THE EFFECT OF COUPLING AGENT ADDITION TO THE MECHANICAL PROPERTIES OF WOOD PLASTIC COMPOSITE (WPC) MADE OF RECYCLED HIGH DENSITY POLYETHYLENE (RHDPE) AND RECYCLED WOOD FLOUR (RWF)

NG GUAN YAO

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

THE EFFECT OF COUPLING AGENT ADDITION TO THE MECHANICAL PROPERTIES OF WOOD PLASTIC COMPOSITE (WPC) MADE OF RECYCLED HIGH DENSITY POLYETHYLENE (RHDPE) AND RECYCLED WOOD FLOUR (RWF)

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Engineering Materials) with Honours.

by

NG GUAN YAO

FACULTY OF MANUFACTURING ENGINEERING 2010

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: The Effect of Coupling Agent Addition to the Mechanical Properties of Wood Plastic Composite (WPC) Made of Recycled High Density Polyethylene (RHDPE) and Recycled Wood Flour (RWF)

SESI PENGAJIAN: 2009/10 Semester 2

Saya NG GUAN YAO

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan ($\sqrt{}$)

SULIT

TERHAD

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

Disahkan oleh:

Alamat Tetap:

169, LEBUH PENGKALAN BARAT 12,

TIDAK TERHAD

TAMAN PENGKALAN BARU,

31650 IPOH, PERAK

Tarikh: 25th MAY 2010

Cop Rasmi:

Tarikh:

** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "The Effect of Coupling Agent Addition to the Mechanical Properties of Wood Plastic Composite (WPC) Made of Recycled High Density Polyethylene (RHDPE) and Recycled Wood Flour (RWF)" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	NG GUAN YAO
Date	:	25 th MAY 2010

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the Bachelor Degree of Manufacturing Engineering (Engineering Materials) with Honours. The member of the supervisory committee is as follow:

.....

(MR. JEEFFERIE BIN ABD RAZAK)

ABSTRACT

The main focus in this research is to investigate the effect of coupling agent addition in various percentages (0%, 3%, and 6% of total weight) to the mechanical properties of wood plastic composite (WPC). 3-Aminopropyl Triethoxysilane is chosen as the coupling agent in this research. Besides, WPC is fabricated by virgin HDPE as matrix phase, recycled plastic packaging bag (PPB) as additional matrix and reinforcement, and wood flour as reinforcement. By the way, the ratios of HDPE to wood flour are 9:1, 8:2, 7:3, and 6:4. There are three different group of WPC fabrication; that are normal WPC, WPC with coupling agent (CA) addition, and WPC with CA and PPB addition. Single way and two ways process method were used in this research where two ways method includes the pre-mixing process by using extruder whereas single way method does not. Next, the composite pallet was formed into composite plate through hot press process. After that, the composites are mechanically tested with flexural test, impact test, and tensile test. Finally, the fracture surface of tensile specimens was analyzed by observing through the Optical Microscopy (OM) observation.

ABSTRAK

Fokus utama dalam kajian ini adalah untuk mengkaji kesan penambahan agen pengkupel dalam pelbagai peratusan (0%, 3%, dan 6% daripada berat keseluruhan) ke atas ciri-ciri mekanikal komposit kayu plastic (WPC). "3-Aminopropyl triethoxysilane" telah dipilih sebagai agen pengkupel dalam kajian ini. Selain itu, WPC adalah diperbuat daripada HDPE dara sebagai matriks, plastik bag kitar semula sebagai matriks dan tetulang berlebihan, dan serbuk kayu sebagai bahan tetulang. Di samping itu, nisbah HDPE dan serbuk kayu adalah 9:1, 8:2, 7:3, and 6:4. Tiga kumpulan akan dikenalkan, iaitu komposit kayu plastik yang biasa, komposit kayu plastic yang ditambah dengan agen pengkupel, dan komposit kayu plastic yang ditambah dengan agen pengkupel dan plastik bag kitar. Proses pembuatan komposit kayu plastic dibahagikan kepada kaedah satu arah dan kaedah dua arah di mana kaedah dua arah mempunyai proses pemcampuran yang menggunakan ekstruder tetapi kaedah satu arah tidak ada. Selepas itu, pelet komposit akan dijadikan plat komposit melalui proses tekanan panas. Kemudian, komposit ini diuji secara mekanikal dengan ujian pelenturan, ujian hentaman, dan ujian lenturan. Akhirnya, permukaan bahagian patah daripada ujian lenturan telah dikaji dengan menggunakan pemerhatian mikroskop optikal (OM).

