

FACIAL EXPRESSION RECOGNITION (FER) USING DEEP
LEARNING NETWORK

MUHAMMAD IRFAN BIN ZAIDI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

FACIAL EXPRESSION RECOGNITION (FER) USING DEEP

LEARNING NETWORK

MUHAMMAD IRFAN BIN ZAIDI

This report is submitted in partial fulfilment of the requirements for

the degree of Bachelor of Electronic Engineering with Honours

Faculty of Electronics and Computer Technology and

Engineering

Universiti Teknikal Malaysia Melaka

2024

DECLARATION

I declare that this report entitled “Facial Expression Recognition (FER) Using Deep

Learning Network” is the result of my own work except for quotes as cited in the

references.

Signature : …………………………………

Author : …………………………………

Date : …………………………………

user
Typewriter
Muhammad Irfan Bin Zaidi

user
Typewriter
22 January 2024

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient

in terms of scope and quality for the award of Bachelor of Electronic Engineering with

Honours.

Signature : …………………………………

Supervisor Name : …………………………………

Date : …………………………………

Prof Madya Dr Abd Majid Darsono

22 January 2024

DEDICATION

I express my gratitude to the Almighty, Allah, who is most gracious and merciful, for

granting me the strength and patience to successfully complete my final year project.

Additionally, I am deeply thankful to my parents for supporting my educational

pursuits. I would also like to extend my heartfelt appreciation to Dr. Abd. Majid Bin

Darsono for his invaluable guidance throughout this project. Lastly, I am grateful to

all my friends for their assistance during completing this project.

 i

ABSTRACT

Emotion recognition plays a significant role in measuring the emotions of a person.

Since our faces are the most expressive parts of our bodies and are frequently used as

indicators of our mental states. This project aims to develop facial expression

recognition using deep learning technique for recognize seven different emotions such

as angry, disgust, fear, happy, neutral, sad and surprise. However, developing a FER

system by using FER2013 dataset based on machine learning have limitation in

handling complex datasets. Therefore, this project involves deep learning technique

by using Convolution Neural Network (CNN) model with data augmentation to handle

the complex data and be able to extract facial features from the input images with

reduce overfitting. As a result, our proposed model achieved the highest accuracy with

65.27% compared to the pretrained models where VGG16 with 42.11%, AlexNet with

24.71% and MobileNet with 28.35% on the FER2013 test dataset. The FER system

also can help in the healthcare and education sector. Thus, this project can be achieved

the SDG goal which is SDG 3 for Good Health and Well Being and SDG 4 for Quality

Education.

 ii

ABSTRAK

Pengecaman emosi memainkan peranan penting dalam mengukur emosi

seseorang. Memandangkan wajah kita adalah bahagian tubuh yang paling ekspresif

dan sering digunakan sebagai penunjuk keadaan mental kita. Projek ini bertujuan

untuk membangunkan pengecaman ekspresi muka menggunakan teknik pembelajaran

mendalam untuk mengenali tujuh emosi berbeza seperti marah, jijik, takut, gembira,

neutral, sedih dan terkejut. Walau bagaimanapun, membangunkan sistem FER

dengan menggunakan set data FER2013 berdasarkan pembelajaran mesin

mempunyai had dalam mengendalikan set data kompleks. Oleh itu, projek ini

melibatkan teknik pembelajaran mendalam dengan menggunakan model Convolution

Neural Network (CNN) dengan penambahan data untuk mengendalikan data yang

kompleks dan dapat mengekstrak ciri muka daripada imej input tanpa overfitting.

Hasilnya, model cadangan kami mencapai ketepatan tertinggi dengan 65.27%

berbanding model pralatihan di mana VGG16 dengan 42.11%, AlexNet dengan

24.71% dan MobileNet dengan 28.35% pada set data ujian FER2013. Sistem FER

juga boleh membantu dalam sektor penjagaan kesihatan dan pendidikan. Oleh itu,

projek ini dapat mencapai matlamat SDG iaitu SDG 3 untuk Kesihatan dan

Kesejahteraan yang Baik dan SDG 4 untuk Pendidikan Berkualiti.

 iii

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my deepest gratitude to who

has given me support and guidance throughout the completion of the final year project.

Your encouragement and help are invaluable, and I really appreciate it.

First, I express my deepest appreciation to my supervisor, Dr. Abd Majid Bin

Darsono, for his unwavering support, expert guidance, and immense patience

throughout the duration of this project. His deep knowledge in the field of machine

learning has played an important role in shaping the direction of my work. Dr. Abd

Majid always challenges me to think critically and strive for excellence. I am truly

blessed to have he is my supervisor, and his guidance has been a source of inspiration

for me.

Finally, I would like to express my appreciation to my friends for their

motivation, and intellectual discussions. Your support has created something positive

that helped me in completing this project.

 iv

TABLE OF CONTENTS

Declaration i

Approval i

Dedication i

Abstract i

Abstrak ii

Acknowledgements iii

Table of Contents iv

List of Figures ix

List of Tables xi

List of Symbols and Abbreviations xii

List of Appendices xv

CHAPTER 1 INTRODUCTION 1

1.1 Background of Project 2

1.2 Problem Statement 3

1.3 Objectives 4

1.4 Project Impact 5

 v

1.5 Scope of Project 5

1.5.1 Simulation 6

1.5.2 Restriction 7

1.6 Significant of Project 8

1.7 Chapter Outline 9

CHAPTER 2 BACKGROUND STUDY 12

2.1 The Types of Emotion Recognition 13

2.1.1 Overview of Expression Recognition from Speech Analysis 13

2.1.1.1 Speech Expression Databases 14

2.1.1.2 Speech Expression Recognition using Deep Learning

Technique 14

2.1.2 Overview of Expression Recognition from Body Gestures Analysis 16

2.1.2.1 Body Gesture Expression Databases 17

2.1.2.2 Body Gestures Expression Recognition using Deep learning

Technique. 17

2.1.3 Overview of Expression Recognition from Facial Analysis 18

2.1.3.1 Facial Expression Databases 19

2.1.3.2 Facial Expression Recognition using Machine Learning

Technique 25

2.1.3.3 Facial Expression Recognition using Deep Learning Technique

(CNN) 32

2.2 Summary 39

 vi

CHAPTER 3 METHODOLOGY 40

3.1 Modern Tools 41

3.1.1 Jupyter Notebook 41

3.1.2 Google Colab 42

3.1.3 Open-Source Library 42

3.1.3.1 TensorFlow 43

3.1.3.2 KERAS 43

3.1.3.3 OpenCV 44

3.1.3.4 Matplotlib 44

3.1.3.5 NumPy 45

3.2 Proposed FER Algorithm using CNN. 45

3.2.1 Preparing and Processing Images in Database 47

3.2.2 Design the CNN Custom Model 49

3.2.2.1 Input Shape 50

3.2.2.2 Convolutional 2D Layer 51

3.2.2.3 Pooling Layer 52

3.2.2.4 Activation Function 54

3.2.2.5 Fully Connected Layer 55

3.2.3 Training and Observe the Validation Accuracy 56

3.2.3.1 Tuning Hyperparameter Batch Size 57

 vii

3.2.3.2 Tuning Hyperparameter Learning Rate 58

3.2.3.3 Tuning Hyperparameter Epochs 59

3.2.4 Testing the Model 59

3.2.5 Analyzing the Model Performance 60

3.2.6 Integrate the FER system in Real Time 62

3.3 Summary 63

CHAPTER 4 RESULTS AND DISCUSSION 65

4.1 Data Augmentation Analysis for Custom CNN Model 66

4.2 Hyperparameter Tuning for Custom CNN Model 68

4.2.1 Tuning Learning Rate and Batch size 68

4.2.2 Tuning Epochs 71

4.3 Analyzing the Performance of the Proposed Custom CNN Model 73

4.3.1 Model Accuracy and Loss 73

4.3.2 Confusion Matrix 74

4.4 Pretrained Models 78

4.4.1 Model Accuracy and Loss for VGG16 Model 79

4.4.2 Model Accuracy and Loss for AlexNet Model 80

4.4.3 Model Accuracy and Loss for MobileNet Model 81

4.4.4 Comparison Between a Proposed Model and All Pretrained Models 83

4.5 Real Time Monitoring using Webcam. 86

 viii

4.6 Summary 88

CHAPTER 5 CONCLUSION AND FUTURE WORKS 90

5.1 Conclusion 91

5.2 Future Work 92

5.2.1 Applying feature extraction techniques before training models 92

5.2.2 Address class imbalance in the FER2013 dataset 93

5.2.3 Applying illumination correction techniques during pre-processes

images 94

5.2.4 Implement 468 facial landmarks. 94

REFERENCES 95

APPENDICES 100

 ix

LIST OF FIGURES

Figure 2.1: The spectrogram samples of various speech emotions [5] 14

Figure 2.2: The CNN architecture for speech emotion recognition [6] 15

Figure 2.3: The RGB images of body gestures [7] 17

Figure 2.4: The overall process for emotion recognition based on body gestures by

using TSN and ST-GCN model [7]. 18

Figure 2.5: The basic step for facial expression recognition [9] 19

Figure 2.6: The various types of datasets for FER [10] 21

Figure 2.7: The JAFFE Dataset [12] 22

Figure 2.8: The sample images from FER-2013 dataset [17] 25

Figure 2.9: The schematic concept of the SVM model [20] 27

Figure 2.10: The architecture of SVM [20] 28

Figure 2.11: The FER process by using SVM classifier [21] 30

Figure 2.12: The basic architecture of Random Forest [22] 31

Figure 2.13: Flowchart of MVPCRF FER method [22] 32

Figure 2.14: The illustration of arousal and valance domain emotional labeling [24]

 33

Figure 2.15: The basic CNN architecture 34

Figure 2.16: Hidden layer nodes in neural network [25] 35

Figure 2.17: The CNN architecture for FER algorithm [12] 36

 x

Figure 2.18: Illustration CNN+BP and CNN+ELM of FER model [12] 37

Figure 2.19: Illustration of CNN architecture [14] 38

Figure 2.20: The confusion matrix on the FER2013 test dataset [14]. 38

Figure 3.1: The flowchart diagram in FER project 47

Figure 3.2: The augmented images 48

Figure 3.3: Designed the CNN custom model. 50

Figure 3.4: The convolutional process 51

Figure 3.5: The RELU activation function 54

Figure 3.6 The training processes captured from 30 to 50 epochs. 57

Figure 3.7: The images of predicted emotion from the test dataset 60

Figure 3.8: The confusion matrix and classification report. 62

Figure 4.1: The model accuracy and loss without and with data augmentation 67

Figure 4.2: The plot graph illustrating the model accuracy and loss for the proposed

model. 74

Figure 4.3 The plot graph illustrating the model accuracy and loss for CNN model in

paper [26] 74

Figure 4.4: The Confusion Matrix for Proposed CNN Model 76

Figure 4.5: The Confusion Matrix for CNN architecture in paper [14] 76

Figure 4.6: The plot graph illustrating the model accuracy and loss for the VGG16

model. 80

Figure 4.7: The plot graph illustrating the model accuracy and loss for AlexNet model.

 81

Figure 4.8: The plot graph illustrating the model accuracy and loss for the MobileNet

model. 83

 xi

LIST OF TABLES

Table 2.1: The available databases that contain basic expression. 20

Table 2.2: The classification of facial expression in FER2013 dataset 23

Table 4.1: Analyzing the accuracy of custom CNN model by tuning the

hyperparameter learning rate and batch size. 69

Table 4.2: Analyzing the custom CNN model by tuning the hyperparameter epochs.

 72

Table 4.3: Performance Analysis for Proposed CNN Model 77

Table 4.4: The Comparison Between a Proposed Custom CNN Model and Three

Pretrained Models 84

Table 4.5: Real time monitoring using webcam. 86

 xii

LIST OF SYMBOLS AND ABBREVIATIONS

FER : Facial Expression Recognition

AI : Artificial Intelligent

CNN : Convolution Neural Network

SDG : Sustainable Development Goals

GPU : Graphic Processing Unit

SER : Speech Emotion Recognition

RELU : Rectified Linear Unit

VGG16 : Visual Geometry Group 16

FABO : French Audiovisual Broadcast

GEMEP : German Multimodal Emotion Perception

LIRIS-

ACCEDE

:

Lyon Institute of Research in Computer Science and Application

Affective Video Dataset for Content and Emotion Analysis

HMM : Hidden Markov Models

SVM : Support Vector Machine

DBN : Deep Belief Network

CREMA-

D

: Crowd-Sourced Emotional Multimodal Actor Dataset

Emo-DB : Emotional Database

 xiii

RAVDESS : Ryerson Audio-Visual Database of Emotional Speech and Song

SAVEE : Surrey Audio-Visual Expressed Emotion

RGB : Red, Green, Blue

TCN : Temporal Segment Network

STGCN : Spatial Temporal Graph Convolution Network

CK+ : Cohn-Kanade +

MMI : Multimodal Multiple Instance

JAFFE : Japanese Female Facial Expression

SFEW : Static Facial Expression in the Wild

KDEF : Karolinska Directed Emotional Faces

ICML : International Conference on Machine Learning

PCRF : Pairwise Conditional Random Forest

BU-4DFE : Binghamton University 4D Facial Expression Database

BP4D : Biometric Point Distribution Database

FG-NET : Face and Gesture Recognition Network Database

FEED : Face and Expression Emotion Database

MVPCRF : Multi-View Pairwise Conditional Random Forest

RNN : Recurrent Neural Network

LSTM : Long Short-Term Memory

ELM : Extreme Learning Machine

BP : Back Propagation

API : Application Programming Interface

SGD : Stochastic Gradient Descent

TP : True Positive

TN : True Negative

 xiv

FP : False Positive

FN : False Negative

GAN : Generative Adversarial Network

 xv

LIST OF APPENDICES

Appendix A: The simulation code for image processing 100

Appendix B: The simulation code for designing CNN model 101

Appendix C: The simulation code for plotting model accuracy and 102

 generating confusion matrix

Appendix D: The simulation code for generating classification report 103

Appendix E: The simulation code for testing the trained model 104

 with a sample image

Appendix F: The simulation code for integrating our proposed model 105

 using a webcam

CHAPTER 1

INTRODUCTION

In this chapter, we investigate the importance of recognizing emotions

through various cues such as facial expressions, tone of voice and body language,

emphasizing the role of facial expressions in communicating emotional states. The

objective of the project is to accurately recognize seven human emotions such as

angry, disgust, fear, happy, neutral, sad and surprise. We use computer vision and

deep learning techniques, specifically Convolutional Neural Networks (CNN), to

analyze and interpret facial expressions in images and real time monitoring. This

chapter outlines the problem statement, highlighting the limitations of existing

machine learning methods in handling complex datasets for facial expression

recognition. We emphasize data augmentation techniques to address issues such as

overfitting and improve accuracy. The project's scope, constraints and assumptions

are discussed, along with its potential impact on sustainable development.

 2

1.1 Background of Project

Artificial intelligence (AI) and psychological human emotion recognition are

two distinct but interrelated fields of research in automatic emotion recognition.

