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ABSTRACT 

F1TENTH is a popular open-source platform among university students which 

organizes autonomous mobile robot competitions. The main navigation method used 

in F1TENTH competition is SLAM, also known as Simultaneous Localization And 

Mapping. SLAM, which is a technology developed for over 30 years, is an algorithm 

that builds a map of the surrounding environment of the robot through mapping 

process and at the same time estimating the robot’s position on the map while it is 

moving. Nowadays, SLAM is used in many applications such as autonomous vehicles 

and drones. TurtleBot 3 is an autonomous mobile robot which shares the same 

technology used in F1TENTH. This project focuses on developing a high-speed 

navigation system for TurtleBot 3 using the SLAM method in the Robot Operating 

System (ROS) framework. The main problem tackled is the development of a high-

speed navigation system using SLAM, focusing on accurately mapping an indoor 

racetrack, selecting suitable path planning algorithms, and analyzing the system's 

performance in terms of speed and accuracy. The objective of this project is to 

implement SLAM algorithm in mapping and to develop the TurtleBot 3’s navigation 

system followed by analyzing its performance in terms of speed and accuracy. 

Experiments were conducted in the virtual environment, using the TurtleBot 3 Burger 

model in Gazebo and Rviz within the ROS framework to validate the map and analyze 

performance of the navigation system under various conditions. Overall, this project 

successfully develops the navigation system for the TurtleBot 3 and analyzes the 

performance parameters, establishing a foundation for future applications and 

enhancements. 
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ABSTRAK 

 

F1TENTH merupakan platform sumber terbuka yang popular di kalangan pelajar 

universiti yang menganjurkan kompetisi robot mudah alih. Kaedah navigasi utama 

yang digunakan dalam persaingan F1TENTH ialah SLAM, juga dikenali sebagai 

Lokalisasi dan Peta Simultan. SLAM, yang merupakan teknologi yang telah 

dibangunkan selama lebih 30 tahun, ialah algoritma yang membina peta persekitaran 

robot melalui proses peta dan pada masa yang sama menganggarkan kedudukan robot 

pada peta semasa ia bergerak. Hari ini, SLAM digunakan dalam banyak aplikasi 

seperti kenderaan otonom dan drone. TurtleBot 3 ialah robot mudah alih autonomi 

yang berkongsi teknologi yang sama yang digunakan dalam F1TENTH. Projek ini 

memberi tumpuan kepada pembangunan sistem navigasi kelajuan tinggi untuk 

TurtleBot 3 menggunakan kaedah SLAM dalam kerangka Robot Operating System 

(ROS). Masalah utama yang ditangani ialah pembangunan sistem navigasi kelajuan 

tinggi menggunakan SLAM, memberi tumpuan kepada memaparkan laluan 

perlumbaan dalaman dengan tepat, memilih algoritma perancangan laluan yang sesuai, 

dan menganalisis prestasi sistem dalam hal kelajuan dan ketepatan. Objektif projek ini 

ialah untuk melaksanakan algoritma SLAM dalam peta dan untuk membangunkan 

sistem navigasi TurtleBot 3 yang diikuti dengan menganalisis prestasinya dalam hal 

kelajuan dan ketepatan. Eksperimen dijalankan dalam persekitaran maya, 

menggunakan model TurtleBot 3 Burger di Gazebo dan Rviz dalam rangka ROS untuk 

mengesahkan peta dan menganalisis prestasi sistem navigasi dalam pelbagai keadaan. 

Secara keseluruhan, projek ini berjaya membangunkan sistem navigasi untuk 

TurtleBot 3 dan menganalisis parameter prestasi, menubuhkan asas untuk aplikasi dan 

peningkatan masa depan. 
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INTRODUCTION 

1.1 Background 

The autonomous mobile robot competition has gained popularity among 

university students worldwide in recent years. F1TENTH is one of the platforms that 

organizes these kinds of competitions where it combines and focuses on two main 

aspects, namely robotics and autonomous driving. The inspiration came from the 

Formula 1, famously known as F1, which focuses on creating and testing algorithms 

for autonomous navigation and control in compact and low-priced race cars. In this 

competition, participants, mainly students, are required to create a 1/10th-scale race 

car with an autonomous navigation system. The automobile must move as quickly as 

it can on the designated racing course autonomously. The racing course is designed 

with boundaries and elements like straight lanes, curves and obstacles to be avoided 

by the race cars. Participants compete with one another to display their race cars with 

the fastest speed, most agile and highest precision in navigation [1]. Figure 1.1 below 

shows one of the race cars used in F1TENTH competition. 

 

Figure 1.1: F1TENTH race car [2] 

One of the navigation methods used in F1TENTH competition is SLAM, also 

known as Simultaneous Localization And Mapping. SLAM is a technology that builds 

a map of the robot’s surroundings (mapping) through data from its sensors and 
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simultaneously estimating its position on the map while moving (localization). The 

main goal of using SLAM is to achieve the autonomous behavior of the mobile robot. 

Even though the Global Navigation Satellite System (GNSS) is commonly used for 

navigation, which is capable of providing an exact location, it is not always reliable or 

available in dark and covered up places such as in caves and tunnels where it is badly 

impacted and unable to finish the positioning work [3]. SLAM technology has been 

analyzed and developed for over 30 years. Nowadays, SLAM is used extensively in 

various applications such as mobile robots, autonomous vehicles as well as drones [4]. 

Mobile robots use SLAM technology to recognize the house environment to perform 

house cleaning autonomously [5]. SLAM is also applied in autonomous vehicles to 

create a map of the surrounding area and estimate the position of moving vehicles in 

real time to navigate safely on the road [6]. Besides, drones utilize SLAM technology 

in agriculture operations such as automated irrigation system and crop observation [7]. 

Autonomous mobile robot such as the TurtleBot 3 have been developed for 

SLAM navigation. TurtleBot 3 is one of the models in the TurtleBot series. It is small, 

simple, versatile, easy to assemble using consumer goods that are readily available off 

the shelf and at the same time it provides advanced sensors at a notably reduced cost 

[8]. It is commonly used for education, research and also in motion planning strategies. 

It utilizes the open-source Robotic Operating System (ROS) framework and is 

programmable in programming languages such as MATLAB and Python. Its compact 

size preserves its functionality and performance while making it possible to acquire a 

highly competitive platform for a minimal investment. Hence, the TurtleBot 3 is ideal 

for SLAM applications in motion planning [9]. 

1.2 Motivation 

The F1TENTH hosts regular annual competitions, such as the most recent 

F1TENTH Autonomous Racing Competition, taking place at the Intelligent Vehicles 

Symposium (IV) 2024 [10]. One of the most notable winners of the F1TENTH 

competition is the group of Penn Engineering students who won the 12th Annual 

F1TENTH Autonomous Grand Prix hosted in San Antonio, Texas in May 2023 [11]. 

The TurtleBot 3 is widely recognized as one of the most popular open-source robotic 

platforms, particularly valued for its educational and research applications. SLAM is 
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one of the core technologies of TurtleBot3, alongside navigation and manipulation, 

making it suitable for a wide range of applications from research to educational 

purposes [12]. SLAM navigation allows the mobile robot to navigate in an unknown 

environment by learning and constructing the environment’s map and simultaneously 

localizing its own position on the map created [13]. This is also known as autonomous 

navigation. F1Tenth race cars also utilize SLAM techniques to autonomously navigate 

and map their surroundings during racing competitions [14]. To integrate F1TENTH 

technology into the TurtleBot 3 represents a significant challenge, yet achieving this 

integration would mark a substantial accomplishment. With that being said, this 

project has motivated me to learn and develop an autonomous navigation system for 

TurtleBot 3, especially to be able to apply in a fast-paced competition like the 

F1TENTH. Through this project, I wanted to take this opportunity to find out how 

does the TurtleBot 3 navigate in high-speed condition with the application of SLAM 

technology. Besides, I also wanted to find out how fast and accurate the TurtleBot 3 

can be during navigation. To be able to find out if the of TurtleBot 3 can meet the 

capabilities of the F1TENTH race cars, this further sparked my curiosity and interest 

in completing this project. 

1.3 Problem statements 

The F1TENTH competition requires race cars to navigate autonomously as 

accurately as possible on the designated indoor racetrack. The TurtleBot 3 is used in 

this project to develop its navigation system with the SLAM method. This project aims 

to integrate the advanced navigation capabilities of the F1TENTH racing series into 

the TurtleBot 3 platform.  Hence, the problem statement of this project is about finding 

out the way to implement SLAM method in developing the navigation system of 

TurtleBot 3. The challenges include configuring and optimizing the SLAM algorithm 

to accurately map the racetrack. Next, the second problem statement is to determine 

the suitable algorithm to develop a high-speed navigation system for TurtleBot 3, at 

the same time considering the accuracy of the navigation. This involves evaluating and 

customizing path planning and control algorithms to ensure the TurtleBot 3 can 

navigate efficiently around the racetrack at a comparable speed to F1TENTH race cars. 

Lastly, the third problem statement of this project is about determining the appropriate 

ways to analyze and optimize the performance of the developed navigation system of 
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the TurtleBot 3 in terms of lap time and trajectory accuracy. This includes fine-tuning 

the algorithm parameters of the navigation system for optimal performance. 

1.4 Objectives 

1. To create a map of the surrounding environment for TurtleBot 3 using 

SLAM method. 

2. To develop an autonomous racing navigation system for TurtleBot 3 with 

the map created from SLAM method. 

3. To analyze the performance of the autonomous racing navigation system 

of TurtleBot 3 in terms of lap time and trajectory accuracy. 

1.5 Scopes 

1. Ubuntu 16.04.7 LTS (Xenial Xerus) version is used as the operating system 

foundation for this project. 

2. ROS Kinetic distribution is used as the primary framework and software 

for this project. 

3. The TurtleBot 3 model used in the development of the navigation system 

is the Burger model. 

4. The size of the virtual racetrack used in this project is relatively smaller 

than the F1TENTH racetrack. 

5. The environment mapping method used is the SLAM method. 



18 

  

 

 

LITERATURE REVIEW 

2.1 Introduction 

In this chapter, the overview of the F1TENTH, the components and features of 

the TurtleBot, the Robot Operating System (ROS), the types of navigation systems and 

the types of Simultaneous Localization And Mapping (SLAM) algorithms are the main 

topics to be discussed and reviewed. 

2.2 F1TENTH 

The F1TENTH autonomous racing platform was initially introduced in 2015. 

It is an open-source evaluation environment for continuous control and reinforcement 

learning that makes it easier to train, test and assess autonomous systems. The 

F1TENTH platform offers a 1/10th-scale, low-cost hardware and multiple virtual 

environments, allowing for safe and quick experimentation of autonomous vehicle 

(AV) algorithms [15]. The standard framework for robotics systems applications, 

ROS, serves as the core for the F1TENTH platform. It holds many competitions and 

provides engaging learning environment for those who are enthusiastic in control, 

autonomous driving, and artificial intelligence, especially for students. The F1TENTH 

platform’s main objective is autonomous driving, while control is still required. The 

majority of research efforts in the F1TENTH community have gone into developing 

solutions for driving algorithms, localization, and positioning. The F1TENTH 

platform uses SLAM and LiDAR techniques to replicate a realistic data collection 

module which is used for navigation. Furthermore, it is an important tool for research 

and development in the field of Artificial Intelligence (AI) and autonomous driving 

[16]. 

F1TENTH is an autonomous robotics competition inspired by the well-known 

F1 that involves 1/10th-scale race cars developed by each team through self-driving 

algorithm, competing in an autonomous racing task [17]. The competition focuses on 
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optimising these algorithms for the race cars to autonomously navigate around a 

randomized racetrack in the shortest amount of time. The so-called ‘randomized’ 

racetrack is a specially constructed with boundaries and features including straight 

lanes, curves, as well as static and dynamic obstacles. The racetrack can either be 

indoor or outdoor. Figure 2.2 below shows an example of F1TENTH competition 

racetrack. Algorithms such as path planning, obstacle avoidance, vehicle control, and 

the optimisation of racing strategies are among the challenges to be focused by the 

participants. Therefore, the participants are required to program their race cars for them 

to navigate the race course autonomously while avoiding collisions. In this case, the 

SLAM alogrithm is commonly used to overcome these challenges [1]. 

 

Figure 2.1: Example of F1TENTH competition racetrack [18] 

The F1TENTH race car is in a 1/10th-scale, which is relatively small as 

compared to the size of a regular Formula One (F1) race car. These race cars are 

equipped with a range of sensors, including the inertial measurement unit (IMU), 2D 

scanning LiDAR, and camera. The F1TENTH race cars are able to sense the 

environment and make decisions through the data obtained from those sensors. The 

embedded AI computing device such as the NVIDIA Jetson TX2 as well as ROS are 
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the default robot control software used to control the sensing and actuating components 

of the F1TENTH race car [19]. Figure 2.1 below shows the properties of F1TENTH 

race car. 

Figure 2.2: Properties of F1TENTH race car [20] 

2.3 TurtleBot 3 

TurtleBot 3 is a programmable, compact, low-cost mobile robot that can be 

used for hobby, education, research, and product prototyping. The objective of 

TurtleBot 3 is to provide expandability while drastically reducing the platform's size 

and cost without compromising its quality or usefulness. TurtleBot3 has a Single 

Board Computer (SBC) that is appropriate for reliable embedded systems, 360-degree 

distance sensors, Open-source Control Module (OpenCR) and 3D printing technology 

[21]. There are three variants of TurtleBot 3, namely TurtleBot 3 Burger, TurtleBot 3 

Waffle and TurtleBot 3 Waffle Pi. The Waffle model can carry a heavier weight and 

moves ahead a little bit faster as compared to the Burger model. It is much bigger, 

includes an additional Pi camera sensor, and it is relatively more expensive [8]. Figure 

2.6 shows the TurtleBot 3 variants. 
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Figure 2.3: TurtleBot 3 variants [8] 

Table 2.1: Specifications and features of different versions of TurtleBot 

Version References Features 

TurtleBot 1 [22] - Cost-effective which is suitable for education and 

research.  

