MLP). Among this approach, the hybrid combination of model

training (Random Forest (RF) and XGBoost, along with Information Gain (IG) as feature

selection achieved the highest accuracy of performance.

Random Forest Classifier (RF) is a reliable and precise ensemble approach that

mixes numerous decision trees to increase accuracy and prevent overfitting. It can handle

complicated datasets and make reliable predictions. RF can prioritize feature importance,

determine which features contribute the most to predictions, and deal with unbalanced

datasets using techniques like as bootstrapping and majority voting. It is useful in machine

learning for both classification and regression.

Furthermore, XGBoost is a popular choice for predictive modelling because to its

great performance and efficiency. It incorporates L1 and L2 regularization strategies to

reduce overfitting and improve model generalization. XGBoost is extremely scalable and

can handle big datasets, making it ideal for a variety of machine learning tasks.

Next, Support Vector Mechanism (SVM) is a highly accurate and effective data

processing technique, especially in high-dimensional spaces. It can handle non-linear

relationships in data using kernel tricks and is less prone to overfitting, making it suitable

for classification, regression, and outlier detection tasks.

 81

Lastly, Multilayer Perceptron (MLP) is a flexible machine learning algorithm that

can learn complicated data patterns using several layers and non-linear activation

functions. It is utilized for tasks including as classification, regression, and pattern

recognition, making it extremely flexible to many types of data and issues. MLPs also

serve as the foundation for complicated neural network topologies in deep learning.

In summary, this project run the experiment towards all these models to test their

performance. The result shows that the hybrid combination of model training (Random

Forest (RF) and XGBoost, along with Information Gain (IG) as feature selection achieved

the highest accuracy of performance. This thorough analysis emphasises each model's

qualities and highlights the practicality of the chosen hybrid strategy in improving XSS

threat detection.

4.6 CONCLUSION

This chapter delves into the design approach for identifying Cross-Site Scripting

(XSS) attacks with machine learning algorithm. The complexity and danger of XSS

attacks in current online applications are addressed, revealing important needs for a strong

detection system. The design process involves feature collection, extraction, selection, and

model training. A blend of Information Gain (IG), Random Forest (RF), and XGBoost was

discovered to be the most successful, with the best accuracy. Multiple machine learning

models were examined, but the hybrid model that included RF and XGBoost and was

augmented by IG outperformed them all. The hybrid model's successful implementation

illustrates the efficacy of the chosen methodologies, paving the way for future

experimentation, analysis, and development.

 82

CHAPTER 5: IMPLEMENTATION

5.1 INTRODUCTION

In this chapter, we will go through to the all process that happen in this project.

The processes are Dataset Collection, Data Preprocessing, Feature Selection, Model

Training Phase, and Performance Evaluation. The evaluation matric will be measured to

test the model accuracy in this project. The framework for this study is shown in Figure

21.

5.2 PROJECT ENVIRONMENT SETUP

Figure 21: Framework for XSS Detection

 83

From Figure 21 of the XSS Detection Framework, the main process highlighted consist of

five stages, which are Preprocessing (Data Preprocessing), Feature Selection, Split the

dataset, Model Training, and Classification (Model Evalution).

5.2.1 Data Preprocessing

Data Preprocessing is one of the crucial processes in preparing raw dataset to ensure the

uniformity, quality, and relevance. This stage is also purposed to resulting in a data

cleaning. Figure 22 shown the detail process that are running in this stage, which are

checking for duplicate rows, checking for missing values, unsampled minority class, and

feature scaling process.

Feature 22: Flowchart for the Data Preprocessing stage

 84

5.2.1.1 Check duplicate rows

The occurrence of identical data instances in a dataset, known as duplicate rows, can have

an impact on the training and assessment of models. Before stepping to other step,

common techniques involve eliminating duplicates or retaining one instance. This are

aimed to keep one occurrence based on particular columns and removing the others had

been implemented to ensure the originality. Figure 23 and Figure 24 shows the process of

checking and removing the duplicate rows.

Figure 23: check duplicate row

Figure 24: remove duplicate

5.2.1.2 Check for missing values

On the other hand, missing values or null can also impact the evaluation of model training.

Missing values also referred as ‘null’ or ‘NaN’ in the dataset. There are several strategies

to overcome this problem which are eliminating missing data, imputation using statistical

measurements, and sophisticated techniques using machine learning algorithms. However,

as my dataset does not have any missing values (shown in Figure xx), we continue to

proceed to the next process.

 85

Figure 25: check missing value

5.2.1.3 Upsample minority class

In imbalanced datasets, the minority class may have insufficient samples, such as rare

events like XSS attacks. Techniques to address this include oversampling, undersampling,

and SMOTE (Synthetic Minority Over-sampling Technique), which create synthetic

instances of the minority class. In this project, as to balance with the majority class, we

manage this procedure in the project by increasing the sample size in the minority class.

Figure 26 shows the process of upsampling the minority class.

Figure 26: upsample minority class

5.2.1.4 Feature Scaling Process

 86

During model training, feature scaling is a strategy that is used to make sure that all

features have comparable scales. This can be accomplished by standardization, min-max

scaling, or robust scaling, which entails changing features to zero mean and unit variance.

Figure 27 shows the process of feature scaling towards the dataset.

Figure 27: feature scaling process

5.2.2 Feature Selection

In this stage, instead of focusing and relying on the same techniques or methods, that are

commonly practiced among scholars, like Information Gain, this project introduces a new

improvement and enhancement towards the XSS Detection. Various methods have been

experimented, starting from an individual approach to the using of hybrid, or combination

methods in feature selection stage. Figure 28 shows the complete process for the stage of

feature selection.

 87

Figure 28: Flowchart of Feature Selection process

5.2.2.1 Load the scaled dataset

Before further into more depth step, this project ensures to reload the scaled or final

preprocessing dataset into environment. This process is crucial as we want to avoid to train

the wrong or raw dataset. If we happen to train the raw dataset, it will badly impact the

quality and consistency of the model output. Figure 29 shows the process of loading the

scaled dataset.

 88

Figure 29: Process of load the final dataset

5.2.2.2 Separate features and target

In this step, the dataset is divided into features (input variables) and target variables using

the code in Figure 30. It is employed in machine learning to get data ready for regression

and classification models. The feature matrix is represented by the X variable, the target

vector is represented by the Y variable, and a column is dropped using the axis=1

parameter. When training models and assessing their effectiveness by contrasting

predictions with real target values, this division is essential.

