
DEVELOPMENT OF NAVIGATION SYSTEM FOR TURTLEBOT
3 USING SLAM METHOD

JOSHUA BRYAN CHEAH WERN XIEN

BACHELOR OF MECHATRONICS ENGINEERING WITH
HONOURS

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2024

DEVELOPMENT OF NAVIGATION SYSTEM FOR TURTLEBOT 3 USING

SLAM METHOD

JOSHUA BRYAN CHEAH WERN XIEN

A report submitted

in partial fulfilment of the requirements for the degree of

Bachelor of Mechatronics Engineering with Honours

Faculty of Electrical Technology and Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2024

DECLARATION

I declare that this thesis entitled “DEVELOPMENT OF NAVIGATION SYSTEM FOR

TURTLEBOT 3 USING SLAM METHOD” is the result of my own research except as cited

in the references. The thesis has not been accepted for any degree and is not concurrently

submitted in the candidature of any other degree.

Signature :

Name : JOSHUA BRYAN CHEAH WERN XIEN

Date : 20 JUNE 2024

APPROVAL

I hereby declare that I have checked this report entitled "DEVELOPMENT OF

NAVIGATION SYSTEM FOR TURTLEBOT 3 USING SLAM METHOD", and in my

opinion, this thesis fulfils the partial requirement to be awarded the degree of Bachelor of

Mechatronics Engineering with Honours

Signature :

Supervisor Name : DR. MOHD KHAIRI BIN MOHAMED NOR

Date : 21 JUNE 2024

DEDICATIONS

To my beloved mother, Liew Poh Yee, and father, Cheah Yew Chin, whose support has

been a constant source of strength throughout this Final Year Project.

To my dearest supervisor, Dr. Mohd Khairi Bin Mohamed Nor, whose unwavering

guidance has played a crucial role in shaping the success of this project.

2

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to my main project supervisor, Dr. Mohd

Khairi Bin Mohamed Nor, for encouragement, guidance, advices and motivation.

Without his continued support and interest, this project would not have been same as

presented here.

I extend my sincere appreciation to Universiti Teknikal Malaysia Melaka (UTeM) for

providing an exceptional academic environment that significantly contributed to the

success of my Final Year Project. UTeM's commitment to excellence, innovative

approach, and supportive atmosphere have been instrumental in shaping my academic

journey and fostering a passion for continuous learning. I am truly grateful for the

resources and dedicated faculty, which have played a crucial role in the development

of my project and academic growth.

My fellow university coursemates should also be recognized for their support. My

sincere appreciation also extends to all my family members and others who have

provided assistance on various occasions. Their views and support are useful indeed.

Unfortunately, it is not possible to list all of them in this limited space.

3

ABSTRACT

F1TENTH is a popular open-source platform among university students which

organizes autonomous mobile robot competitions. The main navigation method used

in F1TENTH competition is SLAM, also known as Simultaneous Localization And

Mapping. SLAM, which is a technology developed for over 30 years, is an algorithm

that builds a map of the surrounding environment of the robot through mapping

process and at the same time estimating the robot’s position on the map while it is

moving. Nowadays, SLAM is used in many applications such as autonomous vehicles

and drones. TurtleBot 3 is an autonomous mobile robot which shares the same

technology used in F1TENTH. This project focuses on developing a high-speed

navigation system for TurtleBot 3 using the SLAM method in the Robot Operating

System (ROS) framework. The main problem tackled is the development of a high-

speed navigation system using SLAM, focusing on accurately mapping an indoor

racetrack, selecting suitable path planning algorithms, and analyzing the system's

performance in terms of speed and accuracy. The objective of this project is to

implement SLAM algorithm in mapping and to develop the TurtleBot 3’s navigation

system followed by analyzing its performance in terms of speed and accuracy.

Experiments were conducted in the virtual environment, using the TurtleBot 3 Burger

model in Gazebo and Rviz within the ROS framework to validate the map and analyze

performance of the navigation system under various conditions. Overall, this project

successfully develops the navigation system for the TurtleBot 3 and analyzes the

performance parameters, establishing a foundation for future applications and

enhancements.

4

ABSTRAK

F1TENTH merupakan platform sumber terbuka yang popular di kalangan pelajar

universiti yang menganjurkan kompetisi robot mudah alih. Kaedah navigasi utama

yang digunakan dalam persaingan F1TENTH ialah SLAM, juga dikenali sebagai

Lokalisasi dan Peta Simultan. SLAM, yang merupakan teknologi yang telah

dibangunkan selama lebih 30 tahun, ialah algoritma yang membina peta persekitaran

robot melalui proses peta dan pada masa yang sama menganggarkan kedudukan robot

pada peta semasa ia bergerak. Hari ini, SLAM digunakan dalam banyak aplikasi

seperti kenderaan otonom dan drone. TurtleBot 3 ialah robot mudah alih autonomi

yang berkongsi teknologi yang sama yang digunakan dalam F1TENTH. Projek ini

memberi tumpuan kepada pembangunan sistem navigasi kelajuan tinggi untuk

TurtleBot 3 menggunakan kaedah SLAM dalam kerangka Robot Operating System

(ROS). Masalah utama yang ditangani ialah pembangunan sistem navigasi kelajuan

tinggi menggunakan SLAM, memberi tumpuan kepada memaparkan laluan

perlumbaan dalaman dengan tepat, memilih algoritma perancangan laluan yang sesuai,

dan menganalisis prestasi sistem dalam hal kelajuan dan ketepatan. Objektif projek ini

ialah untuk melaksanakan algoritma SLAM dalam peta dan untuk membangunkan

sistem navigasi TurtleBot 3 yang diikuti dengan menganalisis prestasinya dalam hal

kelajuan dan ketepatan. Eksperimen dijalankan dalam persekitaran maya,

menggunakan model TurtleBot 3 Burger di Gazebo dan Rviz dalam rangka ROS untuk

mengesahkan peta dan menganalisis prestasi sistem navigasi dalam pelbagai keadaan.

Secara keseluruhan, projek ini berjaya membangunkan sistem navigasi untuk

TurtleBot 3 dan menganalisis parameter prestasi, menubuhkan asas untuk aplikasi dan

peningkatan masa depan.

5

TABLE OF CONTENTS

PAGE

DECLARATION

APPROVAL

DEDICATIONS

ACKNOWLEDGEMENTS 2

ABSTRACT 3

ABSTRAK 4

TABLE OF CONTENTS 5

LIST OF TABLES 8

LIST OF FIGURES 10

LIST OF SYMBOLS AND ABBREVIATIONS 12

LIST OF APPENDICES 13

 INTRODUCTION 14
1.1 Background 14
1.2 Motivation 15
1.3 Problem statements 16
1.4 Objectives 17
1.5 Scopes 17

 LITERATURE REVIEW 18
2.1 Introduction 18
2.2 F1TENTH 18
2.3 TurtleBot 3 20
2.4 Robot Operating System (ROS) 23
2.5 TurtleBot 3 navigation 24

2.5.1 Types of TurtleBot 3 navigation methods 25
2.5.1.1 Simultaneous Localization And Mapping (SLAM) 25
2.5.1.2 Deep Q-Network (DQN) 25
2.5.1.3 Real Time Object Detection 26
2.5.1.4 Rapidly-exploring Random Tree (RRT) 26
2.5.1.5 Z-Number-based fuzzy logic 27
2.5.1.6 Waypoing following 28

2.5.2 Summary of types of navigation methods for TurtleBot 3 28
2.5.3 Summary of types of sensors used in TurtleBot 3 34

2.6 Types of SLAM algorithms 35
2.6.1 Gmapping 36
2.6.2 Cartographer 36

6

2.6.3 Hector SLAM 36
2.6.4 Summary of Types of SLAM algorithms 37

2.7 Overall summary 38

 METHODOLOGY 41
3.1 Introduction 41
3.2 Project overview 42
3.3 System overview 44
3.4 Concept of SLAM process 46
3.5 Concept of waypoint following and pure pursuit algorithm 48
3.6 Proportional – Integral – Derivative (PID) controller 49
3.7 Root mean square error (RMSE) calculation 50
3.8 Experiment setup 51
3.9 Experiment implementation 52

3.9.1 Experiment 1: Simulation of TurtleBot 3 Burger in the virtual world

 52
3.9.2 Experiment 2: Analysis of the performance of TurtleBot 3 Burger in

virtual racetrack 52
3.9.3 Simulation 3: Analysis of the performance of TurtleBot 3 Burger in

virtual racetrack with different waypoint density levels 55
3.9.4 Simulation 4: Analysis of the performance of TurtleBot 3 Burger in

virtual racetrack with varying linear velocities, lookahead distances, and

angular velocity proportional gains 56
3.9.5 Simulation 5: Analysis of the performance of TurtleBot 3 Burger in

real world racetrack with varying angle thresholds and linear velocity

reduction factors 57
3.9.6 Simulation 6: Analysis of the performance of TurtleBot 3 Burger in

real world racetrack with varying angular velocity integral and derivative

gains 58
3.9.7 Summary of simulations: 59

 RESULTS AND DISCUSSIONS 61
4.1 Introduction 61
4.2 Results 61

4.2.1 Experiment 1: Simulation of TurtleBot 3 Burger in the virtual world

 61
4.2.2 Experiment 2: Analysis of the performance of TurtleBot 3 Burger in

virtual racetrack 64
4.2.3 Experiment 3: Analysis of the performance of TurtleBot 3 Burger in

virtual racetrack with different waypoint density levels 69
4.2.4 Experiment 4: Analysis of the performance of TurtleBot 3 Burger in

virtual racetrack with varying linear velocities, lookahead distances, and

angular velocity proportional gains 75
4.2.5 Experiment 5: Analysis of the performance of TurtleBot 3 Burger in

real world racetrack with varying angle thresholds and linear velocity

reduction factors 86
4.2.6 Experiment 6: Analysis of the performance of TurtleBot 3 Burger in

real world racetrack with varying angular velocity integral and derivative

gains 96

7

CONCLUSION AND FUTURE WORKS 106
5.1 Conclusion 106
5.2 Future Works 107

REFERENCES 108

APPENDICES 115

8

LIST OF TABLES

Table 2.1: Specifications and features of different versions of TurtleBot 21

Table 2.2: Types of navigation methods for TurtleBot 3 28

Table 2.3: Types of sensors used in TurtleBot 3 34

Table 2.4: Types of SLAM algorithms 37

Table 3.1: Objectives fulfilment for each experiment 60

Table 4.1: Process of mapping and navigation by TurtleBot 3 Burger 61

Table 4.2: Mapping process of the racetrack by TurtleBot 3 Burger in Gazebo

 64

Table 4.3: Graph of expected path against actual path for each lap 66

Table 4.4: Lap time and RMSE for respective laps 67

Table 4.5: Graph of expected path against actual path for each waypoint

density level 69

Table 4.6: Lap time and RMSE for respective laps of each waypoint density

level 70

Table 4.7: Percentage of decrease in lap time and RMSE compared to last

experiment 71

Table 4.8: Graph of expected path against actual path for each parameter

combination 75

Table 4.9: Lap time, RMSE and observation for respective laps of each

parameter combination 78

Table 4.10: Percentage of decrease in lap time and RMSE compared to last

experiment 81

9

Table 4.11: Graph of expected path against actual path for each parameter

combination 86

Table 4.12: Lap time, RMSE and observation for respective laps of each

parameter combination 89

Table 4.13: Percentage of decrease in lap time and RMSE compared to last

experiment 92

Table 4.14: Graph of expected path against actual path for each parameter

combination 96

Table 4.15: Lap time, RMSE and observation for respective laps of each

parameter combination 99

Table 4.16: Percentage of decrease in lap time and RMSE compared to last

experiment 102

10

LIST OF FIGURES

Figure 1.1: F1TENTH race car [2] 14

Figure 2.1: Example of F1TENTH competition racetrack [18] 19

Figure 2.2: Properties of F1TENTH race car [20] 20

Figure 2.3: TurtleBot 3 variants [8] 21

Figure 2.4: Components of TurtleBot 3 Burger [12] 23

Figure 2.5: Examples of map made by Gmapping, Cartographer and Hector

SLAM algorithm [48] 37

Figure 3.1: Project flowchart 43

Figure 3.2: Overall system flowchart 45

Figure 3.3: Graphical model of SLAM problem 46

Figure 3.4: Lookahead distance and lookahead point 48

Figure 3.5: PID controller block diagram 49

Figure 3.6: RMSE calculator 50

Figure 3.7: Ubuntu 16.04 desktop interface 51

Figure 3.8: Virtual racetrack constructed in Gazebo 52

Figure 3.9: Defining waypoints on the map 53

Figure 3.10: Waypoints on the racetrack 54

Figure 3.11: Autonomous racing navigation parameters 54

Figure 3.12: Terminal displaying the lap time and RMSE 54

Figure 3.13: Medium waypoint density 55

Figure 3.14: High waypoint density 56

Figure 4.1: Navigation process of TurtleBot 3 Burger around the racetrack 65

Figure 4.2: Sample graph of expected path against actual path 66

11

Figure 4.3: Graph of lap time against waypoint density level 72

Figure 4.4: Graph of RMSE against waypoint density level 72

Figure 4.5: Graph of percentage of decrease in lap time and RMSE against

waypoint density level 73

Figure 4.6: Graph of lap time against linear velocity, lookahead distance, and

angular velocity proportional gain 82

Figure 4.7: Graph of RMSE against linear velocity, lookahead distance and

angular velocity proportional gain 83

Figure 4.8: Graph of percentage of decrease in lap time and RMSE against

linear velocity, lookahead distance and angular velocity

proportional gain 83

Figure 4.9: Graph of lap time against angle threshold and linear velocity

reduction factor 93

Figure 4.10: Graph of RMSE against angle threshold and linear velocity

reduction factor 94

Figure 4.11: Graph of percentage of decrease in lap time and RMSE against

angle threshold and linear velocity reduction factor 94

Figure 4.12: Graph of lap time against angular velocity integral and derivative

gains 103

Figure 4.13: Graph of RMSE against angular velocity integral and derivative

gains 103

Figure 4.14: Graph of percentage of decrease in lap time and RMSE against

angular velocity integral and derivative gains 104

12

LIST OF SYMBOLS AND ABBREVIATIONS

SLAM - Simultaneous Localization And Mapping

GNSS - Global Navigation Satellite System

ROS - Robot Operating System

AV - Autonomous vehicle

AI - Artificial Intelligence

LiDAR - Light Detection and Ranging

F1 - Formula One

IMU - Inertial measurement unit

SBC - Single Board Computer

OpenCR - Open-source Control Module

DQN - Deep Q-Network

RTOD - Real Time Object Detection

RRT - Rapidly-exploring Random Tree

PPA - Pure pursuit algorithm

RViz - ROS visualization

PID - Proportional – Integral – Derivative

RMSE - Root mean square error

LV - Linear velocity

LD - Lookahead distance

Kp - Angular velocity proportional gain

AT - Angle threshold

RF - Linear velocity reduction factor

Ki - Angular velocity integral gain

Kd - Angular velocity derivative gain

MPC - Model Predictive Control

13

LIST OF APPENDICES

APPENDIX A: GANTT CHART FOR FINAL YEAR PROJECT 115

APPENDIX B: K-CHART 116

APPENDIX C: CODING OF TURTLEBOT 3 117

APPENDIX D: AUTONOMOUS RACING NAVIGATION SCRIPT 121

14

INTRODUCTION

1.1 Background

The autonomous mobile robot competition has gained popularity among

university students worldwide in recent years. F1TENTH is one of the platforms that

organizes these kinds of competitions where it combines and focuses on two main

aspects, namely robotics and autonomous driving. The inspiration came from the

Formula 1, famously known as F1, which focuses on creating and testing algorithms

for autonomous navigation and control in compact and low-priced race cars. In this

competition, participants, mainly students, are required to create a 1/10th-scale race

car with an autonomous navigation system. The automobile must move as quickly as

it can on the designated racing course autonomously. The racing course is designed

with boundaries and elements like straight lanes, curves and obstacles to be avoided

by the race cars. Participants compete with one another to display their race cars with

the fastest speed, most agile and highest precision in navigation [1]. Figure 1.1 below

shows one of the race cars used in F1TENTH competition.

Figure 1.1: F1TENTH race car [2]

One of the navigation methods used in F1TENTH competition is SLAM, also

known as Simultaneous Localization And Mapping. SLAM is a technology that builds

a map of the robot’s surroundings (mapping) through data from its sensors and

15

simultaneously estimating its position on the map while moving (localization). The

main goal of using SLAM is to achieve the autonomous behavior of the mobile robot.