- Raw sensor data is accessible via open platform. 

- Compatible with ROS.  

 

TurtleBot 2 [23] - Cost-effective which is suitable for education and 

research.  

- Built for ROS.  

- Fully assembled and tested to be used anytime. 

- Wide database of tutorials that can be referred to.   

 

TurtleBot 3 [12] - Cost-effective which is suitable for education and 

research.  

- Compact size which is easy to carry. 

- Extensibility which is able to customize. 

- Modular actuator which makes it easy to assemble 

and maintain. 

- Open-source software which is fully open to 

download, modify and share.  
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- Strong sensors for better detection.  

 

TurtleBot 4 [24][25] - Physically more solid and reliable. 

- Runs ROS 2 software which is faster and more 

reliable. 

- Open-source software library modules provide 

higher accuracy and reliability. 

- Improved battery with fast charging and 

prolonged battery life. 

- LiDAR provides better object recognition and 

higher accuracy with longer range. 

- More connectivity alternatives.  

- More diverse range of sensors to gather more 

accurate information around its surroundings. 

 

 

Based on Table 2.1 above, it can be seen that the TurtleBot 3 has many 

advantages over the other variants. Firstly, its compact size and modular design makes 

the TurtleBot 3 more portable and customizable compared to the predecessors. Next, 

the TurtleBot 3 comes equipped with more advanced sensing capabilities. 

Additionally, like all TurtleBot versions, it runs on open-source ROS software, but the 

TurtleBot 3 benefited from the increased maturity and support of the ROS community 

by its release. In terms of reliability, the TurtleBot 3 improved upon hardware issues 

in older models for more robust operation. Finally, the TurtleBot 3 strikes a balance 

between affordability and features that made it accessible as an educational and 

research platform. While not the cheapest option, it provides good value for 

capabilities compared to TurtleBot 2 and the more expensive later model, TurtleBot 4. 

In summary, the blend of compact design, sensor upgrades, software maturity, 

hardware reliability, community support and balanced cost of TurtleBot 3 distinguish 

it as a versatile and capable robotics platform. 
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TurtleBot 3 Burger was released in 2017 and it focuses on higher education. It 

is one of the variants in the TurtleBot 3 series, alongside the TurtleBot 3 Waffle and 

TurtleBot 3 Waffle Pi [5]. The TurtleBot 3 Burger is a good choice as it offers many 

open-source software and libraries for users to download and share with other users, it 

supports ROS, which is widely used for education and research, it is relatively cheaper 

and smaller compared to the TurtleBot 3 Waffle variant [26]. The TurtleBot 3 Burger 

is able to perform various kinds of activities without adding other components. With 

that being said, it is capable of navigating itself to a designated location in real-time 

by using the SLAM algorithm [27]. Figure 2.8 below shows the components of 

TurtleBot 3 Burger.  

 

Figure 2.4: Components of TurtleBot 3 Burger [12] 

2.4 Robot Operating System (ROS) 

The Robot Operating System (ROS) is a widely used, popular robotics tool 

with open source and an active community of contributors that is easy for users to 

access, especially for new learners who are looking for a platform to start getting their 

hands on robotics. It is a versatile robotics framework which is compatible with several 

operating systems and it contains various tools and libraries contributed by other users 

that can be used to program a robot [28]. ROS was developed back in 2007 by the 
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Stanford Artificial Intelligence Lab and is currently actively developed and maintained 

by Willow Garage with the assistance from other organizations. TurtleBot is one of 

the standard ROS platform and it is most often used in education and research, 

especially in motion planning [9]. There are quite a few Linux distributions for ROS 

development such as Ubuntu, Debian, Fedora, Arch Linux and OpenSUSE. Ubuntu is 

the most preferred open-source operating system on Linux to run ROS in order to 

program the TurtleBot. Ubuntu comes with many versions. The Xenial Xerus Ubuntu 

16.04 LTS version is the most preferred version for programming the TurtleBot 3 [29].                           

A ROS distribution is a versioned collection of ROS software packages. The goal of 

the ROS releases is to provide developers with a reasonably stable code base to work 

against until they are prepared to be released. Each distribution keeps a consistent 

collection of core packages until the distribution reaches its end of life (EOL), until 

then a new version of distribution will be released [30]. There are various versions of 

ROS distributions supported by TurtleBot 3, namely ROS Kinetic, ROS Melodic, ROS 

Dashing, ROS Foxy, ROS Galactic and ROS Humble. Some features are only 

supported by certain versions and these features can be implemented in TurtleBot 3 

[12]. 

2.5 TurtleBot 3 navigation 

Navigation is the ability to locate one’s position and plan a route to reach the 

designated location. In order for a mobile robot to navigate autonomously, it has to 

determine its current location, desired destination and the best route to get to that 

destination [31]. It will only be considered as autonomous navigation if there is no 

human manipulation involved. Object detection and avoidance are also very important 

in autonomous navigation. Static obstacles are those that do not move such as walls, 

while dynamic obstacles are those that are moving such as walking human and cars 

moving on the road [32]. 
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2.5.1 Types of TurtleBot 3 navigation methods 

2.5.1.1 Simultaneous Localization And Mapping (SLAM) 

Simultaneous Localization And Mapping (SLAM) is a method used to 

construct an environmental map around the robot (also known as mapping), then use 

the known map to calculate its position (also known as localization). SLAM is a two-

operation process in which these two actions occur simultaneously [33]. There are 

three common SLAM navigation technologies, namely Laser SLAM, visual SLAM 

and laser-vision fusion SLAM. Laser SLAM algorithm is implemented by mainly 

using LiDAR sensor. The particles follow the robot's movements, and a probability is 

assigned to each particle based on a comparison between the positions of the particles 

and the LiDAR scan. The particles eventually converge after a number of rounds and 

the robot's precise location can be determined. Visual SLAM algorithm is carried out 

by using camera sensor. It utilizes a binocular camera to capture RGB images of the 

environment. Feature points are detected using the FAST algorithm and their 

descriptors are calculated with the BRIEF algorithm. The camera pose is determined 

through rough matching of consecutive frame images, refined by the RANSAC 

algorithm for optimal matching. A local map is generated and the back end optimizes 

pose states and loop constraints, ensuring global consistency. Loopback constraints 

facilitate a return to the origin, mitigating accumulated errors and enabling the creation 

of a dense map. Laser-vision fusion SLAM algorithm combines the use of LiDAR and 

camera sensors. It employs parallel processing of laser and vision localization 

algorithms in its front-end. LiDAR and camera work interchangeably for robot 

positioning, even in extreme ambient illumination conditions. Integrating laser-

scanned points with image feature points enhances the depth optimization of the pure 

visual SLAM's interframe localization algorithm. Visual SLAM also aids in correcting 

LiDAR-induced drift, improving the overall positioning accuracy of laser SLAM [34]. 

2.5.1.2 Deep Q-Network (DQN) 

Deep reinforcement learning using a Deep Q-Network (DQN) is a method 

whereby the DQN agent learns to navigate towards a goal and avoid obstacles through 

interactions with a simulated environment in ROS Gazebo simulator. The agent selects 
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actions based on the robot's laser scan sensor data and odometry information which 

represent the state. It receives positive or negative rewards based on factors like 

reaching the goal and collisions. This reinforcement signal trains the DQN neural 

network to approximate the optimal action-value function and improve its policy. The 

trained model enables the TurtleBot robot to determine collision-free paths 

autonomously in real-time. Communication between the environment, sensors and 

actuators is handled through the ROS. Overall, the navigation method utilizes deep 

reinforcement learning, specifically the DQN algorithm, to train the mobile robot via 

rewards from its experiences and map out optimal routes by learning [35]. 

2.5.1.3 Real Time Object Detection 

Real Time Object Detection (RTOD) method involves training a Convolutional 

Neural Network (CNN) with a dataset of high number of images to enable real-time 

identification of specific objects within the Turtlebot's environment. The CNN is 

designed to categorize objects into distinct classes, such as Quadcopter, Mars Rover, 

Bowl, and Wheel, allowing the robot to recognize and differentiate between these 

objects in its surroundings. Additionally, the method incorporates the use of Haar 

Cascades for object detection, providing a complementary approach to the CNN-based 

detection. By leveraging these real-time object detection techniques, the robot is able 

to identify and localize itself within its environment, enabling subsequent navigation 

to specified locations. The integration of RTOD with the ROS framework and the 

utilization of depth maps further enhance the robot's ability to understand its 

surroundings and make informed navigation decisions. Overall, the RTOD method 

plays a crucial role in enabling the robot to autonomously recognize and respond to its 

environment in real time, facilitating its indoor localization and navigation capabilities 

[36]. 

2.5.1.4 Rapidly-exploring Random Tree (RRT) 

Rapidly-exploring Random Tree (RRT) is a popular algorithm used for path 

planning in robotics. It is a probabilistic algorithm that generates a tree of random 

samples in the configuration space of a robot. The algorithm starts with an initial 

configuration of the robot and then randomly generates new configurations in the 
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configuration space. The algorithm then connects the new configuration to the nearest 

configuration in the tree, creating a new branch. This process is repeated until a goal 

configuration is reached or a maximum number of iterations is reached. One of the key 

advantages of RRT is that it can handle high-dimensional configuration spaces and 

complex environments with obstacles. The algorithm is also incremental, meaning that 

it can be used to plan paths in real-time as the robot moves through the environment. 

Additionally, RRT can be extended to handle kinodynamic constraints, which makes 

it suitable for planning paths for robots with non-holonomic constraints. There are 

several variants of the RRT algorithm, including RRT*, which is an improved version 

of RRT that converges to the optimal path. RRT* uses a cost function to guide the 

growth of the tree towards the goal configuration, resulting in a more optimal path. 

Overall, RRT is a powerful and widely used algorithm for path planning in robotics 

[37]. 

2.5.1.5 Z-Number-based fuzzy logic 

Z-Number-based fuzzy logic, as the name suggests, combines Z-numbers with 

fuzzy logic to address uncertainty in robot navigation. It involves creating Z-number-

based fuzzy rules, converting sensor data into Z-numbers, and using Z-number 

arithmetic to make decisions in uncertain environments. The integration of Z-numbers 

into the fuzzy logic framework allows for a more accurate representation of uncertainty 

in robot navigation tasks. By mapping elements to degrees of certainty and uncertainty 

using paired membership functions, Z-numbers provide flexibility and adaptability in 

representing and reasoning about the robot's navigation behavior. This approach 

enables robots to navigate more naturally and intuitively, making decisions based on 

varying degrees of sensory inputs. The Z-Number-Based Fuzzy Logic Approach has 

shown promising results in improving mobile robot navigation in unknown and 

dynamic environments. It effectively handles uncertainty and imprecise information 

through Z-numbers, allowing for more intelligent and effective navigation. By 

considering the fuzzy membership function's lower and upper bounds, Z-numbers 

enable a more comprehensive evaluation of the robot's environment and the generation 

of more precise control actions. This approach has significant implications for 

developing autonomous robots operating in dynamic environments. It opens up new 
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possibilities for robust and adaptive navigation systems, with potential applications in 

robotics-assisted healthcare, logistics, and exploration [38]. 

2.5.1.6 Waypoing following  

Waypoint following is a navigation technique in robotics where a mobile robot 

follows a path defined by a sequence of waypoints. It is usually accompanied by the 

pure pursuit algorithm (PPA). PPA is a popular tracking algorithm that computes the 

robot's linear and angular velocities based on its current pose and predefined 

waypoints. The algorithm uses geometric equations to determine the distance and 

angle between the robot and the next waypoint, then dictates the robot's movement 

direction and speed. One of the key factors of PPA is the lookahead distance. Smaller 

values can improve accuracy but may cause oscillations, while larger values yield 

smoother paths. Depending on the environment, smaller lookahead distance can cause 

undesirable oscillations as the robot approached waypoints, while larger values 

allowed smoother paths but can cause the robot to cut corners before reaching the 

waypoints. An appropriate lookahead distance is needed to balance path tracking 

accuracy with avoiding instability and slowdowns near the waypoints [39]. 

2.5.2 Summary of types of navigation methods for TurtleBot 3 

Table 2.2: Types of navigation methods for TurtleBot 3 

Navigation 

method 

References Sensors used Description 

SLAM [33][34] - LiDAR 

- Odometry 

- IMU 

- Wheel 

encoder 

Advantages: 

- Improve accuracy and 

efficiency. 

- Robust to noise. 

- Adapted to various 

sensors and 

platforms. 

 

Disadvantages: 
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- Computational 

complexity. 

- Sensitivity to errors 

and sensor noise. 

- Challenging in 

cluttered 

environments. 

 

DQN [35] - LiDAR 

- Depth 

sensor 

Advantages: 

- Enables adaptation to 

new environments. 

- Deep neural network 

can approximate 

complex action-value 

functions for effective 

decision making. 

- Works well even with 

high-dimensional and 

continuous state 

spaces. 

 

Disadvantages: 

- Requires large 

amounts of training 

data from 

environment 

interactions. 

- Sensitive to 

hyperparameters. 

- Large neural network 

model can be 

computationally 

intensive to train. 
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RTOD [36] - Camera 

- LiDAR 

- Depth 

sensor 

Advantages: 

- Able to recognize and 

categorize specific 

objects in the 

environment in real 

time. 

- Able to make 

informed decisions 

regarding obstacle 

avoidance and path 

planning through 

depth maps. 

- Reducing the need for 

manual intervention. 

 

Disadvantages: 

- Limited ability to 

identify and respond 

to a broader range of 

environmental 

features. 

- Computational 

overhead, potentially 

impacting the real-

time responsiveness 

of the system. 

- Effectiveness may be 

influenced by 

variations in 

environmental 

conditions, such as 

changes in lighting, 
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object occlusion, or 

the presence of 

unfamiliar objects. 