DEDICATION

To my beloved aunty, your love and support are my greatest inspiration. Without your love and support, I could never go so far until now.

To my friends, it is for your sacrifices, encouragement, and support.

ACKNOWLEDGEMENT

I would like to thank the Faculty of Manufacturing of Universiti Teknikal Malaysia Melaka that gives me an opportunity to undertaking manufacturing course.

Besides, I would like to express my warmest thanks to my lecturer, Madam Intan Sharhida binti Othman, who is my ex PSM supervisor. She has done a great job in guiding me during the starting of this research.

Also, I would like to thank Mr. Jeefferie bin Abd Razak who is my current PSM supervisor. He is willing to guide and give me full support on my research. Without his effort and support, my research wills not success.

Meanwhile, I would like to thank Mr. Mohamad Haidir bin Maslan who marks my PSM report as my first panel. He is willing to give tolerance during my hardest time.

Moreover, I would like to thank Dr. Mohd Warikh bin Abd Rashid who is my second panel as well as my academic supervisor. He has done a great job in guiding me during my degree study.

TABLE OF CONTENT

Abstract		i
Abstrak		ii
Dedicatio	on	iii
Acknowl	edgement	iv
Table of	Content	v
List of Ta	ables	ix
List of Fi	gures	х
List of A	bbreviations	xiv
1. INTR	ODUCTION	1
1.1	Background	1
1.2	Problem Statement	2
1.3	Objectives	3
1.4	Scope	3
1.5	Benefits of Study	4
2. LITE	RATURE REVIEW	5
2.1	Wood Plastic Composite (WPC)	5
2.1.1	History	5
2.1.2	Manufacturing Process	7
2.1.3	Mechanical Properties of WPC	8
2.1.3.1	Effect of Moisture Content in Wood Flour	9
2.1.3.2	Effect of the Types of Polymer	10
2.1.3.3	Effect of Coupling Agent	11
2.1.3.4	Effect of the Percentage of Wood Flour	12
2.1.3.5	Effect of Wood Flour Size	13
2.2	Coupling Agents	14
2.2.1	Silane Crosslinking Mechanism	15
2.3	Natural Fiber (Wood Flour)	16

2.4.1	Recycled Versus Virgin HDPE	18
2.5	Recycle Issues	19
2.6	Mechanical Testing	20
3. MET	HODOLOGY	21
3.1	Introduction	21
3.2	Materials	22
3.2.1	Recycled Plastic Packaging bag	22
3.2.2	Wood Flour	23
3.2.3	Coupling Agent	23
3.2.4	Virgin High Density Polyethylene (HDPE) Resin	23
3.3	Sequence of Research	24
3.3.1	Material Characterization	25
3.3.1.1	Characterization of Plastic Packaging Bag	25
3.3.1.2	Characterization of Wood Flour	27
3.3.2	Raw Material Preparation	27
3.3.2.1	Wood Flour	28
3.3.2.2	Plastic Packaging Bag	28
3.3.3	Matrix and Reinforcement Composition Preparation	29
3.3.4	Extrusion (Pre-Mixing)	31
3.3.4.1	Standard Operating Procedures for Extrusion Process	31
3.3.5	Pallet Preparation	32
3.3.6	Forming	32
3.3.6.1	Standard Operating Procedures for Hot Press Process	33
3.3.7	Mechanical Testing	33
3.3.7.1	Flexural Test	34
3.3.7.2	Impact Test	37
3.3.7.3	Tensile Test	39
3.3.8	Fracture Surface Analysis	41
3.3.8.1	Standard Operating Procedures for Optical Microscope	42
3.4	Conclusion	43

4. RESULT

4.1	Introduction	41
4.2	Material Characterization	41
4.2.1	Wood Flour	41
4.2.2	Plastic Packaging Bag's Polymer Layer Material	44
4.3	Tensile Test	46
4.3.1	Fracture Surface Morphology Analysis	51
4.4	Impact Test	55
4.5	Flexural Test	58

5. DISCUSSION

62

41

5.1	Introduction	62
5.2	Effects of Process Methods	62
5.2.1	Microscopic Observation	63
5.2.2	Surface Wetting Observation	65
5.3	Effects of Coupling Agent Addition	67
5.3.1	Fracture Surface Morphology Analysis	68
5.4	Effects of Plastic Packaging Bag Addition	70
5.5	Effects of Various Percentages of Wood Flour Additions	71

