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ABSTRACT 

 

 

 

 

Summarizing lengthy documents, especially in the legal domain, poses 

significant challenges for both humans and automated systems. Human efforts often 

entail considerable time and effort while automated systems sometimes falter in 

decision-making, leading to ambiguity in the generated summaries. This project 

explores the use of text summarization in legal documentation, coupled with an 

explainability feature. It addresses the challenges of condensing lengthy legal texts and 

improving transparency in automated summarization systems. The project involves 

gathering legal documents, developing a BART summarization model, and integrating 

explainability within the system, which is visualizing attention mechanism. The 

system which has been deployed on web-based application is the final product of this 

project. The system performance, that includes BERTScore, cosine similarity, and 

ROUGE score between human-generated and system-generated summaries, and 

evaluation by target users, lead to several engaging insights on legal summarization. 

The model demonstrated moderate performance where the user feedback indicated 

satisfaction with its functionality but highlighted the need for user interface 

improvements. Key strengths of the model include the system’s explainability that is 

crucial for legal applications. Future improvements suggested including refining 

model training, enhancing the user interface, and adding features like adjustable 

summary lengths and language translation. The project contributes valuable insights 

to artificial intelligence and natural language processing with potential for further 

research and development.  
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ABSTRAK 

 

 

 

 

Meringkaskan dokumen-dokumen panjang, terutamanya dalam bidang 

undang-undang, memberikan cabaran besar kepada manusia dan sistem automatik. 

Usaha manusia sering melibatkan masa dan usaha yang besar manakala sistem 

automatik kadang-kadang tergagap dalam membuat keputusan, menyebabkan 

kekaburan dalam ringkasan yang dihasilkan. Projek ini meneroka penggunaan 

ringkasan teks dalam dokumen undang-undang, disertakan dengan ciri kejelasan. Ia 

mengatasi cabaran dalam meringkaskan teks undang-undang yang panjang dan 

meningkatkan ketelusan dalam sistem ringkasan automatik. Projek ini melibatkan 

pengumpulan dokumen undang-undang, membangunkan model peringkasan BART, 

dan mengintegrasikan penjelasan dalam sistem, iaitu memvisualisasikan mekanisme 

perhatian. Sistem yang telah dikerahkan dalam aplikasi web adalah produk akhir 

projek ini. Prestasi sistem, yang termasuk BERTScore, kesamaan kosinus, dan skor 

ROUGE antara ringkasan yang dihasilkan oleh manusia dan sistem, serta penilaian 

oleh pengguna sasaran, memberikan beberapa pandangan menarik mengenai 

peringkasan undang-undang. Model ini menunjukkan prestasi sederhana di mana 

maklum balas pengguna menunjukkan kepuasan dengan fungsinya tetapi menekankan 

perlunya penambahbaikan antara muka pengguna. Kekuatan utama model ini 

termasuk penjelasannya yang penting untuk aplikasi undang-undang. 

Penambahbaikan masa depan yang dicadangkan termasuk memperhalusi latihan 

model, meningkatkan antara muka pengguna, dan menambah ciri seperti panjang 

ringkasan yang boleh disesuaikan dan penterjemahan bahasa. Projek ini memberikan 

pandangan berharga kepada kecerdasan buatan dan pemprosesan bahasa semula jadi 

dengan potensi untuk penyelidikan dan pembangunan lanjut. 
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CHAPTER 1:  INTRODUCTION 

 

 

 

 

1.1 Introduction 

Reviewing legal documents such as supreme court case documents often 

require specialized knowledge and reading through the entire document to capture the 

key information is time consuming. As the volume of legal documents increases, it 

becomes crucial to extract essential details without delving into the entire content. 

Hence, summarization provides a solution by providing flexibility and convenience to 

readers. In addition, explainable artificial intelligence (XAI) can ensure the system not 

only produces concise summaries, but also provides transparent justifications for the 

decisions made, which enhance trust and comprehension for legal professionals.  

1.2 Problem Statement 

Legal professionals often struggle with obstacles when driving through 

documentations which are time and effort. Reading and comprehending pages of 

documents can be a cumbersome process, which might lead to potential oversights or 

missed critical details. Moreover, clear explanations are necessary and crucial behind 

automated summarization, where transparency and accountability are paramount.  

This project is aimed to develop a system which can summarize the legal 

documentation with suitable explanation. The system must ensure the generated 

summaries accurately capture the key points of original document and provide clear 

rationale for the inclusion of specific information.  
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1.3 Objective 

This project embarks on the following objectives: 

1. To develop a text summarization model for legal case documentation.  

2. To design an XAI model for the summarization result explainability.  

3. To create a user-friendly web-based application for the whole model.  

1.4 Project Scope 

The scopes involved in this project are as below with brief explanation:  

1. Target Users 

i. Legal Professionals (included judges, magistrates, advocates, 

attorneys, and university lecturers) 

ii. University Students (especially law students) 

2. Project Modules 

i. Text Summarization Model 

Collect and preprocess a diverse legal document dataset, 

implement a legal-specific NLP summarization algorithm using 

deep learning, and iteratively refine it for optimal performance.  

ii. XAI (Explainable Artificial Intelligence) Model 

XAI is an umbrella term for a range of techniques, 

algorithms, and methods, which accompany outputs from 

Artificial Intelligence (AI) systems with explanations (Norkute, 

2021). Research and implement suitable XAI techniques such 

as visualizing attention mechanism for legal text summarization, 

develop an interpretable framework for generating explanations, 

ensure user-friendly explanations for legal professionals, and 

validate and fine-tune the model based on user feedback.  

iii. Web-based Application 

Design a user-friendly interface, implement the backend 

system for document uploads, summarization, and explanation 

generation, integrate the text summarization and XAI models 

into the application, conduct usability testing, and provide 

documentation for user assistance.  
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1.5 Project Significance 

Users such as legal professionals and university students, especially those who 

study law will get benefits from the project. For legal professionals, this project helps 

in case law analysis, legal research, preparation for court proceedings, and teaching 

and learning. It also acts as a powerful aid in university students’ academic endeavors 

such as study aid, research assistance, exam preparation, time management, and legal 

principles understanding.  

In short, text summarization model generates summaries of legal documents 

which helps in time saving while explainable artificial intelligence (XAI) provides 

suitable explanations that improve users’ understanding of the documents. A user-

friendly web-based application allows users to use the application in simple and 

effective way.  

1.6 Expected Output 

This project aims to deliver a robust text summarization model tailored for 

legal documents for enhancing efficiency in condensing extensive texts without 

sacrificing accuracy or transparency. It includes the integration of an XAI model for 

transparent explanation and development of a user-friendly application for whole 

system combination. Rigorous testing and feedback from readers are essential for 

validating the process and ensuring the effectiveness of the developed application.  

1.7 Report Organizations 

Chapter 1: Introduction 

This chapter introduces the project background briefly, followed by the 

problem statement highlighting issues motivating the project. The project objectives 

are outlined, alongside the project scope including the research domain and 

experimental setup. This chapter also discusses the project’s contribution and expected 

benefits. Lastly, it outlined the report organization which summarizes each chapter’s 

content.   

Chapter 2: Literature Review and Project Methodology 

This chapter provides a preview of the literature review and project 

methodology. It identifies the project’s domain and summarizes existing systems and 
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techniques reviewed, with explanations and references. The selected approach and 

methodology, along with project requirements, are described briefly. Additionally, the 

project schedule and milestones are outlined. Finally, the chapter is summarized, 

highlighting the next activities to be developed.  

Chapter 3: Requirement Analysis 

This chapter introduces the requirement analysis phase, outlining problem 

analysis, data, functional, and non-functional requirements. It describes input 

interfaces, database contents, system functions, and performance criteria. The chapter 

concludes with a summary and explanation of the next steps.  

Chapter 4: Design 

This chapter outlines the design phase, covering high-level design, user 

interface (UI), database, AI component, and software or hardware design. It includes 

refining system architecture, navigation, input and output design, database schema, AI 

techniques, and software/hardware specifications. The chapter concludes with a 

summary and explanation of the next steps.  

Chapter 5: Results and Discussion 

This chapter presents the results and discussions, beginning with an overview 

of the testing phase and strategy. It evaluates the AI techniques used, focusing on 

performance metrics specific to each technique. Functional requirements testing is 

explained, including test case identification and documentation. The chapter concludes 

with a summary and outlines the next steps in the project.  

Chapter 6: Conclusion 

This chapter discusses the project's strengths and weaknesses, offering 

suggestions for improvement. It highlights the project's contribution and provides 

guidance on accessing the user manual. The chapter concludes by summarizing if the 

project successfully meets its set objectives, ending with final remarks.  
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1.8 Summary 

This project aims to develop a text summarization system which utilizes 

explainable artificial intelligence (XAI) tailored for legal professionals and university 

students studying law. XAI is to provide transparent justifications for the 

summarization decisions for enhancing trust and comprehension. The objectives 

include developing a text summarization model, designing an XAI model for 

explainability, and creating a user-friendly web-based application. The project’s 

significance is mainly in time saving and understanding improvements for users by 

generating concise summaries of legal documents with clear explanations. The 

expected output is a robust text summarization model integrated with XAI and 

delivered through a user-friendly application, validated through rigorous testing and 

feedback. Next chapter will discuss the literature review and project methodology.  
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CHAPTER 2:  LITERATURE REVIEW AND PROJECT METHODOLOGY 

 

 

 

 

2.1 Introduction 

In this chapter, the existing body of research surrounding the central themes of 

this project will be explained by exploring the key concepts, theories, and empirical 

findings to contextualize the investigation. This section aims to synthesize and critique 

relevant literature, identify gaps and debates that inform the project objectives. 

Subsequently, the project methodology outlines the systematic approach employed to 

address the project goals, detailing the project design, data collection methods, and 

analytical techniques utilized to acquire and analyze data. By integrating insights from 

the literature review with our methodological framework, a robust foundation for this 

project is aimed to construct, facilitating a comprehensive exploration of the research 

questions at hand.  