Even though the Global Navigation Satellite System (GNSS) is commonly used for

navigation, which is capable of providing an exact location, it is not always reliable or

available in dark and covered up places such as in caves and tunnels where it is badly

impacted and unable to finish the positioning work [3]. SLAM technology has been

analyzed and developed for over 30 years. Nowadays, SLAM is used extensively in

various applications such as mobile robots, autonomous vehicles as well as drones [4].

Mobile robots use SLAM technology to recognize the house environment to perform

house cleaning autonomously [5]. SLAM is also applied in autonomous vehicles to

create a map of the surrounding area and estimate the position of moving vehicles in

real time to navigate safely on the road [6]. Besides, drones utilize SLAM technology

in agriculture operations such as automated irrigation system and crop observation [7].

Autonomous mobile robot such as the TurtleBot 3 have been developed for

SLAM navigation. TurtleBot 3 is one of the models in the TurtleBot series. It is small,

simple, versatile, easy to assemble using consumer goods that are readily available off

the shelf and at the same time it provides advanced sensors at a notably reduced cost

[8]. It is commonly used for education, research and also in motion planning strategies.

It utilizes the open-source Robotic Operating System (ROS) framework and is

programmable in programming languages such as MATLAB and Python. Its compact

size preserves its functionality and performance while making it possible to acquire a

highly competitive platform for a minimal investment. Hence, the TurtleBot 3 is ideal

for SLAM applications in motion planning [9].

1.2 Motivation

The F1TENTH hosts regular annual competitions, such as the most recent

F1TENTH Autonomous Racing Competition, taking place at the Intelligent Vehicles

Symposium (IV) 2024 [10]. One of the most notable winners of the F1TENTH

competition is the group of Penn Engineering students who won the 12th Annual

F1TENTH Autonomous Grand Prix hosted in San Antonio, Texas in May 2023 [11].

The TurtleBot 3 is widely recognized as one of the most popular open-source robotic

platforms, particularly valued for its educational and research applications. SLAM is

16

one of the core technologies of TurtleBot3, alongside navigation and manipulation,

making it suitable for a wide range of applications from research to educational

purposes [12]. SLAM navigation allows the mobile robot to navigate in an unknown

environment by learning and constructing the environment’s map and simultaneously

localizing its own position on the map created [13]. This is also known as autonomous

navigation. F1Tenth race cars also utilize SLAM techniques to autonomously navigate

and map their surroundings during racing competitions [14]. To integrate F1TENTH

technology into the TurtleBot 3 represents a significant challenge, yet achieving this

integration would mark a substantial accomplishment. With that being said, this

project has motivated me to learn and develop an autonomous navigation system for

TurtleBot 3, especially to be able to apply in a fast-paced competition like the

F1TENTH. Through this project, I wanted to take this opportunity to find out how

does the TurtleBot 3 navigate in high-speed condition with the application of SLAM

technology. Besides, I also wanted to find out how fast and accurate the TurtleBot 3

can be during navigation. To be able to find out if the of TurtleBot 3 can meet the

capabilities of the F1TENTH race cars, this further sparked my curiosity and interest

in completing this project.

1.3 Problem statements

The F1TENTH competition requires race cars to navigate autonomously as

accurately as possible on the designated indoor racetrack. The TurtleBot 3 is used in

this project to develop its navigation system with the SLAM method. This project aims

to integrate the advanced navigation capabilities of the F1TENTH racing series into

the TurtleBot 3 platform. Hence, the problem statement of this project is about finding

out the way to implement SLAM method in developing the navigation system of

TurtleBot 3. The challenges include configuring and optimizing the SLAM algorithm

to accurately map the racetrack. Next, the second problem statement is to determine

the suitable algorithm to develop a high-speed navigation system for TurtleBot 3, at

the same time considering the accuracy of the navigation. This involves evaluating and

customizing path planning and control algorithms to ensure the TurtleBot 3 can

navigate efficiently around the racetrack at a comparable speed to F1TENTH race cars.

Lastly, the third problem statement of this project is about determining the appropriate

ways to analyze and optimize the performance of the developed navigation system of

17

the TurtleBot 3 in terms of lap time and trajectory accuracy. This includes fine-tuning

the algorithm parameters of the navigation system for optimal performance.

1.4 Objectives

1. To create a map of the surrounding environment for TurtleBot 3 using

SLAM method.

2. To develop an autonomous racing navigation system for TurtleBot 3 with

the map created from SLAM method.

3. To analyze the performance of the autonomous racing navigation system

of TurtleBot 3 in terms of lap time and trajectory accuracy.

1.5 Scopes

1. Ubuntu 16.04.7 LTS (Xenial Xerus) version is used as the operating system

foundation for this project.

2. ROS Kinetic distribution is used as the primary framework and software

for this project.

3. The TurtleBot 3 model used in the development of the navigation system

is the Burger model.

4. The size of the virtual racetrack used in this project is relatively smaller

than the F1TENTH racetrack.

5. The environment mapping method used is the SLAM method.

18

LITERATURE REVIEW

2.1 Introduction

In this chapter, the overview of the F1TENTH, the components and features of

the TurtleBot, the Robot Operating System (ROS), the types of navigation systems and

the types of Simultaneous Localization And Mapping (SLAM) algorithms are the main

topics to be discussed and reviewed.

2.2 F1TENTH

The F1TENTH autonomous racing platform was initially introduced in 2015.

It is an open-source evaluation environment for continuous control and reinforcement

learning that makes it easier to train, test and assess autonomous systems. The

F1TENTH platform offers a 1/10th-scale, low-cost hardware and multiple virtual

environments, allowing for safe and quick experimentation of autonomous vehicle

(AV) algorithms [15]. The standard framework for robotics systems applications,

ROS, serves as the core for the F1TENTH platform. It holds many competitions and

provides engaging learning environment for those who are enthusiastic in control,

autonomous driving, and artificial intelligence, especially for students. The F1TENTH

platform’s main objective is autonomous driving, while control is still required. The

majority of research efforts in the F1TENTH community have gone into developing

solutions for driving algorithms, localization, and positioning. The F1TENTH

platform uses SLAM and LiDAR techniques to replicate a realistic data collection

module which is used for navigation. Furthermore, it is an important tool for research

and development in the field of Artificial Intelligence (AI) and autonomous driving

[16].

F1TENTH is an autonomous robotics competition inspired by the well-known

F1 that involves 1/10th-scale race cars developed by each team through self-driving

algorithm, competing in an autonomous racing task [17]. The competition focuses on

19

optimising these algorithms for the race cars to autonomously navigate around a

randomized racetrack in the shortest amount of time. The so-called ‘randomized’

racetrack is a specially constructed with boundaries and features including straight

lanes, curves, as well as static and dynamic obstacles. The racetrack can either be

indoor or outdoor. Figure 2.2 below shows an example of F1TENTH competition

racetrack. Algorithms such as path planning, obstacle avoidance, vehicle control, and

the optimisation of racing strategies are among the challenges to be focused by the

participants. Therefore, the participants are required to program their race cars for them

to navigate the race course autonomously while avoiding collisions. In this case, the

SLAM alogrithm is commonly used to overcome these challenges [1].

Figure 2.1: Example of F1TENTH competition racetrack [18]

The F1TENTH race car is in a 1/10th-scale, which is relatively small as

compared to the size of a regular Formula One (F1) race car. These race cars are

equipped with a range of sensors, including the inertial measurement unit (IMU), 2D

scanning LiDAR, and camera. The F1TENTH race cars are able to sense the

environment and make decisions through the data obtained from those sensors. The

embedded AI computing device such as the NVIDIA Jetson TX2 as well as ROS are

20

the default robot control software used to control the sensing and actuating components

of the F1TENTH race car [19]. Figure 2.1 below shows the properties of F1TENTH

race car.

Figure 2.2: Properties of F1TENTH race car [20]

2.3 TurtleBot 3

TurtleBot 3 is a programmable, compact, low-cost mobile robot that can be

used for hobby, education, research, and product prototyping. The objective of

TurtleBot 3 is to provide expandability while drastically reducing the platform's size

and cost without compromising its quality or usefulness. TurtleBot3 has a Single

Board Computer (SBC) that is appropriate for reliable embedded systems, 360-degree

distance sensors, Open-source Control Module (OpenCR) and 3D printing technology

[21]. There are three variants of TurtleBot 3, namely TurtleBot 3 Burger, TurtleBot 3

Waffle and TurtleBot 3 Waffle Pi. The Waffle model can carry a heavier weight and

moves ahead a little bit faster as compared to the Burger model. It is much bigger,

includes an additional Pi camera sensor, and it is relatively more expensive [8]. Figure

2.6 shows the TurtleBot 3 variants.

21

Figure 2.3: TurtleBot 3 variants [8]

Table 2.1: Specifications and features of different versions of TurtleBot

Version References Features

TurtleBot 1 [22] - Cost-effective which is suitable for education and

research.

- Raw sensor data is accessible via open platform.

- Compatible with ROS.

TurtleBot 2 [23] - Cost-effective which is suitable for education and

research.

- Built for ROS.

- Fully assembled and tested to be used anytime.

- Wide database of tutorials that can be referred to.

TurtleBot 3 [12] - Cost-effective which is suitable for education and

research.

- Compact size which is easy to carry.

- Extensibility which is able to customize.

- Modular actuator which makes it easy to assemble

and maintain.

- Open-source software which is fully open to

download, modify and share.

22

- Strong sensors for better detection.

TurtleBot 4 [24][25] - Physically more solid and reliable.

- Runs ROS 2 software which is faster and more

reliable.

- Open-source software library modules provide

higher accuracy and reliability.

- Improved battery with fast charging and

prolonged battery life.

- LiDAR provides better object recognition and

higher accuracy with longer range.

- More connectivity alternatives.

- More diverse range of sensors to gather more

accurate information around its surroundings.

Based on Table 2.1 above, it can be seen that the TurtleBot 3 has many

advantages over the other variants. Firstly, its compact size and modular design makes

the TurtleBot 3 more portable and customizable compared to the predecessors. Next,

the TurtleBot 3 comes equipped with more advanced sensing capabilities.

Additionally, like all TurtleBot versions, it runs on open-source ROS software, but the

TurtleBot 3 benefited from the increased maturity and support of the ROS community

by its release. In terms of reliability, the TurtleBot 3 improved upon hardware issues

in older models for more robust operation. Finally, the TurtleBot 3 strikes a balance

between affordability and features that made it accessible as an educational and

research platform. While not the cheapest option, it provides good value for

capabilities compared to TurtleBot 2 and the more expensive later model, TurtleBot 4.

In summary, the blend of compact design, sensor upgrades, software maturity,

hardware reliability, community support and balanced cost of TurtleBot 3 distinguish

it as a versatile and capable robotics platform.

23

TurtleBot 3 Burger was released in 2017 and it focuses on higher education. It

is one of the variants in the TurtleBot 3 series, alongside the TurtleBot 3 Waffle and

TurtleBot 3 Waffle Pi [5]. The TurtleBot 3 Burger is a good choice as it offers many

open-source software and libraries for users to download and share with other users, it

supports ROS, which is widely used for education and research, it is relatively cheaper

and smaller compared to the TurtleBot 3 Waffle variant [26]. The TurtleBot 3 Burger

is able to perform various kinds of activities without adding other components. With

that being said, it is capable of navigating itself to a designated location in real-time

by using the SLAM algorithm [27]. Figure 2.8 below shows the components of

TurtleBot 3 Burger.

Figure 2.4: Components of TurtleBot 3 Burger [12]

2.4 Robot Operating System (ROS)

The Robot Operating System (ROS) is a widely used, popular robotics tool

with open source and an active community of contributors that is easy for users to

access, especially for new learners who are looking for a platform to start getting their

hands on robotics. It is a versatile robotics framework which is compatible with several

operating systems and it contains various tools and libraries contributed by other users

that can be used to program a robot [28]. ROS was developed back in 2007 by the

24

Stanford Artificial Intelligence Lab and is currently actively developed and maintained

by Willow Garage with the assistance from other organizations. TurtleBot is one of

the standard ROS platform and it is most often used in education and research,

especially in motion planning [9]. There are quite a few Linux distributions for ROS

development such as Ubuntu, Debian, Fedora, Arch Linux and OpenSUSE. Ubuntu is

the most preferred open-source operating system on Linux to run ROS in order to

program the TurtleBot. Ubuntu comes with many versions. The Xenial Xerus Ubuntu

16.04 LTS version is the most preferred version for programming the TurtleBot 3 [29].

A ROS distribution is a versioned collection of ROS software packages. The goal of

the ROS releases is to provide developers with a reasonably stable code base to work

against until they are prepared to be released. Each distribution keeps a consistent

collection of core packages until the distribution reaches its end of life (EOL), until

then a new version of distribution will be released [30]. There are various versions of

ROS distributions supported by TurtleBot 3, namely ROS Kinetic, ROS Melodic, ROS

Dashing, ROS Foxy, ROS Galactic and ROS Humble. Some features are only

supported by certain versions and these features can be implemented in TurtleBot 3

[12].

2.5 TurtleBot 3 navigation

Navigation is the ability to locate one’s position and plan a route to reach the

designated location. In order for a mobile robot to navigate autonomously, it has to

determine its current location, desired destination and the best route to get to that

destination [31]. It will only be considered as autonomous navigation if there is no

human manipulation involved. Object detection and avoidance are also very important

in autonomous navigation. Static obstacles are those that do not move such as walls,

while dynamic obstacles are those that are moving such as walking human and cars

moving on the road [32].

25

2.5.1 Types of TurtleBot 3 navigation methods

2.5.1.1 Simultaneous Localization And Mapping (SLAM)

Simultaneous Localization And Mapping (SLAM) is a method used to

construct an environmental map around the robot (also known as mapping), then use

the known map to calculate its position (also known as localization). SLAM is a two-

operation process in which these two actions occur simultaneously [33]. There are

three common SLAM navigation technologies, namely Laser SLAM, visual SLAM

and laser-vision fusion SLAM. Laser SLAM algorithm is implemented by mainly

using LiDAR sensor. The particles follow the robot's movements, and a probability is

assigned to each particle based on a comparison between the positions of the particles

and the LiDAR scan. The particles eventually converge after a number of rounds and

the robot's precise location can be determined. Visual SLAM algorithm is carried out

by using camera sensor. It utilizes a binocular camera to capture RGB images of the

environment. Feature points are detected using the FAST algorithm and their

descriptors are calculated with the BRIEF algorithm. The camera pose is determined

through rough matching of consecutive frame images, refined by the RANSAC

algorithm for optimal matching. A local map is generated and the back end optimizes

pose states and loop constraints, ensuring global consistency. Loopback constraints

facilitate a return to the origin, mitigating accumulated errors and enabling the creation

of a dense map. Laser-vision fusion SLAM algorithm combines the use of LiDAR and

camera sensors. It employs parallel processing of laser and vision localization

algorithms in its front-end. LiDAR and camera work interchangeably for robot

positioning, even in extreme ambient illumination conditions. Integrating laser-

scanned points with image feature points enhances the depth optimization of the pure

visual SLAM's interframe localization algorithm. Visual SLAM also aids in correcting

LiDAR-induced drift, improving the overall positioning accuracy of laser SLAM [34].

2.5.1.2 Deep Q-Network (DQN)

Deep reinforcement learning using a Deep Q-Network (DQN) is a method

whereby the DQN agent learns to navigate towards a goal and avoid obstacles through

interactions with a simulated environment in ROS Gazebo simulator. The agent selects

26

actions based on the robot's laser scan sensor data and odometry information which

represent the state. It receives positive or negative rewards based on factors like

reaching the goal and collisions. This reinforcement signal trains the DQN neural

network to approximate the optimal action-value function and improve its policy. The

trained model enables the TurtleBot robot to determine collision-free paths

autonomously in real-time. Communication between the environment, sensors and

actuators is handled through the ROS. Overall, the navigation method utilizes deep

reinforcement learning, specifically the DQN algorithm, to train the mobile robot via

rewards from its experiences and map out optimal routes by learning [35].

2.5.1.3 Real Time Object Detection

Real Time Object Detection (RTOD) method involves training a Convolutional

Neural Network (CNN) with a dataset of high number of images to enable real-time

identification of specific objects within the Turtlebot's environment. The CNN is

designed to categorize objects into distinct classes, such as Quadcopter, Mars Rover,

Bowl, and Wheel, allowing the robot to recognize and differentiate between these

objects in its surroundings. Additionally, the method incorporates the use of Haar

Cascades for object detection, providing a complementary approach to the CNN-based

detection. By leveraging these real-time object detection techniques, the robot is able

to identify and localize itself within its environment, enabling subsequent navigation

to specified locations. The integration of RTOD with the ROS framework and the

utilization of depth maps further enhance the robot's ability to understand its

surroundings and make informed navigation decisions. Overall, the RTOD method

plays a crucial role in enabling the robot to autonomously recognize and respond to its

environment in real time, facilitating its indoor localization and navigation capabilities

[36].

