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ABSTRACT 

Computer vision plays a vital role in sports analytics by facilitating the automated 

identification, monitoring, and examination of players' motions and activities. By 

combining the strengths of YOLOv7 Pose Estimation and LSTM models, this research 

project aims to construct an intelligent badminton action detection system. By 

precisely identifying and classifying badminton movement, such as smash and serve, 

the goal was to improve the analysis of badminton shot classification in video footage. 

To do this, a specific badminton match recordings were gathered from YouTube, and 

individual shot instances were identified. The X-coordinate, Y-coordinate, and 

confidence ratings of each frame were extracted using YOLOv7 Pose Estimation. 

These key points were arranged into thirty-frame sequences, resulting in fifty-one 

features per sequence. Based on this key point data, an LSTM model was then trained 

to predict badminton shot motions. The study specifically discovered that the 

combination of pose estimation and LSTM resulted in an impressive accuracy rate of 

97%. In addition, alternative algorithms such as GRU and CNN achieved somewhat 

lower accuracy rates of 93% and 90% respectively. Robust action detection in 

badminton matches is possible because to the integration of YOLOv7 for posture 

estimation and LSTM for sequence learning, which produced encouraging results. 
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ABSTRAK 

Dalam analisis sukan, penglihatan komputer membantu dalam pengenalan 

automatik, pemantauan, dan pemeriksaan pergerakan dan aktiviti pemain. Tujuan 

projek penyelidikan ini adalah untuk mencipta sistem pengesanan tindakan badminton 

yang pintar dengan menggabungkan kekuatan model YOLOv7 Pose Estimation dan 

LSTM. Matlamatnya ialah untuk meningkatkan analisis klasifikasi pukulan 

badminton dalam video dengan mengklasifikasikan pukulan  seperti smash dan serve. 

Untuk mencapai matlamat, rekod perlawanan badminton dari YouTube dikumpulkan 

dan  tembakan individu telah dikenal pasti. Menggunakan YOLOv7 Pose Estimation, 

penilaian untuk koordinat X, koordinat Y dan kepercayaan untuk setiap bingkai 

dikeluarkan. Per urutan terdapat tiga puluh titik utama, yang menghasilkan lima puluh 

satu ciri. Model LSTM kemudiannya dilatih untuk meramalkan gerakan tembakan 

badminton berdasarkan data titik utama ini. Secara khusus, kajian ini menunjukkan 

bahawa gabungan estimasi kedudukan dan LSTM memberikan kadar ketepatan yang 

mengesankan sebanyak 97%. Tambahan pula, algoritma alternatif seperti CNN dan 

GRU mencapai kadar ketepatan yang agak rendah sebanyak 90%. Integrasi YOLOv7 

dan LSTM membolehkan pengesanan tindakan yang kukuh dalam perlawanan 

badminton. Keputusan yang menggalakkan telah dihasilkan sebagai hasil daripada ini.  
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CHAPTER 1:  

INTRODUCTION  

This chapter presented the general view of the project following with the background 

and problem statement. Objectives and scopes of the project are also discussed in this 

chapter. All the details for each section of the project have been commented on in this 

chapter. 

1.1 Background of Project 

The integration of deep learning in sports has become increasingly essential due to 

its potential to revolutionize performance analysis, player development, and audience 

engagement. Deep learning algorithms have demonstrated remarkable capabilities in 

processing large volumes of sports-related data, recognizing patterns, and making 

predictions, making them well-suited for addressing the complexities of sports 

analytics [1]. Manual analysis of badminton matches is plagued by several critical 
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issues, making it an inefficient and less reliable method for assessing player 

performance. The process is both time-consuming and labor-intensive, demanding 

observers to meticulously review match videos frame-by-frame and record events, 

leading to a slow and tedious workflow [2][3]. Moreover, the subjectivity and 

inconsistency among different observers in interpreting and recording match events 

result in unreliable and inconsistent data [2]. In other context of badminton analysis is 

the usage of sensor-based approach. The usage of sensors in badminton faces several 

practical challenges, making their implementation unfeasible in certain contexts. 

These challenges are rooted in technological, logistical, and practical considerations, 

as evidenced by the following factors. Wearable sensors, such as accelerometers, often 

need to be attached to players' bodies to capture motion data accurately. This can lead 

to discomfort and may interfere with players' movements and performance [4]. 

Furthermore, purchasing and maintaining sensor equipment, as well as the necessary 

data processing and analytic infrastructure, can be prohibitively expensive in many 

badminton training and competitive situations [5]. A more objective and effective 

solution is provided by the integration of automated systems, which are powered by 

cutting-edge technologies like computer vision and deep learning networks. This 

reduces the error margin and gives a thorough study of the dynamics of the game. 

 

 The suggested project aims to create an intelligent system based on computer 

vision with deep learning networks. The goal of the research is to create a system that 

can accurately and independently identify a variety of badminton moves from video 

footage, such as smashes, lifts, and serves. The approach used makes use of advanced 

deep learning models that combine LSTM (Long Short-Term Memory) models for 

pose estimation algorithms for precise badminton action classification. This tactical 
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strategy guarantees the accuracy and dependability of the system in identifying a broad 

range of activities within the badminton environment. 

 At the end of this project, the anticipated outcome is the creation of a functional 

system with high recognition accuracy for multiple badminton actions for sports 

performance analysis, enhancing coaching and training experiences. 

 

1.2 Problem Statement 

Rapid evolution of computer vision technology and research and development 

(R&D) activities has led to the creation of modern and advanced sports analysis 

techniques based on deep learning. Generally, the use of multiple sensor-based for 

badminton action recognition may increase the recognition accuracy, but if it is too 

many sensors can cause inconvenience and discomfort for badminton athletes during 

training and live matches [6]. Another issue of the use of the sensor based deep 

learning model and sensor positioning is also prone to the confusions for detecting 

similar strokes such as smash and clear [7]. Hence, the necessity to simultaneously 

consider the accuracy of the framework and other factors such as shuttlecock 

recognition, precise classification of the stroke’s recognition and stability of the 

framework were also crucial. The precise classification of strokes recognition and 

accurate shuttlecock recognition can be guaranteed by using deep learning. This is 

because deep learning works excellently in extracting high-level features directly from 

raw data as its architecture consists of hundreds of hidden layers [8]. Addressing that, 

the main aim of this project is to develop an intelligent system of badminton action 

based on computer vision video analysis with deep learning that integrates pose 

estimation and object detection model. 

 



4 

 

1.3 Objectives 

There are two objectives in this project listed below: 

i. To develop a deep learning-based badminton action recognition system that 

integrates pose estimation and LSTM (Long Short-Term Memory). 

ii. To evaluate the proposed model’s performance in terms of precision, recall, 

F1-score and model accuracy. 

 

1.4 Scope Of Project 

The goal of this research is to create an advanced badminton action recognition 

system. The first stage is gathering a variety of high-definition badminton match 

recordings from YouTube to provide the groundwork for later stages. The main 

objective is to locate critical points, i.e., smash and lift, when temporal fragments are 

carefully cut and saved independently. Each video frame is then processed using the 

YOLOv7 Pose Estimation Model to extract the expected key points (X-coordinate, Y-

coordinate, and confidence scores). After grouping these focal points into sequences 

of thirty frames, 51 features are produced, each of which carefully captures the details 

of the 17 key points. The next stage contributes to a thorough knowledge of different 

badminton motions by training an LSTM Model with key point data derived from the 

YOLOv7 Pose Estimation Model. The LSTM Model's input data dimensions are (n * 

30 * 51), which captures the key point data's sequential structure. 

 

The project integrates a practical feature by making a mask with the same shape 

and presenting an example image from the videos in addition to its fundamental 

development. The system then uses the YOLOv7 Pose Model to identify key points 
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during specific badminton motions, such as smash, drop, lift, and serve, and select the 

Region of Interest (ROI) for Player 1. Note that Player 1, who is closer to the camera, 

is the subject of this discussion since Player 2, who is positioned farther from the court 

camera, is subject to limitations relating to missing key point landmarks. In addition, 

the trained LSTM model is tested on sample videos and produces shot predictions in 

the output. 

 

The development of badminton action recognition utilizing Google Colab as a 

simulation platform. Google Colab is the Jupyter notebook environment that allows 

users to collaborate and access the powerful hardware accelerators such as GPU 

(Graphics Processing Unit). Google Colab offers GPUs from NVIDIA, such as Tesla 

T4, K80 and P100, which are used for extensive wide and variety machine learning 

and data analysis tasks. It offers a Jupyter environment that is interactive and supports 

several programming languages such as Python that will be used in this project. Python 

is rich in ecosystem of libraries and frameworks, flexible, easy to use and has strong 

community and support. The libraries used in this project include TensorFlow, 

Matplotlib, OpenCV and NumPy as open-sources libraries. 

 

To give coaches and players useful information about gaming dynamics, this 

systematic project aims to improve the accuracy of badminton action recognition by 

integrating deep learning. The project provides more than just data processing; it 

involves training and implementing complex models to guarantee a strong and 

intelligent system that can precisely predict and classify different badminton strokes. 
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1.5 Project Significance 

The significance of this project lies in its potential to transform badminton 

gameplay analysis and comprehension by utilizing deep learning technology. In 

addition to improving sports analytics efficiency, the project offers coaches and 

athletes insightful information by creating a sophisticated system for accurate action 

identification. A more sophisticated understanding of player motions and shot 

dynamics is made possible by the methodical approach that combines YOLOv7 Pose 

Estimation and LSTM models. This initiative has the potential to completely change 

the way badminton is researched by providing an invaluable resource for enhancing 

player performance, fine-tuning coaching techniques, and expanding the field of sports 

analytics. 