6. CONCLUSION AND RECOMMENDATION		72
6.1	Conclusion	72
6.2	Recommendation	73

REFERENCES

74

APPENDICES

А	Gantt Chart of Work
В	Flexural Specimen Drawing Sheet
С	Impact Specimen Drawing Sheet
D	Tensile Specimen Drawing Sheet
Е	PSM II Gantt Chart of Work

- F External Polymer Layer Spectrum
- G Internal Polymer Layer Spectrum

LIST OF TABLES

2.1	Mechanical Properties of Some Common Polymers in	18
	Room Temperature (Harper, 2003).	
3.1	Raw material composition for WPC fabrication	30
4.1	Tensile Properties of pure HDPE and WPCs with the absence and present of CA and PPB fabricated by single	48
	way and two ways methods	
4.2	Impact strength of pure HDPE and WPC with the absence	56
	and present of CA and PPB fabricated by single way and	
	two ways method	
4.3	Flexural strength of pure HDPE and WPC with the absence	59
	and present of CA and PPB fabricated by single way and	
	two ways method	

LIST OF FIGURES

2.1	The Degree of Crosslinking for X-Dry (Crosslinking, Dry)	9
	and X-Wet (Crosslinking, Wet) Composites After Various	
	Storage Times in SA (Sauna) and Rt (Room Temperature)	
	(Grubbström and Okman, 2009).	
2.2	Stress-Strain Curves for All Crosslinked Composites as	11
	well as the Non-Crosslinked Control Material (Grubbström	
	and Okman, 2009).	
2.3	Average Values of the Relative Tensile Strength as a	12
	Function of Wood Content. (Bengtsson et al., 2005)	
2.4	Effect of Mixing Temperature and Powder Size on Tensile	13
	Strength of WPC (Miki et al., 2009).	
2.5	The Suggested Reaction Mechanism During: (a) Peroxide	15
	Induced Melt Grafting of Vinyltrimethoxy Silane onto	
	Polyethylene, (b) Radical Induced Crosslinking of	
	Polyethylene (Bengtsson et al., 2005)	
2.6	The Hydrolysis Step (1) and Condensation Step (2) During	16
	Silane Crosslinking (Bengtsson et al., 2005).	
2.7	Chain Configuration of HDPE, LDPE, and LLDPE	17
	(Harper, 2003).	
3.1	Layout of the PPB	22
3.2	Flow Chart	24
3.3	FT/IR-6100 (Fourier Transform Infrared Spectroscopy,	25
	JAS.CO)	
3.4	ATR PRO450-S/470-H Single reflection ATR accessories	26
3.5	Single screw extruder (Polylab Extruder, HAAKE	31
	Rheomix OS)	
3.6	Hot Press Machine (GT 7014-A)	32
3.7	Universal Testing Machine (UTM, Shimadzu)	34
3.8	Flexural Test Equipment Setup	35

3.9	Flexural Test Specimen	35
3.10	Impact Tester (MH 365)	37
3.11	Impact Test Specimen	38
3.12	Universal Testing Machine with tensile Test Equipment	39
	Setup (UTM, Shimadzu)	
3.13	Tensile Test Specimen	40
3.14	Optical microscope (Optical Microscope, Zeiss)	41
4.1	Wood flour image under 1X of Magnification	43
4.2	First wood flour sample image under 1X of magnification	43
4.3	Spectrum search result for the external polymer layer	45
4.4	Spectrum search result for the internal polymer layer	46
4.5	Effect of CA and PPB addition and various process	49
	methods to the tensile strength (MPa) of WPCs with varied	
	percentages of wood flour loading where (a) is the	
	fabricated samples from single way method and (b) is the	
	fabricated samples from two ways method	
4.6	Effect of CA and PPB addition and various process	50
	methods to the tensile modulus (MPa) of WPCs with	
	varied percentages of wood flour loading where (a) is the	
	fabricated samples from single way method and (b) is the	
	fabricated samples from two ways method	
4.7	Fracture surface morphology of the WPC sample	52
	(1A1~1A4) from single way process method at 10X of	
	magnification	
4.8	Fracture surface morphology of the sample (1B1~1B4)	52
	with 5% CA from single way process method at 10X of	
	magnification	
4.9	Fracture surface morphology of the sample (1C1~1C4)	53
	with 5% CA, and 5% PPB from single way process method	
	at 10X of magnification	
4.10	Fracture surface morphology of the sample (2A1~2A4)	53
	from two ways process method at 10X of magnification	