Emotional recognition is the ability to identify and interpret a person's emotional

state based on various cues, such as facial expressions, vocal tone, body language,

and physiological responses. Emotions are complex mental states related to various

physical and psychological changes in a person. These changes can be used as an

indicator of a person's emotional state. Most studies are particularly interested in this

modality because changes in the face during communication are the first indicators

that transmit emotional states [1]. Facial expressions are important to understand

human emotions because the face has body parts such as eyes, nose, mouth, and

others that make it easier for humans to recognize human emotions. Because of that,

this project chooses human faces to recognize seven human expressions, namely

angry, disgust, fear, happy, neutral, sad, and surprise, using AI technology. The

purpose of the facial expression recognition project is so that it can be applied in the

field of psychology because facial expression recognition technology helps

researchers and psychologists recognize individual emotions accurately. With that,

psychologists can better understand individual mental health issues. In addition, it

can also be applied in the fields of mental health, education, driver monitoring, and

so on.

This project uses the concept of computer vision to recognize human

expressions through their faces because computer vision plays an important role in

recognizing a person's expression. It uses AI technology to analyze and interpret

human expressions in images and real time monitoring using webcam. This project

uses AI technology because it is a machine programmed to mimic how humans think

 3

and behave. AI models can accurately and instantly analyze and categorize facial

expressions using deep learning algorithms and neural networks [2]. This project uses

deep learning techniques, which consist of multiple layers of interconnected nodes,

to learn and extract complex patterns and features from the input data to classify the

output. Deep learning has dramatically improved the precision and effectiveness of

face expression recognition systems with its capacity to handle complicated and

high-dimensional data.

This project only involves a simulation program that is implemented using

Google Colab and Jupyter Notebook as well as TensorFlow, OpenCV, Matplotlib,

and Numpy as open-source libraries, and the programming language used is Python.

The program consists of various tasks where it starts with data collection from

Kaggle and then preprocesses the images to improve image quality and give diversity

images. Then, the image is extracted for facial features for the training process. When

the training model is complete with good validation accuracy, the next step is testing

the model to predict and classify the image output from the testing dataset image

input. In terms of equipment, this project only uses webcam to classify human

expressions in real time.

1.2 Problem Statement

One of the most significant computer vision tasks is Facial Expression

Recognition (FER), which is done using deep learning. FER has a wide range of

applications in areas including psychology, health, security, and others. However,

developing a system for FER2013 dataset based on machine learning have limitation

in handling complex datasets for facial expression recognition, highlighting the need

 4

for more advanced or adaptable methodologies. This issue holds significant

importance as facial expression recognition plays a crucial role in areas like human-

computer interaction and emotion analysis, where accurate interpretation of

expressions is essential. Therefore, a proposed solution could involve the development

of more sophisticated algorithms, such as deep learning models, which are known for

their efficiency in managing complex and high-dimensional data [3]. Besides that,

developing a system for FER based on a deep neural network is primarily plagued by

overfitting, which is caused by insufficient training data and can result in a model that

has very high accuracy on the training set but low accuracy on the test set. The

significance of addressing this issue lies in enhancing the generalizability and

reliability of the models in practical. Therefore, to address the overfitting problem,

solutions could include methods like applying data augmentation technique during

pre-process images to increase the size and diversity of the training dataset to ensure

the model’s robustness across different data samples [4].

1.3 Objectives

The objectives of this project are:

1. To investigate the deep learning technique for facial expression recognition.

2. To develop facial expression recognition using deep learning technique.

3. To evaluate the proposed model performance in term of precision, recall, F1-

score and model accuracy.

 5

1.4 Project Impact

Facial expression recognition using deep learning networks has a significant

impact on various fields such as healthcare, education, security systems, and human-

computer interaction. Accurate interpretation of facial expressions is essential in these

fields, and deep learning models have shown promising results in recognizing facial

expressions. By improving the accuracy and robustness of facial expression

recognition systems, deep learning models can help doctors respond to patients’

expressions accordingly, and a positive expression can help treat patients’ conditions.

In addition, facial expression recognition can be used in human-computer interaction

systems with good intelligence and interaction performance. In education, it can be

used to monitor students’ engagement and attention levels. The impact of facial

expression recognition using deep learning networks is significant, and it has the

potential to revolutionize various fields by providing accurate and efficient recognition

of facial expressions. Therefore, this project can be achieved the SDG goal which is

SDG 3 for Good Health and Well Being and SDG 4 for Quality Education.

1.5 Scope of Project

This section discusses the scope of the project, which consists of constraints

and assumptions. It consists of two parts, namely simulation and restriction of this

project.

 6

1.5.1 Simulation

The scope of this project involves the development of a FER system using

Google Colab as the simulation platform. This project uses Google Colab because it

is a cloud based Jupyter notebook environment that allows users to collaborate and

access powerful hardware resources such as GPUs for machine learning and data

analysis tasks. It offers a computer environment that is interactive and supports

several programming languages, including Python, which will be used for this project

because of its adaptability and compatibility with other programming languages,

making it an ideal option for developing complex systems that must function with a

variety of tools and platforms. Overall, Python is a powerful and flexible language

that provides a wide range of tools for deep learning applications. In addition, this

project uses TensorFlow, OpenCV, Matplotlib, and NumPy as open-source libraries.

TensorFlow is a powerful deep learning framework that provides a large range of

tools and packages for building complex neural networks. Therefore, this project will

use it as an open-source software library to build a FER system. OpenCV is an open-

source computer vision framework that is used to recognize faces in images and to

add text to the image that will describe the emotions that were found. Better results,

understanding, and analysis will be possible for the user. The seven elementary

emotions will correspond to the emotions that are labelled. As for NumPy, it is an

open-source Python library, and it offers support for big, multi-dimensional arrays

and matrices as well as a selection of mathematical operations on these arrays. As for

Matplotlib, it is an open-source Python graphing library, and it offers a full set of

tools for using Python to build different kinds of static, animated, and interactive

visualizations.

 7

The simulation program for this project involves several tasks, namely

collecting the dataset from Kaggle, preprocessing the images, designing a model,

training and testing a model, and measuring the model performance in terms of model

accuracy, precision, recall and F1-score. Collecting datasets is important for deep

learning model training. For the preprocessing task, it is important to improve image

quality and reduce noise. For the task of designing a model, it is important to

determine the parameter in deep learning model and the ability of the system to

identify and classify facial expressions accurately and reliably. For the model training

task, it takes a long time, and it depends on how many epochs are set for training.

The more epochs that are set, the longer it takes to train the model. For the feature

extraction task, it is important to track facial features during the training process so

that the deep learning model can classify seven expressions based on the image facial

features that have been extracted through the training process. Finally, for the final

task, we measured the model performance. It is important to know and measure the

accuracy of the system, whether it can recognize expressions more effectively or less

effectively.

1.5.2 Restriction

There are several restrictions that need to be considered in the scope of facial

expression recognition projects. Among them, the system must be able to analyze

and classify facial expressions quickly to perform in real time, which is the first

important criterion for this project. In addition, this project requires high computer

processing power to ensure that the model can work properly, and this involves

considering the use of memory and computing power. Finally, there may be

 8

restrictions on the number of labelled facial expression datasets that can be accessed.

Thus, to overcome the overfitting, techniques such as data augmentation should be

investigated. By doing so, the model will be able to generalize well and work

accurately. This project can create a FER system that achieves real-time

performance, adapts to limited computer resources.

1.6 Significant of Project

Projects involving a FER system are significant in various fields, including

psychology, social science, marketing, crime detection, and so on. This is because

this project involves a program or system that can understand facial emotions

immediately. This project also has an impact on society and the environment and has

the potential to contribute to sustainable development. This project is important in

the field of psychology because FER technology helps researchers and psychologists

recognize individual emotions accurately. With that, psychologists can better

understand individual mental health issues. This contributes to promoting

psychological well-being and improving the quality of life. In terms of sustainable

sustainability, this project can achieve one of the SDG goals, which is SDG 3, Good

Health and Well-Being. In addition, this project also helps in the fields of social

science and business markets, where it can be used to understand customer reactions

to various stimuli such as products, advertisements, and others. This can develop an

effective marketing strategy and improve product design, which can also contribute

to sustainable economic development. In addition, this project can also help in the

field of education, where facial recognition technology can be used to monitor

students' emotions in class so that teachers can identify students who are not focusing

 9

and advise them to focus on class. With that, this project can contribute to increasing

well-being and economic development while minimizing the negative impact on the

environment.

This project is important to ensure that engineering solutions for FER projects

are built with sustainability and the impact on the environment and society in mind.

It consists of energy efficiency, where algorithmic design optimizes facial expression

recognition performance to minimize environmental impact. In addition, privacy and

ethical considerations in this project ensure that facial recognition systems respect

individual privacy rights. Additionally, it addresses potential biases to avoid

inaccurate interpretations. Ensure technology works effectively across diverse

populations, including different age, gender, and ethnic groups.

1.7 Chapter Outline

This thesis contains five chapters, and details of the project are explained in each

chapter and outlined below:

Chapter 1: In this chapter, we emphasize the significance of AI in recognizing

human emotions, particularly through facial expressions. Our project aims to

accurately detect seven emotions using computer vision and CNN model. We address

the challenge of handling complex datasets and highlight data augmentation to

enhance accuracy. The chapter outlines the project's scope and potential impact on

sustainable development while providing an overview of the thesis structure.

 10

Chapter 2: In this chapter, we discussed the importance of Speech Emotion

Recognition (SER) and its relevance in human-computer interaction. We explored

machine learning techniques, including CNN, and their application in recognizing

emotions from speech and body language. We also emphasized the significance of

databases in FER, with a focus on FER2013 database. Additionally, we highlighted

the role of AI and deep learning techniques, such as activation functions Rectified

Linear Unit (RELU) and model assessment using confusion matrix, in the context of

FER.

Chapter 3: In this chapter, we discuss on how to implement FER using CNN.

Besides that, we cover the use of Jupyter Notebook and Google Colab, along with

key open-source libraries like TensorFlow, KERAS, OpenCV, Matplotlib, and

NumPy. In addition, we discuss in detail the FER algorithm with CNN, including

images preprocessing, model design, training, and testing. Finally, we explore

integrating the FER system with a webcam for monitoring facial expression in real-

time.

Chapter 4: In this chapter, we discuss analysis of data augmentation and

optimization of model correctness via the exploration of hyperparameter tuning,

including learning rate, batch size, and epochs. Together with a confusion matrix for

performance analysis, the suggested custom CNN model with the proper

hyperparameters. By using the same hyperparameters, the chapter also examines the

accuracy, precision, recall, and F1-score of proposed models in comparison to

pretrained models VGG16, AlexNet, and MobileNet.

 11

Chapter 5: In this chapter, we successfully designed a CNN model for real-time

recognition of seven emotions, achieving a high accuracy of 65.27%. In future work

includes enhancing the model through feature extraction, addressing dataset

imbalances, improving lighting conditions, and implementing precise facial

landmarks for better face detection and recognition.

CHAPTER 2

BACKGROUND STUDY

In this chapter, we discussed SER and its significance in enabling realistic

human-computer interaction. We explored the utilization of machine learning

techniques, particularly CNN, pattern recognition, and statistical models, for training

algorithms on extensive datasets containing labeled emotive speech samples.

Additionally, we delved into the recognition of emotions through body language,

pointing out the availability of datasets such as French Audiovisual Broadcast

(FABO), German Multimodal Emotion Perception (GEMEP), and Lyon Institute of

Research in Computer Science and Application Affective Video Dataset for Content

and Emotion Analysis (LIRIS-ACCEDE) for this purpose. Furthermore, we

highlighted the importance of databases in FER analysis, with a focus on the widely

used FER2013 database. The chapter also touched upon the role of AI and machine

 13

learning in developing algorithms and models for automatic emotion recognition,

particularly through deep learning techniques like CNN. Also, the use of RELU as

an activation function, max-pooling for efficiency, and the significance of the

confusion matrix for assessing model performance were discussed in the context of

FER.

2.1 The Types of Emotion Recognition

The study and application of emotion identification technology aims to detect

and interpret human emotions from a variety of inputs, including voice, text, facial

expressions, and physiological signs. There are numerous types of recognizing

emotions methods, including speech emotion recognition, body gesture emotion

recognition, and facial emotion recognition.

2.1.1 Overview of Expression Recognition from Speech Analysis

SER is important for many applications in natural human-computer

interaction. It is a process of identifying and classifying emotions through speech

signals. It also involves analyzing the acoustic features found in spoken language,

such as spectrum content, rhythm, and others, to determine several emotions such as

happy, sad, disgusted, angry, surprised, fearful, and neutral. In the SER system, the

main role is to extract features from speech, which are then categorized to predict

different emotional classes in it. Sultana, J., and Naznin, M. [5] state that Deep Neural

Network-based features and Hand-Crafted features can both be extracted from

speech. Classification of emotion recognition based on speech can be carried out in

two ways, using traditional classifiers such as Hidden Markov Models (HMM),

Support Vector Machines (SVM), and others, or using deep learning algorithms such

as Deep Belief Network (DBN), CNN, and others.

 14

2.1.1.1 Speech Expression Databases

In the paper by [5], there are several audio datasets that can be used for speech

emotion recognition, including the Crowd-Sourced Emotional Multimodal Actors

Dataset (CREMA-D), which contains 7442 audio clips sampled at 16 kHz; the

Emotional Database (Emo-DB), which contains 535 utterances of 10 professional

actors; the Ryerson Audio-Visual Database of Emotional Speech and Song

(RAVDESS), which has both audio and visual files of 24 North American actors and

Surrey Audio-Visual Expressed Emotion (SAVEE), which contains 480 utterances

from 4 British male speakers with seven different expressions [5]. The audio datasets

are shown in spectrogram forms, such as shown in Figure 2.1 where indicate a signal's

quality over time at different frequencies that are included in the waveform.

Figure 2.1: The spectrogram samples of various speech emotions [5]

2.1.1.2 Speech Expression Recognition using Deep Learning Technique

Researchers in the field of SER use a variety of machine learning techniques,

including deep learning, pattern recognition, and statistical models, to train algorithms

on large datasets containing labelled emotional speech samples. Based on Figure 2.2,

 15

shows one of the techniques presented in the paper [6] that can be used in identifying

emotions from speech. The technique used is a deep learning technique called CNN.

The CNN model consists of 3 convolution layers, which are Conv1 with 64 kernels of

size (9x9), Conv2 with 120 kernels of size (7x7), and Conv3 with 200 kernels of size

(3x3). The top pooling layer receives the created features. The maximum pooling size

is the same for all three convolutional blocks (20 x 32). Two fully connected layers,

FC1 and FC2, of 256 and 512 neurons, come after the top pooling layer. All

convolutional layers are followed by the RELU activation function. As a result of its

greater convergence rates, this activation is employed. Finally, the SoftMax unit does

the classification work. Wani [6] concluded that this model gives an overall accuracy

of 65.5% after training for 500 epochs.