2.5.1.4 Rapidly-exploring Random Tree (RRT)

Rapidly-exploring Random Tree (RRT) is a popular algorithm used for path

planning in robotics. It is a probabilistic algorithm that generates a tree of random

samples in the configuration space of a robot. The algorithm starts with an initial

configuration of the robot and then randomly generates new configurations in the

27

configuration space. The algorithm then connects the new configuration to the nearest

configuration in the tree, creating a new branch. This process is repeated until a goal

configuration is reached or a maximum number of iterations is reached. One of the key

advantages of RRT is that it can handle high-dimensional configuration spaces and

complex environments with obstacles. The algorithm is also incremental, meaning that

it can be used to plan paths in real-time as the robot moves through the environment.

Additionally, RRT can be extended to handle kinodynamic constraints, which makes

it suitable for planning paths for robots with non-holonomic constraints. There are

several variants of the RRT algorithm, including RRT*, which is an improved version

of RRT that converges to the optimal path. RRT* uses a cost function to guide the

growth of the tree towards the goal configuration, resulting in a more optimal path.

Overall, RRT is a powerful and widely used algorithm for path planning in robotics

[37].

2.5.1.5 Z-Number-based fuzzy logic

Z-Number-based fuzzy logic, as the name suggests, combines Z-numbers with

fuzzy logic to address uncertainty in robot navigation. It involves creating Z-number-

based fuzzy rules, converting sensor data into Z-numbers, and using Z-number

arithmetic to make decisions in uncertain environments. The integration of Z-numbers

into the fuzzy logic framework allows for a more accurate representation of uncertainty

in robot navigation tasks. By mapping elements to degrees of certainty and uncertainty

using paired membership functions, Z-numbers provide flexibility and adaptability in

representing and reasoning about the robot's navigation behavior. This approach

enables robots to navigate more naturally and intuitively, making decisions based on

varying degrees of sensory inputs. The Z-Number-Based Fuzzy Logic Approach has

shown promising results in improving mobile robot navigation in unknown and

dynamic environments. It effectively handles uncertainty and imprecise information

through Z-numbers, allowing for more intelligent and effective navigation. By

considering the fuzzy membership function's lower and upper bounds, Z-numbers

enable a more comprehensive evaluation of the robot's environment and the generation

of more precise control actions. This approach has significant implications for

developing autonomous robots operating in dynamic environments. It opens up new

28

possibilities for robust and adaptive navigation systems, with potential applications in

robotics-assisted healthcare, logistics, and exploration [38].

2.5.1.6 Waypoing following

Waypoint following is a navigation technique in robotics where a mobile robot

follows a path defined by a sequence of waypoints. It is usually accompanied by the

pure pursuit algorithm (PPA). PPA is a popular tracking algorithm that computes the

robot's linear and angular velocities based on its current pose and predefined

waypoints. The algorithm uses geometric equations to determine the distance and

angle between the robot and the next waypoint, then dictates the robot's movement

direction and speed. One of the key factors of PPA is the lookahead distance. Smaller

values can improve accuracy but may cause oscillations, while larger values yield

smoother paths. Depending on the environment, smaller lookahead distance can cause

undesirable oscillations as the robot approached waypoints, while larger values

allowed smoother paths but can cause the robot to cut corners before reaching the

waypoints. An appropriate lookahead distance is needed to balance path tracking

accuracy with avoiding instability and slowdowns near the waypoints [39].

2.5.2 Summary of types of navigation methods for TurtleBot 3

Table 2.2: Types of navigation methods for TurtleBot 3

Navigation

method

References Sensors used Description

SLAM [33][34] - LiDAR

- Odometry

- IMU

- Wheel

encoder

Advantages:

- Improve accuracy and

efficiency.

- Robust to noise.

- Adapted to various

sensors and

platforms.

Disadvantages:

29

- Computational

complexity.

- Sensitivity to errors

and sensor noise.

- Challenging in

cluttered

environments.

DQN [35] - LiDAR

- Depth

sensor

Advantages:

- Enables adaptation to

new environments.

- Deep neural network

can approximate

complex action-value

functions for effective

decision making.

- Works well even with

high-dimensional and

continuous state

spaces.

Disadvantages:

- Requires large

amounts of training

data from

environment

interactions.

- Sensitive to

hyperparameters.

- Large neural network

model can be

computationally

intensive to train.

30

RTOD [36] - Camera

- LiDAR

- Depth

sensor

Advantages:

- Able to recognize and

categorize specific

objects in the

environment in real

time.

- Able to make

informed decisions

regarding obstacle

avoidance and path

planning through

depth maps.

- Reducing the need for

manual intervention.

Disadvantages:

- Limited ability to

identify and respond

to a broader range of

environmental

features.

- Computational

overhead, potentially

impacting the real-

time responsiveness

of the system.

- Effectiveness may be

influenced by

variations in

environmental

conditions, such as

changes in lighting,

31

object occlusion, or

the presence of

unfamiliar objects.

RRT [37] - LiDAR

- IMU

- Wheel

encoder

- Camera

Advantages:

- Can handle high-

dimensional

configuration spaces

and complex

environments with

obstacles.

- Can be used to plan

paths in real-time

- Suitable for planning

paths for robots with

non-holonomic

constraints.

- Computationally

efficient and can

generate paths

quickly.

Disadvantages:

- Quality of the path

generated can vary

depending on the

random samples

generated.

- May not always find

the optimal path,

especially in complex

environments with

many obstacles.

32

- May not be suitable

for environments with

narrow passages or

tight spaces.

Z-number-based

fuzzy logic

[38] - LiDAR

- IMU

- Wheel

encoder

Advantages:

- Incorporates an

additional level of

uncertainty modeling,

allowing for more

comprehensive

handling of

uncertainties.

- Effectively handle

situations where

precise information is

lacking or conflicting

data is present.

- Flexible decision-

making in incomplete

or ambiguous data.

Disadvantages:

- Complexity and

expert knowledge

required in assigning

Z-numbers.

- Room for efficiency

and computational

complexity

enhancements.

Waypoint

following

[39] - Odometry

- IMU

Advantages:

33

- Wheel

encoder

- Geometric simplicity

for computational

efficiency

- Lookahead distance

parameter allows

tuning path tracking

performance

Disadvantages:

- Requires tuning effort

to balance accuracy

and smoothness

Based on Table 2.2 above, SLAM and waypoint following, including the pure

pursuit algorithm, have been selected to develop the navigation system for the

TurtleBot 3. SLAM integrates LiDAR, odometry, IMU, and wheel encoder data to

accurately map the racetrack and precisely determine the robot's location. This

capability is vital for maintaining constant awareness of the robot's position and

effectively navigating around obstacles, crucial during high-speed maneuvers.

Complementing SLAM, waypoint following with the pure pursuit algorithm offers a

direct yet effective method to execute predefined paths with precision. The pure

pursuit algorithm continuously adjusts the robot's steering to track a predefined racing

line, utilizing inputs from odometry, IMU and wheel encoders for optimized path

tracking. Together, SLAM ensures robust localization and mapping accuracy, while

waypoint following with the pure pursuit algorithm enables reliable path execution,

essential for navigating racing lines smoothly in environments like the F1TENTH

competition. This integrated approach enhances computational efficiency and

adaptability, ensuring the TurtleBot 3 performs effectively in autonomous racing

scenarios where precision and real-time responsiveness are critical.

34

2.5.3 Summary of types of sensors used in TurtleBot 3

Table 2.3: Types of sensors used in TurtleBot 3

Type References Advantages Disadvantages

Vision

camera

[40][41] - Multiple object

tracking

- Susceptible to

environment

conditions

LiDAR [42][43] - Higher accuracy

- Large

measurement

range

- Not affected by

lightning

condition

- Mapping and

localization

- Expensive

- Narrow point

detection (miss

object like glass)

Odometry [44][45] - Inexpensive

- Real-time

position

estimation

- Accumulate of

errors

- Sensitive to

slippage

- Not effective for

featureless surface

Wheel

encoder

[46] - Inexpensive

- Real-time

position

estimation

- Accumulation of

errors

- Sensitive to

slippage

- Not effective for

featureless surface

35

IMU [8] - Pose estimation

and navigation

- Track robot’s

orientation and

heading.

- Measurements can

drift over time.

- Affected by sensor

noise, biases,

temperature

fluctuations.

Based on Table 2.3 above, the LiDAR, odometry, and wheel encoders offer a

balanced approach to achieving reliable autonomous navigation on the racetrack.

LiDAR provides high accuracy and a broad measurement range, ensuring precise

mapping and localization capabilities. Odometry and wheel encoders complement

LiDAR by offering cost-effective real-time position estimation and path tracking,

essential for executing predefined racing lines with accuracy. Integrating these sensors

enables robust sensor fusion, enhancing the TurtleBot 3's ability to navigate

autonomously while adapting to varying track conditions and obstacles. The IMU

further enhances navigation by providing pose estimation and tracking the robot's

orientation and heading. Since the racetrack is static, integrating a camera sensor on

the TurtleBot 3 is deemed unnecessary.

2.6 Types of SLAM algorithms

SLAM is an algorithm used in TurtleBot’s navigation system. TurtleBot 3

SLAM can be conducted using ROS as it contains tools such as Gazebo and RViz.

Gazebo is a simulation software used to simulate the TurtleBot in a virtual environment

created by the user. RViz, also known as ROS visualization, is used to visualize robot

data, particularly the map created from the LiDAR sensor. By having the navigation

goals and posing estimation functionalities, RViz allows autonomous navigation of

Robots in ROS [47]. There are various algorithms that can be used to implement

SLAM on TurtleBot 3.

36

2.6.1 Gmapping

Gmapping algorithm is a laser-based SLAM algorithm utilizing Particle Filter

approach. It addresses common particle filter issues, such as computational complexity

and the depletion problem, by employing an adaptive resampling technique. Unlike

traditional approaches, adaptive resampling is limited and performed when necessary,

preventing unnecessary particle elimination. This method enhances robot localization

accuracy by integrating sensor data and odometry motion model during the prediction

step. The quality of laser scan matching further reduces the required number of

particles [48]. Gmapping is suitable for indoor mapping [49].

2.6.2 Cartographer

Cartographer algorithm is a real-time SLAM system designed for 2D and 3D

environments across various platforms and sensor configurations. As an open-source

library with a ROS wrapper, it deviates from particle filter algorithms, opting for pose

estimation to address error accumulation over prolonged iterations. Laser scans are

matched iteratively with a recent submap, minimizing dependence on past scans and

ensuring loop closure through scan matching. The conversion process from scan frame

to submap frame involves representing submaps as probability grid points. Hits and

misses are computed during new scan insertion, updating grid points with appropriate

probabilities. Cartographer's scan matching is rooted in Ceres scan matching,

maximizing probabilities for accurate scan pose determination in the submap [48].

2.6.3 Hector SLAM

Hector SLAM algorithm is a 2D SLAM system that integrates LiDAR scan

matching and a 3D navigation approach using Extended Kalman Filter with an inertial

sensing system. Specifically designed for onboard computations, it ensures real-time

six degrees of freedom robot pose determination during motion. The system achieves

high update rates for 2D LiDAR-based mapping. Laser beam endpoint alignment with

the obtained map is facilitated through a Gaussian-Newton optimization approach,

implicitly performing scan matching with all preceding scans [48]. Figure 2.13 below

37

shows the examples of map made by Gmapping, Cartographer and Hector SLAM

algorithm.

Gmapping Cartographer Hector SLAM

Figure 2.5: Examples of map made by Gmapping, Cartographer and Hector SLAM

algorithm [48]

2.6.4 Summary of Types of SLAM algorithms

Table 2.4: Types of SLAM algorithms

Type References Advantages Disadvantages

Gmapping [48][49] - High quality

maps

- Robustness in

experiments

- Error

accumulation

- Careful parameter

tuning

Cartographer [48] - High mapping

accuracy

- Wide range of

configurable

parameters

- Precise position

estimation

- Real-time

mapping

- Human error

- Distortion in

curved surface

- Computational

complexity

- Limitations in

closing large

loops

Hector SLAM [48] - Fast execution

- Less dependent

on other sensors

- Relies on LiDAR-

only system

38

 - Computational

complexity

- Limitations in

closing large

loops

- Careful parameter

tuning

- Low quality maps

in certain

environment

Based on Table 2.4 above, SLAM Gmapping emerges as the optimal choice in

my TurtleBot 3 project aimed at autonomous navigation on a racetrack. The algorithm

is noted for its ability to generate high-quality maps and has demonstrated robustness

in practical experiments, essential for ensuring accurate localization and effective path

planning in dynamic environments. While it requires careful parameter tuning and may

experience error accumulation over time, these challenges are manageable with proper

calibration and align well with the capabilities of LiDAR sensors, which are crucial

components of my sensor setup. Therefore, SLAM Gmapping promises to provide

reliable performance, leveraging its proven track record in various applications to

enhance the TurtleBot 3's autonomy and navigation capabilities on the racetrack.

2.7 Overall summary

F1TENTH provides various competitions and an immersive learning

environment which facilitates research and development in autonomous driving and

artificial intelligence [16]. The F1TENTH race car used in competition is in a 1/10th-

scale and is equipped with multiple sensors used for autonomous navigation such as

IMU, LiDAR and camera [19]. The F1TENTH competition is a kind of autonomous

robotics competition where participants develop self-driving algorithms for F1TENTH

race cars to race on a randomized racetracks. The SLAM algorithm is used in the

F1TENTH navigation system [1].

39

TurtleBot is an open-source robotics platform compatible with ROS which is

widely used for education and research. It is versatile, affordable, and just like the

F1TENTH platform, it supports the SLAM technology which is used for autonomous

navigation [9]. The TurtleBot 3 Burger is one of the variants of the TurtleBot 3 series

which is suitable for developing an autonomous navigation system. It is relatively

cheaper and smaller compared to the other variant [26]. It is able to navigate

autonomously through SLAM method with just its existing components such as 360-

degree LiDAR sensor and Raspberry Pi [27].

ROS offers a versatile framework compatible with various operating systems

and provides a range of tools and libraries contributed by a vibrant community for

programming robots [28]. ROS has many versions of distributions which contain

software packages that support TurtleBot programming and features [30]. Hence, ROS

Kinetic is the most preferred distribution as it supports the most features in TurtleBot

3 compared to other distributions [12].

SLAM is a method used in autonomous navigation preferably in F1TENTH

and TurtleBot. Laser SLAM employs LiDAR sensor to map the environment and

determine the robot’s location. Since the TurtleBot 3 Burger has a built-in 360-degree

LiDAR sensor, Laser SLAM would be the suitable navigation method. SLAM is able

to improve accuracy and efficiency, adapt to various sensors and platforms and is

robust to noise. The LiDAR sensor has high accuracy, large measurement range and is

suitable for mapping and localization [33][34]. Integrating waypoint following

together with the pure pursuit algorithm (PPA) allows the TurtleBot 3 to autonomously

navigate the predefined racetrack path. PPA computes velocities based on current

position and geometric relationships to waypoints, balancing accuracy with path

smoothness using a specified lookahead distance. This sequential approach optimizes

the robot's ability to navigate autonomously and accurately on the racetrack [39]. With

that being said, SLAM and waypoint following are suitable to implement in TurtleBot

3 navigation for autonomous racing.

Integrating LiDAR, odometry, wheel encoders, and IMU provides robust

autonomous navigation capabilities for the TurtleBot 3 on a static racetrack. LiDAR

ensures accurate mapping and localization [42][43], while odometry and wheel

40

encoders offer real-time position estimation and path tracking [44][45][46]. The IMU

enhances navigation by tracking orientation and heading, contributing to precise

autonomous navigation [8]. This sensor fusion approach optimizes the TurtleBot 3's

ability to navigate with accuracy without the need for additional camera sensors in this

application.

SLAM has many different algorithms. SLAM Gmapping produces high quality

maps and is robust, but it requires careful parameter tuning. It is more suitable for

indoor mapping. SLAM Cartographer is accurate in mapping and position estimation,

but it has many adjustable parameters and is suitable for real-time mapping. Hector

SLAM only relies on LiDAR sensor for mapping. Hence, it does not carry out large

loop closure and is less accurate [48][49]. Since the designated environment is an

indoor racetrack, SLAM Gmapping is suitable for mapping.

41

METHODOLOGY

3.1 Introduction

In this chapter, the methods and techniques used to achieve the objectives of

this project will be discussed. First of all, the steps in implementing the project will be

explained based on the flowchart of project overview in the first section. Next, the

overall process of the system will be described according to the flowchart of system

overview.

