

TEXT SUMMARIZATION OF LEGAL DOCUMENTATION WITH

EXPLAINABILITY FEATURE

TEH XIAO THONG

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ii

TEXT SUMMARIZATION OF LEGAL DOCUMENTATION WITH

EXPLAINABILITY FEATURE

TEH XIAO THONG

This report is submitted in partial fulfillment of the requirements for the

Bachelor of Computer Science (Artificial Intelligence) with Honours.

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2024

iii

DECLARATION

I hereby declare that this project report entitled

TEXT SUMMARIZATION OF LEGAL DOCUMENTATION WITH

EXPLAINABILITY FEATURE

is written by me and is my own effort and that no part has been plagiarized

without citations.

STUDENT : ______________________________________ Date : __23/08/2024__

(TEH XIAO THONG)

I hereby declare that I have read this project report and found

this project report is sufficient in term of the scope and quality for the award of

 Bachelor of Computer Science (Artificial Intelligence) with Honours.

SUPERVISOR : ______________________________________ Date : __23/08/2024__

(TS. DR. HALIZAH BINTI BASIRON)

iv

DEDICATION

I dedicate this work to my esteemed supervisor, Ts. Dr. Halizah Binti Basiron, whose

invaluable guidance and expertise have been instrumental throughout this endeavour.

I am sincerely grateful to my academic advisor, Assoc. Prof. Gs. Dr. Asmala Bin

Ahmad, for his unwavering support and insightful advice during the completion of

this project. To my friends and family, your continuous encouragement and

understanding have provided me with resolute strength. This achievement is not just

mine, but ours to celebrate.

v

ACKNOWLEDGEMENTS

I extend my heartfelt appreciation to Ts. Dr. Halizah Binti Basiron for her

indispensable assistance in successfully completing this project. Her support and

guidance were pivotal in navigating challenges and achieving goals.

Additionally, I am deeply grateful to my beloved parents for their steadfast support

and endless encouragement throughout this enterprise. Their love and motivation have

been a constant source of strength, driving me towards excellence.

vi

ABSTRACT

Summarizing lengthy documents, especially in the legal domain, poses

significant challenges for both humans and automated systems. Human efforts often

entail considerable time and effort while automated systems sometimes falter in

decision-making, leading to ambiguity in the generated summaries. This project

explores the use of text summarization in legal documentation, coupled with an

explainability feature. It addresses the challenges of condensing lengthy legal texts and

improving transparency in automated summarization systems. The project involves

gathering legal documents, developing a BART summarization model, and integrating

explainability within the system, which is visualizing attention mechanism. The

system which has been deployed on web-based application is the final product of this

project. The system performance, that includes BERTScore, cosine similarity, and

ROUGE score between human-generated and system-generated summaries, and

evaluation by target users, lead to several engaging insights on legal summarization.

The model demonstrated moderate performance where the user feedback indicated

satisfaction with its functionality but highlighted the need for user interface

improvements. Key strengths of the model include the system’s explainability that is

crucial for legal applications. Future improvements suggested including refining

model training, enhancing the user interface, and adding features like adjustable

summary lengths and language translation. The project contributes valuable insights

to artificial intelligence and natural language processing with potential for further

research and development.

vii

ABSTRAK

Meringkaskan dokumen-dokumen panjang, terutamanya dalam bidang

undang-undang, memberikan cabaran besar kepada manusia dan sistem automatik.

Usaha manusia sering melibatkan masa dan usaha yang besar manakala sistem

automatik kadang-kadang tergagap dalam membuat keputusan, menyebabkan

kekaburan dalam ringkasan yang dihasilkan. Projek ini meneroka penggunaan

ringkasan teks dalam dokumen undang-undang, disertakan dengan ciri kejelasan. Ia

mengatasi cabaran dalam meringkaskan teks undang-undang yang panjang dan

meningkatkan ketelusan dalam sistem ringkasan automatik. Projek ini melibatkan

pengumpulan dokumen undang-undang, membangunkan model peringkasan BART,

dan mengintegrasikan penjelasan dalam sistem, iaitu memvisualisasikan mekanisme

perhatian. Sistem yang telah dikerahkan dalam aplikasi web adalah produk akhir

projek ini. Prestasi sistem, yang termasuk BERTScore, kesamaan kosinus, dan skor

ROUGE antara ringkasan yang dihasilkan oleh manusia dan sistem, serta penilaian

oleh pengguna sasaran, memberikan beberapa pandangan menarik mengenai

peringkasan undang-undang. Model ini menunjukkan prestasi sederhana di mana

maklum balas pengguna menunjukkan kepuasan dengan fungsinya tetapi menekankan

perlunya penambahbaikan antara muka pengguna. Kekuatan utama model ini

termasuk penjelasannya yang penting untuk aplikasi undang-undang.

Penambahbaikan masa depan yang dicadangkan termasuk memperhalusi latihan

model, meningkatkan antara muka pengguna, dan menambah ciri seperti panjang

ringkasan yang boleh disesuaikan dan penterjemahan bahasa. Projek ini memberikan

pandangan berharga kepada kecerdasan buatan dan pemprosesan bahasa semula jadi

dengan potensi untuk penyelidikan dan pembangunan lanjut.

viii

TABLE OF CONTENTS

 PAGE

DECLARATION .. III

DEDICATION .. IV

ACKNOWLEDGEMENTS .. V

ABSTRACT .. VI

ABSTRAK .. VII

TABLE OF CONTENTS .. VIII

LIST OF TABLES ... XII

LIST OF FIGURES .. XIII

LIST OF ABBREVIATIONS .. XV

LIST OF ATTACHMENTS ... XVII

CHAPTER 1: INTRODUCTION ... 1

1.1 Introduction .. 1

1.2 Problem Statement ... 1

1.3 Objective .. 2

1.4 Project Scope ... 2

1.5 Project Significance ... 3

1.6 Expected Output... 3

1.7 Report Organizations ... 3

ix

1.8 Summary .. 5

CHAPTER 2: LITERATURE REVIEW AND PROJECT METHODOLOGY . 6

2.1 Introduction .. 6

2.2 Facts and Findings ... 6

2.2.1 Domain .. 6

2.2.2 Existing System ... 7

2.2.3 Technique .. 11

2.3 Project Methodology .. 16

2.4 Project Requirements ... 19

2.4.1 Software Requirement ... 19

2.4.2 Hardware Requirement .. 19

2.4.3 Other Requirements ... 20

2.5 Project Schedule and Milestones ... 20

2.6 Summary .. 20

CHAPTER 3: REQUIREMENT ANALYSIS ... 24

3.1 Introduction .. 24

3.2 Problem Analysis ... 24

3.3 Requirement Analysis .. 26

3.3.1 Data Requirement .. 26

3.3.2 Functional Requirement ... 27

3.3.3 Non-functional Requirement ... 28

3.3.4 Other Requirement ... 29

3.4 Summary .. 30

CHAPTER 4: DESIGN ... 31

x

4.1 Introduction .. 31

4.2 High-Level Design ... 31

4.2.1 System Architecture for Expert System/DSS/Simulation 31

4.2.2 User Interface Design for expert system/DSS/simulation 35

4.3 AI Component Design ... 36

4.3.1 Dataset ... 36

4.3.2 BART Model ... 37

4.3.3 AI Techniques .. 42

4.4 Software or Hardware Design (if applicable) .. 46

4.5 Summary .. 46

CHAPTER 5: RESULTS AND DISCUSSION ... 47

5.1 Introduction .. 47

5.2 Evaluation of AI Techniques Used in the Project .. 47

5.2.1 Techniques ... 47

5.2.2 Applications ... 50

5.3 Testing of Functional Requirement ... 51

5.4 Testing of Non-Functional Requirement ... 55

5.5 Summary .. 59

CHAPTER 6: CONCLUSION .. 63

6.1 Observation on Weakness and Strengths ... 63

6.2 Propositions for Improvement ... 64

6.3 Project Contribution ... 64

6.4 Summary .. 65

xi

REFERENCES ... 66

APPENDIX A: 20 EXAMPLES OF TRAINING DATA SET 69

APPENDIX B: 10 EXAMPLES OF TESTING DATA SET 89

APPENDIX C: TRAINING CODE .. 99

APPENDIX D: TESTING CODE .. 101

APPENDIX E: XAI CODE SNIPPET ... 103

APPENDIX F: USER MANUAL .. 105

xii

LIST OF TABLES

 PAGE

Table 2.1 Summary of Reviewed System ... 9

Table 2.2 Summary of Reviewed Techniques .. 14

Table 2.3 Project Activities and Milestones ... 21

Table 5.1 Test Case Table .. 60

xiii

LIST OF FIGURES

 PAGE

Figure 2.1 Cross-Industry Standard Process for Data Mining (CRISP-DM)