Figure 2.2: The CNN architecture for speech emotion recognition [6]

 16

2.1.2 Overview of Expression Recognition from Body Gestures Analysis

Humans naturally express their emotions not only through their faces but also

through their body gestures. In the paper by [7], psychological research shows that

body language can convey non-verbal emotional signals that the face and voice

cannot. However, less research has been done to identify emotions through body

language. This is because body gestures do not have clear emotional characteristics

because various people use different body movements to convey the same emotion.

Although the same person makes different body movements, they differ depending on

the situation. Emotion recognition through body movements is a process of identifying

and interpreting emotions conveyed through body movements, which involves

analyzing posture and physical movements exhibited by individuals to identify their

emotional state. It aims to take advantage of non-verbal communication to accurately

understand and classify their emotions. Algorithms can recognize emotions such as

happiness, sadness, surprise, fear, disgust, anger, and neutrality by analyzing spatial

position, temporal dynamics, and body movement patterns. Techniques that can be

used to recognize emotions through body movements are machine learning and deep

learning.

 17

2.1.2.1 Body Gesture Expression Databases

Shen, Z. [7] also presented several types of datasets for emotion recognition

through body gestures. Among them is FABO, which has 206 samples and 10

emotions involving the face and body. In addition, GEMEP has more than 7000

samples and 18 emotions involving the face and body. Not only that, LIRIS-ACCEDE

also has a dataset with six emotions involving the face and upper body. Examples of

samples of RGB images for body gestures according to their emotions are shown in

the Figure 2.3.

Figure 2.3: The RGB images of body gestures [7]

2.1.2.2 Body Gestures Expression Recognition using Deep learning Technique.

In the paper by [8], the acceleration state for the hand is the basic feature of

the ensemble tree classifier, and the model shows the best performance in their study.

Based on Figure 2.4, shows one of the deep learning techniques used in the paper [7]

to recognize emotions through body gestures. It uses RGB video as an input dataset,

and then the video is extracted by using the Temporal Segment Network (TCN) model

to extract RGB features and Spatial-Temporal Graph Convolution Networks (ST-

 18

GCN) to extract skeleton features. The output from them is a vector of different

lengths. The two feature vectors are combined to create a new fusion feature, which is

then tailored by a fully linked residual network into the appropriate category of

emotional body gestures. Finally, to classify the emotional body gestures, a residual

full-connected network that uses the same architecture as the residual feature encoder

Shen [8] concludes that the overall accuracies for the TSN model are 72.09%, while

those for the ST-GCN model are 72.00%.

Figure 2.4: The overall process for emotion recognition based on body gestures by

using TSN and ST-GCN model [7].

2.1.3 Overview of Expression Recognition from Facial Analysis

 FER is a field of study that focuses on detecting, analyzing, and interpreting

emotions and facial expressions shown by individuals. One of the most effective,

universal, and natural ways for people to express their emotions and intentions is

through their faces. Facial expression is important because it is one aspect of

communication in daily life. Facial Emotion Recognition technology uses computer

vision and Artificial Intelligence techniques to analyze and interpret human emotions

from facial expressions. However, based on the paper [9], the author stated that in the

field of computer vision, the difficult task of automatically identifying facial

 19

expressions from facial images has a variety of potential applications, including

driving safety, human-computer interaction, health care, behavioral research, video

conferencing, cognitive science, and others. With that, various algorithms, machine

learning, and deep learning models can be used to detect and classify facial

expressions accurately. FER analysis consists of face detection, facial expression

detection, and expression classification according to emotional states, as shown in the

Figure 2.5. Emotion detection is based on the position of facial landmarks such as the

eyes, nose, eyebrows, mouth, and others. With that, the algorithm can classify

emotions using a person's face, such as sadness, happiness, fear, surprise, and the

others, accurately. The accuracy and efficiency of classifying emotions can be

increased by using suitable techniques and databases.

Figure 2.5: The basic step for facial expression recognition [9]

2.1.3.1 Facial Expression Databases

The database plays an important role in FER. The database is a collection of

images of different people's faces expressing different emotions. It is used for training,

evaluation, and development of FER models. By training on diverse and representative

data, machine learning algorithms can learn the underlying patterns and features that

 20

distinguish different emotions, allowing them to make accurate predictions on new,

unseen data.

Table 2.1: The available databases that contain basic expression.

Databases Samples Collection

Condition

Expression Distribution

CK+ 593 images Lab Seven basic expressions plus

contempt

MMI 740 images and

2900 videos

Lab Seven basic expressions

JAFFE 213 images Lab Seven basic expressions

SFEW 1766 images Movie Seven basic expressions

KDEF 4900 images Lab Seven basic expressions

FER2013 35887 images Web Seven basic expressions

Based on the paper [10], the author states that there are several databases

available for facial emotion recognition, as shown in the Table 2.1 and Figure 2.6.

Among them, the Cohn-Kanade (CK+) database is the most extensively used

laboratory-controlled database for evaluating FER systems. Besides, the MMI

database is also laboratory controlled. Not only that, The Japanese Female Facial

Expression (JAFFE), Static Facial Expressions in the Wild (SFEW), Karolinska

Directed Emotional Faces (KDEF), and FER2013 are also FER databases that have

seven basic emotion expressions.

 21

Figure 2.6: The various types of datasets for FER [10]

The JAFFE dataset stands for Japanese Female Facial Expression, which is

used to conduct experiments and is provided by the psychology department at Kyushu

University. According to the paper [11], it consists of 213 grayscale images of size

256x256 pixels depicting 60 Japanese Females. The format of the images is TIFF.

This dataset is divided by 2, with 171 images for training purposes and 42 for testing

purposes. Based on this paper, the overall accuracy results on the JAFFE dataset are

94.23% for the CNN model. Not only that, according to the paper [12], the author

states that the results for training accuracy on the JAFFE dataset are 93.84%, while

the testing accuracy is 85.91% for the CNN+ELM model.

 22

Figure 2.7: The JAFFE Dataset [12]

The FER2013 dataset, also known as the 2013 Facial Expression Recognition

dataset, was presented at the International Conference on Machine Learning (ICML)

in 2013 [13]. It was created by Pierre-Luc Carrier and Aaron Courville and is available

on Kaggle as a popular platform for data science and dataset competitions. Based on

articles reviewed that have been conducted for researching the FER database, the

author uses the FER2013 dataset as the data for training because, according to the

paper [14], the author achieved a test accuracy of 73.73% on the FER2013 dataset.

Not only that, according to the paper [15], effective facial expression detection was

achieved using the FER2013 dataset, and the author achieved a FER2013 test accuracy

of 75.2%. In general, FER2013 is a grayscale image dataset consisting of 28709

images for the training dataset and 7178 images for the test dataset, where each image

in this dataset has the same image size of 48 x 48 pixels. It is one of the more difficult

datasets, with the best reported results only achieving a test accuracy of 75.2% and a

human-level accuracy of 65.5%, and the dataset is available on Kaggle [16].

 23

Table 2.2: The classification of facial expression in FER2013 dataset

 No Expression Image Description

0

Angry

Face shows such closed lips, arched eyebrows,

and large eyes indicate angry.

1

Disgust

Face shows such elevated upper lips and relaxed

eyebrows and eyelids frequently indicate disgust.

2

Fear

Face shows where the eyes are strained, their

inner eyebrows curve forward, and their eyebrows

are elevated and pinched.

3

Happy

Face shows such relaxed with open lips, raised

corners, and relaxed eyebrows.

 24

4

Neutral

Face indicates where there are no obvious signs of

tension or contraction in the facial muscles. There

don't seem to be any obvious creases or furrows

in the forehead.

5

Sad

Face shows where mouths are often relaxed, their

eyes are somewhat closed, and their inner

eyebrows bend upward.

6

Surprise

Face shows where the mouth is gaping, their

upper eyelids are thrown back, and their eyebrows

are turned upward to express surprise.

Based on the Table 2.2, showing the classification of facial expression in the

FER2013 dataset with expression description and labels such as (0 = angry, 1=disgust,

2=fear, 3=happy, 4 = neutral, 5=sad, and 6=surprise), Since there is an imbalance of

data, such as the emotion of disgust, which has an image of only 500–600, To address

this issue, the author [17] proposed to use some data augmentation on the data using

 25

the KERAS Images data generator, which generates a batch of images in different

poses, and scales.

Figure 2.8: The sample images from FER-2013 dataset [17]

2.1.3.2 Facial Expression Recognition using Machine Learning Technique

AI has a field called "Machine Learning" that focuses on creating algorithms

and models that allow computers to learn from data and make predictions or decisions

without being explicitly programmed. It includes the use of computational algorithms

and statistical approaches to give computers the ability to recognize patterns in data,

draw conclusions from them, and carry out specified tasks. To automatically detect

patterns, correlations, and trends in machine learning, models are trained on labelled

or unlabeled data. By giving models access to unexpected new data, the objective is

to enable them to make accurate predictions or decisions. Machine learning can be

used to recognize facial expressions. The steps involved in real-time facial expression

recognition using machine learning are collecting and preparing labelled facial

expression data, extracting relevant features, training models, evaluating their

 26

performance, and using them. Applications in various domains, including human-

computer interaction, affective computing, and psychological research, are possible

through the automatic identification and classification of facial expressions using this

approach.

An overview of machine learning algorithms is given in the research article

"Machine Learning Algorithm: A Review". The study of algorithms and statistical

models that computer systems employ to carry out a certain task without being

explicitly programmed is known as machine learning. Batta Mahesh [18] states that

one of the most popular machine learning methods now in use is the SVM. SVMs are

supervised learning models with associated learning algorithms that examine data

used for regression and classification analysis in machine learning. In 2017 research

published in the International Journal of Computer Applications [19], the accuracy of

using SVM for identifying six basic facial expressions, which are anger, disgust, fear,

anxiety, sadness, and surprise, on the CK+ dataset was reported to be 93.1%.

SVM is an effective machine learning algorithm used for classification and

regression problems. In a high-dimensional space, they find an ideal hyperplane that

maximally separates classes or regressors. The support vector, the data point closest

to the hyperplane, is used by the SVM to determine the decision boundary, as shown

in Figure 2.9. In the paper by [20], the author stated that the objective of SVM

classification is to identify the best hyperplane that divides two classes of data. Based

on the experiment results from this paper as well, the author stated that the SVM

algorithm test result resulted in an accuracy classification value of 87%.

 27

Figure 2.9: The schematic concept of the SVM model [20]

Based on Figure 2.10, the SVM architecture consists of input data, support

vector, evaluation kernel, and output classification. As for the data input, the SVM

input is pre-labelled training data, with each data point represented by a set of features

or attributes and having a class or category label attached. The SVM model is trained

using the input data. For the support vector, the closest data point to the hyperplane,

known as the support vector, is very important in determining the location and

direction of the hyperplane. These factors affect the overall SVM model and serve to

define decision boundaries. SVM is memory efficient because it only needs support

vectors for classification or regression. As for evaluating the kernel, by using the

kernel function, SVM can handle data that cannot be separated linearly. To improve

class separation, kernel functions translate the input data into a higher-dimensional

feature space. Linear, polynomial, and sigmoid Radial Basis Functions (RBFs) are

common kernel functions. The challenges faced and the nature of the data determine

which kernel should be used. Finally, for the classification output, the SVM model can

be used to predict the results from a brand-new data set. The input data points are

passed to the decision function, which uses a kernel function to map them into the

 28

feature space and calculate their location on the hyperplane. Based on this location,

the expected class, or regression value, is calculated.

Figure 2.10: The architecture of SVM [20]

In the paper by [21], the author states that SVM is a classifier that classifies

data using a hyper-plane. Both linear and non-linear decision boundaries can be

created by it. Using Lagrange multipliers, SVM finds the ideal hyperplane. Based on

a small sample of training vectors known as support Vectors, the best hyperplane was

selected. Basically, a support vector is a template that sits on the edge of any class. In

this paper [21], the author also stated that nonlinear SVM is typically used for FER

tasks. In nonlinear SVM, the basic decision function of linear SVM is modified by

using kernels such as:

𝑓(𝑥) = ∑ 𝛼𝑖𝑦𝑖𝑘(𝑥𝑖, 𝑥)) + 𝑏 (2.1)

𝑁𝑠

𝑖=1

 29

Where:

 𝑓(𝑥) : Decision function

 𝑁𝑠 : The number of support vectors in the model

 𝛼𝑖 : Lagrange multipliers associated with each support vector.

 𝑦𝑖 : The class label of the i-support vector

 𝑘(𝑥𝑖, 𝑥) : The kernel functions.

 𝑏 : The bias term

Based on Figure 2.11, this shows the FER process by using the SVM model to

classify the output. The dataset generated the training images for SVM learning. All

the images have been cropped to 92x92 proportions to include all facial details. 1500

images of each positive and negative expression are used in the training. Positive

expression is not preferred as much as negative expression. All the images have

undergone the previously described pre-processing procedures. Utilizing feature

vectors created from LH and HL pictures, training is carried out.

The FER technique presented can recognize facial emotions in images that are

in grayscale. Before SVM testing, the illumination of the input image is corrected. The

image is rotated over the three sizes of windows 92x92, 46x46, and 23x23 with the

appropriate window shift. Utilizing the wavelet decomposition method, the features

of each window are retrieved. Window size corresponds to the size of feature vectors.

All feature vectors are extracted, and then they are provided to a trained SVM for

classification. In grayscale images, the FER approach described here may detect face

expressions. The input image is illuminated before running SVM testing. The window

shifts for the three sizes of windows 92x92, 46x46, and 23x23 are acceptable when

the image is rotated. The wavelet decomposition technique is used to extract the

 30

features of each window. Feature vector size correlates with window size. After

extracting each feature vector, the feature vectors are sent to trained SVMs for

classification. The overall accuracy for FER using SVM classification is 94.1%.

Figure 2.11: The FER process by using SVM classifier [21]

Random Forest is one of the classification techniques in machine learning. It

can be used to classify different emotions from facial images based on features that

have been extracted. The algorithm works by building an ensemble of decision trees,

as shown in Figure 2.12, where each tree is trained on a random subset of the training

data and a random subset of the features. During the training phase, the Random Forest

algorithm grows multiple decision trees, each of which makes predictions based on

different combinations of features. After that, a vote or averaging procedure is used to

decide the final prediction, with each tree guess contributing to the result. However,

the issue of overfitting affects the decision tree. Nevertheless, by continuously adding

nodes to the tree, which increases the depth of the tree and makes it more complex,

overfitting only involves making the tree more specific within itself to reach a certain

conclusion.

 31

Figure 2.12: The basic architecture of Random Forest [22]

Based on the paper [22], the author used Conditional Random Forest to capture

low-level emotional transition patterns. To generate a tree using Pairwise Conditional

Random Forest (PCRF), predictions for each previous frame are used to create pairs

between the current and previous frames during testing. PCRF pairwise outputs are

averaged over time to provide a reliable estimate. For multi-view dynamic FER, the

PCRF collection can also be conditioned on head pose estimation. Thus, the method

seems to be a logical extension of Random Forest to learn spatial-temporal patterns,

perhaps from several angles. The author uses pairs of images that represent patterns

of expression transitions to train a Random Forest. To help reduce variability, the

forest was conditioned on the expression labels of the first frame. For databases, the

author used four databases, namely CK+, Binghamton University 4D Facial

Expression Database (BU-4DFE), Biometric Point Distribution Database (BP4D), and

Face and Gesture Recognition Network Database (FG-NET).