Figure 30: Process of separating the features and target

5.2.2.3 Feature Selection Process

This the one of example for Feature Selection Process. In this example of Figure 31, the

project use Information Gain or Mutual Information for scoring purpose. This project

continues to utilized the SelectKBest method from scikit-learn. This approach evaluates

each feature's statistical dependency on the target variable. All features in the converted

dataset (X_new) were preserved by setting k='all'.

Figure 31: One of example for feature selection process

Figure 32 then shows the process of printing the features that are selected in the process.

In this part the features are ranked by their score. Regarding their score, this project prints

out the top five features that high likely to be selected during the selection process as

shown in Figure 33.

 89

Figure 32: Process of printing the feature selected

Figure 33: Process of printing the top 5 features selected

5.2.3 Split the dataset

As we refer to the framework in Figure 34 and Figure 35, this stage is the process for the

splitting dataset. The purpose of this step is to split a dataset into two subsets, which are a

training set and a test set. This process is important as it will influence the performance of

the model training.

 90

Figure 34: Flowchart of Splitting the dataset

From Figure 35, the machine learning model is trained using the training set (X_train,

y_train). These data provide patterns for the model to learn.

Test Set (X_test, y_test): Applied to assess the performance of the model.

evaluates the model's ability to generalize to new data. Meanwhile test_size=0.2 is

purposes to specifies that 20% of the data will be allocated to the test set, and the remaining

80% is for training.

Figure 35: Split dataset process

5.2.4 Model Training

A key component of machine learning is model training, which gives the model the ability

to recognize patterns, optimize parameters, generalize to new data, and make precise

predictions or classifications. It assures the model's efficacy in resolving issues in the

actual world by assisting it in adapting to different conditions outside of the training set.

Model training is a crucial stage in developing efficient machine learning systems since

methods like gradient descent are used to fine-tune these parameters. Figure 36 shows the

process of model training stages, meanwhile Figure 37 shows the implementation in the

form of python code.

 91

Figure 36: Flowchart of Model Training stage

Figure 37: Process of initialize and training the model

5.2.5 Classification (Model Evaluation)

After training the dataset with the model, this project continues with the model evaluation

to measure the overall performance of each model as shown is Figure 38. Model evaluation

helps in identifying the strength and weakness of each approach.

Figure 38: Flowchart of Model Evaluation stage

 92

Figure 39, y_pred defined as varible that consists of the expected target values (output)

derived from the test set's characteristics (X_test).

Figure 39: Predict of the test set

Meanwhile in Figure 40 is focusing on the evaluation metrices, such as accuracy

which evaluates how well predictions are made overall, precision represents the proportion

of actual positive cases that are anticipated to be positive. Meanwhile recall is a metric

used to quantify how well real positive events are anticipated. f1: Consolidates recall and

accuracy into a single score, and roc_auc is the area under the ROC curve, which measures

receiver operating characteristic (predicted probabilities are required). True positive, true

negative, false positive, and false negative counts are displayed via the conf_matrix. In

this phase, we also implement calculation for the confusion matrix to get their percentage

after the training phase.

Figure 40: Process of evaluating the model

Figure 41 shows the example output of the model evaluation after running the code.

 93

Figure 41: Example output for the model training

After gaining the result of the evaluation metrices and confusion matrix, this

project continues with plotting the confusion matrix graph to have a clear visualization of

the True Positive, True Negative, False Positive, and False Negative. The process is shown

as Figure 42. Meanwhile at Figure 43 shows the graph of confusion matrix. Note that

confusion matrix plays a crucial role in determining the evaluation scores of the

experiment in this project.

Figure 42: Process of plotting the confusion matrix graph

 94

Figure 43: Process of confusion matrix graph

5.3 CONCLUSION

This chapter describes an orderly approach to machine learning for the detection

of cross-site scripting (XSS). Data gathering, preprocessing, feature selection, model

testing and training, and performance evaluation are all steps in the process. The models

evaluated for the accuracy, precision, recall, and F1-score using a raw dataset that was

obtained from GitHub. The success of the system was quantified, laying the groundwork

for further comparisons. The goal of the trip is to provide participants a thorough grasp of

machine learning for XSS detection.

 95

CHAPTER 6: TESTING AND ANALYSIS

6.1 INTRODUCTION

This chapter will explain and shows how the project underwent testing with the

new improvement and enhancement for the XSS detection. The testing and analysis that

conducted will be present the performance of the methods and model selected.

6.2 TEST PLAN

6.2.1 Test Environment

This experiment is conducted on a machine operating on Windows 11 Home Single

Language 64-bit, the processor was Intel(R) Core (TM) i5-10300H CPU @ 2.50GHz, 2.50

GHz. The memory of the machine was 7900MB RAM, and the graphic card used was

NVIDIA GeForce GTX 1650. The suggested model for this project was created in Jupyter

Notebook and implemented in the Python programming language. 'Pandas' was the

package used to load the data into the models. The "Sci-Kit Learn" package was used to

implement the model, and it also supplied the matrix.

6.2.2 Test Strategy

This experiment underwent 43 approaches to complete all the testing. These

approaches started from individual approach to hybrid combination of approaches. The

approach for feature selection is Information Gain (IG), Recursive Feature Elimination

(RFE), Sequential Backward Selection (SBS), Lasso, Principal Component Analysis

(PCA), Correlation Coefficient (CC), Forward Selection (FS), Elastic Net, and Feature

Importance. Meanwhile the approaches for model training consist of Random Forest

Classifier (RF), XGBoost, Support Vector Machines (SVM), Multilayer Perceptrons

(MLP), and Logistic Regression (LR). The outstanding result is presented after the trial-

and-error for combination of approaches and many more.

6.3 TEST DESIGN

This project explored and proposed many combinations of feature selection-feature

selection, and Model Training-Model Training. The result of the overall performance is

presented in Figure 45. The overall performance resulting that most of them are in high

 96

accuracy. Only three out of 43 approaches not surpass 0.98 in accuracy, meanwhile the

other 40 approaches are exceeded 0.99 in accuracy.

There are three color representatives of the result in Figure 44, which are red, green,

and colorless table. The red table represent the proposed enhancement of the XSS

detection machine learning algorithm, also resulting in a highest accuracy, which is 0.9981.

The green one is the representation of the other top approaches that also resulting in a great

performance, which including IG as feature selection and hybrid model training RF and

XGBoost, with 167 features selected (0.998), IG as feature selection and model training

RF, with 167 features selected (0.9979), and following with IG as feature selection and

model training XGBoost, with 167 features selected (0.9978).

