

NUR RIFHAN BINTI ROSLI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

UNIVERSITI MALAYSIA MALAYSIA MELAKA

THE EFFECT OF SINTERING TEMPERATURE AND CLAY ADDITION ON GLASS CERAMIC PRODUCED FROM RECYCLED GLASS FOR STRUCTURAL APLLICATION (CIP METHOD)

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Engineering Materials) with Honours.

By

NUR RIFHAN BINTI ROSLI

FACULTY OF MANUFACTURING ENGINEERING

2010

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: <u>The effect of sintering temperature and clay addition on glass ceramic</u> produced from recycled glass for structural application (CIP Method)

produced from re	ecycled glass for scructural application (cir method)			
SESI PENGAJIAN: 2009/10 Semester 1				
Saya <u>NUR RIFHAN BINTI ROSLI</u> mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:				
2. Perpustakaan Universi tujuan pengajian saha	ak milik Universiti Teknikal Malaysia Melaka dan penulis. ti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk ja dengan izin penulis. kan membuat salinan laporan PSM ini sebagai bahan pertukaran jian tinggi.			
SULIT	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)			

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

Disahkan oleh:

(TANDATANGAN PENYELIA)

(TANDATANGAN PENULIS)

TIDAK TERHAD

Alamat Tetap: No. 23, Jln RU 17,

TERHAD

Tmn Rambai Utama, 75250 Melaka

Tarikh: 23 MAY 2010

Tarikh: 23 MAY 2010

Cop Rasmi:

** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "THE EFFECT OF SINTERING TEMPERATURE AND CLAY ADDITION ON GLASS CERAMIC PRODUCED FROM RECYCLED GLASS FOR STRUCTURAL APPLICATION (CIP METHOD)" is the results of my own research except as cited in references.

Signature	:
Author's Name	: <u>NUR RIFHAN BINTI ROSLI</u>
Date	: <u>23 MAY 2010</u>

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Engineering Materials) with Honours. The member of the supervisory committee is as follow:

.....

(DR. JARIAH BINTI MOHAMAD JUOI)

ABSTRACT

The purpose of this project was to determine the effect of sintering temperature and clay addition on glass ceramic produced from recycled glass. In this study, recycled glass of soda lime silica glass is used as main raw materials and ball clays as filler. The scope of this project mainly focused at the effect of sintering temperature and soda lime silica glass to ball clay weight ratio on glass ceramic produce from recycled glass for structural applications. The glass powders are prepared by crushing to a particles size distribution $< 75 \,\mu\text{m}$. The SLSG powder are then mixed with the ball clay according to the ratio of SLSG to ball clay of 95:5 wt.%, 90:10 wt.% and 85:15 wt.%. The glass ceramic samples are fabricated using uniaxial pressing and cold isostatic pressing with constant pressure at 40 MPa. The best mixing ratio is 85:15 wt.% ratio of SLSG to ball clay because the presence of ball clay helps the uniformity of the green body. Sintering process is conducted at three different temperatures at 750°C, 850°C and 950°C with 1 h holding time. There are several changes in terms of shape, color and appearance after the sintering process. Physical analyses and mechanical testing of the samples are carried out according to the specific ASTM standard of testing. For physical and mechanical analyses, majority the results showed that the increasing of temperature and percentage of ball clay had significantly increased the porosity and water absorption percentage, bulk density and microhardness properties of the glass ceramic produced. Microstructure analysis showed the surface of glass ceramic samples and phase analysis identified quartz and calcite phases is presence in the sample produced. Temperature 850°C with 85:15 wt.% ratio of SLSG to ball clay is chosen as the optimum parameter to produced new glass ceramic material produced from recycled glass.