This paper presents a flowchart of the Multi-View Pairwise Conditional

Random Forest (MVPCRF) FER method as shown in Figure 2.13, MVPCRF

technique, which is a new approach to training trees using static and dynamic features

 32

in the Random Forest framework. In the field of face alignment and human pose

estimation, it uses Conditional Random Forest by generating a collection of specific

trees, quantizing the values of global variables of head posture and torso orientation,

and then using predictions on these global variables to draw specific trees, resulting in

more accurate predictions. To limit the uncertainty of continuous expression

transitions from the first frame of a pair to the next, as shown in Figure 2.13, the author

proposes to condition the pairwise tree on a specific expression label by conditioning

the pairwise tree on the estimated head pose to improve resilience to fluctuations in

head pose. Each previous frame in the sequence is connected to the current frame to

form a pair when analyzing the video frame. Finally, as a result of this paper, the

overall accuracy of the MVPCRF method is 72.1% on the BU-4DFE database.

Figure 2.13: Flowchart of MVPCRF FER method [22]

2.1.3.3 Facial Expression Recognition using Deep Learning Technique (CNN)

Deep learning methods are used for FER, which involves training neural

networks to recognize and categorize facial expressions automatically from image data

or videos. By making it possible to extract high-level characteristics from facial data

and to recognize complex patterns, deep learning has improved FER. It was shown in

the study by [23] that face feature extraction and classifier construction can be

combined to improve the efficiency of the two stages of expression recognition. Deep

 33

learning techniques, especially CNN architectures, a multi-stage design inspired by

biology that automatically acquire hierarchies of invariant features, have been

effectively used to extract features and perform classification.

Deep learning-based techniques that have significantly advanced the field of

FER. In the paper by [24], the author states that deep learning networks have

progressively improved our comprehension of low-dimensional features that can

distinguish high-dimensional complex face patterns from low-dimensional features.

CNN, Recurrent Neural Networks (RNN), and long-short-term Memory (LSTM) are

models for deep learning techniques to classify the output expression. All types of

deep learning models can be used for various tasks, such as image recognition. This

paper also presented an illustration of arousal and valance domain emotional labelling,

as shown in Figure 2.14. The valence-arousal space is a popular and adaptable

paradigm. The valence-arousal model classifies different sorts of emotions according

to how valuable their emotional elements are.

Figure 2.14: The illustration of arousal and valance domain emotional labeling [24]

 34

One of the best-known variations of traditional multilayer neural networks for

image processing is the CNN. CNNs are a subset of deep neural networks that are

widely used in computer vision tasks such as image and video segmentation,

classification, and recognition. CNN uses convolutional layers to learn and

automatically extract features from raw data by applying several filters to the input

data. CNN has an important role in deep learning because of its better feature

extraction ability. CNN consists of several layers, such as an input layer, a hidden

layer, and an output layer, as shown in Figure 2.15. For the hidden layer, it consists of

a convolution layer, pooling, and fully connected to teach the representation of input

features. As for the output layer, it is used to perform classification or regression tasks

using the output from the convolution layer.

Figure 2.15: The basic CNN architecture

Based on the paper [25], the author suggests a resource for automatic emotion

recognition by using deep learning techniques. It uses the CNN method to identify six

basic emotions using MATLAB. It uses the JAFFE dataset, which consists of 213

images with dimensions of 256x256 pixels and six different emotions. It uses the CNN

method because convolution is powerful in finding the features of the input image if

the kernel used is correct. Each convolution result is added to the following layer in a

 35

hidden node. Kernel design is an art form that has been enhanced to achieve some

incredible things with images. The nodes in the hidden layer, as shown in Figure 2.16,

correspond to each feature of the convoluted image. This paper shows that there are

several types of layers for CNN architecture, such as the input layer, where the input

image is in 2D and grayscale, and then it is converted to a pattern. In addition, the

convolution layer, where it takes the image using zero padding, provides output when

the kernel is ready to use. As for the pooling layer, it divides the input image into a set

of rectangles, and for each sub-region, it outputs a value. For the fully connected layer,

where it is a 1D vector and each neuron in the layer will be connected to the previous

volume. Finally, as a result, the author obtained an overall accuracy of 91.6%.

Figure 2.16: Hidden layer nodes in neural network [25]

In the paper [12], the author presented facial expression recognition using deep

learning techniques, namely CNN, using JAFFE and KDEF datasets. The CNN

architecture enabled many degrees of characteristics to be extracted from the input

image. It emphasizes the process of extracting important features using a pre-trained

convolutional neural network called the AlexNet model. The extracted learned

features are then trained using Extreme Learning Machine (ELM) and Back

 36

Propagation (BP) methods. The author stated that AlexNet is a useful model to replace

manual feature extraction, and the ELM trained with the extracted features can work

faster and offer superior performance to BP. For the architecture of the CNN model as

shown in Figure 2.17, it uses RELU as a non-linear activation function for the

convolution operation. It is used because it is suitable for CNN architecture because it

reduces the problem of gradients caused by neural networks. In addition, it is also able

to accelerate the learning process faster than other activation functions. For the hidden

CNN layer, it uses max-pooling because it is more efficient than the mean and sum

pooling methods and is faster in selecting the most relevant pixels.

Figure 2.17: The CNN architecture for FER algorithm [12]

The author focused on two main parts, namely implementing a pre-trained

AlexNet model to detect facial features and, in the second part, using the extracted

features to train the BP algorithm. However, the BP model converges very slowly.

With that, the author implemented ELM to improve facial expression recognition

performance. Based on Figure 2.18, it shows CNN+BP and CNN+ELM for the FER

model, which is a process for facial expression recognition. Based on the two models,

 37

the accuracy of BP approaches between 91% and 94% for recognizing emotions, while

the accuracy of ELM can exceed 95% in classifying facial expressions in a short time.

Figure 2.18: Illustration CNN+BP and CNN+ELM of FER model [12]

The paper by [14] shows how to classify FER from a static image without

requiring feature extraction work. It also provides pre-processing methods such as face

detection and lighting correction to improve accuracy in recognizing facial

expressions. The aim of this paper is to develop a novel architecture from scratch to

classify faces into emotional categories using CNN and improve accuracy on the

FER2013 dataset through preprocessing tasks. The author says the image

preprocessing process involves the detection and alignment of faces, poses, occlusion,

data augmentation, and others. To detect faces, it uses the Haar Cascade Classifier. To

correct the lighting in the picture, the researchers propose to use histogram

equalization. Based on Figure 2.19, the author uses CNN models to solve FER

problems such as translation, rotation, subject independence, and scale invariance. It

consists of 6 convolution layers using RELU as an activation function: 3 max-pooling,

2 drop-out with value 0.2, 1 flattened layer, and 2 dense layers, one dense with RELU

and the other with SoftMax as an activation function. The total number of parameters

is 1.2 million.

 38

Figure 2.19: Illustration of CNN architecture [14]

Based on Figure 2.20, this shows the confusion matrix table done by the author

to analyze the overall accuracy of the FER system. The author uses different batch

sizes of 512 and 10 epochs to get the best test accuracy. As a result, the author achieved

an overall accuracy on FER2013 test data of 61.7% without involving pre-processing

tasks, while the state-of-the-art test accuracy for 7 emotion categories using ensemble

CNN was 75.2%.

Figure 2.20: The confusion matrix on the FER2013 test dataset [14].

 39

2.2 Summary

In summary of Chapter 2, SER involves recognizing and categorizing

emotions using speech signals, is crucial for realistic human-computer interaction.

Additionally, as body gesture can communicate non-verbal emotional signals that

cannot be expressed through the face or speech, the study of emotion identification

through body motions is another area of interest. In addition, the goal of FER is to

identify, evaluate, and interpret the emotions and facial expressions of people. FER

technology analyses and decodes human emotions from facial expressions using

computer vision and artificial intelligence algorithms. Databases are essential to FER

analysis because they offer a variety of pictures of people's faces expressing various

emotions. The most widely utilized laboratory-controlled database to evaluate FER

systems is the FER2013 database. The next area of AI such machine learning, focuses

on developing algorithms and models that let computers learn from data and make

predictions or decisions without having to be explicitly programmed. Moreover, FER

which involves training neural networks to automatically recognize and classify

facial expressions from picture data or videos, makes use of deep learning techniques.

RELU are used by the authors as a non-linear activation function for the convolution

process, and max-pooling is used in the CNN layer since it is faster and more

effective than mean and sum pooling at identifying meaningful. Therefore, this

project aims to recognize emotions using the facial expression database FER2013.

The technique employed is deep learning, specifically CNN, which offer several

advantages, including the ability to handle complex datasets.

 40

CHAPTER 3

METHODOLOGY

In this chapter, will be discussed about the methodology for implementing

FER using CNN. It will begin by exploring the versatile simulation environment

provided by Jupyter Notebook and Google Colab and explained the essential role of

open-source libraries such as TensorFlow, KERAS, OpenCV, Matplotlib, and

NumPy in simplifying various aspects of the FER project, from data manipulation

and visualization to machine learning model development. Subsequently, will detail

the proposed FER algorithm employing CNN, covering data preparation, model

architecture design, hyperparameter tuning, training, testing, and performance

analysis. Finally, will discussed the integration of the FER system into a webcam for

real-time facial expression analysis, offering a comprehensive understanding of the

entire process.

 41

3.1 Modern Tools

In this section, we discuss the use of modern tools in this simulation to

achieve project results. It uses open-source software and libraries for each different

task. For tasks such as acquiring datasets. This project uses the Kaggle website while

for model design, simulation and optimization and model comparison, we use

modern tools in terms of open-source libraries such as TensorFlow, KERAS,

OpenCV, Matplotlib and NumPy. Open-source libraries such as TensorFlow and

KERAS are used in this project to build the model architecture and train the model.

For OpenCV library is used as identify face in image or video stream while

Matplotlib library allows visualization of model performance and confusion matrix

to evaluate the performance. For NumPy library is used for manipulating and

processing numerical data during generating confusion matrix. For the CNN model

simulation task, this project uses the Google Colab platform which is Google's free

cloud infrastructure that allows to write and execute python code.

3.1.1 Jupyter Notebook

Jupyter notebook is an open-source tool that operates in web applications, it

allows users to write python code for various tasks, as well as create visual

representations, and mathematical formulas. It is structured based on cells where

users can separate their code or text to divide the coding part. In this project, Jupyter

notebook is used to implement real time monitoring by loaded the proposed model.

Each cell is divided into code such as code to define the library, and code to perform

real time monitoring using a webcam. It makes it easy for users to organize programs.

In addition, Jupyter Notebook also caters to different types of users and their

 42

preferred languages. It excels in analyzing data, research efforts, educational

purposes and collaborative initiatives based on visualization capabilities. In addition,

Jupyter Notebook allows users to easily share their work and increases

reproducibility and facilitates collaborative exploration.

3.1.2 Google Colab

Google Colab, is cloud-based platforms that offers several advantages for

FER system. Google Colab provides free access to GPU and TPU resources,

significantly speeding up model training and enabling efficient handling of large

datasets and complex architectures. This is because the amount of model parameters

and large datasets causes the training process to be longer and requires a good GPU

to train the model. Therefore, this project uses Google Colab as a platform to process

images, build CNN models, train models and evaluate model performance.

Additionally, it integrates seamlessly with popular machine learning libraries, such

as TensorFlow and KERAS, making it easy to import and use pre-built models,

datasets, and libraries.

3.1.3 Open-Source Library

This project uses open-source libraries to provide pre-implemented functions,

classes or algorithms that users can leverage to perform various tasks. In this project,

libraries such as Matplotlib are used for numerical calculations, data manipulation

and data visualization. Machine learning libraries such as TensorFlow and OpenCV

offer functions and classes for training and deploying machine learning models. This

 43

library allows users to access powerful tools and functions that simplify complex

tasks and speed up their development process. To use this open-source library, it is

necessary to install the library using a package manager such as “pip” or “conda”.

Once a library is installed, it can be imported into Notebook using a standard import

statement such as "import library-name" which allows the user to use the library.

With that, users can use open-source libraries to program code for various tasks.

3.1.3.1 TensorFlow

TensorFlow is an open-source machine learning framework. The task of

facial expression identification can be successfully solved using the open-source

library TensorFlow which is a powerful deep learning framework. A CNN can

provide the data. It is good enough to extract important aspects from facial images.

KERAS, the high-level API provided by TensorFlow, makes it easier to create and

train CNN architectures. When training the model, the prepared data set is fed into

the CNN, and the model parameters are optimized to reduce the desired loss function.

TensorFlow offers a variety of optimization techniques, including Adam and

Stochastic Gradient Descent (SGD), enabling effective training. Therefore,

TensorFlow can create reliable and accurate facial expression recognition models.

3.1.3.2 KERAS

KERAS is an open-source learning framework used for the process of

building and training our deep learning models. Based on this project, KERAS is

used to import layers from KERAS that represent different neural network

 44

components such as input layer, convolution layer, maxpooling2D, fully connected

layer and others. This library can also separate the dataset into two, namely training

dataset and validation dataset. For model training, KERAS offers a simple loading

method that makes training easy where users can monitor training progress and use

callbacks to stop early or save the best model.

3.1.3.3 OpenCV

OpenCV is an open-source library for computer vision tasks. It offers a

variety of algorithms and features which include deep learning-based techniques,

which allow it to find and identify faces in images or video streams. In addition,

OpenCV can also be combined with deep learning or machine learning frameworks

to detect facial expressions. To train a deep learning model, it can use the extracted

features as input. OpenCV is an important library for performing real time

monitoring. To make the system's output easier to understand, it can display the

expected expression, draw a bounding box around the face, or overlay a recognized

face landmark on the screen or video frame.

3.1.3.4 Matplotlib

Matplotlib is an open-source library used to provide various functions such

as creating plot-style visualizations. In this project, the Matplotlib library is used for

plotting model accuracy and loss graphs for the model that has been trained. With

that, it makes it easier to analyze training accuracy, validation accuracy, training loss

and validation loss. Matplotlib was also used to plot the distribution of facial

 45

expression labels, providing insight into the balance of different expressions in the

data set. In addition, Matplotlib allows visualization of model performance such as

confusion matrix to evaluate the performance of different models or compare

performance on different data sets. A confusion matrix, showing the predicted and

true distribution of labels, can also be created using Matplotlib to gain insight into

the model's classification performance.

3.1.3.5 NumPy

NumPy is an important tool that manipulates and analyses numerical data. It

is an open-source library. NumPy's capacity to manage big datasets effectively is one

of its key features. Several mathematical functions that are necessary for this face

expression recognition challenge are also provided by NumPy. These include signal

processing, statistical computations, linear algebra procedures, and fundamental

arithmetic operations. This approach is used to image processing tasks including

image normalization and feature extraction. Even when working with big datasets,

this library can guarantee quick and precise computations.