2.2 Facts and Findings 

2.2.1 Domain 

The domain of this project falls within the intersection of several fields, which 

are legal domain, natural language processing (NLP), machine learning, and 

explainable artificial intelligence (XAI). This project operates within the legal fields, 

specifically dealing with legal case documents, and involves NLP techniques for 

processing and analyzing textual data. The incorporation of explainability features 

suggests the use of machine learning and XAI algorithms not only for summarization 

but also for providing insights or explanations about the summarized content. This 

project also delves into interpretability and transparency aspects to ensure the 
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generated summaries and explanations are understandable and trustworthy to 

stakeholders.  

2.2.2 Existing System 

A hybrid method for automatic text summarization of legal cases using k-

means clustering techniques and term frequency-inverse document frequency (TF-

IDF) word vectorizer is proposed by Varun Pandya (Pandya, 2019). The process 

involves data preprocessing to clean the document, clustering similar sentences using 

k-means, and extracting sentences to form a summary. The k-means algorithm groups 

sentences, which are then vectorized with term frequency-inverse document frequency 

(TF-IDF). Clustering minimizes intra-cluster distances and maximizes inter-cluster 

distances, with optimal clusters determined. Sentences are ranked based on TF-IDF 

score and title similarity, with top-ranked sentences selected for the final summary. 

The dataset comprises Australian legal cases from Auslii. Evaluation is done by using 

Recall-Oriented Understudy for Gisting Evaluation (ROUGE) metrics to compare 

results with three automated tools. Pandya's method showed promising results, where 

the proposed method performs favourably well against other existing methods, as 

detailed in a comparative table.  

Anand and Wagh have also proposed simple generic techniques using neural 

network architecture which are feed forward neural networks (FFNN) based summary 

and long short-term memory (LSTM) based summary (Anand & Wagh, 2022).  Their 

approaches require no manual features or domain knowledge and can be applied across 

various domains. The process involves generating labeled data using summary 

information from court judgment headnotes and utilizing this data to extract important 

sentences for summarization. Different similarity techniques are employed to compute 

sentence labels, with sentence embeddings (SSE) showing the best performance. 

FFNN transforms sentences into vectors, calculates probabilities, and selects the top-

ranked sentences for the summary. LSTM, combined with convolutional neural 

networks (CNN), selects sentences with the highest importance likelihood based on 

LSTM output scores. Evaluation using ROUGE scores on Supreme Court of India 

judgment documents demonstrates the effectiveness of both methods. The result table 

shows that LSTM performs better in many cases.  
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Research about the comparison of extractive and abstractive legal case 

document summarization has been done by Shukla and his team (Shukla et al., 2022). 

This research is to analyze the performance of various summarization methods on legal 

case judgement documents and explore effective evaluation techniques. Extensive 

experiments with several abstractive and extractive summarizations including both 

supervised and unsupervised methods have been carried out over three legal 

summarization datasets. Some examples of the methods are Luhn, Pacsum_bert, 

Maximal Marginal Relevance (MMR), Bidirectional and Auto-Regressive 

Transformers (BART), Bidirectional Encoder Representations from Transformers - 

Bidirectional and Auto-Regressive Transformers (BERT-BART), and Legal-Pegasus 

etc. The datasets, Indian-Abstractive, Indian-Extractive, and UK-Abstractive dataset, 

are developed from Indian and United Kingdom Supreme Courts case documents. The 

analyses, including ROUGE, BERTScrore, and evaluations by legal practitioners, aim 

to provide insights into legal summarization and long document summarization in 

general, contributing to advancements in this field.  

Shifting focus to another system, the Neural Networks for Text 

Summarization, with a Keras implementation of an attention-based sequence-to-

sequence (seq2seq) model is explored, emphasizing the success of the attention 

mechanism in the context (Adarsh, 2022). Similar to other systems, data preprocessing 

is done as the first step of implementation. A model with encoder-decoder architecture 

which has global attention is built and an embedding layer to convert words into 

appropriate vector representations is used, learning along with the seq2seq model. 

Attention mechanisms in encoder-decoder neural networks enable the generation of a 

context vector at each timestep by considering the decoder's current hidden state and 

a subset of the encoder's hidden states. The dataset used in this study is Amazon Fine 

Food dataset found on Kaggle. Since the original and generated summaries are short, 

the performance evaluation is just done by comparing both of them.  

Last but not least, an automatic abstractive text summarization model based on 

hybrid attention mechanism has been introduced by Zhe Wang, where it incorporates 

a sentence-level attention mechanism to guide word-level attention distribution, 

adjusting the weight of sentence-level attention to mitigate high variance issues in 

word-level attention for shorter documents (Wang, 2021). The methodology of this 

study introduces a hybrid-attentional model using encoder-decoder networks with 

recurrent neural networks (RNN). It incorporates attention mechanisms to improve 
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decoder focus and a pointer-generator network for word generation or copying. 

Additionally, a dynamic hybrid attention mechanism adjusts attention values at both 

word and sentence levels to enhance summary quality based on document length. 

Evaluation of the approach by using ROUGE score on large scale Chinese short text 

summarization (LCSTS) dataset demonstrates the effectiveness of the proposed 

method in capturing key information and generating concise summaries.  

Table 2.1 lists the summary of the reviewed systems, including method or 

technique used, dataset involved, and evaluation method.  

 

Table 2.1 Summary of Reviewed System 

Reviewed System Summary 

Automatic Text Summarization 

of Legal Classes: A Hybrid 

Approach (Pandya, 2019) 

Method or technique:  

• K-mean clustering 

• TF-IDF word vectorizer 

Dataset:  

• Australian legal cases 

Evaluation method:  

• ROUGE 

Effective Deep Learning 

Approaches for Summarization 

of Legal Texts (Anand & 

Wagh, 2022) 

Method or technique:  

• Feed forward neural network (FFNN) 

• Long short-term memory (LSTM) 

Dataset:  

• Supreme Court of India Judgement 

Evaluation method:  

• ROUGE  

Legal Case Document 

Summarization: Extractive and 

Abstractive Methods and Their 

Evaluation (Shukla et al., 2022) 

Method or technique:  

• Extractive (Luhn, Pacsum_bert, MMR, 

KMM, LetSum, SummaRunner, BERT-

Ext, Gist, DSDR, CaseSummarizer) 
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• Abstractive (BART, BERT-BART, Legal-

Pegasus, Legal-LED) 

Dataset:  

• Indian Supreme Court judgements 

• UK Supreme Court cases 

Evaluation method:  

• ROUGE 

• BERTScore 

• Expert evaluation 

Text Summarization with 

Attention Based Network 

(Adarsh, 2022) 

Method or technique:  

• Sequence to sequence model 

• Attention mechanism (global) 

Dataset:  

• Amazon Fine Food dataset 

Evaluation method:  

• Compare original and generated summary 

An Automatic Abstractive Text 

Summarization Model based on 

Hybrid Attention Mechanism 

(Wang, 2021) 

Method or technique:  

• Sequence to sequence model 

• Attention mechanism (hybrid) 

Dataset:  

• Large scale Chinese short text 

summarization (LCSTS) dataset 

Evaluation method:  

• ROUGE 
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2.2.3 Technique 

Text summarization is the creation of a short, accurate, and fluent summary of 

a longer text document (Dutta et al., 2023). This process is crucial for managing the 

vast volume of online text data, facilitating the discovery and consumption of relevant 

information more efficiently. There are two main forms of text summarization method, 

which are abstractive and extractive summarization. Extractive summarization 

combines existing sentences without any alterations to create a summary while 

abstractive summarization involves text generation where the machine writes its own 

sentences (Ada, 2023). Extractive summarization is more rigid due to directly copy 

sentences from the source text which potentially resulting in awkward reading (Ada, 

2023). Conversely, text generation in abstractive summarization initiates better human 

writing style, enhancing coherence and readability with concise and coherent output 

(Ada, 2023). There are several prominent examples of both the methods, which are 

Luhn, Latent Semantic Analysis (LSA), TextRank, LexRank, PositionRank, and 

TopicRank for extractive summarization, while abstractive summarization includes 

BART and pretraining with extracted gap-sentences for abstractive summarization 

(PEGASUS) (Giarelis et al., 2023).  

BART, a denoising autoencoder for pretraining sequence-to-sequence model, 

is introduced by Mike Lewis and his team (Lewis et al., 2019). BART is trained to 

reconstruct original text from corrupted versions using a Transformer-based 

architecture, which can be seen as a generalization of models like BERT and 

generative pre-trained transformer (GPT). The architecture is explained with a diagram 

in Chapter 4.2.1 (page 31). The study evaluates various text corruption methods and 

demonstrates BART's effectiveness in tasks such as text generation, comprehension, 

abstractive dialogue, question answering, summarization, and machine translation. 

Additionally, ablation experiments within the BART framework are conducted to 

assess factors influencing end-task performance. On summarization task, BART 

shows an outperformance over two datasets (CNN/DailyMail and XSum) surpassing 

other existing methods. The resulting summaries are fluent and grammatically correct, 

indicating that BART's pretraining has effectively learnt a robust blend of natural 

language comprehension and generation.  

Erkan and Radev have presented a stochastic graph-based method for 

determining the relative importance of textual units, particularly in the context of text 
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summarization (Erkan & Radev, 2004). The method is named LexRank. It computes 

sentence importance based on eigenvector centrality in a graph representation of 

sentences, using intra-sentence cosine similarity. In this study, LexRank is 

implemented into the MEAD summarization system (Radev & Zhang, 2001). The 

dataset used in the experiments consists of DUC 2003 and 2004 data sets, which 

involve generic summarization of news document clusters. For evaluation the ROUGE 

metric, specifically ROUGE-1 which represents the unigram-based ROUGE score, 

was used as it aligns closely with human judgements.  

A study conducted by Kamya Singh and his team investigates using BERT-

based techniques for summarization and sentence similarity checks to enhance 

important question answering systems (Sharma et al., 2023). The proposed approach 

combines BERT-based summarization with semantic similarity checking to extract 

key information and predict crucial questions. Experiments on benchmark datasets 

have been done and showing that this method surpasses traditional machine learning 

and deep learning techniques, achieving state-of-the-art performance. The approach 

was also effective in real-world applications like medical diagnosis, legal case 

analysis, and financial forecasting.  