4.11	Fracture surface morphology of the sample (2B1~2B4)	54
	with 5% CA from two ways process method at 10X of	
	magnification	
4.12	Fracture surface morphology of the sample (2C1~2C4)	54
	with 5% CA, and 5% PPB from two ways process method	
	at 10X of magnification	
4.13	Effect of CA and PPB addition and various process	57
	methods to the impact strength (Nm) of WPCs with varied	
	percentages of wood flour loading where (a) is the	
	fabricated samples from single way method and (b) is the	
	fabricated samples from two ways method	
4.14	Flexural test with three points bending test setup	58
4.15	Effect of CA and PPB addition and various process	60
	methods to the flexural strength (MPa) of WPCs with	
	varied percentages of wood flour loading where (a) is the	
	fabricated samples from single way method and (b) is the	
	fabricated samples from two ways method	
5.1	Non-homogenous dispersion of the matrix and filler at 10X	64
	of magnification (side surface of the sample 1B1) at 10X	
	of magnification	
5.2	Homogenous dispersion of the matrix and filler at 10X of	64
	magnification (side surface of the sample 2A4) at 10X of	
	magnification	
5.3	Poor surface wetting quality due to the improper mixing	66
	process from the sample fabricated by single way method	
	(1B1 Fracture Surface) at 10X of magnification	
5.4	Good surface wetting quality due to extrusion process from	66
	the sample fabricated by two ways method (2A2 Fracture	
	Surface) at 10X of magnification	
5.5	Possible covalent and/or hydrogen bonding between wood	67
	and vinyltrimethoxy silane-grafted-HDPE (Bengtsson et al.	
	2005)	

5.6	Plastically deformed polymer matrix of sample with CA	68
	addition at the fractured surface (sample 2B3) at 10X of	
	magnification	
5.7	Matrix deformation pattern surrounding the filler when	69
	subjected to tensile loading (Callister 2005)	
5.8	Fracture surface of the sample with PPB addition (sample	70
	2C1) at 10X of magnification	

LIST OF ABBREVIATIONS

ABS	-	Acrylonitrile Butadiene Styrene	
Al	-	Aluminum	
CA	-	Coupling agent	
DSC	-	Differential Scanning Calorimeter	
FTIR	-	Fourier Transform Infrared Spectroscopy	
HDPE	-	High Density Polyethylene	
LPA	-	Laser Particle Analyzer	
LDPE	-	Low Density Polyethylene	
LLDPE	-	Linear Low Density Polyethylene	
MA	-	Maleic Anhydride	
MA-PE	-	Maleated Polyethylene	
MAPP	-	Maleated Polypropylene	
MDPE	-	Medium Density Polyethylene	
MPa	-	Mega Pascal	
Ν	-	Newton	
PE	-	Polyethylene	
PET	-	Polyethylene Terepthalate	
PMPPIC	-	Polymethylene-Polyphenyl-Isocyanate	
PP	-	Polypropylene	
PPB	-	Plastic packaging bag	
rHDPE	-	Recycled High Density Polyethylene	
RPP	-	Recycled Polypropylene	
RT	-	Room Temperature	
SA	-	Sauna	
SEM	-	Scanning Electron Microscope	
ТМ	-	Tensile modulus	
TS	-	Tensile strength	
UTM	-	Universal Testing Machine	
WF	-	Wood flour	
WPC	-	Wood plastic Composite	

X-dry	-	Crosslinking-Dry
X-wet	-	Crosslinking-Wet

CHAPTER 1 INTRODUCTION

1.1 Background

Wood plastic composite (WPC), the combination of wood fiber and polymer has been a growing interest in the development of construction and automotive industrial over the past decade. Recently, WPC applications have been extended other than automotive industry such as siding, fencing, window frames and decking. The reasons behind are that the WPC are low density, high stiffness and strength, low price, environmental friendly, less-abrasive to processing equipment, renewable, recyclable, and biodegradable. Other than that, the industries were forced by the environment awareness of people nowadays to choose natural materials as substitutes for non-renewable materials.