3.2 Proposed FER Algorithm using CNN.

Based on this project algorithm, the FER project is divided into several tasks,

as shown in Figure 3.1. First, this project selects the FER2013 dataset as the input

image for the training model. It is taken from the Kaggle website. Next, the dataset

is loaded on Google Colab as a database preparation. Next, before designing and

training the model, the image on the database must be processed such as normalizing

 46

the image, applying data augmentation technique, separating the data set into training

and validation data sets of 70% and 30% of the train dataset, respectively. Next, the

project chooses a deep learning technique which is CNN to classify emotions into

seven emotions. This project needs to design a custom CNN model according to the

appropriate parameters. There are several parameters involved in designing a custom

CNN model, including input shape, convolution layer, pooling layer, activation

function, fully connected layer, output layer, and the other. After completing the

CNN model design, the CNN model needs to be trained on several epochs. Next, the

validation accuracy is observed to ensure that the model predicts well on images that

the model has never seen during training. If the accuracy of the model is not

satisfactory, the CNN custom model needs to tune the hyperparameters which are

learning rate, batch size and epoch. The values for tuning these hyperparameters are

0.01, 0.001, 0.0001 for the tuning learning rate, for batch sizes 8, 16, 32, 64 and 128,

and epochs 50, 75, 100, 125, and 150. After modifying the hyperparameters the

model should be retrained. until achieving satisfactory verification accuracy. If it can

achieve satisfactory training and verification accuracy, this project tests the model

that has been trained with some sample images from the FER2013 test dataset where

the model never sees that image during the training process. If the images that have

been predicted by the model obtained more incorrect predictions than correct

predictions, the model needs to be retrained by tuning hyperparameter. If the model

succeeds in predicting images with more correct than incorrect the model will be

tested for performance such as model accuracy, precision, recall and F1-score that

have been trained with the test dataset in the FER2013 dataset. Finally, this FER

system will be used in real time using a webcam.

 47

Figure 3.1: The flowchart diagram in FER project

3.2.1 Preparing and Processing Images in Database

The project starts by selecting a dataset that has the seven basic emotions

which available in Kaggle. This project has selected the FER2013 dataset for model

training and testing. Since the FER2013 dataset includes images with seven different

emotions such as angry, disgust, fear, happy, neutral, sad and surprise. It is important

 48

to have access to large datasets of facial images displaying various emotions and

expressions with different persons. As a result, the FER2013 dataset will be used

because it has 35887 images. To ensure that images are in a format according to deep

learning architecture, the dataset must first be preprocessed. During image

preprocessing, the train dataset is split into training and validation datasets where

70% for training and 30% for validation and normalized the pixel values because

neural networks tend to perform better when the input data is scaled to a smaller

range. It is essential to helps in stabilizing and speeding up the training process.

Normalization prevents large input values from dominating the learning process and

makes it easier for the model to learn meaningful patterns. Besides that, this project

applied data augmentation techniques to reduce the overfitting problem and obtain

better model accuracy by generating diverse variations of the existing training

images. These techniques involve rotations, shear, width shift, height shifts, and

horizontal flip as shown in Figure 3.2. Therefore, enriching the dataset and allowing

the model to learn more generalized and robust features, resulting in improved

performance on unseen data.

Figure 3.2: The augmented images

 49

3.2.2 Design the CNN Custom Model

Next, to design a custom CNN model, there are several parameters and layers

to consider such as input shape, convolution layer, activation function, pooling layer,

fully connected layer and output layer. As shown in Figure 3.3 the input shape used

is 48x48x3 is the same as the image input shape from the FER2013 dataset and the

architecture of this model consists of 3 CNN modules, 4 fully connected layers, and

the output layer with the activation function used is SoftMax. For the first module, it

consists of 2 convolutional layers with a feature map size of 46x46x256, where the

convolutional layer is used to extract relevant features from the input image. After

that, the maxpooling2D layer is used to reduce the spatial dimension. In the second

CNN module, there are 2 convolutional layers with a smaller feature map size of

23x23x128. Again, the maxpooling2D layer is used to reduce the spatial dimension.

As the network grows, the dimension of the feature map decreases due to a

combination of convolution and pooling operations. Moving to the third CNN

module, it consists of 2 convolutional layers with a smaller 11x11x64 feature map

size. Similarly, the maxpooling2D layer is used to reduce the spatial dimension. Each

CNN module uses the RELU activation function. Regarding the fully connected

layer, it consists of 4 layers, each with a different number of neurons, namely 512,

256, 128, and 64. All these layers use the RELU activation function. Finally, the

output layer with activation function SoftMax consists of 7 neurons for the

classification of 7 emotions.

 50

Figure 3.3: Designed the CNN custom model.

3.2.2.1 Input Shape

One of the characteristics in the CNN model is the shape of input images

where it is important to determine the dimensions of the input image or data that will

be processed by the CNN model. This project uses a 48x48x3 image format where

48x48 pixels while 3 is the number of channels in the images according to the size

from the FER2013 dataset. Therefore, the CNN model will expect an input image of

48 x 48 pixels. The input shape parameters are important in establishing the layer

size and structural compatibility of the CNN model. A CNN model will be made to

handle and process images of that size if the input format is set to 48x48. This ensures

that the model is properly prepared to examine the facial expressions recorded for

the datasets.

 51

3.2.2.2 Convolutional 2D Layer

The fundamental component of the CNN architecture that extracts various

levels of features from the input image is the convolutional 2D layer. The input data

is convoluted by a convolution layer to apply a collection of learnable filters, often

known as kernels or feature detectors. It is based on this project and extracts local

features or patterns from the input data using 3 to 3 kernel filters. Figure 3.4 illustrates

how each filter convolutions over the input data in a sliding window manner during

the convolution procedure.

Figure 3.4: The convolutional process

The filter adds the result after multiplying its weight element by element by

the appropriate input value at each place of its acceptance field. A feature map is

produced as a result of this process, and it shows how a particular filter responds to

various patterns and features contained in the input. The main goal of the convolution

layer is to identify important features at various spatial locations of the input and

capture local spatial dependencies. Convolutional layers can automatically learn and

extract different low-level and high-level features, such as edges, vertices, textures

and more complex patterns specific to the job at hand, by learning filter weights

through training. Edges, colors and lines are detected at a low level by the first-round

 52

operation, while the high-level features are extracted by the second-round operation.

The winding operation is represented as follows:

 𝐴[𝑖, 𝑗] = ∑ ∑ 𝐹(𝑚, 𝑛) × 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)

𝑛−1

𝑛−0

𝑚−1

𝑚=0

 (3.1)

Where:

 𝐴[𝑖, 𝑗] : The output feature map

 𝑖, 𝑗 : 𝑖 and 𝑗 denote by the spatial position on the feature map.

 𝑚 : 𝑚 is the number of rows in the filter.

 𝑛 : 𝑛 is the number of columns in the filter.

The convolution layer produces several feature maps, each of which shows the

activation of a different filter. A RELU is then applied to these feature maps to create

non-linearities and increase the capacity of the network to model complex

relationships.

3.2.2.3 Pooling Layer

Following the convolution layer, the parameter pooling layer is a critical

component. The main goal of this operation is to preserve the most critical

information while reducing the spatial extent of the feature map obtained from the

convolution layer, pooling, which works as a form of downsampling, is used to

reduce the computational complexity of the network, control the attachment and

improve the obtained features. Pooling operations are usually applied independently

to each feature map, which is achieved by dividing it into non-overlapping regions

 53

referred to as pooling windows. maxpooling2D was used to reduce the spatial

dimension and downsampling the feature maps in line with this effort. maxpooling2D

is generally more efficient than the mean and sum pooling methods because it allows

selection of the most relevant pixels and operates at the shortest speed. Following

collection, the feature map output dimensions are as follows:

 𝑊𝑐 = ((
(𝑊𝑖𝑛−𝐹𝑤+2𝑃)

𝑆
) + 1) (3.2)

𝐻𝑐 = ((
(𝐻𝑖𝑛−𝐹ℎ+2𝑃)

𝑆
) + 1) (3.3)

 𝐷𝑐 = 𝐾 (3.4)

Where:

𝑊𝑐 : The width of the output feature map after the pooling operation

𝑊𝑖𝑛 : The width of the input feature map to the pooling layer

𝐹𝑤 : The width of the pooling window

𝑃 : The amount of padding

𝑆 : The stride of the pooling operation

𝐻𝑐 : The height of the output feature map after the pooling operation

𝐻𝑖𝑛 : The height of the input feature map to the pooling layer

𝐹ℎ : The height of the pooling window

𝐷𝑐 : The depth of the output feature map after the pooling operation

𝐾 : The number of filters

 54

3.2.2.4 Activation Function

The output of every neuron or node in a CNN is subjected to an activation

function. The activation function imparts non-linearity to the model, facilitating its

ability to discern and acquire knowledge of complex correlations that exist between

inputs and outputs. Selected activation functions have a substantial impact on the

capacity of the network to approximate and represent complex functions. The input

and hidden layers of this framework employ RELU, while the SoftMax activation

function transforms the previous layer's output into probabilities denoting the

proportion of times an input is assigned to each class. The nonlinear RELU activation

function that follows the convolution procedure is illustrated in Figure 3.5.

Figure 3.5: The RELU activation function

It is the optimal function for a CNN architecture due to the fact that it aids in mitigating

the gradient problem introduced by deep neural networks. In the same way that it can

expedite the learning process in comparison to alternative activation methods. Its

definition is as follows:

 𝑓(𝑥) = {
max (0, 𝑥), 𝑥 ≥ 0

0, 𝑥 < 0
 (3.5)

 55

Where:

 𝑓(𝑥) : The RELU function

 max (0, 𝑥) : The maximum of 0 and 𝑥

 𝑥 : The output of a neuron

3.2.2.5 Fully Connected Layer

Fully connected layers, also known as dense layers in CNN architecture, are

used in the project to be responsible for creating the final predictions based on

features learned from previous layers. It creates a fully connected network structure

by connecting every neuron in the previous layer to every neuron in the current layer.

Learning the non-linear combination of information obtained by convolution and

fusion layers is the main purpose of fully connected layers. A fully connected layer,

which functions as a conventional neural network layer with a learnable set of

weights and biases, takes these flattened features and feeds them into it. To create the

final output, the fully connected layer runs a sequence of matrix multiplications and

uses activation functions. Based on this project, the fully connected layer, it consists

of 4 layers, each with a different number of neurons, namely 512, 256, 128, and 64.

All of these layers use the RELU activation function while the output layer consists

of seven classes, and it uses SoftMax as the activation function and is placed after

the layer is fully connected. This is to enable the model to generate predictions, this

activation function transforms the output of a fully connected layer into a probability

distribution over the classes.

 56

3.2.3 Training and Observe the Validation Accuracy

The CNN model needs to be trained in several epochs and this project trains

the model with 50 epochs as an initial as shown in Figure 3.6 and then observes for

the accuracy of validation to determine whether it is satisfactory or not. If the

accuracy of the model is not satisfactory, the CNN model needs to tune

hyperparameters such as learning rate, batch size and number of epochs. After

modifying the hyperparameters, the model needs to be retrained until it achieves

satisfactory validation accuracy. If the validation accuracy is satisfactory, the model

is evaluated by analyzing model performance such as analyzing overall accuracy,

precision, recall and F1-score. Training the model to recognize and extract important

facial features that show different expressions is an important step in the facial

expression recognition process. CNN model was used to analyze images and identify

relevant features. The CNN models need to be trained after the dataset has been

preprocessed. The preprocessed image is fed into the model, and its parameters are

modified. After learning the deep features, the FER system will classify the provided

faces into one basic emotion. It is necessary to create training and test sets to train,

evaluate and validate our model on test data. The training procedure is important

because it teaches the model what to look for and predict. The FER system cannot

produce an accurate model without it. By examining discrete regions of the input

image at a time, the network trains to recognize patterns in the input data, such as

edges and shapes. One frequent use of CNNs is FER. In this task, a CNN is trained

using a train dataset, each of which has an associated facial emotion identified in

each image. The network gained the ability to recognize features associated with

various facial expressions, including the shape of the mouth and eyebrows, eye

 57

placement, and forehead wrinkles. Applying learned features to new input images

allows the network to predict facial expressions after they have been trained.

Figure 3.6 The training processes captured from 30 to 50 epochs.

3.2.3.1 Tuning Hyperparameter Batch Size

Batch size is a hyperparameter that plays an important role in the model

training process. It is also important to get better validation accuracy. Batch size is

the number of data samples used in each iteration of the training algorithm. It

specifies the number of examples from the training data set that the model processes

in one forward and backward pass before updating the model parameters. The smaller

the batch size value, the model processes fewer instances in each iteration. This

indicates that a significant number of iterations are required to finish an epoch, or a

complete run of the training dataset. The smaller batch makes each iteration quicker,

but since more iterations are required to view the complete dataset, the overall

 58

training time can increase. In addition, a large batch size value means more instances

are processed by the model in each iteration. As a result, each epoch may be

completed with fewer iterations, which may speed up the training process overall.

Based on this project, several batch sizes are used to determine the validation

accuracy that is optimal and suitable for the CNN model that was constructed.

Among the batch sizes that have been tuned are 8, 16, 32, 64, and 128. Tuning the

batch size is important because it helps strike the right balance between training

speed and model generalization.

3.2.3.2 Tuning Hyperparameter Learning Rate

The learning rate controls the size of the step used by the model to update its

parameters when training in a CNN architecture. It regulates the rate at which the

model learns from the training data. When training a CNN model, it is crucial to keep

the learning rate in mind as it influences the convergence speed and the learned model

quality. If the learning rate is set too high, the model can end up wildly off course

and never converge. If the learning rate is excessively slow, the model may stall out

before reaching convergence or settle for an imperfect solution. It uses a learning rate

of 0.001 to keep the training process stable, according to this project. It reduces the

possibility that the loss function may vary substantially due to major weight changes.

Thus, to ensure the successful training and optimization of the CNN model, this

project requires the adjustment of the learning rate. Several learning rate values have

been fine-tuned, including 0.01, 0.001, and 0.0001.

 59

3.2.3.3 Tuning Hyperparameter Epochs

The number of epochs is a hyperparameter that controls how often the full

training data set is sent back and forth across the network during training. Input is

fed into the network in the forward pass to provide predictions, and the model then

adjusts its weights in the backward pass depending on the calculated losses and the

chosen optimization strategy. The number of epochs chosen influences the

effectiveness of the model learning from the training data. A model may become less

appropriate if the number of epochs is set too low, fail to recognize complex patterns

and perform poorly on both the training and test data sets. Conversely, increasing the

number of epochs too much may result in overfitting, when the model becomes over-

adapted to the training set and struggles to perform well on new, untried data.

Therefore, this project needs to utilize different epoch values to ensure that it can

achieve both good validation accuracy and optimize performance for the CNN

model. Various epoch values have been tuned, ranging from 25 to 125, including 25,

50, 75, 100, and 125.