To evaluate the performance of a text summarization system, there are several 

methods and one of the approaches is ROUGE score. ROUGE stands for Recall-

Oriented Understudy for Gisting Evaluation score (Santhosh, 2023). It is a set of 

metrics which commonly used for text summarization tasks to automatically generate 

a concise summary of a longer text. It was designed to evaluate the quality of machine-

generated summaries by comparing them to reference summaries prepared by humans. 

ROUGE has variants like ROUGE-N focusing on n-gram overlap, ROUGE-L on the 

longest common subsequence (LCS), and ROUGE-S on skip-bigram overlap. ROUGE 

score ranges from 0 to 1, with higher values indicating better summary quality. It's 

widely used for its objectivity but may not fully capture semantic meaning or 

coherence.  

Another method used to evaluate the quality of text summarization is 

BERTScore (Özbolat, 2023). This method measures the similarity between the 

summary and the original text. It addresses issues encountered by n-gram-based 

metrics by using contextualized token embeddings from models like BERT to compute 

similarity. The process involves representing sentences with contextual embeddings, 

measuring cosine similarity, token matching for precision and recall, considering word 
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importance using IDF, and rescaling values for readability. For a basic level 

BERTScore calculation, the output will be precision, recall, and F1 score. BERTScore 

enhances text similarity measurement, making it more accurate and balanced, with 

potential applications in various domains of natural language processing. However, 

this method has its own pros and cons. For example, BERTScore can handle different 

types of texts but it can be biased towards models that are more similar to its own 

underlying model.  

In essence, ensuring the transparency and interpretability of the summaries is 

crucial, where explainable artificial intelligence (XAI) plays an important role in it. 

There are some examples of XAI methods in NLP such as visualizing attention 

mechanisms in neural networks, generating textual explanations for model predictions, 

and interpreting the reasoning behind the models’ decision-making process (Mulkar, 

2023). Attention mechanism is introduced by Vaswani in the year 2017 (Vaswani et 

al., 2017). The architecture is explained with a diagram in Chapter 4.2.1 (page 32). In 

traditional Deep Learning models like LSTMs and RNNs, longer inputs pose 

challenges for retaining relevant information, prompting the need for attention 

mechanisms to signal the model about focus areas (Norkute, 2021). However, 

transformer models, utilizing self-attention across all encoder and decoder layers, 

circumvent this issue (Norkute, 2021). Attention mechanisms are widely used in text 

summarization across diverse domains like news, reviews, scientific papers, legal 

documents, and social media posts, where models such as the Pointer-generator 

network, Transformer, and BART exemplify this trend (What Are the Pros and Cons 

of Using Attention Mechanisms in Text Summarization With RNNs?, 2023).  

Research on an open-source tool for visualizing attention mechanism in 

transformer-based language models is proposed by Jesse Vig (Vig, 2019). The tool 

offers three levels of granularity which are attention head, model, and neuron views. 

Its application has been demonstrated on BERT and GPT-2 models. The tool aids in 

interpreting model decisions and identifying patterns, such as model bias detection, 

recurring patterns identification, and neurons to model behavior linkage. This allows 

for a comprehensive understanding of how the model attends to different parts of the 

input and how individual neurons contribute to attention computation. It enhances 

model interpretability, enables targeted improvements through user manipulation, and 

offers versatility for various analysis tasks and model types.  
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On the other hand, a theoretical analysis of local interpretable model-agnostic 

explanations (LIME) has been done by Garreau and Luxburg (Garreau & Luxburg, 

2020). This explainer is commonly used for providing interpretability to machine 

learning models. The study derives closed-form expressions for the coefficients of the 

interpretable model when the function to explain is linear, demonstrating that LIME 

can uncover meaningful features proportional to the gradient of the function. It aids in 

understanding model decisions, improving trust, and facilitating compliances with 

regulations. However, it also highlights potential limitations of LIME where poor 

parameter choices may cause the algorithm to overlook important features.  

Table 2.2 outlines the summary of the reviewed techniques for text 

summarization, evaluation methods, and explainability features respectively.  

 

Table 2.2 Summary of Reviewed Techniques 

Reviewed Techniques Summary 

Text Summarization 

BART: Denoising Sequence-

to-Sequence Pre-training for 

Natural Language Generation, 

Translation, and 

Comprehension (Lewis et al., 

2019) 

Unique characteristic:  

• denoising autoencoder approach, which 

enable robust performance in natural 

language understanding and generation 

tasks.  

Dataset:  

• CNN/DailyMail 

• XSum 

Evaluation method:  

• ROUGE 

LexRank: Graph-based Lexical 

Centrality as Salience in Text 

Summarization (Erkan & 

Radev, 2004) 

Unique characteristic:  

• reliance on eigenvector centrality and 

intra-sentence cosine similarity within a 

sentence graph.  

Dataset:  

• DUC 2003 
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• DUC 2004 

Evaluation method:  

• ROUGE 

Question Summation and 

Sentence Similarity using 

BERT for Key Information 

Extraction (Sharma et al., 2023) 

Unique characteristic:  

• captures bidirectional context.  

• pre-trained with masked language 

modelling and next sentence prediction.  

Dataset:  

• 500 interview questions from various 

industries 

Evaluation method:  

• Performance Metrics 

• User Study 

Evaluation Method 

Understanding BLEU and 

ROUGE score for NLP 

Evaluation (Santhosh, 2023) 

Variant:  

• ROUGE-N 

• ROUGE-L 

• ROUGE-S 

Benefits:  

• flexible for different n-gram lengths.  

Limitations:  

• not fully capturing semantic meaning or 

coherence.  

Text Summarization: How to 

Calculate BertScore (Özbolat, 

2023) 

BERTScore Explained in 5 

minutes (Sojasingarayar, 2024) 

Benefits:  

• can handle different types of texts.  

Limitations:  

• can be biased towards models that are 

more similar to its own underlying model.  
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Explainability Features 

Visualizing Attention in 

Transformer-Based Language 

Representation Models (Vig, 

2019) 

Purpose:  

• Enhance interpretability of transformer-

based language models.  

Benefit: 

• Aids in interpreting model decisions.  

• Links neurons to model behaviour.  

Explaining the Explainer: A 

First Theoretical Analysis of 

LIME (Garreau & Luxburg, 

2020) 

Purpose:  

• Provide interpretability to machine 

learning models.  

Benefit: 

• Enhances understanding of model 

decisions.  

• Facilitate compliances with regulations.  

 

2.3 Project Methodology 

For the development of the system, Cross-Industry Standard Process for Data 

Mining (CRISP-DM) is used as the methodology. Figure 2.1 shows the steps involved 

in CRISP-DM methodology.  

 

Figure 2.1 Cross-Industry Standard Process for Data Mining (CRISP-DM) 

Diagram (Tounsi et al., 2020) 
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1. Business Understanding 

Legal professionals and university students often deal with extensive 

documents, spending a lot of time and effort. Summarizing legal documents 

can save time and effort and help to focus on critical information by having 

faster review on it. The main goal of this project is to develop a text 

summarization system for legal documents using BART, integrating with XAI 

technique which is visualizing attention mechanism to show the reason behind 

the decision made. The project also aims to design a website for deployment 

of the system, allowing users to upload documents, view, and download results. 

It targets a user-friendly interface to enhance user experience (UX) of the 

system.  

2. Data Understanding 

It is crucial to gain a comprehensive understanding of the legal 

documents, entailing the collection of a diverse array of documents. By delving 

into the structure and content of these documents, it allows discernment of 

commonalities and key sections to facilitate subsequent processing steps. The 

data collected should come from legal databases, court filings, or property 

sources. In the context of this project, the primary focus is on Indian Supreme 

Court case documents and their abstractive summaries. The dataset will be used 

in both training and testing process to train and evaluate the summarization 

model.  

3. Data Preparation 

This stage is a critical step to develop an effective text summarization 

system for legal documents. It involves transforming raw legal texts into a 

structured format which is suitable for modelling, including tokenization and 

document structuring. Tokenization is the process of breaking down the text 

into smaller units, such as words or sentences. In document structuring, a 

document is split into nested chunks of sentences since some models have a 

maximum number of tokens that they designed to accept, for example 1024 

tokens for BART model. These steps are essential to prepare the data in a way 

that retains the complexity and detail of legal documents, ensuring the 

summarization model can generate accurate and contextually relevant 

summaries.  
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4. Modelling 

This phase involves selecting, developing, and fine-tuning the machine 

learning or deep learning models that will generate summaries of legal 

documents. For model selection, extractive or abstractive summarization need 

to be chosen as both methods will generate different summaries. In this project, 

abstractive summarization which is BART model is used because it generates 

new sentences that capture the main ideas of the original text. During the 

training of the model, pairs of original texts and their corresponding summaries 

are fed to minimize the difference between the generated summaries and the 

reference summaries. To show the explainability features, visualization of 

attention mechanism is applied by highlighting key words or phrases in the 

original document. By carefully selecting and training summarization models 

and integrating explainability features, this phase aims to generate high-quality 

legal document summaries, ensuring transparency and practical utility for legal 

professionals.  

5. Evaluation 

Evaluation of the model is important to ensure the generated summaries 

are accurate, relevant, and useful for the target users. The evaluation process 

involves both objective and subjective assessments. In objective evaluation 

quantitative metrics such as ROUGE score is used to measure the overlap of n-

grams, word sequences, and word pairs between the generated summary and a 

reference summary. On the other hand, subjective evaluation involves 

qualitative feedback from end users to assess the practical utility of the 

summaries, including informativeness, coherence, and relevance. 

Incorporating explainability features adds another layer to the evaluation, 

ensuring that users understand the rationale behind the summarization 

decisions, thereby increasing trust and usability.  

6. Deployment 

This is the final phase of CRISP-DM process where the text 

summarization system for legal documents, along with its explainability 

features, is made accessible to end-users in a practical, operational environment. 

This step involves integrating the developed model into existing workflows, 

ensuring it operates smoothly in real-world settings, and providing a user-

friendly interface for legal professionals. The summarization model is 
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embedded into a website, allowing users to upload documents and receive 

summaries with explanations seamlessly. A user-friendly interface is developed 

to display the summarized content and its explanations clearly by highlighting 

the key words or phrases. By deploying the text summarization system 

effectively, the target users can significantly reduce the time spent on document 

review, improve their productivity, and make more informed decisions based 

on concise and understandable summaries.  

2.4 Project Requirements 

This section outlines the project’s essential requirements, including software, 

hardware, and any additional needs. These requirements are crucial for guiding the 

technical and logistic aspects of the project to ensure that all necessary resources are 

available for successful execution.  

2.4.1 Software Requirement 

• Visual Studio Code 

• Python version 3.11.4  

- numpy 

- nltk 

- pandas 

- torch 

- os 

- fitz 

- transformers 

-  torch.nn.functional 

- pytorch_lightning 

2.4.2 Hardware Requirement 

• AMD Ryzen 7 5800H 

• NVIDIA GeForce RTX 3050 Ti Laptop GPU 

• 16GB RAM 

• 512GB ROM (SSD) 
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2.4.3 Other Requirements 

N/A.  

2.5 Project Schedule and Milestones 

This section delves into the project schedule and milestones, providing a 

roadmap for the project’s progression. This section outlines the timeline for key 

activities, milestones, and deliverables, offering a structured plan to track progress and 

ensure timely completion. By detailing the project schedule and milestones, 

stakeholders gain insight into the project's timeline and can effectively manage 

resources and expectations throughout the development process. Table 2.3 (page 21) 

and Figure 2.2 (page 23) show the project activities and milestones for the system 

development.  

2.6 Summary 

This chapter introduces the Literature Review and Project Methodology, 

starting by summarizing existing research and methodologies related to legal text 

summarization and explainable artificial intelligence (XAI). The section covers 

domains, existing systems, and techniques, providing a comprehensive overview. 

Following this, the project methodology is outlined, detailing the Software 

Development Life Cycle (SDLC) stages from planning to maintenance phase. 

Additionally, the chapter presents project 1equirements by listing essential software 

and hardware needs. It concludes with a project schedule and milestones which offer 

a structured timeline for project progression. Next chapter will discuss the requirement 

analysis.  
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Table 2.3 Project Activities and Milestones 

Activity Start Date End Date 
Duration 

(Days) 

Task 1: Project Planning and Research 

Define project scope and objectives.  11 March 22 March 12 

Identify stakeholders.  11 March 22 March 12 

Create a project plan and conduct a 

feasibility analysis.  
25 March 29 March 5 

Conduct literature review on domain 

related to the project.  
23 March 29 March 7 

Milestone Proposal, report chapter 1 and 2 

Task 2: Data Collection and System Design 

Collect data and separate it into training 

and testing dataset.  
1 April 12 April 12 

Define evaluating criteria for summary 

quality.  
1 April 12 April 12 

Design system architecture.  1 April 12 April 12 

Define user interface.  1 April 12 April 12 

Select appropriate algorithm and 

techniques for the system.  
1 April 12 April 12 

Milestone Report chapter 3, data preprocessing 

Task 3: Model Training and Optimization 

Implement abstractive method for text 

summarization.  
15 April 26 April 12 

Train the model using training dataset, 

fine-tuning parameters for optimal 

performance.  

15 April 26 April 12 

Evaluate quality of generated summaries.  15 April 26 April 12 

Milestone Text summarization module 

Task 4: Integration of XAI Model 

Implement the explainability feature by 

using attention mechanisms.  
5 May 14 June 41 
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Integrate the XAI model with the system.  5 May 14 June 41 

Validate integration and interpretability 

of the XAI model.  
5 May 14 June 41 

Milestone XAI module, report chapter 4 

Task 5: Deployment and Testing 

Develop a web-based application for the 

system.  
15 July 15 Aug 31 

Deploy the system on the application.  15 July 15 Aug 31 

Conduct comprehensive testing on the 

whole application.  
15 July 15 Aug 31 

Milestone Complete system with application 

Task 6: Documentation and Finalization 

Document project findings, 

methodologies, and results.  
16 Aug 20 Aug 5 

Prepare final report and presentation 

materials.  
21 Aug 23 Aug 3 

Conduct final review and validation of 

project deliverables.  
24 Aug 24 Aug 1 

Project submission.  25 Aug 25 Aug 1 

Milestone Report chapter 5 and 6 
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 Figure 2.2 depicts the Gantt chart for the project development activities for all tasks in CRISP-DM methodology.  

  

Figure 2.2 Gantt Chart

11-Mar 31-Mar 20-Apr 10-May 30-May 19-Jun 9-Jul 29-Jul 18-Aug 7-Sep

Define project scope and objectives.

Identify stakeholders.

Create a project plan and conduct a feasibility analysis.

Conduct literature review on domain related to the project.

Collect data and separate it into training and testing dataset.

Define evaluating criteria for summary quality.

Design system architecture.

Define user interface.

Select appropriate algorithm and techniques for the system.

Implement abstractive method for text summarization.

Train the model using training dataset, fine-tuning parameters for optimal performance.

Evaluate quality of generated summaries.

Implement the explainability feature by using attention mechanisms.

Integrate the XAI model with the system.

Validate integration and interpretability of the XAI model.

Develop a web-based application for the system.

Deploy the system on the application.

Conduct comprehensive testing on the whole application.

Document project findings, methodologies, and results.

Prepare final report and presentation materials.

Conduct final review and validation of project deliverables.

Project submission.
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CHAPTER 3:  REQUIREMENT ANALYSIS 

 

 

 

 

3.1 Introduction 

In this chapter, the requirement analysis phase, which is a crucial step in the 

project development journey, is embarked. This section offers a preview on how this 

phase will be unfold by outlining its significance and the methodologies it entails. The 

problem analysis will be delved into to identify core challenges, followed by a detailed 

examination of data, functional, non-functional, and other requirements essential for 

the project's success. By providing this preview, the comprehensive understanding of 

the analysis phase and its role in shaping the project trajectory is aimed to set. 

According to the CRISP-DM cycle (page 16), this chapter will involve business 

understanding and data understanding.  

3.2 Problem Analysis 

 

Figure 3.1 Activity Diagram of Human-generated Summary 



25 

 

 

 

Figure 3.1 shows the activity diagram of human-generated summary. Legal 

experts spend a lot of time reading and understanding the legal case documents to 

produce an appropriate summary. However, there is an increase in the number of 

documents, where potentially cause the wasting of time and effort on legal case 

summary production. To overcome the issue, a system which can generate legal case 

summary without sacrificing accuracy is required.  

 

Figure 3.2 Activity Diagram of System-generated Summary 

Figure 3.2 shows the activity diagram of system-generated summary. Several 

text summarization systems have been introduced in these years. The user only needs 

to upload the legal case document, and the system will process and generate a summary 

for the corresponding document. There is a problem occurring where the users do not 

understand why the summary is generated and which part of the original document 

does the system refer to generate the summary. Hence, a system with explainability 

features is necessary to enhance human understanding of the generated summaries.  

 To overcome the issues stated, this project implements abstractive method in 

text summarization where the system will generate new sentences for the summary, 

not only copy and combine the original sentences. Explainable artificial intelligence 

(XAI), which is attention mechanism, will be integrated into the system to show the 

transparency of the summarization process. This can help to improve the quality and 

coherence of the generated summaries, providing concise and readable outputs that 

capture the essence of the original text more effectively.  
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3.3 Requirement Analysis 

3.3.1 Data Requirement 

It is essential to ensure a sufficient amount of data for training purposes. While 

more data generally leads to more effective model training, it is important to strike a 

balance, as larger datasets require more computational resources and time for training. 

Hence, the dataset should be large enough to capture the variability and complexity of 

legal case documents but not so large to prevent it becoming impractical to train the 

model within reasonable timeframes.  

Additionally, it is crucial to maintain a clear distinction between training data 

and testing data. Testing data should be separated from training data to evaluate the 

model’s performance. This can help to prevent overfitting where the model performs 

well on the training data but fails to generalize to new data. By using distinct datasets 

for training and testing, the model's true performance can be accurately assessed, 

ensuring its reliability and effectiveness in real-world applications.  

Utilizing a dataset exclusively composed of a specific court case is essential 

for optimizing the model's performance and relevance. By ensuring consistency in the 

source of dataset, the model can effectively capture the unique linguistic nuances and 

legal conventions specific to the court proceedings. This focused approach fosters 

domain expertise, enabling the model to generate more accurate and contextually 

relevant summaries while maximizing its ability to generalize to new cases within the 

Indian legal landscape.  
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3.3.2 Functional Requirement 

 

Figure 3.3 Activity Diagram of Project System 

The primary function of the system is file upload which allows users to upload 

files for various format (.pdf, .docx, .txt, etc.) into the system. This feature ensures 

flexibility and convenience for users, enabling them to submit documents in their 

preferred format without restrictions. By accommodating multiple file types, the 

system enhances usability and accessibility, facilitating the seamless integration of 

diverse data sources for analysis and processing.  

Once the document is uploaded, the system initiates the data processing 

pipeline, which includes essential steps such as chunking and tokenizing to facilitate 

the summarization process. Chunking involves segmenting the text in smaller and 

manageable chunks or sections to enable more efficient analysis and summarization. 

Tokenizing is the step to break down the text into individual tokens or words to 

establish the foundational units for further analysis and manipulation.  

Following the preprocessing steps, the system proceeds to generate the 

summary using the processed data. Leveraging advanced algorithm, the system 

synthesizes the key information from the document chunks into a concise and coherent 

summary. By identifying essential concepts, extracting relevant sentences, and 

ensuring readability and coherence, the system produces summaries that effectively 

capture the essence of the original document.  
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After the summarization process, the system presents explainability features 

by visualizing attention mechanisms to provide users with insights into how the 

summaries were generated. In this case, the system will highlight the key elements and 

reasoning behind the summarization decisions. This transparency enhances user trust 

and understanding by elucidating the factors influencing the summary generation 

process.  