The main drawback in WPC production are difficult to achieve strong interfacial adhesion between wood fiber and polymer since they are hydrophilic and hydrophobic material just like water and oil which cannot be mixed together. This will leads to composites with poor durability and mechanical properties. Meanwhile, there has been a lot of researchers come across this problem by introducing coupling agent into the WPC production. From their study, they found out that the coupling agent addition will strengthen the material in terms of mechanical, surface, water absorption, etc. (Bengtsson and Oksman, 2006), (Felix and Gatenholm, 1991), (Kazayawoko *et al.*, 1999), (Kokta *et al.*, 1989), (Maldas and Kokta, 1994), and (Raj, 1989).

In the processing of WPC, there are two important topics shall be clearly identified as basic approach toward WPC design value determination. The first topic is the processing method which includes compounding and forming, whereby the second topic is the specific formulation of WPC parameter such as the composition of wood fiber and coupling agent. These two approaches can help to optimize the WPC mechanical properties to suit the particular application.

1.2 Problem Statement

Mankind, the unique race that exists in the earth has been a large leap in development. Due to the rapid development, million tones of waste per annum are produced from household, commercial, and industrial. Polymer waste such as polyethylene (PE) is the most likely material to be found in dumpling area. Furthermore, this material takes thousand years for degradation in the dumpling area. This was lead to the problem of insufficient dumpling area, and thus, more landfills have to be created to meet the requirement year to year. Consequently, it will cause bad scenery to the environment and ecosystem, contribute to various diseases, and also contribute to global warming.

According to the research of US Environmental Protection Agency (2006), it claims that the worldwide production of plastics is approximately 100 million tones per annum. Attempts have been taken to recycle the post consumer thermoplastic material in order to reduce the impact to the environment and also to reduce the uses of virgin polymer. In the previous research of Nantha (2008), the recycled high density polyethylene (rHDPE) from post consumer milk bottles were successfully recycled to produce wood plastic composite (WPC). It is because the properties of this rHDPE are not significantly different from those virgin resins, and therefore, it could be used for various applications. However, the complicated post consumer product such as plastic packaging bags are not easy to be recycled because it has combined the plastics and metal (typically aluminum foil) material. In order to separate the plastic from metal, various processes have to be implemented, and hence, it leads to high cost. In short, separating the polymer material from the metal layer in plastic packaging bags is impossible.

In regard to the above problem, an alternative way to recycle the plastic packaging bags should be taken. Since the separation of polymer and metal layers in plastic packaging bags are impossible, the alternative way is to recycle and use both materials in one application. This could be done by mixing the plastic packaging bags material into the WPC parameter where the polymer layer will become the matrix and metal layer will act as additional filler which may further strengthen the mechanical properties of WPC.

1.3 Objectives

- (a) To investigate the effects of coupling agent in various percentage addition to the mechanical properties of wood plastic composite (WPC).
- (b) To study the effects of recycled woof flour percentage and recycled plastic packaging bag material percentage addition in WPC to the mechanical properties of WPC.
- (c) To evaluate the effects of different process method to the mechanical properties of WPC.

1.4 Scope

This research will include the processing of WPC through single way method and two ways method where two ways method involves the pre-mixing process by using extruder whereas the single way method does not. Meanwhile, the material characterization process is conducted to analyze the wood flour size, wood flour density, and plastic packaging bag (PPB).

Meanwhile, flexural test (ASTM D790-03), impact test (ASTM D 6110 - 04), and tensile test (ASTM 3039/D3039M-00) will be conducted to analyze the mechanical properties of produced WPC. After that, fracture surface morphology analysis will be taken on the failure specimens from tensile test by using optical microscope.

Besides, the materials involved are recycled PPB, wood flour, Silane, and virgin HDPE granules. The specific formulation of WPC will only focus on the absence and presence of coupling agent (CA), and the presence of PPB with CA. Besides, the HDPE to WF ratios are set to 9:1, 8:2, 7:3, and 6:4. The detail formulations will be discussed in methodology section.

By the way, water absorption test, thickness swelling test, degree of crosslinking test will not be included in this research. The main focus will be on the mechanical properties of WPC fabricated by 25 specific formulations.

1.5 Benefits of Study

From the analysis in this research, a lot of benefits and information could be acquired for example:

- (a) Silane percentage addition in optimizing the mechanical properties of WPC.
- (b) Wood flour percentage addition effect to mechanical properties of WPC.
- (c) Alternative way to recycled complicated polymer material such as plastic packaging bags.
- (d) Recycled plastic packaging bag material usage in WPC and its effect to mechanical properties of WPC.
- (e) WPC processing methods, steps, and parameter setup.

The future researchers can refer to this research work as a guideline in their WPC research field or alternative way to recycled plastic waste.