ABSTRAK

Tujuan penyelidikan ini adalah untuk mengenal pasti kesan daripada suhu pembakaran dan penambahan tanah liat terhadap penghasilan seramik kaca yang dihasilkan daripada kaca buangan yang boleh dikitar semula. Dalam kajian ini, sisa kaca buangan dari kapur kaca digunakan sebagai bahan utama dan ketulan tanah liat sebagai pengisi. Bidang lapangan kajian ini lebih menitik beratkan kepada kesan suhu pembakaran dan nisbah kapur kaca kepada ketulan tanah liat untuk kegunaan – kegunaan struktur. Kapur kaca akan dihancurkan untuk mendapatkan saiz butiran kaca kurang daripada 75 µm dan kemudian dicampur dengan ketulan tanah liat. Campuran akan dibentuk menggunakan mesin Uniaxial Pressing terlebih dahulu sebelum dimasukkan ke dalam mesin cold isostatic pressing (CIP) dengan tekanan tetap iaitu sebanyak 40 MPa. Nisbah campuran yang terbaik adalah pada 85:15 wt.% nisbah kapur kaca kepada ketulan tanah liat kerana kehadiran ketualan tanah liat yang membantu kepadatannya. Proses pembakaran akan dilakukan pada tiga suhu yang berbeza iaitu 750°C, 850°C dan 950°C bersama 1 jam waktu perendaman. Terdapat perubahan dari segi bentuk, warna dan penampilan selepas proses tersebut. Analisis fizikal dan mekanikal dilakukan berpandukan piawaian ASTM. Untuk analisis fizikal dan mekanikal, kebanyakkan keputusan menunjukkan apabila meningkatnya suhu dan peratusan ketulan tanah liat, secara tidak langsung sifat-sifat seramik kaca seperti peratus keliangan dan penyerapan air, ketumpatan keseluruhan dan mikro-kekerasan yang dihasilkan meningkat. Analisis mikrostruktur menunjukkan dengan lebih jelas permukaan seramik kaca yang dihasilkan dan fasa yang wujud didalam seramik kaca adalah quartz dan calcite. Parameter optimum yang dikenal pasti sesuai untuk menghasilkan seramik kaca dari kaca buangan adalah pada suhu 850°C dengan 85:15 wt.% nisbah kapur kaca kepada ketulan tanah liat.

DEDICATION

Dedicated to my father, Rosli Bin Hasan and my mother, Rahmah Binti Nordin To my supervisor, Dr. Jariah Binti Mohamad Juoi, lecturers and friends for all of their help and friendship.

ACKNOWLEDGEMENT

I would like to convey my thanks to those who have been very helpful in conducting this project for their favorable advice in finding most solution. Thus, I take this golden opportunity to express my millions of gratitude to my supervisor, Dr. Jariah Binti Mohamad Juoi for her kindly advice and guidance during the project; providing tremendous consideration and useful comments and materials to overcome obstacles that I had faced. These thanks also dedicate to Associated Professor Dr Thangaraj Joseph Sahaya Anand and Dr. Azizah Binti Shaaban for their encouragement, fully support, by providing me enormous guidance and idea for my research project. Also, my special thanks to Mrs. Norhafizah Binti Ishak, for your time and co-operation completing my research project. Subsequently to Mr. Mohd Farihan Bin Sabtu and Mohd Azhar Bin Abu Shah and all technicians involved to complete this project. Special thanks to my friends for their help during undertaking this project. Thanks are also extended to FKP lecturers who had provided technical help and assistance throughout the project. Lastly I would like express my gratitude with highly appreciation and dedication to my family who has been the loveliest advisor for their continuous support and inspiration throughout my campus life.

TABLE OF CONTENTS

Abstra	act			i
Abstra	ak			ii
Dedic	ation			iii
Ackno	owledge	ement		iv
Table	of Con	tents		V
List o	f Tables	5		viiii
List o	f Figure	S		xi
List o	f Abbre	viations, Symb	ols, Specialized Nomenclature	xiv
1. IN'	FRODU	JCTION		1
1.1 Pr	oject Ba	ackground		1
1.2 Pr	oblem S	Statement		3
1.3 Objectives				3
1.4 Scope of project				4
2. LI	ГERAT	URE REVIEV	N	6
2.1	Introd	uction		6
2.2	Recyc	ling Waste		6
	2.2.1	Recycling Gl	ass	7
		2.2.1.1 Raw M	Materials	8
		i	Composition and Properties of	9
			Soda Lime Silica Glass (SLSG)	
2.3	Glass	Ceramic		13
	2.3.1	Particle size		15
	2.3.2	Processing of	Glass Ceramic	16
		2.3.2.1 Formi	ng	18
		i	Uniaxial Pressing Method	20
		ii	Cold Isostatic Pressing (CIP) Method	21