3.3.3 Non-functional Requirement 

The first non-functional requirement is quality requirement. This includes 

several criteria such as usability, maintainability, and scalability. The system’s user 

interface should adhere to accessibility. The system should also be modular and well-

documented, allowing for easy maintenance and updates by developers. The capability 

of scaling horizontally and vertically to accommodate increased user traffic and data 

volume should be considered.  

The system’s performance expectations, including throughput and response 

time are required in this project. The system should be able to process a minimum 

number of documents per hour to maintain consistent throughput even under heavy 

load conditions. It should also respond to user requests within an appropriate duration 

on average by providing feedback to users for document uploads and summary 

generations.  

Accuracy is one of the non-functional requirements for this project. The 

evaluation methods used in this project are cosine similarity, BERTScore, and 

ROUGE score. The system's summarization algorithm should achieve a minimum 

cosine similarity score of 0.75 when comparing the generated summaries to human-

authored summaries, indicating a high degree of semantic similarity between the two. 

BERTScore evaluation method includes precision, recall, and F1-score, where the F1-

score should be minimum 0.60 for the model. It should also achieve ROUGE scores 

of at least 0.50 for ROUGE-1 (unigram overlap), 0.20 for ROUGE-2 (bigram overlap), 

and 0.20 for ROUGE-L (longest common subsequence) when evaluating the quality 

of the generated summaries against reference summaries.  
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3.3.4 Other Requirement 

1. Software Requirements 

• Python (version 3.8 or higher): Python is chosen for its rich ecosystem 

of libraries and frameworks in natural language processing, enabling 

efficient development of the text summarization algorithm, supported 

by its readability, flexibility, and strong community.  

• PyTorch: PyTorch is chosen as the deep learning framework for its 

robust support in building and training neural network models, 

especially sequence-to-sequence models for abstractive text 

summarization, leveraging its dynamic computation graph and 

popularity in the research community.  

• Natural Language Toolkit (NLTK): NLTK simplifies text preprocessing 

tasks by offering essential tools such as tokenization, stemming, and 

part-of-speech tagging, crucial for preparing textual data for 

summarization, thanks to its comprehensive linguistic resources and 

user-friendly interfaces.  

• NumPy: NumPy is a Python library primarily used for working with 

arrays. It provides extensive functionalities for operations in linear 

algebra, Fourier transforms, and matrix computations, making it a 

fundamental tool in scientific computing and data analysis.  

• Pandas: Pandas is a Python library designed for working with data sets. 

It offers functions for analysing, cleaning, exploring, and manipulating 

data, making it essential for data analysis and data science tasks.  

• Os: The OS module in Python offers functions for creating and 

removing directories, fetching directory contents, and changing or 

identifying the current directory.  

• Fitz: Fitz is the old version of PyMuPDF. It is a high-performance 

Python library for data extraction, analysis, conversion, and 

manipulation of PDF and other documents.  

• Transformers: Transformers provides APIs and tools for downloading 

and training state-of-the-art pretrained models, helping to reduce 

compute costs, carbon footprint, and the time and resources needed to 

train models from scratch.  
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2. Hardware Requirements 

• N/A 

3. Environmental Requirements 

• Network connectivity: reliable and high-speed network connectivity is 

required to ensure seamless communication between system 

components and support smooth data transmission.  

3.4 Summary 

This chapter outlines the requirement analysis phase to emphasize the need for 

a balance in data size for training, clear distinction between training and testing data, 

and the importance of using a consistent dataset source. Functional requirements 

include file upload, data processing pipeline, summarization, and explainability 

features are explained. Non-functional requirements encompass quality, performance, 

and accuracy criteria are interpreted. Other requirements such as software (Python, 

PyTorch, NLTK) and environmental (network connectivity) requirement have been 

indicated. Next chapter will discuss the system design.  
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CHAPTER 4:  DESIGN 

 

 

 

 

4.1 Introduction 

This chapter serves as a crucial bridge between the conceptualization and 

implementation phases of system development. It provides a preview of the design 

analysis results by highlighting key areas such as high-level system architecture, user 

interface design, database design, AI component design, and software or hardware 

design if applicable. This chapter sets the stage for detailed exploration and 

implementation of each design aspect, ensuring a robust and functional system. This 

chapter is the data preparation and modelling steps based on CRISP-DM cycle (page 

16).  

4.2 High-Level Design 

4.2.1 System Architecture for Expert System/DSS/Simulation 

 

Figure 4.1 System Architecture Diagram 
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Figure 4.1 shows the architecture of the project system, which is the text 

summarization system with the explainability feature using natural language 

processing (NLP) and machine learning techniques. The architecture is separated into 

two main parts, which are frontend and backend, connected by Flask framework.  

In the frontend part, the user interacts with the system through a website. The 

user can upload a legal document to the system. Once the document is sent to the 

backend part, the system will undergo preprocessing such as chunking and tokenizing. 

Then the preprocessed document will be passed to the trained BART model to generate 

summary. Additionally, the attention weight of the tokens in the document is 

visualized to produce a highlighted original document, showing important sections or 

terms. The higher the weight, the deeper the colour of highlight, the more important 

the word token. Once the outputs are generated, both will be sent back to the frontend 

via Flask and the user can see the result at the website. The user is also able to 

download the outputs on their device if they want to keep the results.  

 

Figure 4.2 Transformer Architecture Diagram (Vaswani et al., 2017) 

Figure 4.2 is the architecture diagram of a transformer. A transformer is a type 

of deep learning model introduced in 2017 and has quickly become fundamental in 

natural language processing (NLP) (What Is a Transformer Model? | IBM, n.d.). It has 

been applied to many different tasks in machine learning and artificial intelligence. It 
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brings two key innovations to text prediction: positional encoding assigns unique 

positions to tokens, helping the model to understand their order, and self-attention 

weighs the importance of each token in relation to each other, improving the sequence 

prediction. The left half of the architecture is the encoder while the right half is the 

decoder. The encoder maps an input sequence to continuous representations, which 

are then used by the decoder, along with previous outputs, to generate final sequence.  

 

Figure 4.3 BART Architecture Diagram (Lewis et al., 2019) 

Figure 4.3 displays the architecture diagram of BART. BART is built upon the 

transformer architecture, which utilizes self-attention mechanism to capture long-

range dependencies in input sequences efficiently. It is a combination of bidirectional 

and autoregressive approaches. Bidirectional refers to the encoder-decoder 

architecture, where information from both past and future tokens is used to generate 

the current token, helping in capturing contextual information effectively. 

Autoregressive means that during generation, BART predicts tokens sequentially, 

conditioning on previously generated tokens to ensure coherence and fluency in 

generated text.  

BART consists of an encoder and a decoder. The encoder processes the input 

sequence and produces a contextualized representation for each token while the 

decoder takes these representations and generates the output token by token. BART is 

typically pretrained on large corpora using tasks like denoising autoencoding, where 

noisy input sequences are corrupted, and the model is trained to reconstruct the original 

sequence. After pretraining, BART can be fine-tuned on specific downstream tasks 

like text summarization, where it learns to generate concise summaries based on the 

input.  
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Figure 4.4 Self-Attention Mechanism Architecture (Vaswani et al., 2017) 

Figure 4.4 comes out with the self-attention mechanism architecture, which is 

a key component of transformer-based architectures, including BERT, GPT, and 

BART. It enables these models to capture dependencies between different words in a 

sequence effectively. Each token in the input sequence is initially represented as a 

vector. Before applying self-attention, the input vectors are linearly transformed into 

three sets of vectors: Key (K), Query (Q), and Value (V) vectors. These 

transformations are learned during the training process and achieved using weight 

metrices.  

For each token in the sequence, the self-attention mechanism computes 

attention scores with respect to all other tokens. To calculate the attention score for a 

token, the dot product between its Query vector and the Key vector of each token in 

the sequence is computed. These dot products are then scaled and passed through a 

SoftMax function to obtain normalized attention scores, ensuring that the attention 

weights sum up to 1. Once the attention scores are obtained, they are used to compute 

a weighted sum of the Value vectors. The Value vectors represent the information 

content of each token. The weighted sum is computed by multiplying each Value 

vector by its corresponding attention score and then summing these products. The 

weighted sum obtained represents the attended information for each token. These 

attended representations are concatenated to form the output of the self-attention 

mechanism. To enhance the model's ability to capture different types of dependencies, 

the self-attention mechanism often employs multiple attention heads. Each attention 
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head independently computes attention scores, resulting in multiple sets of attended 

representations. The outputs of these attention heads are typically concatenated or 

averaged before being passed through the subsequent layers of the model.  

4.2.2 User Interface Design for expert system/DSS/simulation 

 

Figure 4.5 Mockup Interface of Home Screen 

Figure 4.5 shows the mockup interface of home screen for the text 

summarization website. The design is simple to ensure user-friendly interaction 

between the user and the website. The website has a title welcoming the user and a 

short description of the website, introducing the system. The choose file button allows 

users to choose which file they want to upload to the system. Once the submit button 

is clicked, the selected file will be uploaded to the system for processing. The types of 

files which are accepted by the system are mentioned below the button. A brief 

explanation is prepared for users to have a better understanding of the system, with an 

example result page attached. A footer is the section which includes some overall 

information about the website, such as what the website is, how the website works, 

and contact and support details.  
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Figure 4.6 Mockup Interface of Result Page 

Figure 4.6 illustrates the mockup interface of the result page. Once the users 

upload the file, the system will process the document and show the result on this page. 

The original document with highlighted word tokens is shown at the left part of the 

interface while the summary of the document will be shown at the right part. This 

provides a better view for users to look at both results at the same time. Users can 

download the results or upload new legal documents by clicking the button below the 

summary panel.  