In order to achieve the first objective of this project, which is to create a map

of the surrounding environment for TurtleBot 3 using SLAM method, the overall

understanding on the concept and theory of SLAM algorithm is needed to correctly

implement it on the TurtleBot 3 Burger effectively. The second objective which is to

develop an autonomous racing navigation system for TurtleBot 3 with the map created

from SLAM method, requires the knowledge of the theoretical concept of waypoint

following and pure pursuit algorithm and Proportional – Integral – Derivative (PID)

controller. The third objective which is to analyze the performance of the autonomous

racing navigation system of TurtleBot 3 in terms of lap time and trajectory accuracy,

the knowledge of the steps of calculating the RMSE between the expected and actual

path of TurtleBot 3 on the racetrack is essential.

Furthermore, this chapter will also cover the experiment setup as well as the

steps of all experiments to be implemented in order to fulfill all the 3 objectives of this

project.

42

3.2 Project overview

Figure 3.1 below shows the project flowchart. The project flowchart describes

the steps to implement the Final Year Project from start to finish. The project started

off by understanding the project through conducting research and literature review.

This is to have a better view of the important keywords in the project. Next, the

problem statements, objectives and scopes are then identified and determined. After

that is to set up the experiments that will satisfy the objectives of the project. Once the

setup is done, the preliminary simulation will be conducted to obtain the preliminary

results. The results are recorded and written in the report for Final Year Project 1. After

that, the system will be further designed and developed. System testing and all the

experiments will be carried out accordingly in Final Year Project 2. The final results

will be recorded and analyzed in the final report.

43

Figure 3.1: Project flowchart

44

3.3 System overview

Figure 3.2 below shows the overall system flowchart. The overall system

flowchart describes the overall working process of the navigation system of the

TurtleBot 3 Burger. Firstly, Gazebo and RViz software is opened in ROS. The model

of the TurtleBot 3 is set as ‘Burger’. If the sensors on the TurtleBot 3 have successfully

collected some data of the surrounding, the map of its nearby surroundings will be

created and displayed in Rviz. It will then proceed to carry out the mapping process

by moving around on the racetrack with the teleoperation node run in ROS. The map

created can be viewed from the visualization in Rviz. After the mapping process is

done, the map is saved. The saved map of the racetrack is then opened in Rviz. The

autonomous racing navigation script is run and the TurtleBot 3 starts to run its

navigation system on the map created to navigate autonomously around the racetrack.

After the script is terminated, the TurtleBot 3 will stop moving and the graph of

expected path against actual path of the TurtleBot 3 will be plotted automatically. The

lap time and RMSE between the expected and actual path will also be calculated

automatically and displayed on the plot.

45

Figure 3.2: Overall system flowchart

46

3.4 Concept of SLAM process

SLAM is best described using probabilistic terms. Time is denoted by t and the

robot’s location is represented by 𝑥𝑡. For mobile robots navigating on a flat surface,

the path is expressed as:

𝑋𝑇 = {𝑥0, 𝑥1, 𝑥2, … 𝑥𝑇} ………. (1)

T represents a terminal time. The initial location 𝑥0 is known, while other positions

remain unobservable. Odometry, denoted as 𝑢𝑡 , furnishes relative information

concerning the movement between time t−1 and time t. The following equation is

given:

𝑈𝑇 = {𝑢0, 𝑢1, 𝑢2, … 𝑥𝑇} ………. (2)

Finally, the robot perceives objects within the surroundings. Let m represent the actual

map of the environment. The robot measurements establish a connection between

features in m and the robot location 𝑥𝑡. Assuming, without loss of generality, that the

robot takes precisely one measurement at each time point, the sequence of

measurements is represented as:

𝑍𝑇 = {𝑧0, 𝑧1, 𝑧2, … 𝑧𝑇} ………. (3)

Figure 3.5 below depicts the variables central to the SLAM problem, illustrating the

sequence of locations and sensor measurements, along with the causal relationships

between these variables.

Figure 3.3: Graphical model of SLAM problem

47

The current challenge in SLAM is to reconstruct a model of the world, denoted as m,

and the sequence of robot locations 𝑋𝑇 using odometry and measurement data. There

are two primary forms of the SLAM problem. The first is referred to as the full SLAM

problem, where it estimates the posterior over the complete robot path along with the

map:

𝑝(𝑋𝑇 ,𝑚\𝑍𝑇 , 𝑈𝑇) ………. (3)

The full SLAM problem entails computing the joint posterior probability over 𝑋𝑇 and

m based on the provided data. The variables to the right of the conditioning bar are

directly observable to the robot, while those on the left are the sought-after variables.

Offline SLAM algorithms for this problem are frequently batch-oriented, processing

all data simultaneously. The second one is the online SLAM problem, which focuses

on determining the current robot location through incremental algorithms, known as

filters, processing one data item at a time. The online SLAM problem is defined as

below:

𝑝(𝑥𝑡, 𝑚\𝑍𝑇 , 𝑈𝑇) ………. (4)

To solve either SLAM problems, the robot relies on two models: one connecting

odometry measurements 𝑢𝑡 to robot locations 𝑥𝑡−1 and 𝑥𝑡 and another linking

measurements 𝑧𝑡 to the environment m and robot location 𝑥𝑡.

48

3.5 Concept of waypoint following and pure pursuit algorithm

Waypoint following and the pure pursuit algorithm are essential techniques in

the field of autonomous vehicle navigation and robotics. Waypoint following is a

navigation strategy where a vehicle or robot is directed to pass through a series of

predefined points known as waypoints. These waypoints outline the desired path, and

the vehicle continuously adjusts its trajectory to reach each waypoint sequentially,

ensuring it stays on the intended route. This method involves recalculating the path to

the next waypoint based on the vehicle's current position.

The pure pursuit algorithm is a geometric path-tracking method used in

autonomous vehicles to follow a predefined path. The central concept involves

calculating the curvature needed for the vehicle to steer towards a lookahead point on

the path. This lookahead point is dynamically chosen based on the vehicle's current

position and a specified lookahead distance. Figure 3.4 below shows the lookahead

distance and lookahead point of pure pursuit algorithm.

Figure 3.4: Lookahead distance and lookahead point

The key formula for determining the curvature required to steer towards the lookahead

point is given by:

𝛾 =
2∙𝐿𝑠𝑖𝑛(𝛼)

𝐿𝑑
2 ………. (1)

Where 𝛾 is the curvature, L is the distance between the rear axle and the lookahead

point, 𝛼 is the angle between the vehicle’s current heading and the line connecting the

49

vehicle to the lookahead point and 𝐿𝑑 is the lookahead distance, which is the distance

from the vehicle to the lookahead point. From the curvature calculated from formula

(1) above, the steering angle can be computed using the equation as follows:

𝛿 = arctan(𝛾 ∙ 𝐿) ………. (2)

This formula ensures that the vehicle's steering is continuously adjusted to follow the

path smoothly by considering the current position, heading, and the dynamic

lookahead point.

3.6 Proportional – Integral – Derivative (PID) controller

A Proportional – Integral – Derivative (PID) controller is a widely used control

feedback mechanism in industrial systems. It combines proportional, integral, and

derivative controls to minimize the error between a desired setpoint and the actual

process variable. The proportional control (P) generates an output proportional to the

current error, with the proportional gain, Kp determining the response magnitude. The

integral control (I) accounts for accumulated past errors, with the integral gain, Ki

helping to eliminate residual steady-state errors. The derivative control (D) predicts

future errors based on their rate of change, with the derivative gain, Kd adding a

damping effect to improve stability and reduce overshoot. Together, these components

allow the PID controller to dynamically adjust process inputs, aiming for minimal

steady-state error and optimal transient response. Figure 3.5 below shows the PID

controller block diagram.

Figure 3.5: PID controller block diagram

The continuous-time formula for the PID control output, u(t) is given by:

50

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝜏)𝑑𝜏 + 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡

𝑡

0
 ………. (1)

Where u(t) is the control output, e(t) is the error at time, t (difference between the

desired setpoint and the actual process variable), Kp is the proportional gain, Ki is the

integral gain and Kd is the derivative gain.

The discrete-time formula for the PID control output, u[n] is given by:

𝑢[𝑛] = 𝐾𝑝𝑒[𝑛] + 𝐾𝑖 ∑ 𝑒[𝑖]∆𝑡 + 𝐾𝑑
𝑒[𝑛]=𝑒[𝑛=1]

∆𝑡

𝑛
𝑖=0 ………. (2)

Where u[n] is the control output at discrete time step, n, e[n] is the error at discrete

time step, n, ∆𝑡 is the time setep duraction. The two formulae combine the three control

actions to correct the process variable and reduce the error dynamically.

3.7 Root mean square error (RMSE) calculation

The root mean square error is calculated to determine the error difference

between the expected path that should be taken by the TurtleBot 3 to move around the

racetrack and the actual path that is actually taken by the TurtleBot 3 itself. The RMSE

provides a quantitative value representing the accuracy of the robot's path following.

Figure 3.5 below shows a snippet of the RMSE calculator in the autonomous racing

navigation script. The full script can be referred to Appendix D.

Figure 3.6: RMSE calculator

The steps of RMSE calculation is as follows:

1. The expected path data is collected only during the first lap, consisting of the

waypoints the TurtleBot 3 is supposed to follow. The actual path data, on the other

51

hand, is collected throughout the TurtleBot's navigation, representing the positions

the robot actually reaches.

2. The lenghts of the expected and actual path data are compared and made sure that

they are the same. This is done by taking the minimum length of the two datasets.

3. The expected and actual paths are then converted to numpy arrays for easier

computation. Each path is represented as a series of (x, y) coordinates.

4. The difference between each element of each array are calculated and squared to

get the squared errors for each coordinate pair.

5. The mean of the squared errors is calculated to get the Mean Squared Error (MSE).

6. Lastly, take the square root of the MSE to obtain the RMSE.

3.8 Experiment setup

The software used in this project is ROS Kinetic installed on Ubuntu 16.04

LTS (Xenial Xerus). Dependent ROS packages and TurtleBot 3 packages are also

installed. Figure 3.5 below shows the Ubuntu 16.04 desktop interface.

Figure 3.7: Ubuntu 16.04 desktop interface

The experiments will be conducted in the virtual environment. The virtual environment

is a racetrack constructed in ROS Gazebo. The outer dimensions of the racetrack is 4.5

m x 3.25 m, while the inner dimensions is 2.5 m x 1.25 m. Figure 3.6 below shows the

virtual racetrack constructed in Gazebo.

52

Figure 3.8: Virtual racetrack constructed in Gazebo

3.9 Experiment implementation

3.9.1 Experiment 1: Simulation of TurtleBot 3 Burger in the virtual world

This simulation is about simulating the TurtleBot 3 Burger in the virtual world.

The objective of this simulation is to understand the working principles of mapping

and navigation of TurtleBot 3 Burger in the virtual world. The software involved are

ROS, Gazebo and Rviz. Since this simulation is just to familiarize with the working

principles of the mapping and navigation process of TurtleBot 3 Burger, no parameters

are being measured in this simulation. For the expected results of this simulation, the

TurtleBot 3 Burger should be able to do mapping in the Gazebo simulator with the

teleoperation node and the Rviz simulator should be able to visualize the mapping

process through the TurtleBot’s simulated sensor. After the mapping process is done,

the TurtleBot 3 Burger should be able to navigate to the designated goal set in Rviz

and at the same time avoid any obstacles in the way by using the ‘2D Pose Estimate’

and ‘2D Nav Goal’ tools.

3.9.2 Experiment 2: Analysis of the performance of TurtleBot 3 Burger in

virtual racetrack

Objective: To ensure that the autonomous racing script is working properly and also

to evaluate the baseline performance of the system which will be further improved in

the upcoming experiments.

53

Tools: ROS, Gazebo, Rviz

Parameters:

Constant variable: Size of virtual racetrack

Independent variables: Linear velocity, lookahead distance, angular velocity PID

gains, angle threshold, linear velocity reduction factor

Dependent variable: Lap time, RMSE

Procedure:

1. Source the bash.rc file to configure the environment.

2. Launch the virtual racetrack in Gazebo.

3. Run the SLAM node and open Rviz to visualize the map of the racetrack.

4. Run the teleoperation node to move the TurtleBot 3 Burger around to map the

racetrack.

5. Save the map of the racetrack after the mapping process is done.

6. Launch the racetrack again in Gazebo and the saved map in Rviz.

7. Define the waypoints of the map using the ‘Publish Point’ tool as shown in

Figure 3.8 below:

Figure 3.9: Defining waypoints on the map

8. Record the coordinates of the waypoint displayed on the terminal in the

autonomous racing navigation script in Appendix D.

9. The waypoints are listed in the format as shown in Figure 3.9 below:

54

Figure 3.10: Waypoints on the racetrack

10. The parameters of the autonomous racing navigation script are initialized as

shown in Figure 3.10 below:

Figure 3.11: Autonomous racing navigation parameters

11. Run the autonomous racing navigation script and observe the behavior of the

TurtleBot 3 while racing around the racetrack.

12. The lap time is calculated from the moment it crosses the first waypoint until

it crosses the first waypoint again after completing a lap.

13. The lap time and RMSE of each lap are displayed on the terminal as shown in

Figure 3.8 below.

Figure 3.12: Terminal displaying the lap time and RMSE

14. After 5 laps of race, terminate the script.

15. Analyze the graph of expected path against actual path of the TurtleBot 3 for

every lap.

55

16. Tabulate and analyze the lap time and RMSE.

3.9.3 Simulation 3: Analysis of the performance of TurtleBot 3 Burger in virtual

racetrack with different waypoint density levels

Objective: To analyze the effect of different waypoint density levels on the time taken

for the TurtleBot 3 Burger to finish a lap as well as the RMSE between the expected

path and the actual path of its motion in the virtual racetrack.

Tools: ROS, Gazebo, Rviz

Parameters:

Constant variable: Size of virtual racetrack, Linear velocity, lookahead distance,

angular velocity PID gains, angle threshold, linear velocity reduction factor

Independent variables: Waypoint density level

Dependent variable: Lap time, RMSE

Procedure:

1. Source the bash.rc file to configure the environment.

2. Launch the virtual racetrack in Gazebo and the its map in Rviz.

3. Define the waypoints of the map using the ‘Publish Point’ tool, this time

increasing the waypoints from the previous experiment.

4. Record the coordinates of the waypoint displayed on the terminal in the

autonomous racing navigation script in Appendix D. Figure below shows the

medium level of waypoint density.

Figure 3.13: Medium waypoint density

56

5. Run the autonomous racing navigation script and observe the behavior of the

TurtleBot 3 while racing around the racetrack.

6. After 5 laps of race, terminate the script.

7. Analyze the graph of expected path against actual path of the TurtleBot 3 for

every lap.

8. Tabulate and analyze the lap time and RMSE.

9. Repeat step 1 to 9 by increasing the waypoint density as shown in Figure

below:

Figure 3.14: High waypoint density

10. Compare the lap time and RMSE with the previous experiment.

3.9.4 Simulation 4: Analysis of the performance of TurtleBot 3 Burger in virtual

racetrack with varying linear velocities, lookahead distances, and angular

velocity proportional gains

Objective: To analyze the effect of varying linear velocities, lookahead distances and

angular velocity proportional gains on the TurtleBot 3 Burger’s behavior in terms of

its ability to complete the lap, the time taken for it to finish a lap as well as the RMSE

between the expected path and the actual path of its motion in the virtual racetrack.

Tools: ROS, Gazebo, Rviz

57

Parameters:

Constant variable: Size of virtual racetrack, angular velocity integral and derivative

gains, angle threshold, linear velocity reduction factor

Independent variables: Linear velocity, lookahead distance, angular velocity

proportional gain

Dependent variable: Lap time, RMSE

Procedure:

1. Source the bash.rc file to configure the environment.

2. Launch the virtual racetrack in Gazebo and the its map in Rviz.

3. Increase the value of the linear velocity from the previous experiment and at

the same time, tune the lookahead distance and angular velocity to balance the

system.

4. Run the autonomous racing navigation script in Appendix D and observe the

behavior of the TurtleBot 3 while racing around the racetrack.

5. After 3 laps of race, terminate the script.

6. Analyze the graph of expected path against actual path of the TurtleBot 3 for

every lap.

7. Tabulate and analyze the lap time and RMSE.

8. Repeat step 1 to 7 by increasing the value of the linear velocity, tune the

lookahead distance and angular velocity in a trial-and-error way until

satisfactory result in terms of lap time and RMSE is obtained.