		2.3.2.2 Densification		
		2.3.2.3 Sintering		
		i Solid State Sintering	24	
		ii Temperature and Time	24	
	2.3.3	Crystal Phase and Microstructure	25	
	2.3.4	Analyses and Testing	26	
	2.3.5	Structural Application and Products	27	
3. ME	THOD	OLOGY	28	
3.1	Introd	uction	28	
3.2	Materi	ials	30	
	3.2.1	Soda Lime Silica Glass	30	
	3.2.2	Ball Clays	31	
3.3	Sampl	es Preparation	32	
	3.3.1	Raw Materials Preparation	33	
		3.3.1.1 Crushing	33	
		3.3.1.2 Mixing SLSG and Ball Clay Powder	33	
	3.3.2	Samples Fabrication	34	
		3.3.2.1 Forming	34	
	3.3.3	Sintering Process	36	
3.4	Analys	ses	37	
	3.4.1	Physical Analyses	37	
		3.4.1.1 Porosity Test	38	
		3.4.1.2 Density Measurement Test	38	
		3.4.1.3 Water Absorption	39	
	3.4.2	Microstructure Analysis	39	
	3.4.3	Phase Analysis	40	
3.5	Mecha	anical Testing	41	
	3.5.1	Microhardness Test	41	

4. RI	ESULTS	8	43
4.1	Introd	43	
4.2	Obser	rvation on Sample Produced	43
4.3	Analy	/ses	47
	4.3.1	Physical Analysis	47
		4.3.1.1 Porosity	47
		4.3.1.2 Bulk Density	49
		4.3.1.3 Water Absorption	50
	4.3.2	Microstructure Analysis	52
	4.3.3	Phase Analysis	56
	4.3.4	Microhardness	60
5 DI		IONS	62
5. DISCUSSIONS5.1 Introduction			
5.1			62
5.2		rvation on Sample Preparation	62
5.3	Analy		63
	5.3.1	Physical Properties	63
	5.3.2		64
	5.3.3		69
5.4	Mechanical Properties 70		
6. C(ONCLU	SIONS AND RECOMMENCDATION	72
6.1	Concl	lusion	72
6.2	Recor	mmendation	74
REFI	ERENCI	ES	75
APPI	ENDICE	ES	79

A Gantt Chart of PSM 1 79

В	Gantt Chart of PSM II	80
С	Data of Physical Analysis	81

LIST OF TABLES

2.1	The variations of chemical composition of	10
	Soda Lime Silica Glass (SLSG)	
2.2	Typical viscosities and physical properties of	11
	Soda lime Silica Glass (SLSG)	
2.3	The comparison between Soda lime Silica Glass (SLSG)	12
	with other glasses	
2.4	Commercial glass ceramic	14
2.5	Major Compaction Techniques Used for Ceramic fabrication	19
2.6	Techniques for Powder preparation and Sizing of Ceramic Fabrication	20
2.7	Stages of sintering	23
3.1	Physical properties and relevant ASTM Standards of Soda Lime	30
	Silica Glass (SLSG)	
3.2	The variations of chemical composition of ball clays	32
3.3	Parameters of Sintering Process	36
4.1	Glass ceramic samples at different temperature and different	42
	SLSG to ball clay weight ratio	
4.2	The porosity percentage of glass ceramic produced at different	47
	temperature and different SLSG to ball clay weight ratio	
4.3	The bulk density of glass ceramic produced at different sintering	49
	temperature and different SLSG to ball clay weight ratio	
4.4	The water absorption percentage of glass ceramic produced at different	51
	sintering temperature and different SLSG to ball clay weight ratio	
4.5	The SEM micrographs for temperature 750°C at different SLSG	53
	to ball clay ratio at various magnification	
4.6	The SEM micrographs for temperature 850°C at different SLSG	54
	to ball clay ratio at various magnification	