1.6 Thesis Outline 

This thesis consists of five chapters, starting with an introduction outlining the 

objectives, scope, and significance of developing an intelligent badminton action 

recognition system. Chapter two goes into further detail about the background 

research, highlighting the drawbacks of the current methods and providing support for 

using a computer vision-based system. The third chapter describes the approach in 

depth, emphasizing the gathering of various badminton match recordings, the creation 

of the system utilizing YOLOv7 Pose Estimation and LSTM models, and pragmatic 

issues such as Region of Interest selection and image display. Results from the trained 

system are examined and presented in the fourth chapter, offering an understanding of 

how well it performed. The thesis is ended in the last chapter, which also offers 

directions for future research and highlights important discoveries. This will help to 

improve badminton coaching and training experiences while also advancing the field 

of sports analytics. 
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CHAPTER 2:  

BACKGROUND STUDY 

This chapter discusses the related previous research on sports and badminton analysis 

encompassing various types of approach. It also explains in detail the concept of pose 

estimation and LSTM (Long Short-Term Memory). Ideas and techniques were 

obtained from those journals and research papers. Based on the methods that been 

used in that previous research, the best solution was selected and applied to this project 

as the methodology.  

2.1 Badminton – Second Most Popular Sport in The World 

Badminton is a popular racquet sport that has a past that goes back more than 2,000 

years. The current form of the game was created around the 1850s [9].The sport can 

be traced back to old societies in Asia and Europe, where it was first played as a fun 

competitive activity. Badminton has become an official sport with set rules and sets 

of tools over time. The name of the sport comes from the Duke of Beaufort's 

Badminton House in Gloucestershire, England, where it was first played in the middle 

of the 1800s. In 1893, the Badminton Association of England was formed, and the 
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first set of rules was written down. This made the sport more official and famous. 

Badminton has changed over time from a fun activity to a sports game with a rich 

culture history that is played all over the world. 

 

Badminton is played on a rectangular court with a net in the middle. It can be played 

singles (one player on each side) or pairs (two players on each side). One player's goal 

is to hit the shuttlecock over the net and put it inside the other player's court while 

making it hard for the other player to return it. Tennis is a sport where players must 

quickly move around the court and use different strokes, like the serve, clear, smash, 

and drop shot, to get the upper hand on their opponents. Badminton is scored by rally 

points, which are earned for every serve. The first team to reach 21 points wins the 

game and has a two-point lead over the other team. Quick reflexes and smart play are 

important in this sport, which makes it exciting and interesting for both players and 

viewers. 

 

There are several reasons why badminton has become so popular around the world. 

First, it's appealing because there aren't many rules on the pitch, and it's easy to learn, 

so a lot of people can do it [10] A lot of people also like how the sport is structured 

temporally, with short bursts of high-intensity activity followed by short breaks [11]. 

Also, the physical needs of badminton, like having to be quick on your feet and getting 

enough oxygen, have helped make it so famous [12]. Facilities made just for 

badminton, like badminton rooms, have also helped the sport become more famous. 

There is also a lot of interest in badminton because it is taught in physical education 

classes at schools and universities [13]. 
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2.2 Action Recognition  

 

The study of action recognition is an important part of computer vision. It has many 

uses, including smart video monitoring, virtual reality, human-computer interaction, 

and more [14]. It involves finding different actions in video clips, and researchers are 

very interested in it because it has a lot of study worth and could be used in many ways 

[15]. Recent research has shown that neural networks trained to recognize objects can 

also learn visual traits that help classify actions. This shows how different computer 

vision tasks are linked [16] .A lot of recent study has also been focused on improving 

action recognition methods. This includes progress in hand-designed action features, 

deep learning-based action feature representation methods, and methods for 

recognizing human-object interactions [17]. 

 

 

 

A lot of different areas, like sports, dance, and aerobics, use action recognition. It's 

very important for competition training, national health, and tracking people's 

movements [18] Action recognition in films could also be used for multimedia 

indexing, public safety surveillance, and teaching music in a way that involves the 

Figure 2.1 : Classification framework for human action recognition methods [17] 
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students [19]. Automatically recognizing what people do can make monitoring easier 

and have effects on public safety and security [20]. 

 

To summarize, action recognition is an essential area of study in computer vision 

research that has a wide range of practical uses. In recent years, there have been 

notable developments in this subject, especially in the creation of deep learning-based 

techniques and their use in other domains. 

 

 

2.3 Pose Estimation 

Pose estimation is an important part of computer vision and artificial intelligence. 

It can be used for many things, from figuring out where a person is to analyzing things 

that happen in videos, like crashes. In the past few years, a lot of progress has been 

made in this area. New methods and formulas have been created to solve problems by 

correctly figuring out the poses of people and things. Deep learning, especially as 

shown by DeepPose and OpenPose [21], [22], has become a key factor in improving 

pose prediction. Deep neural networks are used in these methods to figure out the 

poses of different people. Part affinity fields are used to estimate the 2D poses of 

multiple people in real time. 
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Figure 2.3: Multi-person pose estimation. Body parts belonging to the same person 

are linked, including foot key-points (big toes, small toes, and heels) [22] 

Figure 2.2: Configuration of valid human pose estimation [17] 

Figure 2.4 : Output of OpenPose, detecting body, foot, hand, and facial key points 

in real-time) [22] 
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The study [23] by Munea et al. gives an interesting summary of the progress made 

in estimating the pose of a person, including a list of the models used in 2D pose 

estimate. This study fills in gaps in our knowledge and sheds light on the current state 

of 2D human pose estimation studies. It also helps us understand what other research 

is being done in this area. Sapp et al. [24] also contribute to the field by solving the 

problem of articulated human pose estimation by creating a chain of visual structure 

models that go from coarse to fine. This makes pose estimation models more accurate. 

Zhang and Jiang's work [25] shows how important accurate pose prediction is for 

recognizing visual things and how important it is in many computer vision 

applications. Ghiass et al. [26] show how RGB-D sensors and 3D morphable models 

can be used to accurately and fully automatically estimate 3D head pose and eye gaze. 

They show how depth data can be used to estimate poses. 

The work of Eichner and Ferrari [27] shows how useful human pose co-estimation 

is for whole-body imaging, pattern recognition, and picture analysis. Chen et al.'s plan 

[28] calls for the creation of multimodal data fusion pose estimate algorithms that are 

especially good at dealing with problems that come up in complex scenes with targets 

that aren't well-textured and lighting that isn't ideal. This suggestion adds to the current 

development of motion estimation techniques. 

Pose estimate research uses many different approaches, some based on deep 

learning and others on multimodal data fusion algorithms. These together move this 

important area of computer vision and artificial intelligence forward. 
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2.4 LSTM (Long Short-Term Memory) 

 

Long Short-Term Memory (LSTM) is a type of recurrent neural network 

(RNN) architecture designed to address the vanishing and exploding gradient 

problems encountered in conventional RNNs [29]. LSTM has been widely used for 

sequential data analysis, demonstrating effectiveness in various applications such as 

speech recognition [29], malware detection [30], rainfall-runoff modeling [31] and 

energy-efficient inference acceleration [32]. Its capability to handle long-term 

dependencies has made it suitable for tasks like time series prediction [33], hand 

gesture recognition [34], and anomaly detection [35]. 

 The Long Short-Term Memory (LSTM) network addresses several critical 

challenges in sequence learning and time series analysis. LSTM is specifically 

designed to solve the problems of vanishing and exploding gradients that are 

commonly encountered in traditional recurrent neural networks (RNNs) [36]. These 

issues hinder the ability of RNNs to effectively capture long-term dependencies and 

sequential patterns in data, which is crucial for tasks such as time series prediction, 

video analysis, and speech recognition [37]. LSTM's architecture enables it to 

effectively learn from and model sequences with long-range dependencies, making it 

well-suited for applications that require understanding and predicting complex 

temporal patterns [36].  
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Block diagram of the LSTM as shown in Figure 2.5 illustrates the internal 

structure and operation of an LSTM cell, detailing the various components and the 

flow of data within the cell. It contains inputs, outputs, components, and operations.  

Forget Gate (ft), Input Gate(it), Cell State Update (Ct), Output Gate(ot) and Hidden 

State Update(ht) is computes as:  

     𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                    (2.1) 

                                      𝑋𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                   (2.2) 

     𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                    (2.3) 

                   ç𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)              (2.4) 

Figure 2.5 : Block diagram of the LSTM. [65] 
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                  𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑋𝑡 ∗ ç𝑡                            (2.5) 

       𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                    (2.3) 

       ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝐶𝑡)                                  (2.5) 

Where; 

 𝑋𝑡 : Input vector at the current time step. 

 ℎ𝑡−1 : Hidden state from the previous time step. 

𝐶𝑡−1 : Cell state from the previous time step. 

ℎ𝑡 : Hidden state output from the current LSTM cell. 

𝐶𝑡 : Cell state output from the current LSTM cell. 

 

Furthermore, LSTM has been applied to various domains to address specific 

challenges. For instance, in the context of wind power forecasting, LSTM has been 

utilized to capture the complex non-linear spatiotemporal dynamics of wind power 

generation, improving the accuracy of forecasting models [38]. Similarly, in the field 

of traffic prediction, LSTM, in combination with attention mechanisms, has been 

employed to model the intricate spatiotemporal traffic dynamics in road networks, 

addressing the challenges associated with predicting travel times accurately [39]. 