3.2.4 Testing the Model

After successfully achieving validation with higher accuracy of trained CNN

model, it should be tested using some sample of images from the FER2013 test

dataset, as illustrated in Figure 3.7. This test aims to evaluate the CNN model's ability

to correctly predict human expressions. The figure displays image samples that the

model has predicted incorrectly and those it has predicted correctly. If the model

makes more incorrect predictions than correct ones, it is an indication that the CNN

model needs to be retrained by tuning its hyperparameters. Conversely, if the CNN

 60

model predicts more images correctly than incorrectly, it signifies success, and

further analysis of the model's performance becomes necessary.

Figure 3.7: The images of predicted emotion from the test dataset

3.2.5 Analyzing the Model Performance

After training a deep learning model, it is necessary to test the model and then

evaluate the performance of the model in terms of precision, recall, F1-score and

model accuracy. In FER, the confusion matrix is the best tool used to evaluate the

model's performance because it provides a visual representation of the model's

prediction compared to the actual ground truth label. A confusion matrix is a table that

compares the deep learning model's predicted expression with the actual expression

for the test image array. The table has a row for each actual expression and a column

for each predicted expression. The component of the confusion matrix indicates the

 61

number of correctly or incorrectly classified model images. By understanding the

confusion matrix, it is possible to evaluate and fine-tune the trained model, address its

strengths and weaknesses, and make informed decisions to improve its performance

for specific classification problems. This tool can analyze such things as model

accuracy, precision, recall, and F1-score, where the formulas are:

For accuracy:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐼𝑚𝑎𝑔𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑖𝑚𝑎𝑔𝑒𝑠
 (3.6)

For precision:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3.7)

For recall:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3.8)

For F1-score:

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2×(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (3.9)

Where:

True Positive (TP) : The number of samples that were

correctly predicted as positive.

True Negative (TN) : The number of samples that were

correctly predicted as negative.

False Positive (FP) : The number of samples that were

incorrectly predicted as positive.

False Negative (FN) : The number of samples that were

incorrectly predicted as negative.

 62

In this project, to evaluate the model performance, this project writes the

program code to display the confusion matrix and a classification report where it

shows parameters to evaluate the performance of the model as shown in Figure 3.8.

The table has a row for each actual expression and a column for each predicted

expression. Therefore, this project will use a confusion matrix that can be used to

analyze the performance of the model in terms of model accuracy, precision, recall

and F1-score, which provides more detailed information about the performance of

the model for each expression.

Figure 3.8: The confusion matrix and classification report.

3.2.6 Integrate the FER system in Real Time

After analyzing the performance of the model, the project continued by

integrating the FER system into a webcam. This integration enables real-time facial

expression monitoring and recognition from live video streams captured by web

cameras. The integration process usually involves several steps. First, the proposed

CNN model was loaded, along with any necessary dependencies such as image

processing libraries and webcam interfaces. Next, the webcam feed is accessed, and

 63

frames are captured continuously. Each frame is then pre-processed to prepare it to

be fed into the FER model. This preprocessing may include resizing, normalization

and any other transformations necessary to ensure compatibility with the model's

input requirements. To detect faces in each frame, this project uses the "Haar Cascade

Classifier" code. This aims to reduce the noise on each frame and make it easier for

the uploaded model to predict the detected facial expressions. Once the frames are

preprocessed, they are sent through the FER model for prediction. The model

analyzes facial features and predicts the corresponding emotion or expression.

3.3 Summary

In summary of Chapter 3, discussed about the modern tools used in this

project, and proposed FER algorithm using CNN. For simulation environment,

Google Colab is a cloud based Jupyter Notebook platform that enables users to run

simulations and check results in a simple and collaborative environment. It supports

programming languages like Python and provides resources like CPUs for speeding

up calculations. Besides, open-source libraries like NumPy, and Matplotlib are used

for numerical calculations, data manipulation, and visualization. Machine learning

libraries like TensorFlow and OpenCV offer functions and classes for training and

using models, saving time and effort compared to building complex services from

scratch. Moreover, Matplotlib is an open-source library used for facial expression

recognition, providing functions and plot styles. NumPy is a powerful Python library

for facial expression recognition, offering efficient handling of large datasets and

manipulation of multidimensional data. For the part of proposed FER algorithm using

CNN, the FER project focuses on a deep learning technique called CNN to classify

 64

emotions into seven emotions. The project uses the FER2013 dataset, consisting of

35887 facial image images, to train and test deep learning models. The dataset is

preprocessed by dividing it into training and test sets, normalizing images and apply

data augmentation technique. The CNN model is chosen due to its good classification

accuracy in deep learning techniques. Parameters such as input shape, convolutional

layer, pooling layer, activation function, fully connected layer and output layer are

set to ensure the model's performance and generalization capacity. The number of

epochs in a CNN architecture controls the frequency of training dataset sent back and

forth. The trained CNN model is tested with image samples from dataset test

FER2013 to evaluate its accuracy in predicting human expressions. If the model

predicts less than satisfactory accuracy, it is retrained by tuning hyperparameters.

The project then integrates the FER system into a webcam to analyze and recognize

facial expressions from live video streams. The integration process involves loading

a trained CNN model, preprocessing frames, and using the "Haar Cascade Classifier"

code to detect faces. The FER model analyzes facial features and predicts

corresponding emotions, which can be displayed in real-time through overlays,

bounding boxes, or other visual representations.

CHAPTER 4

RESULTS AND DISCUSSION

In this chapter, discussed about the analysis of data augmentation for custom

CNN model which is important for addressing the issue of overfitting problem.

Besides that, this chapter will explore the process of hyperparameter tuning such as

learning rate, batch size and epochs to achieve the highest possible model accuracy.

Moreover, this chapter will include presentation of our proposed custom CNN model

by using appropriate hyperparameter and confusion matrix for analyzing the model

performance. Besides that, in this chapter will discuss the model accuracy and loss

for three pretrained model which are VGG16, AlexNet and MobileNet to compare

with proposed custom CNN model by using the same hyperparameter value. The

comparison involves model accuracy, precision, recall and F1-score.

 66

4.1 Data Augmentation Analysis for Custom CNN Model

In deep learning, data augmentation is an important technique used to increase

the variety of available training data. The results of this experiment are illustrated in

Figure 4.1, with epochs represented along the x-axis and model accuracy and loss

along the y-axis. Without using data augmentation, accuracy generally shows an

upward trend during the training phase but may reach a plateau or even begin to

decline during the validation phase. At 10 epochs, the model begins to overfit, as

evidenced by a significant increase in training accuracy peaking at 90.13 percent after

14 epochs. On the other hand, the validation accuracy showed a small increase to

54.89% after 5 epochs, but then leveled off between 18 and 50 epochs. Overfitting is

indicated by the fact that the model's performance on new unseen data does not

improve significantly past a certain point, as this difference shows. The continued

reduction in training loss indicates that the model has been more accurately matched

to the training data. Typically, this decrease occurs between 0 and 20 epochs.

However, the validation loss behaves differently. At seven epochs, it decreases to a

minimum of 1.2090, indicating that the model has reached its maximum performance

on the validation set. Once the validation loss exceeds this minimum value, it starts to

increase, indicating that the effectiveness of the model decreases with the progression

of training on unobserved data. Increasing validation loss following the minimum is a

clear indication of overfitting. By implementing data augmentation techniques such as

shear, rotation, width shift, height shift and horizontal flip, which helps in improving

their robustness, generalization, and ability to learn features that are invariant to such

transformations. As a result of the data augmentation process, the gap between training

accuracy and validation accuracy is reduced compared to models that do not use

augmentation. This indicates that by using augmentation data, the model has obtained

 67

a more general representation, thus reducing the tendency towards overfitting. A

steady increase in training accuracy is usually observed throughout the epochs.

Validation accuracy exhibits a comparable pattern to training accuracy. The initial

growth is more gradual, but the trend is toward greater stability at higher levels when

compared to the non-augmented. Over epochs, the training loss exhibits a consistent

downward trend as the model gains proficiency in fitting the training data.

Nevertheless, the rate of decline may be marginally delayed in comparison to training

that does not involve augmentation. Additionally, it may stabilize at a greater loss

value as a result of the increased diversity of the augmented data. Similarly to the

validation accuracy, the validation loss may initially resemble training without

augmentation. However, stability may be achieved at a reduced loss value in

comparison to non-augmented. The model may exhibit indications of enhanced

generalization as it is exposed to a variety of instances throughout the training process.

Figure 4.1: The model accuracy and loss without and with data augmentation

 68

4.2 Hyperparameter Tuning for Custom CNN Model

When employing a custom CNN model for face emotion recognition task,

hyperparameter tuning is an essential stage in any machine learning project. Finding

the ideal number of values to maximize the model's performance involves adjusting

the model's hyperparameters.

4.2.1 Tuning Learning Rate and Batch size

Hyperparameter tuning is a critical step in optimizing the performance of a

neural network model. The learning rate controls the size of the step used by the model

to update its parameters when training in a CNN architecture. It regulates the rate at

which the model learns from the training data while batch size determines how many

data samples are processed together during each training iteration. The objective of

tuning process is to obtain the combination of that hyperparameters that maximizes

the accuracy of the model for FER2013 dataset.

 69

Table 4.1: Analyzing the accuracy of custom CNN model by tuning the

hyperparameter learning rate and batch size.

Batch Size Learning Rate Model Accuracy (%)

8

0.01 63.00

0.001 63.33

0.0001 63.00

16

0.01 64.15

0.001 65.27

0.0001 64.84

32

0.01 63.03

0.001 64.91

0.0001 64.61

64

0.01 62.64

0.001 63.39

0.0001 63.93

128

0.01 61.95

0.001 40.00

0.0001 25.83

Based on Table 4.1 shows the results of tuning two important hyperparameters

which are learning rate, and batch size, for a custom CNN model. The column

indicates the batch size used for training the CNN model. For the column represents

the learning rate used for training the model. For the column model accuracy (%)

shows the accuracy achieved by the custom CNN model on the test dataset for

different combinations of batch size and learning rate. Based on the observations, the

 70

table shows the performance of a custom CNN model by varying two hyperparameters

which are batch size and learning rate which are 8, 16, 32, 64, and 128 batch size while

learning rate 0.01, 0.001, and 0.0001. For batch size 8, the model accuracy varies with

different learning rates. The accuracy achieved is 63.33% when the learning rate is

0.001, while a learning rate of 0.01 and 0.0001 both result in slightly lower accuracies

of 63.00%. At batch size 16, the learning rate of 0.001 achieved the highest model

accuracy in this project which is 65.27%. This is the highest accuracy observed across

all the tested configurations, suggesting that a moderate learning rate coupled with this

batch size provides an effective balance for learning in this custom CNN model.

Increasing the learning rate to 0.01 or decreasing it to 0.0001 both result in lower

accuracies which are 64.15% and 64.84% respectively. This suggests that 0.001 is near

the optimal learning rate for this batch size, providing enough step size to converge to

a good solution without overshooting, while still being large enough to avoid getting

trapped in local minima. For batch size 32, the model accuracy remains relatively

stable across the different learning rates, with the highest accuracy of 64.91% at a

learning rate of 0.001. This further supports the notion that a learning rate of 0.001 is

effective for this custom CNN model. The smaller and larger learning rates produce

slightly lower accuracies which are 63.03% and 64.61% respectively, indicating that

there is less sensitivity to learning rate changes at this batch size compared to batch

size 16. For batch size 64, there is a slight decrease in accuracy across all learning

rates compared to batch size 32. The model performs best with the learning rate of

0.0001 and achieving an accuracy of 63.93%. The accuracy at a learning rate of 0.01

drops to 62.64% which the lowest among the learning rates for this batch size,

suggesting that a higher learning rate may be less effective as the batch size increases.

For batch size 128, a significant drop in accuracy is observed when the batch size

 71

increases to 128. At a learning rate of 0.01, the accuracy is 61.95%, which is lower

compared to smaller batch sizes. This could be due to the model not having enough

updates per epoch to adequately learn from the data. At a learning rate of 0.001, the

accuracy plummets to 40.00% such a severe drop might indicate that the step size is

too small when combined with the large batch size preventing the model from

effectively adjusting the weights. The accuracy further drops to 25.83% with a

learning rate of 0.0001 reinforcing the idea that this learning rate is too conservative

for the model to make meaningful progress especially when paired with a large batch

size. Therefore, batch size 16 combined with a learning rate of 0.001 yields the highest

accuracy at 65.27%, indicating a mutually enhancing relationship between batch size

and learning rate. Smaller and larger learning rates show reduced accuracy, and while

batch size 32 performs well, batch size 64 exhibits a slight dip in accuracy but benefits

from a smaller learning rate which is 0.0001. Conversely, batch size 128 leads to a

significant accuracy drop, particularly with learning rates 0.001 and 0.0001 which are

40,00% and 25.83% respectively. These observations emphasize the sensitivity of

model performance to learning rate, especially with larger batch sizes, and underscore

the importance of finding a balanced combination.

4.2.2 Tuning Epochs

 Tuning hyperparameter epochs is crucial to identify the highest validation

accuracy after obtained the hyperparameter learning rate and batch size that fits our

CNN model. An epoch is one complete cycle through the entire training data set.

During each epoch, the model will go through all the training data once.

 72

Table 4.2: Analyzing the custom CNN model by tuning the hyperparameter epochs.

Batch Size Learning Rate Epochs Model Accuracy (%)

16

0.001

25 61.05

50 65.27

75 64.02

100 64.52

125 63.96

In this experiment, Table 4.2 shows the results of analyzing the CNN model

by tuning the hyperparameter epoch where the learning rate and batch size

hyperparameter are set to 0.001 and 16 respectively. Based on the results in Table 4.2,

when the number of epochs is set to 25, regardless of cluster size and learning rate,

the model achieves an accuracy of around 61.05%. Increasing the number of epochs

to 50 leads to an increase in accuracy which obtains the highest accuracy of 65.27%.

Continuing to increase the number of epochs to 75 or 100 also leads to better accuracy

compared to 25 epochs but with less fluctuation. At 75 epochs, the accuracy is around

64.02%, and at 100 epochs it is around 64.52%. Finally, at 125 epochs, the model's

accuracy dropped slightly to 63.96%. From these results, it appears that increasing the

number of epochs beyond 50 generally improves model accuracy up to a point around

100 epochs, after which there may be diminishing returns or even a slight decrease in

accuracy. The optimal number of epochs may depend on other factors such as data set,

model architecture and others. Therefore, this project achieved the highest proposed

model accuracy at 65.27% when the hyperparameter batch size, learning rate and

epochs were tuned.

 73

4.3 Analyzing the Performance of the Proposed Custom CNN Model

Analyzing the performance of the proposed CNN model is crucial because it

helps assess how well the custom CNN model is performing in recognizing facial

expressions. By measuring its accuracy, it can determine the model's ability to

correctly identify and classify different facial expressions.

4.3.1 Model Accuracy and Loss

In this experiment, this project analyzes the model accuracy and loss during

the training process at several epochs, which are iterations over the entire dataset to

show the performance of the model during the training process. The result of this

experiment is given in Figure 4.2 where the x-axis represents the number of epochs,

while the y-axis represents the accuracy and loss. Generally, accuracy is the fraction

of model predictions that are obtained correctly. In this graph, the training accuracy is

consistently higher than the validation accuracy, which is typical because the model

learns directly from the training data. Validation accuracy is important because it

provides an indication of how well the model generalizes to unseen data. The gap

between train and validation accuracy suggests several attachments, where the model

learns the training data very well but does not perform as well on the validation data.