4.7	The SEM micrographs for temperature 950°C at different SLSG	55
	to ball clay ratio at various magnification	
4.8	The crystal phase of XRD pattern of glass ceramic produced from	56
	recycled glass	
4.9	Hardness Properties of glass ceramic produced at different sintering	60
	temperature and different SLSG to ball clay weight ratio	
5.1	The SEM micrographs at each temperature and ratio at 3000x	64
	of magnification	

LIST OF FIGURES

2.1	Breakdown of solid waste created by Malaysians	7
2.2	Classifications of ceramic materials on the basics application	8
2.3	Phase equilibrium diagram of Na ₂ O – CaO – SiO ₂	10
2.4	The variation (%) of test result in FG replacement with FA	16
2.5	Schematic of wet bag Cold Isostatic Pressing	21
2.6	The flexible container is (a) filled, (b) submerged, (c) pressed and	21
	(d) decompressed before removal	22
2.7	Changes that occur during sintering	23
2.8	XRD spectra of the investigated sintered glass ceramic	25
2.9	SEM images for the glass-ceramics heat-treated at 850 $^{\circ}\mathrm{C}$ - 1000 $^{\circ}\mathrm{C}$	26
3.1	Flow chart of methodology	29
3.2	Soda Lime Silica Glass (SLSG) containers	30
3.3	Ball clays	31
3.4	Powder forming technique of Soda Lime Silica Glass (SLSG)	32
3.5	Hammer	33
3.6	Top Loading Balances	34
3.7	Uniaxial Pressing Machine	35
3.8	Cold Isostatic Press (CIP) Machine AIP3-12-60CPA	35
3.9	Scanning Electron Microscopy (SEM) EVO 50	40
3.10	X-Ray Diffraction (XRD) Machine	41
3.11	Microhardness Test Machine	42
4.1	Soda Lime Silica Glass (SLSG) particles after crushing process	43
4.2	Green pellet of glass ceramic produced at different SLSG to clay	44
	weight ratio : (a) 5 wt.% (b) 10 wt.% (c) 15 wt.%	
4.3	Glass ceramic sample with 10 mm diameter	45
4.4	Percentage of porosity at different sintering temperature	48

and different SLSG to ball clay w	weight ratio
-----------------------------------	--------------

	and different SLSG to ball clay weight ratio	
4.5	Bulk density of glass ceramic produced at different sintering	50
	temperature and different SLSG to ball clay weight ratio	
4.6	Percentages of water absorption towards glass ceramic produced	51
	at different sintering temperature and different SLSG to ball clay	
	weight ratio	
4.7	XRD patterns of glass ceramic samples at different sintering	57
	temperature and different SLSG to ball clay weight ratio at	
	temperature 750°C	
4.8	XRD patterns of glass ceramic samples at different sintering	58
	temperature and different SLSG to ball clay weight ratio at	
	temperature 850°C	
4.9	XRD patterns of glass ceramic samples at different sintering	59
	temperature and different SLSG to ball clay weight ratio at	
	temperature 950°C	
4.10	Value of microhardness towards glass ceramic produced at different	61
	sintering temperature and different SLSG to ball clay weight ratio	
5.1	The SEM micrographs at temperature 950°C of glass ceramic samples	65
	with 5 wt.% of ball clay addition at the 500x of magnification	
5.2	The SEM micrographs at temperature 950°C of glass ceramic samples	66
	with 10 wt.% of ball clay addition at the 500x of magnification	
5.3	The SEM micrographs at temperature 950°C of glass ceramic samples	66
	with 15 wt.% of ball clay addition at the 500x of magnification	
5.4	The SEM micrographs at temperature 750°C with 13 h sintering time	67
	of glass ceramic samples with 15 wt.% of ball clay addition at the 2000x	
	of magnification	
5.5	The SEM micrographs at temperature 850°C with 15 h sintering time	68
	of glass ceramic samples with 15 wt.% of ball clay addition at the 2000x	
	of magnification	
5.6	The SEM micrographs at temperature 950°C with 17 h sintering	68

time of glass ceramic samples with 15 wt.% of ball clay addition at the 2000x of magnification