RRT [37] - LiDAR 

- IMU  

- Wheel 

encoder 

- Camera 

Advantages: 

- Can handle high-

dimensional 

configuration spaces 

and complex 

environments with 

obstacles. 

- Can be used to plan 

paths in real-time 

- Suitable for planning 

paths for robots with 

non-holonomic 

constraints. 

- Computationally 

efficient and can 

generate paths 

quickly. 

 

Disadvantages: 

- Quality of the path 

generated can vary 

depending on the 

random samples 

generated. 

- May not always find 

the optimal path, 

especially in complex 

environments with 

many obstacles. 
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- May not be suitable 

for environments with 

narrow passages or 

tight spaces. 

 

Z-number-based 

fuzzy logic 

[38] - LiDAR 

- IMU 

- Wheel 

encoder 

Advantages: 

- Incorporates an 

additional level of 

uncertainty modeling, 

allowing for more 

comprehensive 

handling of 

uncertainties. 

- Effectively handle 

situations where 

precise information is 

lacking or conflicting 

data is present. 

- Flexible decision-

making in incomplete 

or ambiguous data. 

 

Disadvantages: 

- Complexity and 

expert knowledge 

required in assigning 

Z-numbers. 

- Room for efficiency 

and computational 

complexity 

enhancements. 

Waypoint 

following 

[39] - Odometry 

- IMU 

Advantages: 
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- Wheel 

encoder 

- Geometric simplicity 

for computational 

efficiency 

- Lookahead distance 

parameter allows 

tuning path tracking 

performance 

 

Disadvantages: 

- Requires tuning effort 

to balance accuracy 

and smoothness 

 

Based on Table 2.2 above, SLAM and waypoint following, including the pure 

pursuit algorithm, have been selected to develop the navigation system for the 

TurtleBot 3. SLAM integrates LiDAR, odometry, IMU, and wheel encoder data to 

accurately map the racetrack and precisely determine the robot's location. This 

capability is vital for maintaining constant awareness of the robot's position and 

effectively navigating around obstacles, crucial during high-speed maneuvers. 

Complementing SLAM, waypoint following with the pure pursuit algorithm offers a 

direct yet effective method to execute predefined paths with precision. The pure 

pursuit algorithm continuously adjusts the robot's steering to track a predefined racing 

line, utilizing inputs from odometry, IMU and wheel encoders for optimized path 

tracking. Together, SLAM ensures robust localization and mapping accuracy, while 

waypoint following with the pure pursuit algorithm enables reliable path execution, 

essential for navigating racing lines smoothly in environments like the F1TENTH 

competition. This integrated approach enhances computational efficiency and 

adaptability, ensuring the TurtleBot 3 performs effectively in autonomous racing 

scenarios where precision and real-time responsiveness are critical. 
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2.5.3 Summary of types of sensors used in TurtleBot 3 

Table 2.3: Types of sensors used in TurtleBot 3 

Type References Advantages Disadvantages 

Vision 

camera 

[40][41] - Multiple object 

tracking 

- Susceptible to 

environment 

conditions 

 

LiDAR [42][43] - Higher accuracy 

- Large 

measurement 

range 

- Not affected by 

lightning 

condition  

- Mapping and 

localization  

 

- Expensive 

- Narrow point 

detection (miss 

object like glass) 

Odometry [44][45] - Inexpensive  

- Real-time 

position 

estimation  

 

- Accumulate of 

errors 

- Sensitive to 

slippage 

- Not effective for 

featureless surface 

 

Wheel 

encoder 

[46] - Inexpensive 

- Real-time 

position 

estimation 

 

- Accumulation of 

errors 

- Sensitive to 

slippage 

- Not effective for 

featureless surface 
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IMU [8] - Pose estimation 

and navigation 

- Track robot’s 

orientation and 

heading. 

- Measurements can 

drift over time. 

- Affected by sensor 

noise, biases, 

temperature 

fluctuations. 

 

 

Based on Table 2.3 above, the LiDAR, odometry, and wheel encoders offer a 

balanced approach to achieving reliable autonomous navigation on the racetrack. 

LiDAR provides high accuracy and a broad measurement range, ensuring precise 

mapping and localization capabilities. Odometry and wheel encoders complement 

LiDAR by offering cost-effective real-time position estimation and path tracking, 

essential for executing predefined racing lines with accuracy. Integrating these sensors 

enables robust sensor fusion, enhancing the TurtleBot 3's ability to navigate 

autonomously while adapting to varying track conditions and obstacles. The IMU 

further enhances navigation by providing pose estimation and tracking the robot's 

orientation and heading. Since the racetrack is static, integrating a camera sensor on 

the TurtleBot 3 is deemed unnecessary. 

2.6 Types of SLAM algorithms 

SLAM is an algorithm used in TurtleBot’s navigation system. TurtleBot 3 

SLAM can be conducted using ROS as it contains tools such as Gazebo and RViz. 

Gazebo is a simulation software used to simulate the TurtleBot in a virtual environment 

created by the user. RViz, also known as ROS visualization, is used to visualize robot 

data, particularly the map created from the LiDAR sensor. By having the navigation 

goals and posing estimation functionalities, RViz allows autonomous navigation of 

Robots in ROS [47]. There are various algorithms that can be used to implement 

SLAM on TurtleBot 3.  
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2.6.1 Gmapping 

Gmapping algorithm is a laser-based SLAM algorithm utilizing Particle Filter 

approach. It addresses common particle filter issues, such as computational complexity 

and the depletion problem, by employing an adaptive resampling technique. Unlike 

traditional approaches, adaptive resampling is limited and performed when necessary, 

preventing unnecessary particle elimination. This method enhances robot localization 

accuracy by integrating sensor data and odometry motion model during the prediction 

step. The quality of laser scan matching further reduces the required number of 

particles [48]. Gmapping is suitable for indoor mapping [49].  

2.6.2 Cartographer 

Cartographer algorithm is a real-time SLAM system designed for 2D and 3D 

environments across various platforms and sensor configurations. As an open-source 

library with a ROS wrapper, it deviates from particle filter algorithms, opting for pose 

estimation to address error accumulation over prolonged iterations. Laser scans are 

matched iteratively with a recent submap, minimizing dependence on past scans and 

ensuring loop closure through scan matching. The conversion process from scan frame 

to submap frame involves representing submaps as probability grid points. Hits and 

misses are computed during new scan insertion, updating grid points with appropriate 

probabilities. Cartographer's scan matching is rooted in Ceres scan matching, 

maximizing probabilities for accurate scan pose determination in the submap [48]. 

2.6.3 Hector SLAM 

Hector SLAM algorithm is a 2D SLAM system that integrates LiDAR scan 

matching and a 3D navigation approach using Extended Kalman Filter with an inertial 

sensing system. Specifically designed for onboard computations, it ensures real-time 

six degrees of freedom robot pose determination during motion. The system achieves 

high update rates for 2D LiDAR-based mapping. Laser beam endpoint alignment with 

the obtained map is facilitated through a Gaussian-Newton optimization approach, 

implicitly performing scan matching with all preceding scans [48]. Figure 2.13 below 
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shows the examples of map made by Gmapping, Cartographer and Hector SLAM 

algorithm. 

Gmapping Cartographer Hector SLAM 

Figure 2.5: Examples of map made by Gmapping, Cartographer and Hector SLAM 

algorithm [48] 

2.6.4 Summary of Types of SLAM algorithms 

Table 2.4: Types of SLAM algorithms 

Type References Advantages Disadvantages 

Gmapping [48][49] - High quality 

maps 

- Robustness in 

experiments 

 

- Error 

accumulation 

- Careful parameter 

tuning 

 

Cartographer [48] - High mapping 

accuracy 

- Wide range of 

configurable 

parameters 

- Precise position 

estimation 

- Real-time 

mapping 

 

- Human error 

- Distortion in 

curved surface 

- Computational 

complexity  

- Limitations in 

closing large 

loops 

Hector SLAM [48] - Fast execution 

- Less dependent 

on other sensors 

- Relies on LiDAR-

only system 
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 - Computational 

complexity 

- Limitations in 

closing large 

loops 

- Careful parameter 

tuning  

- Low quality maps 

in certain 

environment 

 

 

Based on Table 2.4 above, SLAM Gmapping emerges as the optimal choice in 

my TurtleBot 3 project aimed at autonomous navigation on a racetrack. The algorithm 

is noted for its ability to generate high-quality maps and has demonstrated robustness 

in practical experiments, essential for ensuring accurate localization and effective path 

planning in dynamic environments. While it requires careful parameter tuning and may 

experience error accumulation over time, these challenges are manageable with proper 

calibration and align well with the capabilities of LiDAR sensors, which are crucial 

components of my sensor setup. Therefore, SLAM Gmapping promises to provide 

reliable performance, leveraging its proven track record in various applications to 

enhance the TurtleBot 3's autonomy and navigation capabilities on the racetrack. 

2.7 Overall summary 

F1TENTH provides various competitions and an immersive learning 

environment which facilitates research and development in autonomous driving and 

artificial intelligence [16]. The F1TENTH race car used in competition is in a 1/10th-

scale and is equipped with multiple sensors used for autonomous navigation such as 

IMU, LiDAR and camera [19]. The F1TENTH competition is a kind of autonomous 

robotics competition where participants develop self-driving algorithms for F1TENTH 

race cars to race on a randomized racetracks. The SLAM algorithm is used in the 

F1TENTH navigation system [1]. 
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TurtleBot is an open-source robotics platform compatible with ROS which is 

widely used for education and research. It is versatile, affordable, and just like the 

F1TENTH platform, it supports the SLAM technology which is used for autonomous 

navigation [9]. The TurtleBot 3 Burger is one of the variants of the TurtleBot 3 series 

which is suitable for developing an autonomous navigation system. It is relatively 

cheaper and smaller compared to the other variant [26]. It is able to navigate 

autonomously through SLAM method with just its existing components such as 360-

degree LiDAR sensor and Raspberry Pi [27]. 

ROS offers a versatile framework compatible with various operating systems 

and provides a range of tools and libraries contributed by a vibrant community for 

programming robots [28]. ROS has many versions of distributions which contain 

software packages that support TurtleBot programming and features [30]. Hence, ROS 

Kinetic is the most preferred distribution as it supports the most features in TurtleBot 

3 compared to other distributions [12]. 

SLAM is a method used in autonomous navigation preferably in F1TENTH 

and TurtleBot. Laser SLAM employs LiDAR sensor to map the environment and 

determine the robot’s location. Since the TurtleBot 3 Burger has a built-in 360-degree 

LiDAR sensor, Laser SLAM would be the suitable navigation method. SLAM is able 

to improve accuracy and efficiency, adapt to various sensors and platforms and is 

robust to noise. The LiDAR sensor has high accuracy, large measurement range and is 

suitable for mapping and localization [33][34]. Integrating waypoint following 

together with the pure pursuit algorithm (PPA) allows the TurtleBot 3 to autonomously 

navigate the predefined racetrack path. PPA computes velocities based on current 

position and geometric relationships to waypoints, balancing accuracy with path 

smoothness using a specified lookahead distance. This sequential approach optimizes 

the robot's ability to navigate autonomously and accurately on the racetrack [39]. With 

that being said, SLAM and waypoint following are suitable to implement in TurtleBot 

3 navigation for autonomous racing. 

Integrating LiDAR, odometry, wheel encoders, and IMU provides robust 

autonomous navigation capabilities for the TurtleBot 3 on a static racetrack. LiDAR 

ensures accurate mapping and localization [42][43], while odometry and wheel 
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encoders offer real-time position estimation and path tracking [44][45][46]. The IMU 

enhances navigation by tracking orientation and heading, contributing to precise 

autonomous navigation [8]. This sensor fusion approach optimizes the TurtleBot 3's 

ability to navigate with accuracy without the need for additional camera sensors in this 

application. 

SLAM has many different algorithms. SLAM Gmapping produces high quality 

maps and is robust, but it requires careful parameter tuning. It is more suitable for 

indoor mapping. SLAM Cartographer is accurate in mapping and position estimation, 

but it has many adjustable parameters and is suitable for real-time mapping. Hector 

SLAM only relies on LiDAR sensor for mapping. Hence, it does not carry out large 

loop closure and is less accurate [48][49]. Since the designated environment is an 

indoor racetrack, SLAM Gmapping is suitable for mapping. 
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METHODOLOGY 

3.1 Introduction 

In this chapter, the methods and techniques used to achieve the objectives of 

this project will be discussed. First of all, the steps in implementing the project will be 

explained based on the flowchart of project overview in the first section. Next, the 

overall process of the system will be described according to the flowchart of system 

overview.  

In order to achieve the first objective of this project, which is to create a map 

of the surrounding environment for TurtleBot 3 using SLAM method, the overall 

understanding on the concept and theory of SLAM algorithm is needed to correctly 

implement it on the TurtleBot 3 Burger effectively. The second objective which is to 

develop an autonomous racing navigation system for TurtleBot 3 with the map created 

from SLAM method, requires the knowledge of the theoretical concept of waypoint 

following and pure pursuit algorithm and Proportional – Integral – Derivative (PID) 

controller. The third objective which is to analyze the performance of the autonomous 

racing navigation system of TurtleBot 3 in terms of lap time and trajectory accuracy, 

the knowledge of the steps of calculating the RMSE between the expected and actual 

path of TurtleBot 3 on the racetrack is essential. 

Furthermore, this chapter will also cover the experiment setup as well as the 

steps of all experiments to be implemented in order to fulfill all the 3 objectives of this 

project. 
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3.2 Project overview 

Figure 3.1 below shows the project flowchart. The project flowchart describes 

the steps to implement the Final Year Project from start to finish. The project started 

off by understanding the project through conducting research and literature review. 