For the model loss graph, which plots the loss on the training and validation data sets

over the same epochs. Loss is a numerical value calculated by the loss function, which

measures how well the model predictions match the actual labels. The goal of the

exercise is to minimize this value. In this graph, both the training and validation losses

decrease over time, which is good because it shows that the model is learning.

Therefore, this result is as expected where the measured data is consistent with the

theoretical results shown in Figure 4.3 [26].

 74

Figure 4.2: The plot graph illustrating the model accuracy and loss for the

proposed model.

Figure 4.3 The plot graph illustrating the model accuracy and loss for CNN model

in paper [26]

4.3.2 Confusion Matrix

In this experiment, this project also analyzes the confusion matrix shown in

Figure 4.4 which is important to evaluate the performance of the classification model

that appears to classify emotions into categories such as Angry, Disgust, Fear, Happy,

Neutral, Sad and Surprise in terms of precision, recall, F1-score and model accuracy.

This experiment aims to get more true positive values shown on the diagonal of the

confusion matrix. This is because true positives represent correct predictions for each

class. To analyze true positives, this project found that the proposed model correctly

predicted Angry, which is 533 images, Disgust which is 51 images, Fear which is 433

 75

images, Happy which is 1541 images, Neutral which is 859 images, Sad which is 622

images, and Surprise which is 646 images. The highest number of correct predictions

was for Happy which was 1541, indicating that the model was most effective at

identifying this emotion. Disgust has the lowest number of correct predictions of only

51 images, which may be due to under-representation in the training data or

similarities to other emotions that confound the model. For misclassification analysis,

this number shows how often an emotion is misclassified as another category. For

example, Angry is most often confused with Surprise, which is 112 images, while Sad

is often mistaken for Neutral with 159 images. Misclassification can indicate that

certain emotions are being confused with each other, which may be due to similarities

in the features representing these emotions. To analyze False Negatives, each row

represents an instance of the true class. For example, on the Angry row, there were

533 correct predictions, there were misclassifications across other emotions, with

Surprise being the most common error. The sum of the off-diagonal elements in a row

indicates the total number of false negatives for that emotion. To analyze False

Positives, each column represents an occurrence of the predicted class. For example,

the Angry column shows that the model predicts Angry not only for true Angry events

but also incorrectly for other emotions. The sum of the off-diagonal elements in the

column indicates the total number of false positives for that emotion. Accuracy for

each class can be calculated as the number of true positives divided by the total number

of true positives and false positives of the entire column. Therefore, this proposed

model performs well for the Happy and Neutral classes, with a high number of true

positives. This model has difficulty with Disgust, possibly due to the fewer training

samples in the FER2013 dataset. There were significant confounds between Angry

and Surprise, as well as Sad and Neutral, suggesting that these emotions may have

 76

similar characteristics in the context of the data or that the model needs further

refinement to better distinguish them. With that, to prove this experiment is correct, it

is compared with the paper [14] where the measured data is consistent with the

theoretical results shown in Figure 4.5. Therefore, this result is as expected where

there are more true positive values in the confusion matrix.

Figure 4.4: The Confusion Matrix for Proposed CNN Model

Figure 4.5: The Confusion Matrix for CNN architecture in paper [14]

 77

In order to achieve one of the outcomes of this project, an experiment to

analyze the proposed model's performance was conducted by analyzing the parameters

of precision, recall, F1-score and model accuracy. It aims to determine whether the

proposed model can classify the seven emotions well or poorly.

Table 4.3: Performance Analysis for Proposed CNN Model

Parameter Emotion Class

Angry Disgust Fear Happy Neutral Sad Surprise

Precision 0.60 0.63 0.51 0.87 0.54 0.54 0.75

Recall 0.56 0.46 0.42 0.87 0.70 0.50 0.78

F1-score 0.58 0.53 0.46 0.87 0.61 0.52 0.76

Overall

Accuracy

(%)

65.27

Based on Table 4.3 shows the performance metrics for the proposed CNN

model across various emotion classes namely Angry, Disgust, Fear, Happy, Neutral,

Sad and Surprise. As a result of this experiment, the overall accuracy of the proposed

CNN model, is 65.27%. It is as expected where the accuracy does not reach better

because the FER2013 dataset has image imbalance in each class. Also, for the

precision parameter, precision is the ratio of correctly predicted positive observations

to the number of predicted positives. High precision is associated with a low false

positive rate. The model performed best in the Happy class with an accuracy of 0.87,

indicating that when it predicted Happy, it was correct 87% of the images. The Fear

class had the lowest accuracy at 0.51, indicating a relatively high number of false

 78

positives for this class. Also, for the recall parameter, is the ratio of correctly predicted

positive observations to all observations in the actual class. A high recall is associated

with a low false negative rate. Thus, Happy has the highest recall at 0.87, meaning that

the model is good at identifying the Happy emotion from all actual Happy cases. The

Disgust class had the lowest recall at 0.46, indicating that the model missed more than

half of the true Disgust cases. Also, for the F1-score parameter, the F1-score is the

harmonic mean of Precision and Recall. The F1-score reaches its best value at 1 for

perfect precision and recall and worst at 0. The Happy class has the highest F1-score

at 0.87, which suggests a good balance between precision and recall for this class. The

Fear class had the lowest F1-score at 0.46, indicating that both precision and recall

were low for this class. Based on the observations of this experiment, this model is

very strong in detecting the Happy emotion, with high scores across accuracy, recall

and F1-scores. The Fear and Disgust classes performed the weakest, with the lowest

precision and recall, respectively. This is due to various factors, such as fewer training

samples for this class, features that are not clear enough for the model to learn

effectively, or similarities between these emotions and other emotions that confuse the

model. Balanced F1-scores for Angry, Neutral and Surprise suggest that the model is

well tuned for this class even with moderate precision and recall values.

4.4 Pretrained Models

Several pretrained models have been trained using the FER2013 dataset and

using the same hyperparameter values of 16 batch size, 0.001 learning rate and 50

epochs in the proposed model. This is because this experiment compares our proposed

model and pretrained models such as VGG16, AlexNet and MobileNet models in

 79

terms of graph model accuracy and loss and some parameters to evaluate model

performance namely precision, recall, F1-score and model accuracy.

4.4.1 Model Accuracy and Loss for VGG16 Model

In this experiment, the VGG16 model was trained and its accuracy and loss

after the training process were plotted, as shown in Figure 4.6, so that training and

validation accuracy and loss could be observed. The accuracy graph of the model

illustrates its performance across epochs, specifically in terms of accuracy, on both the

training and validation sets. An increase in both training and validation accuracy is

indicative of learning. Nevertheless, the validation accuracy exhibits notable

fluctuations and lacks smoothness, culminating in a precipitous decline at specific

intervals, particularly between epochs 20 and 40. It is expected that the training

accuracy would consistently surpass the validation accuracy, given that the model

acquires knowledge exclusively from the training data. Nevertheless, variations and

declines in validation accuracy serve as indicators that the model is overfitting and

fails to adequately generalize to novel data. The right loss plot on the model loss graph

illustrates the progressive reduction of the model's prediction error. A decline in the

training loss signifies that the model's performance on the training set is improving.

However, the rate of validation loss exhibits significant variability, peaking at specific

epochs, specifically between 15 and 40 epochs. The observed surges in validation loss

are concerning. This occurs because the learning rate of 0.001 is excessively high for

the VGG16 model, resulting in improper weight updates. Additionally, a batch size of

16 may result in significant fluctuations in both precision and loss, whereas a batch

size of 16 may oversimplify critical signals. This could be the result of an improper

 80

learning rate that causes the model weights to be abruptly updated, validation data

processing errors, and batch size issues.

Figure 4.6: The plot graph illustrating the model accuracy and loss for the VGG16

model.

4.4.2 Model Accuracy and Loss for AlexNet Model

The experiment involved training the AlexNet model and graphing its

accuracy and loss after the training process, as shown in Figure 4.7. This allowed for

the observation of model accuracy and loss during the training. When examining the

model accuracy graph, it is observed that both the training and validation accuracy

exhibit a nearly horizontal trend, with only a marginal degree of variation centered

around a particular value, which corresponds to an approximate accuracy of 25.1%.

The model's ineffective learning is indicated by the close overlap between the training

and validation accuracy lines, one would anticipate that the training accuracy would

be greater and continue to rise as time progresses. Assuming a multi-class

classification problem with over four classes, the model's performance is marginally

superior to random, as proof by the low accuracy values. This is because the learning

rate for the AlexNet model, which is 0.001, is excessively high and causes the weights

to update incorrectly. The loss plot for the model loss analysis demonstrates an initial

 81

significant decline during the first epoch for both the training and validation losses.

Subsequently, the loss exhibits slight variations and lacks a distinct downward. The

training and validation losses exhibit a high degree of similarity, maintaining a nearly

constant value starting from approximately epoch 5. It appears that the model is not

acquiring knowledge efficiently, as evidenced by the absence of any progressive

improvement in accuracy and reduction in loss. In light of the model's low accuracy

and flat loss curves, it is possible that it has been underfitted. This could be the result

of an excessive level of regularization, inadequate feature extraction, or insufficient

model complexity.

Figure 4.7: The plot graph illustrating the model accuracy and loss for AlexNet

model.

4.4.3 Model Accuracy and Loss for MobileNet Model

The experiment involved training the MobileNet model and plotting its

accuracy and loss after the training process, as shown in Figure 4.8. This allowed for

the observation of model accuracy and loss after the training process. When examining

the model accuracy graph, initially, the training accuracy improve relatively steadily,

while the validation accuracy fluctuates. After around 20 epochs, the training accuracy

continues to improve but with significant fluctuations, indicating some instability in

 82

the learning process. The validation accuracy, shows high variability and does not

improve consistently, suggesting the model not be generalizing well to unseen data.

The gap between the training and validation accuracy suggests the model may be

overfitting, as it performs better on the training data compared to the validation data.

This is due to the learning rate where it determines the size of the steps the optimizer

takes during training. A learning rate of 0.001 is generally considered moderate,

however it still be too high for this pretrained model, causing the model parameters to

update in large, erratic jumps. This can prevent the model from converging to a more

stable and accurate set of parameters, leading to the high variability observed in the

validation accuracy and loss. Besides that, this is due to batch size of 16 is relatively

small, which can lead to higher variance in the gradient estimates during training.

While smaller batch sizes help escape local minima, they can also cause the training

process to be less stable, as seen in the fluctuations of the accuracy and loss curves.

For model loss graph analysis, the training loss decreases over time, which is expected

as the model learns from the training data. The validation loss, on the other hand, does

not show a clear downward trend and has significant spikes, especially past 20 epochs.

This behavior in the validation loss indicates that the model is not learning effectively

from the validation dataset, which could be due to overfitting and a too high learning

rate that causes the model parameters to change too drastically between epochs.

 83

Figure 4.8: The plot graph illustrating the model accuracy and loss for the MobileNet

model.

4.4.4 Comparison Between a Proposed Model and All Pretrained Models

One of the main aspects focused on this project is the comparison of model

performance between the proposed model and all pretrained models which are

VGG16, AlexNet, MobileNet using the same hyperparameters as in the proposed

model, with a learning rate of 0.001 and a batch size of 16.

 84

Table 4.4: The Comparison Between a Proposed Custom CNN Model and Three

Pretrained Models

Model Parameter Emotion Class

Angry Disgust Fear Happy Neutral Sad Surprise

Custom CNN

Model

Precision 0.60 0.63 0.51 0.87 0.54 0.54 0.75

Recall 0.56 0.46 0.42 0.87 0.70 0.50 0.78

F1-score 0.58 0.53 0.46 0.87 0.61 0.52 0.76

Overall

Accuracy

(%)

65.27

VGG16

Precision 0.00 0.00 0.30 0.69 0.23 0.27 0.61

Recall 0.00 0.00 0.08 0.74 0.20 0.65 0.68

F1-score 0.00 0.00 0.13 0.72 0.22 0.38 0.64

Overall

Accuracy

(%)

42.11

AlexNet

Precision 0.00 0.00 0.00 0.25 0.00 0.00 0.00

Recall 0.00 0.00 0.00 1.00 0.00 0.00 0.00

F1-score 0.00 0.00 0.00 0.40 0.00 0.00 0.00

Overall

Accuracy

(%)

24.71

MobileNet

Precision 0.00 0.00 0.40 0.26 0.00 0.00 0.79

Recall 0.00 0.00 0.00 1.00 0.00 0.00 0.32

F1-score 0.00 0.00 0.00 0.41 0.00 0.00 0.45

Overall

Accuracy

(%)

28.35

 85

Based on Table 4.4, our proposed model shown the highest overall accuracy

at 65.27% and balanced performance across precision, recall and F1-scores for various

emotion classes. This project found that the emotions Happy and Surprise with high

accuracy, which is 0.87 and 0.75, and recall which is 0.87 and 0.78, produce the

highest F1-score for this class. This is because in the FER2013 dataset, there are the

most images which are 7214 images for the Happy class and 3171 images for the

Surprise class. Therefore, this model can recognize more features on different images

during the training process. For comparison with other models, the VGG16 model

exhibits a low overall accuracy at 42.11%, showing a lower performance than our

proposed model. This is because the hyperparameter learning rate and batch size used

are not suitable for the VGG16 model. As for precision, recall and F1-scores are

generally low for most emotion classes, except for Happy, where it achieves a good

F1-score of 0.72. VGG16 struggles to recognize emotions such as Anger, Disgust and

Sadness. Next for the AlexNet model, AlexNet performed the worst among all models

with an overall accuracy of 24.71%. It fails to provide meaningful precision, recall or

F1-scores for most emotion classes, except for Happy, where it achieves a somewhat

higher recall of 1.00, but still struggles with a low precision of 0.25. This is because

the hyperparameter learning rate and batch size used are not suitable for the AlexNet

model. Finally, for the MobileNet model, MobileNet offers better overall accuracy

than AlexNet but is still lower than the custom model at 28.35%. It showed moderate

precision of 0.40 and recall of 0.26 for Fear and high recall of 1.00 for Happy.

However, F1-scores are generally low, indicating difficulty in correctly classifying

most emotion classes. Therefore, our proposed model outperforms all three pre-trained

models in terms of overall accuracy and balanced accuracy, recall and F1-scores

across various emotion classes. VGG16, although better than AlexNet and MobileNet,

 86

still falls short of the performance of the custom model. AlexNet and MobileNet, on

the other hand, exhibit the lowest accuracy and insufficient emotion class recognition.

4.5 Real Time Monitoring using Webcam.

To achieve the project outcome, we have implemented and integrated our

proposed emotion recognition model into a webcam application to enable real-time

emotion analysis of individuals. Our model's performance has been evaluated based

on the results presented in Table 4.5.

Table 4.5: Real time monitoring using webcam.

