'I admit that I have read this report and in my opinion this report is fulfilled the scope and quality for award condition of Bachelor of Mechanical Engineering (Thermal-Fluids)'

Signature	:
Supervisor 1's Name	:
Date	:

A FEASIBILITY STUDY ON 'HIGHWAY DUMMY SIGNAL' POWERED BY SOLAR ENERGY

MOHD ZULHIMI BIN ALI

This report is being proposed as a partial fulfillment in the requirement for bestowal of Degree in Bachelor of Mechanical Engineering (Thermal-Fluids)

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > MAY 2009

C Universiti Teknikal Malaysia Melaka

"I hereby, declare this report is the result of my own research except as cited in the references"

Signatures	:
Author's Name	:

Date :....

	\bigcirc	Universiti	Teknikal	Malaysia	Melaka
--	------------	------------	----------	----------	--------

For Beloved My Father and Mother

ACKNOWLEDGEMENT

Alhamdulillah, after all the effort of work and studies, this report of *Projek Sarjana Muda (PSM)* has finally completed. This one year of the PSM is able to complete within the frame time with the help of the some people who have willingly to share knowledge, ideas and lend their hand to me while completing this training. Therefore, I would like to take this opportunity to express my token of appreciation to those who have directly or indirectly involved in this project.

Firstly, I would like to thank both my parents for their support upon completing this project. My deepest thank goes to my supervisor, Mr. Mohd Zaid bin Akop. Thank you very much for sharing his expertise knowledge, thoughts and ideas with me. Thanks for all the guidance he have given to me. Without his guidance and advice, I would not be able to perform my research project.

A token of appreciation also goes to all my friends and all my fellow course mates in making this PSM a success. Thank you for their time, knowledge and skill for helping me in terms of ideas, transportation, facilities, financial, etc.

Hopefully my PSM will be helpful and beneficial to people who are interested to make further study in this field. Lastly, thank you very much again and certainly, it would be impossible to complete the PSM without helps from all of them.

ABSTRACT

Solar energy is a form of energy produced from the sunlight and it is a renewable while friendly to the environment. This solar energy can be converted to electrical energy through a photovoltaic process or also known as solar cells, which it is a device that made up from a semiconductor and capable to transform the sunlight to electrical energy in a form of direct current (DC). Therefore, realizing the advantages of this energy, many academicians and researchers has involved in elevating the technology of this energy and study the feasibility in daily life instead of creating various devices that use solar energy as the power sources. Thus, this report is made to study the feasibility and design a 'Highway Dummy Signal' as an alternative to the battery operated. This report is also contained the methodology to build the 'Highway Dummy Signal' based on solar energy system. Apart from that, this report has also studied the difference of total cost for the both systems and the time duration for capital returning when using solar energy system.

ABSTRAK

Tenaga solar ialah satu bentuk tenaga yang terhasil daripada sinaran Matahari yang mana tenaga ini merupakan sumber tenaga yang boleh diperbaharui dan tidak mencemarkan alam sekitar. Tenaga solar yang terhasil ini dapat ditukar kepada tenaga elektrik melalui proses photovoltaic (PV) dan dikenali juga sebagai sel-sel solar, iaitu suatu alat yang diperbuat daripada semikonduktor yang berupaya menukar cahaya Matahari kepada tenaga elektrik dalam bentuk arus terus (DC). Oleh itu, menyedari akan kelebihan tenaga ini, ramai ahli akademik dan pengkaji melibatkan diri dalam meningkatkan lagi teknologi tenaga ini dan mengkaji kesesuaiannya dalam kegunaan seharian disamping mereka pelbagai alat yang menggunakan tenaga solar sebagai sumber tenaga elektrik. Justeru, laporan ini disediakan untuk mengkaji kebolehlaksanaan dan mereka bentuk sebuah ' Highway Dummy Signal' daripada menggunakan sistem bateri sebagai sumber tenaga elektrik kepada satu sistem yang berasaskan kepada tenaga solar. Kertas kajian ataupun laporan ini turut mengandungi metodologi untuk mereka bentuk 'Hihgway Dummy Signal' berasaskan sistem tenaga solar. Disamping itu, laporan ini juga mengkaji perbezaan kos keseluruhan untuk kedua-dua sistem dan jangka masa pulangan modal apabila menggunakan sistem tenaga solar.

CONTENT

CHAPTER	ITEM	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	CONTENT	vii
	LIST OF TABLE	xii
	LIST OF FIGURE	xii
	LIST OF SYMBOLS	xvii
	LIST OF UNITS	XX
	LIST OF APPENDICES	xxi
CHAPTER 1	INTRODUCTION	1

ILNI		NODUCTION	T
	1.1	Background	1
	1.2	Problem Statements	2
	1.3	Objectives	2
	1.4	Scope	3

CHAPTER	ITE	Μ			PAGE
CHAPTER 2	LIT	ERATU	RE REVIEW		4
	2.1	Solar E	nergy		4
		2.1.1	Introduction to Sola	ar Energy	4
			2.1.1.1 Passive s	solar	5
			2.1.1.2 Active so	olar heating	6
			2.1.1.3 Solar Ph	otovoltaic (PV) Systems	7
	2.2	Histori	al of Solar Energy		8
	2.3	The In	entor of Photovoltaic	2S	10
	2.4	Fundar	entals of Photovoltai	c Materials	12
		2.4.1	Photovoltaics and F	Photovoltaic Cells	12
	2.5	Equivalent Electrical Circuit			13
	2.6 Array Design				14
		2.6.1	The Sun Intensity		15
		2.6.2	The Sun Angle		16
		2.6.3	The Temperature E	ffect	17
CHAPTER 3	ME	THOD	LOGY		20
	3.1	Flow C	nart		21
	3.2	Highw	y Dummy Signal		22
		3.2.1	Working System		22
		3.2.2	Design of Dummy	Structure using Software	22
			SolidWorks		
		3.2.3	Torque and Momer	t Calculation of	23
			Dummy Structure		
	3.3	Motor			23
		3.3.1	Power Source		23

CHAPTER]	ITEM			PAGE
	3.4	Solar p	anel		24
		3.4.1	Type of I	Material	24
			3.4.1.1	Polycrystalline Silicon	25
		3.4.2	Panel Siz	e and Power Produce	25
		3.4.3	Position	of Panels	26
	3.5	Storage	e Batteries		27
		3.5.1	Operation	n	27
		3.5.2	Type of I	Battery	28
			3.5.2.1	Lead-acid (Pb-acid)	29
	3.6	Circuit	in Power S	ource	30
		3.6.1	Parallel C	Circuits	30
	3.7	Simula	tion of HO	MER	30
		3.7.1	Power O	utput	30
		3.7.2	Cost of S	olar System	31
CHAPTER 4	AN	ALYSIS			32
	4.1	Design	of Highwa	y Dummy Signal	32
		4.1.1	Overall S	tructure	32
		4.1.2	Handle		34
		4.1.3	Tyres		34
		4.1.4	Motor W	iper	35
		4.1.5	Solar Par	nel	36
		4.1.6	Battery		37
	4.2	Schema	atic Diagram	n of the PV System	39
	4.3	Calcula	ation of Du	nmy Structure Design	41
		4.3.1	Torque		41
			4.3.1.1	Right Side Arm	41
			4.3.1.2	Left Side Arm	44

CHAPTER 5

Х

	4.3.2	Moment		46
	4.3.3	Basic Ca	lculation for Design Solar System	50
		4.3.3.1	Calculation for Load	50
		4.3.3.2	Calculation for Minimum	50
			Capacity of Battery	
4.4	Solar S	ystem Sim	ulation by Homer Software	51
	4.4.1	Materials	s and Method	51
		4.4.1.1	Photovoltaic (PV) system	52
			Components	
		4.4.1.2	Electric Load	52
		4.4.1.3	Photovoltaic Array	53
		4.4.1.4	Battery Storage Unit	55
		4.4.1.5	Solar Energy Resource	55
		4.4.1.6	Economics and Constraints	56
		4.4.1.7	Sensitivity and Optimization	57
RES	SULT A	ND DISCU	JSSION	58
5.1	Results	of Simulat	ion by HOMER Tool	58
	5.1.1	Optimiza	ation Result	58
	5.1.2	Cost Cor	nparison by Components Type	59
	5.1.3	Cost Cor	nparison by Components Type	60
		within 25	5 years	
	5.1.4	Nominal	Cash Flow Comparison by	61
		Compon	ents Type within 25 years	
	5.1.5	Electricit	y Production by PV Array	62
	5.1.6	PV Outp	ut	63
	5.1.7	Battery H	Bank State of Charge	64
5.2	Paybac	k Cost Peri	od Study	65

CHAPTER	ITEM	PAGE
CHAPTER 6	CONCLUSION AND RECOMMENDATION	70
	6.1 Conclusion	70
	6.2 Recommendation	71

REFERENCES	72
BIBLIOGRAPHY	74
APPENDICES	75

xi

LIST OF TABLE

NUMBER	TITLE	PAGE
2.1	The Kelley Cosine Values of the Photocurrent in Silicon Cells (Source: Mukund R. Patel, 1999)	17
3.1	Average Cell Voltage during Discharge in Various Rechargeable Batteries (Source: Johnny Wiess, 2004)	28
4.1	Period and amounts of load was used	53
4.2	Search space alternative and highlighted is the winner size	57
5.1	Comparison of payback cost period according to system	65
5.2	Comparison of total cost for every system according to year	68

LIST OF FIGURE

NUMBER	TITLE	PAGE
2.1	Elements of passive solar design, shown in a direct gain application	5
	(Source: http://en.wikipedia.org/wiki/Passive_solar	
	_building_design, 2008)	
2.2	Solar Flat Plate Collector for Liquid Source	6
	(Source: Systems and Equipment Handbook	
	ASHRAE, Inc., 1996)	
2.3	Photovoltaic panels produce electricity directly from	7
	sunlight	
	(Source: http://en.wikipedia.org/wiki/Photovoltaics, 2008)	
2.4	Kilowatt Peak Photovoltaic Rooftop National Fuel	11
	Cell Research Center, University of California Irvine	
	(Source: http://www.geocities.com/Eureka/1905/, 2008)	
2.5	Equivalent electrical circuit of the battery	13
	showing internal voltage and resistance	
	(Source: Johnny Wiess, 2004)	

2.6	Battery source line intersecting with load line at the operating point (Source: Johnny Wiess, 2004)	13
2.7	I-v characteristic of PV module shifts down at lower sun intensity, with small reduction in voltage (Source: Mukund R. Patel, 1999)	15
2.8	Photoconversion efficiency versus solar radiation. The efficiency is practically constant over a wide range of radiation (Source: Mukund R. Patel, 1999)	16
2.9	Kelley cosine curve for PV cell at sun angles from 0° to 90° (Source: Mukund R. Patel, 1999)	16
2.10	Effect of temperature on the i-v characteristic. The cell produces less current but greater voltage, with net gain in the power output at cold temperature (Source: Mukund R. Patel, 1999)	17
2.11	Effect of temperature on the p-v characteristic. The cell produces more power at cold temperature (Source: Mukund R. Patel, 1999)	19
3.1	Flow chart of research procedure	21
3.2	Figure 3.2: The sample of dummy signal (Source: http://www.larsoa.org.uk/uploads/ CAMBS_DUMMY_POLICE.jpg, 2008)	22

3.3	Figure 3.3: Car wiper motor	24
	(Source: http://www.allproducts.com/ee/hcmotor/72	
	-wiper_motor.jpg, 2008)	
2.4		26
3.4	Dimension of photovoltaic panels model KC40T	26
	(Source: Kyocera Corporation, 2004)	
3.5	Panel positioning in 45°	27
	(Source: www.solar-power-grid-for-sale.com/	
	images/1.jpg, 2008)	
3.6	Cut-away of a standard lead-acid battery cell	29
	(Source: Johnny Wiess, 2004)	
3.7	PV modules in parallel	30
	(Source: Johnny Wiess, 2004)	
4 1	Original starsstrum of high way duranty signal	22
4.1	Overall structure of highway dummy signal	33
4.2	Location and design of handle	34
	Location and design of nanare	51
4.3	Tyres at the bottom structure of highway dummy signal	34
4.4	Motor wiper with bracket jointed with screw	35
4.5	Solar panel at the back of highway dummy signal in	36
	angle of 45°	
4.6	Car battery located on rack	37

4.7	Schematic diagram of PV system of Highway Dummy Signal	39
4.8	Stand-alone photovoltaic power system	40
4.9	Dimension of right and left side arm	41
4.10	Dimension of right side connector	42
4.11	Dimension of left side connector	45
4.12	Side view of structure highway dummy signal	49
4.13	HOMER implementation of the photovoltaic energy System	52
4.14	Photovoltaic unit costs	54
4.15	Costs of battery unit	55
4.16	Average daily radiation and clearness index	56
5.1	Optimization results different amount of power produced by PV	58
5.2	Bar chart of cash flow summary for the period annualized cost	59
5.3	Cash flow summary for Net Present Cost	60
5.4	Nominal cash flow within 25 years	61

5.5	Monthly average electric production	62
5.6	PV output for hour of day in 1 year	63
5.7	State of charge of battery bank for hour of day in 1 year	64
5.8	Graph total cost comparison for each system in 5 years	69

LIST OF SYMBOLS

PV	=	Photovoltaic
%	=	Percent
	—	
\$	=	Dollar
VAC	=	Voltage alternating current
RPM	=	Revolution per minute
a-Si	=	Amorphous Silicon
+/-	=	Plus minus
Pb-acid	=	Lead-acid
NiCd	=	Nickel-cadmium
NiMH	=	Nickel-metal hydride
Li-ion	=	lithium-ion
Li-poly	=	lithium-polymer
E _i	=	Voltage input
Q_d	=	Ah of discharge
R _i	=	Internal resistance
Eo	=	Voltage output
Ro	=	Resistance output
K ₁ , K ₂	=	Constant
$I^2 R_L$	=	External load resistance
$I^2 R_i$	=	Internal loss
η	=	Efficiency
Ι	=	Output current
I ₀	=	Current with normal sun

θ	=	Angle of the sunline
Т	=	Reference temperature
α, β	=	Temperature coefficient
3D	=	Three dimension
DC	=	Direct current
ρ	=	Density
v	=	Volume
m	=	Mass
Т	=	Torque
F	=	Force
d	=	Distance
W	=	Weight
Ν	=	North
Е	=	East
O&M	=	Operation and Maintenance
NPC	=	Net Present Cost
hr	=	Hour
RM	=	Ringgit Malaysia

LIST OF UNITS

mm ³	=	Milimeter cubic
kWh/day	=	kilowatt-hour per day
kW	=	kilowatt
MJ/m ²	=	Mega joule per meter square
ZJ	=	Zettajoule
W/m^2	=	Watt per meter square
Ah	=	Ampere-hour
W	=	Watt
V	=	Voltage
Amp	=	Ampere
m	=	Meter
cm	=	Centimeter
mm	=	Millimeter
Nm	=	Newton.meter
kg	=	Kilogram
Wh	=	Watt-hour
°C	=	Degree Celcius
\$/kWh	=	Dollar per kilowatt-hour

LIST OF APPENDICES

NUMBER TITLE

PAGE

А	Gantt Chart	76
В	Bill of Materials	77
С	Specification of Equipments	80
D	Drawing Sheets of Highway Dummy Signal Structure	84

CHAPTER 1

CHAPTER 1

INTRODUCTION

1.1 Background Study

Solar energy is the radiant light and heat from the Sun that has been harnessed by humans since ancient times using a range of ever-evolving technologies. This energy is produced when the insulation surface in solar cell such as silicon is affected. This beam will charge ions in this silicon and produced a power namely electricity or fondly known as solar energy. Realizing the advantages and goodness of using solar energy, a study is made to replace battery consumption as source of electricity supply to system solar. Medium use to this study is highway dummy signal because this tool is customary expended at construction site such as on highways where there is no electricity supply from grid. Furthermore, highway dummy signal nowadays uses battery as main source to supply electricity to move motor. Like those known, battery should always being charged to ensure energy produce is enough and battery need neat care to extend life span of the battery. So, this study is aimed to compare suitability and advantages in using solar system in highway dummy signal with battery consumption.