This is to have a better view of the important keywords in the project. Next, the 

problem statements, objectives and scopes are then identified and determined. After 

that is to set up the experiments that will satisfy the objectives of the project. Once the 

setup is done, the preliminary simulation will be conducted to obtain the preliminary 

results. The results are recorded and written in the report for Final Year Project 1. After 

that, the system will be further designed and developed. System testing and all the 

experiments will be carried out accordingly in Final Year Project 2. The final results 

will be recorded and analyzed in the final report.  
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Figure 3.1: Project flowchart 
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3.3 System overview 

Figure 3.2 below shows the overall system flowchart. The overall system 

flowchart describes the overall working process of the navigation system of the 

TurtleBot 3 Burger. Firstly, Gazebo and RViz software is opened in ROS. The model 

of the TurtleBot 3 is set as ‘Burger’. If the sensors on the TurtleBot 3 have successfully 

collected some data of the surrounding, the map of its nearby surroundings will be 

created and displayed in Rviz. It will then proceed to carry out the mapping process 

by moving around on the racetrack with the teleoperation node run in ROS. The map 

created can be viewed from the visualization in Rviz. After the mapping process is 

done, the map is saved. The saved map of the racetrack is then opened in Rviz. The 

autonomous racing navigation script is run and the TurtleBot 3 starts to run its 

navigation system on the map created to navigate autonomously around the racetrack. 

After the script is terminated, the TurtleBot 3 will stop moving and the graph of 

expected path against actual path of the TurtleBot 3 will be plotted automatically. The 

lap time and RMSE between the expected and actual path will also be calculated 

automatically and displayed on the plot. 
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Figure 3.2: Overall system flowchart 
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3.4 Concept of SLAM process 

SLAM is best described using probabilistic terms. Time is denoted by t and the 

robot’s location is represented by 𝑥𝑡. For mobile robots navigating on a flat surface, 

the path is expressed as: 

𝑋𝑇 = {𝑥0, 𝑥1, 𝑥2, … 𝑥𝑇} ………. (1) 

T represents a terminal time. The initial location 𝑥0 is known, while other positions 

remain unobservable. Odometry, denoted as 𝑢𝑡 , furnishes relative information 

concerning the movement between time t−1 and time t. The following equation is 

given: 

𝑈𝑇 = {𝑢0, 𝑢1, 𝑢2, … 𝑥𝑇} ………. (2) 

Finally, the robot perceives objects within the surroundings. Let m represent the actual 

map of the environment. The robot measurements establish a connection between 

features in m and the robot location 𝑥𝑡. Assuming, without loss of generality, that the 

robot takes precisely one measurement at each time point, the sequence of 

measurements is represented as: 

𝑍𝑇 = {𝑧0, 𝑧1, 𝑧2, … 𝑧𝑇} ………. (3) 

Figure 3.5 below depicts the variables central to the SLAM problem, illustrating the 

sequence of locations and sensor measurements, along with the causal relationships 

between these variables. 

 

Figure 3.3: Graphical model of SLAM problem 
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The current challenge in SLAM is to reconstruct a model of the world, denoted as m, 

and the sequence of robot locations 𝑋𝑇 using odometry and measurement data. There 

are two primary forms of the SLAM problem. The first is referred to as the full SLAM 

problem, where it estimates the posterior over the complete robot path along with the 

map: 

𝑝(𝑋𝑇 ,𝑚\𝑍𝑇 , 𝑈𝑇) ………. (3) 

The full SLAM problem entails computing the joint posterior probability over 𝑋𝑇 and 

m based on the provided data. The variables to the right of the conditioning bar are 

directly observable to the robot, while those on the left are the sought-after variables. 

Offline SLAM algorithms for this problem are frequently batch-oriented, processing 

all data simultaneously. The second one is the online SLAM problem, which focuses 

on determining the current robot location through incremental algorithms, known as 

filters, processing one data item at a time. The online SLAM problem is defined as 

below: 

𝑝(𝑥𝑡, 𝑚\𝑍𝑇 , 𝑈𝑇) ………. (4) 

To solve either SLAM problems, the robot relies on two models: one connecting 

odometry measurements 𝑢𝑡 to robot locations 𝑥𝑡−1 and 𝑥𝑡 and another linking 

measurements 𝑧𝑡 to the environment m and robot location 𝑥𝑡. 
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3.5 Concept of waypoint following and pure pursuit algorithm 

Waypoint following and the pure pursuit algorithm are essential techniques in 

the field of autonomous vehicle navigation and robotics. Waypoint following is a 

navigation strategy where a vehicle or robot is directed to pass through a series of 

predefined points known as waypoints. These waypoints outline the desired path, and 

the vehicle continuously adjusts its trajectory to reach each waypoint sequentially, 

ensuring it stays on the intended route. This method involves recalculating the path to 

the next waypoint based on the vehicle's current position. 

The pure pursuit algorithm is a geometric path-tracking method used in 

autonomous vehicles to follow a predefined path. The central concept involves 

calculating the curvature needed for the vehicle to steer towards a lookahead point on 

the path. This lookahead point is dynamically chosen based on the vehicle's current 

position and a specified lookahead distance. Figure 3.4 below shows the lookahead 

distance and lookahead point of pure pursuit algorithm.  

 

Figure 3.4: Lookahead distance and lookahead point 

The key formula for determining the curvature required to steer towards the lookahead 

point is given by: 

𝛾 =
2∙𝐿𝑠𝑖𝑛(𝛼)

𝐿𝑑
2  ………. (1) 

Where 𝛾 is the curvature, L is the distance between the rear axle and the lookahead 

point, 𝛼 is the angle between the vehicle’s current heading and the line connecting the 
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vehicle to the lookahead point and 𝐿𝑑 is the lookahead distance, which is the distance 

from the vehicle to the lookahead point. From the curvature calculated from formula 

(1) above, the steering angle can be computed using the equation as follows: 

𝛿 = arctan⁡(𝛾 ∙ 𝐿) ………. (2) 

This formula ensures that the vehicle's steering is continuously adjusted to follow the 

path smoothly by considering the current position, heading, and the dynamic 

lookahead point. 

3.6 Proportional – Integral – Derivative (PID) controller 

A Proportional – Integral – Derivative (PID) controller is a widely used control 

feedback mechanism in industrial systems. It combines proportional, integral, and 

derivative controls to minimize the error between a desired setpoint and the actual 

process variable. The proportional control (P) generates an output proportional to the 

current error, with the proportional gain, Kp determining the response magnitude. The 

integral control (I) accounts for accumulated past errors, with the integral gain, Ki 

helping to eliminate residual steady-state errors. The derivative control (D) predicts 

future errors based on their rate of change, with the derivative gain, Kd adding a 

damping effect to improve stability and reduce overshoot. Together, these components 

allow the PID controller to dynamically adjust process inputs, aiming for minimal 

steady-state error and optimal transient response. Figure 3.5 below shows the PID 

controller block diagram.  

 

Figure 3.5: PID controller block diagram 

The continuous-time formula for the PID control output, u(t) is given by: 
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𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝜏)𝑑𝜏 + 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡

𝑡

0
 ………. (1) 

Where u(t) is the control output, e(t) is the error at time, t (difference between the 

desired setpoint and the actual process variable), Kp is the proportional gain, Ki is the 

integral gain and Kd is the derivative gain.  

The discrete-time formula for the PID control output, u[n] is given by: 

𝑢[𝑛] = 𝐾𝑝𝑒[𝑛] + 𝐾𝑖 ∑ 𝑒[𝑖]∆𝑡 + 𝐾𝑑
𝑒[𝑛]=𝑒[𝑛=1]

∆𝑡

𝑛
𝑖=0 ………. (2) 

Where u[n] is the control output at discrete time step, n, e[n] is the error at discrete 

time step, n, ∆𝑡 is the time setep duraction. The two formulae combine the three control 

actions to correct the process variable and reduce the error dynamically. 

3.7 Root mean square error (RMSE) calculation 

The root mean square error is calculated to determine the error difference 

between the expected path that should be taken by the TurtleBot 3 to move around the 

racetrack and the actual path that is actually taken by the TurtleBot 3 itself. The RMSE 

provides a quantitative value representing the accuracy of the robot's path following. 

Figure 3.5 below shows a snippet of the RMSE calculator in the autonomous racing 

navigation script. The full script can be referred to Appendix D. 

 

Figure 3.6: RMSE calculator 

The steps of RMSE calculation is as follows: 

1. The expected path data is collected only during the first lap, consisting of the 

waypoints the TurtleBot 3 is supposed to follow. The actual path data, on the other 
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hand, is collected throughout the TurtleBot's navigation, representing the positions 

the robot actually reaches.  

2. The lenghts of the expected and actual path data are compared and made sure that 

they are the same. This is done by taking the minimum length of the two datasets. 

3. The expected and actual paths are then converted to numpy arrays for easier 

computation. Each path is represented as a series of (x, y) coordinates. 

4. The difference between each element of each array are calculated and squared to 

get the squared errors for each coordinate pair. 

5. The mean of the squared errors is calculated to get the Mean Squared Error (MSE). 

6. Lastly, take the square root of the MSE to obtain the RMSE. 

3.8 Experiment setup 

The software used in this project is ROS Kinetic installed on Ubuntu 16.04 

LTS (Xenial Xerus). Dependent ROS packages and TurtleBot 3 packages are also 

installed. Figure 3.5 below shows the Ubuntu 16.04 desktop interface. 

 

Figure 3.7: Ubuntu 16.04 desktop interface 

The experiments will be conducted in the virtual environment. The virtual environment 

is a racetrack constructed in ROS Gazebo. The outer dimensions of the racetrack is 4.5 

m x 3.25 m, while the inner dimensions is 2.5 m x 1.25 m. Figure 3.6 below shows the 

virtual racetrack constructed in Gazebo. 
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Figure 3.8: Virtual racetrack constructed in Gazebo 

3.9 Experiment implementation 

3.9.1 Experiment 1: Simulation of TurtleBot 3 Burger in the virtual world 

This simulation is about simulating the TurtleBot 3 Burger in the virtual world. 

The objective of this simulation is to understand the working principles of mapping 

and navigation of TurtleBot 3 Burger in the virtual world. The software involved are 

ROS, Gazebo and Rviz. Since this simulation is just to familiarize with the working 

principles of the mapping and navigation process of TurtleBot 3 Burger, no parameters 

are being measured in this simulation. For the expected results of this simulation, the 

TurtleBot 3 Burger should be able to do mapping in the Gazebo simulator with the 

teleoperation node and the Rviz simulator should be able to visualize the mapping 

process through the TurtleBot’s simulated sensor. After the mapping process is done, 

the TurtleBot 3 Burger should be able to navigate to the designated goal set in Rviz 

and at the same time avoid any obstacles in the way by using the ‘2D Pose Estimate’ 

and ‘2D Nav Goal’ tools. 

3.9.2 Experiment 2: Analysis of the performance of TurtleBot 3 Burger in 

virtual racetrack 

Objective: To ensure that the autonomous racing script is working properly and also 

to evaluate the baseline performance of the system which will be further improved in 

the upcoming experiments. 
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Tools: ROS, Gazebo, Rviz 

 

Parameters: 

Constant variable: Size of virtual racetrack 

Independent variables: Linear velocity, lookahead distance, angular velocity PID 

gains, angle threshold, linear velocity reduction factor 

Dependent variable: Lap time, RMSE 

 

Procedure: 

1. Source the bash.rc file to configure the environment.  

2. Launch the virtual racetrack in Gazebo. 

3. Run the SLAM node and open Rviz to visualize the map of the racetrack. 

4. Run the teleoperation node to move the TurtleBot 3 Burger around to map the 

racetrack. 

5. Save the map of the racetrack after the mapping process is done.  

6. Launch the racetrack again in Gazebo and the saved map in Rviz. 

7. Define the waypoints of the map using the ‘Publish Point’ tool as shown in 

Figure 3.8 below: 

 

Figure 3.9: Defining waypoints on the map 

 

8. Record the coordinates of the waypoint displayed on the terminal in the 

autonomous racing navigation script in Appendix D.  

9. The waypoints are listed in the format as shown in Figure 3.9 below: 
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Figure 3.10: Waypoints on the racetrack 

 

10. The parameters of the autonomous racing navigation script are initialized as 

shown in Figure 3.10 below: 

 

Figure 3.11:  Autonomous racing navigation parameters 

 

11. Run the autonomous racing navigation script and observe the behavior of the 

TurtleBot 3 while racing around the racetrack. 

12. The lap time is calculated from the moment it crosses the first waypoint until 

it crosses the first waypoint again after completing a lap. 

13. The lap time and RMSE of each lap are displayed on the terminal as shown in 

Figure 3.8 below. 

 

Figure 3.12: Terminal displaying the lap time and RMSE 

 

14. After 5 laps of race, terminate the script. 

15. Analyze the graph of expected path against actual path of the TurtleBot 3 for 

every lap. 
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16. Tabulate and analyze the lap time and RMSE. 

3.9.3 Simulation 3: Analysis of the performance of TurtleBot 3 Burger in virtual 

racetrack with different waypoint density levels 

Objective: To analyze the effect of different waypoint density levels on the time taken 

for the TurtleBot 3 Burger to finish a lap as well as the RMSE between the expected 

path and the actual path of its motion in the virtual racetrack. 

 

Tools: ROS, Gazebo, Rviz 

 

Parameters: 

Constant variable: Size of virtual racetrack, Linear velocity, lookahead distance, 

angular velocity PID gains, angle threshold, linear velocity reduction factor 

Independent variables: Waypoint density level 

Dependent variable: Lap time, RMSE 

 

Procedure: 

1. Source the bash.rc file to configure the environment.  

2. Launch the virtual racetrack in Gazebo and the its map in Rviz. 

3. Define the waypoints of the map using the ‘Publish Point’ tool, this time 

increasing the waypoints from the previous experiment. 

4. Record the coordinates of the waypoint displayed on the terminal in the 

autonomous racing navigation script in Appendix D. Figure below shows the 

medium level of waypoint density. 

 

Figure 3.13: Medium waypoint density 
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5. Run the autonomous racing navigation script and observe the behavior of the 

TurtleBot 3 while racing around the racetrack. 

6. After 5 laps of race, terminate the script. 

7. Analyze the graph of expected path against actual path of the TurtleBot 3 for 

every lap. 

8. Tabulate and analyze the lap time and RMSE. 

9. Repeat step 1 to 9 by increasing the waypoint density as shown in Figure 

below: 

 

Figure 3.14: High waypoint density 

 

10. Compare the lap time and RMSE with the previous experiment. 

3.9.4 Simulation 4: Analysis of the performance of TurtleBot 3 Burger in virtual 

racetrack with varying linear velocities, lookahead distances, and angular 

velocity proportional gains 

Objective: To analyze the effect of varying linear velocities, lookahead distances and 

angular velocity proportional gains on the TurtleBot 3 Burger’s behavior in terms of 

its ability to complete the lap, the time taken for it to finish a lap as well as the RMSE 

between the expected path and the actual path of its motion in the virtual racetrack. 

 

Tools: ROS, Gazebo, Rviz 
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Parameters: 

Constant variable: Size of virtual racetrack, angular velocity integral and derivative 

gains, angle threshold, linear velocity reduction factor 

Independent variables: Linear velocity, lookahead distance, angular velocity 

proportional gain 

Dependent variable: Lap time, RMSE 

 

Procedure: 

1. Source the bash.rc file to configure the environment.  

2. Launch the virtual racetrack in Gazebo and the its map in Rviz. 

3. Increase the value of the linear velocity from the previous experiment and at 

the same time, tune the lookahead distance and angular velocity to balance the 

system. 

4. Run the autonomous racing navigation script in Appendix D and observe the 

behavior of the TurtleBot 3 while racing around the racetrack. 

5. After 3 laps of race, terminate the script. 

6. Analyze the graph of expected path against actual path of the TurtleBot 3 for 

every lap. 

7. Tabulate and analyze the lap time and RMSE. 

8. Repeat step 1 to 7 by increasing the value of the linear velocity, tune the 

lookahead distance and angular velocity in a trial-and-error way until 

satisfactory result in terms of lap time and RMSE is obtained. 

9. Compare the lap time and RMSE with the previous experiment. 

3.9.5 Simulation 5: Analysis of the performance of TurtleBot 3 Burger in real 

world racetrack with varying angle thresholds and linear velocity 

reduction factors 

Objective: To analyze the effect of varying angle thresholds and linear velocity 

reduction factors on the TurtleBot 3 Burger’s behavior in terms of its ability to 

complete the lap, the time taken for it to finish a lap as well as the RMSE between the 

expected path and the actual path of its motion in the virtual racetrack. 

 

Tools: ROS, Gazebo, Rviz 
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Parameters: 

Constant variable: Size of virtual racetrack, Linear velocity, lookahead distance, 

angular velocity PID gain 

Independent variables: Angle threshold, linear velocity reduction factor 

Dependent variable: Lap time, RMSE 

 

Procedure: 

1. Source the bash.rc file to configure the environment.  

2. Launch the virtual racetrack in Gazebo and the its map in Rviz. 

3. Adjust the angle threshold and linear velocity reduction factor to balance the 

system. 

4. Run the autonomous racing navigation script in Appendix D and observe the 

behavior of the TurtleBot 3 while racing around the racetrack. 

5. After 3 laps of race, terminate the script. 

6. Analyze the graph of expected path against actual path of the TurtleBot 3 for 

every lap. 

7. Tabulate and analyze the lap time and RMSE. 

8. Repeat step 1 to 7 by adjusting the angle threshold and linear velocity in a trial-

and-error way until satisfactory result in terms of lap time and RMSE is 

obtained. 

9. Compare the lap time and RMSE with the previous experiment. 

3.9.6 Simulation 6: Analysis of the performance of TurtleBot 3 Burger in real 

world racetrack with varying angular velocity integral and derivative 

gains 

Objective: To analyze the effect of varying angular velocity integral and derivative 

gains on the TurtleBot 3 Burger’s behavior in terms of its ability to complete the lap, 

the time taken for it to finish a lap as well as the RMSE between the expected path and 

the actual path of its motion in the virtual racetrack. 

 

Tools: ROS, Gazebo, Rviz 

Parameters: 
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Constant variable: Size of virtual racetrack, linear velocity, lookahead distance, 

angular velocity proportional gain, angle threshold, linear velocity reduction factor 

Independent variables: Angular velocity integral and derivative gains 

Dependent variable: Lap time, RMSE 

 

Procedure: 

1. Source the bash.rc file to configure the environment.  

2. Launch the virtual racetrack in Gazebo and the its map in Rviz. 

3. Adjust the angular velocity integral and derivative gains to balance the system. 

4. Run the autonomous racing navigation script in Appendix D and observe the 

behavior of the TurtleBot 3 while racing around the racetrack. 

5. After 3 laps of race, terminate the script. 

6. Analyze the graph of expected path against actual path of the TurtleBot 3 for 

every lap. 

7. Tabulate and analyze the lap time and RMSE. 

8. Repeat step 1 to 7 by adjusting the angular velocity integral and derivative 

gains in a trial-and-error way until satisfactory result in terms of lap time and 

RMSE is obtained. 

9. Compare the lap time and RMSE with the previous experiment. 

3.9.7 Summary of simulations: 

As a summary, Experiments 1 and 2 are conducted to meet Objective 1, which 

is to create a map of the surrounding environment for TurtleBot 3 using SLAM 

method. Experiments 1 and 2 are conducted to map the surrounding environment of 

the TurtleBot 3. Next, Experiments 2, 3, 4, 5 and 6 are carried out to meet Objective 

2, which is to develop an autonomous racing navigation system for TurtleBot 3 with 

the map created from SLAM method. Experiment 2 is carried out to evaluate the 

baseline performance, Experiment 3 is carried out by implementing different waypoint 

density levels, Experiment 4 is carried out by tuning the linear velocity, lookahead 

distance and angular velocity proportional gain, Experiment 5 is carried out by tuning 

the angle threshold and linear velocity reductor factor, Experiment 6 is carried out by 

tuning the angular velocity integral and derivative gains. Lastly, Objective 3 which is 

to analyze the performance of the autonomous racing navigation system of TurtleBot 
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3 in terms of lap time and trajectory accuracy, is fulfilled through the implementation 

of Experiments 2, 3, 4, 5 and 6, whereby Experiments 2, 3, 4, 5 and 6 are implemented 

by analyzing the performance of the navigation system in terms of lap time and RMSE. 

Table 3.1: Objectives fulfilment for each experiment 

Experiment Objective 1 Objective 2 Objective 3 

1    

2    

3    

4    

5    

6    

 

Colour Description 

 Fulfill 

 Partially-fulfill 
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RESULTS AND DISCUSSIONS 

4.1 Introduction 

In this chapter, the results obtained will be tabulated and shown in graph. The 

results will also be discussed accordingly. A total of 6 experiments have been planned 

and conducted.  

4.2 Results 

4.2.1 Experiment 1: Simulation of TurtleBot 3 Burger in the virtual world 

In this experiment, the TurtleBot 3 Burger is simulated in a virtual 

environment, which is the TurtleBot 3 World, shown in ROS Gazebo. Rviz visualizes 

the process of map creation by the TurtleBot 3 Burger. The objective of this experiment 

is to understand the working principle of SLAM mapping and navigation of TurtleBot 

3 Burger in the virtual world. The results of this experiment are shown in Table 4.1 

below. 

Table 4.1: Process of mapping and navigation by TurtleBot 3 Burger 

 

TurtleBot 3 Burger starts mapping process. 



62 

 

 

TurtleBot 3 Burger done mapping process. 

 

 

TurtleBot 3 Burger starts navigation process. 
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TurtleBot 3 Burger done navigation process. 

 

 

Based on Table 4.1, it can be seen that the TurtleBot 3 Burger has completed 

the mapping process by moving and exploring around the environment using SLAM 

Gmapping and the teleoperation node. It is then able to navigate itself to the designated 

location on the map created earlier using the 2D Nav Goal function. The 2D Nav Goal 

function is used to set the target position and orientation for the TurtleBot. Based on 

the results, the TurtleBot 3 Burger is able to plan its own path and move from its 

starting position to the designated goal autonomously. Hence, objective 1 has been 

partially fulfilled. 
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4.2.2 Experiment 2: Analysis of the performance of TurtleBot 3 Burger in 

virtual racetrack 

In this experiment, the TurtleBot 3 Burger is simulated in the virtual racetrack 

created in ROS Gazebo. The racetrack in Gazebo is mapped by the TurtleBot using 

SLAM and is visualized in Rviz. Table 4.2 below shows the mapping process of the 

racetrack in Gazebo, visualized in Rviz. Figure 4.1 below shows the TurtleBot 3 

Burger navigating around the racetrack, visualized in Rviz. The objective of this 

experiment is to ensure that the autonomous racing script is working properly and also 

to evaluate the baseline performance of the system which will be further improved in 

the upcoming experiments. This experiment is conducted to analyze the time taken for 

the TurtleBot to finish a lap and to analyze the graph of expected path against the actual 

path of its motion in the virtual racetrack. This is done by recording the time taken for 

the TurtleBot to finish a lap on the racetrack and calculating the RMSE between the 

expected and actual path for each lap after the autonomous racing script is run. A total 

of 5 repeated laps are completed by the TurtleBot to obtain the results. The results of 

this experiment are shown in Table 4.3 and 4.4 below. 

Table 4.2: Mapping process of the racetrack by TurtleBot 3 Burger in Gazebo 

 

TurtleBot 3 Burger starts mapping process. 
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TurtleBot 3 Burger done mapping process. 

 

 

 

Figure 4.1: Navigation process of TurtleBot 3 Burger around the racetrack 
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Figure 4.2: Sample graph of expected path against actual path 

Table 4.3: Graph of expected path against actual path for each lap 

 

Lap 1 

 

 

Lap 2 

 

 

Lap 3 

 

Lap 4 
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Lap 5 

 

 

 

Table 4.4: Lap time and RMSE  for respective laps 

Lap Lap time (seconds) RMSE (meters) 

1 38.11 0.744 

2 38.14 0.744 

3 38.08 0.745 

4 38.08 0.744 

5 38.06 0.744 

Average (38.11 + 38.14 + 38.08  

+ 38.08 + 38.06) / 5 = 38.0940 

(0.744 + 0.744 + 0.745  

+ 0.744 + 0.744) / 5 = 0.7442 

 

Based on Table 4.2, it shows that the map created by the TurtleBot 3 Burger is 

well defined with all the borders shown clearly on Rviz. Figure 4.1 shows that the 

TurtleBot is running autonomously on the map, which means the autonomous racing 

navigation script is working. Figure 4.2 displays the sample graph of expected path 

against actual path of the TurtleBot on the map with the racetrack border drawn. Based 

on Table 4.3, it can be seen that there are deviations between the expected path and the 

actual path of the TurtleBot’s motion on the racetrack. There are several factors that 

causes this deviation, such as dynamic and kinematic constraints, including wheel 

slippage and the TurtleBot's inertia and momentum. The TurtleBot’s path planning and 

execution issues, such as the chosen lookahead distance in the pure pursuit algorithm 

also contributes to this error. Table 4.4 shows that the time taken for the TurtleBot to 
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complete a lap for lap 1 to 5 are approximately the same, with an average lap time of 

38.0940 seconds. A shorter lap time corresponds to a higher speed of navigation by 

the TurtleBot. Table 4.4 also shows that the RMSE values between the expected path 

and the actual path of the TurtleBot are approximately the same, with an RMSE of 

0.7442 m. The lower the RMSE value, the closer the actual path matches the expected 

path, indicating a higher accuracy in following the desired trajectory. The lap time and 

RMSE values are then used as a baseline for further improvements in the upcoming 

experiments. As a result of this experiment, objective 1, 2 and 3 have been fulfilled.  
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4.2.3 Experiment 3: Analysis of the performance of TurtleBot 3 Burger in 

virtual racetrack with different waypoint density levels 

This experiment is conducted on the virtual racetrack similar to the one in 

Experiment 2. The objective of this experiment is to analyze the effect of different 

waypoint density levels on the time taken for the TurtleBot 3 Burger to finish a lap as 

well as the RMSE between the expected path and the actual path of its motion in the 

virtual racetrack. This is done by recording the time taken for the TurtleBot to finish a 

lap on the racetrack and calculating the RMSE between the expected and actual path 

for each lap after the autonomous racing script is run with 3 different levels of 

waypoint density. A total of 5 repeated laps are completed by the TurtleBot for each 

waypoint density level to obtain the results. The results of this experiment are shown 

in Table 4.5, 4.6 and 4.7 below. Figure 4.2, 4.3 and 4.4 visualizes the results in graphs. 

Table 4.5: Graph of expected path against actual path for each waypoint density level 

Lap Waypoint density level 

Low Medium High 

 

 

1 

 

 

 

 

 

 

 

 

 

2 

 

 

 

 

 

 

 

 

 

3 
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4 

 

 

 

 

 

 

 

 

 

5 

 

 

 

 

 

 

 

 

Table 4.6: Lap time and RMSE for respective laps of each waypoint density level 

Waypoint 

density 

level 

 

Lap 

 

Lap time (seconds) 

 

RMSE (meters) 

 

 

 

Low 

1 38.11 0.744 

2 38.14 0.744 

3 38.08 0.745 

4 38.08 0.744 

5 38.06 0.744 

Average (38.11 + 38.14 + 38.08  

+ 38.08 + 38.06) / 5  

= 38.0940 

(0.744 + 0.744 + 0.745  

+ 0.744 + 0.744) / 5  

= 0.7442 

 

 

1 40.07 0.622 

2 39.52 0.623 
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Medium 

3 39.18 0.629 

4 39.04 0.629 

5 39.04 0.629 

Average (40.07 + 39.52 + 39.18  

+ 39.04 + 39.04) / 5  

= 39.3700 

(0.622 + 0.623 + 0.629  

+ 0.629 + 0.629) / 5  

= 0.6264 

 

 

 

High 

1 40.14 0.289 

2 40.08 0.289 

3 40.69 0.289 

4 40.72 0.289 

5 39.96 0.289 

Average (40.14 + 40.08 + 40.69 

+ 40.72+ 39.96) / 5  

= 40.3180 

(0.289 + 0.289 + 0.289  

+ 0.289 + 0.289) / 5  

= 0.2890 

 

Table 4.7: Percentage of decrease in lap time and RMSE compared to last 

experiment 

Waypoint density level Percentage of decrease in 

lap time (%) 

Percentage of decrease in 

RMSE (%) 

 

Low 

[(38.0940 - 38.0940) / 

38.0940] x 100 

= 0 

[(0.7442 – 0.7442) / 

0.7442] x 100 

= 0 

 

Medium 

[(38.0940 - 39.3700) / 

38.0940] x 100 

= -3.3496 

[(0.7442 – 0.6264) / 

0.7442] x 100 

= 15.8291 

 

High 

[(38.0940 - 40.3180) / 

38.0940] x 100 

= -5.8382 

[(0.7442 – 0.2890) / 

0.7442] x 100 

= 61.1664 
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Figure 4.3: Graph of lap time against waypoint density level 

 

Figure 4.4: Graph of RMSE against waypoint density level 
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Figure 4.5: Graph of percentage of decrease in lap time and RMSE against waypoint 

density level 

Based on Table 4.5, it can be seen that there are deviations between the 

expected path and the actual path of the TurtleBot’s motion on the racetrack. Just like 

in previous experiment, it may be caused by wheel slippage, the TurtleBot's inertia and 

momentum as well as the chosen lookahead distance in the pure pursuit algorithm. A 

waypoint is a set of coordinates that the TurtleBot follows to navigate the track. The 

waypoints guide the TurtleBot's trajectory, helping it to adjust its speed and steering 

to optimize lap time and avoid obstacles. For this experiment, the waypoints around 

the map of the racetrack are increased and separated into three density levels, namely 

low, medium and high.  

Table 4.6 and Figure 4.2 show that the average time taken for the TurtleBot to 

complete a lap for each waypoint density level are approximately the same, where the 

percentage of decrease in lap time as compared to the previous experiment are 0%, -

3.3496% and -5.8382% for low, medium and high waypoint density level respectively 

as shown in Table 4.7 and Figure 4.4. The negative percentage values indicate that the 

lap time increased compared to the one in the previous experiment. This shows that 

the difference in waypoint densities does not really affect the lap time. 
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Table 4.6 and Figure 4.3 show that the average RMSE value between the 

expected path and the actual path of the TurtleBot decreases from low to high waypoint 

density level, where the percentage of decrease in RMSE as compared to the previous 

experiment are 0%, 15.8291% and 61.1664% respectively as shown in Table 4.7 and 

Figure 4.4. From here, we can see that the lap time slightly increases but the RMSE 

decreases when the waypoint density increases. This is because when the waypoint 

density increases, the TurtleBot follows a more accurate path (low RMSE) due to more 

frequent reference points for trajectory correction. However, this can slightly increase 

the lap time due to more frequent adjustments, computational overhead, and cautious 

movement around sharp turns. This experiment concludes that the increase in waypoint 

density can significantly improve the RMSE between the expected and actual path 

lines. Although there is a slight trade-off between the lap time and RMSE, the minor 

increase in lap time (-5.8382%) can be neglected, since the RMSE can be greatly 

reduced (61.1664%) on the flip side. Overall, a high waypoint density produced the 

best result with an average lap time of 40.3180 seconds and average RMSE of 0.2890 

m. Hence, the high waypoint density is chosen to be conducted in the upcoming 

experiments for further improvements. As a result of this experiment, objective 2 and 

3 have been fulfilled. 
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4.2.4 Experiment 4: Analysis of the performance of TurtleBot 3 Burger in 

virtual racetrack with varying linear velocities, lookahead distances, and 

angular velocity proportional gains 

This experiment is conducted on the virtual racetrack similar to the one in 

Experiment 2. The objective of this experiment is to analyze the effect of varying linear 

velocities, lookahead distances and angular velocity proportional gains on the 

TurtleBot 3 Burger’s behavior in terms of its ability to complete the lap, the time taken 

for it to finish a lap as well as the RMSE between the expected path and the actual path 

of its motion in the virtual racetrack. This is done by recording the time taken for the 

TurtleBot to finish a lap on the racetrack and calculating the RMSE between the 

expected and actual path for each lap after the autonomous racing script is run with 

multiple combinations of linear velocities, lookahead distances and angular velocity 

proportional gains. 3 repeated laps are completed by the TurtleBot for each 

combination of the respective parameters to obtain the results. The results of this 

experiment are shown in Table 4.8, 4.9 and 4.10 below. Figure 4.5, 4.6 and 4.7 

visualizes the results in graphs. 

Table 4.8: Graph of expected path against actual path for each parameter 

combination 

Parameters Lap 1 Lap 2 Lap 3 

LV = 0.2 m/s 

LD = 0.2 m 

Kp = 0.7 

LV = 0.4 m/s 

LD = 0.2 m 

Kp = 1.4 
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LV = 0.6 m/s 

LD = 0.2 m 

Kp = 2 

 

 

 

 

 

 

 

 

LV = 0.8 m/s 

LD = 0.2 m 

Kp = 2 

 

 

 

 

 

- 

 

 

- 

 

LV = 0.8 m/s 

LD = 0.3 m 

Kp = 2 

 

 

 

 

 

 

 

 

LV = 0.8 m/s 

LD = 0.4 m 

Kp = 2 

 

 

 

 

 

 

 

 

LV = 0.8 m/s 

LD = 0.4 m 

Kp = 2.5 

 

 

 

 

 

 

 

 

LV = 0.8 m/s 

LD = 0.4 m 
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Kp = 3 

 

 

  

 

 

LV = 0.8 m/s 

LD = 0.45 m 

Kp = 2.5 

 

 

 

 

 

 

 

 

LV = 0.8 m/s 

LD = 0.5 m 

Kp = 3 

 

 

 

 

 

 

 

 

LV = 0.9 m/s 

LD = 0.4 m 

Kp = 3 

 

 

 

 

 

- 

 

 

- 

 

LV = 0.9 m/s 

LD = 0.4 m 

Kp = 3.5 

 

 

 

 

 

- 

 

 

- 

 

LV = 1 m/s 

LD = 0.4 m 

Kp = 3 

  

 

- 

 

 

- 
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LV = 1 m/s 

LD = 0.4 m 

Kp = 4 

 

 

 

 

 

- 

 

 

- 

* LV = Linear velocity 

   LD = Lookahead distance 

   Kp = Angular velocity proportional gain 

Table 4.9: Lap time, RMSE and observation for respective laps of each parameter 

combination 

LV  

(m/s) 

LD  

(m) 

Kp Lap Lap time  

(s) 

RMSE  

(m) 

Observation 

 

 

0.2 

 

 

0.2 

 

 

0.7 

1 40.14 0.289  

 

Completed 

all laps 

2 40.08 0.289 

3 40.69 0.289 

Average (40.14 + 40.08 

+ 40.69) / 3 

= 40.3033 

(0.289 + 0.289 

+ 0.289) / 3 

= 0.2890 

 

 

0.4 

 

 

0.2 

 

 

1.4 

1 20.13 0.303  

 

Completed 

all laps 

2 20.15 0.301 

3 20.21 0.302 

Average (20.13 + 20.15 

+ 20.21) / 3 

= 20.1633 

(0.303 + 0.301 

+ 0.302) / 3 

= 0.3020 

 

 

 

 

 

 

1 13.83 0.391  

 2 13.85 0.394 
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0.6 0.2 2 3 13.84 0.386 Completed 

all laps Average (13.83 + 13.85 

+ 13.84) / 3 

= 13.8400 

0.391 + 0.394 

+ 0.386) / 3 

= 0.3903 

 

0.8 

 

0.2 

 

2 

1  

- 

 

- 

 

Crashed on 

the first lap 

 

2 

3 

Average 

 

 

0.8 

 

 

0.3 

 

 

2 

1 10.48 0.385  

Completed 

all laps but 

touched 

border 

2 10.55 0.376 

3 10.58 0.368 

Average (10.48 + 10.55 

+ 10.58) / 3 

= 10.5367 

(0.385 + 0.376 

+ 0.368) / 3 

= 0.3763 

 

 

0.8 

 

 

0.4 

 

 

2 

1 10.11 0.299  

Completed 

all laps but 

touched 

border 

2 10.02 0.296 

3 10.04 0.296 

Average (10.11 + 10.02 

+ 10.04) / 3 

= 10.0567 

(0.299 + 0.296 

+ 0.296) / 3 

= 0.2970 

 

 

0.8 

 

 

0.4 

 

 

2.5 

1 10.11 0.317  

 

Completed 

all laps 

(best) 

2 10.08 0.316 

3 10.17 0.316 

Average (10.11 + 10.08  

+ 10.17) / 3 

= 10.1200 

(0.317 + 0.316 

+ 0.316) / 3 

= 0.3163 

 

 

0.8 

 

 

0.4 

 

 

3 

1 10.46 0.306  

 

Completed 

all laps but 

unstable 

2 10.46 0.310 

3 10.27 0.337 

Average (10.46 + 10.46 

+ 10.27) / 3 

= 10.3967 

0.306 + 0.310 

+ 0.337) / 3 

= 0.3177 
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0.8 

 

 

0.45 

 

 

2.5 

1 10.42 0.304  

Completed 

all laps but 

nearly 

crashed 

2 10.35 0.305 

3 10.40 0.301 

Average (10.42 + 10.35 

+ 10.40) / 3 

= 10.3900 

(0.304 + 0.305 

+ 0.301) / 3 

= 0.3033 

 

0.8 

 

0.5 

 

3 

1 10.60 0.352  

Crashed on 

the last lap 

2 10.46 0.340 

3 - - 

Average - - 

 

0.9 

 

0.4 

 

3 

1  

- 

 

 

- 

 

Crashed on 

the first lap 

 

2 

3 

Average 

 

0.9 

 

0.4 

 

3.5 

1  

- 

 

 

- 

 

Crashed on 

the first lap 

 

2 

3 

Average 

 

1 

 

0.4 

 

3 

1  

- 

 

 

- 

 

Crashed on 

the first lap 

 

2 

3 

Average 

 

1 

 

0.4 

 

4 

1  

- 

 

 

- 

 

Crashed on 

the first lap 

 

2 

3 

Average 

* LV = Linear velocity 

   LD = Lookahead distance 

   Kp = Angular velocity proportional gain 
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Table 4.10: Percentage of decrease in lap time and RMSE compared to last 

experiment 

LV 

(m/s) 

LD 

(m) 

Kp Percentage of decrease in lap 

time (%) 

Percentage of decrease in 

RMSE (%) 

 

0.2 

 

0.2 

 

0.7 

[(40.3180 – 40.3033) /  

40.3180] x 100 

= 0.0365 

[(0.2890 - 0.2890) / 

0.2890] x 100 

= 0 

 

0.4 

 

0.2 

 

1.4 

[(40.3180 – 20.1633) /  

40.3180] x 100 

= 49.9893 

[(0.2890 - 0.3020) / 

0.2890] x 100 

= -4.4983 

 

0.6 

 

0.2 

 

2 

[(40.3180 – 13.8400) /  

40.3180] x 100 

= 65.6729 

[(0.2890 - 0.3903) / 

0.2890] x 100 

= -35.0519 

0.8 0.2 2 - - 

 

0.8 

 

0.3 

 

2 

[(40.3180 – 10.5367) /  

40.3180] x 100 

= 73.8660 

[(0.2890 - 0.3763) / 

0.2890] x 100 

= -30.2076 

 

0.8 

 

0.4 

 

2 

[(40.3180 – 10.0567) /  

40.3180] x 100 

= 75.0566 

[(0.2890 - 0.2970) / 

0.2890] x 100 

= -2.7682 

 

0.8 

 

0.4 

 

2.5 

[(40.3180 – 10.1200) /  

40.3180] x 100 

= 74.8995 

[(0.2890 - 0.3163) / 

0.2890] x 100 

= -9.4464 

 

0.8 

 

0.4 

 

3 

[(40.3180 – 10.3967) /  

40.3180] x 100 

= 74.2133 

[(0.2890 - 0.3177) / 

0.2890] x 100 

= -9.9308 

 

0.8 

 

0.45 

 

2.5 

[(40.3180 – 10.3900) /  

40.3180] x 100 

= 74.2299 

[(0.2890 - 0.3033) / 

0.2890] x 100 

= -4.9481 

0.8 0.5 3 - - 

0.9 0.4 3 - - 

0.9 0.4 3.5 - - 

1 0.4 3 - - 
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1 0.4 4 - - 

* LV = Linear velocity 

   LD = Lookahead distance 

   Kp = Angular velocity proportional gain 

 

Figure 4.6: Graph of lap time against linear velocity, lookahead distance, and angular 

velocity proportional gain 
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Figure 4.7: Graph of RMSE against linear velocity, lookahead distance and angular 

velocity proportional gain 

 

Figure 4.8: Graph of percentage of decrease in lap time and RMSE against linear 

velocity, lookahead distance and angular velocity proportional gain 

Based on Table 4.8, it can be seen that there are deviations between the 

expected path and the actual path of the TurtleBot’s motion on the racetrack. Just like 

in previous experiments, it may be caused by wheel slippage, the TurtleBot's inertia 

and momentum as well as the chosen lookahead distance in the pure pursuit algorithm. 
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The linear velocity is the forward speed of the TurtleBot, measured in meters per 

second. The lookahead distance, measured in meters, is the distance ahead of the 

TurtleBot where it aims to move towards, ensuring smooth and accurate path 

following. Angular velocity proportional gain (Kp) determines the TurtleBot's turning 

response to orientation errors. It balances responsive turning with stability. These pure 

pursuit parameters are interdependent and can vary depending on various factors such 

as the size of racetrack. This means that the parameters must be fine-tuned among each 

other to maintain stable and accurate path tracking. If one of the parameter values is 

too high or too low, it might affect the TurtleBot’s performance. 

For this experiment, the linear velocity of the TurtleBot is gradually increased 

while adjusting the lookahead distance and the angular velocity proportional gain in a 

trial-and-error way to analyze and optimize the TurtleBot’s performance. Table 4.9 

and Figure 4.5 show that the average time taken for the TurtleBot to complete a lap 

decreases when its linear velocity increases. This also leads to an increase in the 

percentage of decrease in lap time compared to the previous experiment as shown in 

Table 4.10 and Figure 4.7. For some parameter combinations, the TurtleBot touched 

or crashed against the border because the chosen lookahead distance and angular 

velocity proportional gain were not appropriate at certain linear velocities. When the 

TurtleBot moves faster, it requires a larger lookahead distance to anticipate and react 

to upcoming waypoints effectively, otherwise it may be unstable in its motion. The 

angular velocity gain must also be fine-tuned to prevent abrupt changes in direction 

that can lead to collisions. 

Table 4.9 and Figure 4.5 show that the average RMSE between the expected 

and actual path of the TurtleBot are approximately the same. The percentage of 

decrease in lap time compared to the previous experiment are also approximately the 

same as shown in Table 4.10 and Figure 4.7. The negative percentage values indicate 

that the lap time increased compared to the one in the previous experiment. This 

experiment proves that the increase in linear velocity of the TurtleBot does not 

significantly affect the RMSE but can greatly improve the lap time, provided that the 

lookahead distance and the angular velocity proportional gain must be tuned properly. 

Although there is a slight trade-off between the lap time and RMSE, the minor increase 

in RMSE (-9.4464%) can be neglected, since the lap time can be greatly reduced 
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(74.8995%) on the flip side. Overall, the linear velocity of 0.8 m/s, lookahead distance 

of 0.4 m and angular velocity proportional gain of 2.5 produced the best result without 

crashing or touching the border with an average lap time of 10.1200 seconds and 

average RMSE of 0.3163 m. Hence, these parameter values are chosen to be conducted 

in the upcoming experiments for further improvements. As a result of this experiment, 

objective 2 and 3 have been fulfilled.  
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4.2.5 Experiment 5: Analysis of the performance of TurtleBot 3 Burger in real 

world racetrack with varying angle thresholds and linear velocity 

reduction factors 

This experiment is conducted on the virtual racetrack similar to the one in 

Experiment 2. The objective of this experiment is to analyze the effect of varying angle 

thresholds and linear velocity reduction factors on the TurtleBot 3 Burger’s behavior 

in terms of its ability to complete the lap, the time taken for it to finish a lap as well as 

the RMSE between the expected path and the actual path of its motion in the virtual 

racetrack. This is done by recording the time taken for the TurtleBot to finish a lap on 

the racetrack and calculating the RMSE between the expected and actual path for each 

lap after the autonomous racing script is run with multiple combinations angle 

thresholds and linear velocity reduction factors. 3 repeated laps are completed by the 

TurtleBot for each combination of the respective parameters to obtain the results. The 

results of this experiment are shown in Table 4.11, 4.12 and 4.13 below. Figure 4.8, 

4.9 and 4.10 visualizes the results in graphs. 

Table 4.11: Graph of expected path against actual path for each parameter 

combination 

Parameters Lap 1 Lap 2 Lap 3 

 

 

AT = 0 rad 

RF = 1 

 

 

 

 

 

 

 

 

AT = 0.05 

rad 

RF = 0.8 

 

 

 

 

 

- 

 

 

- 
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AT = 0.05 

rad 

RF = 0.9 

 

 

 

- 

 

- 

 

AT = 0.09 

rad 

RF = 0.8 

 

 

 

 

 

 

 

 

AT = 0.09 

rad 

RF = 0.9 

 

 

 

 

 

 

 

 

 

AT = 0.1 rad 

RF = 0.7 

 

 

 

 

 

- 

 

 

- 

 

 

AT = 0.1 rad 

RF = 0.8 

 

 

 

 

 

 

 

 

AT = 0.15 

rad 

RF = 0.7 

   



88 

 

 

  

 

AT = 0.15 

rad 

RF = 0.8 

 

 

 

 

 

 

 

 

 

AT = 0.2 rad 

RF = 0.8 

 

 

 

 

 

 

 

 

 

AT = 0.2 rad 

RF = 0.9 

 

 

 

 

 

 

 

 

 

AT = 0.3 rad 

RF = 0.7 

 

 

 

 

 

 

 

 

 

AT = 0.3 rad 

RF = 0.8 
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AT = 0.5 rad 

RF = 0.5 

 

 

 

 

 

 

 

 

 

AT = 1 rad 

RF = 0.5 

 

 

 

 

 

 

 

* AT = Angle threshold 

   RF = Linear velocity reduction factor 

Table 4.12: Lap time, RMSE and observation for respective laps of each parameter 

combination 

AT  

(rad) 

RF Lap Lap time  

(s) 

RMSE 

(m) 

Observation 

 

 

0 

 

 

1 

1 10.11 0.317  

 

Completed 

all laps 

2 10.08 0.316 

3 10.17 0.316 

Average (10.11 + 10.08  

+ 10.17) / 3 

 = 10.1200  

(0.317 + 0.316 

+ 0.316) / 3 

= 0.3163 

 

0.05 

 

0.8 

1  

- 

 

- 

 

Crashed on 

the first lap 

2 

3 



90 

Average 

 

0.05 

 

0.9 

1  

- 

 

- 

 

Crashed on 

the first lap 

2 

3 

Average 

 

 

0.09 

 

 

0.8 

1 10.82 0.296  

 

Completed 

all laps 

2 11.04 0.278 

3 10.86 0.277 

Average (10.82 + 11.04 

+ 10.86) / 3 

= 10.9067 

(0.296 + 0.278 

+ 0.277) / 3 

= 0.2837 

 

 

0.09 

 

 

0.9 

1 10.28 0.309  

 

Completed 

all laps 

2 10.27 0.319 

3 10.39 0.297 

Average (10.28 + 10.27 

+ 10.39) / 3 

= 10.3133 

(0.309 + 0.319 

+ 0.297) / 3 

= 0.3083 

 

0.1 

 

0.7 

1  

- 

 

- 

 

Crashed on 

the first lap 

2 

3 

Average 

 

 

0.1 

 

 

0.8 

1 10.76 0.291  

 

Completed 

all laps 

2 10.87 0.285 

3 10.97 0.279 

Average (10.76 + 10.87  

+ 10.97) / 3 

= 10.8667 

(0.291 + 0.285 

+ 0.279) / 3 

= 0.2850 

 

 

0.15 

 

 

0.7 

1 11.33 0.286  

Completed 

all laps but 

unstable 

2 11.27 0.285 

3 11.37 0.282 

Average (11.33 + 11.27 

+ 11.37) / 3 

(0.286 + 0.285 

+ 0.282) / 3 
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= 11.3233 = 0.2843 

 

 

0.15 

 

 

0.8 

1 10.83 0.280  

 

Completed 

all laps 

2 10.81 0.274 

3 10.72 0.289 

Average (10.83 + 10.81 

+ 10.72) / 3 

= 10.7867 

(0.280 + 0.274 

+ 0.289) / 3 

= 0.2810 

 

 

0.2 

 

 

0.8 

1 10.65 0.285  

Completed 

all laps 

(best) 

2 10.72 0.279 

3 10.77 0.275 

Average (10.65 + 10.72 

+ 10.77) / 3 

= 10.7133 

(0.285 + 0.279 

+ 0.275) / 3 

= 0.2797 

 

 

0.2 

 

 

0.9 

1 10.31 0.300  

 

Completed 

all laps 

2 10.26 0.306 

3 10.22 0.306 

Average (10.31 + 10.26 

+ 10.22) / 3 

= 10.2633 

(0.300 + 0.306 

+ 0.306) / 3 

= 0.3040 

 

 

0.3 

 

 

0.7 

1 10.97 0.315  

 

Completed 

all laps 

2 10.99 0.304 

3 11.10 0.296 

Average (10.97 + 10.99 

+ 11.10) / 3 

= 11.0200 

(0.315 + 0.304 

+ 0.296) / 3 

= 0.3050 

 

 

0.3 

 

 

0.8 

1 10.62 0.285  

 

Completed 

all laps 

2 10.65 0.287 

3 10.63 0.290 

Average (10.62 + 10.65 + 

10.63) / 3 

= 10.6333 

(0.285 + 0.287 

+ 0.290) / 3 

= 0.2873 

  1 11.93 0.278  
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0.5 

 

0.5 

2 11.94 0.279  

Completed 

all laps 

3 12.17 0.293 

Average (11.93 + 11.94 + 

12.17) / 3 

= 12.0133 

(0.278 + 0.279 + 

0.293) / 3 

= 0.2833 

 

 

1 

 

 

0.5 

1 10.37 0.331  

 

Completed 

all laps 

2 10.40 0.342 

3 10.26 0.347 

Average (10.37 + 10.40 

+ 10.26) / 3 

= 10.3433 

(0.331 + 0.342  

+ 0.347) / 3 

= 0.3400 

* AT = Angle threshold 

   RF = Linear velocity reduction factor 

Table 4.13: Percentage of decrease in lap time and RMSE compared to last 

experiment 

AT 

(rad) 

RF Percentage of decrease in lap 

time (%) 

Percentage of decrease in RMSE 

(%) 

0 1 [(10.1200 – 10.1200) / 10.1200] 

x 100 = 0 

[(0.3163 – 0.3163) / 0.3163] 

x 100 = 0 

0.05 0.8 - - 

0.05 0.9 - - 

0.09 0.8 [(10.1200 – 10.9067) / 10.1200] 

x 100 = -7.7737 

[(0.3163 – 0.2837) / 0.3163] 

x 100 = 10.3067 

0.09 0.9 [(10.1200 – 10.3133) / 10.1200] 

x 100 = -1.9101 

[(0.3163 – 0.3083) / 0.3163] 

x 100 = 2.5292 

0.1 0.7 -  - 

0.1 0.8 [(10.1200 – 10.8667) / 10.1200] 

x 100 = -7.3785 

[(0.3163 – 0.2850) / 0.3163] 

x 100 = 9.8957 

0.15 0.7 [(10.1200 – 11.3233) / 10.1200] 

x 100 = -11.8903 

[(0.3163 – 0.2843) / 0.3163] 

x 100 = 10.1170 

0.15 0.8 [(10.1200 – 10.7867) / 10.1200] 

x 100 = -6.5879 

[(0.3163 – 0.2810) / 0.3163] 

x 100 = 11.1603 
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0.2 0.8 [(10.1200 – 10.7133) / 10.1200] 

x 100 = -5.8626 

[(0.3163 – 0.2797) / 0.3163] 

x 100 = 11.5713 

0.2 0.9 [(10.1200 – 10.2633) / 10.1200] 

x 100 = -1.4160 

[(0.3163 – 0.3040) / 0.3163] 

x 100 = 3.8887 

0.3 0.7 [(10.1200 – 11.0200) / 10.1200] 

x 100 = -8.8933 

[(0.3163 – 0.3050) / 0.3163] 

x 100 = 3.5726 

0.3 0.8 [(10.1200 – 10.6333) / 10.1200] 

x 100 = -5.0721 

[(0.3163 – 0.2873) / 0.3163] 

x 100 = 9.1685 

0.5 0.5 [(10.1200 – 12.0133) / 10.1200] 

x 100 = -18.7085 

[(0.3163 – 0.2833) / 0.3163] 

x 100 = 10.4331 

1 0.5 [(10.1200 – 10.3433) / 10.1200] 

x 100 = -2.2065 

[(0.3163 – 0.3400) / 0.3163] 

x 100 = -7.4929 

* AT = Angle threshold 

   RF = Linear velocity reduction factor 

 

Figure 4.9: Graph of lap time against angle threshold and linear velocity reduction 

factor 
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Figure 4.10: Graph of RMSE against angle threshold and linear velocity reduction 

factor 

 
Figure 4.11: Graph of percentage of decrease in lap time and RMSE against angle 

threshold and linear velocity reduction factor 
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The angle threshold is a predefined limit that determines the maximum allowable 

deviation in the TurtleBot's orientation before corrective actions are taken, measured 

in radians. The linear velocity reduction factor is a scaling factor applied to the 

TurtleBot's speed to ensure safe and controlled movement when navigating sharp turns 

or avoiding obstacles. The angle threshold and linear velocity reduction factor are 

interdependent and can vary depending on various factors such as the size of racetrack. 

This means that the parameters must be fine-tuned among each other to maintain stable 

and accurate path tracking, just like in Experiment 4. 

For this experiment, the angle threshold and linear velocity reduction factor of 

the TurtleBot are adjusted in a trial-and-error way to analyze and optimize the 

TurtleBot’s performance. Table 4.12 shows that for some combinations of angle 

threshold and linear velocity reduction factor, the TurtleBot touched or crashed against 

the border because they were not appropriate to be matched with the pure pursuit 

parameters (linear velocity, lookahead distance and angular velocity proportional 

gain). At higher speeds, precise tuning of angle threshold and linear velocity reduction 

factors is critical to prevent path deviations and collisions with borders. The linear 

velocity reduction factor slows the TurtleBot during turns to ensure that it stays on 

track with the expected path. 

Figure 4.8 and 4.9 show that the average lap time and average RMSE between 

the expected and actual path of the TurtleBot are approximately the same. From Table 

4.13 and Figure 4.10, it is evident that when there is an improvement (+%) in the lap 

time, there will be an increase (-%) in the RMSE value and vice versa for every 

combination of the angle threshold and linear velocity reduction factor. However, 

when the angle threshold = 0.2 rad and linear velocity reduction factor = 0.8, it yields 

the best result with an average lap time of 10.7133 seconds and average RMSE of 

0.2797 m, where the percentage of decrease in RMSE (11.5713%) is higher than the 

percentage of increase in the lap time (-5.8626%). This experiment proves that a proper 

tuning of these two parameters can improve the RMSE, while suffering a slight trade-

off from the increase in lap time. Hence, these parameter values are chosen to be 

conducted in the upcoming experiments for further improvements. As a result of this 

experiment, objective 2 and 3 have been fulfilled.  
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4.2.6 Experiment 6: Analysis of the performance of TurtleBot 3 Burger in real 

world racetrack with varying angular velocity integral and derivative 

gains 

This experiment is conducted on the virtual racetrack similar to the one in 

Experiment 2. The objective of this experiment is to analyze the effect of varying 

angular velocity integral and derivative gains on the TurtleBot 3 Burger’s behavior in 

terms of its ability to complete the lap, the time taken for it to finish a lap as well as 

the RMSE between the expected path and the actual path of its motion in the virtual 

racetrack. This is done by recording the time taken for the TurtleBot to finish a lap on 

the racetrack and calculating the RMSE between the expected and actual path for each 

lap after the autonomous racing script is run with multiple combinations of angular 

velocity integral and derivative gains. 3 repeated laps are completed by the TurtleBot 

for each combination of the respective parameters to obtain the results. The results of 

this experiment are shown in Table 4.14, 4.15 and 4.16 below. Figure 4.11, 4.12 and 

4.13 visualizes the results in graphs. 

Table 4.14: Graph of expected path against actual path for each parameter 

combination 

Parameters Lap 1 Lap 2 Lap 3 
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Ki = 0.001 

Kd = 0 
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Ki = 0.1 

Kd = 0.1 

 

 

 

 

 

- 

 

 

- 

* Ki = Angular velocity integral gain 

   Kd = Angular velocity derivative gain 

Table 4.15: Lap time, RMSE and observation for respective laps of each parameter 

combination 

Ki Kd Lap Lap time  

(s) 

RMSE 

(m) 

Observation 

 

 

0 

 

 

0 

1 10.65 0.285  

 

Completed 

all laps 

2 10.72 0.279 

3 10.77 0.275 

Average (10.65 + 10.72 

+ 10.77) / 3 

= 10.7133 

(0.285 + 0.279 

+ 0.275) / 3 

= 0.2797 

 

 

0.0001 

 

 

0 

1 10.77 0.269  

Completed 

all laps 

(best) 

2 10.67 0.269 

3 10.79 0.270 

Average (10.77 + 10.67 

+ 10.79) / 3 

= 10.7433 

(0.269 + 0.269 

+ 0.270) / 3 

= 0.2693 

 

 

0.001 

 

 

0 

1 10.63 0.293  

 2 10.72 0.290 

3 10.77 0.281 



100 

Average (10.63 + 10.72  

+ 10.77) / 3 

= 10.7067 

(0.293 + 0.290 

+ 0.281) / 3 

= 0.2880 

Completed 

all laps 

 

 

0.01 

 

 

0 

1 11.01 0.289  

 

Completed 

all laps 

 

 

2 10.63 0.280 

3 10.65 0.280 

Average (11.01 + 10.63 

+ 10.65) / 3 

= 10.7633 

(0.289 + 0.280 

+ 0.280) / 3 

= 0.2830 

 

0.05 

 

0 

1  

- 

 

- 

 

Crashed on 

the first lap 

2 

3 

Average 

 

0.1 

 

0 

1  

- 

 

- 

 

Crashed on 

the first lap 

2 

3 

Average 

 

0.5 

 

0 

1  

- 

 

- 

 

Crashed on 

the first lap 

2 

3 

Average 

 

0.1 

 

0.0001 

1  

- 

 

- 

 

Crashed on 

the first lap 

2 

3 

Average 

 

 

0.01 

 

 

0.0001 

1 10.63 0.278  

 

Completed 

all laps 

2 10.58 0.279 

3 10.66 0.279 

Average (10.63 + 10.58 

+ 10.66) / 3 

= 10.6233 

(0.278 + 0.279 

+ 0.279) / 3 

= 0.2787 

  1 10.75 0.273  
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0.001 

 

0.0001 

2 10.70 0.279  

Completed 

all laps 

3 10.75 0.274 

Average (10.75 + 10.70 

+ 10.75) / 3 

= 10.7333 

(0.273 + 0.279 

+ 0.274) / 3 

= 0.2753 

 

 

0.0001 

 

 

0.0001 

1 10.77 0.279  

 

Completed 

all laps 

2 10.68 0.290 

3 10.67 0.285 

Average (10.77 + 10.68 

+ 10.67) / 3 

= 10.7067 

(0.279 + 0.290 

+ 0.285) / 3 

= 0.2847 

 

 

0.001 

 

 

0.001 

1 10.86 0.282  

 

Completed 

all laps 

2 10.72 0.285 

3 10.65 0.288 

Average (10.86 + 10.72 

+ 10.65) / 3 

= 10.7433 

(0.282 + 0.285 

+ 0.288) / 3 

= 0.2850 

 

 

0.01 

 

 

0.01 

1 10.68 0.317  

 

Completed 

all laps 

2 10.60 0.338 

3 10.53 0.325 

Average (10.68 + 10.60 + 

10.53) / 3 

= 10.6033 

(0.317 + 0.338 

+ 0.325) / 3 

= 0.3267 

 

0.1 

 

0.1 

1  

- 

 

- 

 

Crashed on 

the first lap 

2 

3 

Average 

* Ki = Angular velocity integral gain 

   Kd = Angular velocity derivative gain 
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Table 4.16: Percentage of decrease in lap time and RMSE compared to last 

experiment 

Ki Kd Percentage of decrease in lap 

time (%) 

Percentage of decrease in 

RMSE (%) 

0 0 [(10.7133 – 10.7133) / 

10.7133] x 100 = 0 

[(0.2797 – 0.2797) /  

0.2797] x 100 = 0 

0.0001 0 [(10.7133 – 10.7433) / 

10.7133] x 100 = -0.2800 

[(0.2797 – 0.2693) /  

0.2797] x 100 = 3.7183 

0.001 0 [(10.7133 – 10.7067) / 

10.7133] x 100 = 0.0616 

[(0.2797 – 0.2880) /  

0.2797] x 100 = -2.9675 

0.01 0 [(10.7133 – 10.7633) / 

10.7133] x 100 = -0.4667 

[(0.2797 – 0.2830) /  

0.2797] x 100 = -1.1798 

0.05 0 - - 

0.1 0 - - 

0.5 0 - - 

0.1 0.0001 - - 

0.01 0.0001 [(10.7133 – 10.6233) / 

10.7133] x 100 = 0.8401 

[(0.2797 – 0.2787) /  

0.2797] x 100 = 0.3575 

0.001 0.0001 [(10.7133 – 10.7333) / 

10.7133] x 100 = -0.1867 

[(0.2797 – 0.2753) /  

0.2797] x 100 = 1.5731 

0.0001 0.0001 [(10.7133 – 10.7067) / 

10.7133] x 100 = 0.0616 

[(0.2797 – 0.2847) /  

0.2797] x 100 = -1.7876 

0.001 0.001 [(10.7133 – 10.7433) / 

10.7133] x 100 = -0.2800 

[(0.2797 – 0.2850) /  

0.2797] x 100 = -1.8949 

0.01 0.01 [(10.7133 – 10.6033) / 

10.7133] x 100 = 1.0268 

[(0.2797 – 0.3267) /  

0.2797] x 100 = -16.8037 

0.1 0.1 - - 

* Ki = Angular velocity integral gain 

   Kd = Angular velocity derivative gain 
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Figure 4.12: Graph of lap time against angular velocity integral and derivative gains 

 

Figure 4.13: Graph of RMSE against angular velocity integral and derivative gains 
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Figure 4.14: Graph of percentage of decrease in lap time and RMSE against angular 

velocity integral and derivative gains 

Based on Table 4.14, it can be seen that there are deviations between the 

expected path and the actual path of the TurtleBot’s motion on the racetrack. Just like 

in previous experiments, it may be caused by wheel slippage, the TurtleBot's inertia 

and momentum as well as the chosen lookahead distance in the pure pursuit algorithm. 

In PID control, the integral gain (Ki) for angular velocity integrates the error over time 

to eliminate steady-state error, while the derivative gain (Kd) predicts and responds to 

the rate of change of the error, enhancing stability and reducing oscillations in the 

system. These parameters are crucial for tuning the PID controller to achieve accurate 

and stable control of the TurtleBot's angular velocity during navigation tasks. In this 

experiment, the integral and derivative gains are combined with the proportional gain 

(Kp) used in the previous experiments to form a complete PID. These parameters are 

interdependent and can vary depending on various factors such as the size of racetrack. 

This means that the parameters must be fine-tuned among each other to maintain stable 

and accurate path tracking, just like in Experiment 4 and 5. 

For this experiment, the angular velocity integral (Ki) and derivative (Kd) gains 

of the TurtleBot are adjusted in a trial-and-error way to analyze and optimize the 

TurtleBot’s performance. Table 4.15 shows that for some combinations of Ki and Kd, 

the TurtleBot crashed against the border because they were not appropriate to be 
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matched with the pure pursuit parameters (linear velocity, lookahead distance and 

angular velocity proportional gain). An inappropriate Ki and Kd combination can 

cause instability, while a well-tuned combination ensures a smoother and more 

accurate trajectory at higher speeds. Therefore, precise tuning of these gains is crucial 

for optimal high-speed navigation performance. 

Figure 4.11 and 4.12 show that the average lap time and average RMSE 

between the expected and actual path of the TurtleBot are approximately the same. 

From Table 4.16 and Figure 4.13, it is evident that when there is an improvement (+%) 

in the lap time, there will be an increase (-%) in the RMSE value and vice versa for 

every combination of Ki and Kd. However, when Ki = 0.0001 and Kd = 0, it yields the 

best result with an average lap time of 10.7433 seconds and average RMSE of 0.2693 

m, where the percentage of decrease in RMSE (3.7183%) is higher than the percentage 

of increase in the lap time (-0.2800%). This experiment proves that a proper tuning of 

Ki and Kd with the existing Kp can further improve the RMSE, even by a small bit. 

Besides, the minor trade-off from the small increase in lap time is also inevitable, but 

the increase can be minimized through appropriate tuning. Since the improvement in 

RMSE is minimal, it shows that the system can already perform well by tuning just the 

Kp value. Hence, extensive adjustments to Ki and Kd may not be necessary for 

achieving significant performance gains and it might even negatively affect the 

TurtleBot’s performance if not carefully balanced with the existing Kp value. As a 

result of this experiment, objective 2 and 3 have been fulfilled. 
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CONCLUSION AND FUTURE WORKS 

5.1 Conclusion 

As a conclusion, the navigation system of TurtleBot 3 has been successfully 

developed using SLAM method. A total of six experiments have been conducted and 

the results are obtained successfully to meet all the three objectives of this project. 

Objective 1 which is to create a map of the surrounding environment for TurtleBot 3 

using SLAM method is partially fulfilled through Experiment 1 and fulfilled through 

Experiment 2. Objective 2 which is to develop an autonomous racing navigation 

system for TurtleBot 3 with the map created from SLAM method is fulfilled through 

Experiment 2, 3, 4 ,5 and 6. Objective 3 which is to analyze the performance of the 

autonomous racing navigation system of TurtleBot 3 in terms of lap time and trajectory 

accuracy is fulfilled through Experiment 2, 3, 4, 5 and 6. 

Based on the results, it can be seen that the overall layout of the virtual 

racetrack mapped using SLAM Gmapping is well defined with all the borders clearly 

recognized by the TurtleBot 3 Burger. The autonomous racing navigation system 

demonstrated effective path planning, ensuring that the TurtleBot is able to navigate 

on the racetrack accurately and efficiently. The experimental results show that the time 

taken for the TurtleBot to finish a lap and the RMSE between the expected and actual 

path of the TurtleBot are affected by its linear velocity, lookahead distance, PID gain 

of angular velocity as well as the angle threshold and linear velocity reduction factor 

while turning against sharp corners. The final optimized lap time and RMSE are 

10.7433 seconds and 0.2693 m respectively. Further optimization may be achieved 

through detailed fine-tuning of the respective parameters. However, there might be a 

trade-off between lap time and RMSE, where reducing the lap time may lead to an 

increase in RMSE and vice versa. Hence, careful tuning is essential to balance both 

objectives and achieve optimal performance in the TurtleBot's autonomous navigation 

system. 
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5.2 Future Works 

For the current system, the TurtleBot 3 is able to navigate around a known 

environment with static obstacles that it maps prior to autonomous navigation. In order 

to further improve the system, integrating dynamic obstacle avoidance capabilities is 

crucial. This enhancement would enable the TurtleBot 3 to detect and respond to 

moving obstacles in real-time, ensuring safe navigation in dynamic environments. 

Implementing this feature involves enhancing the perception system with sensors 

capable of detecting changes in the environment, such as cameras for visual 

recognition or LIDAR for precise distance measurements. Additionally, transitioning 

from simulation to real-world hardware deployment requires optimization on the 

system's algorithms and parameters for robustness and efficiency. This includes fine-

tuning motion planning algorithms to account for real-time data from sensors and 

ensuring hardware reliability. Lastly, expanding the system with more advanced 

algorithms such as Model Predictive Control (MPC) would further elevate the 

TurtleBot 3's autonomy, enabling it to handle complex tasks and diverse real-world 

applications effectively. 
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APPENDIX A: GANTT CHART FOR FINAL YEAR PROJECT 
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APPENDIX B: K-CHART 
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APPENDIX C: CODING OF TURTLEBOT 3 

TurtleBot 3 SLAM launch file 

 

 
 

 

TurtleBot 3 teleoperation launch file 
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TurtleBot 3 teleoperation node 
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TurtleBot 3 navigation launch file 

 

 
  



121 

APPENDIX D: AUTONOMOUS RACING NAVIGATION SCRIPT 
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