Additionally, LSTM has been used to predict water levels and water quality, 

leveraging its ability to capture long-term dependencies and sequential patterns in 
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water-related data, thereby improving the accuracy of water quality and level 

predictions [40].  

In summary, LSTM is designed to address the challenges of capturing long-

term dependencies and sequential patterns in data, making it a powerful tool for tasks 

such as time series prediction, traffic forecasting, wind power prediction, and water 

quality modeling. 

2.5 Badminton Action Recognition 

2.5.1 Sensor Based Approach 

Past study has paid a lot of attention to action recognition in badminton using 

sensor-based technology. Accelerometer and gyroscope readings have been used in 

studies to try to figure out badminton strokes and moves [41]. It has also been 

suggested that gyroscope sensors and machine learning methods could be used to 

recognize the different badminton strokes that players use. It has also been 

investigated how body sensor networks can be used to recognize different badminton 

moves [42] Also, the use of sensor rackets as a diagnostic and training tool for top 

badminton players has been investigated, showing the sport's promise for sensor-based 

technologies [43]. 

All these studies show that people are becoming more interested in using 

sensor-based technologies to track and analyze different badminton moves. The use 

of machine learning methods and networks of accelerometers, gyroscopes, and body 

sensors shows that badminton strokes and moves can be recognized accurately and 

quickly. Additionally, the test of sensor stick as a diagnostic tool shows how sensor-

based technologies can be used in top badminton training and performance analysis. 
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When sensor-based technologies are combined with advanced recognition 

algorithms, it could help us better understand and analyze badminton moves, which 

could lead to better ways to train and judge player performance. 

2.5.2 Pose Estimation Approach 

The incorporation of deep learning into pose estimation has been crucial in 

ensuring precise evaluation of badminton action recognition. The significance of pose 

estimation algorithms, including OpenPose and HRNet, in badminton action 

recognition has been emphasized by Su and Feng [44]. By employing these 

algorithms, the posture of badminton players can be approximated, facilitating the 

extraction of significant cues and characteristics for action recognition. Furthermore, 

the integration of deep learning models, including convolutional neural networks 

(CNN), with pose estimation has proven to be a pivotal factor in attaining precise 

identification of diverse badminton movements. 

The empirical evidence supporting the efficacy of pose estimation algorithms, 

specifically in the estimation of body poses characterized by many degrees of freedom, 

has emphasized their criticality in attaining cutting-edge outcomes in action 

recognition endeavors. Furthermore, it has been demonstrated that pose-based features 

obtained from estimated poses exhibit enhanced performance in action recognition 

tasks compared to low or intermediate-level features [45]. 

In brief, the incorporation of deep learning into pose estimation and the 

implementation of pose estimation algorithms like OpenPose and HRNet have 

exhibited exceptional efficacy and hold promise for propelling the comprehension and 

analysis of badminton movements forward, thereby facilitating enhanced training 

methodologies and player performance assessment. 
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2.5.2.1 Pose Estimation Model 

OpenPose  

OpenPose is an extensively utilized and well-known pose estimation 

framework that combines deep neural networks. Multiple CNNs and part affinity 

fields are employed by the architecture to identify and link critical body joints. 

OpenPose is renowned for its adaptability in managing complex and congested 

environments and its capability to estimate both 2D and 3D poses. 

Pose Net  

PoseNet is a Google-developed model for estimating the pose of individual 

images. Operating on mobile devices, it is optimized for real-time performance and is 

built upon the MobileNet architecture. The pose estimation capability of PoseNet, 

which is based on critical body joint positions, is particularly advantageous for tasks 

that have restricted computational resources. 

You Only Look Once Version 7 (YOLOv7) Pose 

YOLOv7 is an advancement over the YOLO series, and YOLOv7 Pose is an 

application designed to estimate the pose of humans. Utilizing a single-shot detection 

methodology, it is capable of real-time prediction of critical anatomical points and 

bodily joints. YOLOv7 Pose utilizes the speed and efficacy of the YOLO architecture 

to perform pose estimation duties. 

By utilizing deep learning methodologies, these models autonomously acquire 

and extract hierarchical features from input images, thereby facilitating precise and 

effective pose estimation in a wide range of applications. The model selection is 
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contingent upon various factors, including real-time performance, accuracy 

prerequisites, and the attributes of the input data. 

2.5.3 Trajectory Analysis Method 

In badminton, trajectory analysis entails an exhaustive examination of the 

shuttlecock and the paths traversed by players throughout a match. Through the 

monitoring of player movements, analysts can discern strategic preferences and 

playing techniques, including acceleration and speed. Furthermore, an examination of 

the shuttlecock's trajectory yields valuable information regarding the characteristics of 

shots, including their velocities, angles, and varieties.  

Utilizing shuttlecock trajectory for badminton action recognition necessitates 

several technological and methodological approaches. The shuttlecock's trajectory is 

an essential factor in distinguishing various badminton actions. An investigation 

conducted found that the presentation of the shuttlecock's trajectory in the footage 

improved the ability of novices to anticipate actions[46]. The importance of 

shuttlecock trajectory in action recognition is thus highlighted. In addition, the 

efficacy of a shuttlecock trajectory tracking system was proposed, highlighting the 

pragmatic implementation of trajectory analysis in the context of badminton action 

recognition. Furthermore, for action recognition, it is critical to comprehend the 

trajectory of the badminton shuttlecock, constructed a model to depict this trajectory 

[47]. 

Furthermore, significant technological progress has been achieved in this 

domain. For instance, developed badminton action recognition algorithms utilizing 

acceleration and angular velocity signals, thereby demonstrating the application of 

cutting-edge technologies to action recognition [48]. Furthermore, an investigation 
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examined the application of sensor technology in trajectory prediction by utilizing 

multiple two-dimensional scanners to detect and predict the trajectory of badminton 

shuttlecocks [49] . 

2.6 Review of Related Work 

Researchers have been pushing the limits of badminton action recognition in 

the quickly developing field of sports technology. The research by (Anik M et 

al.,2016) [50] aims to create a system that uses motion sensors—specifically, 

accelerometers and gyroscopes—to identify different activities within a badminton 

game. The study's principal discovery is that the system, which uses the Support 

Vector Machines (SVM) and K-Nearest Neighbors (K-NN) classifiers, shows 

considerable promise in identifying actions such as smash, serve, and backhand. 

(Steels T et al.,2020) [41] revolutionized badminton action recognition by 

investigating the integration of Convolutional Neural Networks (CNNs), in contrast 

to (Anik M et al.,2016) [50] outdated sensor-based approach. Their innovative method 

made use of accelerometers and gyroscopes to provide a covert and affordable way to 

measure player performance. With a remarkable 99% accuracy rate in classifying 

strokes, this study represented a revolutionary turning point in sports analysis. (Yip et 

al.,2020's) [51] contribution, which delves deeper into the field of sensor-driven 

badminton action recognition focusing on various type of smashes and integrating 

Convolutional Neural Networks (CNNs), was prompted by this seismic shift. They 

used accelerometer and gyroscope data instead of the more basic badminton action, 

offering a low-cost and non-intrusive way to improve badminton player performance. 

Developing this sensor-based path further, (Qin L et al.,2022) [6] conducted a 

thorough investigation titled "Optimizing Badminton Action Recognition with Deep 

Learning and Sensor Fusion." They effectively integrated inertial, electrocardiogram, 
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and electroencephalogram sensors with deep learning to leverage sensor technology 

in their pursuit of improving athlete performance through motion analysis. With a 

focus on the vital role played by the athlete's dominant hand, this study sought to 

maximize recognition accuracy. 

 Previous studies have only focused on sensor-based action recognition. 

Addressing this, (Bo et al., 2023) [52] in their paper “Intelligent System of Badminton 

Serve Action Based on YOLOv5 and OpenPose”, by utilizing computer vision and 

artificial intelligence, the researchers aim to optimize badminton coaching and 

training. Creating an effective system that automatically recognizes and scores 

badminton movements—with a focus on serves action in particular—is their main 

goal. The study emphasizes the benefits of deep learning models, highlighting their 

robustness, accuracy, and speed when compared to conventional methods. In addition, 

the system provides comprehensive scoring, which improves players' understanding 

by including both overall actions and specific limb movements. The study highlights 

artificial intelligence's potential in the sports sector and the seamless switch from 

vision-based to sensor-driven methods demonstrates a common path that could 

revolutionize the recognition of badminton actions.  

An important research gap in the literature to date is the absence of a 

comprehensive system that combines LSTM with a wide variety of pose estimations 

model for a broad range of badminton actions (serve, smash, drop, clear, lift, drive, 

block, net kill, and net shot) using deep learning models without the need for extra 

sensors. Even though earlier research has been very helpful, the lack of a 

comprehensive framework makes it difficult to identify and analyze badminton actions 

holistically. 
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Table 2: Review of Related Work 

Study Aim Method Accuracy 

[50] The aim of this study is to develop a 

system for recognizing various 

activities within a badminton game 

using motion sensors, specifically 

accelerometers and gyroscopes 

K-Nearest Neighbors 

(K-NN) and Support 

Vector Machines 

(SVM) classifiers. 

(KNN):58% 

recognition accuracy, 

(SVM):88.89% 

[41] Research goal: Automatically 

recognize nine distinct badminton 

strokes 

Convolutional Neural 

Network (CNN) 

86% with CNN, 

improved to 99% with 

the combination of 

sensor 

[10] Leverage deep learning, specifically 

continuous learning for recognizing 

human hitting badminton action. 

LSTM, GCN Network, 

Sensor Module mounted 

on Racket,  

92%classification 

accuracy using 

continuous learning 

and feature 

decoupling 

[6] Investigate and optimize recognition 

of various badminton actions using a 

sensor-based deep learning approach 

optimal number and 

combination of sensors 

for the highest 

recognition accuracy 

AlexNet:92% 

GoogleNet:89% 

[52] Develop an efficient system for 

detecting and scoring badminton 

player actions, particularly the serve 

action. 

Combination of 

YOLOv5 (object 

detection model) and 

OpenPose (human pose 

recognition technology). 

 

Not Stated 
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2.7 Action Recognition Using Another Types of Neural Networks 

2.7.1 Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are a type of advanced machine 

learning algorithms specifically designed for the purpose of processing and analysing 

visual data. CNNs are highly efficient in tasks connected to image recognition, object 

detection, and other image-related processing due to their ability to acquire spatial 

hierarchies of information autonomously and flexibly from input images. 

 

Based on Figure 2.6, A Convolutional Neural Network (CNN) is a type of neural 

network that processes images by applying filters to detect features such as edges and 

shapes. The network consists of multiple layers, starting with an input layer that takes 

the raw image data. Convolutional layers then apply filters to create feature maps, 

while an activation function (typically ReLU) adds non-linearity to help the network 

learn complex patterns. Pooling layers are used to reduce the size of the feature maps, 

making the network more efficient and reducing overfitting. This process of 

convolution and pooling can be repeated multiple times. The final feature maps are 

flattened into a one-dimensional vector and passed through fully connected layers for 

the final classification. The output layer provides the final predictions, often in the 

Figure 2.6: Basic architecture of CNNs.[66] 
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form of class probabilities. This structure enables CNNs to effectively learn and 

identify features in images. 

Action recognition using Convolutional Neural Networks (CNNs) is a significant 

area of research in computer vision. Researchers have conducted various studies to 

improve the accuracy and efficiency of action recognition systems. Karpathy et al. 

[53] demonstrated that retraining the top layers of CNNs on the UCF-101 dataset 

improved action recognition performance. Tran et al. [54] emphasised the 

effectiveness of 3D CNNs in achieving strong action recognition results when trained 

on large-scale datasets. Additionally, Hara et al. [55] found that combining RGB and 

stacked optical flow frames can enhance action recognition accuracy. 

 

Furthermore, the integration of several networks has been investigated for the 

purpose of action recognition. In addition, Zhang et al. [56] presented graph edge 

convolutional neural networks for the purpose of skeleton-based action recognition, 

showcasing notable enhancements in performance compared to previous approaches. 

Various architectural designs have been suggested to enhance the efficiency of 

spatio-temporal learning in action recognition. Leong et al. [57] introduced a Semi-

CNN architecture that achieved better performance than 3D models while using fewer 

Figure 2.7 : Pose Estimation with graph edge convolution [56] 
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parameters, hence eliminating the problem of overfitting. Qi [58] examined the 

utilisation of CNN models in conjunction with pyramid algorithms for the purpose of 

recognising aerobics actions. This study demonstrated the possibilities of combining 

different models in a creative way. 

Furthermore, the use of deep learning methods for human action recognition has 

gained traction. Shi et al. [59] highlighted the success of deep learning-based methods 

in various applications such as intelligent security, human-computer interaction, and 

video classification. Zhao et al. [60] discussed end-to-end deep learning approaches 

for action recognition, categorizing them into different CNN-based and LSTM-based 

methods based on network structures. 

To summarise, the literature review on action recognition using Convolutional 

Neural Networks (CNNs) demonstrates the progress made in models, fusion 

techniques, and deep learning methods to improve the precision and effectiveness of 

action recognition systems. Scientists have investigated different designs, techniques 

for combining data, and arrangements of networks to enhance the accuracy of 

Convolutional Neural Networks (CNNs) in identifying human behaviours. 
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2.7.2 Gate Recurrent Unit (GRU) 

GRU, short for Gated Recurrent Unit, is a specific sort of Recurrent Neural 

Network (RNN) structure that is specifically built to process sequence data. It is 

related to another RNN architecture called LSTM, which stands for Long Short-Term 

Memory. GRUs are designed to address the challenges commonly encountered with 

conventional RNNs, such as the problem of vanishing gradients. They also provide a 

more streamlined and computationally economical alternative to LSTMs. Several 

studies have explored the application of GRUs in action recognition tasks to improve 

accuracy and efficiency. 

This Figure 2.8 shows the internal workings of a recurrent neural network (RNN) 

type called a Gated Recurrent Unit (GRU), which is used to handle sequential data. 

Reset and update gates are the two main gates used by GRUs. The update gate chooses 

how much of the historical data should be preserved, while the reset gate chooses how 

much of the historical data should be erased. This process aids in the upkeep and 

updating of a hidden state that the GRU uses to extract pertinent data from the 

sequence. GRUs efficiently learn patterns over time by integrating the input and prior 

Figure 2.8 : Gated recurrent unit memory block [67] 
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hidden state through these gates; this makes them ideal for tasks like action 

identification in films and time series prediction. 

In their study, Yin et al. [61] introduced a comprehensive action identification 

model that incorporates Temporal Convolutional Neural Networks (TCN) to extract 

local temporal characteristics and a GRU layer to capture global temporal features. 

This approach significantly improves the accuracy of recognising action fragments. 

Jaouedi et al. [62]  have highlighted the capacity of GRUs to acquire and utilise 

sequential and temporal input, which is essential for video identification tasks.  

Furthermore, Ullah & Munir [63] introduced a framework that employs stacked bi-

directional GRUs for long-term temporal modeling and human action recognition, 

demonstrating the effectiveness of GRUs in capturing complex temporal patterns. 

Additionally, Lu et al. [64] proposed a Multichannel CNN-GRU model for human 

activity recognition, highlighting the importance of GRUs in handling variable-length 

sequences and capturing long-distance dependencies. 

To summarise, the literature review on action recognition utilising Gated Recurrent 

Units (GRUs) highlights the importance of these units in capturing temporal patterns 

and enhancing the efficiency of action recognition systems. GRUs have demonstrated 

their adaptability in a wide range of applications, including video identification and 

voice emotion recognition. This showcases their ability to efficiently process 

sequential input, underscoring their potential. 
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CHAPTER 3:  

METHODOLOGY  

This chapter presents the design technique for the proposed system that aims to 

recognize badminton actions. The method incorporates YOLOv7 pose to provide 

accurate pose estimation, leveraging its object identification skills to detect crucial 

locations on a badminton player's body. In addition, an LSTM model is included for 

action prediction, utilizing its expertise in processing sequential data, and identifying 

temporal relationships. The used technologies include PyTorch for YOLOv7, 

TensorFlow/Keras for the LSTM model, OpenCV for image processing, NumPy for 

numerical data manipulation, and other libraries for specialized applications. The 

objective of the system is to improve the accuracy of recognizing badminton actions 

using deep learning. This will offer coaches and players useful insights into the 

dynamics of the game. The technique entails analyzing high-definition badminton 

match records, utilizing YOLOv7 to identify crucial moments, training the LSTM 

model, and evaluating its accuracy in predicting and categorizing different badminton 

strokes through example videos. 
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3.1 Overall Project 

The study commences by conducting as shown in Figure 3.1  comprehensive 

research on deep learning for the recognition of badminton actions, with the aim of 

gaining a clear understanding of current methodologies, advancements, and challenges 

in this field. An organised data collection strategy guarantees a thorough dataset 

encompassing various gameplay scenarios and player proficiency levels. The 

utilisation of this dataset is crucial for both the training and assessment of the proposed 

system. Data preparation tackles challenges such as noise, inconsistencies, and 

fluctuations in lighting, which ultimately allows for accurate posture prediction 

utilising the YOLOv7 model. The YOLOv7 model precisely detects crucial 

anatomical landmarks during badminton motions, which are subsequently utilised as 

input for the Long Short-Term Memory (LSTM) model. The LSTM model, selected 

for its capacity to handle sequential data, accurately captures the temporal 

dependencies in posture sequences. The model's ability to predict and classify 

badminton moves is enhanced by rigorous training, with a particular emphasis on 

capturing the game's dynamic aspect. Performance evaluation use metrics to gauge the 

precision, resilience, and applicability of the system. The study culminates with a 

thorough report that provides a concise summary of the results and insights. It 

emphasises potential advancements and areas for further investigation.  
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3.2 Dataset Collection and Preprocessing 

The dataset will be obtained from the Badminton World Federation (BWF) 

YouTube account, which provides high-quality video content. The films from the 

Victor Denmark Open 2023 competition will be used specifically because of their 

consistent camera angles, excellent definition, and professional coverage. The study 

will focus on six key badminton actions shot: 

• Smash   

• Serve 

• Drive 

Figure 3.1 : Overall Methodology Flowchart 



31 

 

• Net 

• Lift 

• Block 

After obtaining the unprocessed video material, we utilize video editing tools to 

isolate and remove parts that correlate to badminton motions. Every activity is 

carefully defined and arranged into distinct folders as in Figure 3.2, guaranteeing 

convenient access and efficient management during following processing phases. The 

careful arrangement of data enables effective annotation and labelling, which are 

essential stages in developing strong action recognition models. 

 

Therefore, the final dataset has around 5,000 frames for each action, which is a 

good number of examples for training and validating the model. In addition, the 

dataset includes about 30000 frames by adding up frames from all six actions. This 

Figure 3.2 : Early Stages Action Video Dataset 
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big dataset makes it easier to train a strong model, which lets it recognize a wide range 

of badminton movements with high accuracy and generalizability. 

3.3 Dataset Preprocessing Algorithm Development (KeypointFinder.py). 

First, the important libraries needed for model inference and video processing are 

imported. It then defines a function that makes object classification easier by loading 

class names from a file. Subsequently, the primary function (run) coordinates the 

dataset preprocessing pipeline, which consists of multiple crucial stages. Video 

capture from a specified source—a video file or a live webcam feed—is initialized by 

the algorithm. It recognizes things in every frame of the video, including badminton 

players, by using the YOLOv7 model. Important contextual data is obtained during 

the object detection stage, which is used to estimate the pose afterwards. 

3.4 Dataset Preprocessing by Algorithm  

The frames are taken out of the video source and used as a starting point for 

further research. A Region of Interest (ROI) is made to focus on Player 1 more closely, 

and YOLOv7 pose estimate is used to get key point forecasts. These key points, which 

are locations shown by (x, y) coordinates, are taken out and stacked as 30 frame 

sequences, with 51 features in each sequence as shown in Figure 3.3,Figure 3.4,Figure 

3.5,and saved into .py file containing all the key points for each action and then 

concatenated into a single NumPy array file as shown in Figure 3.6. This sequential 

picture is key to understanding how badminton movements change over time. 
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Figure 3.4 : ROI (Region of Interest) of Player One. 

Figure 3.3 : Selecting Player One ROI. 

Figure 3.5 : Extracting key point During Smashing. 
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The next important step is to save the data from the collected keypoints for 

each action. Basically, the key points of each badminton action are the final dataset 

that has been processed. This will be used to train the LSTM model.  The collected 

key point data is used to train the LSTM model, which takes advantage of its natural 

ability to understand how events depend on each other in a certain order. By 

combining sequential data, the learned LSTM model improves its accuracy and turns 

into a smarter forecast of badminton moves. 

              

3.5 LSTM Model Training 

The input data is made up of key point sequences that were taken from badminton 

videos. Each sequence depicts the players' position dynamics during a 30-frame 

period. A three-dimensional array of shape (n * 30 * 51) is created by stacking these 

sequences together. The number 'n' indicates the number of samples, 30 the number 

of frames per sequence, and 51 the dimensionality of each key point (X-coordinate, 

Y-coordinate, and confidence score for 17 key points). 

The train_test_split function from the scikit-learn library divides the dataset into 

training and testing sets. This guarantees that performance of the model may be 

Figure 3.6 :Key point Dataset after Preprocessing and labelling. 
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assessed on unobserved data. To aid in model training, one-hot encoding is also used 

to encode the target labels, or badminton actions. By converting them into a binary 

matrix, this procedure makes categorical labels appropriate for use in classification 

problems. The final trained models will be saved in .h5 forms. 

3.5.1 LSTM Model Architecture Design 

 

 

To efficiently process key point sequences and extract significant features for 

action recognition, the LSTM model architecture was created such as depicts in Figure 

3.7 and Figure 3.8 . For classification, the model consists of several LSTM layers 

followed by fully linked (Dense) layers. The input layer anticipates 51-dimensional 

sequences of 30 key points, each of which represents the X and Y coordinates of 17 

key points and their confidence ratings.  

The input sequences' temporal dependencies and patterns are captured by the 

LSTM layers. Sequences are processed by the first LSTM layer, which has 64 units, 

and output sequences are returned. To enhance convergence and stabilize the training 

process, layer normalization is used. The sequential data is further processed using 

128-unit LSTM layers to extract higher-level characteristics.  

Fully connected (Dense) layers are added after the LSTM layers to carry out 

classification using the characteristics that were retrieved. To provide non-linearity 

Figure 3.7 : LSTM Model Design 
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and improve the representational capability of the model, intermediary dense layers 

with ReLU activation functions are incorporated into the model. Ultimately, the output 

layer is subjected to a softmax activation function to derive probability distributions 

for various badminton actions. 

 

3.5.2 Model Training and Evaluation 

After the model architecture is established, suitable loss functions 

(‘categorical_crossentropy’) and optimization methods such as Adam are used to 

compile it. Next, using the fit approach, the model is trained on the training dataset to 

learn how to map keypoint sequences to matching action labels. Validation data is 

Figure 3.8 : LSTM Model Summary 



37 

 

used to track the model's performance throughout training, and interfaces like 

TensorBoard can be used to display training metrics and track convergence.  

The model's predictions are broken down into depth in a confusion matrix. It 

displays the quantity of true positives (actions that were accurately predicted), true 

negatives (non-actions that were correctly detected), false positives (actions that were 

mistakenly predicted), and false negatives (activities that were missed). This makes it 

easier to comprehend how many forecasts came true as well as why others were 

incorrect. 

The model's capacity for generalization is evaluated by analysing its performance 

on the testing dataset following training. It is possible to calculate metrics derived 

from confusion matrix like accuracy, precision, recall, and F1-score to assess how well 

the model can identify various badminton movements. Furthermore, classification 

reports and confusion matrices shed light on the model's advantages and disadvantages 

for action recognition. The model underwent training using various combinations of 

batch size, epoch, and learning rate to determine the optimal configuration for action 

recognition in badminton : 

• Batch Size : 16,32, 64 

• Epoch : 50,100,150,200 

• Learning Rate: 0.001 (constant) 

Each combination was tested to determine how it affects the model's ability to 

generalize to new, unseen data. The model's ability to generalize is assessed on a 

different testing dataset following training. For this assessment, several performance 

metrics computed, such as: 
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• Accuracy : 

                   𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
                   (3.1) 

• Precision : 

                                               𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                          (3.2) 

• Recall : 

                                                   𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                            (3.3) 

• F1-score : 

                                         𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2×(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
             (3.4) 

Where :  

True Positive (TP): The number of samples that were correctly predicted as positive. 

True Negative (TN): The number of samples that were correctly predicted as negative. 

False Positive (FP): The number of samples that were incorrectly predicted as positive. 

False Negative (FN): The number of samples that were incorrectly predicted as 

negative. 
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3.6 Development of Simulation Framework Algorithm for Shot 

Classification. 

The badminton action test video clip serves as the primary means of assessing 

the performance of the simulation system. To improve the accuracy of the analysis, 

video frames are processed using a mask to highlight areas of interest. Key point 

predictions are extracted via YOLOv7 posture estimation, which offers a 

comprehensive perspective on player movements. These important points are refined 

for greater precision by non-maximum suppression, and frames are graphically 

indicated with bounding boxes and key points. The framework employs a pre-trained 

LSTM model from a.h5 file to anticipate badminton moves by extracting 30-frame 

key point patterns for both players. Together, these enable the system to recognise 

intricate patterns and reliably classify photos. With a user-friendly user interface (UI), 

Figure 3.9 : Overall Flow of Data Preprocessing and Training 
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coaches, players, and enthusiasts may easily navigate the system and see the 

anticipated shot type, shot count, and likelihood indicator shown in real time. This 

integration demonstrates how the simulation system can improve computer vision 

applications used for sports analysis and training. The full procedure of the simulation 

test framework is shown in Figure 3.10.

Figure 3.10 : Overall Simulation Framework 



 

 

 

CHAPTER 4:  

RESULTS AND DISCUSSION 

This chapter introduces the Long Short-Term Memory (LSTM) networks and 

YOLO v7 position estimation-based intelligent badminton action recognition system. 

The main objectives are to show the outcomes, verify the process, and assess how well 

it performs in comparison to Convolutional Neural Networks (CNN) and Gated 

Recurrent Units (GRU). The procedure of developing the system included gathering 

datasets, preparing the data, extracting critical points, and using the LSTM model. 

Precise tracking of badminton movements was guaranteed by training and 

categorization in a simulation environment. The chapter describes how to optimise 

accuracy using hyperparameter tweaking, which considers learning rate, batch size, 

and epochs. For the bespoke LSTM model, performance evaluation with confusion 

matrices and additional metrics is presented. Model accuracy, precision, recall, and F1 

score are compared with CNN and GRU models. 
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4.1 Hyperparameter Tuning  

When creating an intelligent badminton action recognition system with LSTM 

networks and YOLO v7 posture estimation, hyperparameter tuning is essential. This 

entails deciding on the ideal values for learning rate, batch size, and number of epochs, 

among other factors that regulate the model's architecture and training procedure. By 

guaranteeing that the model learns from training data effectively, proper tuning 

maximises model performance. Training stability is impacted by batch size, and 

convergence speed is influenced by learning rate. By keeping these variables in check, 

the model is better able to adapt to new data and avoid problems like under- or 

overfitting. 

4.1.1 Learning Rate, Batch Size and Epochs 

To create an intelligent badminton action recognition system, it is essential to 

adjust the learning rate, batch size, and number of epochs. This is because these 

hyperparameters have a direct impact on how well and quickly the model learns from 

the data. An ideal learning rate guarantees that the model converges to a good solution 

without overshooting or becoming stuck. The learning rate regulates how rapidly the 

model modifies its weights in response to the loss gradient. A well-set batch size 

balances the computational effort and the accuracy of gradient estimates. The batch 

size affects the stability and speed of the learning process. How many times the model 

views the complete dataset during training is determined by the number of epochs; 

adjusting this makes sure the model has enough exposure to the data to identify 

significant patterns without overfitting. When combined, these hyperparameters 

improve the system's overall performance by enabling the highest precision and 

dependability in the recognition of badminton actions. 
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Table 4.1 : Analyzing the accuracy of proposed LSTM model by tuning the 

hyperparameter 

 

 

The Table 4.1 shows the outcomes of hyperparameter tweaking with different 

batch sizes, epochs, and a fixed learning rate of 0.001 for the intelligent badminton 

action recognition system. Test loss, test accuracy, F1-score, precision, and recall are 

among the evaluation criteria. The results show significant variation with the number 

of epochs for a batch size of 16. The model produced an F1-score of 0.57 and a test 

accuracy of 0.65 at 50 epochs, with a reasonable precision of 0.80 and a somewhat 

low recall of 0.62. The recall significantly improved to 0.76 as the epochs grew to 100, 

balancing with the precision to produce a better accuracy of 0.76 and a higher F1-

score of 0.75. But when the epochs were increased even more to 150, the precision 

dropped precipitously to 0.22 and the F1-score to 0.31, indicating overfitting. The 

model performed remarkably well at 200 epochs, with the lowest test loss of 0.11 and 

Batch 

Size 

Epoch Learning 

Rate 

Precision Recall F1-

Score 

Test Loss Test 

Accuracy 

16 50 0.001 0.80 0.62 0.57 0.49 0.65 

16 100 0.001 0.75 0.76 0.75 0.59 0.76 

16 150 0.001 0.22 0.5 0.31 0.72 0.46 

16 200 0.001 0.98 0.97 0.97 0.11 0.97 

32 50 0.001 0.90 0.85 0.86 0.42 0.86 

32 100 0.001 0.94 0.92 0.93 0.36 0.93 

32 150 0.001 0.95 0.95 0.95 0.17 0.95 

32 200 0.001 0.97 0.96 0.96 0.12 0.96 

64 50 0.001 0.77 0.72 0.72 0.49 0.73 

64 100 0.001 0.91 0.88 0.88 0.38 0.90 

64 150 0.001 0.85 0.85 0.84 0.31 0.85 

64 200  0.001 0.81 0.79 0.79 0.46 0.80 
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the highest precision (0.98), recall (0.97), F1-score (0.97), and test accuracy (0.97) 

among all configurations. 

Compared to a batch size of 16, the model performed better overall with a 

batch size of 32 across various epoch settings. The model demonstrated strong 

performance at 50 epochs, with recall of 0.85, F1-score of 0.86, precision of 0.90, and 

test accuracy of 0.86. These metrics showed even greater improvement when the 

epochs were increased to 100, with precision of 0.94, recall of 0.92, F1-score of 0.93, 

and test accuracy of 0.93. The model demonstrated strong performance at 150 epochs, 

with 0.95 precision and recall, 0.95 F1-score, and 0.95 test accuracy. With one of the 

lowest test losses (0.12) and a high-test accuracy of 0.96, the precision increased 

slightly to 0.97 at 200 epochs, along with a recall of 0.96 and an F1-score of 0.96. 

The model's performance demonstrated greater stability when the batch size 

was 64. The test accuracy was 0.73 at 50 epochs, with precision of 0.77, recall of 0.72, 

and F1-score of 0.72. The precision, recall, and F1-score all greatly increased to 0.91, 

0.88, and 0.90 with an increase in epochs to 100. The measures showed a modest 

decline at 150 epochs: 0.85 for precision, 0.85 for recall, 0.84 for F1-score, and 0.85 

for test accuracy. With a precision of 0.81, recall of 0.79, F1-score of 0.79, and test 

accuracy of 0.80 at 200 epochs, the model's performance showed a modest fall, 

indicating the possibility of overfitting or diminishing returns from further epochs. 

4.2 Analyzing The Performance of the Proposed LSTM Model 

To guarantee the effectiveness and dependability of the intelligent badminton 

action recognition system, it is imperative to do an analysis of the suggested model. 

Additionally, by evaluating the model's strengths and weaknesses using a variety of 

metrics, including test loss, test accuracy, precision, recall, and F1-score, performance 
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optimisation is accomplished. This makes it possible to make specific improvements, 

like modifying the model architecture or fine-tuning hyperparameters.  

4.2.1 Model Accuracy and Loss 

To evaluate the model's effectiveness and dependability in precisely 

identifying badminton motions, it is essential to examine its accuracy and loss. Model 

correctness provides information on the percentage of accurate predictions, which 

helps to assess the system's overall efficacy. Furthermore, by keeping an eye on the 

loss function, we can gain insight into the training dynamics and generalisation 

capacity of the model; lower loss values correspond to better alignment between 

anticipated and actual values. Examining accuracy and loss closely allows us to see 

possible problems like under- or overfitting, which helps direct the system's 

refinement process and guarantee dependable outcomes in practical situations. Based 

on Figure 4.2 , The graph illustrates the progression of model accuracy for 200 epochs, 

with the x-axis representing the epochs ranging from 0 to 200, and the y-axis 

representing the accuracy ranging from 0.65 to 1.00. The training accuracy is 

represented by the blue line, while the validation accuracy is represented by the orange 

line. Both are clearly labelled in the plot's legend. At the beginning, the accuracies of 

both models increase rapidly from 0.65 to 0.85 within the first 50 epochs. After that, 

they continue to improve gradually and reach approximately 0.95 by epoch 100. 

During epochs 100 to 200, the accuracies vary about 0.95, occasionally approaching 

1.00.The training and validation accuracies exhibit a consistent proximity, suggesting 

a strong ability to generalize and no occurrence of overfitting. The model has largely 

converged after epoch 100, as indicated by minor fluctuations. These variations are 

likely a result of the stochastic training process. 
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Figure 4.2 : Training and Validation Accuracy for Proposed Model 

Figure 4.1 : Training and Validation Loss for Proposed Model 
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Then based on Figure 4.1,the training loss, represented by the blue line, 

initially begins at a somewhat high value but experiences a significant drop within the 

first few epochs. The drop observed during training indicates successful acquisition of 

knowledge from the training data. On the other hand, the validation loss, indicated by 

the orange line, shows a comparable trend, beginning at a high level and then reducing 

substantially in the initial epochs. However, it exhibits greater variability after 

reaching its minimum value at epoch 50. The declining loss numbers reflect ongoing 

enhancement in the model's performance during the training process. However, the 

changes found in the validation loss give rise to worries regarding either overfitting or 

inconsistencies in the validation data. Gaining a comprehensive understanding of these 

patterns offers useful insights for improving the model and resolving any potential 

problems that could impact its capacity to generalise. 

4.2.2 Confusion Matrix 

In this experiment, this project also analyzes the confusion matrix shown in Figure 

4.2 which is important to evaluate the performance of the classification model. The 

categorization performance of the model across many categories of badminton 

movements is visually represented by the confusion matrix. The number of cases 

where the true class and the anticipated class match is indicated in each cell. The 

diagonal cells show the correct predictions, but the off-diagonal cells show the 

misclassifications. Examining the matrix reveals that most classes have successful 

predictions, with a preponderance of high counts along the diagonal. Notably, there 

are 32, 29, 22, 19, 27, and 31 correct predictions for the "Smash," "Serve," "Drive," 

"Net," "Block," and "Lift" classes, respectively. Still, there are clearly some cases of 

misclassification, even though they are few. Examples of such misclassifications 
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include "Serve" being mistaken for "Lift," "Drive" for "Lift," "Net" for "Serve" or 

"Block," and "Block" for "Lift."  

 

To achieve one of the outcomes of this project, an experiment to analyze the 

proposed model's performance was conducted by analyzing the parameters of 

precision, recall, F1-score and model accuracy. It aims to determine whether the 

proposed model can classify the six actions well or poorly. 

 

Figure 4.3 : Confusion Matrix for the proposed model. 
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Table 4.2 : Performance Analysis for Proposed LSTM Model. 

 

 

The Table 4.2 provided presents a comprehensive analysis of the precision, 

recall, and F1-score metrics for each action class in the badminton recognition system. 

Precision is a measure that indicates the accuracy of predicting instances belonging to 

a specific action class. It is calculated by dividing the number of accurately predicted 

instances by the total number of examples categorised as that action class. 

Remarkably, classifications such as "Smash," "Drive," and "Net" attained flawless 

precision scores of 1.00, signifying that every instance classified as these actions were 

accurately identified. Recall, in a similar vein, quantifies the ratio of accurately 

anticipated occurrences within the total instances that truly pertain to a specific action 

class. It is worth mentioning that most classes exhibit strong recall rates. Specifically, 

the actions "Smash," "Serve," and "Lift" had perfect scores of 1.00, suggesting that 

the model accurately detected all occurrences of these activities. Moreover, the F1-

score, which integrates accuracy and recall into a unified measure, demonstrates the 

overall efficacy of the model in accurately categorising events across various action 

Parameter  Action Class 

Smash Serve Drive Net Block Lift 

Precision 1.00 0.97 1.00 1.00 0.96 0.91 

Recall 1.00 0.97 0.96 0.90 0.96 1.00 

F1-score 1.00 0.97 0.98 0.95 0.96 0.95 

Overall 

Accuracy 

(%) 

                                    

                                                 97% 
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classes. The model's solid performance in successfully recognising badminton 

motions is further supported by an overall accuracy of 97%. These indicators together 

offer vital insights into the model's precision, recall, and overall accuracy, showcasing 

its reliability and usefulness in real-world scenarios. 

4.3 Comparing Models 

Several models have been trained using the same dataset and using the same 

hyperparameter as in the proposed model. This is because this experiment compares 

our proposed model and other models such as GRU (Gated Recurrent Unit), and CNNs 

(Convolutional Neural Networks) models in terms of graph model accuracy and loss 

and some parameters to evaluate model performance namely precision, recall, F1-

score and model accuracy. 

4.3.1 Gated Recurrent Unit  

We analyze and compare the Long-Short Term Memory (LSTM) with Gated 

Recurrent Unit, to assess the performance in recognizing the badminton action. The 

results of GRU are summarized in Table 4.3 as shown below. 

Table 4.3 : Performance Analysis for GRU Model 

Batch 

Size 

Epoch Learning 

Rate 

Precision Recall F1-

Score 

Test 

Loss 

Test 

Accuracy 

16 50 0.001 0.80 0.74 0.70 0.54 0.71 

16 100 0.001 0.87 0.86 0.84 0.43 0.84 

16 150 0.001 0.91 0.90 0.91 0.23 0.91 

16 200 0.001 0.94 0.93 0.93 0.16 0.93 

32 50 0.001 0.92 0.90 0.91 0.41 0.91 

32 100 0.001 0.94 0.93 0.93 0.07 0.93 

32 150 0.001 0.78 0.75 0.73 0.45 0.73 

32 200 0.001 0.91 0.88 0.88 0.22 0.89 

64 50 0.001 0.91 0.88 0.88 0.25 0.89 

64 100 0.001 0.89 0.83 0.83 0.41 0.84 

64 150 0.001 0.94 0.93 0.93 0.17 0.93 

64 200 0.001 0.90 0.85 0.86 0.36 0.86 
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Upon examining the performance metrics of the GRU model under various batch 

sizes, epochs, and learning rates, it is evident that the model consistently attains 

excellent levels of precision, recall, and F1-scores. The test accuracy of the model can 

reach as high as 93%. The optimal configuration for achieving the greatest results is 

to use a batch size of 32 and train the model for 100 epochs. This setup produces a 

precision of 0.94, recall of 0.93, and an F1-score of 0.93. Additionally, the test loss is 

minimised to 0.07. The GRU model demonstrates consistent and strong performance 

in recognising badminton actions, especially when using batch sizes of 32 and 64 and 

training for 200 epochs. Nevertheless, the performance experiences a little decrease 

when the number of epochs is reduced, indicating the significance of adequate training 

length for achieving optimal accuracy and minimal loss. 

Based on Figure 4.4 depict the accuracy and loss of a GRU model during 

training and validation over a span of 100 epochs. The accuracy graph demonstrates 

that the training accuracy reaches a stable value of approximately 0.9 after some initial 

volatility, suggesting successful learning. The validation accuracy likewise stabilises, 

but with more noticeable fluctuations between 0.85 and slightly over 0.9. This 

indicates that there is unpredictability in the model's performance on unknown data. 

Figure 4.4 : Training and Validation Accuracy/Loss for GRU Model 
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The loss graph demonstrates an initial rapid decrease in both training and validation 

losses, followed by convergence. This suggests successful learning and strong 

generalisation. The little variations in validation loss and occasional decreases in 

validation accuracy suggest the possibility of overfitting or inconsistency in the 

validation set.  

4.3.2 Convolutional Neural Networks (CNNs) 

We analyze and compare Long-Short Term Memory (LSTM) with Convolutional 

Neural Networks (CNNs). The results of CNN are summarized in Table 4.4 as shown 

below. 

Table 4.4 : Performance Analysis for CNN Model 

Batch 

Size 

Epoch Learning 

Rate 

Precision Recall F1-Score Test 

Loss 

Test 

Accuracy 

16 50 0.001 0.22 0.5 0.31 0.52 0.45 

16 100 0.001 0.22 0.5 0.31 0.65 0.45 

16 150 0.001 0.50 0.49 0.50 0.33 0.50 

16 200 0.001 0.22 0.5 0.32 0.71 0.46 

32 50 0.001 0.9 0.85 0.86 0.36 0.86 

32 100 0.001 0.86 0.78 0.78 0.44 0.80 

32 150 0.001 0.89 0.83 0.83 0.43 0.84 

32 200 0.001 0.86 0.83 0.84 0.39 0.85 

64 50 0.001 0.90 0.91 0.90 0.32 0.90 

64 100 0.001 0.91 0.90 0.90 0.19 0.90 

64 150 0.001 0.90 0.90 0.90 0.15 0.90 

64 200 0.001 0.86 0.78 0.78 0.41 0.80 
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Important results are obtained when various parameters for batch sizes, epochs, 

and a constant learning rate of 0.001 are examined. The performance of the model is 

poor when the batch size is 16. The test accuracy is between 0.45 and 0.50, and the 

precision, recall, and F1-scores are poor. A 32-piece batch size increases performance 

noticeably. With a test accuracy of 0.86, precision, recall, and F1-score attain high 

levels of around 0.9, 0.85, and 0.86 after 50 epochs. But after 50 epochs, performance 

starts to fluctuate, which could be a sign of overfitting or a sign that there isn't much 

more training advantage. A batch size of 64 yields the best results. Across all epochs, 

precision, recall, and F1-score are continuously high, averaging 0.90. Test accuracy 

remains approximately 0.90, and after 150 epochs, the lowest test loss of 0.15 is 

attained, indicating successful generalisation and learning. However, performance 

starts to slightly decline after 200 epochs, indicating that more training could cause 

overfitting. With a batch size of 64, the model performs exceptionally well overall, 

particularly in the range of 100-150 epochs, retaining high test accuracy, low test loss, 

recall, precision, and F1-scores, demonstrating significant generalisation skills.  

 

 

Figure 4.5 : Training and Validation Accuracy/Loss for CNN Model 
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 Figure 4.5 displays the training and validation accuracy graph. Validation accuracy 

varies but eventually stabilises at 0.85 to 0.9, whereas training accuracy increases 

gradually to a steady range of 0.9 to 1.0. This indicates that the model is maturing and 

learning, but it may eventually overfit, resulting in training performance that is higher 

than reliable validation. Training loss steadily drops to low values, typically less than 

0.1, indicating effective learning. But after roughly 80 epochs, validation loss begins 

to fluctuate and increase, suggesting overfitting. The model's unpredictable behaviour 

on validation data is emphasised by this difference between training and validation 

loss.  

4.4 Comparison Between a Proposed Model and Other Models 

One of the main aspects focused on this project is the comparison of model 

performance between the proposed model and the other models which are Gated 

Recurrent Unit (GRU) and Convolutional Neural Networks (CNNs) using the same 

hyperparameters as in the proposed model and the comparison is selected based on the 

best overall accuracy acquired from the hyperparameters for each model. 
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Table 4.5 : Comparison Between Proposed Model with GRU and CNNs 

 

Using precision, recall, F1-score, and total accuracy as measures, the Table 4.5 

compares the performance of three models—LSTM, GRU, and CNNs—across six 

action classes: Smash, Serve, Drive, Net, Block, and Lift. For all action classes, the 

LSTM model performs exceptionally well with respect to precision, recall, and F1-

scores. F1-scores are consistently high, with the lowest being 0.95 (Net, Lift) and the 

highest 1.00 (Smash, Serve). Precision ranges from 0.91 (Lift) to 1.00 (Smash, Drive, 

Net), recall from 0.90 (Net) to 1.00 (Smash, Serve, Lift). Out of the three models, this 

Model Parameter  Action Class 

Smash Serve Drive Net Block Lift 

 

LSTM 

Precision 1.00 0.97 1.00 1.00 0.96 0.91 

Recall 1.00 0.97 0.96 0.90 0.96 1.00 

F1-score 1.00 0.97 0.98 0.95 0.96 0.95 

Overall 

Accuracy  

                                   97% 

GRU Precision 1.00 0.87 0.95 0.91 0.96 0.88 

Recall 0.94 0.87 0.91 0.95 0.93 0.97 

F1-Score 0.97 0.87 0.93 0.95 0.93 0.92 

Overall 

Accuracy 

                                  93% 

CNNs Precision 0.97 0.81 0.91 0.90 0.96 0.88 

Recall 0.94 0.83 0.87 0.90 0.89 0.97 

F1-Score 0.95 0.82 0.89 0.90 0.93 0.92 

Overall 

Accuracy 

                                90% 
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one has the highest overall accuracy at 97%. With precision ranging from 0.87 (Serve) 

to 1.00 (Smash), recall from 0.87 (Serve) to 0.97 (Lift), and F1-scores from 0.87 

(Serve) to 0.97 (Smash), the GRU model performs similarly but with somewhat lower 

metrics. As a result, its overall accuracy is 93%. The lowest performing model among 

the three is the CNN model, which has an overall accuracy of 90%. Its precision ranges 

from 0.81 (Serve) to 0.97 (Smash), recall from 0.83 (Serve) to 0.97 (Lift), and F1-

scores from 0.82 (Serve) to 0.95 (Smash). Consequently, it is evident that the proposed 

LSTM model outperforms the other two, exhibiting greater accuracy and consistent 

performance over all assessed action classes. 