Expression Person 1 Person 2 Person 3

Angry

Disgust

Fear

Happy

 87

Neutral

Sad

Surprise

Based the Table 4.5, shows that our proposed model performed well in

correctly recognizing seven different emotions for individuals labeled as person 1 and

person 3. These emotions likely include common feelings like angry, disgust, fear,

happy, neutral, sad, and surprise. This suggests that our model is effective

understanding facial expressions in real-time. However, for person 2, our model

struggled to identify the emotion of disgust and instead predicted surprise. This is due

to the limitations of the dataset used to train our model, known as FER2013. This

dataset has a relatively small amount of data for the disgust emotion class, which

makes it harder for the model to learn and make accurate predictions in such cases.

The shortage of data for the disgust category means that the model does not have

enough examples to reliably distinguish it from other emotions. Consequently, the

model may have trouble correctly recognizing disgust in real-time.

 88

4.6 Summary

In summary, data augmentation techniques are important in this project to

solve the issue of model overfitting which shows how data augmentation techniques,

including shear, rotation, width shift, height shift and horizontal flip, help improve the

robustness and generalization of the model by reducing the gap between training and

validation accuracy. Analysis reveals that data augmentation leads to a more balanced

and stable training process. This chapter continues to investigate hyperparameter

tuning, focusing on learning rate and batch size. Experiments demonstrate the effect

of varying these hyperparameters on the performance of custom CNN models. The

optimal combination of hyperparameters was determined by evaluating the accuracy

of the model on the FER2013 dataset. The findings show that a batch size of 16 and a

learning rate of 0.001 results in the highest model accuracy at 65.27%. This

experiment also revealed that different hyperparameter configurations can have a

significant impact on model performance, emphasizing the importance of fine-tuning

these parameters to achieve optimal results. Further analysis involves evaluating the

proposed model. Model accuracy and loss are tracked throughout the training process,

demonstrating the model's ability to learn and generalize.

An important component of the performance analysis is the confusion matrix,

which evaluates the model's ability to accurately classify emotions. It provides insight

into true positives, misclassifications, false negatives and false positives across

different emotion classes. The analysis revealed that the model performed well in

recognizing happiness but struggled with emotions such as disgust and fear. It also

highlights misclassifications between anger and surprise, as well as between sadness

and neutrality, indicating the need for further refinement. To benchmark the proposed

custom CNN model, a comparison is made with three trained models namely VGG16,

 89

AlexNet and MobileNet. The pretrained model is trained using the same

hyperparameters as the custom model. The results show that our proposed model

outperforms all three pre-trained models in terms of overall accuracy and balanced

accuracy, recall and F1-scores across various emotion classes. VGG16 achieves lower

accuracy due to inappropriate hyperparameters, while AlexNet and MobileNet

struggle with emotion recognition, with the lowest accuracy among the models. In real

time monitoring, correctly predicted the seven different emotions in real time

monitoring. However, it is difficult to predict the emotions of disgust because the

small amount of FER2013 dataset for the disgust classes makes it difficult for the

model to predict it.

CHAPTER 5

CONCLUSION AND FUTURE WORKS

In this chapter, will conclude our proposed model was successfully designed

and correctly predict seven different emotions by implementing CNN model in real

time monitoring. It highlights the hyperparameter tuning, data augmentation to

achieve the highest accuracy of 65.27% compared to pretrained models. This chapter

also discussed the future work by suggesting that applying feature extraction

techniques, addressing class imbalance in the FER2013 dataset, applying

illumination correction, and implementing 468 facial landmarks to enhance face

detection and recognition accuracy in the future.

 91

5.1 Conclusion

In conclusion, our proposed model for facial expression recognition was

successfully designed using the CNN architecture as well as setting the parameters

such as convolution layer, pooling layer, activation function, fully connected layer

and so on that have been investigated to fulfill the first objective of this project. Next,

this project addresses the overfitting problem by demonstrating the importance of

data augmentation techniques which help to improve the robustness and

generalization of the model by reducing the gap between training and validation

accuracy. With that, it can improve model accuracy.

These findings highlight the importance of using CNN as a powerful

architecture for recognizing the facial expression. In order to achieve the best

accuracy, therefore this project also tuning the Hyperparameter such as learning rate,

batch size, and the number of epochs, allowed us to identify optimal configurations

for our model. Furthermore, this project also trains the pretrained models such as

VGG16, AlexNet and MobileNet by using the same hyperparameters as the proposed

model which is intended to be compared with the proposed model. As the result, our

proposed model achieved the highest accuracy with 65.27% compared to the

pretrained models where VGG16 with 42.11%, AlexNet with 24.71% and MobileNet

with 28.35% on the FER2013 test dataset.

By achieving an accuracy of 65.27% for the proposed model, this project

successfully achieved the second objective where our proposed model was

successfully deployed into a webcam with correctly predicted the seven different

emotions such as angry, disgust, fear, happy, sad, neutral and surprise in real time

monitoring. However, it is difficult to predict the emotions of disgust because the

 92

small amount of FER2013 dataset for the disgust classes makes it difficult for the

model to predict the classes. Furthermore, this project also succeeded in achieving

the third objective where at the end of this project, this project also evaluates model

performance in terms of model accuracy, precision, recall, and F1-score for each

model that has been trained. This is because to ensure that the model can correctly

predict the seven emotions. Overall, this project addressing the problem which stated

in the problem statement and achieved the overall outcomes where our proposed

model can be designed, evaluated model performances and integrate into a webcam

for the purpose of real time monitoring.

5.2 Future Work

In future work, there exist several approaches that can be investigated to

improve the performance of this project. These approaches are intended to address

specific limitations or areas in need of enhancement that have been identified during

the present project.

5.2.1 Applying feature extraction techniques before training models

In future work, we will implement feature extraction techniques to capture

relevant information from input images before model training. This process aims to

distinguish important image features that are important for accurate facial expression

classification. Typically, feature extraction is carried out by a CNN, a deep learning

model commonly used for image classification tasks. A CNN consists of multiple

layers that perform various operations on the input image, extracting features such as

edges, vertices and textures. Before CNN training, the input image will undergo

preprocessing steps such as face detection, histogram equalization, image

 93

normalization, and face alignment [27]. Various techniques for feature extraction,

including multilevel feature extraction and fusion, will be explored to obtain

multilevel features from the entire output of the extraction network.

5.2.2 Address class imbalance in the FER2013 dataset

In future work concerning facial expression recognition through deep

learning, we can tackle the issue of class imbalance within the FER2013 dataset by

employing techniques like upsampling, downsampling, or implementing loss

weighting to give more significance to underrepresented classes [28]. These

strategies aim to balance the sample distribution across different classes, preventing

the model from exhibiting bias towards the majority class. By effectively addressing

the class imbalance in the FER2013 dataset, deep learning models can enhance their

ability to recognize facial expressions accurately and efficiently. This improvement

can lead to superior performance in real-world applications, including emotion

recognition in human-computer interaction, security systems, and healthcare. The

selection of the appropriate technique should be based on the specific project

requirements, considering factors such as overfitting risks with upsampling, potential

information loss with downsampling, and computational demands with loss

weighting [28]. Thus, the choice should align with the project's unique needs and

constraints.

 94

5.2.3 Applying illumination correction techniques during pre-processes

images

In future work, we can explore and apply illumination correction techniques

to enhance the accuracy and robustness of facial expression recognition systems

when dealing with varying lighting conditions [29]. These methods encompass

advanced approaches within deep learning, such as Generative Adversarial Networks

(GANs) or CNNs, which are specifically designed to address illumination variations

in facial images. By delving into and implementing these illumination correction

techniques, deep learning models can refine their ability to precisely and efficiently

identify facial expressions, making them better suited for real-world applications.

5.2.4 Implement 468 facial landmarks.

In future work, the utilization of facial landmarks can be considered to

enhance the precision of face detection by accurately pointing and representing

crucial facial regions during real-time monitoring. These facial landmarks denote

specific points on the face, facilitating the identification and tracking of features like

the eyes, nose, mouth, and eyebrows. The incorporation of 468 facial landmarks can

substantially improve the deep learning models' ability to recognize facial

expressions with greater accuracy and efficiency. Facial landmark detection plays a

pivotal role in facial expression recognition, enabling the precise localization and

tracking of facial features over time. Various techniques for facial landmark

detection, including shape regression, template matching, and deep learning-based

methods, can be explored [30].

REFERENCES

[1] J. Guo, “Deep learning approach to text analysis for human emotion detection

from big data,” Journal of Intelligent Systems, vol. 31, no. 1, pp. 113–126, Jan.

2022, doi: 10.1515/jisys-2022-0001.

[2] J. R. Lee, L. Wang, and A. Wong, “EmotionNet Nano: An Efficient Deep

Convolutional Neural Network Design for Real-Time Facial Expression

Recognition,” Front Artif Intell, vol. 3, Jan. 2021, doi:

10.3389/frai.2020.609673.

[3] D. Kalita, “Designing of facial emotion recognition system based on machine

learning,” 8th International Conference on Reliability, 2020.

[4] R. and S. S. Appasaheb Borgalli, “Deep Learning Framework for facial emotion

recognition using CNN architectures,” International Conference on Electronics

and Renewable Systems (ICEARS), 2022.

[5] J. Sultana and M. Naznin, “Breaking the Barrier with a Multi-Domain SER,” in

Proceedings - 2022 IEEE 46th Annual Computers, Software, and Applications

 96

Conference, COMPSAC 2022, Institute of Electrical and Electronics Engineers

Inc., 2022, pp. 456–461. doi: 10.1109/COMPSAC54236.2022.00088.

[6] T. M. et al, Wani, “Speech emotion recognition using convolution neural

networks and deep stride convolutional neural networks,” 6th International

Conference on Wireless and Telematics (ICWT), 2020.

[7] Z. et al, Shen, “Emotion recognition based on multi-view body gestures,” IEEE

International Conference on Image Processing (ICIP), 2019.

[8] S. D. A. K. and R. J. S. Saha, “A study on emotion recognition from body

gestures using Kinect sensor,” International Conference on Communication

and Signal Processing, pp. 056-060, 2014.

[9] K. et al, Mohan, “Facial expression recognition using local gravitational force

descriptor-based deep convolution neural networks,” IEEE Transactions on

Instrumentation and Measurement, 70, pp. 1–12, 2021.

[10] S. and D. W. Li, “Deep facial expression recognition: A survey,” IEEE

Transactions on Affective Computing, 13(3), pp. 1195–1215, 2022.

[11] N. M. Abdullah and A. F. AL-Allaf, “Facial Expression Recognition (FER) of

Autism Children using Deep Neural Networks,” in 4th International Iraqi

Conference on Engineering Technology and Their Applications, IICETA 2021,

Institute of Electrical and Electronics Engineers Inc., 2021, pp. 111–116. doi:

10.1109/IICETA51758.2021.9717550.

[12] I. Jammoussi, M. Ben Nasr, and M. Chtourou, “Facial Expressions Recognition

through Convolutional Neural Network and Extreme Learning Machine,” in

 97

Proceedings of the 17th International Multi-Conference on Systems, Signals

and Devices, SSD 2020, Institute of Electrical and Electronics Engineers Inc.,

Jul. 2020, pp. 162–166. doi: 10.1109/SSD49366.2020.9364189.

[13] D. E. P. L. C. A. C. M. M. B. H. W. C. Y. T. D. T. and D.-H. &. others L. I. J.

Goodfellow, “Challenges in representation learning: A report on three machine

learning contests,” International Conference on Neural Information

Processing, 2015.

[14] S. , & N. F. Singh, “Facial Expression Recognition with Convolutional Neural

Networks,” 10th Annual Computing and Communication Workshop and

Conference (CCWC), 2020.

[15] M. K. Christopher Pramerdorfer, “Facial Expression Recognition using

Convolutional Neural Networks: State of the Art,” IEEE Trans Affect Comput,

2016.

[16] D. E. P. L. C. A. C. M. M. B. H. W. C. Y. T. D. T. D.-H. L. et al I. J. Goodfellow,

“Challenges in representation learning: A report on three machine learning

contests,” International Conference on Neural Information Processing.

Springer, pp. 117–124, 2013.

[17] V. and R. R. Verma, “Recognition of facial expressions using a deep neural

network,” 8th International Conference on Signal Processing and Integrated

Networks (SPIN), 2021.

[18] Batta Mahesh, “Machine Learning Algorithms– A Review,” International

Journal of Science and Research (IJSR), vol 9, ISSN: 2319-7064, 2020.

 98

[19] A. , & S. V Singh, “Comparative study of facial expression recognition using

SVM and KNN,” International Journal of Computer Applications, 168(1), 10-

13, 2017.

[20] M. et al Fatchan, “Support Vector Machine and neural network algorithm

approach to classifying facial expression recognition,” Fifth International

Conference on Informatics and Computing (ICIC), 2020.

[21] J. and P. U. S. Mathur, “Facial expression recognition using wavelet based

support Vector Machine,” Recent Developments in Control, Automation

&amp; Power Engineering (RDCAPE), 2017.

[22] A. , B. K. and D. S. Dapogny, “Dynamic pose-robust facial expression

recognition by multi-view pairwise conditional random forests,” IEEE

Transactions on Affective Computing, pp. 167–181, 10(2), 2019.

[23] A. , A. L. and D. A. Fathallah, “Facial expression recognition via deep

learning,” IEEE/ACS 14th International Conference on Computer Systems and

Applications (AICCSA), 2017.

[24] M. et al. Karnati, “Understanding deep learning techniques for recognition of

human emotions using facial expressions: A comprehensive survey,” IEEE

Transactions on Instrumentation and Measurement, 72, pp. 1–31, 2023.

[25] S. et al. Harshitha, “Human facial expression recognition using deep learning

technique,” 2nd International Conference on Signal Processing and

Communication (ICSPC), 2019.

 99

[26] A. , & W. J. Savoiu, “Recognizing Facial Expressions Using Deep learning,”

2017.

[27] M. et al Bie, “Facial expression recognition from a single face image based on

Deep Learning and Broad Learning,” Wireless Communications and Mobile

Computing, pp. 1–10, 2022.

[28] Q. T. and Y. S. Ngo, “Facial expression recognition based on weighted-cluster

loss and deep transfer learning using a highly imbalanced dataset,” Sensors,

20(9), p. 2639, 2020.

[29] C. M. and A. N. Z. Refat, “Deep learning methods for facial expression

recognition,” 7th International Conference on Mechatronics Engineering

(ICOM), 2019.

[30] Y. and W. Y. Qiu, “Facial expression recognition based on landmarks,” IEEE

4th Advanced Information Technology, Electronic and Automation Control

Conference (IAEAC), 2019.

 100

APPENDICES

Appendix A

The simulation code for image processing:

 101

Appendix B

The simulation code for designing CNN model:

 102

Appendix C

The simulation code for plotting model accuracy and loss and generating confusion

matrix:

 103

Appendix D

The simulation code for generating classification report:

 104

Appendix E

The simulation code for testing the trained model with a sample image:

 105

Appendix F

The simulation code for integrating our proposed model using a webcam:

