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ABSTRACT 

Emotion recognition plays a significant role in measuring the emotions of a person. 

Since our faces are the most expressive parts of our bodies and are frequently used as 

indicators of our mental states. This project aims to develop facial expression 

recognition using deep learning technique for recognize seven different emotions such 

as angry, disgust, fear, happy, neutral, sad and surprise. However, developing a FER 

system by using FER2013 dataset based on machine learning have limitation in 

handling complex datasets. Therefore, this project involves deep learning technique 

by using Convolution Neural Network (CNN) model with data augmentation to handle 

the complex data and be able to extract facial features from the input images with 

reduce overfitting. As a result, our proposed model achieved the highest accuracy with 

65.27% compared to the pretrained models where VGG16 with 42.11%, AlexNet with 

24.71% and MobileNet with 28.35% on the FER2013 test dataset. The FER system 

also can help in the healthcare and education sector. Thus, this project can be achieved 

the SDG goal which is SDG 3 for Good Health and Well Being and SDG 4 for Quality 

Education. 
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ABSTRAK 

Pengecaman emosi memainkan peranan penting dalam mengukur emosi 

seseorang. Memandangkan wajah kita adalah bahagian tubuh yang paling ekspresif 

dan sering digunakan sebagai penunjuk keadaan mental kita. Projek ini bertujuan 

untuk membangunkan pengecaman ekspresi muka menggunakan teknik pembelajaran 

mendalam untuk mengenali tujuh emosi berbeza seperti marah, jijik, takut, gembira, 

neutral, sedih dan terkejut. Walau bagaimanapun, membangunkan sistem FER 

dengan menggunakan set data FER2013 berdasarkan pembelajaran mesin 

mempunyai had dalam mengendalikan set data kompleks. Oleh itu, projek ini 

melibatkan teknik pembelajaran mendalam dengan menggunakan model Convolution 

Neural Network (CNN) dengan penambahan data untuk mengendalikan data yang 

kompleks dan dapat mengekstrak ciri muka daripada imej input tanpa overfitting. 

Hasilnya, model cadangan kami mencapai ketepatan tertinggi dengan 65.27% 

berbanding model pralatihan di mana VGG16 dengan 42.11%, AlexNet dengan 

24.71% dan MobileNet dengan 28.35% pada set data ujian FER2013. Sistem FER 

juga boleh membantu dalam sektor penjagaan kesihatan dan pendidikan. Oleh itu, 

projek ini dapat mencapai matlamat SDG iaitu SDG 3 untuk Kesihatan dan 

Kesejahteraan yang Baik dan SDG 4 untuk Pendidikan Berkualiti.  
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CHAPTER 1  

INTRODUCTION 

In this chapter, we investigate the importance of recognizing emotions 

through various cues such as facial expressions, tone of voice and body language, 

emphasizing the role of facial expressions in communicating emotional states. The 

objective of the project is to accurately recognize seven human emotions such as 

angry, disgust, fear, happy, neutral, sad and surprise. We use computer vision and 

deep learning techniques, specifically Convolutional Neural Networks (CNN), to 

analyze and interpret facial expressions in images and real time monitoring. This 

chapter outlines the problem statement, highlighting the limitations of existing 

machine learning methods in handling complex datasets for facial expression 

recognition. We emphasize data augmentation techniques to address issues such as 

overfitting and improve accuracy. The project's scope, constraints and assumptions 

are discussed, along with its potential impact on sustainable development.   
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1.1 Background of Project 

Artificial intelligence (AI) and psychological human emotion recognition are 

two distinct but interrelated fields of research in automatic emotion recognition. 

Emotional recognition is the ability to identify and interpret a person's emotional 

state based on various cues, such as facial expressions, vocal tone, body language, 

and physiological responses. Emotions are complex mental states related to various 

physical and psychological changes in a person. These changes can be used as an 

indicator of a person's emotional state. Most studies are particularly interested in this 

modality because changes in the face during communication are the first indicators 

that transmit emotional states [1]. Facial expressions are important to understand 

human emotions because the face has body parts such as eyes, nose, mouth, and 

others that make it easier for humans to recognize human emotions. Because of that, 

this project chooses human faces to recognize seven human expressions, namely 

angry, disgust, fear, happy, neutral, sad, and surprise, using AI technology. The 

purpose of the facial expression recognition project is so that it can be applied in the 

field of psychology because facial expression recognition technology helps 

researchers and psychologists recognize individual emotions accurately. With that, 

psychologists can better understand individual mental health issues. In addition, it 

can also be applied in the fields of mental health, education, driver monitoring, and 

so on. 

This project uses the concept of computer vision to recognize human 

expressions through their faces because computer vision plays an important role in 

recognizing a person's expression. It uses AI technology to analyze and interpret 

human expressions in images and real time monitoring using webcam. This project 

uses AI technology because it is a machine programmed to mimic how humans think 
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and behave. AI models can accurately and instantly analyze and categorize facial 

expressions using deep learning algorithms and neural networks [2]. This project uses 

deep learning techniques, which consist of multiple layers of interconnected nodes, 

to learn and extract complex patterns and features from the input data to classify the 

output. Deep learning has dramatically improved the precision and effectiveness of 

face expression recognition systems with its capacity to handle complicated and 

high-dimensional data. 

This project only involves a simulation program that is implemented using 

Google Colab and Jupyter Notebook as well as TensorFlow, OpenCV, Matplotlib, 

and Numpy as open-source libraries, and the programming language used is Python. 

The program consists of various tasks where it starts with data collection from 

Kaggle and then preprocesses the images to improve image quality and give diversity 

images. Then, the image is extracted for facial features for the training process. When 

the training model is complete with good validation accuracy, the next step is testing 

the model to predict and classify the image output from the testing dataset image 

input. In terms of equipment, this project only uses webcam to classify human 

expressions in real time.  

 

1.2 Problem Statement 

One of the most significant computer vision tasks is Facial Expression 

Recognition (FER), which is done using deep learning. FER has a wide range of 

applications in areas including psychology, health, security, and others. However, 

developing a system for FER2013 dataset based on machine learning have limitation 

in handling complex datasets for facial expression recognition, highlighting the need 
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for more advanced or adaptable methodologies. This issue holds significant 

importance as facial expression recognition plays a crucial role in areas like human-

computer interaction and emotion analysis, where accurate interpretation of 

expressions is essential. Therefore, a proposed solution could involve the development 

of more sophisticated algorithms, such as deep learning models, which are known for 

their efficiency in managing complex and high-dimensional data [3]. Besides that, 

developing a system for FER based on a deep neural network is primarily plagued by 

overfitting, which is caused by insufficient training data and can result in a model that 

has very high accuracy on the training set but low accuracy on the test set. The 

significance of addressing this issue lies in enhancing the generalizability and 

reliability of the models in practical. Therefore, to address the overfitting problem, 

solutions could include methods like applying data augmentation technique during 

pre-process images to increase the size and diversity of the training dataset to ensure 

the model’s robustness across different data samples [4].  

    

1.3 Objectives 

The objectives of this project are: 

1. To investigate the deep learning technique for facial expression recognition.  

2. To develop facial expression recognition using deep learning technique. 

3. To evaluate the proposed model performance in term of precision, recall, F1-

score and model accuracy.  
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1.4  Project Impact 

Facial expression recognition using deep learning networks has a significant 

impact on various fields such as healthcare, education, security systems, and human-

computer interaction. Accurate interpretation of facial expressions is essential in these 

fields, and deep learning models have shown promising results in recognizing facial 

expressions. By improving the accuracy and robustness of facial expression 

recognition systems, deep learning models can help doctors respond to patients’ 

expressions accordingly, and a positive expression can help treat patients’ conditions. 

In addition, facial expression recognition can be used in human-computer interaction 

systems with good intelligence and interaction performance. In education, it can be 

used to monitor students’ engagement and attention levels. The impact of facial 

expression recognition using deep learning networks is significant, and it has the 

potential to revolutionize various fields by providing accurate and efficient recognition 

of facial expressions.  Therefore, this project can be achieved the SDG goal which is 

SDG 3 for Good Health and Well Being and SDG 4 for Quality Education. 

  

1.5 Scope of Project 

This section discusses the scope of the project, which consists of constraints 

and assumptions. It consists of two parts, namely simulation and restriction of this 

project. 
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1.5.1 Simulation  

The scope of this project involves the development of a FER system using 

Google Colab as the simulation platform. This project uses Google Colab because it 

is a cloud based Jupyter notebook environment that allows users to collaborate and 

access powerful hardware resources such as GPUs for machine learning and data 

analysis tasks. It offers a computer environment that is interactive and supports 

several programming languages, including Python, which will be used for this project 

because of its adaptability and compatibility with other programming languages, 

making it an ideal option for developing complex systems that must function with a 

variety of tools and platforms. Overall, Python is a powerful and flexible language 

that provides a wide range of tools for deep learning applications. In addition, this 

project uses TensorFlow, OpenCV, Matplotlib, and NumPy as open-source libraries. 

TensorFlow is a powerful deep learning framework that provides a large range of 

tools and packages for building complex neural networks. Therefore, this project will 

use it as an open-source software library to build a FER system. OpenCV is an open-

source computer vision framework that is used to recognize faces in images and to 

add text to the image that will describe the emotions that were found. Better results, 

understanding, and analysis will be possible for the user. The seven elementary 

emotions will correspond to the emotions that are labelled. As for NumPy, it is an 

open-source Python library, and it offers support for big, multi-dimensional arrays 

and matrices as well as a selection of mathematical operations on these arrays. As for 

Matplotlib, it is an open-source Python graphing library, and it offers a full set of 

tools for using Python to build different kinds of static, animated, and interactive 

visualizations.  
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The simulation program for this project involves several tasks, namely 

collecting the dataset from Kaggle, preprocessing the images, designing a model, 

training and testing a model, and measuring the model performance in terms of model 

accuracy, precision, recall and F1-score. Collecting datasets is important for deep 

learning model training. For the preprocessing task, it is important to improve image 

quality and reduce noise. For the task of designing a model, it is important to 

determine the parameter in deep learning model and the ability of the system to 

identify and classify facial expressions accurately and reliably. For the model training 

task, it takes a long time, and it depends on how many epochs are set for training. 

The more epochs that are set, the longer it takes to train the model. For the feature 

extraction task, it is important to track facial features during the training process so 

that the deep learning model can classify seven expressions based on the image facial 

features that have been extracted through the training process. Finally, for the final 

task, we measured the model performance. It is important to know and measure the 

accuracy of the system, whether it can recognize expressions more effectively or less 

effectively.   

 

1.5.2 Restriction  

There are several restrictions that need to be considered in the scope of facial 

expression recognition projects. Among them, the system must be able to analyze 

and classify facial expressions quickly to perform in real time, which is the first 

important criterion for this project. In addition, this project requires high computer 

processing power to ensure that the model can work properly, and this involves 

considering the use of memory and computing power. Finally, there may be 
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restrictions on the number of labelled facial expression datasets that can be accessed. 

Thus, to overcome the overfitting, techniques such as data augmentation should be 

investigated. By doing so, the model will be able to generalize well and work 

accurately. This project can create a FER system that achieves real-time 

performance, adapts to limited computer resources.  

 

1.6 Significant of Project 

Projects involving a FER system are significant in various fields, including 

psychology, social science, marketing, crime detection, and so on. This is because 

this project involves a program or system that can understand facial emotions 

immediately. This project also has an impact on society and the environment and has 

the potential to contribute to sustainable development. This project is important in 

the field of psychology because FER technology helps researchers and psychologists 

recognize individual emotions accurately. With that, psychologists can better 

understand individual mental health issues. This contributes to promoting 

psychological well-being and improving the quality of life. In terms of sustainable 

sustainability, this project can achieve one of the SDG goals, which is SDG 3, Good 

Health and Well-Being. In addition, this project also helps in the fields of social 

science and business markets, where it can be used to understand customer reactions 

to various stimuli such as products, advertisements, and others. This can develop an 

effective marketing strategy and improve product design, which can also contribute 

to sustainable economic development. In addition, this project can also help in the 

field of education, where facial recognition technology can be used to monitor 

students' emotions in class so that teachers can identify students who are not focusing 



 9 

 

and advise them to focus on class. With that, this project can contribute to increasing 

well-being and economic development while minimizing the negative impact on the 

environment. 

This project is important to ensure that engineering solutions for FER projects 

are built with sustainability and the impact on the environment and society in mind. 

It consists of energy efficiency, where algorithmic design optimizes facial expression 

recognition performance to minimize environmental impact. In addition, privacy and 

ethical considerations in this project ensure that facial recognition systems respect 

individual privacy rights. Additionally, it addresses potential biases to avoid 

inaccurate interpretations. Ensure technology works effectively across diverse 

populations, including different age, gender, and ethnic groups. 

 

1.7 Chapter Outline 

This thesis contains five chapters, and details of the project are explained in each 

chapter and outlined below: 

 

Chapter 1: In this chapter, we emphasize the significance of AI in recognizing 

human emotions, particularly through facial expressions. Our project aims to 

accurately detect seven emotions using computer vision and CNN model. We address 

the challenge of handling complex datasets and highlight data augmentation to 

enhance accuracy. The chapter outlines the project's scope and potential impact on 

sustainable development while providing an overview of the thesis structure. 
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Chapter 2: In this chapter, we discussed the importance of Speech Emotion 

Recognition (SER) and its relevance in human-computer interaction. We explored 

machine learning techniques, including CNN, and their application in recognizing 

emotions from speech and body language. We also emphasized the significance of 

databases in FER, with a focus on FER2013 database. Additionally, we highlighted 

the role of AI and deep learning techniques, such as activation functions Rectified 

Linear Unit (RELU) and model assessment using confusion matrix, in the context of 

FER. 

 

Chapter 3: In this chapter, we discuss on how to implement FER using CNN. 

Besides that, we cover the use of Jupyter Notebook and Google Colab, along with 

key open-source libraries like TensorFlow, KERAS, OpenCV, Matplotlib, and 

NumPy. In addition, we discuss in detail the FER algorithm with CNN, including 

images preprocessing, model design, training, and testing. Finally, we explore 

integrating the FER system with a webcam for monitoring facial expression in real-

time.    

 

Chapter 4: In this chapter, we discuss analysis of data augmentation and 

optimization of model correctness via the exploration of hyperparameter tuning, 

including learning rate, batch size, and epochs. Together with a confusion matrix for 

performance analysis, the suggested custom CNN model with the proper 

hyperparameters. By using the same hyperparameters, the chapter also examines the 

accuracy, precision, recall, and F1-score of proposed models in comparison to 

pretrained models VGG16, AlexNet, and MobileNet. 

 



 11 

 

Chapter 5: In this chapter, we successfully designed a CNN model for real-time 

recognition of seven emotions, achieving a high accuracy of 65.27%. In future work 

includes enhancing the model through feature extraction, addressing dataset 

imbalances, improving lighting conditions, and implementing precise facial 

landmarks for better face detection and recognition.  

 

 

 

 

 



 

 

 

CHAPTER 2  

BACKGROUND STUDY 

In this chapter, we discussed SER and its significance in enabling realistic 

human-computer interaction. We explored the utilization of machine learning 

techniques, particularly CNN, pattern recognition, and statistical models, for training 

algorithms on extensive datasets containing labeled emotive speech samples. 

Additionally, we delved into the recognition of emotions through body language, 

pointing out the availability of datasets such as French Audiovisual Broadcast 

(FABO), German Multimodal Emotion Perception (GEMEP), and Lyon Institute of 

Research in Computer Science and Application Affective Video Dataset for Content 

and Emotion Analysis (LIRIS-ACCEDE) for this purpose. Furthermore, we 

highlighted the importance of databases in FER analysis, with a focus on the widely 

used FER2013 database. The chapter also touched upon the role of AI and machine 
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learning in developing algorithms and models for automatic emotion recognition, 

particularly through deep learning techniques like CNN. Also, the use of RELU as 

an activation function, max-pooling for efficiency, and the significance of the 

confusion matrix for assessing model performance were discussed in the context of 

FER.  

2.1 The Types of Emotion Recognition 

The study and application of emotion identification technology aims to detect 

and interpret human emotions from a variety of inputs, including voice, text, facial 

expressions, and physiological signs. There are numerous types of recognizing 

emotions methods, including speech emotion recognition, body gesture emotion 

recognition, and facial emotion recognition. 

2.1.1 Overview of Expression Recognition from Speech Analysis 

SER is important for many applications in natural human-computer 

interaction. It is a process of identifying and classifying emotions through speech 

signals. It also involves analyzing the acoustic features found in spoken language, 

such as spectrum content, rhythm, and others, to determine several emotions such as 

happy, sad, disgusted, angry, surprised, fearful, and neutral. In the SER system, the 

main role is to extract features from speech, which are then categorized to predict 

different emotional classes in it. Sultana, J., and Naznin, M. [5] state that Deep Neural 

Network-based features and Hand-Crafted features can both be extracted from 

speech. Classification of emotion recognition based on speech can be carried out in 

two ways, using traditional classifiers such as Hidden Markov Models (HMM), 

Support Vector Machines (SVM), and others, or using deep learning algorithms such 

as Deep Belief Network (DBN), CNN, and others.  
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2.1.1.1 Speech Expression Databases  

In the paper by [5], there are several audio datasets that can be used for speech 

emotion recognition, including the Crowd-Sourced Emotional Multimodal Actors 

Dataset (CREMA-D), which contains 7442 audio clips sampled at 16 kHz; the 

Emotional Database (Emo-DB), which contains 535 utterances of 10 professional 

actors; the Ryerson Audio-Visual Database of Emotional Speech and Song 

(RAVDESS), which has both audio and visual files of 24 North American actors and 

Surrey Audio-Visual Expressed Emotion (SAVEE), which contains 480 utterances 

from 4 British male speakers with seven different expressions [5]. The audio datasets 

are shown in spectrogram forms, such as shown in Figure 2.1 where indicate a signal's 

quality over time at different frequencies that are included in the waveform.  

 

Figure 2.1: The spectrogram samples of various speech emotions [5] 

 

2.1.1.2 Speech Expression Recognition using Deep Learning Technique 

Researchers in the field of SER use a variety of machine learning techniques, 

including deep learning, pattern recognition, and statistical models, to train algorithms 

on large datasets containing labelled emotional speech samples. Based on Figure 2.2, 



 15 

 

shows one of the techniques presented in the paper [6] that can be used in identifying 

emotions from speech. The technique used is a deep learning technique called CNN. 

The CNN model consists of 3 convolution layers, which are Conv1 with 64 kernels of 

size (9x9), Conv2 with 120 kernels of size (7x7), and Conv3 with 200 kernels of size 

(3x3). The top pooling layer receives the created features. The maximum pooling size 

is the same for all three convolutional blocks (20 x 32). Two fully connected layers, 

FC1 and FC2, of 256 and 512 neurons, come after the top pooling layer. All 

convolutional layers are followed by the RELU activation function. As a result of its 

greater convergence rates, this activation is employed. Finally, the SoftMax unit does 

the classification work. Wani [6] concluded that this model gives an overall accuracy 

of 65.5% after training for 500 epochs.   

 

Figure 2.2: The CNN architecture for speech emotion recognition [6] 
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2.1.2 Overview of Expression Recognition from Body Gestures Analysis 

Humans naturally express their emotions not only through their faces but also 

through their body gestures. In the paper by [7], psychological research shows that 

body language can convey non-verbal emotional signals that the face and voice 

cannot. However, less research has been done to identify emotions through body 

language. This is because body gestures do not have clear emotional characteristics 

because various people use different body movements to convey the same emotion. 

Although the same person makes different body movements, they differ depending on 

the situation. Emotion recognition through body movements is a process of identifying 

and interpreting emotions conveyed through body movements, which involves 

analyzing posture and physical movements exhibited by individuals to identify their 

emotional state. It aims to take advantage of non-verbal communication to accurately 

understand and classify their emotions. Algorithms can recognize emotions such as 

happiness, sadness, surprise, fear, disgust, anger, and neutrality by analyzing spatial 

position, temporal dynamics, and body movement patterns. Techniques that can be 

used to recognize emotions through body movements are machine learning and deep 

learning.  
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2.1.2.1 Body Gesture Expression Databases 

Shen, Z. [7] also presented several types of datasets for emotion recognition 

through body gestures. Among them is FABO, which has 206 samples and 10 

emotions involving the face and body. In addition, GEMEP has more than 7000 

samples and 18 emotions involving the face and body. Not only that, LIRIS-ACCEDE 

also has a dataset with six emotions involving the face and upper body. Examples of 

samples of RGB images for body gestures according to their emotions are shown in 

the Figure 2.3.  

 

Figure 2.3: The RGB images of body gestures [7] 

 

2.1.2.2 Body Gestures Expression Recognition using Deep learning Technique. 

In the paper by [8], the acceleration state for the hand is the basic feature of 

the ensemble tree classifier, and the model shows the best performance in their study. 

Based on Figure 2.4, shows one of the deep learning techniques used in the paper [7] 

to recognize emotions through body gestures. It uses RGB video as an input dataset, 

and then the video is extracted by using the Temporal Segment Network (TCN) model 

to extract RGB features and Spatial-Temporal Graph Convolution Networks (ST-



 18 

 

GCN) to extract skeleton features. The output from them is a vector of different 

lengths. The two feature vectors are combined to create a new fusion feature, which is 

then tailored by a fully linked residual network into the appropriate category of 

emotional body gestures. Finally, to classify the emotional body gestures, a residual 

full-connected network that uses the same architecture as the residual feature encoder 

Shen [8] concludes that the overall accuracies for the TSN model are 72.09%, while 

those for the ST-GCN model are 72.00%.  

 

Figure 2.4: The overall process for emotion recognition based on body gestures by 

using TSN and ST-GCN model [7].   

 

2.1.3 Overview of Expression Recognition from Facial Analysis 

 FER is a field of study that focuses on detecting, analyzing, and interpreting 

emotions and facial expressions shown by individuals. One of the most effective, 

universal, and natural ways for people to express their emotions and intentions is 

through their faces. Facial expression is important because it is one aspect of 

communication in daily life. Facial Emotion Recognition technology uses computer 

vision and Artificial Intelligence techniques to analyze and interpret human emotions 

from facial expressions. However, based on the paper [9], the author stated that in the 

field of computer vision, the difficult task of automatically identifying facial 
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expressions from facial images has a variety of potential applications, including 

driving safety, human-computer interaction, health care, behavioral research, video 

conferencing, cognitive science, and others. With that, various algorithms, machine 

learning, and deep learning models can be used to detect and classify facial 

expressions accurately. FER analysis consists of face detection, facial expression 

detection, and expression classification according to emotional states, as shown in the 

Figure 2.5. Emotion detection is based on the position of facial landmarks such as the 

eyes, nose, eyebrows, mouth, and others. With that, the algorithm can classify 

emotions using a person's face, such as sadness, happiness, fear, surprise, and the 

others, accurately. The accuracy and efficiency of classifying emotions can be 

increased by using suitable techniques and databases.   

 

 

Figure 2.5: The basic step for facial expression recognition [9] 

 

2.1.3.1 Facial Expression Databases 

The database plays an important role in FER. The database is a collection of 

images of different people's faces expressing different emotions. It is used for training, 

evaluation, and development of FER models. By training on diverse and representative 

data, machine learning algorithms can learn the underlying patterns and features that 



 20 

 

distinguish different emotions, allowing them to make accurate predictions on new, 

unseen data.  

Table 2.1: The available databases that contain basic expression. 

Databases Samples Collection 

Condition 

Expression Distribution 

CK+ 593 images Lab Seven basic expressions plus 

contempt 

MMI 740 images and 

2900 videos 

Lab Seven basic expressions 

JAFFE 213 images Lab Seven basic expressions 

SFEW 1766 images Movie Seven basic expressions 

KDEF 4900 images Lab Seven basic expressions 

FER2013 35887 images Web Seven basic expressions 

 

Based on the paper [10], the author states that there are several databases 

available for facial emotion recognition, as shown in the Table 2.1 and Figure 2.6. 

Among them, the Cohn-Kanade (CK+) database is the most extensively used 

laboratory-controlled database for evaluating FER systems. Besides, the MMI 

database is also laboratory controlled. Not only that, The Japanese Female Facial 

Expression (JAFFE), Static Facial Expressions in the Wild (SFEW), Karolinska 

Directed Emotional Faces (KDEF), and FER2013 are also FER databases that have 

seven basic emotion expressions.  
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Figure 2.6: The various types of datasets for FER [10] 

 

The JAFFE dataset stands for Japanese Female Facial Expression, which is 

used to conduct experiments and is provided by the psychology department at Kyushu 

University. According to the paper [11], it consists of 213 grayscale images of size 

256x256 pixels depicting 60 Japanese Females. The format of the images is TIFF. 

This dataset is divided by 2, with 171 images for training purposes and 42 for testing 

purposes. Based on this paper, the overall accuracy results on the JAFFE dataset are 

94.23% for the CNN model. Not only that, according to the paper [12], the author 

states that the results for training accuracy on the JAFFE dataset are 93.84%, while 

the testing accuracy is 85.91% for the CNN+ELM model.   



 22 

 

 

Figure 2.7: The JAFFE Dataset [12]  

The FER2013 dataset, also known as the 2013 Facial Expression Recognition 

dataset, was presented at the International Conference on Machine Learning (ICML) 

in 2013 [13]. It was created by Pierre-Luc Carrier and Aaron Courville and is available 

on Kaggle as a popular platform for data science and dataset competitions. Based on 

articles reviewed that have been conducted for researching the FER database, the 

author uses the FER2013 dataset as the data for training because, according to the 

paper [14], the author achieved a test accuracy of 73.73% on the FER2013 dataset. 

Not only that, according to the paper [15], effective facial expression detection was 

achieved using the FER2013 dataset, and the author achieved a FER2013 test accuracy 

of 75.2%. In general, FER2013 is a grayscale image dataset consisting of 28709 

images for the training dataset and 7178 images for the test dataset, where each image 

in this dataset has the same image size of 48 x 48 pixels. It is one of the more difficult 

datasets, with the best reported results only achieving a test accuracy of 75.2% and a 

human-level accuracy of 65.5%, and the dataset is available on Kaggle [16].  
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Table 2.2: The classification of facial expression in FER2013 dataset 

   No      Expression      Image Description 

 

0 

 

Angry 

 

      

 

Face shows such closed lips, arched eyebrows, 

and large eyes indicate angry.  

 

1 

 

Disgust 

 

      

 

Face shows such elevated upper lips and relaxed 

eyebrows and eyelids frequently indicate disgust.  

 

2 

       

Fear 

       

 

Face shows where the eyes are strained, their 

inner eyebrows curve forward, and their eyebrows 

are elevated and pinched. 

 

 

 

3 

 

Happy 

 

 

 

      

Face shows such relaxed with open lips, raised 

corners, and relaxed eyebrows.  
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4 

 

Neutral 

 

      

 

 

Face indicates where there are no obvious signs of 

tension or contraction in the facial muscles. There 

don't seem to be any obvious creases or furrows 

in the forehead. 

5  

Sad 

 

     

 

Face shows where mouths are often relaxed, their 

eyes are somewhat closed, and their inner 

eyebrows bend upward.  

6  

Surprise 

 

        

 

Face shows where the mouth is gaping, their 

upper eyelids are thrown back, and their eyebrows 

are turned upward to express surprise.   

 

Based on the Table 2.2, showing the classification of facial expression in the 

FER2013 dataset with expression description and labels such as (0 = angry, 1=disgust, 

2=fear, 3=happy, 4 = neutral, 5=sad, and 6=surprise), Since there is an imbalance of 

data, such as the emotion of disgust, which has an image of only 500–600, To address 

this issue, the author [17] proposed to use some data augmentation on the data using 
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the KERAS Images data generator, which generates a batch of images in different 

poses, and scales.     

 

Figure 2.8: The sample images from FER-2013 dataset [17] 

 

2.1.3.2 Facial Expression Recognition using Machine Learning Technique 

AI has a field called "Machine Learning" that focuses on creating algorithms 

and models that allow computers to learn from data and make predictions or decisions 

without being explicitly programmed. It includes the use of computational algorithms 

and statistical approaches to give computers the ability to recognize patterns in data, 

draw conclusions from them, and carry out specified tasks. To automatically detect 

patterns, correlations, and trends in machine learning, models are trained on labelled 

or unlabeled data. By giving models access to unexpected new data, the objective is 

to enable them to make accurate predictions or decisions. Machine learning can be 

used to recognize facial expressions. The steps involved in real-time facial expression 

recognition using machine learning are collecting and preparing labelled facial 

expression data, extracting relevant features, training models, evaluating their 
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performance, and using them. Applications in various domains, including human-

computer interaction, affective computing, and psychological research, are possible 

through the automatic identification and classification of facial expressions using this 

approach. 

An overview of machine learning algorithms is given in the research article 

"Machine Learning Algorithm: A Review". The study of algorithms and statistical 

models that computer systems employ to carry out a certain task without being 

explicitly programmed is known as machine learning. Batta Mahesh [18] states that 

one of the most popular machine learning methods now in use is the SVM. SVMs are 

supervised learning models with associated learning algorithms that examine data 

used for regression and classification analysis in machine learning. In 2017 research 

published in the International Journal of Computer Applications [19], the accuracy of 

using SVM for identifying six basic facial expressions, which are anger, disgust, fear, 

anxiety, sadness, and surprise, on the CK+ dataset was reported to be 93.1%. 

SVM is an effective machine learning algorithm used for classification and 

regression problems. In a high-dimensional space, they find an ideal hyperplane that 

maximally separates classes or regressors. The support vector, the data point closest 

to the hyperplane, is used by the SVM to determine the decision boundary, as shown 

in Figure 2.9. In the paper by [20], the author stated that the objective of SVM 

classification is to identify the best hyperplane that divides two classes of data. Based 

on the experiment results from this paper as well, the author stated that the SVM 

algorithm test result resulted in an accuracy classification value of 87%.   
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Figure 2.9: The schematic concept of the SVM model [20] 

 

Based on Figure 2.10, the SVM architecture consists of input data, support 

vector, evaluation kernel, and output classification. As for the data input, the SVM 

input is pre-labelled training data, with each data point represented by a set of features 

or attributes and having a class or category label attached. The SVM model is trained 

using the input data. For the support vector, the closest data point to the hyperplane, 

known as the support vector, is very important in determining the location and 

direction of the hyperplane. These factors affect the overall SVM model and serve to 

define decision boundaries. SVM is memory efficient because it only needs support 

vectors for classification or regression. As for evaluating the kernel, by using the 

kernel function, SVM can handle data that cannot be separated linearly. To improve 

class separation, kernel functions translate the input data into a higher-dimensional 

feature space. Linear, polynomial, and sigmoid Radial Basis Functions (RBFs) are 

common kernel functions. The challenges faced and the nature of the data determine 

which kernel should be used. Finally, for the classification output, the SVM model can 

be used to predict the results from a brand-new data set. The input data points are 

passed to the decision function, which uses a kernel function to map them into the 
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feature space and calculate their location on the hyperplane. Based on this location, 

the expected class, or regression value, is calculated.  

 

Figure 2.10: The architecture of SVM [20] 

 

In the paper by [21], the author states that SVM is a classifier that classifies 

data using a hyper-plane. Both linear and non-linear decision boundaries can be 

created by it. Using Lagrange multipliers, SVM finds the ideal hyperplane. Based on 

a small sample of training vectors known as support Vectors, the best hyperplane was 

selected. Basically, a support vector is a template that sits on the edge of any class. In 

this paper [21], the author also stated that nonlinear SVM is typically used for FER 

tasks. In nonlinear SVM, the basic decision function of linear SVM is modified by 

using kernels such as:  

𝑓(𝑥) = ∑ 𝛼𝑖𝑦𝑖𝑘(𝑥𝑖, 𝑥)) + 𝑏                                          (2.1)

𝑁𝑠

𝑖=1
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Where: 

 𝑓(𝑥)  : Decision function 

 𝑁𝑠  : The number of support vectors in the model 

 𝛼𝑖  : Lagrange multipliers associated with each support vector. 

 𝑦𝑖  : The class label of the i-support vector 

 𝑘(𝑥𝑖, 𝑥) : The kernel functions. 

 𝑏  : The bias term 

 

Based on Figure 2.11, this shows the FER process by using the SVM model to 

classify the output. The dataset generated the training images for SVM learning. All 

the images have been cropped to 92x92 proportions to include all facial details. 1500 

images of each positive and negative expression are used in the training. Positive 

expression is not preferred as much as negative expression. All the images have 

undergone the previously described pre-processing procedures. Utilizing feature 

vectors created from LH and HL pictures, training is carried out. 

The FER technique presented can recognize facial emotions in images that are 

in grayscale. Before SVM testing, the illumination of the input image is corrected. The 

image is rotated over the three sizes of windows 92x92, 46x46, and 23x23 with the 

appropriate window shift. Utilizing the wavelet decomposition method, the features 

of each window are retrieved. Window size corresponds to the size of feature vectors. 

All feature vectors are extracted, and then they are provided to a trained SVM for 

classification. In grayscale images, the FER approach described here may detect face 

expressions. The input image is illuminated before running SVM testing. The window 

shifts for the three sizes of windows 92x92, 46x46, and 23x23 are acceptable when 

the image is rotated. The wavelet decomposition technique is used to extract the 
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features of each window. Feature vector size correlates with window size. After 

extracting each feature vector, the feature vectors are sent to trained SVMs for 

classification. The overall accuracy for FER using SVM classification is 94.1%.  

 

Figure 2.11: The FER process by using SVM classifier [21] 

 

Random Forest is one of the classification techniques in machine learning. It 

can be used to classify different emotions from facial images based on features that 

have been extracted. The algorithm works by building an ensemble of decision trees, 

as shown in Figure 2.12, where each tree is trained on a random subset of the training 

data and a random subset of the features. During the training phase, the Random Forest 

algorithm grows multiple decision trees, each of which makes predictions based on 

different combinations of features. After that, a vote or averaging procedure is used to 

decide the final prediction, with each tree guess contributing to the result. However, 

the issue of overfitting affects the decision tree. Nevertheless, by continuously adding 

nodes to the tree, which increases the depth of the tree and makes it more complex, 

overfitting only involves making the tree more specific within itself to reach a certain 

conclusion.  
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Figure 2.12: The basic architecture of Random Forest [22] 

 

Based on the paper [22], the author used Conditional Random Forest to capture 

low-level emotional transition patterns. To generate a tree using Pairwise Conditional 

Random Forest (PCRF), predictions for each previous frame are used to create pairs 

between the current and previous frames during testing. PCRF pairwise outputs are 

averaged over time to provide a reliable estimate. For multi-view dynamic FER, the 

PCRF collection can also be conditioned on head pose estimation. Thus, the method 

seems to be a logical extension of Random Forest to learn spatial-temporal patterns, 

perhaps from several angles. The author uses pairs of images that represent patterns 

of expression transitions to train a Random Forest. To help reduce variability, the 

forest was conditioned on the expression labels of the first frame. For databases, the 

author used four databases, namely CK+, Binghamton University 4D Facial 

Expression Database (BU-4DFE), Biometric Point Distribution Database (BP4D), and 

Face and Gesture Recognition Network Database (FG-NET). 

This paper presents a flowchart of the Multi-View Pairwise Conditional 

Random Forest (MVPCRF) FER method as shown in Figure 2.13, MVPCRF 

technique, which is a new approach to training trees using static and dynamic features 
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in the Random Forest framework. In the field of face alignment and human pose 

estimation, it uses Conditional Random Forest by generating a collection of specific 

trees, quantizing the values of global variables of head posture and torso orientation, 

and then using predictions on these global variables to draw specific trees, resulting in 

more accurate predictions. To limit the uncertainty of continuous expression 

transitions from the first frame of a pair to the next, as shown in Figure 2.13, the author 

proposes to condition the pairwise tree on a specific expression label by conditioning 

the pairwise tree on the estimated head pose to improve resilience to fluctuations in 

head pose. Each previous frame in the sequence is connected to the current frame to 

form a pair when analyzing the video frame. Finally, as a result of this paper, the 

overall accuracy of the MVPCRF method is 72.1% on the BU-4DFE database. 

 

Figure 2.13: Flowchart of MVPCRF FER method [22] 

 

2.1.3.3 Facial Expression Recognition using Deep Learning Technique (CNN) 

Deep learning methods are used for FER, which involves training neural 

networks to recognize and categorize facial expressions automatically from image data 

or videos. By making it possible to extract high-level characteristics from facial data 

and to recognize complex patterns, deep learning has improved FER. It was shown in 

the study by [23] that face feature extraction and classifier construction can be 

combined to improve the efficiency of the two stages of expression recognition. Deep 
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learning techniques, especially CNN architectures, a multi-stage design inspired by 

biology that automatically acquire hierarchies of invariant features, have been 

effectively used to extract features and perform classification. 

Deep learning-based techniques that have significantly advanced the field of 

FER. In the paper by [24], the author states that deep learning networks have 

progressively improved our comprehension of low-dimensional features that can 

distinguish high-dimensional complex face patterns from low-dimensional features. 

CNN, Recurrent Neural Networks (RNN), and long-short-term Memory (LSTM) are 

models for deep learning techniques to classify the output expression. All types of 

deep learning models can be used for various tasks, such as image recognition. This 

paper also presented an illustration of arousal and valance domain emotional labelling, 

as shown in Figure 2.14. The valence-arousal space is a popular and adaptable 

paradigm. The valence-arousal model classifies different sorts of emotions according 

to how valuable their emotional elements are. 

 

Figure 2.14: The illustration of arousal and valance domain emotional labeling [24] 
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One of the best-known variations of traditional multilayer neural networks for 

image processing is the CNN. CNNs are a subset of deep neural networks that are 

widely used in computer vision tasks such as image and video segmentation, 

classification, and recognition. CNN uses convolutional layers to learn and 

automatically extract features from raw data by applying several filters to the input 

data. CNN has an important role in deep learning because of its better feature 

extraction ability. CNN consists of several layers, such as an input layer, a hidden 

layer, and an output layer, as shown in Figure 2.15. For the hidden layer, it consists of 

a convolution layer, pooling, and fully connected to teach the representation of input 

features. As for the output layer, it is used to perform classification or regression tasks 

using the output from the convolution layer. 

 

Figure 2.15: The basic CNN architecture 

 

Based on the paper [25], the author suggests a resource for automatic emotion 

recognition by using deep learning techniques. It uses the CNN method to identify six 

basic emotions using MATLAB. It uses the JAFFE dataset, which consists of 213 

images with dimensions of 256x256 pixels and six different emotions. It uses the CNN 

method because convolution is powerful in finding the features of the input image if 

the kernel used is correct. Each convolution result is added to the following layer in a 
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hidden node. Kernel design is an art form that has been enhanced to achieve some 

incredible things with images. The nodes in the hidden layer, as shown in Figure 2.16, 

correspond to each feature of the convoluted image. This paper shows that there are 

several types of layers for CNN architecture, such as the input layer, where the input 

image is in 2D and grayscale, and then it is converted to a pattern. In addition, the 

convolution layer, where it takes the image using zero padding, provides output when 

the kernel is ready to use. As for the pooling layer, it divides the input image into a set 

of rectangles, and for each sub-region, it outputs a value. For the fully connected layer, 

where it is a 1D vector and each neuron in the layer will be connected to the previous 

volume. Finally, as a result, the author obtained an overall accuracy of 91.6%.  

 

 

Figure 2.16: Hidden layer nodes in neural network [25] 

 

In the paper [12], the author presented facial expression recognition using deep 

learning techniques, namely CNN, using JAFFE and KDEF datasets. The CNN 

architecture enabled many degrees of characteristics to be extracted from the input 

image. It emphasizes the process of extracting important features using a pre-trained 

convolutional neural network called the AlexNet model. The extracted learned 

features are then trained using Extreme Learning Machine (ELM) and Back 
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Propagation (BP) methods. The author stated that AlexNet is a useful model to replace 

manual feature extraction, and the ELM trained with the extracted features can work 

faster and offer superior performance to BP. For the architecture of the CNN model as 

shown in Figure 2.17, it uses RELU as a non-linear activation function for the 

convolution operation. It is used because it is suitable for CNN architecture because it 

reduces the problem of gradients caused by neural networks. In addition, it is also able 

to accelerate the learning process faster than other activation functions. For the hidden 

CNN layer, it uses max-pooling because it is more efficient than the mean and sum 

pooling methods and is faster in selecting the most relevant pixels.  

 

Figure 2.17: The CNN architecture for FER algorithm [12]   

 

The author focused on two main parts, namely implementing a pre-trained 

AlexNet model to detect facial features and, in the second part, using the extracted 

features to train the BP algorithm. However, the BP model converges very slowly. 

With that, the author implemented ELM to improve facial expression recognition 

performance. Based on Figure 2.18, it shows CNN+BP and CNN+ELM for the FER 

model, which is a process for facial expression recognition. Based on the two models, 
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the accuracy of BP approaches between 91% and 94% for recognizing emotions, while 

the accuracy of ELM can exceed 95% in classifying facial expressions in a short time.  

 

Figure 2.18: Illustration CNN+BP and CNN+ELM of FER model [12] 

 

The paper by [14] shows how to classify FER from a static image without 

requiring feature extraction work. It also provides pre-processing methods such as face 

detection and lighting correction to improve accuracy in recognizing facial 

expressions. The aim of this paper is to develop a novel architecture from scratch to 

classify faces into emotional categories using CNN and improve accuracy on the 

FER2013 dataset through preprocessing tasks. The author says the image 

preprocessing process involves the detection and alignment of faces, poses, occlusion, 

data augmentation, and others. To detect faces, it uses the Haar Cascade Classifier. To 

correct the lighting in the picture, the researchers propose to use histogram 

equalization. Based on Figure 2.19, the author uses CNN models to solve FER 

problems such as translation, rotation, subject independence, and scale invariance. It 

consists of 6 convolution layers using RELU as an activation function: 3 max-pooling, 

2 drop-out with value 0.2, 1 flattened layer, and 2 dense layers, one dense with RELU 

and the other with SoftMax as an activation function. The total number of parameters 

is 1.2 million. 
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Figure 2.19: Illustration of CNN architecture [14] 

 

Based on Figure 2.20, this shows the confusion matrix table done by the author 

to analyze the overall accuracy of the FER system. The author uses different batch 

sizes of 512 and 10 epochs to get the best test accuracy. As a result, the author achieved 

an overall accuracy on FER2013 test data of 61.7% without involving pre-processing 

tasks, while the state-of-the-art test accuracy for 7 emotion categories using ensemble 

CNN was 75.2%. 

 

Figure 2.20: The confusion matrix on the FER2013 test dataset [14]. 
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2.2 Summary 

In summary of Chapter 2, SER involves recognizing and categorizing 

emotions using speech signals, is crucial for realistic human-computer interaction. 

Additionally, as body gesture can communicate non-verbal emotional signals that 

cannot be expressed through the face or speech, the study of emotion identification 

through body motions is another area of interest. In addition, the goal of FER is to 

identify, evaluate, and interpret the emotions and facial expressions of people. FER 

technology analyses and decodes human emotions from facial expressions using 

computer vision and artificial intelligence algorithms. Databases are essential to FER 

analysis because they offer a variety of pictures of people's faces expressing various 

emotions. The most widely utilized laboratory-controlled database to evaluate FER 

systems is the FER2013 database. The next area of AI such machine learning, focuses 

on developing algorithms and models that let computers learn from data and make 

predictions or decisions without having to be explicitly programmed. Moreover, FER 

which involves training neural networks to automatically recognize and classify 

facial expressions from picture data or videos, makes use of deep learning techniques. 

RELU are used by the authors as a non-linear activation function for the convolution 

process, and max-pooling is used in the CNN layer since it is faster and more 

effective than mean and sum pooling at identifying meaningful. Therefore, this 

project aims to recognize emotions using the facial expression database FER2013. 

The technique employed is deep learning, specifically CNN, which offer several 

advantages, including the ability to handle complex datasets.  
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CHAPTER 3  

METHODOLOGY  

In this chapter, will be discussed about the methodology for implementing 

FER using CNN. It will begin by exploring the versatile simulation environment 

provided by Jupyter Notebook and Google Colab and explained the essential role of 

open-source libraries such as TensorFlow, KERAS, OpenCV, Matplotlib, and 

NumPy in simplifying various aspects of the FER project, from data manipulation 

and visualization to machine learning model development. Subsequently, will detail 

the proposed FER algorithm employing CNN, covering data preparation, model 

architecture design, hyperparameter tuning, training, testing, and performance 

analysis. Finally, will discussed the integration of the FER system into a webcam for 

real-time facial expression analysis, offering a comprehensive understanding of the 

entire process.    
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3.1 Modern Tools 

In this section, we discuss the use of modern tools in this simulation to 

achieve project results. It uses open-source software and libraries for each different 

task. For tasks such as acquiring datasets. This project uses the Kaggle website while 

for model design, simulation and optimization and model comparison, we use 

modern tools in terms of open-source libraries such as TensorFlow, KERAS, 

OpenCV, Matplotlib and NumPy. Open-source libraries such as TensorFlow and 

KERAS are used in this project to build the model architecture and train the model. 

For OpenCV library is used as identify face in image or video stream while 

Matplotlib library allows visualization of model performance and confusion matrix 

to evaluate the performance. For NumPy library is used for manipulating and 

processing numerical data during generating confusion matrix. For the CNN model 

simulation task, this project uses the Google Colab platform which is Google's free 

cloud infrastructure that allows to write and execute python code.  

 

3.1.1 Jupyter Notebook 

Jupyter notebook is an open-source tool that operates in web applications, it 

allows users to write python code for various tasks, as well as create visual 

representations, and mathematical formulas. It is structured based on cells where 

users can separate their code or text to divide the coding part. In this project, Jupyter 

notebook is used to implement real time monitoring by loaded the proposed model. 

Each cell is divided into code such as code to define the library, and code to perform 

real time monitoring using a webcam. It makes it easy for users to organize programs. 

In addition, Jupyter Notebook also caters to different types of users and their 
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preferred languages. It excels in analyzing data, research efforts, educational 

purposes and collaborative initiatives based on visualization capabilities. In addition, 

Jupyter Notebook allows users to easily share their work and increases 

reproducibility and facilitates collaborative exploration.  

 

3.1.2 Google Colab 

Google Colab, is cloud-based platforms that offers several advantages for 

FER system. Google Colab provides free access to GPU and TPU resources, 

significantly speeding up model training and enabling efficient handling of large 

datasets and complex architectures. This is because the amount of model parameters 

and large datasets causes the training process to be longer and requires a good GPU 

to train the model. Therefore, this project uses Google Colab as a platform to process 

images, build CNN models, train models and evaluate model performance. 

Additionally, it integrates seamlessly with popular machine learning libraries, such 

as TensorFlow and KERAS, making it easy to import and use pre-built models, 

datasets, and libraries.    

 

3.1.3 Open-Source Library 

This project uses open-source libraries to provide pre-implemented functions, 

classes or algorithms that users can leverage to perform various tasks. In this project, 

libraries such as Matplotlib are used for numerical calculations, data manipulation 

and data visualization. Machine learning libraries such as TensorFlow and OpenCV 

offer functions and classes for training and deploying machine learning models. This 
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library allows users to access powerful tools and functions that simplify complex 

tasks and speed up their development process. To use this open-source library, it is 

necessary to install the library using a package manager such as “pip” or “conda”. 

Once a library is installed, it can be imported into Notebook using a standard import 

statement such as "import library-name" which allows the user to use the library. 

With that, users can use open-source libraries to program code for various tasks.  

 

3.1.3.1 TensorFlow  

TensorFlow is an open-source machine learning framework. The task of 

facial expression identification can be successfully solved using the open-source 

library TensorFlow which is a powerful deep learning framework. A CNN can 

provide the data. It is good enough to extract important aspects from facial images. 

KERAS, the high-level API provided by TensorFlow, makes it easier to create and 

train CNN architectures. When training the model, the prepared data set is fed into 

the CNN, and the model parameters are optimized to reduce the desired loss function. 

TensorFlow offers a variety of optimization techniques, including Adam and 

Stochastic Gradient Descent (SGD), enabling effective training. Therefore, 

TensorFlow can create reliable and accurate facial expression recognition models.  

 

3.1.3.2 KERAS 

KERAS is an open-source learning framework used for the process of 

building and training our deep learning models. Based on this project, KERAS is 

used to import layers from KERAS that represent different neural network 
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components such as input layer, convolution layer, maxpooling2D, fully connected 

layer and others. This library can also separate the dataset into two, namely training 

dataset and validation dataset. For model training, KERAS offers a simple loading 

method that makes training easy where users can monitor training progress and use 

callbacks to stop early or save the best model.   

 

3.1.3.3 OpenCV 

OpenCV is an open-source library for computer vision tasks. It offers a 

variety of algorithms and features which include deep learning-based techniques, 

which allow it to find and identify faces in images or video streams. In addition, 

OpenCV can also be combined with deep learning or machine learning frameworks 

to detect facial expressions. To train a deep learning model, it can use the extracted 

features as input. OpenCV is an important library for performing real time 

monitoring. To make the system's output easier to understand, it can display the 

expected expression, draw a bounding box around the face, or overlay a recognized 

face landmark on the screen or video frame.   

  

3.1.3.4 Matplotlib 

Matplotlib is an open-source library used to provide various functions such 

as creating plot-style visualizations. In this project, the Matplotlib library is used for 

plotting model accuracy and loss graphs for the model that has been trained. With 

that, it makes it easier to analyze training accuracy, validation accuracy, training loss 

and validation loss. Matplotlib was also used to plot the distribution of facial 
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expression labels, providing insight into the balance of different expressions in the 

data set. In addition, Matplotlib allows visualization of model performance such as 

confusion matrix to evaluate the performance of different models or compare 

performance on different data sets. A confusion matrix, showing the predicted and 

true distribution of labels, can also be created using Matplotlib to gain insight into 

the model's classification performance. 

 

3.1.3.5 NumPy 

NumPy is an important tool that manipulates and analyses numerical data. It 

is an open-source library. NumPy's capacity to manage big datasets effectively is one 

of its key features. Several mathematical functions that are necessary for this face 

expression recognition challenge are also provided by NumPy. These include signal 

processing, statistical computations, linear algebra procedures, and fundamental 

arithmetic operations. This approach is used to image processing tasks including 

image normalization and feature extraction. Even when working with big datasets, 

this library can guarantee quick and precise computations. 

  

3.2 Proposed FER Algorithm using CNN. 

Based on this project algorithm, the FER project is divided into several tasks, 

as shown in Figure 3.1. First, this project selects the FER2013 dataset as the input 

image for the training model. It is taken from the Kaggle website. Next, the dataset 

is loaded on Google Colab as a database preparation. Next, before designing and 

training the model, the image on the database must be processed such as normalizing 
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the image, applying data augmentation technique, separating the data set into training 

and validation data sets of 70% and 30% of the train dataset, respectively. Next, the 

project chooses a deep learning technique which is CNN to classify emotions into 

seven emotions. This project needs to design a custom CNN model according to the 

appropriate parameters. There are several parameters involved in designing a custom 

CNN model, including input shape, convolution layer, pooling layer, activation 

function, fully connected layer, output layer, and the other. After completing the 

CNN model design, the CNN model needs to be trained on several epochs. Next, the 

validation accuracy is observed to ensure that the model predicts well on images that 

the model has never seen during training. If the accuracy of the model is not 

satisfactory, the CNN custom model needs to tune the hyperparameters which are 

learning rate, batch size and epoch. The values for tuning these hyperparameters are 

0.01, 0.001, 0.0001 for the tuning learning rate, for batch sizes 8, 16, 32, 64 and 128, 

and epochs 50, 75, 100, 125, and 150. After modifying the hyperparameters the 

model should be retrained. until achieving satisfactory verification accuracy. If it can 

achieve satisfactory training and verification accuracy, this project tests the model 

that has been trained with some sample images from the FER2013 test dataset where 

the model never sees that image during the training process. If the images that have 

been predicted by the model obtained more incorrect predictions than correct 

predictions, the model needs to be retrained by tuning hyperparameter. If the model 

succeeds in predicting images with more correct than incorrect the model will be 

tested for performance such as model accuracy, precision, recall and F1-score that 

have been trained with the test dataset in the FER2013 dataset. Finally, this FER 

system will be used in real time using a webcam. 
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Figure 3.1: The flowchart diagram in FER project 

 

3.2.1 Preparing and Processing Images in Database 

The project starts by selecting a dataset that has the seven basic emotions 

which available in Kaggle. This project has selected the FER2013 dataset for model 

training and testing. Since the FER2013 dataset includes images with seven different 

emotions such as angry, disgust, fear, happy, neutral, sad and surprise. It is important 
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to have access to large datasets of facial images displaying various emotions and 

expressions with different persons. As a result, the FER2013 dataset will be used 

because it has 35887 images. To ensure that images are in a format according to deep 

learning architecture, the dataset must first be preprocessed. During image 

preprocessing, the train dataset is split into training and validation datasets where 

70% for training and 30% for validation and normalized the pixel values because 

neural networks tend to perform better when the input data is scaled to a smaller 

range. It is essential to helps in stabilizing and speeding up the training process. 

Normalization prevents large input values from dominating the learning process and 

makes it easier for the model to learn meaningful patterns. Besides that, this project 

applied data augmentation techniques to reduce the overfitting problem and obtain 

better model accuracy by generating diverse variations of the existing training 

images. These techniques involve rotations, shear, width shift, height shifts, and 

horizontal flip as shown in Figure 3.2. Therefore, enriching the dataset and allowing 

the model to learn more generalized and robust features, resulting in improved 

performance on unseen data.   

 

Figure 3.2: The augmented images 



 49 

 

3.2.2 Design the CNN Custom Model 

Next, to design a custom CNN model, there are several parameters and layers 

to consider such as input shape, convolution layer, activation function, pooling layer, 

fully connected layer and output layer. As shown in Figure 3.3 the input shape used 

is 48x48x3 is the same as the image input shape from the FER2013 dataset and the 

architecture of this model consists of 3 CNN modules, 4 fully connected layers, and 

the output layer with the activation function used is SoftMax. For the first module, it 

consists of 2 convolutional layers with a feature map size of 46x46x256, where the 

convolutional layer is used to extract relevant features from the input image. After 

that, the maxpooling2D layer is used to reduce the spatial dimension. In the second 

CNN module, there are 2 convolutional layers with a smaller feature map size of 

23x23x128. Again, the maxpooling2D layer is used to reduce the spatial dimension. 

As the network grows, the dimension of the feature map decreases due to a 

combination of convolution and pooling operations. Moving to the third CNN 

module, it consists of 2 convolutional layers with a smaller 11x11x64 feature map 

size. Similarly, the maxpooling2D layer is used to reduce the spatial dimension. Each 

CNN module uses the RELU activation function. Regarding the fully connected 

layer, it consists of 4 layers, each with a different number of neurons, namely 512, 

256, 128, and 64. All these layers use the RELU activation function. Finally, the 

output layer with activation function SoftMax consists of 7 neurons for the 

classification of 7 emotions.  
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Figure 3.3: Designed the CNN custom model.    

 

3.2.2.1 Input Shape 

One of the characteristics in the CNN model is the shape of input images 

where it is important to determine the dimensions of the input image or data that will 

be processed by the CNN model. This project uses a 48x48x3 image format where 

48x48 pixels while 3 is the number of channels in the images according to the size 

from the FER2013 dataset. Therefore, the CNN model will expect an input image of 

48 x 48 pixels. The input shape parameters are important in establishing the layer 

size and structural compatibility of the CNN model. A CNN model will be made to 

handle and process images of that size if the input format is set to 48x48. This ensures 

that the model is properly prepared to examine the facial expressions recorded for 

the datasets.   
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3.2.2.2 Convolutional 2D Layer 

The fundamental component of the CNN architecture that extracts various 

levels of features from the input image is the convolutional 2D layer. The input data 

is convoluted by a convolution layer to apply a collection of learnable filters, often 

known as kernels or feature detectors. It is based on this project and extracts local 

features or patterns from the input data using 3 to 3 kernel filters. Figure 3.4 illustrates 

how each filter convolutions over the input data in a sliding window manner during 

the convolution procedure.    

 

Figure 3.4: The convolutional process 

 

The filter adds the result after multiplying its weight element by element by 

the appropriate input value at each place of its acceptance field. A feature map is 

produced as a result of this process, and it shows how a particular filter responds to 

various patterns and features contained in the input. The main goal of the convolution 

layer is to identify important features at various spatial locations of the input and 

capture local spatial dependencies. Convolutional layers can automatically learn and 

extract different low-level and high-level features, such as edges, vertices, textures 

and more complex patterns specific to the job at hand, by learning filter weights 

through training. Edges, colors and lines are detected at a low level by the first-round 
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operation, while the high-level features are extracted by the second-round operation. 

The winding operation is represented as follows:   

                                        𝐴[𝑖, 𝑗] = ∑ ∑ 𝐹(𝑚, 𝑛) × 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)

𝑛−1

𝑛−0

𝑚−1

𝑚=0

                       (3.1) 

Where: 

 𝐴[𝑖, 𝑗]  : The output feature map  

 𝑖, 𝑗  : 𝑖 and 𝑗 denote by the spatial position on the feature map.  

 𝑚  : 𝑚 is the number of rows in the filter. 

  𝑛   : 𝑛 is the number of columns in the filter.  

 

The convolution layer produces several feature maps, each of which shows the 

activation of a different filter. A RELU is then applied to these feature maps to create 

non-linearities and increase the capacity of the network to model complex 

relationships. 

 

3.2.2.3 Pooling Layer 

Following the convolution layer, the parameter pooling layer is a critical 

component. The main goal of this operation is to preserve the most critical 

information while reducing the spatial extent of the feature map obtained from the 

convolution layer, pooling, which works as a form of downsampling, is used to 

reduce the computational complexity of the network, control the attachment and 

improve the obtained features. Pooling operations are usually applied independently 

to each feature map, which is achieved by dividing it into non-overlapping regions 
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referred to as pooling windows. maxpooling2D was used to reduce the spatial 

dimension and downsampling the feature maps in line with this effort. maxpooling2D 

is generally more efficient than the mean and sum pooling methods because it allows 

selection of the most relevant pixels and operates at the shortest speed. Following 

collection, the feature map output dimensions are as follows:   

                            𝑊𝑐 = ((
(𝑊𝑖𝑛−𝐹𝑤+2𝑃)

𝑆
) + 1)                        (3.2) 

𝐻𝑐 = ((
(𝐻𝑖𝑛−𝐹ℎ+2𝑃)

𝑆
) + 1)                               (3.3) 

 𝐷𝑐 = 𝐾                     (3.4) 

 

Where: 

 

𝑊𝑐 : The width of the output feature map after the pooling operation 

𝑊𝑖𝑛 : The width of the input feature map to the pooling layer 

𝐹𝑤 : The width of the pooling window 

𝑃 : The amount of padding 

𝑆 : The stride of the pooling operation 

𝐻𝑐 : The height of the output feature map after the pooling operation 

𝐻𝑖𝑛 : The height of the input feature map to the pooling layer 

𝐹ℎ : The height of the pooling window 

𝐷𝑐 : The depth of the output feature map after the pooling operation 

𝐾 : The number of filters 
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3.2.2.4 Activation Function 

The output of every neuron or node in a CNN is subjected to an activation 

function. The activation function imparts non-linearity to the model, facilitating its 

ability to discern and acquire knowledge of complex correlations that exist between 

inputs and outputs. Selected activation functions have a substantial impact on the 

capacity of the network to approximate and represent complex functions. The input 

and hidden layers of this framework employ RELU, while the SoftMax activation 

function transforms the previous layer's output into probabilities denoting the 

proportion of times an input is assigned to each class. The nonlinear RELU activation 

function that follows the convolution procedure is illustrated in Figure 3.5.  

 

Figure 3.5: The RELU activation function 

 

It is the optimal function for a CNN architecture due to the fact that it aids in mitigating 

the gradient problem introduced by deep neural networks. In the same way that it can 

expedite the learning process in comparison to alternative activation methods. Its 

definition is as follows:    

 𝑓(𝑥) = {
max (0, 𝑥), 𝑥 ≥ 0

0, 𝑥 < 0
          (3.5) 
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Where: 

 𝑓(𝑥)  : The RELU function 

 max (0, 𝑥) : The maximum of 0 and 𝑥 

 𝑥  : The output of a neuron 

 

3.2.2.5 Fully Connected Layer 

Fully connected layers, also known as dense layers in CNN architecture, are 

used in the project to be responsible for creating the final predictions based on 

features learned from previous layers. It creates a fully connected network structure 

by connecting every neuron in the previous layer to every neuron in the current layer. 

Learning the non-linear combination of information obtained by convolution and 

fusion layers is the main purpose of fully connected layers. A fully connected layer, 

which functions as a conventional neural network layer with a learnable set of 

weights and biases, takes these flattened features and feeds them into it. To create the 

final output, the fully connected layer runs a sequence of matrix multiplications and 

uses activation functions. Based on this project, the fully connected layer, it consists 

of 4 layers, each with a different number of neurons, namely 512, 256, 128, and 64. 

All of these layers use the RELU activation function while the output layer consists 

of seven classes, and it uses SoftMax as the activation function and is placed after 

the layer is fully connected. This is to enable the model to generate predictions, this 

activation function transforms the output of a fully connected layer into a probability 

distribution over the classes. 
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3.2.3 Training and Observe the Validation Accuracy 

The CNN model needs to be trained in several epochs and this project trains 

the model with 50 epochs as an initial as shown in Figure 3.6 and then observes for 

the accuracy of validation to determine whether it is satisfactory or not. If the 

accuracy of the model is not satisfactory, the CNN model needs to tune 

hyperparameters such as learning rate, batch size and number of epochs. After 

modifying the hyperparameters, the model needs to be retrained until it achieves 

satisfactory validation accuracy. If the validation accuracy is satisfactory, the model 

is evaluated by analyzing model performance such as analyzing overall accuracy, 

precision, recall and F1-score. Training the model to recognize and extract important 

facial features that show different expressions is an important step in the facial 

expression recognition process. CNN model was used to analyze images and identify 

relevant features. The CNN models need to be trained after the dataset has been 

preprocessed. The preprocessed image is fed into the model, and its parameters are 

modified. After learning the deep features, the FER system will classify the provided 

faces into one basic emotion. It is necessary to create training and test sets to train, 

evaluate and validate our model on test data. The training procedure is important 

because it teaches the model what to look for and predict. The FER system cannot 

produce an accurate model without it. By examining discrete regions of the input 

image at a time, the network trains to recognize patterns in the input data, such as 

edges and shapes. One frequent use of CNNs is FER. In this task, a CNN is trained 

using a train dataset, each of which has an associated facial emotion identified in 

each image. The network gained the ability to recognize features associated with 

various facial expressions, including the shape of the mouth and eyebrows, eye 
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placement, and forehead wrinkles. Applying learned features to new input images 

allows the network to predict facial expressions after they have been trained.   

 

Figure 3.6 The training processes captured from 30 to 50 epochs. 

 

3.2.3.1 Tuning Hyperparameter Batch Size 

Batch size is a hyperparameter that plays an important role in the model 

training process. It is also important to get better validation accuracy. Batch size is 

the number of data samples used in each iteration of the training algorithm. It 

specifies the number of examples from the training data set that the model processes 

in one forward and backward pass before updating the model parameters. The smaller 

the batch size value, the model processes fewer instances in each iteration. This 

indicates that a significant number of iterations are required to finish an epoch, or a 

complete run of the training dataset. The smaller batch makes each iteration quicker, 

but since more iterations are required to view the complete dataset, the overall 
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training time can increase. In addition, a large batch size value means more instances 

are processed by the model in each iteration. As a result, each epoch may be 

completed with fewer iterations, which may speed up the training process overall. 

Based on this project, several batch sizes are used to determine the validation 

accuracy that is optimal and suitable for the CNN model that was constructed. 

Among the batch sizes that have been tuned are 8, 16, 32, 64, and 128. Tuning the 

batch size is important because it helps strike the right balance between training 

speed and model generalization.  

 

3.2.3.2 Tuning Hyperparameter Learning Rate 

The learning rate controls the size of the step used by the model to update its 

parameters when training in a CNN architecture. It regulates the rate at which the 

model learns from the training data. When training a CNN model, it is crucial to keep 

the learning rate in mind as it influences the convergence speed and the learned model 

quality. If the learning rate is set too high, the model can end up wildly off course 

and never converge. If the learning rate is excessively slow, the model may stall out 

before reaching convergence or settle for an imperfect solution. It uses a learning rate 

of 0.001 to keep the training process stable, according to this project. It reduces the 

possibility that the loss function may vary substantially due to major weight changes. 

Thus, to ensure the successful training and optimization of the CNN model, this 

project requires the adjustment of the learning rate. Several learning rate values have 

been fine-tuned, including 0.01, 0.001, and 0.0001.     
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3.2.3.3 Tuning Hyperparameter Epochs 

The number of epochs is a hyperparameter that controls how often the full 

training data set is sent back and forth across the network during training. Input is 

fed into the network in the forward pass to provide predictions, and the model then 

adjusts its weights in the backward pass depending on the calculated losses and the 

chosen optimization strategy. The number of epochs chosen influences the 

effectiveness of the model learning from the training data. A model may become less 

appropriate if the number of epochs is set too low, fail to recognize complex patterns 

and perform poorly on both the training and test data sets. Conversely, increasing the 

number of epochs too much may result in overfitting, when the model becomes over-

adapted to the training set and struggles to perform well on new, untried data. 

Therefore, this project needs to utilize different epoch values to ensure that it can 

achieve both good validation accuracy and optimize performance for the CNN 

model. Various epoch values have been tuned, ranging from 25 to 125, including 25, 

50, 75, 100, and 125.   

 

3.2.4 Testing the Model 

After successfully achieving validation with higher accuracy of trained CNN 

model, it should be tested using some sample of images from the FER2013 test 

dataset, as illustrated in Figure 3.7. This test aims to evaluate the CNN model's ability 

to correctly predict human expressions. The figure displays image samples that the 

model has predicted incorrectly and those it has predicted correctly. If the model 

makes more incorrect predictions than correct ones, it is an indication that the CNN 

model needs to be retrained by tuning its hyperparameters. Conversely, if the CNN 
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model predicts more images correctly than incorrectly, it signifies success, and 

further analysis of the model's performance becomes necessary.    

 

Figure 3.7: The images of predicted emotion from the test dataset 

 

3.2.5 Analyzing the Model Performance    

After training a deep learning model, it is necessary to test the model and then 

evaluate the performance of the model in terms of precision, recall, F1-score and 

model accuracy. In FER, the confusion matrix is the best tool used to evaluate the 

model's performance because it provides a visual representation of the model's 

prediction compared to the actual ground truth label. A confusion matrix is a table that 

compares the deep learning model's predicted expression with the actual expression 

for the test image array. The table has a row for each actual expression and a column 

for each predicted expression. The component of the confusion matrix indicates the 
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number of correctly or incorrectly classified model images. By understanding the 

confusion matrix, it is possible to evaluate and fine-tune the trained model, address its 

strengths and weaknesses, and make informed decisions to improve its performance 

for specific classification problems. This tool can analyze such things as model 

accuracy, precision, recall, and F1-score, where the formulas are:  

For accuracy: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐼𝑚𝑎𝑔𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑖𝑚𝑎𝑔𝑒𝑠
          (3.6) 

For precision: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
           (3.7) 

For recall: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
               (3.8) 

For F1-score: 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2×(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
           (3.9) 

  

Where:  

True Positive (TP)  : The number of samples that were 

correctly predicted as positive. 

True Negative (TN)  : The number of samples that were 

correctly predicted as negative.           

False Positive (FP)  : The number of samples that were 

incorrectly predicted as positive. 

False Negative (FN)  : The number of samples that were 

incorrectly predicted as negative. 
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In this project, to evaluate the model performance, this project writes the 

program code to display the confusion matrix and a classification report where it 

shows parameters to evaluate the performance of the model as shown in Figure 3.8. 

The table has a row for each actual expression and a column for each predicted 

expression. Therefore, this project will use a confusion matrix that can be used to 

analyze the performance of the model in terms of model accuracy, precision, recall 

and F1-score, which provides more detailed information about the performance of 

the model for each expression.   

Figure 3.8: The confusion matrix and classification report. 

 

3.2.6 Integrate the FER system in Real Time  

After analyzing the performance of the model, the project continued by 

integrating the FER system into a webcam. This integration enables real-time facial 

expression monitoring and recognition from live video streams captured by web 

cameras. The integration process usually involves several steps. First, the proposed 

CNN model was loaded, along with any necessary dependencies such as image 

processing libraries and webcam interfaces. Next, the webcam feed is accessed, and 
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frames are captured continuously. Each frame is then pre-processed to prepare it to 

be fed into the FER model. This preprocessing may include resizing, normalization 

and any other transformations necessary to ensure compatibility with the model's 

input requirements. To detect faces in each frame, this project uses the "Haar Cascade 

Classifier" code. This aims to reduce the noise on each frame and make it easier for 

the uploaded model to predict the detected facial expressions. Once the frames are 

preprocessed, they are sent through the FER model for prediction. The model 

analyzes facial features and predicts the corresponding emotion or expression.  

 

3.3 Summary 

In summary of Chapter 3, discussed about the modern tools used in this 

project, and proposed FER algorithm using CNN. For simulation environment, 

Google Colab is a cloud based Jupyter Notebook platform that enables users to run 

simulations and check results in a simple and collaborative environment. It supports 

programming languages like Python and provides resources like CPUs for speeding 

up calculations. Besides, open-source libraries like NumPy, and Matplotlib are used 

for numerical calculations, data manipulation, and visualization. Machine learning 

libraries like TensorFlow and OpenCV offer functions and classes for training and 

using models, saving time and effort compared to building complex services from 

scratch. Moreover, Matplotlib is an open-source library used for facial expression 

recognition, providing functions and plot styles. NumPy is a powerful Python library 

for facial expression recognition, offering efficient handling of large datasets and 

manipulation of multidimensional data. For the part of proposed FER algorithm using 

CNN, the FER project focuses on a deep learning technique called CNN to classify 
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emotions into seven emotions. The project uses the FER2013 dataset, consisting of 

35887 facial image images, to train and test deep learning models. The dataset is 

preprocessed by dividing it into training and test sets, normalizing images and apply 

data augmentation technique. The CNN model is chosen due to its good classification 

accuracy in deep learning techniques. Parameters such as input shape, convolutional 

layer, pooling layer, activation function, fully connected layer and output layer are 

set to ensure the model's performance and generalization capacity. The number of 

epochs in a CNN architecture controls the frequency of training dataset sent back and 

forth. The trained CNN model is tested with image samples from dataset test 

FER2013 to evaluate its accuracy in predicting human expressions. If the model 

predicts less than satisfactory accuracy, it is retrained by tuning hyperparameters. 

The project then integrates the FER system into a webcam to analyze and recognize 

facial expressions from live video streams. The integration process involves loading 

a trained CNN model, preprocessing frames, and using the "Haar Cascade Classifier" 

code to detect faces. The FER model analyzes facial features and predicts 

corresponding emotions, which can be displayed in real-time through overlays, 

bounding boxes, or other visual representations.  

 



 

 

 

CHAPTER 4  

RESULTS AND DISCUSSION 

In this chapter, discussed about the analysis of data augmentation for custom 

CNN model which is important for addressing the issue of overfitting problem. 

Besides that, this chapter will explore the process of hyperparameter tuning such as 

learning rate, batch size and epochs to achieve the highest possible model accuracy. 

Moreover, this chapter will include presentation of our proposed custom CNN model 

by using appropriate hyperparameter and confusion matrix for analyzing the model 

performance. Besides that, in this chapter will discuss the model accuracy and loss 

for three pretrained model which are VGG16, AlexNet and MobileNet to compare 

with proposed custom CNN model by using the same hyperparameter value. The 

comparison involves model accuracy, precision, recall and F1-score.   
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4.1 Data Augmentation Analysis for Custom CNN Model 

In deep learning, data augmentation is an important technique used to increase 

the variety of available training data. The results of this experiment are illustrated in 

Figure 4.1, with epochs represented along the x-axis and model accuracy and loss 

along the y-axis. Without using data augmentation, accuracy generally shows an 

upward trend during the training phase but may reach a plateau or even begin to 

decline during the validation phase. At 10 epochs, the model begins to overfit, as 

evidenced by a significant increase in training accuracy peaking at 90.13 percent after 

14 epochs. On the other hand, the validation accuracy showed a small increase to 

54.89% after 5 epochs, but then leveled off between 18 and 50 epochs. Overfitting is 

indicated by the fact that the model's performance on new unseen data does not 

improve significantly past a certain point, as this difference shows. The continued 

reduction in training loss indicates that the model has been more accurately matched 

to the training data. Typically, this decrease occurs between 0 and 20 epochs. 

However, the validation loss behaves differently. At seven epochs, it decreases to a 

minimum of 1.2090, indicating that the model has reached its maximum performance 

on the validation set. Once the validation loss exceeds this minimum value, it starts to 

increase, indicating that the effectiveness of the model decreases with the progression 

of training on unobserved data. Increasing validation loss following the minimum is a 

clear indication of overfitting. By implementing data augmentation techniques such as 

shear, rotation, width shift, height shift and horizontal flip, which helps in improving 

their robustness, generalization, and ability to learn features that are invariant to such 

transformations. As a result of the data augmentation process, the gap between training 

accuracy and validation accuracy is reduced compared to models that do not use 

augmentation. This indicates that by using augmentation data, the model has obtained 
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a more general representation, thus reducing the tendency towards overfitting. A 

steady increase in training accuracy is usually observed throughout the epochs. 

Validation accuracy exhibits a comparable pattern to training accuracy. The initial 

growth is more gradual, but the trend is toward greater stability at higher levels when 

compared to the non-augmented. Over epochs, the training loss exhibits a consistent 

downward trend as the model gains proficiency in fitting the training data. 

Nevertheless, the rate of decline may be marginally delayed in comparison to training 

that does not involve augmentation. Additionally, it may stabilize at a greater loss 

value as a result of the increased diversity of the augmented data. Similarly to the 

validation accuracy, the validation loss may initially resemble training without 

augmentation. However, stability may be achieved at a reduced loss value in 

comparison to non-augmented. The model may exhibit indications of enhanced 

generalization as it is exposed to a variety of instances throughout the training process.  

 

Figure 4.1: The model accuracy and loss without and with data augmentation 
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4.2 Hyperparameter Tuning for Custom CNN Model 

When employing a custom CNN model for face emotion recognition task, 

hyperparameter tuning is an essential stage in any machine learning project. Finding 

the ideal number of values to maximize the model's performance involves adjusting 

the model's hyperparameters.  

 

4.2.1 Tuning Learning Rate and Batch size 

Hyperparameter tuning is a critical step in optimizing the performance of a 

neural network model. The learning rate controls the size of the step used by the model 

to update its parameters when training in a CNN architecture. It regulates the rate at 

which the model learns from the training data while batch size determines how many 

data samples are processed together during each training iteration. The objective of 

tuning process is to obtain the combination of that hyperparameters that maximizes 

the accuracy of the model for FER2013 dataset. 
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Table 4.1: Analyzing the accuracy of custom CNN model by tuning the 

hyperparameter learning rate and batch size. 

Batch Size  Learning Rate Model Accuracy (%) 

 

8 

0.01 63.00 

0.001 63.33 

0.0001 63.00 

 

16 

0.01 64.15  

0.001 65.27 

0.0001 64.84 

 

32 

0.01 63.03 

0.001 64.91 

0.0001 64.61  

 

64 

0.01 62.64  

0.001 63.39 

0.0001 63.93 

 

128 

0.01 61.95 

0.001 40.00 

0.0001 25.83 

 

Based on Table 4.1 shows the results of tuning two important hyperparameters 

which are learning rate, and batch size, for a custom CNN model. The column 

indicates the batch size used for training the CNN model. For the column represents 

the learning rate used for training the model. For the column model accuracy (%) 

shows the accuracy achieved by the custom CNN model on the test dataset for 

different combinations of batch size and learning rate. Based on the observations, the 
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table shows the performance of a custom CNN model by varying two hyperparameters 

which are batch size and learning rate which are 8, 16, 32, 64, and 128 batch size while 

learning rate 0.01, 0.001, and 0.0001. For batch size 8, the model accuracy varies with 

different learning rates. The accuracy achieved is 63.33% when the learning rate is 

0.001, while a learning rate of 0.01 and 0.0001 both result in slightly lower accuracies 

of 63.00%.  At batch size 16, the learning rate of 0.001 achieved the highest model 

accuracy in this project which is 65.27%. This is the highest accuracy observed across 

all the tested configurations, suggesting that a moderate learning rate coupled with this 

batch size provides an effective balance for learning in this custom CNN model. 

Increasing the learning rate to 0.01 or decreasing it to 0.0001 both result in lower 

accuracies which are 64.15% and 64.84% respectively. This suggests that 0.001 is near 

the optimal learning rate for this batch size, providing enough step size to converge to 

a good solution without overshooting, while still being large enough to avoid getting 

trapped in local minima. For batch size 32, the model accuracy remains relatively 

stable across the different learning rates, with the highest accuracy of 64.91% at a 

learning rate of 0.001. This further supports the notion that a learning rate of 0.001 is 

effective for this custom CNN model. The smaller and larger learning rates produce 

slightly lower accuracies which are 63.03% and 64.61% respectively, indicating that 

there is less sensitivity to learning rate changes at this batch size compared to batch 

size 16. For batch size 64, there is a slight decrease in accuracy across all learning 

rates compared to batch size 32. The model performs best with the learning rate of 

0.0001 and achieving an accuracy of 63.93%. The accuracy at a learning rate of 0.01 

drops to 62.64% which the lowest among the learning rates for this batch size, 

suggesting that a higher learning rate may be less effective as the batch size increases. 

For batch size 128, a significant drop in accuracy is observed when the batch size 
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increases to 128. At a learning rate of 0.01, the accuracy is 61.95%, which is lower 

compared to smaller batch sizes. This could be due to the model not having enough 

updates per epoch to adequately learn from the data. At a learning rate of 0.001, the 

accuracy plummets to 40.00% such a severe drop might indicate that the step size is 

too small when combined with the large batch size preventing the model from 

effectively adjusting the weights. The accuracy further drops to 25.83% with a 

learning rate of 0.0001 reinforcing the idea that this learning rate is too conservative 

for the model to make meaningful progress especially when paired with a large batch 

size. Therefore, batch size 16 combined with a learning rate of 0.001 yields the highest 

accuracy at 65.27%, indicating a mutually enhancing relationship between batch size 

and learning rate. Smaller and larger learning rates show reduced accuracy, and while 

batch size 32 performs well, batch size 64 exhibits a slight dip in accuracy but benefits 

from a smaller learning rate which is 0.0001. Conversely, batch size 128 leads to a 

significant accuracy drop, particularly with learning rates 0.001 and 0.0001 which are 

40,00% and 25.83% respectively. These observations emphasize the sensitivity of 

model performance to learning rate, especially with larger batch sizes, and underscore 

the importance of finding a balanced combination. 

 

4.2.2 Tuning Epochs 

 Tuning hyperparameter epochs is crucial to identify the highest validation 

accuracy after obtained the hyperparameter learning rate and batch size that fits our 

CNN model. An epoch is one complete cycle through the entire training data set. 

During each epoch, the model will go through all the training data once.  
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Table 4.2: Analyzing the custom CNN model by tuning the hyperparameter epochs. 

Batch Size Learning Rate Epochs Model Accuracy (%) 

 

16 

 

0.001 

25 61.05 

50 65.27 

75 64.02 

100 64.52 

125 63.96 

 

In this experiment, Table 4.2 shows the results of analyzing the CNN model 

by tuning the hyperparameter epoch where the learning rate and batch size 

hyperparameter are set to 0.001 and 16 respectively. Based on the results in Table 4.2, 

when the number of epochs is set to 25, regardless of cluster size and learning rate, 

the model achieves an accuracy of around 61.05%. Increasing the number of epochs 

to 50 leads to an increase in accuracy which obtains the highest accuracy of 65.27%. 

Continuing to increase the number of epochs to 75 or 100 also leads to better accuracy 

compared to 25 epochs but with less fluctuation. At 75 epochs, the accuracy is around 

64.02%, and at 100 epochs it is around 64.52%. Finally, at 125 epochs, the model's 

accuracy dropped slightly to 63.96%. From these results, it appears that increasing the 

number of epochs beyond 50 generally improves model accuracy up to a point around 

100 epochs, after which there may be diminishing returns or even a slight decrease in 

accuracy. The optimal number of epochs may depend on other factors such as data set, 

model architecture and others. Therefore, this project achieved the highest proposed 

model accuracy at 65.27% when the hyperparameter batch size, learning rate and 

epochs were tuned.  
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4.3 Analyzing the Performance of the Proposed Custom CNN Model 

Analyzing the performance of the proposed CNN model is crucial because it 

helps assess how well the custom CNN model is performing in recognizing facial 

expressions. By measuring its accuracy, it can determine the model's ability to 

correctly identify and classify different facial expressions.  

4.3.1 Model Accuracy and Loss 

In this experiment, this project analyzes the model accuracy and loss during 

the training process at several epochs, which are iterations over the entire dataset to 

show the performance of the model during the training process. The result of this 

experiment is given in Figure 4.2 where the x-axis represents the number of epochs, 

while the y-axis represents the accuracy and loss. Generally, accuracy is the fraction 

of model predictions that are obtained correctly. In this graph, the training accuracy is 

consistently higher than the validation accuracy, which is typical because the model 

learns directly from the training data. Validation accuracy is important because it 

provides an indication of how well the model generalizes to unseen data. The gap 

between train and validation accuracy suggests several attachments, where the model 

learns the training data very well but does not perform as well on the validation data. 

For the model loss graph, which plots the loss on the training and validation data sets 

over the same epochs. Loss is a numerical value calculated by the loss function, which 

measures how well the model predictions match the actual labels. The goal of the 

exercise is to minimize this value. In this graph, both the training and validation losses 

decrease over time, which is good because it shows that the model is learning. 

Therefore, this result is as expected where the measured data is consistent with the 

theoretical results shown in Figure 4.3 [26].   
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Figure 4.2: The plot graph illustrating the model accuracy and loss for the 

proposed model. 

 

Figure 4.3 The plot graph illustrating the model accuracy and loss for CNN model 

in paper [26] 

 

4.3.2 Confusion Matrix 

In this experiment, this project also analyzes the confusion matrix shown in 

Figure 4.4 which is important to evaluate the performance of the classification model 

that appears to classify emotions into categories such as Angry, Disgust, Fear, Happy, 

Neutral, Sad and Surprise in terms of precision, recall, F1-score and model accuracy. 

This experiment aims to get more true positive values shown on the diagonal of the 

confusion matrix. This is because true positives represent correct predictions for each 

class. To analyze true positives, this project found that the proposed model correctly 

predicted Angry, which is 533 images, Disgust which is 51 images, Fear which is 433 
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images, Happy which is 1541 images, Neutral which is 859 images, Sad which is 622 

images, and Surprise which is 646 images. The highest number of correct predictions 

was for Happy which was 1541, indicating that the model was most effective at 

identifying this emotion. Disgust has the lowest number of correct predictions of only 

51 images, which may be due to under-representation in the training data or 

similarities to other emotions that confound the model. For misclassification analysis, 

this number shows how often an emotion is misclassified as another category. For 

example, Angry is most often confused with Surprise, which is 112 images, while Sad 

is often mistaken for Neutral with 159 images. Misclassification can indicate that 

certain emotions are being confused with each other, which may be due to similarities 

in the features representing these emotions. To analyze False Negatives, each row 

represents an instance of the true class. For example, on the Angry row, there were 

533 correct predictions, there were misclassifications across other emotions, with 

Surprise being the most common error. The sum of the off-diagonal elements in a row 

indicates the total number of false negatives for that emotion. To analyze False 

Positives, each column represents an occurrence of the predicted class. For example, 

the Angry column shows that the model predicts Angry not only for true Angry events 

but also incorrectly for other emotions. The sum of the off-diagonal elements in the 

column indicates the total number of false positives for that emotion. Accuracy for 

each class can be calculated as the number of true positives divided by the total number 

of true positives and false positives of the entire column. Therefore, this proposed 

model performs well for the Happy and Neutral classes, with a high number of true 

positives. This model has difficulty with Disgust, possibly due to the fewer training 

samples in the FER2013 dataset. There were significant confounds between Angry 

and Surprise, as well as Sad and Neutral, suggesting that these emotions may have 
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similar characteristics in the context of the data or that the model needs further 

refinement to better distinguish them. With that, to prove this experiment is correct, it 

is compared with the paper [14] where the measured data is consistent with the 

theoretical results shown in Figure 4.5. Therefore, this result is as expected where 

there are more true positive values in the confusion matrix.  

 

Figure 4.4: The Confusion Matrix for Proposed CNN Model 

 

 

Figure 4.5: The Confusion Matrix for CNN architecture in paper [14] 
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In order to achieve one of the outcomes of this project, an experiment to 

analyze the proposed model's performance was conducted by analyzing the parameters 

of precision, recall, F1-score and model accuracy. It aims to determine whether the 

proposed model can classify the seven emotions well or poorly.   

Table 4.3: Performance Analysis for Proposed CNN Model 

Parameter Emotion Class 

Angry Disgust Fear Happy Neutral Sad Surprise 

Precision 0.60 0.63 0.51 0.87 0.54 0.54 0.75 

Recall 0.56 0.46 0.42 0.87 0.70 0.50 0.78 

F1-score 0.58 0.53 0.46 0.87 0.61 0.52 0.76 

Overall 

Accuracy 

(%) 

 

65.27 

 

Based on Table 4.3 shows the performance metrics for the proposed CNN 

model across various emotion classes namely Angry, Disgust, Fear, Happy, Neutral, 

Sad and Surprise. As a result of this experiment, the overall accuracy of the proposed 

CNN model, is 65.27%. It is as expected where the accuracy does not reach better 

because the FER2013 dataset has image imbalance in each class. Also, for the 

precision parameter, precision is the ratio of correctly predicted positive observations 

to the number of predicted positives. High precision is associated with a low false 

positive rate. The model performed best in the Happy class with an accuracy of 0.87, 

indicating that when it predicted Happy, it was correct 87% of the images. The Fear 

class had the lowest accuracy at 0.51, indicating a relatively high number of false 
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positives for this class. Also, for the recall parameter, is the ratio of correctly predicted 

positive observations to all observations in the actual class. A high recall is associated 

with a low false negative rate. Thus, Happy has the highest recall at 0.87, meaning that 

the model is good at identifying the Happy emotion from all actual Happy cases. The 

Disgust class had the lowest recall at 0.46, indicating that the model missed more than 

half of the true Disgust cases. Also, for the F1-score parameter, the F1-score is the 

harmonic mean of Precision and Recall. The F1-score reaches its best value at 1 for 

perfect precision and recall and worst at 0. The Happy class has the highest F1-score 

at 0.87, which suggests a good balance between precision and recall for this class. The 

Fear class had the lowest F1-score at 0.46, indicating that both precision and recall 

were low for this class. Based on the observations of this experiment, this model is 

very strong in detecting the Happy emotion, with high scores across accuracy, recall 

and F1-scores. The Fear and Disgust classes performed the weakest, with the lowest 

precision and recall, respectively. This is due to various factors, such as fewer training 

samples for this class, features that are not clear enough for the model to learn 

effectively, or similarities between these emotions and other emotions that confuse the 

model. Balanced F1-scores for Angry, Neutral and Surprise suggest that the model is 

well tuned for this class even with moderate precision and recall values.  

 

4.4 Pretrained Models 

Several pretrained models have been trained using the FER2013 dataset and 

using the same hyperparameter values of 16 batch size, 0.001 learning rate and 50 

epochs in the proposed model. This is because this experiment compares our proposed 

model and pretrained models such as VGG16, AlexNet and MobileNet models in 
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terms of graph model accuracy and loss and some parameters to evaluate model 

performance namely precision, recall, F1-score and model accuracy.   

 

4.4.1 Model Accuracy and Loss for VGG16 Model 

In this experiment, the VGG16 model was trained and its accuracy and loss 

after the training process were plotted, as shown in Figure 4.6, so that training and 

validation accuracy and loss could be observed. The accuracy graph of the model 

illustrates its performance across epochs, specifically in terms of accuracy, on both the 

training and validation sets. An increase in both training and validation accuracy is 

indicative of learning. Nevertheless, the validation accuracy exhibits notable 

fluctuations and lacks smoothness, culminating in a precipitous decline at specific 

intervals, particularly between epochs 20 and 40. It is expected that the training 

accuracy would consistently surpass the validation accuracy, given that the model 

acquires knowledge exclusively from the training data. Nevertheless, variations and 

declines in validation accuracy serve as indicators that the model is overfitting and 

fails to adequately generalize to novel data. The right loss plot on the model loss graph 

illustrates the progressive reduction of the model's prediction error. A decline in the 

training loss signifies that the model's performance on the training set is improving. 

However, the rate of validation loss exhibits significant variability, peaking at specific 

epochs, specifically between 15 and 40 epochs. The observed surges in validation loss 

are concerning. This occurs because the learning rate of 0.001 is excessively high for 

the VGG16 model, resulting in improper weight updates. Additionally, a batch size of 

16 may result in significant fluctuations in both precision and loss, whereas a batch 

size of 16 may oversimplify critical signals. This could be the result of an improper 
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learning rate that causes the model weights to be abruptly updated, validation data 

processing errors, and batch size issues. 

 

Figure 4.6: The plot graph illustrating the model accuracy and loss for the VGG16 

model. 

 

4.4.2 Model Accuracy and Loss for AlexNet Model 

The experiment involved training the AlexNet model and graphing its 

accuracy and loss after the training process, as shown in Figure 4.7. This allowed for 

the observation of model accuracy and loss during the training. When examining the 

model accuracy graph, it is observed that both the training and validation accuracy 

exhibit a nearly horizontal trend, with only a marginal degree of variation centered 

around a particular value, which corresponds to an approximate accuracy of 25.1%. 

The model's ineffective learning is indicated by the close overlap between the training 

and validation accuracy lines, one would anticipate that the training accuracy would 

be greater and continue to rise as time progresses. Assuming a multi-class 

classification problem with over four classes, the model's performance is marginally 

superior to random, as proof by the low accuracy values. This is because the learning 

rate for the AlexNet model, which is 0.001, is excessively high and causes the weights 

to update incorrectly. The loss plot for the model loss analysis demonstrates an initial 
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significant decline during the first epoch for both the training and validation losses. 

Subsequently, the loss exhibits slight variations and lacks a distinct downward. The 

training and validation losses exhibit a high degree of similarity, maintaining a nearly 

constant value starting from approximately epoch 5.  It appears that the model is not 

acquiring knowledge efficiently, as evidenced by the absence of any progressive 

improvement in accuracy and reduction in loss. In light of the model's low accuracy 

and flat loss curves, it is possible that it has been underfitted. This could be the result 

of an excessive level of regularization, inadequate feature extraction, or insufficient 

model complexity.  

 

Figure 4.7: The plot graph illustrating the model accuracy and loss for AlexNet 

model. 

 

4.4.3 Model Accuracy and Loss for MobileNet Model 

The experiment involved training the MobileNet model and plotting its 

accuracy and loss after the training process, as shown in Figure 4.8. This allowed for 

the observation of model accuracy and loss after the training process. When examining 

the model accuracy graph, initially, the training accuracy improve relatively steadily, 

while the validation accuracy fluctuates. After around 20 epochs, the training accuracy 

continues to improve but with significant fluctuations, indicating some instability in 
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the learning process. The validation accuracy, shows high variability and does not 

improve consistently, suggesting the model not be generalizing well to unseen data. 

The gap between the training and validation accuracy suggests the model may be 

overfitting, as it performs better on the training data compared to the validation data. 

This is due to the learning rate where it determines the size of the steps the optimizer 

takes during training. A learning rate of 0.001 is generally considered moderate, 

however it still be too high for this pretrained model, causing the model parameters to 

update in large, erratic jumps. This can prevent the model from converging to a more 

stable and accurate set of parameters, leading to the high variability observed in the 

validation accuracy and loss. Besides that, this is due to batch size of 16 is relatively 

small, which can lead to higher variance in the gradient estimates during training. 

While smaller batch sizes help escape local minima, they can also cause the training 

process to be less stable, as seen in the fluctuations of the accuracy and loss curves. 

For model loss graph analysis, the training loss decreases over time, which is expected 

as the model learns from the training data. The validation loss, on the other hand, does 

not show a clear downward trend and has significant spikes, especially past 20 epochs. 

This behavior in the validation loss indicates that the model is not learning effectively 

from the validation dataset, which could be due to overfitting and a too high learning 

rate that causes the model parameters to change too drastically between epochs.  
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Figure 4.8: The plot graph illustrating the model accuracy and loss for the MobileNet 

model. 

 

4.4.4 Comparison Between a Proposed Model and All Pretrained Models 

One of the main aspects focused on this project is the comparison of model 

performance between the proposed model and all pretrained models which are 

VGG16, AlexNet, MobileNet using the same hyperparameters as in the proposed 

model, with a learning rate of 0.001 and a batch size of 16.  
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Table 4.4: The Comparison Between a Proposed Custom CNN Model and Three 

Pretrained Models  

Model Parameter Emotion Class 

Angry Disgust Fear Happy  Neutral Sad Surprise 

 

Custom CNN 

Model 

Precision 0.60 0.63 0.51 0.87 0.54 0.54 0.75 

Recall 0.56 0.46 0.42 0.87 0.70 0.50 0.78 

F1-score 0.58 0.53 0.46 0.87 0.61 0.52 0.76 

Overall 

Accuracy 

(%) 

 

65.27  

 

VGG16 

Precision 0.00 0.00 0.30 0.69 0.23 0.27 0.61 

Recall 0.00 0.00 0.08 0.74 0.20 0.65 0.68 

F1-score 0.00 0.00 0.13 0.72 0.22 0.38 0.64 

Overall 

Accuracy 

(%) 

 

42.11 

 

AlexNet 

Precision 0.00 0.00 0.00 0.25 0.00 0.00 0.00 

Recall 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

F1-score 0.00 0.00 0.00 0.40 0.00 0.00 0.00 

Overall 

Accuracy 

(%) 

 

24.71 

 

MobileNet 

 

Precision 0.00 0.00 0.40 0.26 0.00 0.00 0.79 

Recall 0.00 0.00 0.00 1.00 0.00 0.00 0.32 

F1-score 0.00 0.00 0.00 0.41 0.00 0.00 0.45 

Overall 

Accuracy 

(%) 

 

28.35 
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Based on Table 4.4, our proposed model shown the highest overall accuracy 

at 65.27% and balanced performance across precision, recall and F1-scores for various 

emotion classes. This project found that the emotions Happy and Surprise with high 

accuracy, which is 0.87 and 0.75, and recall which is 0.87 and 0.78, produce the 

highest F1-score for this class. This is because in the FER2013 dataset, there are the 

most images which are 7214 images for the Happy class and 3171 images for the 

Surprise class. Therefore, this model can recognize more features on different images 

during the training process. For comparison with other models, the VGG16 model 

exhibits a low overall accuracy at 42.11%, showing a lower performance than our 

proposed model. This is because the hyperparameter learning rate and batch size used 

are not suitable for the VGG16 model. As for precision, recall and F1-scores are 

generally low for most emotion classes, except for Happy, where it achieves a good 

F1-score of 0.72. VGG16 struggles to recognize emotions such as Anger, Disgust and 

Sadness. Next for the AlexNet model, AlexNet performed the worst among all models 

with an overall accuracy of 24.71%. It fails to provide meaningful precision, recall or 

F1-scores for most emotion classes, except for Happy, where it achieves a somewhat 

higher recall of 1.00, but still struggles with a low precision of 0.25. This is because 

the hyperparameter learning rate and batch size used are not suitable for the AlexNet 

model. Finally, for the MobileNet model, MobileNet offers better overall accuracy 

than AlexNet but is still lower than the custom model at 28.35%. It showed moderate 

precision of 0.40 and recall of 0.26 for Fear and high recall of 1.00 for Happy. 

However, F1-scores are generally low, indicating difficulty in correctly classifying 

most emotion classes. Therefore, our proposed model outperforms all three pre-trained 

models in terms of overall accuracy and balanced accuracy, recall and F1-scores 

across various emotion classes. VGG16, although better than AlexNet and MobileNet, 
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still falls short of the performance of the custom model. AlexNet and MobileNet, on 

the other hand, exhibit the lowest accuracy and insufficient emotion class recognition.  

 

4.5 Real Time Monitoring using Webcam. 

To achieve the project outcome, we have implemented and integrated our 

proposed emotion recognition model into a webcam application to enable real-time 

emotion analysis of individuals. Our model's performance has been evaluated based 

on the results presented in Table 4.5.  

Table 4.5: Real time monitoring using webcam.         

Expression Person 1 Person 2 Person 3 

Angry 

   

Disgust 

   

Fear  

   

Happy 
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Neutral 

   

Sad 

   

Surprise 

   

  

Based the Table 4.5, shows that our proposed model performed well in 

correctly recognizing seven different emotions for individuals labeled as person 1 and 

person 3. These emotions likely include common feelings like angry, disgust, fear, 

happy, neutral, sad, and surprise. This suggests that our model is effective 

understanding facial expressions in real-time. However, for person 2, our model 

struggled to identify the emotion of disgust and instead predicted surprise. This is due 

to the limitations of the dataset used to train our model, known as FER2013. This 

dataset has a relatively small amount of data for the disgust emotion class, which 

makes it harder for the model to learn and make accurate predictions in such cases. 

The shortage of data for the disgust category means that the model does not have 

enough examples to reliably distinguish it from other emotions. Consequently, the 

model may have trouble correctly recognizing disgust in real-time.   
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4.6 Summary 

In summary, data augmentation techniques are important in this project to 

solve the issue of model overfitting which shows how data augmentation techniques, 

including shear, rotation, width shift, height shift and horizontal flip, help improve the 

robustness and generalization of the model by reducing the gap between training and 

validation accuracy. Analysis reveals that data augmentation leads to a more balanced 

and stable training process. This chapter continues to investigate hyperparameter 

tuning, focusing on learning rate and batch size. Experiments demonstrate the effect 

of varying these hyperparameters on the performance of custom CNN models. The 

optimal combination of hyperparameters was determined by evaluating the accuracy 

of the model on the FER2013 dataset. The findings show that a batch size of 16 and a 

learning rate of 0.001 results in the highest model accuracy at 65.27%. This 

experiment also revealed that different hyperparameter configurations can have a 

significant impact on model performance, emphasizing the importance of fine-tuning 

these parameters to achieve optimal results. Further analysis involves evaluating the 

proposed model. Model accuracy and loss are tracked throughout the training process, 

demonstrating the model's ability to learn and generalize. 

An important component of the performance analysis is the confusion matrix, 

which evaluates the model's ability to accurately classify emotions. It provides insight 

into true positives, misclassifications, false negatives and false positives across 

different emotion classes. The analysis revealed that the model performed well in 

recognizing happiness but struggled with emotions such as disgust and fear. It also 

highlights misclassifications between anger and surprise, as well as between sadness 

and neutrality, indicating the need for further refinement. To benchmark the proposed 

custom CNN model, a comparison is made with three trained models namely VGG16, 
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AlexNet and MobileNet. The pretrained model is trained using the same 

hyperparameters as the custom model. The results show that our proposed model 

outperforms all three pre-trained models in terms of overall accuracy and balanced 

accuracy, recall and F1-scores across various emotion classes. VGG16 achieves lower 

accuracy due to inappropriate hyperparameters, while AlexNet and MobileNet 

struggle with emotion recognition, with the lowest accuracy among the models. In real 

time monitoring, correctly predicted the seven different emotions in real time 

monitoring. However, it is difficult to predict the emotions of disgust because the 

small amount of FER2013 dataset for the disgust classes makes it difficult for the 

model to predict it.  



 

 

 

CHAPTER 5  

CONCLUSION AND FUTURE WORKS 

In this chapter, will conclude our proposed model was successfully designed 

and correctly predict seven different emotions by implementing CNN model in real 

time monitoring. It highlights the hyperparameter tuning, data augmentation to 

achieve the highest accuracy of 65.27% compared to pretrained models. This chapter 

also discussed the future work by suggesting that applying feature extraction 

techniques, addressing class imbalance in the FER2013 dataset, applying 

illumination correction, and implementing 468 facial landmarks to enhance face 

detection and recognition accuracy in the future.     
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5.1 Conclusion 

In conclusion, our proposed model for facial expression recognition was 

successfully designed using the CNN architecture as well as setting the parameters 

such as convolution layer, pooling layer, activation function, fully connected layer 

and so on that have been investigated to fulfill the first objective of this project. Next, 

this project addresses the overfitting problem by demonstrating the importance of 

data augmentation techniques which help to improve the robustness and 

generalization of the model by reducing the gap between training and validation 

accuracy. With that, it can improve model accuracy.  

These findings highlight the importance of using CNN as a powerful 

architecture for recognizing the facial expression. In order to achieve the best 

accuracy, therefore this project also tuning the Hyperparameter such as learning rate, 

batch size, and the number of epochs, allowed us to identify optimal configurations 

for our model. Furthermore, this project also trains the pretrained models such as 

VGG16, AlexNet and MobileNet by using the same hyperparameters as the proposed 

model which is intended to be compared with the proposed model. As the result, our 

proposed model achieved the highest accuracy with 65.27% compared to the 

pretrained models where VGG16 with 42.11%, AlexNet with 24.71% and MobileNet 

with 28.35% on the FER2013 test dataset.  

By achieving an accuracy of 65.27% for the proposed model, this project 

successfully achieved the second objective where our proposed model was 

successfully deployed into a webcam with correctly predicted the seven different 

emotions such as angry, disgust, fear, happy, sad, neutral and surprise in real time 

monitoring. However, it is difficult to predict the emotions of disgust because the 
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small amount of FER2013 dataset for the disgust classes makes it difficult for the 

model to predict the classes. Furthermore, this project also succeeded in achieving 

the third objective where at the end of this project, this project also evaluates model 

performance in terms of model accuracy, precision, recall, and F1-score for each 

model that has been trained. This is because to ensure that the model can correctly 

predict the seven emotions. Overall, this project addressing the problem which stated 

in the problem statement and achieved the overall outcomes where our proposed 

model can be designed, evaluated model performances and integrate into a webcam 

for the purpose of real time monitoring.  

 

5.2 Future Work 

In future work, there exist several approaches that can be investigated to 

improve the performance of this project. These approaches are intended to address 

specific limitations or areas in need of enhancement that have been identified during 

the present project.   

5.2.1 Applying feature extraction techniques before training models 

In future work, we will implement feature extraction techniques to capture 

relevant information from input images before model training. This process aims to 

distinguish important image features that are important for accurate facial expression 

classification. Typically, feature extraction is carried out by a CNN, a deep learning 

model commonly used for image classification tasks. A CNN consists of multiple 

layers that perform various operations on the input image, extracting features such as 

edges, vertices and textures. Before CNN training, the input image will undergo 

preprocessing steps such as face detection, histogram equalization, image 
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normalization, and face alignment [27]. Various techniques for feature extraction, 

including multilevel feature extraction and fusion, will be explored to obtain 

multilevel features from the entire output of the extraction network. 

 

5.2.2 Address class imbalance in the FER2013 dataset 

In future work concerning facial expression recognition through deep 

learning, we can tackle the issue of class imbalance within the FER2013 dataset by 

employing techniques like upsampling, downsampling, or implementing loss 

weighting to give more significance to underrepresented classes [28]. These 

strategies aim to balance the sample distribution across different classes, preventing 

the model from exhibiting bias towards the majority class. By effectively addressing 

the class imbalance in the FER2013 dataset, deep learning models can enhance their 

ability to recognize facial expressions accurately and efficiently. This improvement 

can lead to superior performance in real-world applications, including emotion 

recognition in human-computer interaction, security systems, and healthcare. The 

selection of the appropriate technique should be based on the specific project 

requirements, considering factors such as overfitting risks with upsampling, potential 

information loss with downsampling, and computational demands with loss 

weighting [28]. Thus, the choice should align with the project's unique needs and 

constraints.     
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5.2.3 Applying illumination correction techniques during pre-processes 

images 

In future work, we can explore and apply illumination correction techniques 

to enhance the accuracy and robustness of facial expression recognition systems 

when dealing with varying lighting conditions [29]. These methods encompass 

advanced approaches within deep learning, such as Generative Adversarial Networks 

(GANs) or CNNs, which are specifically designed to address illumination variations 

in facial images. By delving into and implementing these illumination correction 

techniques, deep learning models can refine their ability to precisely and efficiently 

identify facial expressions, making them better suited for real-world applications.  

 

5.2.4 Implement 468 facial landmarks. 

In future work, the utilization of facial landmarks can be considered to 

enhance the precision of face detection by accurately pointing and representing 

crucial facial regions during real-time monitoring. These facial landmarks denote 

specific points on the face, facilitating the identification and tracking of features like 

the eyes, nose, mouth, and eyebrows. The incorporation of 468 facial landmarks can 

substantially improve the deep learning models' ability to recognize facial 

expressions with greater accuracy and efficiency. Facial landmark detection plays a 

pivotal role in facial expression recognition, enabling the precise localization and 

tracking of facial features over time. Various techniques for facial landmark 

detection, including shape regression, template matching, and deep learning-based 

methods, can be explored [30].   
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APPENDICES 

Appendix A  

The simulation code for image processing: 
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Appendix B  

The simulation code for designing CNN model: 
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Appendix C 

The simulation code for plotting model accuracy and loss and generating confusion 

matrix: 
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Appendix D 

The simulation code for generating classification report: 
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Appendix E  

The simulation code for testing the trained model with a sample image:  
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Appendix F 

The simulation code for integrating our proposed model using a webcam: 

 