Diagram (Tounsi et al., 2020) .. 16

Figure 2.2 Gantt Chart .. 23

Figure 3.1 Activity Diagram of Human-generated Summary 24

Figure 3.2 Activity Diagram of System-generated Summary 25

Figure 3.3 Activity Diagram of Project System ... 27

Figure 4.1 System Architecture Diagram .. 31

Figure 4.2 Transformer Architecture Diagram (Vaswani et al., 2017) 32

Figure 4.3 BART Architecture Diagram (Lewis et al., 2019) 33

Figure 4.4 Self-Attention Mechanism Architecture (Vaswani et al., 2017) 34

Figure 4.5 Mockup Interface of Home Screen... 35

Figure 4.6 Mockup Interface of Result Page ... 36

Figure 4.7 Example of Original Text of Legal Document 37

Figure 4.8 Example of Original Text of Legal Document 37

Figure 4.9 Code Snippet for Lightning Model Initialization 38

Figure 4.10 Code Snippet for Freeze Embedding Layers Function 38

Figure 4.11 Code Snippet for Forward Pass Function ... 38

Figure 4.12 Code Snippet for Optimizer Function ... 39

Figure 4.13 Code Snippet for Training Step Function ... 39

Figure 4.14 Code Snippet for Validation Step Function 39

Figure 4.15 Code Snippet for Text Generation Function 40

Figure 4.16 Code Snippet for Freeze Parameters Function 40

Figure 4.17 Code Snippet for PyTorch Lightning Data Module Initialization .. 40

Figure 4.18 Code Snippet for Data Preparation Function 40

xiv

Figure 4.19 Code Snippet for Sentence Encoding Function 41

Figure 4.20 Code Snippet for Data Loader Creation (Training Data) Function 41

Figure 4.21 Code Snippet for Data Loader Creation (Validation Data) Function

 .. 41

Figure 4.22 Code Snippet for Data Loader Creation (Testing Data) Function .. 41

Figure 4.23 Code Snippet for Token Shifting Function 41

Figure 4.24 Code Snippet for Sentences Encoding Function 42

Figure 4.25 Flowchart of Model Training Process .. 43

Figure 4.26 Flowchart of Model Testing Process .. 44

Figure 4.27 Flowchart of Explainability Feature .. 45

Figure 5.1 Precision, Recall, and F1-Score of Generated 48

Figure 5.2 Cosine Similarity between Reference Summary and Generated

Summary, and the Overall Accuracy based on Cosine Similarity 49

Figure 5.3 ROUGE Score between Reference Summary and Generated

Summary, and the Average ROUGE Score ... 50

Figure 5.4 Pie Chart of Target Users ... 51

Figure 5.5 Pie Chart of Experience Studying or Working in Legal Fields 52

Figure 5.6 Pie Chart of Frequency Dealing with Legal Case Documents 52

Figure 5.7 Pie Chart of Experience in Using Text Summarization Tools for Legal

Case Documents ... 53

Figure 5.8 Bar Chart of How Accurate the Users Find the Summaries Generated

by the System .. 53

Figure 5.9 Bar Chart of the Importance of Highlighted Words 54

Figure 5.10 Bar Chart of the Users’ Understanding of the Legal Documents by

only Reading the Generated Summaries ... 54

Figure 5.11 Bar Chart of Easiness of Navigation through the System 55

Figure 5.12 Bar Chart of the Helpfulness of the Briefing and Explanation 56

Figure 5.13 Bar Chart of Rating on Learning to Use the System 56

Figure 5.14 Bar Chart of Visual Appeal Level of User Interface 57

Figure 5.15 Bar Chart of Information Presentation ... 57

Figure 5.16 Bar Chart of Rating on the Font Size, Type, and Content Layout . 58

xv

LIST OF ABBREVIATIONS

FYP - Final Year Project

XAI - Explainable Artificial Intelligence

NLP - Natural Language Processing

AI - Artificial Intelligence

TF-IDF - Term Frequency-Inverse Document Frequency

ROUGE - Recall-Oriented Understudy for Gisting

Evaluation

LCS - Longest Common Subsequence

FFNN - Feed Forward Neural Networks

LSTM - Long Short-Term Memory

SSE - Similarity based on Sentence Embeddings

CNN - Convolutional Neural Networks

MMR - Maximal Marginal Relevance

BART - Bidirectional and Auto-Regressive

Transformers

BERT - Bidirectional Encoder Representations from

Transformers

seq2seq - sequence to sequence

RNN - Recurrent Neural Network

LCSTS - Large scale Chinese Short Text Summarization

LSA - Latent Semantic Analysis

GPT - Generative Pre-trained Transformer

LIME - Local Interpretable Model-agnostic

Explanations

xvi

CRISP-DM - Cross-Industry Standard Process for Data

Mining

NLTK - Natural Language Toolkit

CUDA - Compute Unified Device Architecture

GPU - Graphics Processing Unit

PDF - Portable Document Format

UI - User Interface

UX - User Experience

xvii

LIST OF ATTACHMENTS

 PAGE

Appendix A 20 Examples of Training Data 69

Appendix B 10 Examples of Testing Data 89

Appendix C Training Code 99

Appendix D Testing Code 101

Appendix E XAI Code Snippet 103

Appendix F Simple User Guide 105

CHAPTER 1: INTRODUCTION

1.1 Introduction

Reviewing legal documents such as supreme court case documents often

require specialized knowledge and reading through the entire document to capture the

key information is time consuming. As the volume of legal documents increases, it

becomes crucial to extract essential details without delving into the entire content.

Hence, summarization provides a solution by providing flexibility and convenience to

readers. In addition, explainable artificial intelligence (XAI) can ensure the system not

only produces concise summaries, but also provides transparent justifications for the

decisions made, which enhance trust and comprehension for legal professionals.

1.2 Problem Statement

Legal professionals often struggle with obstacles when driving through

documentations which are time and effort. Reading and comprehending pages of

documents can be a cumbersome process, which might lead to potential oversights or

missed critical details. Moreover, clear explanations are necessary and crucial behind

automated summarization, where transparency and accountability are paramount.

This project is aimed to develop a system which can summarize the legal

documentation with suitable explanation. The system must ensure the generated

summaries accurately capture the key points of original document and provide clear

rationale for the inclusion of specific information.

2

1.3 Objective

This project embarks on the following objectives:

1. To develop a text summarization model for legal case documentation.

2. To design an XAI model for the summarization result explainability.

3. To create a user-friendly web-based application for the whole model.

1.4 Project Scope

The scopes involved in this project are as below with brief explanation:

1. Target Users

i. Legal Professionals (included judges, magistrates, advocates,

attorneys, and university lecturers)

ii. University Students (especially law students)

2. Project Modules

i. Text Summarization Model

Collect and preprocess a diverse legal document dataset,

implement a legal-specific NLP summarization algorithm using

deep learning, and iteratively refine it for optimal performance.

ii. XAI (Explainable Artificial Intelligence) Model

XAI is an umbrella term for a range of techniques,

algorithms, and methods, which accompany outputs from

Artificial Intelligence (AI) systems with explanations (Norkute,

2021). Research and implement suitable XAI techniques such

as visualizing attention mechanism for legal text summarization,

develop an interpretable framework for generating explanations,

ensure user-friendly explanations for legal professionals, and

validate and fine-tune the model based on user feedback.

iii. Web-based Application

Design a user-friendly interface, implement the backend

system for document uploads, summarization, and explanation

generation, integrate the text summarization and XAI models

into the application, conduct usability testing, and provide

documentation for user assistance.

3

1.5 Project Significance

Users such as legal professionals and university students, especially those who

study law will get benefits from the project. For legal professionals, this project helps

in case law analysis, legal research, preparation for court proceedings, and teaching

and learning. It also acts as a powerful aid in university students’ academic endeavors

such as study aid, research assistance, exam preparation, time management, and legal

principles understanding.

In short, text summarization model generates summaries of legal documents

which helps in time saving while explainable artificial intelligence (XAI) provides

suitable explanations that improve users’ understanding of the documents. A user-

friendly web-based application allows users to use the application in simple and

effective way.

1.6 Expected Output

This project aims to deliver a robust text summarization model tailored for

legal documents for enhancing efficiency in condensing extensive texts without

sacrificing accuracy or transparency. It includes the integration of an XAI model for

transparent explanation and development of a user-friendly application for whole

system combination. Rigorous testing and feedback from readers are essential for

validating the process and ensuring the effectiveness of the developed application.

1.7 Report Organizations

Chapter 1: Introduction

This chapter introduces the project background briefly, followed by the

problem statement highlighting issues motivating the project. The project objectives

are outlined, alongside the project scope including the research domain and

experimental setup. This chapter also discusses the project’s contribution and expected

benefits. Lastly, it outlined the report organization which summarizes each chapter’s

content.

Chapter 2: Literature Review and Project Methodology

This chapter provides a preview of the literature review and project

methodology. It identifies the project’s domain and summarizes existing systems and

4

techniques reviewed, with explanations and references. The selected approach and

methodology, along with project requirements, are described briefly. Additionally, the

project schedule and milestones are outlined. Finally, the chapter is summarized,

highlighting the next activities to be developed.

Chapter 3: Requirement Analysis

This chapter introduces the requirement analysis phase, outlining problem

analysis, data, functional, and non-functional requirements. It describes input

interfaces, database contents, system functions, and performance criteria. The chapter

concludes with a summary and explanation of the next steps.

Chapter 4: Design

This chapter outlines the design phase, covering high-level design, user

interface (UI), database, AI component, and software or hardware design. It includes

refining system architecture, navigation, input and output design, database schema, AI

techniques, and software/hardware specifications. The chapter concludes with a

summary and explanation of the next steps.

Chapter 5: Results and Discussion

This chapter presents the results and discussions, beginning with an overview

of the testing phase and strategy. It evaluates the AI techniques used, focusing on

performance metrics specific to each technique. Functional requirements testing is

explained, including test case identification and documentation. The chapter concludes

with a summary and outlines the next steps in the project.

Chapter 6: Conclusion

This chapter discusses the project's strengths and weaknesses, offering

suggestions for improvement. It highlights the project's contribution and provides

guidance on accessing the user manual. The chapter concludes by summarizing if the

project successfully meets its set objectives, ending with final remarks.

5

1.8 Summary

This project aims to develop a text summarization system which utilizes

explainable artificial intelligence (XAI) tailored for legal professionals and university

students studying law. XAI is to provide transparent justifications for the

summarization decisions for enhancing trust and comprehension. The objectives

include developing a text summarization model, designing an XAI model for

explainability, and creating a user-friendly web-based application. The project’s

significance is mainly in time saving and understanding improvements for users by

generating concise summaries of legal documents with clear explanations. The

expected output is a robust text summarization model integrated with XAI and

delivered through a user-friendly application, validated through rigorous testing and

feedback. Next chapter will discuss the literature review and project methodology.

6

CHAPTER 2: LITERATURE REVIEW AND PROJECT METHODOLOGY

2.1 Introduction

In this chapter, the existing body of research surrounding the central themes of

this project will be explained by exploring the key concepts, theories, and empirical

findings to contextualize the investigation. This section aims to synthesize and critique

relevant literature, identify gaps and debates that inform the project objectives.

Subsequently, the project methodology outlines the systematic approach employed to

address the project goals, detailing the project design, data collection methods, and

analytical techniques utilized to acquire and analyze data. By integrating insights from

the literature review with our methodological framework, a robust foundation for this

project is aimed to construct, facilitating a comprehensive exploration of the research

questions at hand.

2.2 Facts and Findings

2.2.1 Domain

The domain of this project falls within the intersection of several fields, which

are legal domain, natural language processing (NLP), machine learning, and

explainable artificial intelligence (XAI). This project operates within the legal fields,

specifically dealing with legal case documents, and involves NLP techniques for

processing and analyzing textual data. The incorporation of explainability features

suggests the use of machine learning and XAI algorithms not only for summarization

but also for providing insights or explanations about the summarized content. This

project also delves into interpretability and transparency aspects to ensure the

7

generated summaries and explanations are understandable and trustworthy to

stakeholders.

2.2.2 Existing System

A hybrid method for automatic text summarization of legal cases using k-

means clustering techniques and term frequency-inverse document frequency (TF-

IDF) word vectorizer is proposed by Varun Pandya (Pandya, 2019). The process

involves data preprocessing to clean the document, clustering similar sentences using

k-means, and extracting sentences to form a summary. The k-means algorithm groups

sentences, which are then vectorized with term frequency-inverse document frequency

(TF-IDF). Clustering minimizes intra-cluster distances and maximizes inter-cluster

distances, with optimal clusters determined. Sentences are ranked based on TF-IDF

score and title similarity, with top-ranked sentences selected for the final summary.

The dataset comprises Australian legal cases from Auslii. Evaluation is done by using

Recall-Oriented Understudy for Gisting Evaluation (ROUGE) metrics to compare

results with three automated tools. Pandya's method showed promising results, where

the proposed method performs favourably well against other existing methods, as

detailed in a comparative table.

Anand and Wagh have also proposed simple generic techniques using neural

network architecture which are feed forward neural networks (FFNN) based summary

and long short-term memory (LSTM) based summary (Anand & Wagh, 2022). Their

approaches require no manual features or domain knowledge and can be applied across

various domains. The process involves generating labeled data using summary

information from court judgment headnotes and utilizing this data to extract important

sentences for summarization. Different similarity techniques are employed to compute

sentence labels, with sentence embeddings (SSE) showing the best performance.

FFNN transforms sentences into vectors, calculates probabilities, and selects the top-

ranked sentences for the summary. LSTM, combined with convolutional neural

networks (CNN), selects sentences with the highest importance likelihood based on

LSTM output scores. Evaluation using ROUGE scores on Supreme Court of India

judgment documents demonstrates the effectiveness of both methods. The result table

shows that LSTM performs better in many cases.

8

Research about the comparison of extractive and abstractive legal case

document summarization has been done by Shukla and his team (Shukla et al., 2022).

This research is to analyze the performance of various summarization methods on legal

case judgement documents and explore effective evaluation techniques. Extensive

experiments with several abstractive and extractive summarizations including both

supervised and unsupervised methods have been carried out over three legal

summarization datasets. Some examples of the methods are Luhn, Pacsum_bert,

Maximal Marginal Relevance (MMR), Bidirectional and Auto-Regressive

Transformers (BART), Bidirectional Encoder Representations from Transformers -

Bidirectional and Auto-Regressive Transformers (BERT-BART), and Legal-Pegasus

etc. The datasets, Indian-Abstractive, Indian-Extractive, and UK-Abstractive dataset,

are developed from Indian and United Kingdom Supreme Courts case documents. The

analyses, including ROUGE, BERTScrore, and evaluations by legal practitioners, aim

to provide insights into legal summarization and long document summarization in

general, contributing to advancements in this field.

Shifting focus to another system, the Neural Networks for Text

Summarization, with a Keras implementation of an attention-based sequence-to-

sequence (seq2seq) model is explored, emphasizing the success of the attention

mechanism in the context (Adarsh, 2022). Similar to other systems, data preprocessing

is done as the first step of implementation. A model with encoder-decoder architecture

which has global attention is built and an embedding layer to convert words into

appropriate vector representations is used, learning along with the seq2seq model.

Attention mechanisms in encoder-decoder neural networks enable the generation of a

context vector at each timestep by considering the decoder's current hidden state and

a subset of the encoder's hidden states. The dataset used in this study is Amazon Fine

Food dataset found on Kaggle. Since the original and generated summaries are short,

the performance evaluation is just done by comparing both of them.