- 5.7 The schematic representation of XRD technique towards powdered 70 samples.
- 5.8 Value of microhardness towards glass ceramic produced at different
 5.8 sintering temperature and different weight ratio

LIST OF ABBREVIATIONS

ASTM	-	American Standard Testing Material
CaCO ₃	-	Calcium carbonate
CaO	-	Calcium Oxide
CIP	-	Cold Isostatic Pressing
FA	-	Fine Aggregate
FG	-	Fine Glass
Κ	-	Kelvin
MHz	-	Mega hertz
MPa	-	Mega pascal
Na ₂ O	-	Natrium Oxide
PVA	-	Polyvinyl Alcohol
SEM	-	Scanning Electron Microscope
SLSG	-	Soda lime Silica Glass
SiO ₂	-	Silicon Oxide
Tg	-	Transition glass temperature
Tm	-	Melting temperature
Wt. %	-	Weight percentage
XRD	-	X-Ray Diffraction
ατ	-	Thermal expansion coefficient
μm	-	micro meter
°C	-	Degree Celsius

xiv

CHAPTER 1 INTRODUCTION

1.1 Background of study

Glass ceramic can be defined as a fine-grained crystalline ceramic material that was formed as a glass and subsequently devitrified (Callister W. D., 2005). Nowadays, the used of glass ceramic becomes famous in structural applications as well as in manufacturing industry. The primary advantages of glass ceramic are higher strength, chemical durability, and electrical resistance and can be made with very low thermal expansion coefficients, giving excellent thermal shock resistance (Rahaman M. N., 2003). Throughout its performance, glass ceramic play a vital role in consumer needs or products that exhibits high level of mechanical properties. The main purpose of using recycled glass in glass ceramic is to improve the physical and mechanical properties of existing ceramic materials.

The production of glass ceramic materials made by recycling industrial waste is an innovative development in glass ceramic industry. Many researchers have paid much attention to produce glass, glass ceramic and sintered materials from industrial wastes to make them reasonably safe for the environment (M.Erol *et al.*, 2008). For example, many investigations reuse soda lime silicate glass (SLSG) to manufacture glass ceramic products. SLSG is the most common commercial glass and less expensive. Normally, this soda lime glass has composition of 60 wt. % - 75 wt. % silica, 12 wt. % - 18 wt. % soda, and 5 wt. % - 12 wt. % lime. The reuse of the SLSG waste in ceramic system has capable to improve the performance compare to conventional ceramic material, especially in highly demanding the structural applications.

In line with the idea to reuse the SLSG to manufacture glass ceramic products, there have several factors that should be considered in order to make it beneficial. Factors such as particle size distribution and fillers used during powder preparation, processing method and sintering process are among crucial factors that should be properly considered. Physical analyses and mechanical testing for the product should also be considered in order to ensure its quality.

Particle size distribution is important, depending on which consolidation or shaping technique is to be used. Low porosity and fine grain size are beneficial to achieve a glass ceramic with high strength (Richerson D. W., 2005). Thus, fine grained size below than 75 µm is going to be employed in this study. The addition of binder and filler will affect the performances and properties of the new material produce from recycled glass. Various types of binders have been used from previous study by the researchers such as polyvinyl alcohol (PVA), ball clays, quartz-feldsphatic sands and others. These binders and fillers are widely used to provide enough strength in the 'green body' (unfired compact) to permit handling, 'green' machining, or other operations prior to densification (Richerson D. W., 2005). Therefore, the introduction of ball clays as filler has been employed in this study to develop properties which have the precise composition and ratios that give significant affects on some properties.

It is essential to finalize the suitable processing method for this study. In general, pressing method is widely used for forming of ceramic materials. There are various types of pressing techniques such as pressing, slip casting and tape casting. In this study uniaxial pressing and cold isostatic pressing (CIP) is chosen as a method for compaction and shaping of the powder materials into a rigid die body.