 97

Figure 44: Output of evaluation model for all approaches

6.4 RESULT AND ANALYSIS

This section will explain in detail about the experiment in a divided section of feature

selection.

6.4.1 Feature Selection: Information Gain

In this section, the project conducted by using Information Gain (IG) as feature

selection. There are three experiments conducted, which select 167, 67, and 25 features.

 98

The result shows a slightly different scores as the feature selected is changing in quantity.

Thus, table 9 shows the top five features that has been selected from this experiment.

Information Gain with 167 features selected

Figure 45: Evaluation model for IG as feature selection (167 features)

Figure 45 above present various score for the combination of approaches. The

highest score was hybrid of Random Forest (RF) and XGBoost as model training, with

accuracy 0.9981, followed by RF (0.9979), XGBoost (0.9978), SVM and RF (0.9939),

and lastly SVM (0.9839).

Random Forest is known as a robust and efficient technique that combines multiple

decision trees to reduce variation and improve accuracy. It can be used for regression tasks

or classification, and is resistant to overfitting and outliers. It trains quickly and considers

random subsets of features. Meanwhile XGBoost is a fast and efficient gradient-boosting

implementation, ideal for large datasets on multicore machines or clusters. It continuously

outperforms boosted tree methods in terms of computation while delivering excellent

accuracy and reliable performance. By combining both powerful model training, the

performance is resulting in a good high accuracy.

 99

Information Gain with 67 features selected

Figure 46: Evaluation model for IG as feature selection (67 features)

Figure 46 above present various score for the combination of approaches. The

highest score was hybrid of Random Forest (RF) and XGBoost as model training, with

accuracy 0.998, followed and tied by score, RF (0.9976) and XGBoost (0.9976), and lastly

SVM and RF (0.9942).

The results show that the hybrid combination of RF and XGBoost outperforms

other methods due to the complimentary capabilities of both algorithms. The highest

accuracy is achieved using RF's ensemble learning and feature priority ranking, as well as

XGBoost's gradient boosting and regularization approaches. Individual results of RF and

XGBoost illustrate their usefulness, whereas the combination of SVM and RF performs

well but with somewhat lower accuracy. These findings emphasize the need of combining

several methods to improve model performance and resilience.

Information Gain with 25 features selected

 100

Figure 47: Evaluation model for IG as feature selection (25 features)

Figure 47 above present various score for the combination of approaches. The

highest score was RF, with accuracy 0.9975, followed by hybrid of RF and XGBoost

(0.9972), XGBoost (0.9964), and lastly SVM and RF (0.9931).

The Random Forest (RF) model outperforms other methods because to its

ensemble learning capabilities, feature significance ranking, and good handling of skewed

data. The hybrid combination of RF and XGBoost, which takes use of the capabilities of

both algorithms, yields higher accuracy. XGBoost's great accuracy is due to its gradient

boosting and regularization algorithms. The combination of SVM with RF, which is

successful in high-dimensional spaces, increases the model's resistance to overfitting and

its capacity to handle complicated data patterns. These findings highlight the value of

combining methods to improve model performance and resilience.

Top 5 features selected from Information Gain

Table 9: Top 5 features selected from IG

No Features Description

 101

1 url_special_characters Indicates the presence of special characters in URLs.
The character often used in crafting malicious URLs.

2 url_tag_script This feature will check the presence of ‘<script>’ Tags
within URLs.

3 url_length Measure the length of the URLs. Extremely long URLs
might be sign of malicious attempt.

4 js_method_alert Detects the use of ‘alert()’ JavaScript method, which
often used as a successful sign of code injection.

5 html_length Measures the length of HTML content. Long HTML
might be a sign of malicious attempt or presence.

6.4.2 Feature Selection: Hybrid (IG and RFE)

In this section, the project conducted by using hybrid combination of Information

Gain (IG) and Recursive Feature Elimination (RFE) as feature selection. There are 10

features that are selected from the process. Which are: 'url_special_characters',

'url_tag_script', 'url_cookie', 'html_tag_meta', 'html_tag_link', 'html_tag_div',

'js_method_alert', 'js_min_length', 'js_min_function_calls', 'js_string_max_length'.

Meanwhile table 10 shows the top five of the features that has been selected from this

process.

 Figure 48 below present various score for the combination of approaches. The

highest score was Random Forest (RF) as model training, with accuracy of 0.9954,

followed by hybrid of RF and XGBoost (0.9937).

 102

Figure 48: Evaluation model for IG and RFE as feature selection

Top 5 features selected from Information Gain and Recursive Feature Elimination

Table 10: Top 5 features selected from IG and RFE

No Features Description

1 url_special_characters Indicates the presence of special characters in URLs.
The character often used in crafting malicious URLs.

2 js_method_alert

Detects the use of ‘alert()’ JavaScript method, which
often used as a successful sign of code injection.

3 js_method_alert Detects the use of ‘alert()’ JavaScript method, which
often used as a successful sign of code injection.

4 html_attr_cite Checks for ‘cite’ attribute in HTML, which often used
to reference source for a quotation.

5 html_tag_form Detects the presence of ‘<form>’ tags in HTML, which
often used to create form for user input for the
malicious target.

6.4.3 Feature Selection: IG and SBS

In this section, the project conducted by using hybrid combination of Information

Gain (IG) and Sequential Backward Selection (SBS) as feature selection. There are 10

features that are selected from the process. Figure 49 below present various score for the

combination of approaches. The highest score was Random Forest (RF) as model training,

 103

with accuracy 0.9954, followed by hybrid of IG and XGBoost (0.994), and RF (0.9937).

Meanwhile table 11 shows the top five features that has been selected during this process.

Figure 49: Evaluation model for IG and SBS as feature selection

Top 5 features selected from Information Gain and Sequential Backward Selection

Table 11: Top 5 features selected from IG and SBS

No Features Description

1 url_length Measure the length of the URLs. Extremely long URLs
might be sign of malicious attempt.

2 url_tag_script This feature will check the presence of ‘<script>’ Tags
within URLs.

3 html_event_onclick Identify the presence of ‘onclick’ attribute in HTML,
which often used to execute JavaScript when element
is clicked.

4 html_tag_div Detects the presence of ‘<div>’ in HTML, which often
used to define sections in HTML that could include
hidden or malicious content.

5 html_tag_link Identify the presence of ‘<link>’ in HTML, which often
used to define relationship of the current document and
external sources.

6.4.4 Feature Selection: IG and Lasso

 104

In this section, the project conducted by using Information Gain (IG) and Lasso as

feature selection. There are 10 features that are selected from the process. Figure 50 below

present various score for the combination of approaches. The highest score was Random

Forest (RF) as model training, with accuracy 0.9973, followed by RF and XGBoost

(0.997), XGBoost (0.9954), MLP and RF (0.995), and lastly SVM (0.986). Meanwhile

table 12 shows the top five features that has been selected during this process.

Figure 50: Evaluation model for IG and Lasso as feature selection

Top 5 features selected from Information Gain and Lasso

Table 12: Top 5 features selected from IG and Lasso

No Features Description

1 url_length Measure the length of the URLs. Extremely long URLs
might be sign of malicious attempt.

2 url_special_characters Indicates the presence of special characters in URLs.
The character often used in crafting malicious URLs.

3 url_number_keywords
_param

Counts the number of keyword present in URL
parameter, which often used to attempt malicious
scripts.

4 html_tag_link Identify the presence of ‘<link>’ in HTML, which often
used to define relationship of the current document and
external sources.

 105

5 html_tag_div Detects the presence of ‘<div>’ in HTML, which often
used to define sections in HTML that could include
hidden or malicious content.

6.4.5 Feature Selection: IG and PCA

In this section, the project conducted by using Information Gain (IG) and PCA as

feature selection. There are 20 features that are selected from the process, which are:

'url_number_keywords_param', 'js_string_max_length', 'js_dom_location',

'html_attr_background', 'js_min_function_calls', 'js_file', 'js_min_length', 'url_length',

'html_attr_href', 'url_special_characters', 'html_tag_meta', 'html_tag_script',

'js_method_getElementsByTagName', 'js_method_alert', 'html_tag_div', 'html_tag_link',

'url_tag_script', 'url_cookie', 'url_number_domain', 'html_length'. Meanwhile table 13

shows the top five features that has been selected from this process.

Figure 51 below present various score for the combination of approaches. The

highest score was Random Forest (RF) as model training, with accuracy 0.99734, followed

by RF and XGBoost (0.997), XGBoost (0.9954), MLP and RF (0.995), SVM (0.986), and

lastly LR (0.9739).

Figure 51: Evaluation model for IG and PCA as feature selection

 106

Top 5 features selected from Information Gain and PCA

Table 13: Top 5 features selected from IG and PCA

No Features Description

1 url_number_keywords
_param

Counts the number of keyword present in URL
parameter, which often used to attempt malicious
scripts.

2 js_string_max_length Measures the maximum length of the strings within
JavaScript code, which could contain malicious scripts.

3 js_dom_location Identify the use of ‘location’ attribute in JavaScript,
which can be manipulated to redirect target victim to
the malicious page.

4 html_attr_background Checks the presence of ‘background’ attribute in
HTML, which could be used to include external
resources.

5 js_min_function_calls Counts the minimum number of function call within the
JavaScript.

6.4.6 Feature Selection: CC

In this section, the project conducted by using Correlation Coefficient (CC) as

feature selection. There are 157 features that are selected from the process. Table 14 shows

the top five features that has been selected from this process. Meanwhile Figure 52 present

various score for the combination of approaches. The highest score was Random Forest

(RF) as model training, with accuracy 0.9977, followed by XGBoost (0.9975), and lastly

SVM and RF (0.9935).

 107

Figure 52: Evaluation model for CC as feature selection

Top 5 features selected from CC

Table 14: Top 5 features selected CC

No Features Description

1 html_event_oninput Identify the presence of ‘oniput’ attribute in HTML,
which often used as the trigger to JavaScript code once
any element is changes.

2 html_tag_video Detect the presence of ‘<video>’ in HTML, which
often used as to embed video content with malicious
scripts.

3 html_event_onmoused
own

Check for ‘onmousedown’ attribute in HTML, which
will trigger JavaScript code when a mouse is pressed on
an element.

4 html_event_oncopy Identify the presence of ‘oncopy’ attribute in HTML,
which trigger JavaScript code once a content is copied
to the clipboard.

5 html_event_onselect Identify the presence of ‘onselect’ attribute in HTML,
which could trigger the JavaScript when text within
element is selected.

6.4.7 Feature Selection: CC and PCA

In this section, the project conducted by using Correlation Coefficient (CC) and

PCA as feature selection. There are 50 features that are selected from the process.

 108

Meanwhile table 15 shows the top five features that has been selected from this experiment.

Figure 53 below present the score for the combination of approaches. The score was

conducted for Random Forest (RF) as model training, with accuracy 0.9976, which is quite

high in accuracy.

Figure 53: Evaluation model for CC and PCA as feature selection

Top 5 features selected from CC and PCA

Table 15: Top 5 features selected from CC and PCA

No Features Description

1 url_attr_src Detects the presence of ‘src’ attribute in URLs, which
could be the source if an external resource.

2 html_event_onmousel
eave

Identify the presence of ‘onmouseleave’ attribute in
HTML, whihc trigger the JavaScript code once the
mouse pointer leaves an element.

3 js_min_function_calls Counts the minimum number of functions calls within
JavaScript code. The higher the number, the higher the
possibility of the calls to turns out to be malicious
content.

4 js_min_define_functio
n

Counts the minimum number of function definitions
within JavaScript code. The higher the number, the
higher the possibility of the calls to turns out to be
malicious content.

 109

5 url_tag_img Identify the presence of ‘’ in URLs, which often
used to embed image and could be illegally
manipulated

6.4.8 Feature Selection: PCA

In this section, the project conducted by using Correlation Coefficient (CC) as

feature selection. There are 10 features that are selected from the process. Figure 54 below

present the score for the combination of approaches. The score was conducted for Random

Forest (RF) as model training, with accuracy 0.9934. Table 16 then shows the top five

features that has been selected from this process.

Figure 54: Evaluation model for PCA as feature selection

Top 5 features selected from PCA

Table 16: Top 5 features selected from PCA

No Features Description

1 html_attr_action Detects for ‘action’ attribute in HTML, which specifies
the location the form is submitted that could be a way
of manipulating content.

2 html_attr_archive Identify the presence of ‘archive’ attribute in HTML,
which specifies the location of the archive file.

 110

3 html_attr_background Identify the presence of the ‘background’ attribute in
HTML, which often used to include external resources.

4 html_attr_cite Checks the presence of ‘cite’ attribute in HTML, which
often used as reference a source for blockqoute.

5 html_attr_classid Identify the presence of ‘classid’ attribute in HTML,
which often used to specify the object implementation
location.

6.4.9 Feature Selection: Lasso and PCA

In this section, the project conducted by using Lasso and PCA as feature selection.

There are 10 features that are selected from the process. Figure 55 below present the score

for the combination of approaches. The score was conducted for Random Forest (RF) as

model training, with accuracy 0.9956. Meanwhile table 17 shows the top five features that

has been selected from this process.

Figure 55: Evaluation model for Lasso and PCA as feature selection

Top 5 features selected from Lasso and PCA

Table 17: Top 5 features selected from Lasso and PCA

No Features Description

 111

1 html_length Measures the length of HTML content. Long HTML
might be a sign of malicious attempt or presence.

2 html_tag_div Detects the presence of ‘<div>’ in HTML, which often

used to define sections in HTML that could include

hidden or malicious content.

3 html_tag_link Identify the presence of ‘<link>’ in HTML, which often

used to define relationship of the current document and

external sources.

4 js_dom_location Identify the use of ‘location’ attribute in JavaScript,

which can be manipulated to redirect target victim to

the malicious page.

5 js_file Identify the presence of JavaScript files within the
webpages, which often includes malicious content.

6.4.10 Feature Selection: Lasso

In this section, the project conducted by using Lasso as feature selection. There are

10 features that are selected from the process, and table 18 shows the top five features that

has been selected from this experiment. Figure 56 below present the score for the

combination of approaches. The score was conducted for Random Forest (RF) as model

training, with accuracy 0.9958.

Figure 56: Evaluation model for Lasso as feature selection

 112

Top 5 features selected from Lasso

Table 18: Top 5 features selected from Lasso

No Features Description

1 url_special_characters Indicates the presence of special characters in URLs.

The character often used in crafting malicious URLs.

2 html_tag_link Identify the presence of ‘<link>’ in HTML, which often

used to define relationship of the current document and

external sources.

3 url_number_keywords

_param

Counts the number of keyword present in URL

parameter, which often used to attempt malicious

scripts.

4 js_file Identify the presence of JavaScript files within the
webpages, which often includes malicious content.

5 js_method_getElement
sByTagName

Detects the use of ‘getElementByTagName’ attribute
within JavaScript, which often used to access tag name
in HTML elements. This also allows the attackers to
inject malicious content.

6.4.11 Feature Selection: Forward Selection and PCA

In this section, the project conducted by using Forward Selection and PCA as

feature selection. There are 10 features that are selected from the process, and table 19

shows the top five features that has been selected from this experiment. Figure 57 below

present the score for the combination of approaches. The score was conducted for Random

Forest (RF) as model training, with accuracy 0.9952.

 113

Figure 57: Evaluation model for Forward Selection and PCA as feature selection

Top 5 features selected from Forward Selection and PCA

Table 19: Top 5 features selected from FS and PCA

No Features Description

1 url_special_characters This feature will check the presence of ‘<script>’ Tags

within URLs.

2 url_tag_script This feature will check the presence of ‘<script>’ Tags

within URLs.

3 url_attr_src Detects the presence of ‘src’ attribute in URLs, which

could be the source if an external resource.

4 url_cookie Identify the presence of cookies in URLs, which can

store session data

5 url_number_keywords
_param

Counts the number of keyword present in URL

parameter, which often used to attempt malicious

scripts.

6.4.12 Feature Selection: Elastic Net

In this section, the project conducted by using Elastic Net as feature selection.

There are 10 features that are selected from the process, which are 'url_special_characters',

'url_number_keywords_param', 'html_tag_link', 'js_file',

 114

'js_method_getElementsByTagName', 'js_method_alert', 'html_tag_div', 'url_tag_script',

'url_attr_src', 'html_length'. Meanwhile table 20 below, shows the top five features that

has been selected from this process.

Figure 58 below present the score for the combination of approaches. The score

was conducted for Random Forest (RF) as model training, with accuracy 0.9949.

Figure 58: Evaluation model for Elastic Net as feature selection

Top 5 features selected from Elastic Net

Table 20: Top 5 features selected from Elastic Net

No Features Description

1 url_special_characters Indicates the presence of special characters in URLs.

The character often used in crafting malicious URLs.

2 url_number_keywords

_param

Counts the number of keyword present in URL

parameter, which often used to attempt malicious

scripts.

3 html_tag_link Identify the presence of ‘<link>’ in HTML, which often

used to define relationship of the current document and

external sources.

 115

4 js_file Identify the presence of JavaScript files within the
webpages, which often includes malicious content.

5 js_method_getElement
sByTagName

Detects the use of ‘getElementByTagName’ attribute
within JavaScript, which often used to access tag name
in HTML elements. This also allows the attackers to
inject malicious content.

6.4.13 Feature Selection: Feature Importance

In this section, the project conducted by using Feature Importance as feature

selection. There are 10 features that are selected from the process, which are

'url_tag_script', 'url_special_characters', 'url_length', 'js_method_alert', 'html_tag_div',

'html_tag_link', 'js_method_getElementsByTagName', 'html_tag_meta', 'html_length',

'html_attr_href'. The top five features that has been selected from this process is displayed

in table 21.

Figure 59 below present the score for the combination of approaches. The score

was conducted for Random Forest (RF) as model training, with accuracy 0.9959.

Figure 59: Evaluation model for Feature Importance as feature selection

Top 5 features selected from Feature Importance

 116

Table 21: Top 5 features selected from Feature Importance

No Features Description

1 url_tag_script This feature will check the presence of ‘<script>’ Tags

within URLs.

2 url_special_characters Indicates the presence of special characters in URLs.

The character often used in crafting malicious URLs.

3 url_length Measure the length of the URLs. Extremely long URLs

might be sign of malicious attempt.

4 js_method_alert Detects the use of ‘alert()’ JavaScript method, which

often used as a successful sign of code injection.

5 html_tag_div Identify the presence of ‘<div>’ attribute in HTML,
which often used for structuring webpages.

6.4.14 Feature Selection: RFE

In this section, the project conducted by using RFE as feature selection. There is

different approach that are using features as the key to influence the evaluation matrices

value. The experiment using 2,3, 10 and 15 features for each process.

The score was conducted for Random Forest (RF) as model training, but with the

present of different quantity on features selected, the score was quite different in the level

of accuracy. The highest score of accuracy was lies for 15 features selected as shown in

Figure 60, which is 0.9958, followed by 10 features (0.9935), 3 features (0.9298), and the

last one is 2 features with 0.7527, which has the biggest gap compared to all approaches

that was experimented within this paper.

This can be concluded that the lower the number of features been used in this

experiment, or in general, the lower the score for the accuracy. Including more feature

provides richer representation for the data training.

 117

Figure 60: Evaluation model for RFE as feature selection

Top 5 features selected from Recursive Feature Elimination

Table 22: Top 5 features selected from RFE

No Features Description

1 url_special_characters Indicates the presence of special characters in URLs.

The character often used in crafting malicious URLs.

2 url_tag_script This feature will check the presence of ‘<script>’ Tags
within URLs.

3 url_cookie Identify the presence of cookies in URLs, which can
store session data

4 html_tag_meta Detects the presence of ‘<meta>’ attribute in HTML,
which often used to include malicious content.

5 html_tag_svg Identify the presence of ‘<svg>’ attribute to define
vector-based graphics, which often used to execute
malicious script.

6.5 COMPARISON WITH EXISTING WORKS

In this section, we briefly explain and compare the techniques used and result by

previous work and this project’s approach. As shown in Table 23, we compare two works

that used the same dataset with this project, to ensure a fair comparison. As for the first

paper authored by Alhamyani R., Alshammari M. (2024), they utilized Information Gain

 118

(IG) as feature selection techniques and select 25 features, achieving 0.9978 accuracy

using Random Forest algorithm (RF). Next is the paper written by Mokbal F., Dan W.,

Xioaxi W., Wenbin Z., Lihua F. (2021), where they use hybrid combination of feature

selection methods which are Information Gain (IG) and Sequential Backward Selection

(SBS), selecting 67 of features from the dataset. In result, they achieve 0.9950 of accuracy

by utilizing XGBoost as model training.

In this project, we achieve several result with highest accuracy, all are using

Information Gain (IG) as feature selection method. The highest was utilizing the hybrid

combination of two powerful model training, which are Random Forest algorithm (RF)

and XGBoost, as a result, this approach select 167 features for continuation to complete

the process, and achieve the highest accuracy of 0.9981. Next approach is quite similar

with the first one, however, it select only 67 features to be train with hybrid model training,

Random Forest (RF) and XGBoost, achieving 0.998 in accuracy.

Next approach is utilizing model training Random Forest, with 167 features

selected, achieving 0.9979 in accuracy. Lastly is utilizing XGBoost as the model training,

with also selecting 167 of the features. This approach resulting in 0.9978 of accuracy.

Table 23: Result comparison with previous work

References Method of
Feature
Selection

No of
Selected
Features

Best Algorithm Accuracy

Alhamyani R.,
Alshammari M.,
2024

IG 25 Random Forest 0.9978

Mokbal F., Dan W.,
Xioaxi W., Wenbin
Z., Lihua F., 2021

IG & SBS 67 XGBoost 0.9950

This project

proposed approach

IG 167 Random Forest
& XGBoost

0.9981

IG 67 Random Forest
& XGBoost

0.998

IG 167 Random Forest 0.9979

IG 167 XGBoost 0.9978

 119

6.6 SUMMARIZATION

Combining Random Forest (RF) and XGBoost in a hybrid model offers several

advantages that significantly enhance model performance and robustness. RF, an ensemble

method that combines multiple decision trees, improves accuracy and reduces overfitting

by averaging the results of different trees trained on various data subsets. It effectively

handles complex datasets and provides insights into feature importance, making it suitable

for real-world applications with high data volumes. XGBoost, known for its high

performance and efficiency, uses gradient boosting to optimize model accuracy and

includes regularization techniques to prevent overfitting. Its ability to handle imbalanced

datasets and focus on hard-to-classify examples further enhances its robustness.

The hybrid combination of RF and XGBoost leverages the strengths of both

algorithms, resulting in improved accuracy, robustness, and efficiency. RF’s capability to

manage noisy data and provide robust predictions through ensemble learning

complements XGBoost’s optimization and regularization techniques. This synergy

enhances the model’s ability to detect XSS threats accurately and efficiently, providing a

comprehensive solution for web security. By integrating these methods, the hybrid model

ensures better generalization to new data, making it a powerful tool for various machine

learning tasks, including classification, regression, and ranking.

6.7 CONCLUSION

In this chapter of Testing and Analysis, we conducted various approach of feature

selection methods and model training to identify the most effective techniques for Cross-

Site Scripting (XSS) detection. Our finding displayed that the integration of Information

Gain (IG) as feature selection method, followed by the hybrid combination of Random

Forest algorithm and XGBoost, resulting in the highest accuracy, which are a superior and

powerful performance. The result is closely monitored through the evaluation metrices

such as accuracy, precision, recall, f1-score, and ROC-AUC.

 120

 121

CHAPTER 7: PROJECT CONCLUSION

7.1 INTRODUCTION

This chapter will give a thorough summary of the whole project, beginning with

the way it was started and developed up until this point in the chapter. We will discuss the

project's contributions to accomplishing each of the suggested goals. Next, we will be

discussing about all the obstacles and limitations that arose while the project was being

carried out. Lastly, we will discuss future work that may be done to address and improve

the project's constraints.

7.2 PROJECT SUMMARIZATION

This project proposed enhancement to the existed Cross-Site Scripting (XSS)

Detection method. This project focusing on the development of the improvise approach,

implying variety combination feature selection methods and the model training, that will

help in achieving the best result and scores in detection rate. The implementation of

Information Gain for the feature selection method are seen and proved to have the best

and optimal techniques, which achieving the accuracy of 0.9981 when using all the

features. However, it shows a slightly low accuracy rate when fewer number of features

were selected. Information Gain has proved to significantly enhance the performance of

the overall performance by ensures only the most informative features are being selected,

thus increase the speed in training process and avoid overfitting while training the model.

Information Gain are resulting in a much great and powerful performance after

combined with the hybrid combination of the model training approach, which is Random

Forest Classifier and XGBoost. The resilience and performance of machine learning are

improved when Random Forest (RF) and XGBoost are combined into a hybrid model. It

is scalable and economical, works well in a variety of domains, including text mining and

picture classification, and enhances accuracy by avoiding overfitting, handling unbalanced

data, and offering insights into the significance of features.

The dataset was initially collected from the GitHub sources, then underwent 43

different approaches in this project. These approaches were experimented as to check their

 122

accuracy compared to the previous existed work. To evaluate each approach, there are

several performance metrices that has been closely monitored in achieving the best result

of performance, which are accuracy, precision, recall, f1-score, ROC-AUC, and confusion

matrix. In summary, the proposed project, which utilizes machine learning for the

detection of Cross-Site Scripting (XSS) attack has achieved optimal accuracy of 0.9981

and resulting in a great performance when compared to the previous research.

7.3 PROJECT CONTRIBUTION

In the context of Cross-Site Scripting (XSS) Detection in the digital era, especially

towards the web applications, it is crucial to have a concrete and robust system to detect

and avoid any attack that occurred. As the uses of website application has gradually

increased, they often contain of great number of privacy and sensitive details and

information of the user, such as phone numbers, email addresses, bank details, and much

more. Without effective detection and defending mechanisms, this will just bring a ‘party’

for the hackers, as this matter will simplify their works in pirating and stealing all the

information. Therefore, the proposed approach in this project will definitely be a great

help in this industry, which offering a good performance in feature selection and model

training approaches.

7.4 PROJECT LIMITATION

One of the project limitation or challenges is matter towards the confusion matrix

scores. Since the scores is actually influence the performance evaluation like accuracy,

sometimes the displayed accuracy might be slightly different or not entirely accurate.

7.5 FUTURE WORKS

For the future works, it should focus more to the influence of confusion matrix

scores on performance evaluation metrics such as accuracy, as understanding this can aid

in a better evaluating the model’s performance. Furthermore, addressing on issues of

overfitting and underfitting will improve the model’s generalization capabilities. Finally,

exploring the idea to integrate the proposed method into an application or scanner to

effectively detecting cross-site scripting (XSS) attacks. This might be creating a browser

 123

extension, standalone scanner, web application firewall, or even API service for real-time

security and detection.

 124

REFERENCES

A defensive framework for reflected XSS in Client-Side applications. (2022, October 1).

River Publishers Journals & Magazine | IEEE Xplore.

https://ieeexplore.ieee.org/document/10246948

A detailed survey on recent XSS Web-Attacks Machine Learning detection techniques.

(2021, October 1). IEEE Conference Publication | IEEE Xplore.

https://ieeexplore.ieee.org/abstract/document/9587569

Alaoui, R. L., & Nfaoui, E. H. (2022b). Deep Learning for Vulnerability and attack

Detection on Web Applications: A Systematic Literature Review. Future

Internet, 14(4), 118. https://doi.org/10.3390/fi14040118

Alhamyani, R., & Alshammari, M. (2024). Machine Learning-Driven detection of Cross-

Site scripting attacks. Information, 15(7), 420.

https://doi.org/10.3390/info15070420

Detecting Cross-Site Scripting Attack using Machine Learning Algorithms. (2024,

February 28). IEEE Conference Publication | IEEE Xplore.

https://ieeexplore.ieee.org/document/10499119

Detection of XSS in web applications using Machine Learning Classifiers. (2020,

October 2). IEEE Conference Publication | IEEE Xplore.

https://ieeexplore.ieee.org/abstract/document/9270052

Guan, Y. (2022, May 31). Network Security Trends: November 2021 to January 2022.

Unit 42. https://unit42.paloaltonetworks.com/network-security-trends-cross-

site- scripting/

https://ieeexplore.ieee.org/document/10246948
https://ieeexplore.ieee.org/abstract/document/9587569
https://doi.org/10.3390/fi14040118
https://doi.org/10.3390/info15070420
https://ieeexplore.ieee.org/document/10499119
https://ieeexplore.ieee.org/abstract/document/9270052
https://unit42.paloaltonetworks.com/network-security-trends-cross-site-scripting/
https://unit42.paloaltonetworks.com/network-security-trends-cross-site-scripting/
https://unit42.paloaltonetworks.com/network-security-trends-cross-site-scripting/

 125

Insights2Techinfo. (2023b, November 15). The Future of Web Security: XSS

Detection through Machine Learning. https://insights2techinfo.com/the-

future-of-web- security-xss-detection-through-machine-learning/

Ivanova, M., & Rozeva, A. (2021). Detection of XSS Attack and Defense of REST

Web Service – Machine Learning Perspective. Detection of XSS Attack and

Defense of REST Web Service – Machine Learning Perspective.

https://doi.org/10.1145/3453800.3453805

Kazemian, H., & Ahmed, S. (2015). Comparisons of machine learning techniques for

detecting malicious webpages. Expert Systems With Applications, 42(3), 1166–

1177. https://doi.org/10.1016/j.eswa.2014.08.046

Machine Learning based Cross-Site Scripting detection in online social network. (2014,

August 1). IEEE Conference Publication | IEEE Xplore.

https://ieeexplore.ieee.org/abstract/document/7056839

MLPXSS: An integrated XSS-Based attack detection scheme in web applications using

multilayer perceptron technique. (2019b). IEEE Journals & Magazine | IEEE

Xplore. https://ieeexplore.ieee.org/abstract/document/8756243

Mokbal, F. M. M., Dan, W., Xiaoxi, W., Wenbin, Z., & Lihua, F. (2021). XGBXSS: an

extreme gradient boosting detection framework for Cross-Site scripting attacks

based on hybrid feature selection approach and parameters optimization. Journal of

Information Security and Applications, 58, 102813.

https://doi.org/10.1016/j.jisa.2021.102813

https://insights2techinfo.com/the-future-of-web-security-xss-detection-through-machine-learning/
https://insights2techinfo.com/the-future-of-web-security-xss-detection-through-machine-learning/
https://insights2techinfo.com/the-future-of-web-security-xss-detection-through-machine-learning/
https://doi.org/10.1145/3453800.3453805
https://doi.org/10.1016/j.eswa.2014.08.046
https://ieeexplore.ieee.org/abstract/document/7056839
https://ieeexplore.ieee.org/abstract/document/8756243
https://doi.org/10.1016/j.jisa.2021.102813

 126

Nagarjun, P., & Shakeel, S. (2020). Cross-site Scripting Research: a review.

International Journal of Advanced Computer Science and

Applications/International Journal of Advanced Computer Science &

Applications, 11(4). https://doi.org/10.14569/ijacsa.2020.0110481

Sarker, I. H. (2021). Machine learning: algorithms, Real-World applications

and research directions. SN Computer Science/SN Computer Science,

2(3). https://doi.org/10.1007/s42979-021-00592-x

Shahid, M. (2023b, April 27). Machine learning for detection and mitigation of web

vulnerabilities and web attacks. arXiv.org. https://arxiv.org/abs/2304.14451

Thajeel, I. K., Hashim, F., Samsudin, K.., & Hashim, S. J. (2023, June). Machine and

Deep Learning-based XSS Detection Approaches: A Systematic literature

review.

https://www.researchgate.net/publication/371731791_Machine_and_Deep_Le

arn ing-based_XSS_Detection_Approaches_A_Systematic_Literature_Review

Vishnu, B. A., & Jevitha, K. P. (2014). Prediction of Cross-Site Scripting Attack

Using Machine Learning Algorithms. Prediction of Cross-Site Scripting

Attack Using Machine Learning Algorithms.

https://doi.org/10.1145/2660859.2660969

Web Server Attack Detection using Machine Learning. (2020, October 20). IEEE

Conference Publication | IEEE Xplore.

https://ieeexplore.ieee.org/abstract/document/9292393

https://doi.org/10.14569/ijacsa.2020.0110481
https://doi.org/10.1007/s42979-021-00592-x
https://arxiv.org/abs/2304.14451
https://www.researchgate.net/publication/371731791_Machine_and_Deep_Learning-based_XSS_Detection_Approaches_A_Systematic_Literature_Review
https://www.researchgate.net/publication/371731791_Machine_and_Deep_Learning-based_XSS_Detection_Approaches_A_Systematic_Literature_Review
https://www.researchgate.net/publication/371731791_Machine_and_Deep_Learning-based_XSS_Detection_Approaches_A_Systematic_Literature_Review
https://www.researchgate.net/publication/371731791_Machine_and_Deep_Learning-based_XSS_Detection_Approaches_A_Systematic_Literature_Review
https://doi.org/10.1145/2660859.2660969
https://ieeexplore.ieee.org/abstract/document/9292393

 128

APPENDIX

Dataset from GitHub

	DECLARATION
	APPROVAL
	DEDICATION
	ACKNOWLEDGEMENTS
	ABSTRACT
	ABSTRAK
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1: INTRODUCTION
	1.1 INTRODUCTION
	1.2 PROBLEM STATEMENT
	1.3 PROJECT QUESTION
	1.4 PROJECT OBJECTIVE
	1.5 PROJECT SCOPE
	1.6 PROJECT CONTRIBUTION
	1.7 REPORT ORGANIZATION
	1.8 CONCLUSION

	CHAPTER 2: LITERATURE REVIEW
	2.1 INTRODUCTION
	2.2 CROSS-SITE SCRIPTING (XSS) ATTACK
	2.2.1 Nature and Impact of XSS attacks
	2.2.2 Types of Cross-Site Scripting (XSS) Attacks
	2.2.3 History of Cross-Site Scripting (XSS) attacks
	2.2.4 Network Security Trends

	2.3 WEB APPLICATION SECURITY
	2.3.1 Introduction and Background to Web Application Security
	2.3.2 Web Application Architecture
	2.3.3 Web Vulnerabilities
	2.3.4 Mitigation

	2.4 MACHINE LEARNING
	2.4.1 Introduction to Machine Learning
	2.4.2 Types of Machine Learning Techniques
	2.4.3 Machine Learning Classifiers

	2.5 FEATURE SELECTION
	2.5.1 Feature Selection Background
	2.5.2 Classification of Feature Selection Techniques

	2.6 DATASET
	2.6.1 Labeling, Training, and Evaluation
	2.6.2 Features/Attributes
	2.6.3 Dataset sources

	2.7 CONSIDERATION IN DETERMINING FEATURE SELECTION METHODS FROM DATASET ATTRIBUTES
	2.8 RELATED WORK/PREVIOUS WORK
	2.8.1 Detection of XSS in web applications using Machine Learning Classifiers
	2.8.2 Machine Learning based Cross-site Scripting Detection in Online Social Network
	2.8.3 The Future of Web Security: XSS Detection through Machine Learning
	2.8.4 Detecting Cross-Site Scripting Attack using Machine Learning Algorithms
	2.8.5 A Detailed Survey on Recent XSS Web-Attacks machine Learning Detection Techniques
	2.8.6 Multiclass Classification of XSS Web Page Attack using Machine Learning Techniques
	2.8.7 Comparison of machine learning techniques for detecting malicious webpages
	2.8.8 Summarization of papers

	2.9 CRITICAL VIEW ON CURRENT PROBLEM AND JUSTIFICATION
	2.10 PROPOSE SOLUTION/FURTHER PROJECT
	2.11 CONCLUSION

	CHAPTER 3: METHODOLOGY
	3.1 INTRODUCTION
	3.2 PROJECT METHODOLOGY
	3.4 FYP I Gantt Chart
	3.5 FYP II Gantt Chart
	3.6 CONCLUSION

	CHAPTER 4: DESIGN
	4.1 INTRODUCTION
	4.2 PROBLEM ANALYSIS
	4.3 REQUIREMENT ANALYSIS
	4.4 FEATURE SELECTION
	4.5 MODEL TRAINING
	4.6 CONCLUSION

	CHAPTER 5: IMPLEMENTATION
	5.1 INTRODUCTION
	5.2 PROJECT ENVIRONMENT SETUP
	5.2.1 Data Preprocessing
	5.2.2 Feature Selection
	5.2.3 Split the dataset
	5.2.4 Model Training
	5.2.5 Classification (Model Evaluation)

	5.3 CONCLUSION

	CHAPTER 6: TESTING AND ANALYSIS
	6.1 INTRODUCTION
	6.2 TEST PLAN
	6.2.1 Test Environment
	6.2.2 Test Strategy

	6.3 TEST DESIGN
	6.4 RESULT AND ANALYSIS
	6.4.1 Feature Selection: Information Gain
	6.4.2 Feature Selection: Hybrid (IG and RFE)
	6.4.3 Feature Selection: IG and SBS
	6.4.4 Feature Selection: IG and Lasso
	6.4.5 Feature Selection: IG and PCA
	6.4.6 Feature Selection: CC
	6.4.7 Feature Selection: CC and PCA
	6.4.8 Feature Selection: PCA
	6.4.9 Feature Selection: Lasso and PCA
	6.4.10 Feature Selection: Lasso
	6.4.11 Feature Selection: Forward Selection and PCA
	6.4.12 Feature Selection: Elastic Net
	6.4.13 Feature Selection: Feature Importance
	6.4.14 Feature Selection: RFE

	6.5 COMPARISON WITH EXISTING WORKS
	6.6 SUMMARIZATION
	6.7 CONCLUSION

	CHAPTER 7: PROJECT CONCLUSION
	7.1 INTRODUCTION
	7.2 PROJECT SUMMARIZATION
	7.3 PROJECT CONTRIBUTION
	7.4 PROJECT LIMITATION
	7.5 FUTURE WORKS

	REFERENCES
	APPENDIX