Last but not least, an automatic abstractive text summarization model based on

hybrid attention mechanism has been introduced by Zhe Wang, where it incorporates

a sentence-level attention mechanism to guide word-level attention distribution,

adjusting the weight of sentence-level attention to mitigate high variance issues in

word-level attention for shorter documents (Wang, 2021). The methodology of this

study introduces a hybrid-attentional model using encoder-decoder networks with

recurrent neural networks (RNN). It incorporates attention mechanisms to improve

9

decoder focus and a pointer-generator network for word generation or copying.

Additionally, a dynamic hybrid attention mechanism adjusts attention values at both

word and sentence levels to enhance summary quality based on document length.

Evaluation of the approach by using ROUGE score on large scale Chinese short text

summarization (LCSTS) dataset demonstrates the effectiveness of the proposed

method in capturing key information and generating concise summaries.

Table 2.1 lists the summary of the reviewed systems, including method or

technique used, dataset involved, and evaluation method.

Table 2.1 Summary of Reviewed System

Reviewed System Summary

Automatic Text Summarization

of Legal Classes: A Hybrid

Approach (Pandya, 2019)

Method or technique:

• K-mean clustering

• TF-IDF word vectorizer

Dataset:

• Australian legal cases

Evaluation method:

• ROUGE

Effective Deep Learning

Approaches for Summarization

of Legal Texts (Anand &

Wagh, 2022)

Method or technique:

• Feed forward neural network (FFNN)

• Long short-term memory (LSTM)

Dataset:

• Supreme Court of India Judgement

Evaluation method:

• ROUGE

Legal Case Document

Summarization: Extractive and

Abstractive Methods and Their

Evaluation (Shukla et al., 2022)

Method or technique:

• Extractive (Luhn, Pacsum_bert, MMR,

KMM, LetSum, SummaRunner, BERT-

Ext, Gist, DSDR, CaseSummarizer)

10

• Abstractive (BART, BERT-BART, Legal-

Pegasus, Legal-LED)

Dataset:

• Indian Supreme Court judgements

• UK Supreme Court cases

Evaluation method:

• ROUGE

• BERTScore

• Expert evaluation

Text Summarization with

Attention Based Network

(Adarsh, 2022)

Method or technique:

• Sequence to sequence model

• Attention mechanism (global)

Dataset:

• Amazon Fine Food dataset

Evaluation method:

• Compare original and generated summary

An Automatic Abstractive Text

Summarization Model based on

Hybrid Attention Mechanism

(Wang, 2021)

Method or technique:

• Sequence to sequence model

• Attention mechanism (hybrid)

Dataset:

• Large scale Chinese short text

summarization (LCSTS) dataset

Evaluation method:

• ROUGE

11

2.2.3 Technique

Text summarization is the creation of a short, accurate, and fluent summary of

a longer text document (Dutta et al., 2023). This process is crucial for managing the

vast volume of online text data, facilitating the discovery and consumption of relevant

information more efficiently. There are two main forms of text summarization method,

which are abstractive and extractive summarization. Extractive summarization

combines existing sentences without any alterations to create a summary while

abstractive summarization involves text generation where the machine writes its own

sentences (Ada, 2023). Extractive summarization is more rigid due to directly copy

sentences from the source text which potentially resulting in awkward reading (Ada,

2023). Conversely, text generation in abstractive summarization initiates better human

writing style, enhancing coherence and readability with concise and coherent output

(Ada, 2023). There are several prominent examples of both the methods, which are

Luhn, Latent Semantic Analysis (LSA), TextRank, LexRank, PositionRank, and

TopicRank for extractive summarization, while abstractive summarization includes

BART and pretraining with extracted gap-sentences for abstractive summarization

(PEGASUS) (Giarelis et al., 2023).

BART, a denoising autoencoder for pretraining sequence-to-sequence model,

is introduced by Mike Lewis and his team (Lewis et al., 2019). BART is trained to

reconstruct original text from corrupted versions using a Transformer-based

architecture, which can be seen as a generalization of models like BERT and

generative pre-trained transformer (GPT). The architecture is explained with a diagram

in Chapter 4.2.1 (page 31). The study evaluates various text corruption methods and

demonstrates BART's effectiveness in tasks such as text generation, comprehension,

abstractive dialogue, question answering, summarization, and machine translation.

Additionally, ablation experiments within the BART framework are conducted to

assess factors influencing end-task performance. On summarization task, BART

shows an outperformance over two datasets (CNN/DailyMail and XSum) surpassing

other existing methods. The resulting summaries are fluent and grammatically correct,

indicating that BART's pretraining has effectively learnt a robust blend of natural

language comprehension and generation.

Erkan and Radev have presented a stochastic graph-based method for

determining the relative importance of textual units, particularly in the context of text

12

summarization (Erkan & Radev, 2004). The method is named LexRank. It computes

sentence importance based on eigenvector centrality in a graph representation of

sentences, using intra-sentence cosine similarity. In this study, LexRank is

implemented into the MEAD summarization system (Radev & Zhang, 2001). The

dataset used in the experiments consists of DUC 2003 and 2004 data sets, which

involve generic summarization of news document clusters. For evaluation the ROUGE

metric, specifically ROUGE-1 which represents the unigram-based ROUGE score,

was used as it aligns closely with human judgements.

A study conducted by Kamya Singh and his team investigates using BERT-

based techniques for summarization and sentence similarity checks to enhance

important question answering systems (Sharma et al., 2023). The proposed approach

combines BERT-based summarization with semantic similarity checking to extract

key information and predict crucial questions. Experiments on benchmark datasets

have been done and showing that this method surpasses traditional machine learning

and deep learning techniques, achieving state-of-the-art performance. The approach

was also effective in real-world applications like medical diagnosis, legal case

analysis, and financial forecasting.

To evaluate the performance of a text summarization system, there are several

methods and one of the approaches is ROUGE score. ROUGE stands for Recall-

Oriented Understudy for Gisting Evaluation score (Santhosh, 2023). It is a set of

metrics which commonly used for text summarization tasks to automatically generate

a concise summary of a longer text. It was designed to evaluate the quality of machine-

generated summaries by comparing them to reference summaries prepared by humans.

ROUGE has variants like ROUGE-N focusing on n-gram overlap, ROUGE-L on the

longest common subsequence (LCS), and ROUGE-S on skip-bigram overlap. ROUGE

score ranges from 0 to 1, with higher values indicating better summary quality. It's

widely used for its objectivity but may not fully capture semantic meaning or

coherence.

Another method used to evaluate the quality of text summarization is

BERTScore (Özbolat, 2023). This method measures the similarity between the

summary and the original text. It addresses issues encountered by n-gram-based

metrics by using contextualized token embeddings from models like BERT to compute

similarity. The process involves representing sentences with contextual embeddings,

measuring cosine similarity, token matching for precision and recall, considering word

13

importance using IDF, and rescaling values for readability. For a basic level

BERTScore calculation, the output will be precision, recall, and F1 score. BERTScore

enhances text similarity measurement, making it more accurate and balanced, with

potential applications in various domains of natural language processing. However,

this method has its own pros and cons. For example, BERTScore can handle different

types of texts but it can be biased towards models that are more similar to its own

underlying model.

In essence, ensuring the transparency and interpretability of the summaries is

crucial, where explainable artificial intelligence (XAI) plays an important role in it.

There are some examples of XAI methods in NLP such as visualizing attention

mechanisms in neural networks, generating textual explanations for model predictions,

and interpreting the reasoning behind the models’ decision-making process (Mulkar,

2023). Attention mechanism is introduced by Vaswani in the year 2017 (Vaswani et

al., 2017). The architecture is explained with a diagram in Chapter 4.2.1 (page 32). In

traditional Deep Learning models like LSTMs and RNNs, longer inputs pose

challenges for retaining relevant information, prompting the need for attention

mechanisms to signal the model about focus areas (Norkute, 2021). However,

transformer models, utilizing self-attention across all encoder and decoder layers,

circumvent this issue (Norkute, 2021). Attention mechanisms are widely used in text

summarization across diverse domains like news, reviews, scientific papers, legal

documents, and social media posts, where models such as the Pointer-generator

network, Transformer, and BART exemplify this trend (What Are the Pros and Cons

of Using Attention Mechanisms in Text Summarization With RNNs?, 2023).

Research on an open-source tool for visualizing attention mechanism in

transformer-based language models is proposed by Jesse Vig (Vig, 2019). The tool

offers three levels of granularity which are attention head, model, and neuron views.

Its application has been demonstrated on BERT and GPT-2 models. The tool aids in

interpreting model decisions and identifying patterns, such as model bias detection,

recurring patterns identification, and neurons to model behavior linkage. This allows

for a comprehensive understanding of how the model attends to different parts of the

input and how individual neurons contribute to attention computation. It enhances

model interpretability, enables targeted improvements through user manipulation, and

offers versatility for various analysis tasks and model types.

14

On the other hand, a theoretical analysis of local interpretable model-agnostic

explanations (LIME) has been done by Garreau and Luxburg (Garreau & Luxburg,

2020). This explainer is commonly used for providing interpretability to machine

learning models. The study derives closed-form expressions for the coefficients of the

interpretable model when the function to explain is linear, demonstrating that LIME

can uncover meaningful features proportional to the gradient of the function. It aids in

understanding model decisions, improving trust, and facilitating compliances with

regulations. However, it also highlights potential limitations of LIME where poor

parameter choices may cause the algorithm to overlook important features.

Table 2.2 outlines the summary of the reviewed techniques for text

summarization, evaluation methods, and explainability features respectively.

Table 2.2 Summary of Reviewed Techniques

Reviewed Techniques Summary

Text Summarization

BART: Denoising Sequence-

to-Sequence Pre-training for

Natural Language Generation,

Translation, and

Comprehension (Lewis et al.,

2019)

Unique characteristic:

• denoising autoencoder approach, which

enable robust performance in natural

language understanding and generation

tasks.

Dataset:

• CNN/DailyMail

• XSum

Evaluation method:

• ROUGE

LexRank: Graph-based Lexical

Centrality as Salience in Text

Summarization (Erkan &

Radev, 2004)

Unique characteristic:

• reliance on eigenvector centrality and

intra-sentence cosine similarity within a

sentence graph.

Dataset:

• DUC 2003

15

• DUC 2004

Evaluation method:

• ROUGE

Question Summation and

Sentence Similarity using

BERT for Key Information

Extraction (Sharma et al., 2023)

Unique characteristic:

• captures bidirectional context.

• pre-trained with masked language

modelling and next sentence prediction.

Dataset:

• 500 interview questions from various

industries

Evaluation method:

• Performance Metrics

• User Study

Evaluation Method

Understanding BLEU and

ROUGE score for NLP

Evaluation (Santhosh, 2023)

Variant:

• ROUGE-N

• ROUGE-L

• ROUGE-S

Benefits:

• flexible for different n-gram lengths.

Limitations:

• not fully capturing semantic meaning or

coherence.

Text Summarization: How to

Calculate BertScore (Özbolat,

2023)

BERTScore Explained in 5

minutes (Sojasingarayar, 2024)

Benefits:

• can handle different types of texts.

Limitations:

• can be biased towards models that are

more similar to its own underlying model.

16

Explainability Features

Visualizing Attention in

Transformer-Based Language

Representation Models (Vig,

2019)

Purpose:

• Enhance interpretability of transformer-

based language models.

Benefit:

• Aids in interpreting model decisions.

• Links neurons to model behaviour.

Explaining the Explainer: A

First Theoretical Analysis of

LIME (Garreau & Luxburg,

2020)

Purpose:

• Provide interpretability to machine

learning models.

Benefit:

• Enhances understanding of model

decisions.

• Facilitate compliances with regulations.

2.3 Project Methodology

For the development of the system, Cross-Industry Standard Process for Data

Mining (CRISP-DM) is used as the methodology. Figure 2.1 shows the steps involved

in CRISP-DM methodology.

Figure 2.1 Cross-Industry Standard Process for Data Mining (CRISP-DM)

Diagram (Tounsi et al., 2020)

17

1. Business Understanding

Legal professionals and university students often deal with extensive

documents, spending a lot of time and effort. Summarizing legal documents

can save time and effort and help to focus on critical information by having

faster review on it. The main goal of this project is to develop a text

summarization system for legal documents using BART, integrating with XAI

technique which is visualizing attention mechanism to show the reason behind

the decision made. The project also aims to design a website for deployment

of the system, allowing users to upload documents, view, and download results.

It targets a user-friendly interface to enhance user experience (UX) of the

system.

2. Data Understanding

It is crucial to gain a comprehensive understanding of the legal

documents, entailing the collection of a diverse array of documents. By delving

into the structure and content of these documents, it allows discernment of

commonalities and key sections to facilitate subsequent processing steps. The

data collected should come from legal databases, court filings, or property

sources. In the context of this project, the primary focus is on Indian Supreme

Court case documents and their abstractive summaries. The dataset will be used

in both training and testing process to train and evaluate the summarization

model.

3. Data Preparation

This stage is a critical step to develop an effective text summarization

system for legal documents. It involves transforming raw legal texts into a

structured format which is suitable for modelling, including tokenization and

document structuring. Tokenization is the process of breaking down the text

into smaller units, such as words or sentences. In document structuring, a

document is split into nested chunks of sentences since some models have a

maximum number of tokens that they designed to accept, for example 1024

tokens for BART model. These steps are essential to prepare the data in a way

that retains the complexity and detail of legal documents, ensuring the

summarization model can generate accurate and contextually relevant

summaries.

18

4. Modelling

This phase involves selecting, developing, and fine-tuning the machine

learning or deep learning models that will generate summaries of legal

documents. For model selection, extractive or abstractive summarization need

to be chosen as both methods will generate different summaries. In this project,

abstractive summarization which is BART model is used because it generates

new sentences that capture the main ideas of the original text. During the

training of the model, pairs of original texts and their corresponding summaries

are fed to minimize the difference between the generated summaries and the

reference summaries. To show the explainability features, visualization of

attention mechanism is applied by highlighting key words or phrases in the

original document. By carefully selecting and training summarization models

and integrating explainability features, this phase aims to generate high-quality

legal document summaries, ensuring transparency and practical utility for legal

professionals.

5. Evaluation

Evaluation of the model is important to ensure the generated summaries

are accurate, relevant, and useful for the target users. The evaluation process

involves both objective and subjective assessments. In objective evaluation

quantitative metrics such as ROUGE score is used to measure the overlap of n-

grams, word sequences, and word pairs between the generated summary and a

reference summary. On the other hand, subjective evaluation involves

qualitative feedback from end users to assess the practical utility of the

summaries, including informativeness, coherence, and relevance.

Incorporating explainability features adds another layer to the evaluation,

ensuring that users understand the rationale behind the summarization

decisions, thereby increasing trust and usability.

6. Deployment

This is the final phase of CRISP-DM process where the text

summarization system for legal documents, along with its explainability

features, is made accessible to end-users in a practical, operational environment.

This step involves integrating the developed model into existing workflows,

ensuring it operates smoothly in real-world settings, and providing a user-

friendly interface for legal professionals. The summarization model is

19

embedded into a website, allowing users to upload documents and receive

summaries with explanations seamlessly. A user-friendly interface is developed

to display the summarized content and its explanations clearly by highlighting

the key words or phrases. By deploying the text summarization system

effectively, the target users can significantly reduce the time spent on document

review, improve their productivity, and make more informed decisions based

on concise and understandable summaries.

2.4 Project Requirements

This section outlines the project’s essential requirements, including software,

hardware, and any additional needs. These requirements are crucial for guiding the

technical and logistic aspects of the project to ensure that all necessary resources are

available for successful execution.

2.4.1 Software Requirement

• Visual Studio Code

• Python version 3.11.4

- numpy

- nltk

- pandas

- torch

- os

- fitz

- transformers

- torch.nn.functional

- pytorch_lightning

2.4.2 Hardware Requirement

• AMD Ryzen 7 5800H

• NVIDIA GeForce RTX 3050 Ti Laptop GPU

• 16GB RAM

• 512GB ROM (SSD)

20

2.4.3 Other Requirements

N/A.

2.5 Project Schedule and Milestones

This section delves into the project schedule and milestones, providing a

roadmap for the project’s progression. This section outlines the timeline for key

activities, milestones, and deliverables, offering a structured plan to track progress and

ensure timely completion. By detailing the project schedule and milestones,

stakeholders gain insight into the project's timeline and can effectively manage

resources and expectations throughout the development process. Table 2.3 (page 21)

and Figure 2.2 (page 23) show the project activities and milestones for the system

development.

2.6 Summary

This chapter introduces the Literature Review and Project Methodology,

starting by summarizing existing research and methodologies related to legal text

summarization and explainable artificial intelligence (XAI). The section covers

domains, existing systems, and techniques, providing a comprehensive overview.

Following this, the project methodology is outlined, detailing the Software

Development Life Cycle (SDLC) stages from planning to maintenance phase.

Additionally, the chapter presents project 1equirements by listing essential software

and hardware needs. It concludes with a project schedule and milestones which offer

a structured timeline for project progression. Next chapter will discuss the requirement

analysis.

21

Table 2.3 Project Activities and Milestones

Activity Start Date End Date
Duration

(Days)

Task 1: Project Planning and Research

Define project scope and objectives. 11 March 22 March 12

Identify stakeholders. 11 March 22 March 12

Create a project plan and conduct a

feasibility analysis.
25 March 29 March 5

Conduct literature review on domain

related to the project.
23 March 29 March 7

Milestone Proposal, report chapter 1 and 2

Task 2: Data Collection and System Design

Collect data and separate it into training

and testing dataset.
1 April 12 April 12

Define evaluating criteria for summary

quality.
1 April 12 April 12

Design system architecture. 1 April 12 April 12

Define user interface. 1 April 12 April 12

Select appropriate algorithm and

techniques for the system.
1 April 12 April 12

Milestone Report chapter 3, data preprocessing

Task 3: Model Training and Optimization

Implement abstractive method for text

summarization.
15 April 26 April 12

Train the model using training dataset,

fine-tuning parameters for optimal

performance.

15 April 26 April 12

Evaluate quality of generated summaries. 15 April 26 April 12

Milestone Text summarization module

Task 4: Integration of XAI Model

Implement the explainability feature by

using attention mechanisms.
5 May 14 June 41

22

Integrate the XAI model with the system. 5 May 14 June 41

Validate integration and interpretability

of the XAI model.
5 May 14 June 41

Milestone XAI module, report chapter 4

Task 5: Deployment and Testing

Develop a web-based application for the

system.
15 July 15 Aug 31

Deploy the system on the application. 15 July 15 Aug 31

Conduct comprehensive testing on the

whole application.
15 July 15 Aug 31

Milestone Complete system with application

Task 6: Documentation and Finalization

Document project findings,

methodologies, and results.
16 Aug 20 Aug 5

Prepare final report and presentation

materials.
21 Aug 23 Aug 3

Conduct final review and validation of

project deliverables.
24 Aug 24 Aug 1

Project submission. 25 Aug 25 Aug 1

Milestone Report chapter 5 and 6

23

 Figure 2.2 depicts the Gantt chart for the project development activities for all tasks in CRISP-DM methodology.

Figure 2.2 Gantt Chart

11-Mar 31-Mar 20-Apr 10-May 30-May 19-Jun 9-Jul 29-Jul 18-Aug 7-Sep

Define project scope and objectives.

Identify stakeholders.

Create a project plan and conduct a feasibility analysis.

Conduct literature review on domain related to the project.

Collect data and separate it into training and testing dataset.

Define evaluating criteria for summary quality.

Design system architecture.

Define user interface.

Select appropriate algorithm and techniques for the system.

Implement abstractive method for text summarization.

Train the model using training dataset, fine-tuning parameters for optimal performance.

Evaluate quality of generated summaries.

Implement the explainability feature by using attention mechanisms.

Integrate the XAI model with the system.

Validate integration and interpretability of the XAI model.

Develop a web-based application for the system.

Deploy the system on the application.

Conduct comprehensive testing on the whole application.

Document project findings, methodologies, and results.

Prepare final report and presentation materials.

Conduct final review and validation of project deliverables.

Project submission.

24

CHAPTER 3: REQUIREMENT ANALYSIS

3.1 Introduction

In this chapter, the requirement analysis phase, which is a crucial step in the

project development journey, is embarked. This section offers a preview on how this

phase will be unfold by outlining its significance and the methodologies it entails. The

problem analysis will be delved into to identify core challenges, followed by a detailed

examination of data, functional, non-functional, and other requirements essential for

the project's success. By providing this preview, the comprehensive understanding of

the analysis phase and its role in shaping the project trajectory is aimed to set.

According to the CRISP-DM cycle (page 16), this chapter will involve business

understanding and data understanding.

3.2 Problem Analysis

Figure 3.1 Activity Diagram of Human-generated Summary

25

Figure 3.1 shows the activity diagram of human-generated summary. Legal

experts spend a lot of time reading and understanding the legal case documents to

produce an appropriate summary. However, there is an increase in the number of

documents, where potentially cause the wasting of time and effort on legal case

summary production. To overcome the issue, a system which can generate legal case

summary without sacrificing accuracy is required.

Figure 3.2 Activity Diagram of System-generated Summary

Figure 3.2 shows the activity diagram of system-generated summary. Several

text summarization systems have been introduced in these years. The user only needs

to upload the legal case document, and the system will process and generate a summary

for the corresponding document. There is a problem occurring where the users do not

understand why the summary is generated and which part of the original document

does the system refer to generate the summary. Hence, a system with explainability

features is necessary to enhance human understanding of the generated summaries.

 To overcome the issues stated, this project implements abstractive method in

text summarization where the system will generate new sentences for the summary,

not only copy and combine the original sentences. Explainable artificial intelligence

(XAI), which is attention mechanism, will be integrated into the system to show the

transparency of the summarization process. This can help to improve the quality and

coherence of the generated summaries, providing concise and readable outputs that

capture the essence of the original text more effectively.

26

3.3 Requirement Analysis

3.3.1 Data Requirement

It is essential to ensure a sufficient amount of data for training purposes. While

more data generally leads to more effective model training, it is important to strike a

balance, as larger datasets require more computational resources and time for training.

Hence, the dataset should be large enough to capture the variability and complexity of

legal case documents but not so large to prevent it becoming impractical to train the

model within reasonable timeframes.

Additionally, it is crucial to maintain a clear distinction between training data

and testing data. Testing data should be separated from training data to evaluate the

model’s performance. This can help to prevent overfitting where the model performs

well on the training data but fails to generalize to new data. By using distinct datasets

for training and testing, the model's true performance can be accurately assessed,

ensuring its reliability and effectiveness in real-world applications.

Utilizing a dataset exclusively composed of a specific court case is essential

for optimizing the model's performance and relevance. By ensuring consistency in the

source of dataset, the model can effectively capture the unique linguistic nuances and

legal conventions specific to the court proceedings. This focused approach fosters

domain expertise, enabling the model to generate more accurate and contextually

relevant summaries while maximizing its ability to generalize to new cases within the

Indian legal landscape.

27

3.3.2 Functional Requirement

Figure 3.3 Activity Diagram of Project System

The primary function of the system is file upload which allows users to upload

files for various format (.pdf, .docx, .txt, etc.) into the system. This feature ensures

flexibility and convenience for users, enabling them to submit documents in their

preferred format without restrictions. By accommodating multiple file types, the

system enhances usability and accessibility, facilitating the seamless integration of

diverse data sources for analysis and processing.

Once the document is uploaded, the system initiates the data processing

pipeline, which includes essential steps such as chunking and tokenizing to facilitate

the summarization process. Chunking involves segmenting the text in smaller and

manageable chunks or sections to enable more efficient analysis and summarization.

Tokenizing is the step to break down the text into individual tokens or words to

establish the foundational units for further analysis and manipulation.

Following the preprocessing steps, the system proceeds to generate the

summary using the processed data. Leveraging advanced algorithm, the system

synthesizes the key information from the document chunks into a concise and coherent

summary. By identifying essential concepts, extracting relevant sentences, and

ensuring readability and coherence, the system produces summaries that effectively

capture the essence of the original document.

28

After the summarization process, the system presents explainability features

by visualizing attention mechanisms to provide users with insights into how the

summaries were generated. In this case, the system will highlight the key elements and

reasoning behind the summarization decisions. This transparency enhances user trust

and understanding by elucidating the factors influencing the summary generation

process.

3.3.3 Non-functional Requirement

The first non-functional requirement is quality requirement. This includes

several criteria such as usability, maintainability, and scalability. The system’s user

interface should adhere to accessibility. The system should also be modular and well-

documented, allowing for easy maintenance and updates by developers. The capability

of scaling horizontally and vertically to accommodate increased user traffic and data

volume should be considered.

The system’s performance expectations, including throughput and response

time are required in this project. The system should be able to process a minimum

number of documents per hour to maintain consistent throughput even under heavy

load conditions. It should also respond to user requests within an appropriate duration

on average by providing feedback to users for document uploads and summary

generations.

Accuracy is one of the non-functional requirements for this project. The

evaluation methods used in this project are cosine similarity, BERTScore, and

ROUGE score. The system's summarization algorithm should achieve a minimum

cosine similarity score of 0.75 when comparing the generated summaries to human-

authored summaries, indicating a high degree of semantic similarity between the two.

BERTScore evaluation method includes precision, recall, and F1-score, where the F1-

score should be minimum 0.60 for the model. It should also achieve ROUGE scores

of at least 0.50 for ROUGE-1 (unigram overlap), 0.20 for ROUGE-2 (bigram overlap),

and 0.20 for ROUGE-L (longest common subsequence) when evaluating the quality

of the generated summaries against reference summaries.

29

3.3.4 Other Requirement

1. Software Requirements

• Python (version 3.8 or higher): Python is chosen for its rich ecosystem

of libraries and frameworks in natural language processing, enabling

efficient development of the text summarization algorithm, supported

by its readability, flexibility, and strong community.

• PyTorch: PyTorch is chosen as the deep learning framework for its

robust support in building and training neural network models,

especially sequence-to-sequence models for abstractive text

summarization, leveraging its dynamic computation graph and

popularity in the research community.

• Natural Language Toolkit (NLTK): NLTK simplifies text preprocessing

tasks by offering essential tools such as tokenization, stemming, and

part-of-speech tagging, crucial for preparing textual data for

summarization, thanks to its comprehensive linguistic resources and

user-friendly interfaces.

• NumPy: NumPy is a Python library primarily used for working with

arrays. It provides extensive functionalities for operations in linear

algebra, Fourier transforms, and matrix computations, making it a

fundamental tool in scientific computing and data analysis.

• Pandas: Pandas is a Python library designed for working with data sets.

It offers functions for analysing, cleaning, exploring, and manipulating

data, making it essential for data analysis and data science tasks.

• Os: The OS module in Python offers functions for creating and

removing directories, fetching directory contents, and changing or

identifying the current directory.

• Fitz: Fitz is the old version of PyMuPDF. It is a high-performance

Python library for data extraction, analysis, conversion, and

manipulation of PDF and other documents.

• Transformers: Transformers provides APIs and tools for downloading

and training state-of-the-art pretrained models, helping to reduce

compute costs, carbon footprint, and the time and resources needed to

train models from scratch.

30

2. Hardware Requirements

• N/A

3. Environmental Requirements

• Network connectivity: reliable and high-speed network connectivity is

required to ensure seamless communication between system

components and support smooth data transmission.

3.4 Summary

This chapter outlines the requirement analysis phase to emphasize the need for

a balance in data size for training, clear distinction between training and testing data,

and the importance of using a consistent dataset source. Functional requirements

include file upload, data processing pipeline, summarization, and explainability

features are explained. Non-functional requirements encompass quality, performance,

and accuracy criteria are interpreted. Other requirements such as software (Python,

PyTorch, NLTK) and environmental (network connectivity) requirement have been

indicated. Next chapter will discuss the system design.

31

CHAPTER 4: DESIGN

4.1 Introduction

This chapter serves as a crucial bridge between the conceptualization and

implementation phases of system development. It provides a preview of the design

analysis results by highlighting key areas such as high-level system architecture, user

interface design, database design, AI component design, and software or hardware

design if applicable. This chapter sets the stage for detailed exploration and

implementation of each design aspect, ensuring a robust and functional system. This

chapter is the data preparation and modelling steps based on CRISP-DM cycle (page

16).

4.2 High-Level Design

4.2.1 System Architecture for Expert System/DSS/Simulation

Figure 4.1 System Architecture Diagram

32

Figure 4.1 shows the architecture of the project system, which is the text

summarization system with the explainability feature using natural language

processing (NLP) and machine learning techniques. The architecture is separated into

two main parts, which are frontend and backend, connected by Flask framework.

In the frontend part, the user interacts with the system through a website. The

user can upload a legal document to the system. Once the document is sent to the

backend part, the system will undergo preprocessing such as chunking and tokenizing.

Then the preprocessed document will be passed to the trained BART model to generate

summary. Additionally, the attention weight of the tokens in the document is

visualized to produce a highlighted original document, showing important sections or

terms. The higher the weight, the deeper the colour of highlight, the more important

the word token. Once the outputs are generated, both will be sent back to the frontend

via Flask and the user can see the result at the website. The user is also able to

download the outputs on their device if they want to keep the results.

Figure 4.2 Transformer Architecture Diagram (Vaswani et al., 2017)

Figure 4.2 is the architecture diagram of a transformer. A transformer is a type

of deep learning model introduced in 2017 and has quickly become fundamental in

natural language processing (NLP) (What Is a Transformer Model? | IBM, n.d.). It has

been applied to many different tasks in machine learning and artificial intelligence. It

33

brings two key innovations to text prediction: positional encoding assigns unique

positions to tokens, helping the model to understand their order, and self-attention

weighs the importance of each token in relation to each other, improving the sequence

prediction. The left half of the architecture is the encoder while the right half is the

decoder. The encoder maps an input sequence to continuous representations, which

are then used by the decoder, along with previous outputs, to generate final sequence.

Figure 4.3 BART Architecture Diagram (Lewis et al., 2019)

Figure 4.3 displays the architecture diagram of BART. BART is built upon the

transformer architecture, which utilizes self-attention mechanism to capture long-

range dependencies in input sequences efficiently. It is a combination of bidirectional

and autoregressive approaches. Bidirectional refers to the encoder-decoder

architecture, where information from both past and future tokens is used to generate

the current token, helping in capturing contextual information effectively.

Autoregressive means that during generation, BART predicts tokens sequentially,

conditioning on previously generated tokens to ensure coherence and fluency in

generated text.

BART consists of an encoder and a decoder. The encoder processes the input

sequence and produces a contextualized representation for each token while the

decoder takes these representations and generates the output token by token. BART is

typically pretrained on large corpora using tasks like denoising autoencoding, where

noisy input sequences are corrupted, and the model is trained to reconstruct the original

sequence. After pretraining, BART can be fine-tuned on specific downstream tasks

like text summarization, where it learns to generate concise summaries based on the

input.

34

Figure 4.4 Self-Attention Mechanism Architecture (Vaswani et al., 2017)

Figure 4.4 comes out with the self-attention mechanism architecture, which is

a key component of transformer-based architectures, including BERT, GPT, and

BART. It enables these models to capture dependencies between different words in a

sequence effectively. Each token in the input sequence is initially represented as a

vector. Before applying self-attention, the input vectors are linearly transformed into

three sets of vectors: Key (K), Query (Q), and Value (V) vectors. These

transformations are learned during the training process and achieved using weight

metrices.

For each token in the sequence, the self-attention mechanism computes

attention scores with respect to all other tokens. To calculate the attention score for a

token, the dot product between its Query vector and the Key vector of each token in

the sequence is computed. These dot products are then scaled and passed through a

SoftMax function to obtain normalized attention scores, ensuring that the attention

weights sum up to 1. Once the attention scores are obtained, they are used to compute

a weighted sum of the Value vectors. The Value vectors represent the information

content of each token. The weighted sum is computed by multiplying each Value

vector by its corresponding attention score and then summing these products. The

weighted sum obtained represents the attended information for each token. These

attended representations are concatenated to form the output of the self-attention

mechanism. To enhance the model's ability to capture different types of dependencies,

the self-attention mechanism often employs multiple attention heads. Each attention

35

head independently computes attention scores, resulting in multiple sets of attended

representations. The outputs of these attention heads are typically concatenated or

averaged before being passed through the subsequent layers of the model.

4.2.2 User Interface Design for expert system/DSS/simulation

Figure 4.5 Mockup Interface of Home Screen

Figure 4.5 shows the mockup interface of home screen for the text

summarization website. The design is simple to ensure user-friendly interaction

between the user and the website. The website has a title welcoming the user and a

short description of the website, introducing the system. The choose file button allows

users to choose which file they want to upload to the system. Once the submit button

is clicked, the selected file will be uploaded to the system for processing. The types of

files which are accepted by the system are mentioned below the button. A brief

explanation is prepared for users to have a better understanding of the system, with an

example result page attached. A footer is the section which includes some overall

information about the website, such as what the website is, how the website works,

and contact and support details.

36

Figure 4.6 Mockup Interface of Result Page

Figure 4.6 illustrates the mockup interface of the result page. Once the users

upload the file, the system will process the document and show the result on this page.

The original document with highlighted word tokens is shown at the left part of the

interface while the summary of the document will be shown at the right part. This

provides a better view for users to look at both results at the same time. Users can

download the results or upload new legal documents by clicking the button below the

summary panel.

4.3 AI Component Design

4.3.1 Dataset

The dataset used is Indian Supreme Court case documents and their abstractive

summaries. The text summarization model in the system requires two datasets for

training and testing purposes. There are a total of 7130 documents in the original

dataset. 100 documents from the dataset are randomly chosen as testing dataset, the

remaining will be the training dataset. All the data is in .txt format. Figures 4.7 and 4.8

show the example of original text and corresponding abstractive summary. More

examples of training and testing dataset can refer to Appendix A and B respectively.

37

Figure 4.7 Example of Original Text of Legal Document

Figure 4.8 Example of Original Text of Legal Document

4.3.2 BART Model

The text summarization system involves several key components that work

together to ensure the accuracy and efficiency of summary generation, one of them is

utilizing PyTorch Lightning to implement BART model. Pytorch Lighting is the deep

learning framework for those who require maximum flexibility without sacrificing

performance at scale (Falcon, 2021). The reason why PyTorch Lightning is used, but

not PyTorch, is because bugs are more likely to be introduced once the research gets

38

more complicated and things such as multi-GPU training, 16-bit precision, and TPU

training are mixed in. This part of code is borrowed from the research done by Shukla

et al. (2022). The explanation of various functions is as follows.

Figure 4.9 Code Snippet for Lightning Model Initialization

Figure 4.9 shows the initialization of a lightning module with a tokenizer,

model, and learning rate. It stores these three parameters as instance variables and sets

hyperparameters for freezing the encoder, freezing embeddings, and number of beams

for evaluation. The encoder parameters and positional and token embedding

parameters will be frozen if the conditions are set to true. This means that the model

will not update these parameters during training to ensure the learned features are not

modified and prevent overfitting.

Figure 4.10 Code Snippet for Freeze Embedding Layers Function

Figure 4.10 shows the function to freeze the embedding layers of the model to

speed up training and reduce overfitting. Shared embeddings, encoder embeddings,

and decoder embeddings are frozen when this function is called on each of them.

Figure 4.11 Code Snippet for Forward Pass Function

Figure 4.11 displays the function of forward pass for the model where it is used

to pass input (input_ids and any additional arguments) to the model and get the output.

39

Figure 4.12 Code Snippet for Optimizer Function

Figure 4.12 is the function which configures the optimizer for training. It

creates an Adam optimizer with the model parameters and specified learning rate. The

Adam optimizer is a popular choice for many deep learning tasks due to its ability to

the learning rate and its robustness to noisy gradients.

Figure 4.13 Code Snippet for Training Step Function

Figure 4.13 shows the code snippet which defines the training step for batches

of data. It loads the source IDs, source mask, and target IDs from the batch, and next

shifts the decoder unput IDs to the right. The model is run to get logits. This function

also computes cross-entropy loss, ignoring padding tokens, and the loss is returned. In

essence, this function is used to calculate the loss of a batch of data during training.

Figure 4.14 Code Snippet for Validation Step Function

Figure 4.14 is the validation step for batches of data where it is similar to

training step but used for validation. This function will compute the loss of a batch of

data during validation and return it.

40

Figure 4.15 Code Snippet for Text Generation Function

The function shown in Figure 4.15 is to generate text using the model’s

generation capabilities. It takes input IDs, attention mask, and various generation

parameters. The generated text is produced using beam search, with the number of

beams and the maximum length of the generated text controlled by the input

parameters. The generated text is then decoded and returned as a list of strings.

Figure 4.16 Code Snippet for Freeze Parameters Function

Figure 4.16 displays the function of freezing parameters of the given model or

model component. It iterates through the model parameters and sets requires_grad to

false to prevent these layers from being updated during training.

Figure 4.17 Code Snippet for PyTorch Lightning Data Module Initialization

A data module is initialized with the tokenizer, data frame which contains the

data, and batch size as shown in Figure 4.17. these parameters are stored as instance

variables. This module is designed to handle the data loading and preprocessing for a

text summarization task.

Figure 4.18 Code Snippet for Data Preparation Function

The function displayed in Figure 4.18 prepares the data by randomly shuffling

and splitting it into training, validation, and test sets with a 60/20/20 split.

41

Figure 4.19 Code Snippet for Sentence Encoding Function

Figure 4.19 shows the sentence encoding function for the three sets of data

using the tokenizer. The tokenized data is then stored in the instance variable.

Figure 4.20 Code Snippet for Data Loader Creation (Training Data) Function

Figure 4.20 is the code snippet of the data loader creation function. It creates a

data loader for the training data to load the data in batches during training.

Figure 4.21 Code Snippet for Data Loader Creation (Validation Data) Function

The code snippet in Figure 4.21 is similar to the one in Figure 4.19, but it is

used for validation data.

Figure 4.22 Code Snippet for Data Loader Creation (Testing Data) Function

The code snippet in Figure 4.22 is similar to the one in Figure 4.19 and 4.20,

but it is used for testing data.

Figure 4.23 Code Snippet for Token Shifting Function

Figure 4.23 shows the function for shifting input tokens in sequence to the right

by one position for decoder input preparation. The shifted tokens are then returned.

42

Figure 4.24 Code Snippet for Sentences Encoding Function

Figure 4.24 is the code snippet of the sentences encoding function, where it

encodes a list of source and target sentences using a tokenizer. The encoded data is

then returned in a batch format.

In summary, the LitModel handles the model’s training and generation

processes while the SummaryDataModule manages the data loading and

preprocessing. This facilitates a streamlined workflow for training a BART text

summarization model by utilizing Pytorch Lightning.

4.3.3 AI Techniques

To develop a text summarization model for legal documentation with

explainability feature using BART model, several processes and techniques are

required, including training and testing process. Visualizing the attention mechanism

is the technique used for the explainability feature. The overall flow of the system is

explained step-by-step using the flowcharts below.

43

Figure 4.25 Flowchart of Model Training Process

Figure 4.25 shows the training process of the proposed text summarization

model. The necessary libraries such as NumPy, NLTK, Pandas, TQDM and

BART_utilities are imported. BART_utilities is the file containing libraries that utilize

PyTorch Lightning (detail description in Chapter 4.3.2 (page 37)). The paths which

will be used in the following process are defined, including dataset, root path, and

output path. The training data, including judgment and summary, are read from

specified directories and stored in lists. A total of 7030 data (a pair of judgement and

summary considered as 1 data) is used in the training process.

A pre-trained sentence transformer is initialized and loaded, specifying to run

on CUDA (Compute Unified Device Architecture). This is because CUDA offers a

significant boost for training and running a model. Next, the model will check both the

judgement and summary lists. If there is document in the lists, the model will split

paragraphs into individual sentences and store in lists (for example l1 for judgement

sentences and l2 for summary sentences). The cosine similarity between two lists of

sentences is calculated. Based on the result, chunks of text from judgement and their

corresponding summaries will be generated. Once there is no more document in the

judgement and summary lists, the training chunks and summaries are done generated

and stored in an excel file. The file is then read, and the columns are renamed into

source and target data.

44

To continue the training process, the environment for using BART model is set

up, including load a pre-trained BART model and tokenizer. Special tokens are added

to the tokenizer and the token embeddings in the BART model are resized. The data

module and lightning model with specified parameters (BART model is used) are

initialized. A PyTorch Lightning trainer is set up with GPU (Graphics Processing Unit)

acceleration and other training parameters. After all settings are done, the training

process starts until the maximum number of epochs is reached. The training process

ends with saving the model weight into checkpoint. The detailed code is attached in

Appendix C.

Figure 4.26 Flowchart of Model Testing Process

Figure 4.26 is the testing process of the trained model to read a single document

and generate its summary. Similar to the training process, it starts with the import of

libraries, path set up, and document reading. The environment for using BART model

is set up by loading pre-trained BART model and tokenizer. Special tokens are added

to the tokenizer and the token embeddings in the BART model are resized. The

lightning model with specified parameters is initialized and the saved model weight is

loaded (trained BART model).

The required summary length is set to 15% of the length of the original

document. This is because normally the summary length should be in the range of 10%

45

to 15% of the original text length, or even shorter than the range (Burnell et al., n.d.).

The model next retrieves the document’s name and content. The word count of the

document and the required summary length are calculated. The model splits the

document into nested chunks of sentences with a maximum chunk length of 1024

words. The required summary length per chunk and percentage of document length for

summary is calculated.

The testing process continues by generating summaries for each chunk using

the BART model on GPU. The generated summaries are concatenated into a single

string. If the length is more than the required length, truncation needs to be done, else

the final summary will be written to the specified output file, and this is the end of the

testing process. The detailed code is attached in Appendix D.

Figure 4.27 Flowchart of Explainability Feature

Figure 4.27 displays the process of how the explainability feature is done. The

process is similar to the testing process until the read document step. These steps can

be skipped if continued after the summary generation. The attention weights are

extracted from the model’s output, where the last layer’s attention is targeted.

To visualize the attention weights, the original document is split into individual

tokens. The important tokens are highlighted based on the attention weights by setting

highlight colours proportional to the attention weights. The higher the attention

weights, the more important the token is, the more obvious the highlight colour. A

PDF (Portable Document Format) file containing the original document text with

46

highlighted tokens based on attention weights is created. The generated PDF file is

saved to the specified output directory. The code snippet is attached in Appendix E.

4.4 Software or Hardware Design (if applicable)

For this section, readers may refer to the detailed description of Software and

Hardware Requirement in Chapter 2.4 on page 19 to 20, under the topic of Project

Requirements.

4.5 Summary

This chapter outlines the transition from conceptualization to implementation

of the proposed text summarization system. It describes the high-level architecture of

the system, where the system is divided into a frontend for user interaction and a

backend for processing, connected by Flask. Users upload the legal documents, which

will be processed and summarized using the trained BART model, and receive

documents with important sections highlighted based on attention weights and

corresponding summaries. The architectures behind the transformers, BART model,

and attention mechanism are also explained. The user interface is designed for

simplicity and ease of use, displaying both the original and summarized documents

side-by-side. The dataset used in this project is described with examples shown. The

AI component utilizes PyTorch Lightning to implement BART model for efficient

model training and testing, with detailed code snippets provided for various functions

and flowchart granted for process understanding. Next chapter is about the result and

discussion of the system developed.

47

CHAPTER 5: RESULTS AND DISCUSSION

5.1 Introduction

This chapter outlines the evaluation methods used in the project which are

precision, recall, F1-score, cosine similarity, and ROUGE score. It also details the

testing of functional and non-functional requirements, including test case

identification, tester identification, and test case results. A survey has been prepared

with certain questions for the testing and the results will be recorded with detailed

explanation. This chapter is the evaluation and deployment phases in CRISP-DM

(page 16).

5.2 Evaluation of AI Techniques Used in the Project

5.2.1 Techniques

The methods used to evaluate the AI technique used in this project which is the

BART text summarization model are BERTScore (including precision, recall, and F1-

score) and cosine similarity. In the context of BERTScore, precision reflects how many

of the tokens generated by the model are similar to the tokens in the reference

summary, recall reflects how well the generated summary covers the tokens from the

reference summary, and F1-score combines both to give an overall sense of how

similar the generated text is to the reference text in terms of token similarity. High

precision but low recall indicates that the model generates very accurate tokens, but it

might miss out on important content. High recall but low precision indicates that the

model includes the most relevant content but also adds unnecessary or irrelevant

tokens. A high F1-score suggests a good balance between capturing the important

content and avoiding irrelevant content in the generated summaries.

48

Figure 5.1 Precision, Recall, and F1-Score of Generated

According to Figure 5.1, the BERTScore of every single testing data and the

average are calculated. The overall precision, recall, and F1-score are 0.6241, 0.5976,

and 0.6091 respectively. From the score calculated, the model can be proved that it

can generate quite accurate tokens without missing some important content, but the

performance still can be improved to get a higher score.

49

Figure 5.2 Cosine Similarity between Reference Summary and Generated

Summary, and the Overall Accuracy based on Cosine Similarity

Cosine similarity is a metric used to measure how similar the documents are

irrespective of their size (Cosine Similarity | Engati, n.d.). This matric is advantageous

as the two similar documents could still have smaller angle even they are far apart by

the Euclidean distance because of the size. The smaller the angle, the higher the

similarity. The cosine similarity value is allocated between 0 to 1, where the larger the

value, the more similar the two documents are. Figure 5.2 displays the result of cosine

similarity of the reference summaries and summaries generated by the proposed

system, and the overall accuracy based on cosine similarity. A threshold of 0.8 is

defined to calculate the accuracy, which means that only summaries with cosine

similarity of more than 0.8 will be considered. From the given result, the accuracy is

0.94, showing there are 94 documents from 100 testing data that have cosine similarity

higher than 0.8.

50

5.2.2 Applications

The method used to evaluate the applications is ROUGE Score. The detailed

explanation of ROUGE score can be found in Chapter 2.2.3 Techniques (page 12). In

the evaluation for the proposed application, ROUGE-1, ROUGE-2, and ROUGE-L are

used. ROUGE-N measures the overlap of n-grams between the reference summaries

and system generated summaries, where ROUGE-1 refers to the overlap of unigrams

(every single word) and ROUGE-2 refers to the overlap of bigrams (two consecutive

words), while ROUGE-L is based on the length of the longest common subsequence.

Figure 5.3 ROUGE Score between Reference Summary and Generated

Summary, and the Average ROUGE Score

The average of the ROUGE score has been calculated as shown in Figure 5.3,

which ROUGE-1 is 0.4911, ROUGE-2 is 0.2434, and ROUGE-L is 0.2449. The scores

are considered moderate except ROUGE-L as it is lower than 0.3 (What is the ROUGE

Score (Recall-Oriented Understudy for Gisting Evaluation)?, Stephen M.). However,

it cannot be concluded that the overall performance of the application is poor because

ROUGE score relies on reference summaries. The ROUGE score primarily focusses

51

on the proportion of relevant information preserved in a summary, which may not

always be the most crucial aspect in evaluating the system. Researchers may

sometimes prioritize on how accurately key details are captured, or fluency, which

assesses the coherence and naturalness of the generated summary.

5.3 Testing of Functional Requirement

In application development, thoroughly testing the functional requirements of

the product is critical to ensure that the system operates as intended and meets the user

needs. Functional testing verifies that each function of the application behaves as the

required specifications. This process involves several key steps such as test case

identification, tester identification, test case results in either pass of fail, and detailed

documentation on the failed test case if any. The test case will describe all the functions

of the system including documents upload, process, and result. The description is

explained in Table 5.1. Test case 1 to 8 is done by the target users while test case 9 is

checked by the developer.

Figure 5.4 Pie Chart of Target Users

A survey has been prepared for the users to rate the system’s functionality. The

target users are those who study or work in legal fields. Figure 5.4 shows the pie chart

of the target users with percentage. In a total of 25 respondents, 10 of them (40%) are

currently studying or working in legal field while the 15 people (60%) left are not.

Those 10 target users will continue with the questions about functionality of the

system.

52

Figure 5.5 Pie Chart of Experience Studying or Working in Legal Fields

A simple demographic is indicated in Figure 5.5, Figure 5.6, and Figure 5.7.

Figure 5.5 shows the pie chart of experience of the 10 target users studying or working

in legal field. 4 people (40%) have less than 1 year experience, while the range 1 to 3

years, 3 to 5 years, and more than 5 years have 2 respondents (20%) each.

Figure 5.6 Pie Chart of Frequency Dealing with Legal Case Documents

Figure 5.6 displays the pie chart of frequency the target users dealing with the

legal case documents. Most of them deal with the documents weekly (4 respondents

with 40%), followed by rarely (3 respondents with 30%), and daily (2 respondents with

20%). Only one respondent (10%) from the target users deals with the legal documents

monthly.

53

Figure 5.7 Pie Chart of Experience in Using Text Summarization Tools for

Legal Case Documents

Figure 5.7 exhibits the pie chart of target users’ experience in using text

summarization tools for legal case documents. 60% (6 respondents) of them have used

the tools before while 40% of the left (4 respondents) have not.

The demographic gives a basic impression on the target users, especially on

the years they are involved in legal field, frequency they deal with legal documents,

and their experience on using text summarization tools. This can help in answering the

functionality questions better because different experiences can have different

opinions on the system. Their rating on the system’s functionality is shown in Figure

5.8, Figure 5.9, and Figure 5.10.

Figure 5.8 Bar Chart of How Accurate the Users Find the Summaries

Generated by the System

 Figure 5.8 is the bar chart on how accurate the users find the summaries

generated by the system. The rating started from 1 (very inaccurate) to 5 (very

54

accurate). Most of the target users (6 respondents, 60%) find the summaries generated

to be accurate and one of them (10%) said it is very accurate, while 3 respondents

(30%) found the summaries generated are only moderate.

Figure 5.9 Bar Chart of the Importance of Highlighted Words

 Figure 5.9 displays the bar chart of target users’ opinion on the importance of

the highlighted words, rating from 1 (very unimportant) to 5 (very important). Half of

the target users (5 respondents, 50%) think the highlighted words are important,

followed by 3 respondents (30%) who feel the importance of highlighted words are

average. For the range unimportant and very important, one respondent (10%) voted

for each.

Figure 5.10 Bar Chart of the Users’ Understanding of the Legal Documents by

only Reading the Generated Summaries

55

 Figure 5.10 shows the bar chart about the target users’ understanding of the

legal documents by only reading the generated summaries. The rating is between 1

(very poorly) to 5 (very well). 6 respondents (60%) from the target users are able to

understand well and one respondent (10%) can understand very well. 30% (3

respondents) of the target users only have moderate understanding of the legal

documents if only read the generated summaries.

5.4 Testing of Non-Functional Requirement

 The testing of non-functional requirements of the system is also crucial to

ensure the system works smoothly. Testing on usability, design, and aesthetics has

been done through a survey, including some open-ended questions for extra opinions,

comments, and feedback. A total of 25 respondents have been involved in this section.

Figure 5.11 Bar Chart of Easiness of Navigation through the System

 Figure 5.11 indicates the users’ opinion on the easiness of navigation through

the system, from 1 (very difficult) to 5 (very easy). 10 respondents (40%) think it is

very easy to navigate through the system, followed by 9 respondents (36%) who think

the navigation is easy. 16% of the users (4 respondents) feel moderate on the

navigation while the two respondents left (8%) feel difficult to navigate through the

system.

56

Figure 5.12 Bar Chart of the Helpfulness of the Briefing and Explanation

 Figure 5.12 is the bar chart about the helpfulness of the briefing and

explanation in guiding users through the system. The rating started from 1 (very

unhelpful) to 5 (very helpful). 8 respondents (32%) find the information very helpful

while 11 respondents (44%) think it is helpful. 20% of the users (5 respondents) feel

average on the information and only one respondent (4%) finds it unhelpful.

Figure 5.13 Bar Chart of Rating on Learning to Use the System

 Figure 5.13 exhibits the bar chart of users’ rating on learning to use the system

from 1 (very difficult) to 5 (very easy). There are 11 respondents (44%) and 10

respondents (40%) feel easy and very easy on learning to use the system respectively.

However, 16% of the users (4 respondents) rated only moderate on it.

57

Figure 5.14 Bar Chart of Visual Appeal Level of User Interface

 Figure 5.14 displays the level of visual appeal of the user interface, rating start

from 1 (very unappealing) to 5 (very appealing). The highest rating is 4 which is

appealing with the vote of 9 (36%), followed by rating 5 (very appealing) with 28%

voting (7 respondents). 6 respondents (24%) found the visual appeal of the user

interface is average. For the range unappealing and very unappealing, they have 8% (2

respondents) and 4% (1 respondent) of voting respectively.

Figure 5.15 Bar Chart of Information Presentation

 Figure 5.16 shows the users’ opinion on the information presentation whether

it is presented in clear or organized manner or not. The rating is between 1 (very

disorganized) to 5 (very organized). Most of the users (11 respondent, 44%) agree that

the presentation is very organized while 8 respondents (32%) said it is organized. 16%

58

of users (4 respondents) found the presentation is only average and the last 2

respondents (8%) feel the presentation is disorganized.

Figure 5.16 Bar Chart of Rating on the Font Size, Type, and Content Layout

 Figure 5.17 indicates the bar chart of users’ rating on the font size, type, and

content layout from 1 (very poor) to 5 (excellent). The highest rating is 4 (good) with

a total of 37.5% vote (9 respondents). 8 respondents (33.3%) rate the readability of the

system excellent while 5 respondents (20.8%) feel the readability is only moderate.

For the range poor (2) and very poor (1), one respondent (4.2%) voted on each.

 Open-ended questions are also prepared for the respondents for the extra

comments or feedback. Most of the respondents think the system is already good

presently, but some also provide their opinions on future improvement. The largest

improvement to be made is enhancing the user interface and content layout such as

increasing the line spacing, more creative in colours and layout, and making sure the

layout is more organized for easy viewing. Extra functions are also requested by the

users. For example, language translator feature and adjustable summary for users to

select on the summary length. Overall, the feedback highlights the users’ satisfaction

with the current system, but also points out some valuable suggestions for enhancing

the user interface (UI), layout, and functionality to further improve the user experience

(UX).

59

5.5 Summary

This chapter focuses on the evaluation methods and results of the AI techniques

and system requirements for the project. The evaluation includes BERTScore

(precision, recall, F1-score), cosine similarity, and ROUGE score, with a detailed test

case description of the system. The chapter also covers the functional and non-

functional testing of the system, including user feedback which is gathered through

surveys. Functional testing verifies the system’s ability to meet the specifications while

non- functional testing assesses usability, design, and aesthetics. Extra feedback

indicates the general satisfaction of the users with the system, along with some

suggestions for user interface and functionality improvements to enhance user

experience.

60

Table 5.1 Test Case Table

Test

Case
Description Steps Expected Output Actual Output

Status

(Pass/Fail)

1
Upload document

from local storage.

1. Click “Choose File” button.

2. Select file to upload.

3. Click “Submit” button.

Document selected

successfully uploaded to

system for processing.

Document selected

successfully uploaded to

system for processing.

Pass

2

Real-time

summarization of

document and

result generation.

1. Click “Choose File” button.

2. Select file to upload.

3. Click “Submit” button.

4. Highlighted original document and

summary are on the left and right panel

of result page respectively.

Both results were

successfully processed

and shown in the right

position.

Both results were

successfully processed

and shown in the right

position.

Pass

3

Download

highlighted

original document

to local storage.

1. Click “Choose File” button.

2. Select file to upload.

3. Click “Submit” button.

4. Highlighted original document and

summary are on the left and right panel

of result page respectively.

Highlighted original

document successfully

downloaded to local

storage.

Highlighted original

document successfully

downloaded to local

storage.

Pass

61

5. Click “Download Highlighted

Original Document” button.

4

Download

summary to local

storage.

1. Click “Choose File” button.

2. Select file to upload.

3. Click “Submit” button.

4. Highlighted original document and

summary are on the left and right panel

of result page respectively.

5. Click “Download Summary” button.

Summary successfully

downloaded to local

storage.

Summary successfully

downloaded to local

storage.

Pass

5
Upload new

document.

1. Click “Choose File” button.

2. Select file to upload.

3. Click “Submit” button.

4. Highlighted original document and

summary are on the left and right panel

of result page respectively.

5. Click “Upload New Document”

button.

Navigate back to the

homepage to allow

document upload.

Navigate back to the

homepage to allow

document upload.

Pass

6
Handle various

format of

1. Click “Choose File” button. Three types of documents

were successfully

Three types of documents

were successfully
Pass

62

document (.pdf,

.docx, .txt).

2. Select file (in .pdf, .docx, .txt) to

upload.

3. Click “Submit” button.

uploaded to the system

for processing.

uploaded to the system

for processing.

7

Highlight of

important words in

original document.

1. Click “Choose File” button.

2. Select file to upload.

3. Click “Submit” button.

4. Highlighted original document and

summary are on the left and right panel

of result page respectively.

5. Click “Download Highlighted

Original Document” button.

Both original documents

on the result page and

downloaded pdf have

important words

highlighted.

Both original documents

on the result page and

downloaded pdf have

important words

highlighted.

Pass

8 Error handling.

1. Click “Choose File” button.

2. Select file (in .pdf, .docx, .txt) to

upload.

3. Click “Submit” button.

Error message of

unsupported file type

displayed.

Error message of

unsupported file type

displayed.

Pass

9

Frontend and

backend

communication

using Flask.

1. Click “Choose File” button.

2. Select file to upload.

3. Click “Submit” button.

4. Check backend process.

Successful

communication with

documents uploaded and

processed.

Successful

communication with

documents uploaded and

processed.

Pass

63

CHAPTER 6: CONCLUSION

6.1 Observation on Weakness and Strengths

 The project has shown a combination of both weaknesses and strengths that

reflects its current state and recommendations for future development. One of the

notable weaknesses is the moderate performance of the AI model, which does not

consistently deliver the high accuracy and quality expected from advanced text

summarization systems. The performance may be due to various factors, such as

improper training parameters or limitations in the dataset used.

 Another area that needs attention is the user interface of the web-based

application, which will further affect the user experience. Although it serves its

purposes and gets most of the good feedback, some users are still unsatisfied with the

visual appeal like line spacing and the content layout. The modern users required more

creative and intuitive design which can enhance the overall user experience and

satisfaction.

On the other hand, the project strength lies in its successful integration of

explainable AI that increases the transparency of the AI model. By using the feature,

users have insights into how and why the summary was generated during text

summarization. This feature is particularly valuable in understanding the rationale

behind AI-generated content, especially in the legal field. The ability to explain

decisions made builds trust with users and sets the system apart from other

summarization tools that operate as “black boxes”.

64

6.2 Propositions for Improvement

 After the identification of the strengths and weaknesses of the system, several

key propositions for improvement can be made in future. First and foremost is

modifying the training parameters. To enhance the system’s performance, a detailed

review and adjustment of the training parameters need to be done. This could involve

experimenting with different model architectures, tuning hyperparameters, or using

more diverse and extensive training datasets. The suggested ideas should be able to

increase the model’s accuracy and ability to generate high-quality summaries.

 For the user interface of the application, a comprehensive overhaul is

recommended. The enhancement should focus on making the user interface more

visually appealing and user-friendly. This could involve updating the design to be

more modern and responsive to ensure it meets the accessibility standards. User

feedback should also be incorporated to improve the navigation through the system

and overall usability.

 A feature that some users required is the adjustable summary length, allowing

users to adjust the length of the summary generated by the system. This feature will

add a valuable level of customization as there are different needs between users. Some

require a brief overview, but some claim a detailed summary. The target users would

benefit from being able to tailor the output according to their specific requirements.

Last but not least, introducing a language translation feature will significantly

broaden the system’s appeal and usability as it enables the system to serve a more

diverse user base. The feature allows the system to generate summary in multiple

languages and catering to non-native users or those studying or working in multilingual

environments.

6.3 Project Contribution

 From the findings of the project, it makes several important contributions to

the university, faculty, and individual, especially in the field of artificial intelligence

text summarization and the integration of explainable artificial intelligence.

 To the university and faculty, the project provides a practical example to

implement an AI-driven solution with a focus on model transparency and

interpretability. The project can be used as a learning tool or a basis for further

academic research, potentially leading to future innovations or collaborations.

65

 On a personal level, the project contributes to the individual’s expertise in

artificial intelligence, specifically in the areas of natural language processing and

explainable artificial intelligence. The experience and skills gained through this project

can be precious for future career opportunities or advanced studies.

The detailed user manual which provides comprehensive instructions on how

to use the system is attached in Appendix F. The manual is a crucial resource for users

and stakeholders to ensure that they can fully leverage the system’s capabilities.

6.4 Summary

In summary, the project successfully meets the set objectives as it delivers a

functional and explainable AI-driven text summarization system. The system

demonstrates significant potential especially with the integration of XAI. It also

reveals some areas for improvement, such as performance optimization and user

interface enhancement. The proposed improvements, including adjusting training

parameters, upgrading the user interface, and adding new features like adjustable

summary length and a language translator, will further enhance the system's

functionality and user satisfaction. Concluding, the project not only contributes

valuable insights and tools to the AI and legal field but also create a basis for further

development. With the recommended improvements, the system has a high potential

to become a leading tool in its domain, offering users a more powerful, customizable,

and accessible text summarization experience.

66

REFERENCES

Norkute, N. H. A. M. (2021, August 24). Explainable AI for Text Summarization of

Legal Documents. Hyperight. https://hyperight.com/explainable-ai-for-text-

summarization-of-legal-documents/

Pandya, V. (2019, August 17). Automatic Text Summarization of Legal Cases: A

Hybrid Approach. https://doi.org/10.5121/csit.2019.91004

Anand, D., & Wagh, R. (2022, May). Effective deep learning approaches for

summarization of legal texts. Journal of King Saud University - Computer and

Information Sciences, 34(5), 2141–2150.

https://doi.org/10.1016/j.jksuci.2019.11.015

Shukla, A., Bhattacharya, P., Poddar, S., Mukherjee, R., Ghosh, K., Goyal, P., &

Ghosh, S. (2022, October 14). Legal Case Document Summarization:

Extractive and Abstractive Methods and their Evaluation. arXiv.org.

https://arxiv.org/abs/2210.07544

A. (2022, January 4). Text Summarization with Attention based Networks - Adarsh -

Medium. Medium. https://medium.com/@iit2018056/text-summarization-

with-attention-based-networks-8492e9277c0

Wang, Z. (2021, April 1). An Automatic Abstractive Text Summarization Model based

on Hybrid Attention Mechanism. Journal of Physics: Conference Series,

1848(1), 012057. https://doi.org/10.1088/1742-6596/1848/1/012057

Dutta, S., Das, A. K., Ghosh, S., & Samanta, D. (2023, January 1). Graph-based

clustering technique for microblog clustering. Elsevier eBooks.

https://doi.org/10.1016/b978-0-32-391785-8.00018-4

A., & A. (2023, April 6). Tech Deep Dive: Extractive vs. abstractive summaries and

how machines write them. Iris.ai - Your Researcher Workspace.

https://iris.ai/technology/tech-deep-dive-abstractive-summarization/

Stephen M. Walker II. What is the ROUGE Score (Recall-Oriented Understudy for

Gisting Evaluation)? – Klu. https://klu.ai/glossary/rouge-score

https://hyperight.com/explainable-ai-for-text-summarization-of-legal-documents/
https://hyperight.com/explainable-ai-for-text-summarization-of-legal-documents/
https://doi.org/10.5121/csit.2019.91004
https://doi.org/10.1016/j.jksuci.2019.11.015
https://arxiv.org/abs/2210.07544
https://medium.com/@iit2018056/text-summarization-with-attention-based-networks-8492e9277c0
https://medium.com/@iit2018056/text-summarization-with-attention-based-networks-8492e9277c0
https://doi.org/10.1088/1742-6596/1848/1/012057
https://doi.org/10.1016/b978-0-32-391785-8.00018-4
https://iris.ai/technology/tech-deep-dive-abstractive-summarization/
https://klu.ai/glossary/rouge-score

67

Giarelis, N., Mastrokostas, C., & Karacapilidis, N. (2023, June 28). Abstractive vs.

Extractive Summarization: An Experimental Review. Applied Sciences.

https://doi.org/10.3390/app13137620

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov,

V., & Zettlemoyer, L. (2019, October 29). BART: Denoising Sequence-to-

Sequence Pre-training for Natural Language Generation, Translation, and

Comprehension. arXiv.org. https://arxiv.org/abs/1910.13461

Erkan, G., & Radev, D. (2004, December 1). LexRank: Graph-based Lexical

Centrality as Salience in Text Summarization. Journal of Artificial Intelligence

Research/the Journal of Artificial Intelligence Research.

https://doi.org/10.1613/jair.1523

Sharma, K., Singh, K., Sharma, K., & Gupta, J. (2023). Question Summation and

Sentence Similarity using BERT for Key Information Extraction. International

Journal for Research in Applied Science and Engineering Technology, 11(4),

1636–1639. https://doi.org/10.22214/ijraset.2023.50087

Radev, D. R., & Zhang, Z. (2001, October 5). Experiments in Single and Multi-

Document Summarization Using MEAD. ResearchGate.

https://www.researchgate.net/publication/2494248_Experiments_in_Single_a

nd_Multi-Document_Summarization_Using_MEAD

Santhosh, S. (2023, April 17). Understanding BLEU and ROUGE score for NLP

evaluation. Medium.

https://medium.com/@sthanikamsanthosh1994/understanding-bleu-and-

rouge-score-for-nlp-evaluation-1ab334ecadcb

Özbolat, H. (2023, October 13). Text Summarization: How to Calculate BertScore -

Hatice Özbolat - Medium. Medium. https://haticeozbolat17.medium.com/text-

summarization-how-to-calculate-bertscore-771a51022964

Sojasingarayar, A. (2024, February 23). BERTScore Explained in 5 minutes - Abonia

Sojasingarayar - Medium. Medium. https://medium.com/@abonia/bertscore-

explained-in-5-minutes-0b98553bfb71

https://doi.org/10.3390/app13137620
https://arxiv.org/abs/1910.13461
https://doi.org/10.1613/jair.1523
https://doi.org/10.22214/ijraset.2023.50087
https://www.researchgate.net/publication/2494248_Experiments_in_Single_and_Multi-Document_Summarization_Using_MEAD
https://www.researchgate.net/publication/2494248_Experiments_in_Single_and_Multi-Document_Summarization_Using_MEAD
https://medium.com/@sthanikamsanthosh1994/understanding-bleu-and-rouge-score-for-nlp-evaluation-1ab334ecadcb
https://medium.com/@sthanikamsanthosh1994/understanding-bleu-and-rouge-score-for-nlp-evaluation-1ab334ecadcb
https://haticeozbolat17.medium.com/text-summarization-how-to-calculate-bertscore-771a51022964
https://haticeozbolat17.medium.com/text-summarization-how-to-calculate-bertscore-771a51022964
https://medium.com/@abonia/bertscore-explained-in-5-minutes-0b98553bfb71
https://medium.com/@abonia/bertscore-explained-in-5-minutes-0b98553bfb71

68

Mulkar, A. (2023, October 25). Explainable AI (xAI) in Natural Language Processing

(NLP). Medium. https://ankushmulkar.medium.com/explainable-ai-xai-in-

natural-language-processing-nlp-d75d5be216e3

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,

L., & Polosukhin, I. (2017, June 12). Attention Is All You Need. arXiv.org.

https://arxiv.org/abs/1706.03762

What are the pros and cons of using attention mechanisms in text summarization with

RNNs? (2023, March 21). www.linkedin.com.

https://www.linkedin.com/advice/3/what-pros-cons-using-attention-

mechanisms-text-summarization

Vig, J. (2019, April 4). Visualizing Attention in Transformer-Based Language

Representation Models. arXiv.org. https://arxiv.org/abs/1904.02679

Garreau, D., & Luxburg, U. (2020, June 3). Explaining the Explainer: A First

Theoretical Analysis of LIME. PMLR.

https://proceedings.mlr.press/v108/garreau20a.html

Tounsi, Y., Anoun, H., & Hassouni, L. (2020). CSMAS.

https://doi.org/10.1145/3386723.3387851

What is a Transformer Model? | IBM. (n.d.). https://www.ibm.com/topics/transformer-

model

Falcon, W. (2021, December 13). From PyTorch to PyTorch Lightning — A gentle

introduction. Medium. https://towardsdatascience.com/from-pytorch-to-

pytorch-lightning-a-gentle-introduction-b371b7caaf09

Burnell, C., Wood, J., Babin, M., Pesznecker, S., & Rosevear, N. (n.d.). Writing

Summaries. Pressbooks.

https://openoregon.pressbooks.pub/wrd/chapter/writing-summaries/

Cosine similarity | Engati. (n.d.). Engati. https://www.engati.com/glossary/cosine-

similarity

https://ankushmulkar.medium.com/explainable-ai-xai-in-natural-language-processing-nlp-d75d5be216e3
https://ankushmulkar.medium.com/explainable-ai-xai-in-natural-language-processing-nlp-d75d5be216e3
https://arxiv.org/abs/1706.03762
https://www.linkedin.com/advice/3/what-pros-cons-using-attention-mechanisms-text-summarization
https://www.linkedin.com/advice/3/what-pros-cons-using-attention-mechanisms-text-summarization
https://arxiv.org/abs/1904.02679
https://proceedings.mlr.press/v108/garreau20a.html
https://doi.org/10.1145/3386723.3387851
https://www.ibm.com/topics/transformer-model
https://www.ibm.com/topics/transformer-model
https://towardsdatascience.com/from-pytorch-to-pytorch-lightning-a-gentle-introduction-b371b7caaf09
https://towardsdatascience.com/from-pytorch-to-pytorch-lightning-a-gentle-introduction-b371b7caaf09
https://openoregon.pressbooks.pub/wrd/chapter/writing-summaries/
https://www.engati.com/glossary/cosine-similarity
https://www.engati.com/glossary/cosine-similarity

69

APPENDIX A: 20 EXAMPLES OF TRAINING DATA SET

Judgement 1:

Summary 1:

70

Judgement 2:

Summary 2:

71

Judgement 3:

Summary 3:

72

Judgement 4:

Summary 4:

73

Judgement 5:

Summary 5:

74

Judgement 6:

Summary 6:

75

Judgement 7:

Summary 7:

76

Judgement 8:

Summary 8:

77

Judgement 9:

Summary 9:

78

Judgement 10:

Summary 10:

79

Judgement 11:

Summary 11:

80

Judgement 12:

Summary 12:

81

Judgement 13:

Summary 13:

82

Judgement 14:

Summary 14:

83

Judgement 15:

Summary 15:

84

Judgement 16:

Summary 16:

85

Judgement 17:

Summary 17:

86

Judgement 18:

Summary 18:

87

Judgement 19:

Summary 19:

88

Judgement 20:

Summary 20:

89

APPENDIX B: 10 EXAMPLES OF TESTING DATA SET

Judgement 1:

Summary 1:

90

Judgement 2:

Summary 2:

91

Judgement 3:

Summary 3:

92

Judgement 4:

Summary 4:

93

Judgement 5:

Summary 5:

94

Judgement 6:

Summary 6:

95

Judgement 7:

Summary 7:

96

Judgement 8:

Summary 8:

97

Judgement 9:

Summary 9:

98

Judgement 10:

Summary 10:

99

APPENDIX C: TRAINING CODE

100

101

APPENDIX D: TESTING CODE

102

103

APPENDIX E: XAI CODE SNIPPET

104

105

APPENDIX F: USER MANUAL

1. Choose file and click

submit button to upload Brief explanation

Result panels

2. Click to

download the

results
3. Click to upload

new document