Subsequently, rigid die body then has been dried and surface finished (green body) in a furnace to develop the desired microstructure and properties. This stage is called sintering which imply the shrinkage and densification. The performance of the final product will be analyzed in terms of its microstructures, phase's present and physical properties. In this study, Scanning electron microscope (SEM) and x-ray diffraction (XRD) analysis are use to analyze the microstructure and phases present in the samples produced. Physical analysis and mechanical testing are also conducted in order to analyze the properties of the samples.

1.2 Problem statement

Today in Malaysia, recycled waste such as glasses, papers, plastics and others are not used very constructive. Usually the waste management used landfill method to throw out this disposal. Only certain of that disposal are being used for recycling purpose. Regarding to these, disposal like glasses is reused by crushed into small pieces and melted at high temperature. Then the glass is reformed into desired shape such as bottles and food containers. Recently, glass is choose as an alternative materials in upgrading ceramic into glass ceramic that is useful for various structural applications. Thus is an alternative way in recycling glass waste. Example of glass ceramic used for structural applications are porcelain stoneware tiles which used waste of soda lime float and container glass as raw materials in replacement of sodic feldspar (Matteucci *et al.*, 2002). It is essential and possible to produce a new types of glass ceramic that exhibit the economically and environmentally benefits for this applications. Therefore, it is necessary to characterize and determine the properties for the glass ceramic produce forming. In this work such possibility is investigated, recycled glass is being used to produce glass ceramic because of its potential to improve the general properties of glass ceramics. In this research, new advanced materials are produced to fulfill the requirement as beneficial materials in order to ensure that the glass ceramic available for structural applications, it is being characterize and its physical and mechanical properties is investigated.

1.3 Objectives

The objective of this project is:

- To study the effects of sintering temperature and clay addition toward glass ceramics produced from recycled glass by using Cold Isostatic Pressing (CIP) Method.
- ii. To analyze the physical and mechanical properties of glass ceramics samples produced from recycled glass.
- iii. To study the microstructure and phases present in the glass ceramics samples produced from and recycled glass.

1.4 Scope of study

The scope of this project is mainly focus on converting recycling glass into glass ceramic product. This study uses soda lime glass as the raw material. The process started by preparing the soda lime glass powder. The powders of SLSG were prepared by crushing raw materials using hammer. The size of particle then was sieved by using the sieve to determine the average particle size.

Next stage of process involves the mixing the raw materials with filler. The use of filler is to bind the materials together while mixtures. The filler that used in this project is ball clays. The chosen of filler is important to improve the strength of the as-formed product to provide strength for handling (green strength) before the product is densified by firing (Reed J. S., 1995).

The processes then continue with the pressing method to make the compaction on a powders and shaping by confined it in a rigid die or a flexible mold (Reed *et al.*, 1995). Firstly, the mixtures are pressed by using uniaxial pressing before do the second compaction by using cold isostatic pressing (CIP) method which also referred as hydrostatic pressing is used. The CIP method is chosen because of its advantage compared to uniaxial pressing has limitations such as the green density of isostatically pressed part is higher and much uniform. Some of the limitations can be

overcome by applying pressure from all direction instead of only one or two directions. Application of pressure from multiple directions achieves greater uniformity of compaction and increased shape capability (Richerson D. W., 2006).

In line with the objectives of this study, the effects of sintering temperature and addition of ball clay are analyzed on the physical and mechanical properties of glass ceramics. Various sintering temperature are used according to the transition glass (Tg) of recycled waste which will result the final product. In this study, there are three sintering temperatures and ratios of SLSG to ball clay are employed.

The samples produced are then analyzed accordance to the appropriate American Standard Testing Material (ASTM) for physical and mechanical properties. ASTM C 373 will be used for physical tests which include porosity, density measurement and water absorption. Morphological and crystallography analysis are observed by using SEM and XRD. The mechanical tests that conducted are microhardness by using Vickers microhardness machine.