4.3 AI Component Design 

4.3.1 Dataset 

The dataset used is Indian Supreme Court case documents and their abstractive 

summaries. The text summarization model in the system requires two datasets for 

training and testing purposes. There are a total of 7130 documents in the original 

dataset. 100 documents from the dataset are randomly chosen as testing dataset, the 

remaining will be the training dataset. All the data is in .txt format. Figures 4.7 and 4.8 

show the example of original text and corresponding abstractive summary. More 

examples of training and testing dataset can refer to Appendix A and B respectively.  
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Figure 4.7 Example of Original Text of Legal Document 

 

Figure 4.8 Example of Original Text of Legal Document 

4.3.2 BART Model 

The text summarization system involves several key components that work 

together to ensure the accuracy and efficiency of summary generation, one of them is 

utilizing PyTorch Lightning to implement BART model. Pytorch Lighting is the deep 

learning framework for those who require maximum flexibility without sacrificing 

performance at scale (Falcon, 2021). The reason why PyTorch Lightning is used, but 

not PyTorch, is because bugs are more likely to be introduced once the research gets 
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more complicated and things such as multi-GPU training, 16-bit precision, and TPU 

training are mixed in. This part of code is borrowed from the research done by Shukla 

et al. (2022). The explanation of various functions is as follows.  

 

Figure 4.9 Code Snippet for Lightning Model Initialization 

Figure 4.9 shows the initialization of a lightning module with a tokenizer, 

model, and learning rate. It stores these three parameters as instance variables and sets 

hyperparameters for freezing the encoder, freezing embeddings, and number of beams 

for evaluation. The encoder parameters and positional and token embedding 

parameters will be frozen if the conditions are set to true. This means that the model 

will not update these parameters during training to ensure the learned features are not 

modified and prevent overfitting.  

 

Figure 4.10 Code Snippet for Freeze Embedding Layers Function 

Figure 4.10 shows the function to freeze the embedding layers of the model to 

speed up training and reduce overfitting. Shared embeddings, encoder embeddings, 

and decoder embeddings are frozen when this function is called on each of them.  

 

Figure 4.11 Code Snippet for Forward Pass Function 

Figure 4.11 displays the function of forward pass for the model where it is used 

to pass input (input_ids and any additional arguments) to the model and get the output.  
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Figure 4.12 Code Snippet for Optimizer Function 

Figure 4.12 is the function which configures the optimizer for training. It 

creates an Adam optimizer with the model parameters and specified learning rate. The 

Adam optimizer is a popular choice for many deep learning tasks due to its ability to 

the learning rate and its robustness to noisy gradients.  

 

Figure 4.13 Code Snippet for Training Step Function 

Figure 4.13 shows the code snippet which defines the training step for batches 

of data. It loads the source IDs, source mask, and target IDs from the batch, and next 

shifts the decoder unput IDs to the right. The model is run to get logits. This function 

also computes cross-entropy loss, ignoring padding tokens, and the loss is returned. In 

essence, this function is used to calculate the loss of a batch of data during training.  

 

Figure 4.14 Code Snippet for Validation Step Function 

Figure 4.14 is the validation step for batches of data where it is similar to 

training step but used for validation. This function will compute the loss of a batch of 

data during validation and return it.  
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Figure 4.15 Code Snippet for Text Generation Function 

The function shown in Figure 4.15 is to generate text using the model’s 

generation capabilities. It takes input IDs, attention mask, and various generation 

parameters. The generated text is produced using beam search, with the number of 

beams and the maximum length of the generated text controlled by the input 

parameters. The generated text is then decoded and returned as a list of strings.  

 

Figure 4.16 Code Snippet for Freeze Parameters Function 

Figure 4.16 displays the function of freezing parameters of the given model or 

model component. It iterates through the model parameters and sets requires_grad to 

false to prevent these layers from being updated during training.  

 

Figure 4.17 Code Snippet for PyTorch Lightning Data Module Initialization 

A data module is initialized with the tokenizer, data frame which contains the 

data, and batch size as shown in Figure 4.17. these parameters are stored as instance 

variables. This module is designed to handle the data loading and preprocessing for a 

text summarization task.  

 

Figure 4.18 Code Snippet for Data Preparation Function 

The function displayed in Figure 4.18 prepares the data by randomly shuffling 

and splitting it into training, validation, and test sets with a 60/20/20 split.  
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Figure 4.19 Code Snippet for Sentence Encoding Function 

Figure 4.19 shows the sentence encoding function for the three sets of data 

using the tokenizer. The tokenized data is then stored in the instance variable.  

 

Figure 4.20 Code Snippet for Data Loader Creation (Training Data) Function 

Figure 4.20 is the code snippet of the data loader creation function. It creates a 

data loader for the training data to load the data in batches during training.  

 

Figure 4.21 Code Snippet for Data Loader Creation (Validation Data) Function 

The code snippet in Figure 4.21 is similar to the one in Figure 4.19, but it is 

used for validation data.  

 

Figure 4.22 Code Snippet for Data Loader Creation (Testing Data) Function 

The code snippet in Figure 4.22 is similar to the one in Figure 4.19 and 4.20, 

but it is used for testing data.  

 

Figure 4.23 Code Snippet for Token Shifting Function 

Figure 4.23 shows the function for shifting input tokens in sequence to the right 

by one position for decoder input preparation. The shifted tokens are then returned.  
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Figure 4.24 Code Snippet for Sentences Encoding Function 

Figure 4.24 is the code snippet of the sentences encoding function, where it 

encodes a list of source and target sentences using a tokenizer. The encoded data is 

then returned in a batch format.  

In summary, the LitModel handles the model’s training and generation 

processes while the SummaryDataModule manages the data loading and 

preprocessing. This facilitates a streamlined workflow for training a BART text 

summarization model by utilizing Pytorch Lightning.  

4.3.3 AI Techniques 

To develop a text summarization model for legal documentation with 

explainability feature using BART model, several processes and techniques are 

required, including training and testing process. Visualizing the attention mechanism 

is the technique used for the explainability feature. The overall flow of the system is 

explained step-by-step using the flowcharts below.  
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Figure 4.25 Flowchart of Model Training Process 

Figure 4.25 shows the training process of the proposed text summarization 

model. The necessary libraries such as NumPy, NLTK, Pandas, TQDM and 

BART_utilities are imported. BART_utilities is the file containing libraries that utilize 

PyTorch Lightning (detail description in Chapter 4.3.2 (page 37)). The paths which 

will be used in the following process are defined, including dataset, root path, and 

output path. The training data, including judgment and summary, are read from 

specified directories and stored in lists. A total of 7030 data (a pair of judgement and 

summary considered as 1 data) is used in the training process.  

A pre-trained sentence transformer is initialized and loaded, specifying to run 

on CUDA (Compute Unified Device Architecture). This is because CUDA offers a 

significant boost for training and running a model. Next, the model will check both the 

judgement and summary lists. If there is document in the lists, the model will split 

paragraphs into individual sentences and store in lists (for example l1 for judgement 

sentences and l2 for summary sentences). The cosine similarity between two lists of 

sentences is calculated. Based on the result, chunks of text from judgement and their 

corresponding summaries will be generated. Once there is no more document in the 

judgement and summary lists, the training chunks and summaries are done generated 

and stored in an excel file. The file is then read, and the columns are renamed into 

source and target data.  
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To continue the training process, the environment for using BART model is set 

up, including load a pre-trained BART model and tokenizer. Special tokens are added 

to the tokenizer and the token embeddings in the BART model are resized. The data 

module and lightning model with specified parameters (BART model is used) are 

initialized. A PyTorch Lightning trainer is set up with GPU (Graphics Processing Unit) 

acceleration and other training parameters. After all settings are done, the training 

process starts until the maximum number of epochs is reached. The training process 

ends with saving the model weight into checkpoint. The detailed code is attached in 

Appendix C.  

 

Figure 4.26 Flowchart of Model Testing Process 

Figure 4.26 is the testing process of the trained model to read a single document 

and generate its summary. Similar to the training process, it starts with the import of 

libraries, path set up, and document reading. The environment for using BART model 

is set up by loading pre-trained BART model and tokenizer. Special tokens are added 

to the tokenizer and the token embeddings in the BART model are resized. The 

lightning model with specified parameters is initialized and the saved model weight is 

loaded (trained BART model).  

The required summary length is set to 15% of the length of the original 

document. This is because normally the summary length should be in the range of 10% 
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to 15% of the original text length, or even shorter than the range (Burnell et al., n.d.). 

The model next retrieves the document’s name and content. The word count of the 

document and the required summary length are calculated. The model splits the 

document into nested chunks of sentences with a maximum chunk length of 1024 

words. The required summary length per chunk and percentage of document length for 

summary is calculated.  

The testing process continues by generating summaries for each chunk using 

the BART model on GPU. The generated summaries are concatenated into a single 

string. If the length is more than the required length, truncation needs to be done, else 

the final summary will be written to the specified output file, and this is the end of the 

testing process. The detailed code is attached in Appendix D.  

 

Figure 4.27 Flowchart of Explainability Feature 

Figure 4.27 displays the process of how the explainability feature is done. The 

process is similar to the testing process until the read document step. These steps can 

be skipped if continued after the summary generation. The attention weights are 

extracted from the model’s output, where the last layer’s attention is targeted.  

To visualize the attention weights, the original document is split into individual 

tokens. The important tokens are highlighted based on the attention weights by setting 

highlight colours proportional to the attention weights. The higher the attention 

weights, the more important the token is, the more obvious the highlight colour. A 

PDF (Portable Document Format) file containing the original document text with 
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highlighted tokens based on attention weights is created. The generated PDF file is 

saved to the specified output directory. The code snippet is attached in Appendix E.  

4.4 Software or Hardware Design (if applicable) 

For this section, readers may refer to the detailed description of Software and 

Hardware Requirement in Chapter 2.4 on page 19 to 20, under the topic of Project 

Requirements.  

4.5 Summary 

This chapter outlines the transition from conceptualization to implementation 

of the proposed text summarization system. It describes the high-level architecture of 

the system, where the system is divided into a frontend for user interaction and a 

backend for processing, connected by Flask. Users upload the legal documents, which 

will be processed and summarized using the trained BART model, and receive 

documents with important sections highlighted based on attention weights and 

corresponding summaries. The architectures behind the transformers, BART model, 

and attention mechanism are also explained. The user interface is designed for 

simplicity and ease of use, displaying both the original and summarized documents 

side-by-side. The dataset used in this project is described with examples shown. The 

AI component utilizes PyTorch Lightning to implement BART model for efficient 

model training and testing, with detailed code snippets provided for various functions 

and flowchart granted for process understanding. Next chapter is about the result and 

discussion of the system developed.  
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CHAPTER 5:  RESULTS AND DISCUSSION 

 

 

 

 

5.1 Introduction 

This chapter outlines the evaluation methods used in the project which are 

precision, recall, F1-score, cosine similarity, and ROUGE score. It also details the 

testing of functional and non-functional requirements, including test case 

identification, tester identification, and test case results. A survey has been prepared 

with certain questions for the testing and the results will be recorded with detailed 

explanation. This chapter is the evaluation and deployment phases in CRISP-DM 

(page 16).  

5.2 Evaluation of AI Techniques Used in the Project 

5.2.1 Techniques 

The methods used to evaluate the AI technique used in this project which is the 

BART text summarization model are BERTScore (including precision, recall, and F1-

score) and cosine similarity. In the context of BERTScore, precision reflects how many 

of the tokens generated by the model are similar to the tokens in the reference 

summary, recall reflects how well the generated summary covers the tokens from the 

reference summary, and F1-score combines both to give an overall sense of how 

similar the generated text is to the reference text in terms of token similarity. High 

precision but low recall indicates that the model generates very accurate tokens, but it 

might miss out on important content. High recall but low precision indicates that the 

model includes the most relevant content but also adds unnecessary or irrelevant 

tokens. A high F1-score suggests a good balance between capturing the important 

content and avoiding irrelevant content in the generated summaries.  
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Figure 5.1 Precision, Recall, and F1-Score of Generated  

According to Figure 5.1, the BERTScore of every single testing data and the 

average are calculated. The overall precision, recall, and F1-score are 0.6241, 0.5976, 

and 0.6091 respectively. From the score calculated, the model can be proved that it 

can generate quite accurate tokens without missing some important content, but the 

performance still can be improved to get a higher score.  
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Figure 5.2 Cosine Similarity between Reference Summary and Generated 

Summary, and the Overall Accuracy based on Cosine Similarity 

Cosine similarity is a metric used to measure how similar the documents are 

irrespective of their size (Cosine Similarity | Engati, n.d.). This matric is advantageous 

as the two similar documents could still have smaller angle even they are far apart by 

the Euclidean distance because of the size. The smaller the angle, the higher the 

similarity. The cosine similarity value is allocated between 0 to 1, where the larger the 

value, the more similar the two documents are. Figure 5.2 displays the result of cosine 

similarity of the reference summaries and summaries generated by the proposed 

system, and the overall accuracy based on cosine similarity. A threshold of 0.8 is 

defined to calculate the accuracy, which means that only summaries with cosine 

similarity of more than 0.8 will be considered. From the given result, the accuracy is 

0.94, showing there are 94 documents from 100 testing data that have cosine similarity 

higher than 0.8.  
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5.2.2 Applications 

The method used to evaluate the applications is ROUGE Score. The detailed 

explanation of ROUGE score can be found in Chapter 2.2.3 Techniques (page 12). In 

the evaluation for the proposed application, ROUGE-1, ROUGE-2, and ROUGE-L are 

used. ROUGE-N measures the overlap of n-grams between the reference summaries 

and system generated summaries, where ROUGE-1 refers to the overlap of unigrams 

(every single word) and ROUGE-2 refers to the overlap of bigrams (two consecutive 

words), while ROUGE-L is based on the length of the longest common subsequence.  

 

Figure 5.3 ROUGE Score between Reference Summary and Generated 

Summary, and the Average ROUGE Score 

The average of the ROUGE score has been calculated as shown in Figure 5.3, 

which ROUGE-1 is 0.4911, ROUGE-2 is 0.2434, and ROUGE-L is 0.2449. The scores 

are considered moderate except ROUGE-L as it is lower than 0.3 (What is the ROUGE 

Score (Recall-Oriented Understudy for Gisting Evaluation)?, Stephen M.). However, 

it cannot be concluded that the overall performance of the application is poor because 

ROUGE score relies on reference summaries. The ROUGE score primarily focusses 
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on the proportion of relevant information preserved in a summary, which may not 

always be the most crucial aspect in evaluating the system. Researchers may 

sometimes prioritize on how accurately key details are captured, or fluency, which 

assesses the coherence and naturalness of the generated summary.  

5.3 Testing of Functional Requirement 

In application development, thoroughly testing the functional requirements of 

the product is critical to ensure that the system operates as intended and meets the user 

needs. Functional testing verifies that each function of the application behaves as the 

required specifications. This process involves several key steps such as test case 

identification, tester identification, test case results in either pass of fail, and detailed 

documentation on the failed test case if any. The test case will describe all the functions 

of the system including documents upload, process, and result. The description is 

explained in Table 5.1. Test case 1 to 8 is done by the target users while test case 9 is 

checked by the developer.  

 

Figure 5.4 Pie Chart of Target Users 

A survey has been prepared for the users to rate the system’s functionality. The 

target users are those who study or work in legal fields. Figure 5.4 shows the pie chart 

of the target users with percentage. In a total of 25 respondents, 10 of them (40%) are 

currently studying or working in legal field while the 15 people (60%) left are not. 

Those 10 target users will continue with the questions about functionality of the 

system.  
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Figure 5.5 Pie Chart of Experience Studying or Working in Legal Fields 

A simple demographic is indicated in Figure 5.5, Figure 5.6, and Figure 5.7. 

Figure 5.5 shows the pie chart of experience of the 10 target users studying or working 

in legal field. 4 people (40%) have less than 1 year experience, while the range 1 to 3 

years, 3 to 5 years, and more than 5 years have 2 respondents (20%) each.  

 

Figure 5.6 Pie Chart of Frequency Dealing with Legal Case Documents 

Figure 5.6 displays the pie chart of frequency the target users dealing with the 

legal case documents. Most of them deal with the documents weekly (4 respondents 

with 40%), followed by rarely (3 respondents with 30%), and daily (2 respondents with 

20%). Only one respondent (10%) from the target users deals with the legal documents 

monthly.  
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Figure 5.7 Pie Chart of Experience in Using Text Summarization Tools for 

Legal Case Documents 

Figure 5.7 exhibits the pie chart of target users’ experience in using text 

summarization tools for legal case documents. 60% (6 respondents) of them have used 

the tools before while 40% of the left (4 respondents) have not.  

The demographic gives a basic impression on the target users, especially on 

the years they are involved in legal field, frequency they deal with legal documents, 

and their experience on using text summarization tools. This can help in answering the 

functionality questions better because different experiences can have different 

opinions on the system. Their rating on the system’s functionality is shown in Figure 

5.8, Figure 5.9, and Figure 5.10.  

 

Figure 5.8 Bar Chart of How Accurate the Users Find the Summaries 

Generated by the System 

 Figure 5.8 is the bar chart on how accurate the users find the summaries 

generated by the system. The rating started from 1 (very inaccurate) to 5 (very 
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accurate). Most of the target users (6 respondents, 60%) find the summaries generated 

to be accurate and one of them (10%) said it is very accurate, while 3 respondents 

(30%) found the summaries generated are only moderate.  

 

Figure 5.9 Bar Chart of the Importance of Highlighted Words 

 Figure 5.9 displays the bar chart of target users’ opinion on the importance of 

the highlighted words, rating from 1 (very unimportant) to 5 (very important). Half of 

the target users (5 respondents, 50%) think the highlighted words are important, 

followed by 3 respondents (30%) who feel the importance of highlighted words are 

average. For the range unimportant and very important, one respondent (10%) voted 

for each.  

 

Figure 5.10 Bar Chart of the Users’ Understanding of the Legal Documents by 

only Reading the Generated Summaries 
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 Figure 5.10 shows the bar chart about the target users’ understanding of the 

legal documents by only reading the generated summaries. The rating is between 1 

(very poorly) to 5 (very well). 6 respondents (60%) from the target users are able to 

understand well and one respondent (10%) can understand very well. 30% (3 

respondents) of the target users only have moderate understanding of the legal 

documents if only read the generated summaries.  

5.4 Testing of Non-Functional Requirement 

 The testing of non-functional requirements of the system is also crucial to 

ensure the system works smoothly. Testing on usability, design, and aesthetics has 

been done through a survey, including some open-ended questions for extra opinions, 

comments, and feedback. A total of 25 respondents have been involved in this section.  

 

Figure 5.11 Bar Chart of Easiness of Navigation through the System 

 Figure 5.11 indicates the users’ opinion on the easiness of navigation through 

the system, from 1 (very difficult) to 5 (very easy). 10 respondents (40%) think it is 

very easy to navigate through the system, followed by 9 respondents (36%) who think 

the navigation is easy. 16% of the users (4 respondents) feel moderate on the 

navigation while the two respondents left (8%) feel difficult to navigate through the 

system.  
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Figure 5.12 Bar Chart of the Helpfulness of the Briefing and Explanation 

 Figure 5.12 is the bar chart about the helpfulness of the briefing and 

explanation in guiding users through the system. The rating started from 1 (very 

unhelpful) to 5 (very helpful). 8 respondents (32%) find the information very helpful 

while 11 respondents (44%) think it is helpful. 20% of the users (5 respondents) feel 

average on the information and only one respondent (4%) finds it unhelpful.  

 

Figure 5.13 Bar Chart of Rating on Learning to Use the System 

 Figure 5.13 exhibits the bar chart of users’ rating on learning to use the system 

from 1 (very difficult) to 5 (very easy). There are 11 respondents (44%) and 10 

respondents (40%) feel easy and very easy on learning to use the system respectively. 

However, 16% of the users (4 respondents) rated only moderate on it.  
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Figure 5.14 Bar Chart of Visual Appeal Level of User Interface 

 Figure 5.14 displays the level of visual appeal of the user interface, rating start 

from 1 (very unappealing) to 5 (very appealing). The highest rating is 4 which is 

appealing with the vote of 9 (36%), followed by rating 5 (very appealing) with 28% 

voting (7 respondents). 6 respondents (24%) found the visual appeal of the user 

interface is average. For the range unappealing and very unappealing, they have 8% (2 

respondents) and 4% (1 respondent) of voting respectively.  

 

Figure 5.15 Bar Chart of Information Presentation 

 Figure 5.16 shows the users’ opinion on the information presentation whether 

it is presented in clear or organized manner or not. The rating is between 1 (very 

disorganized) to 5 (very organized). Most of the users (11 respondent, 44%) agree that 

the presentation is very organized while 8 respondents (32%) said it is organized. 16% 
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of users (4 respondents) found the presentation is only average and the last 2 

respondents (8%) feel the presentation is disorganized.  

 

Figure 5.16 Bar Chart of Rating on the Font Size, Type, and Content Layout 

 Figure 5.17 indicates the bar chart of users’ rating on the font size, type, and 

content layout from 1 (very poor) to 5 (excellent). The highest rating is 4 (good) with 

a total of 37.5% vote (9 respondents). 8 respondents (33.3%) rate the readability of the 

system excellent while 5 respondents (20.8%) feel the readability is only moderate. 

For the range poor (2) and very poor (1), one respondent (4.2%) voted on each.  

 Open-ended questions are also prepared for the respondents for the extra 

comments or feedback. Most of the respondents think the system is already good 

presently, but some also provide their opinions on future improvement. The largest 

improvement to be made is enhancing the user interface and content layout such as 

increasing the line spacing, more creative in colours and layout, and making sure the 

layout is more organized for easy viewing. Extra functions are also requested by the 

users. For example, language translator feature and adjustable summary for users to 

select on the summary length. Overall, the feedback highlights the users’ satisfaction 

with the current system, but also points out some valuable suggestions for enhancing 

the user interface (UI), layout, and functionality to further improve the user experience 

(UX).  
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5.5 Summary 

This chapter focuses on the evaluation methods and results of the AI techniques 

and system requirements for the project. The evaluation includes BERTScore 

(precision, recall, F1-score), cosine similarity, and ROUGE score, with a detailed test 

case description of the system. The chapter also covers the functional and non-

functional testing of the system, including user feedback which is gathered through 

surveys. Functional testing verifies the system’s ability to meet the specifications while 

non- functional testing assesses usability, design, and aesthetics. Extra feedback 

indicates the general satisfaction of the users with the system, along with some 

suggestions for user interface and functionality improvements to enhance user 

experience.  
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Table 5.1 Test Case Table 

Test 

Case 
Description Steps Expected Output Actual Output 

Status 

(Pass/Fail) 

1 
Upload document 

from local storage.  

1. Click “Choose File” button.  

2. Select file to upload.  

3. Click “Submit” button.  

Document selected 

successfully uploaded to 

system for processing.  

Document selected 

successfully uploaded to 

system for processing.  

Pass 

2 

Real-time 

summarization of 

document and 

result generation.  

1. Click “Choose File” button.  

2. Select file to upload.  

3. Click “Submit” button. 

4. Highlighted original document and 

summary are on the left and right panel 

of result page respectively.  

Both results were 

successfully processed 

and shown in the right 

position. 

Both results were 

successfully processed 

and shown in the right 

position. 

Pass 

3 

Download 

highlighted 

original document 

to local storage.  

1. Click “Choose File” button.  

2. Select file to upload.  

3. Click “Submit” button. 

4. Highlighted original document and 

summary are on the left and right panel 

of result page respectively.  

Highlighted original 

document successfully 

downloaded to local 

storage.  

Highlighted original 

document successfully 

downloaded to local 

storage. 

Pass 
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5. Click “Download Highlighted 

Original Document” button.  

4 

Download 

summary to local 

storage.  

1. Click “Choose File” button.  

2. Select file to upload.  

3. Click “Submit” button. 

4. Highlighted original document and 

summary are on the left and right panel 

of result page respectively.  

5. Click “Download Summary” button.  

Summary successfully 

downloaded to local 

storage.  

Summary successfully 

downloaded to local 

storage.  

Pass 

5 
Upload new 

document.  

1. Click “Choose File” button.  

2. Select file to upload.  

3. Click “Submit” button. 

4. Highlighted original document and 

summary are on the left and right panel 

of result page respectively.  

5. Click “Upload New Document” 

button.  

Navigate back to the 

homepage to allow 

document upload.  

Navigate back to the 

homepage to allow 

document upload. 

Pass 

6 
Handle various 

format of 

1. Click “Choose File” button.  Three types of documents 

were successfully 

Three types of documents 

were successfully 
Pass 
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document (.pdf, 

.docx, .txt).  

2. Select file (in .pdf, .docx, .txt) to 

upload.  

3. Click “Submit” button.  

uploaded to the system 

for processing.  

uploaded to the system 

for processing.  

7 

Highlight of 

important words in 

original document.  

1. Click “Choose File” button.  

2. Select file to upload.  

3. Click “Submit” button. 

4. Highlighted original document and 

summary are on the left and right panel 

of result page respectively.  

5. Click “Download Highlighted 

Original Document” button. 

Both original documents 

on the result page and 

downloaded pdf have 

important words 

highlighted.  

Both original documents 

on the result page and 

downloaded pdf have 

important words 

highlighted.  

Pass 

8 Error handling.  

1. Click “Choose File” button.  

2. Select file (in .pdf, .docx, .txt) to 

upload.  

3. Click “Submit” button.  

Error message of 

unsupported file type 

displayed.  

Error message of 

unsupported file type 

displayed.  

Pass 

9 

Frontend and 

backend 

communication 

using Flask.  

1. Click “Choose File” button.  

2. Select file to upload.  

3. Click “Submit” button.  

4. Check backend process.  

Successful 

communication with 

documents uploaded and 

processed.  

Successful 

communication with 

documents uploaded and 

processed. 

Pass 
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CHAPTER 6:  CONCLUSION 

 

 

 

 

6.1 Observation on Weakness and Strengths 

 The project has shown a combination of both weaknesses and strengths that 

reflects its current state and recommendations for future development. One of the 

notable weaknesses is the moderate performance of the AI model, which does not 

consistently deliver the high accuracy and quality expected from advanced text 

summarization systems. The performance may be due to various factors, such as 

improper training parameters or limitations in the dataset used.  

 Another area that needs attention is the user interface of the web-based 

application, which will further affect the user experience. Although it serves its 

purposes and gets most of the good feedback, some users are still unsatisfied with the 

visual appeal like line spacing and the content layout. The modern users required more 

creative and intuitive design which can enhance the overall user experience and 

satisfaction.  

On the other hand, the project strength lies in its successful integration of 

explainable AI that increases the transparency of the AI model. By using the feature, 

users have insights into how and why the summary was generated during text 

summarization. This feature is particularly valuable in understanding the rationale 

behind AI-generated content, especially in the legal field. The ability to explain 

decisions made builds trust with users and sets the system apart from other 

summarization tools that operate as “black boxes”.  



64 

 

 

 

6.2 Propositions for Improvement 

 After the identification of the strengths and weaknesses of the system, several 

key propositions for improvement can be made in future. First and foremost is 

modifying the training parameters. To enhance the system’s performance, a detailed 

review and adjustment of the training parameters need to be done. This could involve 

experimenting with different model architectures, tuning hyperparameters, or using 

more diverse and extensive training datasets. The suggested ideas should be able to 

increase the model’s accuracy and ability to generate high-quality summaries.  

 For the user interface of the application, a comprehensive overhaul is 

recommended. The enhancement should focus on making the user interface more 

visually appealing and user-friendly. This could involve updating the design to be 

more modern and responsive to ensure it meets the accessibility standards. User 

feedback should also be incorporated to improve the navigation through the system 

and overall usability.  

 A feature that some users required is the adjustable summary length, allowing 

users to adjust the length of the summary generated by the system. This feature will 

add a valuable level of customization as there are different needs between users. Some 

require a brief overview, but some claim a detailed summary. The target users would 

benefit from being able to tailor the output according to their specific requirements.  

Last but not least, introducing a language translation feature will significantly 

broaden the system’s appeal and usability as it enables the system to serve a more 

diverse user base. The feature allows the system to generate summary in multiple 

languages and catering to non-native users or those studying or working in multilingual 

environments.  

6.3 Project Contribution 

 From the findings of the project, it makes several important contributions to 

the university, faculty, and individual, especially in the field of artificial intelligence 

text summarization and the integration of explainable artificial intelligence.  

 To the university and faculty, the project provides a practical example to 

implement an AI-driven solution with a focus on model transparency and 

interpretability. The project can be used as a learning tool or a basis for further 

academic research, potentially leading to future innovations or collaborations.  
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 On a personal level, the project contributes to the individual’s expertise in 

artificial intelligence, specifically in the areas of natural language processing and 

explainable artificial intelligence. The experience and skills gained through this project 

can be precious for future career opportunities or advanced studies.  

The detailed user manual which provides comprehensive instructions on how 

to use the system is attached in Appendix F. The manual is a crucial resource for users 

and stakeholders to ensure that they can fully leverage the system’s capabilities.  

6.4 Summary 

In summary, the project successfully meets the set objectives as it delivers a 

functional and explainable AI-driven text summarization system. The system 

demonstrates significant potential especially with the integration of XAI. It also 

reveals some areas for improvement, such as performance optimization and user 

interface enhancement. The proposed improvements, including adjusting training 

parameters, upgrading the user interface, and adding new features like adjustable 

summary length and a language translator, will further enhance the system's 

functionality and user satisfaction. Concluding, the project not only contributes 

valuable insights and tools to the AI and legal field but also create a basis for further 

development. With the recommended improvements, the system has a high potential 

to become a leading tool in its domain, offering users a more powerful, customizable, 

and accessible text summarization experience.  
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APPENDIX A: 20 EXAMPLES OF TRAINING DATA SET 
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APPENDIX B: 10 EXAMPLES OF TESTING DATA SET 
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APPENDIX D: TESTING CODE 
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APPENDIX E: XAI CODE SNIPPET 
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APPENDIX F: USER MANUAL 

 
 

 
 

 

1. Choose file and click 

submit button to upload Brief explanation 

Result panels 

2. Click to 

download the 

results 
3. Click to upload 

new document 