4.5 Real-Time Simulation  

During the real-time simulation phase of the research on action recognition in 

badminton, a system will be created to analyse and predict actions in real-time as they 

occur in video footage such as shown in Figure 4.6 : Real-Time Simulation User 

Interface . A few critical components will be incorporated into the video to improve 

its functionality and offer a clear understanding of the model's performance. A shot 

count will be displayed in the upper left corner, which will show the running tally of 

detected shots and the predicted action for each shot, updated in real-time. An 

indicator of probability will be displayed in the upper right quadrant, which will 

represent the model's confidence in its predictions as a percentage. In addition, the 

video will feature key points that represent critical components of the player's body, 

such as joints, to facilitate the visualisation of the player's movements and their 

alignment with the anticipated actions. A pre-trained action recognition model will be 

employed by this system to analyse frames, identify actions, increment the shot count, 

and update predictions with their associated probabilities. In parallel, a pose estimation 

model will identify and visualise key points on the participant. A comprehensive real-



57 

 

time display that demonstrates the capabilities and accuracy of the action recognition 

model will be generated by combining all this information into the video feed, 

rendering it a valuable instrument for sports analytics. 

4.5.1 Benchmarking AI Model Performance Against Human Observation 

 

A structured table will be used to capture essential metrics for evaluation in the 

comparative analysis between the AI model's performance and manual observation. 

This table will include columns that represent different badminton actions such as 

smash, serve, drive, net shot, block, and lift. The "Manual Observation" column will 

record the observations made by individuals regarding the actions seen in the video 

clips, which will be used as a benchmark for comparison. In a similar vein, the column 

labelled "AI Model Prediction" will showcase the predictions produced by the AI 

model for each action, revealing its identification through video frame analysis. The 

"Error Rate" column quantifies discrepancies between manual observations and AI 

predictions by calculating the percentage of incorrect predictions relative to the total 

actions observed. Finally, the "Accuracy" column will indicate the AI model's 

Figure 4.6 : Real-Time Simulation User Interface 



58 

 

performance by calculating the percentage of correct predictions in relation to the total 

actions observed. With a structured presentation, you can easily evaluate the accuracy 

and effectiveness of the AI model in different action types. This will give you valuable 

insights to improve the model and enhance its applications in sports analytics. The 

analysis derived from the Table 4.6 and Figure 4.7 is as follows: 

Table 4.6 : Prediction of LSTM Model VS Human Manual Observation 

Action Manual Observation AI Model Error Rate (%) Accuracy (%) 

Smash 13 13 0 100 

Serve                  3          2 33.3 66.67 

Net 1 0 100 0 

Drive 1 0 100 0 

Block                  3 5 66.67 33.33 

Lift 14 15 7.14 92.86 

 

 

 

Figure 4.7 : Real-Time Simulation 
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After examining the AI model's ability to recognise badminton actions 

compared to human observation, clear patterns may be observed for different actions. 

These patterns provide insights into both the strengths and weaknesses of the model. 

The model demonstrates exceptional accuracy in identifying smash motions, obtaining 

a flawless accuracy rate of 100%. This indicates that the model successfully captures 

the distinctive characteristics of a smash, allowing for accurate identification. 

Nevertheless, the model's performance in activities such as the serve, net, drive, and 

block is noticeably less reliable. For example, although the model correctly predicts 

two out of three serve actions, it encounters difficulties with the net and drive actions, 

misclassifying all cases. The difference in performance may arise from the intricacy 

and variety inherent in these motions, resulting in difficulties in identifying and 

distinguishing features. Furthermore, the misclassification of block actions 

underscores the model's challenge in differentiating nuanced differences in technique 

or distinguishing them from other activities. In contrast, the lift action exhibits a 

relatively robust performance, with just one misclassification out of fourteen times, 

showing a high degree of accuracy. However, the occurrence of a single 

misclassification highlights the necessity for additional improvement, namely in 

distinguishing lift actions from comparable motions. Overall, the AI model 

demonstrates competence in identifying specific acts, but it encounters difficulties in 

accurately categorising others. This emphasises the need for ongoing refining and 

adjustment to enhance performance in all sorts of actions. To tackle these problems, it 

may be necessary to improve feature identification algorithms, broaden the range of 

training data, and enhance the model's capacity to distinguish subtle differences in 

technique. These efforts will ultimately enhance the model's performance in real-

world applications of action recognition in badminton. 
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4.5.2 Environment and Sustainability 

The project greatly contributes to sustainability by aligning with two crucial 

Sustainable Development Goals (SDGs): SDG 9 - Industry, Innovation, and 

Infrastructure, and SDG 13 - Climate Action. 

Our utilization of cutting-edge technology in sports, namely in the precise 

categorization of various badminton shot styles, showcases our dedication to 

progressing the field and its infrastructure. Our project utilizes state-of-the-art 

computer vision techniques and machine learning algorithms to analyze and improve 

sports training and performance. Not only does this stimulate innovation in the sports 

industry, but it also fosters the growth of sophisticated technology infrastructure to 

facilitate athletic training and competition. In addition, our project places great 

importance on sustainability, specifically addressing its environmental consequences, 

in line with SDG 13 - Climate Action. The system's low hardware needs and ability to 

be used remotely provide substantial benefits in terms of decreasing the environmental 

impact associated with sports training and analysis. Our project enhances resource 

efficiency and environmental conservation by reducing the need on complex 

technology and physical infrastructure. In addition, the capacity to carry out training 

and analysis from a distance decreases the necessity for travel, thereby further 

reducing carbon emissions and promoting environmentally friendly practices in sports 

and athletics. 

To summarize, our project's novel application of technology in sports not only 

enhances the industry and infrastructure, but also encourages sustainability by 

minimizing environmental harm and cultivating climate-conscious practices. Our 

project demonstrates the interdependence of industry, innovation, infrastructure, and 
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climate action by embracing technology advancements and environmental 

responsibility. It contributes positively to sustainable development endeavors. 
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CHAPTER 5:  

CONCLUSION AND FUTURE WORKS  

 

5.1 Conclusion 

Overall, the creation of a sophisticated badminton action identification system with 

YOLOv7 Pose and LSTM signifies a notable progress in the realm of sports analytics. 

During this project, we have effectively shown the efficiency of our suggested 

approach, which included training and assessing the system's performance.  

Through the utilization of advanced deep learning approaches, specifically the Long 

Short-Term Memory (LSTM) model, we have successfully attained precise 

monitoring and dependable identification of diverse badminton movements. The 

success of our system is based on its capacity to efficiently analyse and comprehend 

intricate sequences of body key points, allowing it to precisely categorize movements 

such as Smash, Serve, Drive, Net, Block, and Lift. Chapter 4 delved into multiple 

facets of our research, encompassing dataset acquisition, data preprocessing, key point 

extraction, LSTM model structure, training methodologies, and classification 
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methods. In addition, we performed thorough hyperparameter tweaking to enhance the 

system's performance, resulting in the attainment of the utmost precision. The 

evaluation findings, as shown in Table 4.4, unequivocally establish the superiority of 

the proposed LSTM model compared to alternative methods like CNNs and GRUs. 

The LSTM model regularly demonstrates superior performance in precision, recall, 

and F1-score compared to other models across all action classes. The LSTM model 

has exceptional accuracy of 97% in accurately identifying badminton actions, 

outperforming both the GRU and CNN models.  

5.2 Future Works 

There are a few strategies that could be investigated in future research to enhance 

this project's performance. These strategies aim to address shortcomings or areas that 

require improvement that have been found throughout the current project. 

5.2.1 Dataset Expansion and Diversity 

To improve the performance and ability of the intelligent badminton action 

recognition system to apply to a wide range of situations, it is necessary to focus on 

increasing the size and variety of the dataset. Gathering supplementary samples from 

a range of players, skill levels, playing styles, and environments can yield a more 

extensive and varied set of training data. The augmentation of this dataset can enhance 

the model's ability to accurately and reliably capture the diverse range of badminton 

motions, resulting in greater precision and resilience. 

5.2.2 Integration of Shuttlecock Trajectory Data 

By integrating shuttlecock trajectory data with the existing pose data, we can 

enhance the available information for action recognition. Through the examination of 

the shuttlecock's path and the tracking of player motions using pose estimation, the 



64 

 

system can acquire a more thorough comprehension of the game's dynamics and 

context. By integrating this collective data, it is possible to achieve enhanced precision 

and contextual understanding in identifying badminton movements, particularly in 

high-speed rallies or intricate gameplay situations. 

5.2.3 Fine-tuning Hyperparameters and Model Architecture 

Continuously fine-tuning the hyperparameters and architecture of the LSTM model 

can greatly enhance its performance and efficiency. By conducting trials with various 

setups, such as altering the number of LSTM layers, hidden units, learning rates, and 

dropout rates, it is possible to enhance both the accuracy and convergence speed. In 

addition, investigating sophisticated optimization approaches, such as learning rate 

scheduling, gradient clipping, and batch normalizing, can further improve the stability 

and generalization abilities of the model. 
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APPENDICES 

Appendix A 

The code for dataset preprocessing and key point extraction (Keypointfinder.Py): 
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Appendix B 

The essential code highlight for Real Time Simulation (same flow as 

Keypointfinder.py but adding the pretrained model to predict the action and UI 

elements. 
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