9. Compare the lap time and RMSE with the previous experiment.

3.9.5 Simulation 5: Analysis of the performance of TurtleBot 3 Burger in real

world racetrack with varying angle thresholds and linear velocity

reduction factors

Objective: To analyze the effect of varying angle thresholds and linear velocity

reduction factors on the TurtleBot 3 Burger’s behavior in terms of its ability to

complete the lap, the time taken for it to finish a lap as well as the RMSE between the

expected path and the actual path of its motion in the virtual racetrack.

Tools: ROS, Gazebo, Rviz

58

Parameters:

Constant variable: Size of virtual racetrack, Linear velocity, lookahead distance,

angular velocity PID gain

Independent variables: Angle threshold, linear velocity reduction factor

Dependent variable: Lap time, RMSE

Procedure:

1. Source the bash.rc file to configure the environment.

2. Launch the virtual racetrack in Gazebo and the its map in Rviz.

3. Adjust the angle threshold and linear velocity reduction factor to balance the

system.

4. Run the autonomous racing navigation script in Appendix D and observe the

behavior of the TurtleBot 3 while racing around the racetrack.

5. After 3 laps of race, terminate the script.

6. Analyze the graph of expected path against actual path of the TurtleBot 3 for

every lap.

7. Tabulate and analyze the lap time and RMSE.

8. Repeat step 1 to 7 by adjusting the angle threshold and linear velocity in a trial-

and-error way until satisfactory result in terms of lap time and RMSE is

obtained.

9. Compare the lap time and RMSE with the previous experiment.

3.9.6 Simulation 6: Analysis of the performance of TurtleBot 3 Burger in real

world racetrack with varying angular velocity integral and derivative

gains

Objective: To analyze the effect of varying angular velocity integral and derivative

gains on the TurtleBot 3 Burger’s behavior in terms of its ability to complete the lap,

the time taken for it to finish a lap as well as the RMSE between the expected path and

the actual path of its motion in the virtual racetrack.

Tools: ROS, Gazebo, Rviz

Parameters:

59

Constant variable: Size of virtual racetrack, linear velocity, lookahead distance,

angular velocity proportional gain, angle threshold, linear velocity reduction factor

Independent variables: Angular velocity integral and derivative gains

Dependent variable: Lap time, RMSE

Procedure:

1. Source the bash.rc file to configure the environment.

2. Launch the virtual racetrack in Gazebo and the its map in Rviz.

3. Adjust the angular velocity integral and derivative gains to balance the system.

4. Run the autonomous racing navigation script in Appendix D and observe the

behavior of the TurtleBot 3 while racing around the racetrack.

5. After 3 laps of race, terminate the script.

6. Analyze the graph of expected path against actual path of the TurtleBot 3 for

every lap.

7. Tabulate and analyze the lap time and RMSE.

8. Repeat step 1 to 7 by adjusting the angular velocity integral and derivative

gains in a trial-and-error way until satisfactory result in terms of lap time and

RMSE is obtained.

9. Compare the lap time and RMSE with the previous experiment.

3.9.7 Summary of simulations:

As a summary, Experiments 1 and 2 are conducted to meet Objective 1, which

is to create a map of the surrounding environment for TurtleBot 3 using SLAM

method. Experiments 1 and 2 are conducted to map the surrounding environment of

the TurtleBot 3. Next, Experiments 2, 3, 4, 5 and 6 are carried out to meet Objective

2, which is to develop an autonomous racing navigation system for TurtleBot 3 with

the map created from SLAM method. Experiment 2 is carried out to evaluate the

baseline performance, Experiment 3 is carried out by implementing different waypoint

density levels, Experiment 4 is carried out by tuning the linear velocity, lookahead

distance and angular velocity proportional gain, Experiment 5 is carried out by tuning

the angle threshold and linear velocity reductor factor, Experiment 6 is carried out by

tuning the angular velocity integral and derivative gains. Lastly, Objective 3 which is

to analyze the performance of the autonomous racing navigation system of TurtleBot

60

3 in terms of lap time and trajectory accuracy, is fulfilled through the implementation

of Experiments 2, 3, 4, 5 and 6, whereby Experiments 2, 3, 4, 5 and 6 are implemented

by analyzing the performance of the navigation system in terms of lap time and RMSE.

Table 3.1: Objectives fulfilment for each experiment

Experiment Objective 1 Objective 2 Objective 3

1

2

3

4

5

6

Colour Description

 Fulfill

 Partially-fulfill

61

RESULTS AND DISCUSSIONS

4.1 Introduction

In this chapter, the results obtained will be tabulated and shown in graph. The

results will also be discussed accordingly. A total of 6 experiments have been planned

and conducted.

4.2 Results

4.2.1 Experiment 1: Simulation of TurtleBot 3 Burger in the virtual world

In this experiment, the TurtleBot 3 Burger is simulated in a virtual

environment, which is the TurtleBot 3 World, shown in ROS Gazebo. Rviz visualizes

the process of map creation by the TurtleBot 3 Burger. The objective of this experiment

is to understand the working principle of SLAM mapping and navigation of TurtleBot

3 Burger in the virtual world. The results of this experiment are shown in Table 4.1

below.

Table 4.1: Process of mapping and navigation by TurtleBot 3 Burger

TurtleBot 3 Burger starts mapping process.

62

TurtleBot 3 Burger done mapping process.

TurtleBot 3 Burger starts navigation process.

63

TurtleBot 3 Burger done navigation process.

Based on Table 4.1, it can be seen that the TurtleBot 3 Burger has completed

the mapping process by moving and exploring around the environment using SLAM

Gmapping and the teleoperation node. It is then able to navigate itself to the designated

location on the map created earlier using the 2D Nav Goal function. The 2D Nav Goal

function is used to set the target position and orientation for the TurtleBot. Based on

the results, the TurtleBot 3 Burger is able to plan its own path and move from its

starting position to the designated goal autonomously. Hence, objective 1 has been

partially fulfilled.

64

4.2.2 Experiment 2: Analysis of the performance of TurtleBot 3 Burger in

virtual racetrack

In this experiment, the TurtleBot 3 Burger is simulated in the virtual racetrack

created in ROS Gazebo. The racetrack in Gazebo is mapped by the TurtleBot using

SLAM and is visualized in Rviz. Table 4.2 below shows the mapping process of the

racetrack in Gazebo, visualized in Rviz. Figure 4.1 below shows the TurtleBot 3

Burger navigating around the racetrack, visualized in Rviz. The objective of this

experiment is to ensure that the autonomous racing script is working properly and also

to evaluate the baseline performance of the system which will be further improved in

the upcoming experiments. This experiment is conducted to analyze the time taken for

the TurtleBot to finish a lap and to analyze the graph of expected path against the actual

path of its motion in the virtual racetrack. This is done by recording the time taken for

the TurtleBot to finish a lap on the racetrack and calculating the RMSE between the

expected and actual path for each lap after the autonomous racing script is run. A total

of 5 repeated laps are completed by the TurtleBot to obtain the results. The results of

this experiment are shown in Table 4.3 and 4.4 below.

Table 4.2: Mapping process of the racetrack by TurtleBot 3 Burger in Gazebo

TurtleBot 3 Burger starts mapping process.

65

TurtleBot 3 Burger done mapping process.

Figure 4.1: Navigation process of TurtleBot 3 Burger around the racetrack

66

Figure 4.2: Sample graph of expected path against actual path

Table 4.3: Graph of expected path against actual path for each lap

Lap 1

Lap 2

Lap 3

Lap 4

67

Lap 5

Table 4.4: Lap time and RMSE for respective laps

Lap Lap time (seconds) RMSE (meters)

1 38.11 0.744

2 38.14 0.744

3 38.08 0.745

4 38.08 0.744

5 38.06 0.744

Average (38.11 + 38.14 + 38.08

+ 38.08 + 38.06) / 5 = 38.0940

(0.744 + 0.744 + 0.745

+ 0.744 + 0.744) / 5 = 0.7442

Based on Table 4.2, it shows that the map created by the TurtleBot 3 Burger is

well defined with all the borders shown clearly on Rviz. Figure 4.1 shows that the

TurtleBot is running autonomously on the map, which means the autonomous racing

navigation script is working. Figure 4.2 displays the sample graph of expected path

against actual path of the TurtleBot on the map with the racetrack border drawn. Based

on Table 4.3, it can be seen that there are deviations between the expected path and the

actual path of the TurtleBot’s motion on the racetrack. There are several factors that

causes this deviation, such as dynamic and kinematic constraints, including wheel

slippage and the TurtleBot's inertia and momentum. The TurtleBot’s path planning and

execution issues, such as the chosen lookahead distance in the pure pursuit algorithm

also contributes to this error. Table 4.4 shows that the time taken for the TurtleBot to

68

complete a lap for lap 1 to 5 are approximately the same, with an average lap time of

38.0940 seconds. A shorter lap time corresponds to a higher speed of navigation by

the TurtleBot. Table 4.4 also shows that the RMSE values between the expected path

and the actual path of the TurtleBot are approximately the same, with an RMSE of

0.7442 m. The lower the RMSE value, the closer the actual path matches the expected

path, indicating a higher accuracy in following the desired trajectory. The lap time and

RMSE values are then used as a baseline for further improvements in the upcoming

experiments. As a result of this experiment, objective 1, 2 and 3 have been fulfilled.

69

4.2.3 Experiment 3: Analysis of the performance of TurtleBot 3 Burger in

virtual racetrack with different waypoint density levels

This experiment is conducted on the virtual racetrack similar to the one in

Experiment 2. The objective of this experiment is to analyze the effect of different

waypoint density levels on the time taken for the TurtleBot 3 Burger to finish a lap as

well as the RMSE between the expected path and the actual path of its motion in the

virtual racetrack. This is done by recording the time taken for the TurtleBot to finish a

lap on the racetrack and calculating the RMSE between the expected and actual path

for each lap after the autonomous racing script is run with 3 different levels of

waypoint density. A total of 5 repeated laps are completed by the TurtleBot for each

waypoint density level to obtain the results. The results of this experiment are shown

in Table 4.5, 4.6 and 4.7 below. Figure 4.2, 4.3 and 4.4 visualizes the results in graphs.

Table 4.5: Graph of expected path against actual path for each waypoint density level

Lap Waypoint density level

Low Medium High

1

2

3

70

4

5

Table 4.6: Lap time and RMSE for respective laps of each waypoint density level

Waypoint

density

level

Lap

Lap time (seconds)

RMSE (meters)

Low

1 38.11 0.744

2 38.14 0.744

3 38.08 0.745

4 38.08 0.744

5 38.06 0.744

Average (38.11 + 38.14 + 38.08

+ 38.08 + 38.06) / 5

= 38.0940

(0.744 + 0.744 + 0.745

+ 0.744 + 0.744) / 5

= 0.7442

1 40.07 0.622

2 39.52 0.623

71

Medium

3 39.18 0.629

4 39.04 0.629

5 39.04 0.629

Average (40.07 + 39.52 + 39.18

+ 39.04 + 39.04) / 5

= 39.3700

(0.622 + 0.623 + 0.629

+ 0.629 + 0.629) / 5

= 0.6264

High

1 40.14 0.289

2 40.08 0.289

3 40.69 0.289

4 40.72 0.289

5 39.96 0.289

Average (40.14 + 40.08 + 40.69

+ 40.72+ 39.96) / 5

= 40.3180

(0.289 + 0.289 + 0.289

+ 0.289 + 0.289) / 5

= 0.2890

Table 4.7: Percentage of decrease in lap time and RMSE compared to last

experiment

Waypoint density level Percentage of decrease in

lap time (%)

Percentage of decrease in

RMSE (%)

Low

[(38.0940 - 38.0940) /

38.0940] x 100

= 0

[(0.7442 – 0.7442) /

0.7442] x 100

= 0

Medium

[(38.0940 - 39.3700) /

38.0940] x 100

= -3.3496

[(0.7442 – 0.6264) /

0.7442] x 100

= 15.8291

High

[(38.0940 - 40.3180) /

38.0940] x 100

= -5.8382

[(0.7442 – 0.2890) /

0.7442] x 100

= 61.1664

72

Figure 4.3: Graph of lap time against waypoint density level

Figure 4.4: Graph of RMSE against waypoint density level

38.094

39.37

40.318

36.5

37

37.5

38

38.5

39

39.5

40

40.5

Low Medium High

La
p

 t
im

e
(s

ec
o

n
d

s)

Waypoint density level

Graph of lap time against waypoint density level

0.7442

0.6264

0.289

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Low Medium High

R
M

SE
 (

m
et

er
s)

Waypoint density level

Graph of RMSE against waypoint density level

73

Figure 4.5: Graph of percentage of decrease in lap time and RMSE against waypoint

density level

Based on Table 4.5, it can be seen that there are deviations between the

expected path and the actual path of the TurtleBot’s motion on the racetrack. Just like

in previous experiment, it may be caused by wheel slippage, the TurtleBot's inertia and

momentum as well as the chosen lookahead distance in the pure pursuit algorithm. A

waypoint is a set of coordinates that the TurtleBot follows to navigate the track. The

waypoints guide the TurtleBot's trajectory, helping it to adjust its speed and steering

to optimize lap time and avoid obstacles. For this experiment, the waypoints around

the map of the racetrack are increased and separated into three density levels, namely

low, medium and high.

Table 4.6 and Figure 4.2 show that the average time taken for the TurtleBot to

complete a lap for each waypoint density level are approximately the same, where the

percentage of decrease in lap time as compared to the previous experiment are 0%, -

3.3496% and -5.8382% for low, medium and high waypoint density level respectively

as shown in Table 4.7 and Figure 4.4. The negative percentage values indicate that the

lap time increased compared to the one in the previous experiment. This shows that

the difference in waypoint densities does not really affect the lap time.

0

-3.3496 -5.8382

0

15.8291

61.1664

-10

0

10

20

30

40

50

60

70

Low Medium High

P
er

ce
n

ta
ge

 o
f

d
ec

re
as

e
(%

)

Waypoint density level

Graph of percentage of decrease in lap time and RMSE
against waypoint density level

Lap time RMSE

74

Table 4.6 and Figure 4.3 show that the average RMSE value between the

expected path and the actual path of the TurtleBot decreases from low to high waypoint

density level, where the percentage of decrease in RMSE as compared to the previous

experiment are 0%, 15.8291% and 61.1664% respectively as shown in Table 4.7 and

Figure 4.4. From here, we can see that the lap time slightly increases but the RMSE

decreases when the waypoint density increases. This is because when the waypoint

density increases, the TurtleBot follows a more accurate path (low RMSE) due to more

frequent reference points for trajectory correction. However, this can slightly increase

the lap time due to more frequent adjustments, computational overhead, and cautious

movement around sharp turns. This experiment concludes that the increase in waypoint

density can significantly improve the RMSE between the expected and actual path

lines. Although there is a slight trade-off between the lap time and RMSE, the minor

increase in lap time (-5.8382%) can be neglected, since the RMSE can be greatly

reduced (61.1664%) on the flip side. Overall, a high waypoint density produced the

best result with an average lap time of 40.3180 seconds and average RMSE of 0.2890

m. Hence, the high waypoint density is chosen to be conducted in the upcoming

experiments for further improvements. As a result of this experiment, objective 2 and

3 have been fulfilled.

75

4.2.4 Experiment 4: Analysis of the performance of TurtleBot 3 Burger in

virtual racetrack with varying linear velocities, lookahead distances, and

angular velocity proportional gains

This experiment is conducted on the virtual racetrack similar to the one in

Experiment 2. The objective of this experiment is to analyze the effect of varying linear

velocities, lookahead distances and angular velocity proportional gains on the

TurtleBot 3 Burger’s behavior in terms of its ability to complete the lap, the time taken

for it to finish a lap as well as the RMSE between the expected path and the actual path

of its motion in the virtual racetrack. This is done by recording the time taken for the

TurtleBot to finish a lap on the racetrack and calculating the RMSE between the

expected and actual path for each lap after the autonomous racing script is run with

multiple combinations of linear velocities, lookahead distances and angular velocity

proportional gains. 3 repeated laps are completed by the TurtleBot for each

combination of the respective parameters to obtain the results. The results of this

experiment are shown in Table 4.8, 4.9 and 4.10 below. Figure 4.5, 4.6 and 4.7

visualizes the results in graphs.

Table 4.8: Graph of expected path against actual path for each parameter

combination

Parameters Lap 1 Lap 2 Lap 3

LV = 0.2 m/s

LD = 0.2 m

Kp = 0.7

LV = 0.4 m/s

LD = 0.2 m

Kp = 1.4

76

LV = 0.6 m/s

LD = 0.2 m

Kp = 2

LV = 0.8 m/s

LD = 0.2 m

Kp = 2

-

-

LV = 0.8 m/s

LD = 0.3 m

Kp = 2

LV = 0.8 m/s

LD = 0.4 m

Kp = 2

LV = 0.8 m/s

LD = 0.4 m

Kp = 2.5

LV = 0.8 m/s

LD = 0.4 m

77

Kp = 3

LV = 0.8 m/s

LD = 0.45 m

Kp = 2.5

LV = 0.8 m/s

LD = 0.5 m

Kp = 3

LV = 0.9 m/s

LD = 0.4 m

Kp = 3

-

-

LV = 0.9 m/s

LD = 0.4 m

Kp = 3.5

-

-

LV = 1 m/s

LD = 0.4 m

Kp = 3

-

-

78

LV = 1 m/s

LD = 0.4 m

Kp = 4

-

-

* LV = Linear velocity

 LD = Lookahead distance

 Kp = Angular velocity proportional gain

Table 4.9: Lap time, RMSE and observation for respective laps of each parameter

combination

LV

(m/s)

LD

(m)

Kp Lap Lap time

(s)

RMSE

(m)

Observation

0.2

0.2

0.7

1 40.14 0.289

Completed

all laps

2 40.08 0.289

3 40.69 0.289

Average (40.14 + 40.08

+ 40.69) / 3

= 40.3033

(0.289 + 0.289

+ 0.289) / 3

= 0.2890

0.4

0.2

1.4

1 20.13 0.303

Completed

all laps

2 20.15 0.301

3 20.21 0.302

Average (20.13 + 20.15

+ 20.21) / 3

= 20.1633

(0.303 + 0.301

+ 0.302) / 3

= 0.3020

1 13.83 0.391

 2 13.85 0.394

79

0.6 0.2 2 3 13.84 0.386 Completed

all laps Average (13.83 + 13.85

+ 13.84) / 3

= 13.8400

0.391 + 0.394

+ 0.386) / 3

= 0.3903

0.8

0.2

2

1

-

-

Crashed on

the first lap

2

3

Average

0.8

0.3

2

1 10.48 0.385

Completed

all laps but

touched

border

2 10.55 0.376

3 10.58 0.368

Average (10.48 + 10.55

+ 10.58) / 3

= 10.5367

(0.385 + 0.376

+ 0.368) / 3

= 0.3763

0.8

0.4

2

1 10.11 0.299

Completed

all laps but

touched

border

2 10.02 0.296

3 10.04 0.296

Average (10.11 + 10.02

+ 10.04) / 3

= 10.0567

(0.299 + 0.296

+ 0.296) / 3

= 0.2970

0.8

0.4

2.5

1 10.11 0.317

Completed

all laps

(best)

2 10.08 0.316

3 10.17 0.316

Average (10.11 + 10.08

+ 10.17) / 3

= 10.1200

(0.317 + 0.316

+ 0.316) / 3

= 0.3163

0.8

0.4

3

1 10.46 0.306

Completed

all laps but

unstable

2 10.46 0.310

3 10.27 0.337

Average (10.46 + 10.46

+ 10.27) / 3

= 10.3967

0.306 + 0.310

+ 0.337) / 3

= 0.3177

80

0.8

0.45

2.5

1 10.42 0.304

Completed

all laps but

nearly

crashed

2 10.35 0.305

3 10.40 0.301

Average (10.42 + 10.35

+ 10.40) / 3

= 10.3900

(0.304 + 0.305

+ 0.301) / 3

= 0.3033

0.8

0.5

3

1 10.60 0.352

Crashed on

the last lap

2 10.46 0.340

3 - -

Average - -

0.9

0.4

3

1

-

-

Crashed on

the first lap

2

3

Average

0.9

0.4

3.5

1

-

-

Crashed on

the first lap

2

3

Average

1

0.4

3

1

-

-

Crashed on

the first lap

2

3

Average

1

0.4

4

1

-

-

Crashed on

the first lap

2

3

Average

* LV = Linear velocity

 LD = Lookahead distance

 Kp = Angular velocity proportional gain

81

Table 4.10: Percentage of decrease in lap time and RMSE compared to last

experiment

LV

(m/s)

LD

(m)

Kp Percentage of decrease in lap

time (%)

Percentage of decrease in

RMSE (%)

0.2

0.2

0.7

[(40.3180 – 40.3033) /

40.3180] x 100

= 0.0365

[(0.2890 - 0.2890) /

0.2890] x 100

= 0

0.4

0.2

1.4

[(40.3180 – 20.1633) /

40.3180] x 100

= 49.9893

[(0.2890 - 0.3020) /

0.2890] x 100

= -4.4983

0.6

0.2

2

[(40.3180 – 13.8400) /

40.3180] x 100

= 65.6729

[(0.2890 - 0.3903) /

0.2890] x 100

= -35.0519

0.8 0.2 2 - -

0.8

0.3

2

[(40.3180 – 10.5367) /

40.3180] x 100

= 73.8660

[(0.2890 - 0.3763) /

0.2890] x 100

= -30.2076

0.8

0.4

2

[(40.3180 – 10.0567) /

40.3180] x 100

= 75.0566

[(0.2890 - 0.2970) /

0.2890] x 100

= -2.7682

0.8

0.4

2.5

[(40.3180 – 10.1200) /

40.3180] x 100

= 74.8995

[(0.2890 - 0.3163) /

0.2890] x 100

= -9.4464

0.8

0.4

3

[(40.3180 – 10.3967) /

40.3180] x 100

= 74.2133

[(0.2890 - 0.3177) /

0.2890] x 100

= -9.9308

0.8

0.45

2.5

[(40.3180 – 10.3900) /

40.3180] x 100

= 74.2299

[(0.2890 - 0.3033) /

0.2890] x 100

= -4.9481

0.8 0.5 3 - -

0.9 0.4 3 - -

0.9 0.4 3.5 - -

1 0.4 3 - -

82

1 0.4 4 - -

* LV = Linear velocity

 LD = Lookahead distance

 Kp = Angular velocity proportional gain

Figure 4.6: Graph of lap time against linear velocity, lookahead distance, and angular

velocity proportional gain

40.3033

20.1633

13.84

0

10.5367
10.0567 10.12 10.3967

10.39

0 0 0 0 0
0

5

10

15

20

25

30

35

40

45

0.2,
0.2,
0.7

0.2,
0.4,
1.4

0.2,
0.6, 2

0.2,
0.8, 2

0.3,
0.8, 2

0.4,
0.8, 2

0.4,
0.8,
2.5

0.4,
0.8, 3

0.45,
0.8,
2.5

0.5,
0.8, 3

0.4,
0.9, 3

0.4,
0.9,
3.5

0.4, 1,
3

0.4, 1,
4

La
p

 t
im

e
(s

ec
o

n
d

s)

Parameter combinations (linear velocity, lookahead distance, angular velocity
porportional gain)

Graph of lap time against linear velocity, lookahead
distance and angular velocity proportional gain

83

Figure 4.7: Graph of RMSE against linear velocity, lookahead distance and angular

velocity proportional gain

Figure 4.8: Graph of percentage of decrease in lap time and RMSE against linear

velocity, lookahead distance and angular velocity proportional gain

Based on Table 4.8, it can be seen that there are deviations between the

expected path and the actual path of the TurtleBot’s motion on the racetrack. Just like

in previous experiments, it may be caused by wheel slippage, the TurtleBot's inertia

and momentum as well as the chosen lookahead distance in the pure pursuit algorithm.

0.289 0.302

0.393

0

0.3763

0.297
0.31630.31770.3033

0 0 0 0 0
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.2,
0.2,
0.7

0.2,
0.4,
1.4

0.2,
0.6, 2

0.2,
0.8, 2

0.3,
0.8, 2

0.4,
0.8, 2

0.4,
0.8,
2.5

0.4,
0.8, 3

0.45,
0.8,
2.5

0.5,
0.8, 3

0.4,
0.9, 3

0.4,
0.9,
3.5

0.4, 1,
3

0.4, 1,
4

R
M

SE
 (

m
et

er
s)

Parameter combinations (linear velocity, lookahead distance, angular velocity
porportional gain)

Graph of RMSE against linear velocity, lookahead
distance and angular velocity proportional gain

0.0365

49.9893
65.6729

0

73.866
75.0566

74.8995
74.2133 74.2299

0 0 0 0 00

-4.4983

-35.0519

0

-30.2076

-2.7682
-9.4464 -9.9308

-4.9481

0 0 0 0 0

-60

-40
-20

0

20

40
60

80
100

0.2,
0.2,
0.7

0.2,
0.4,
1.4

0.2,
0.6, 2

0.2,
0.8, 2

0.3,
0.8, 2

0.4,
0.8, 2

0.4,
0.8,
2.5

0.4,
0.8, 3

0.45,
0.8,
2.5

0.5,
0.8, 3

0.4,
0.9, 3

0.4,
0.9,
3.5

0.4,
1, 3

0.4,
1, 4P

er
ce

n
ta

ge
 o

f
d

ec
re

as
e

(%
)

Parameter combinations (linear velocity, lookahead distance, angular velocity
porportional gain)

Graph of percentage of decrease in lap time and RMSE
against linear velocity, lookahead distance and angular

velocity proportional gain

Lap time

RMSE

84

The linear velocity is the forward speed of the TurtleBot, measured in meters per

second. The lookahead distance, measured in meters, is the distance ahead of the

TurtleBot where it aims to move towards, ensuring smooth and accurate path

following. Angular velocity proportional gain (Kp) determines the TurtleBot's turning

response to orientation errors. It balances responsive turning with stability. These pure

pursuit parameters are interdependent and can vary depending on various factors such

as the size of racetrack. This means that the parameters must be fine-tuned among each

other to maintain stable and accurate path tracking. If one of the parameter values is

too high or too low, it might affect the TurtleBot’s performance.

For this experiment, the linear velocity of the TurtleBot is gradually increased

while adjusting the lookahead distance and the angular velocity proportional gain in a

trial-and-error way to analyze and optimize the TurtleBot’s performance. Table 4.9

and Figure 4.5 show that the average time taken for the TurtleBot to complete a lap

decreases when its linear velocity increases. This also leads to an increase in the

percentage of decrease in lap time compared to the previous experiment as shown in

Table 4.10 and Figure 4.7. For some parameter combinations, the TurtleBot touched

or crashed against the border because the chosen lookahead distance and angular

velocity proportional gain were not appropriate at certain linear velocities. When the

TurtleBot moves faster, it requires a larger lookahead distance to anticipate and react

to upcoming waypoints effectively, otherwise it may be unstable in its motion. The

angular velocity gain must also be fine-tuned to prevent abrupt changes in direction

that can lead to collisions.

Table 4.9 and Figure 4.5 show that the average RMSE between the expected

and actual path of the TurtleBot are approximately the same. The percentage of

decrease in lap time compared to the previous experiment are also approximately the

same as shown in Table 4.10 and Figure 4.7. The negative percentage values indicate

that the lap time increased compared to the one in the previous experiment. This

experiment proves that the increase in linear velocity of the TurtleBot does not

significantly affect the RMSE but can greatly improve the lap time, provided that the

lookahead distance and the angular velocity proportional gain must be tuned properly.

Although there is a slight trade-off between the lap time and RMSE, the minor increase

in RMSE (-9.4464%) can be neglected, since the lap time can be greatly reduced

85

(74.8995%) on the flip side. Overall, the linear velocity of 0.8 m/s, lookahead distance

of 0.4 m and angular velocity proportional gain of 2.5 produced the best result without

crashing or touching the border with an average lap time of 10.1200 seconds and

average RMSE of 0.3163 m. Hence, these parameter values are chosen to be conducted

in the upcoming experiments for further improvements. As a result of this experiment,

objective 2 and 3 have been fulfilled.

86

4.2.5 Experiment 5: Analysis of the performance of TurtleBot 3 Burger in real

world racetrack with varying angle thresholds and linear velocity

reduction factors

This experiment is conducted on the virtual racetrack similar to the one in

Experiment 2. The objective of this experiment is to analyze the effect of varying angle

thresholds and linear velocity reduction factors on the TurtleBot 3 Burger’s behavior

in terms of its ability to complete the lap, the time taken for it to finish a lap as well as

the RMSE between the expected path and the actual path of its motion in the virtual

racetrack. This is done by recording the time taken for the TurtleBot to finish a lap on

the racetrack and calculating the RMSE between the expected and actual path for each

lap after the autonomous racing script is run with multiple combinations angle

thresholds and linear velocity reduction factors. 3 repeated laps are completed by the

TurtleBot for each combination of the respective parameters to obtain the results. The

results of this experiment are shown in Table 4.11, 4.12 and 4.13 below. Figure 4.8,

4.9 and 4.10 visualizes the results in graphs.

Table 4.11: Graph of expected path against actual path for each parameter

combination

Parameters Lap 1 Lap 2 Lap 3

AT = 0 rad

RF = 1

AT = 0.05

rad

RF = 0.8

-

-

87

AT = 0.05

rad

RF = 0.9

-

-

AT = 0.09

rad

RF = 0.8

AT = 0.09

rad

RF = 0.9

AT = 0.1 rad

RF = 0.7

-

-

AT = 0.1 rad

RF = 0.8

AT = 0.15

rad

RF = 0.7

88

AT = 0.15

rad

RF = 0.8

AT = 0.2 rad

RF = 0.8

AT = 0.2 rad

RF = 0.9

AT = 0.3 rad

RF = 0.7

AT = 0.3 rad

RF = 0.8

89

AT = 0.5 rad

RF = 0.5

AT = 1 rad

RF = 0.5

* AT = Angle threshold

 RF = Linear velocity reduction factor

Table 4.12: Lap time, RMSE and observation for respective laps of each parameter

combination

AT

(rad)

RF Lap Lap time

(s)

RMSE

(m)

Observation

0

1

1 10.11 0.317

Completed

all laps

2 10.08 0.316

3 10.17 0.316

Average (10.11 + 10.08

+ 10.17) / 3

 = 10.1200

(0.317 + 0.316

+ 0.316) / 3

= 0.3163

0.05

0.8

1

-

-

Crashed on

the first lap

2

3

90

Average

0.05

0.9

1

-

-

Crashed on

the first lap

2

3

Average

0.09

0.8

1 10.82 0.296

Completed

all laps

2 11.04 0.278

3 10.86 0.277

Average (10.82 + 11.04

+ 10.86) / 3

= 10.9067

(0.296 + 0.278

+ 0.277) / 3

= 0.2837

0.09

0.9

1 10.28 0.309

Completed

all laps

2 10.27 0.319

3 10.39 0.297

Average (10.28 + 10.27

+ 10.39) / 3

= 10.3133

(0.309 + 0.319

+ 0.297) / 3

= 0.3083

0.1

0.7

1

-

-

Crashed on

the first lap

2

3

Average

0.1

0.8

1 10.76 0.291

Completed

all laps

2 10.87 0.285

3 10.97 0.279

Average (10.76 + 10.87

+ 10.97) / 3

= 10.8667

(0.291 + 0.285

+ 0.279) / 3

= 0.2850

0.15

0.7

1 11.33 0.286

Completed

all laps but

unstable

2 11.27 0.285

3 11.37 0.282

Average (11.33 + 11.27

+ 11.37) / 3

(0.286 + 0.285

+ 0.282) / 3

91

= 11.3233 = 0.2843

0.15

0.8

1 10.83 0.280

Completed

all laps

2 10.81 0.274

3 10.72 0.289

Average (10.83 + 10.81

+ 10.72) / 3

= 10.7867

(0.280 + 0.274

+ 0.289) / 3

= 0.2810

0.2

0.8

1 10.65 0.285

Completed

all laps

(best)

2 10.72 0.279

3 10.77 0.275

Average (10.65 + 10.72

+ 10.77) / 3

= 10.7133

(0.285 + 0.279

+ 0.275) / 3

= 0.2797

0.2

0.9

1 10.31 0.300

Completed

all laps

2 10.26 0.306

3 10.22 0.306

Average (10.31 + 10.26

+ 10.22) / 3

= 10.2633

(0.300 + 0.306

+ 0.306) / 3

= 0.3040

0.3

0.7

1 10.97 0.315

Completed

all laps

2 10.99 0.304

3 11.10 0.296

Average (10.97 + 10.99

+ 11.10) / 3

= 11.0200

(0.315 + 0.304

+ 0.296) / 3

= 0.3050

0.3

0.8

1 10.62 0.285

Completed

all laps

2 10.65 0.287

3 10.63 0.290

Average (10.62 + 10.65 +

10.63) / 3

= 10.6333

(0.285 + 0.287

+ 0.290) / 3

= 0.2873

 1 11.93 0.278

92

0.5

0.5

2 11.94 0.279

Completed

all laps

3 12.17 0.293

Average (11.93 + 11.94 +

12.17) / 3

= 12.0133

(0.278 + 0.279 +

0.293) / 3

= 0.2833

1

0.5

1 10.37 0.331

Completed

all laps

2 10.40 0.342

3 10.26 0.347

Average (10.37 + 10.40

+ 10.26) / 3

= 10.3433

(0.331 + 0.342

+ 0.347) / 3

= 0.3400

* AT = Angle threshold

 RF = Linear velocity reduction factor

Table 4.13: Percentage of decrease in lap time and RMSE compared to last

experiment

AT

(rad)

RF Percentage of decrease in lap

time (%)

Percentage of decrease in RMSE

(%)

0 1 [(10.1200 – 10.1200) / 10.1200]

x 100 = 0

[(0.3163 – 0.3163) / 0.3163]

x 100 = 0

0.05 0.8 - -

0.05 0.9 - -

0.09 0.8 [(10.1200 – 10.9067) / 10.1200]

x 100 = -7.7737

[(0.3163 – 0.2837) / 0.3163]

x 100 = 10.3067

0.09 0.9 [(10.1200 – 10.3133) / 10.1200]

x 100 = -1.9101

[(0.3163 – 0.3083) / 0.3163]

x 100 = 2.5292

0.1 0.7 - -

0.1 0.8 [(10.1200 – 10.8667) / 10.1200]

x 100 = -7.3785

[(0.3163 – 0.2850) / 0.3163]

x 100 = 9.8957

0.15 0.7 [(10.1200 – 11.3233) / 10.1200]

x 100 = -11.8903

[(0.3163 – 0.2843) / 0.3163]

x 100 = 10.1170

0.15 0.8 [(10.1200 – 10.7867) / 10.1200]

x 100 = -6.5879

[(0.3163 – 0.2810) / 0.3163]

x 100 = 11.1603

93

0.2 0.8 [(10.1200 – 10.7133) / 10.1200]

x 100 = -5.8626

[(0.3163 – 0.2797) / 0.3163]

x 100 = 11.5713

0.2 0.9 [(10.1200 – 10.2633) / 10.1200]

x 100 = -1.4160

[(0.3163 – 0.3040) / 0.3163]

x 100 = 3.8887

0.3 0.7 [(10.1200 – 11.0200) / 10.1200]

x 100 = -8.8933

[(0.3163 – 0.3050) / 0.3163]

x 100 = 3.5726

0.3 0.8 [(10.1200 – 10.6333) / 10.1200]

x 100 = -5.0721

[(0.3163 – 0.2873) / 0.3163]

x 100 = 9.1685

0.5 0.5 [(10.1200 – 12.0133) / 10.1200]

x 100 = -18.7085

[(0.3163 – 0.2833) / 0.3163]

x 100 = 10.4331

1 0.5 [(10.1200 – 10.3433) / 10.1200]

x 100 = -2.2065

[(0.3163 – 0.3400) / 0.3163]

x 100 = -7.4929

* AT = Angle threshold

 RF = Linear velocity reduction factor

Figure 4.9: Graph of lap time against angle threshold and linear velocity reduction

factor

10.12

0 0

10.9067

10.3133

0

10.8667 11.3233
10.7867

10.7133

10.2633
11.02

10.6333

12.0133

10.3433

0

2

4

6

8

10

12

14

0, 1 0.05,
0.8

0.05,
0.9

0.09,
0.8

0.09,
0.9

0.1,
0.7

0.1,
0.8

0.15,
0.7

0.15,
0.8

0.2,
0.8

0.2,
0.9

0.3,
0.7

0.3,
0.8

0.5,
0.5

1, 0.5

La
p

 t
im

e
(s

ec
o

n
d

s)

Parameter combinations (angle threshold and linear velocity reduction factor)

Graph of lap time against angle threshold and linear
velocity reduction factor

94

Figure 4.10: Graph of RMSE against angle threshold and linear velocity reduction

factor

Figure 4.11: Graph of percentage of decrease in lap time and RMSE against angle

threshold and linear velocity reduction factor

Based on Table 4.11, it can be seen that there are deviations between the

expected path and the actual path of the TurtleBot’s motion on the racetrack. Just like

in previous experiments, it may be caused by wheel slippage, the TurtleBot's inertia

and momentum as well as the chosen lookahead distance in the pure pursuit algorithm.

0.3163

0 0

0.2837 0.3083

0

0.285 0.2843
0.281

0.2797
0.304 0.3050.2873

0.2833

0.34

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0, 1 0.05,
0.8

0.05,
0.9

0.09,
0.8

0.09,
0.9

0.1,
0.7

0.1,
0.8

0.15,
0.7

0.15,
0.8

0.2,
0.8

0.2,
0.9

0.3,
0.7

0.3,
0.8

0.5,
0.5

1, 0.5

R
M

SE
 (

m
et

er
s)

Parameter combinations (angle threshold and linear velocity reduction factor)

Graph of RMSE against angle threshold and linear
velocity reduction factor

0 0 0

-7.7737

-1.9101

0

-7.3785
-11.8903

-6.5879

-5.8626

-1.416

-8.8933
-5.0721

-18.7085

-2.2065

0 0 0

10.3067

2.5292
0

9.8957 10.117
11.1603

11.5713

3.8887 3.5726

9.1685 10.4331

-7.4929

-25

-20

-15

-10

-5

0

5

10

15

0, 1 0.05,
0.8

0.05,
0.9

0.09,
0.8

0.09,
0.9

0.1,
0.7

0.1,
0.8

0.15,
0.7

0.15,
0.8

0.2,
0.8

0.2,
0.9

0.3,
0.7

0.3,
0.8

0.5,
0.5

1, 0.5

P
er

ce
n

ta
ge

 o
f

d
ec

re
as

e
(%

)

Parameter combinations (angle threshold and linear velocity reduction factor)

Graph of percentage of decrease in lap time and RMSE
against angle threshold and linear velocity reduction

factor

Lap time RMSE

95

The angle threshold is a predefined limit that determines the maximum allowable

deviation in the TurtleBot's orientation before corrective actions are taken, measured

in radians. The linear velocity reduction factor is a scaling factor applied to the

TurtleBot's speed to ensure safe and controlled movement when navigating sharp turns

or avoiding obstacles. The angle threshold and linear velocity reduction factor are

interdependent and can vary depending on various factors such as the size of racetrack.

This means that the parameters must be fine-tuned among each other to maintain stable

and accurate path tracking, just like in Experiment 4.

For this experiment, the angle threshold and linear velocity reduction factor of

the TurtleBot are adjusted in a trial-and-error way to analyze and optimize the

TurtleBot’s performance. Table 4.12 shows that for some combinations of angle

threshold and linear velocity reduction factor, the TurtleBot touched or crashed against

the border because they were not appropriate to be matched with the pure pursuit

parameters (linear velocity, lookahead distance and angular velocity proportional

gain). At higher speeds, precise tuning of angle threshold and linear velocity reduction

factors is critical to prevent path deviations and collisions with borders. The linear

velocity reduction factor slows the TurtleBot during turns to ensure that it stays on

track with the expected path.

Figure 4.8 and 4.9 show that the average lap time and average RMSE between

the expected and actual path of the TurtleBot are approximately the same. From Table

4.13 and Figure 4.10, it is evident that when there is an improvement (+%) in the lap

time, there will be an increase (-%) in the RMSE value and vice versa for every

combination of the angle threshold and linear velocity reduction factor. However,

when the angle threshold = 0.2 rad and linear velocity reduction factor = 0.8, it yields

the best result with an average lap time of 10.7133 seconds and average RMSE of

0.2797 m, where the percentage of decrease in RMSE (11.5713%) is higher than the

percentage of increase in the lap time (-5.8626%). This experiment proves that a proper

tuning of these two parameters can improve the RMSE, while suffering a slight trade-

off from the increase in lap time. Hence, these parameter values are chosen to be

conducted in the upcoming experiments for further improvements. As a result of this

experiment, objective 2 and 3 have been fulfilled.

96

4.2.6 Experiment 6: Analysis of the performance of TurtleBot 3 Burger in real

world racetrack with varying angular velocity integral and derivative

gains

This experiment is conducted on the virtual racetrack similar to the one in

Experiment 2. The objective of this experiment is to analyze the effect of varying

angular velocity integral and derivative gains on the TurtleBot 3 Burger’s behavior in

terms of its ability to complete the lap, the time taken for it to finish a lap as well as

the RMSE between the expected path and the actual path of its motion in the virtual

racetrack. This is done by recording the time taken for the TurtleBot to finish a lap on

the racetrack and calculating the RMSE between the expected and actual path for each

lap after the autonomous racing script is run with multiple combinations of angular

velocity integral and derivative gains. 3 repeated laps are completed by the TurtleBot

for each combination of the respective parameters to obtain the results. The results of

this experiment are shown in Table 4.14, 4.15 and 4.16 below. Figure 4.11, 4.12 and

4.13 visualizes the results in graphs.

Table 4.14: Graph of expected path against actual path for each parameter

combination

Parameters Lap 1 Lap 2 Lap 3

Ki = 0

Kd = 0

Ki = 0.0001

Kd = 0

97

Ki = 0.001

Kd = 0

Ki = 0.01

Kd = 0

Ki = 0.05

Kd = 0

-

-

Ki = 0.1

Kd = 0

-

-

Ki = 0.5

Kd = 0

-

-

Ki = 0.1

Kd = 0.0001

-

-

98

Ki = 0.01

Kd = 0.0001

Ki = 0.001

Kd = 0.0001

Ki = 0.0001

Kd = 0.0001

Ki = 0.001

Kd = 0.001

Ki = 0.01

Kd = 0.01

99

Ki = 0.1

Kd = 0.1

-

-

* Ki = Angular velocity integral gain

 Kd = Angular velocity derivative gain

Table 4.15: Lap time, RMSE and observation for respective laps of each parameter

combination

Ki Kd Lap Lap time

(s)

RMSE

(m)

Observation

0

0

1 10.65 0.285

Completed

all laps

2 10.72 0.279

3 10.77 0.275

Average (10.65 + 10.72

+ 10.77) / 3

= 10.7133

(0.285 + 0.279

+ 0.275) / 3

= 0.2797

0.0001

0

1 10.77 0.269

Completed

all laps

(best)

2 10.67 0.269

3 10.79 0.270

Average (10.77 + 10.67

+ 10.79) / 3

= 10.7433

(0.269 + 0.269

+ 0.270) / 3

= 0.2693

0.001

0

1 10.63 0.293

 2 10.72 0.290

3 10.77 0.281

100

Average (10.63 + 10.72

+ 10.77) / 3

= 10.7067

(0.293 + 0.290

+ 0.281) / 3

= 0.2880

Completed

all laps

0.01

0

1 11.01 0.289

Completed

all laps

2 10.63 0.280

3 10.65 0.280

Average (11.01 + 10.63

+ 10.65) / 3

= 10.7633

(0.289 + 0.280

+ 0.280) / 3

= 0.2830

0.05

0

1

-

-

Crashed on

the first lap

2

3

Average

0.1

0

1

-

-

Crashed on

the first lap

2

3

Average

0.5

0

1

-

-

Crashed on

the first lap

2

3

Average

0.1

0.0001

1

-

-

Crashed on

the first lap

2

3

Average

0.01

0.0001

1 10.63 0.278

Completed

all laps

2 10.58 0.279

3 10.66 0.279

Average (10.63 + 10.58

+ 10.66) / 3

= 10.6233

(0.278 + 0.279

+ 0.279) / 3

= 0.2787

 1 10.75 0.273

101

0.001

0.0001

2 10.70 0.279

Completed

all laps

3 10.75 0.274

Average (10.75 + 10.70

+ 10.75) / 3

= 10.7333

(0.273 + 0.279

+ 0.274) / 3

= 0.2753

0.0001

0.0001

1 10.77 0.279

Completed

all laps

2 10.68 0.290

3 10.67 0.285

Average (10.77 + 10.68

+ 10.67) / 3

= 10.7067

(0.279 + 0.290

+ 0.285) / 3

= 0.2847

0.001

0.001

1 10.86 0.282

Completed

all laps

2 10.72 0.285

3 10.65 0.288

Average (10.86 + 10.72

+ 10.65) / 3

= 10.7433

(0.282 + 0.285

+ 0.288) / 3

= 0.2850

0.01

0.01

1 10.68 0.317

Completed

all laps

2 10.60 0.338

3 10.53 0.325

Average (10.68 + 10.60 +

10.53) / 3

= 10.6033

(0.317 + 0.338

+ 0.325) / 3

= 0.3267

0.1

0.1

1

-

-

Crashed on

the first lap

2

3

Average

* Ki = Angular velocity integral gain

 Kd = Angular velocity derivative gain

102

Table 4.16: Percentage of decrease in lap time and RMSE compared to last

experiment

Ki Kd Percentage of decrease in lap

time (%)

Percentage of decrease in

RMSE (%)

0 0 [(10.7133 – 10.7133) /

10.7133] x 100 = 0

[(0.2797 – 0.2797) /

0.2797] x 100 = 0

0.0001 0 [(10.7133 – 10.7433) /

10.7133] x 100 = -0.2800

[(0.2797 – 0.2693) /

0.2797] x 100 = 3.7183

0.001 0 [(10.7133 – 10.7067) /

10.7133] x 100 = 0.0616

[(0.2797 – 0.2880) /

0.2797] x 100 = -2.9675

0.01 0 [(10.7133 – 10.7633) /

10.7133] x 100 = -0.4667

[(0.2797 – 0.2830) /

0.2797] x 100 = -1.1798

0.05 0 - -

0.1 0 - -

0.5 0 - -

0.1 0.0001 - -

0.01 0.0001 [(10.7133 – 10.6233) /

10.7133] x 100 = 0.8401

[(0.2797 – 0.2787) /

0.2797] x 100 = 0.3575

0.001 0.0001 [(10.7133 – 10.7333) /

10.7133] x 100 = -0.1867

[(0.2797 – 0.2753) /

0.2797] x 100 = 1.5731

0.0001 0.0001 [(10.7133 – 10.7067) /

10.7133] x 100 = 0.0616

[(0.2797 – 0.2847) /

0.2797] x 100 = -1.7876

0.001 0.001 [(10.7133 – 10.7433) /

10.7133] x 100 = -0.2800

[(0.2797 – 0.2850) /

0.2797] x 100 = -1.8949

0.01 0.01 [(10.7133 – 10.6033) /

10.7133] x 100 = 1.0268

[(0.2797 – 0.3267) /

0.2797] x 100 = -16.8037

0.1 0.1 - -

* Ki = Angular velocity integral gain

 Kd = Angular velocity derivative gain

103

Figure 4.12: Graph of lap time against angular velocity integral and derivative gains

Figure 4.13: Graph of RMSE against angular velocity integral and derivative gains

10.7133
10.7433

10.7067
10.7633

0 0
0 0

10.6233

10.7333

10.7067
10.7433

10.6033

0
0

2

4

6

8

10

12
La

p
 t

im
e

(s
ec

o
n

d
s)

Parameter combinations (angular velocity integral and derivative gains)

Graph of lap time against angular velocity integral and
derivative gains

0.2797
0.2693 0.288

0.283

0 0
0 0

0.2787
0.2753

0.2847
0.285

0.3267

0
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
M

SE
 (

m
et

er
s)

Parameter combinations (angular velocity integral and derivative gains)

Graph of RMSE against angular velocity integral and
derivative gains

104

Figure 4.14: Graph of percentage of decrease in lap time and RMSE against angular

velocity integral and derivative gains

Based on Table 4.14, it can be seen that there are deviations between the

expected path and the actual path of the TurtleBot’s motion on the racetrack. Just like

in previous experiments, it may be caused by wheel slippage, the TurtleBot's inertia

and momentum as well as the chosen lookahead distance in the pure pursuit algorithm.

In PID control, the integral gain (Ki) for angular velocity integrates the error over time

to eliminate steady-state error, while the derivative gain (Kd) predicts and responds to

the rate of change of the error, enhancing stability and reducing oscillations in the

system. These parameters are crucial for tuning the PID controller to achieve accurate

and stable control of the TurtleBot's angular velocity during navigation tasks. In this

experiment, the integral and derivative gains are combined with the proportional gain

(Kp) used in the previous experiments to form a complete PID. These parameters are

interdependent and can vary depending on various factors such as the size of racetrack.

This means that the parameters must be fine-tuned among each other to maintain stable

and accurate path tracking, just like in Experiment 4 and 5.

For this experiment, the angular velocity integral (Ki) and derivative (Kd) gains

of the TurtleBot are adjusted in a trial-and-error way to analyze and optimize the

TurtleBot’s performance. Table 4.15 shows that for some combinations of Ki and Kd,

the TurtleBot crashed against the border because they were not appropriate to be

0

-0.28

0.0616

-0.4667

0 0
0 0

0.8401

-0.1867

0.0616

-0.28

1.0268 00

3.7183

-2.9675 -1.1798

0 0 0 0 0.3575
1.5731

-1.7876
-1.8949

-16.8037

0

-20

-15

-10

-5

0

5
P

er
ce

n
ta

ge
 o

f
d

ec
re

as
e

(%
)

Parameter combinations (angular velocity integral and derivative gains)

Graph of percentage of decrease in lap time and RMSE
against angular velocity integral and derivative gains

Lap time RMSE

105

matched with the pure pursuit parameters (linear velocity, lookahead distance and

angular velocity proportional gain). An inappropriate Ki and Kd combination can

cause instability, while a well-tuned combination ensures a smoother and more

accurate trajectory at higher speeds. Therefore, precise tuning of these gains is crucial

for optimal high-speed navigation performance.

Figure 4.11 and 4.12 show that the average lap time and average RMSE

between the expected and actual path of the TurtleBot are approximately the same.

From Table 4.16 and Figure 4.13, it is evident that when there is an improvement (+%)

in the lap time, there will be an increase (-%) in the RMSE value and vice versa for

every combination of Ki and Kd. However, when Ki = 0.0001 and Kd = 0, it yields the

best result with an average lap time of 10.7433 seconds and average RMSE of 0.2693

m, where the percentage of decrease in RMSE (3.7183%) is higher than the percentage

of increase in the lap time (-0.2800%). This experiment proves that a proper tuning of

Ki and Kd with the existing Kp can further improve the RMSE, even by a small bit.

Besides, the minor trade-off from the small increase in lap time is also inevitable, but

the increase can be minimized through appropriate tuning. Since the improvement in

RMSE is minimal, it shows that the system can already perform well by tuning just the

Kp value. Hence, extensive adjustments to Ki and Kd may not be necessary for

achieving significant performance gains and it might even negatively affect the

TurtleBot’s performance if not carefully balanced with the existing Kp value. As a

result of this experiment, objective 2 and 3 have been fulfilled.

106

CONCLUSION AND FUTURE WORKS

5.1 Conclusion

As a conclusion, the navigation system of TurtleBot 3 has been successfully

developed using SLAM method. A total of six experiments have been conducted and

the results are obtained successfully to meet all the three objectives of this project.

Objective 1 which is to create a map of the surrounding environment for TurtleBot 3

using SLAM method is partially fulfilled through Experiment 1 and fulfilled through

Experiment 2. Objective 2 which is to develop an autonomous racing navigation

system for TurtleBot 3 with the map created from SLAM method is fulfilled through

Experiment 2, 3, 4 ,5 and 6. Objective 3 which is to analyze the performance of the

autonomous racing navigation system of TurtleBot 3 in terms of lap time and trajectory

accuracy is fulfilled through Experiment 2, 3, 4, 5 and 6.

Based on the results, it can be seen that the overall layout of the virtual

racetrack mapped using SLAM Gmapping is well defined with all the borders clearly

recognized by the TurtleBot 3 Burger. The autonomous racing navigation system

demonstrated effective path planning, ensuring that the TurtleBot is able to navigate

on the racetrack accurately and efficiently. The experimental results show that the time

taken for the TurtleBot to finish a lap and the RMSE between the expected and actual

path of the TurtleBot are affected by its linear velocity, lookahead distance, PID gain

of angular velocity as well as the angle threshold and linear velocity reduction factor

while turning against sharp corners. The final optimized lap time and RMSE are

10.7433 seconds and 0.2693 m respectively. Further optimization may be achieved

through detailed fine-tuning of the respective parameters. However, there might be a

trade-off between lap time and RMSE, where reducing the lap time may lead to an

increase in RMSE and vice versa. Hence, careful tuning is essential to balance both

objectives and achieve optimal performance in the TurtleBot's autonomous navigation

system.

107

5.2 Future Works

For the current system, the TurtleBot 3 is able to navigate around a known

environment with static obstacles that it maps prior to autonomous navigation. In order

to further improve the system, integrating dynamic obstacle avoidance capabilities is

crucial. This enhancement would enable the TurtleBot 3 to detect and respond to

moving obstacles in real-time, ensuring safe navigation in dynamic environments.

Implementing this feature involves enhancing the perception system with sensors

capable of detecting changes in the environment, such as cameras for visual

recognition or LIDAR for precise distance measurements. Additionally, transitioning

from simulation to real-world hardware deployment requires optimization on the

system's algorithms and parameters for robustness and efficiency. This includes fine-

tuning motion planning algorithms to account for real-time data from sensors and

ensuring hardware reliability. Lastly, expanding the system with more advanced

algorithms such as Model Predictive Control (MPC) would further elevate the

TurtleBot 3's autonomy, enabling it to handle complex tasks and diverse real-world

applications effectively.

108

REFERENCES

[1] Shah, P., Maheshwari, M., Ramane, S., Chandra, P., Valvi, M. S., & Mehendale,

N. (2023). Autonomous Racing Vehicle. SSRN Electronic Journal.

https://doi.org/10.2139/ssrn.4464632

[2] Project, C. a. V. (2023, October 29). landing_car-HEIC.jpg. Roboflow.

https://universe.roboflow.com/curc-autonomous-vehicle-project/f1tenth-car-

detection

[3] Chghaf, M., Rodriguez, S., & Ouardi, A. el. (2022). Camera, LiDAR and Multi-

modal SLAM Systems for Autonomous Ground Vehicles: a Survey. Journal of

Intelligent and Robotic Systems: Theory and Applications, 105(1).

https://doi.org/10.1007/s10846-022-01582-8

[4] Mu, L., Yao, P., Zheng, Y., Chen, K., Wang, F., & Qi, N. (2020). Research on

SLAM Algorithm of Mobile Robot Based on the Fusion of 2D LiDAR and Depth

Camera. IEEE Access, 8, 157628–157642.

https://doi.org/10.1109/ACCESS.2020.3019659

[5] Xuexi, Z., Guokun, L., Genping, F., Dongliang, X., & Shiliu, L. (2019). SLAM

algorithm analysis of mobile robot based on lidar. Chinese Control Conference,

CCC, 2019-July. https://doi.org/10.23919/ChiCC.2019.8866200

[6] Cheng, J., Zhang, L., Chen, Q., Hu, X., & Cai, J. (2022). A review of visual SLAM

methods for autonomous driving vehicles. In Engineering Applications of

Artificial Intelligence (Vol. 114). https://doi.org/10.1016/j.engappai.2022.104992

[7] Krul, S., Pantos, C., Frangulea, M., & Valente, J. (2021). Visual slam for indoor

livestock and farming using a small drone with a monocular camera: A feasibility

study. Drones, 5(2). https://doi.org/10.3390/drones5020041

https://doi.org/10.2139/ssrn.4464632
https://universe.roboflow.com/curc-autonomous-vehicle-project/f1tenth-car-detection
https://universe.roboflow.com/curc-autonomous-vehicle-project/f1tenth-car-detection
https://doi.org/10.1007/s10846-022-01582-8
https://doi.org/10.1109/ACCESS.2020.3019659
https://doi.org/10.23919/ChiCC.2019.8866200
https://doi.org/10.1016/j.engappai.2022.104992
https://doi.org/10.3390/drones5020041

109

[8] Amsters, R., & Slaets, P. (2020). Turtlebot 3 as a robotics education platform.

Advances in Intelligent Systems and Computing, 1023.

https://doi.org/10.1007/978-3-030-26945-6_16

[9] Martínez, F. H. (2021). TurtleBot3 robot operation for navigation applications

using ROS. Tekhnê, 18(2).

[10] Brown, M. (2024, February 14). IEEE IV 2024 Call for Participation: F1tenth

Autonomous Racing Competition. IEEE ITSS. https://ieee-itss.org/ieee-iv-2024-

call-for-participation-f1tenth-autonomous-racing-competition/

[11] Wojcik, H. (2023, June 16). Penn Engineering Students Win the 12th Annual

F1Tenth Autonomous Grand Prix. Penn Engineering Blog.

https://blog.seas.upenn.edu/penn-engineering-students-win-the-12th-annual-

f1tenth-autonomous-grand-prix/

[12] Robotis. (2018). ROBOTIS e-Manual. ROBOTIS e-Manual.

https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/

[13] Sun, J., Zhao, J., Hu, X., Gao, H., & Yu, J. (2023). Autonomous Navigation

System of Indoor Mobile Robots Using 2D Lidar. Mathematics, 11(6).

https://doi.org/10.3390/math11061455

[14] View of Development of F1 Tenth-specific Autonomous Navigation Algorithm.

(2024).

https://www.propulsiontechjournal.com/index.php/journal/article/view/4759/325

8

[15] O’Kelly, M., Zheng, H., Karthik, D., & Mangharam, R. (2019). F1TENTH: An

Open-source Evaluation Environment for Continuous Control and Reinforcement

Learning. Proceedings of Machine Learning Research, 123

[16] Tatulea-Codrean, A., Mariani, T., & Engell, S. (2020). Design and simulation of

a machine-learning and model predictive control approach to autonomous race

https://doi.org/10.1007/978-3-030-26945-6_16
https://ieee-itss.org/ieee-iv-2024-call-for-participation-f1tenth-autonomous-racing-competition/
https://ieee-itss.org/ieee-iv-2024-call-for-participation-f1tenth-autonomous-racing-competition/
https://blog.seas.upenn.edu/penn-engineering-students-win-the-12th-annual-f1tenth-autonomous-grand-prix/
https://blog.seas.upenn.edu/penn-engineering-students-win-the-12th-annual-f1tenth-autonomous-grand-prix/
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://doi.org/10.3390/math11061455
https://www.propulsiontechjournal.com/index.php/journal/article/view/4759/3258
https://www.propulsiontechjournal.com/index.php/journal/article/view/4759/3258

110

driving for the F1/10 platform. IFAC-PapersOnLine, 53(2).

https://doi.org/10.1016/j.ifacol.2020.12.166

[17] Patton, R., Schuman, C., Kulkarni, S., Parsa, M., Mitchell, J. P., Haas, N. Q., Stahl,

C., Paulissen, S., Date, P., Potok, T., & Sneider, S. (2021). Neuromorphic

Computing for Autonomous Racing. ACM International Conference Proceeding

Series. https://doi.org/10.1145/3477145.3477170

[18] Verardi, M. (2024, May 16). Martina Verardi on LinkedIn: #icra2024 #f1tenth

#autonomousracing #innovation #cultureexchange.

https://www.linkedin.com/posts/martinaverardi_icra2024-f1tenth-

autonomousracing-activity-7196842834908344321-1u95/

[19] Babu, V. S., & Behl, M. (2020). F1tenth.dev-An Open-source ROS based F1/10

Autonomous Racing Simulator. IEEE International Conference on Automation

Science and Engineering, 2020-August.

https://doi.org/10.1109/CASE48305.2020.9216949

[20] Learn. (2024, March 25). https://f1tenth.org/learn.html

[21] Soebhakti, H., Yulianti, R., Risi, F., & Pratiwi, Y. (2023). Obstacle Avoidance

System Using LiDAR on Robot Turtlebot3 Burger. https://doi.org/10.4108/eai.5-

10-2022.2327479

[22] Team, R. (2023, April 22). TurtleBot. ROBOTS: Your Guide to the World of

Robotics. https://robotsguide.com/robots/turtlebot

[23] TurtleBot 2 - Open source personal research robot. (2021, November 16).

Clearpath Robotics. https://clearpathrobotics.com/turtlebot-2-open-source-

robot/#:~:text=MOBILE%20ROBOT%20PLATFORM&text=This%20second%

20generation%20personal%20robot,Pro%20Sensor%20and%20a%20gyroscope.

[24] TurtleBot 4 - Clearpath Robotics. (2023, April 26). Clearpath Robotics.

https://clearpathrobotics.com/turtlebot-4/

https://doi.org/10.1016/j.ifacol.2020.12.166
https://doi.org/10.1145/3477145.3477170
https://www.linkedin.com/posts/martinaverardi_icra2024-f1tenth-autonomousracing-activity-7196842834908344321-1u95/
https://www.linkedin.com/posts/martinaverardi_icra2024-f1tenth-autonomousracing-activity-7196842834908344321-1u95/
https://doi.org/10.1109/CASE48305.2020.9216949
https://f1tenth.org/learn.html
https://doi.org/10.4108/eai.5-10-2022.2327479
https://doi.org/10.4108/eai.5-10-2022.2327479
https://robotsguide.com/robots/turtlebot
https://clearpathrobotics.com/turtlebot-2-open-source-robot/#:~:text=MOBILE%20ROBOT%20PLATFORM&text=This%20second%20generation%20personal%20robot,Pro%20Sensor%20and%20a%20gyroscope
https://clearpathrobotics.com/turtlebot-2-open-source-robot/#:~:text=MOBILE%20ROBOT%20PLATFORM&text=This%20second%20generation%20personal%20robot,Pro%20Sensor%20and%20a%20gyroscope
https://clearpathrobotics.com/turtlebot-2-open-source-robot/#:~:text=MOBILE%20ROBOT%20PLATFORM&text=This%20second%20generation%20personal%20robot,Pro%20Sensor%20and%20a%20gyroscope
https://clearpathrobotics.com/turtlebot-4/

111

[25] Senecat, M. (2023, December 19). TurtleBot4 vs. TurtleBot3 : What are the

differences and improvements? - Génération Robots - Blog. Génération Robots -

Blog. https://www.generationrobots.com/blog/en/turtlebot4-vs-turtlebot3-what-

are-the-differences-and-

improvements/#:~:text=TurtleBot%204%20is%20a%20significant,new%20chall

enges%20in%20mobile%20robotics.

[26] Khnissi, K., Seddik, C., & Seddik, H. (2018). Smart Navigation of Mobile Robot

Using Neural Network Controller. 2018 International Conference on Smart

Communications in Network Technologies, SaCoNeT 2018.

https://doi.org/10.1109/SaCoNeT.2018.8585616

[27] de Assis Brasil, P. M., Pereira, F. U., de Souza Leite Cuadros, M. A., Cukla, A.

R., & Tello Gamarra, D. F. (2020). A Study on Global Path Planners Algorithms

for the Simulated TurtleBot 3 Robot in ROS. 2020 Latin American Robotics

Symposium, 2020 Brazilian Symposium on Robotics and 2020 Workshop on

Robotics in Education, LARS-SBR-WRE 2020.

https://doi.org/10.1109/LARS/SBR/WRE51543.2020.9307003

[28] Pietrzik, S., & Chandrasekaran, B. (2019). Setting up and Using ROS-Kinetic and

Gazebo for Educational Robotic Projects and Learning. Journal of Physics:

Conference Series, 1207(1). https://doi.org/10.1088/1742-6596/1207/1/012019

[29] Thakur, R. (2023, February 18). Choosing the Best Linux Distribution for ROS -

RAVI THAKUR - Medium. Medium.

https://medium.com/@ravi.deepak.thakur/choosing-the-best-linux-distribution-

for-ros-278e82d52eb5

[30] Robot Operating System Cookbook. (2023).

https://subscription.packtpub.com/book/iot-and-

hardware/9781783987443/1/ch01lvl1sec03/installing-ros-on-desktop-systems

https://www.generationrobots.com/blog/en/turtlebot4-vs-turtlebot3-what-are-the-differences-and-improvements/#:~:text=TurtleBot%204%20is%20a%20significant,new%20challenges%20in%20mobile%20robotics.
https://www.generationrobots.com/blog/en/turtlebot4-vs-turtlebot3-what-are-the-differences-and-improvements/#:~:text=TurtleBot%204%20is%20a%20significant,new%20challenges%20in%20mobile%20robotics.
https://www.generationrobots.com/blog/en/turtlebot4-vs-turtlebot3-what-are-the-differences-and-improvements/#:~:text=TurtleBot%204%20is%20a%20significant,new%20challenges%20in%20mobile%20robotics.
https://www.generationrobots.com/blog/en/turtlebot4-vs-turtlebot3-what-are-the-differences-and-improvements/#:~:text=TurtleBot%204%20is%20a%20significant,new%20challenges%20in%20mobile%20robotics.
https://doi.org/10.1109/SaCoNeT.2018.8585616
https://doi.org/10.1109/LARS/SBR/WRE51543.2020.9307003
https://doi.org/10.1088/1742-6596/1207/1/012019
https://medium.com/@ravi.deepak.thakur/choosing-the-best-linux-distribution-for-ros-278e82d52eb5
https://medium.com/@ravi.deepak.thakur/choosing-the-best-linux-distribution-for-ros-278e82d52eb5
https://subscription.packtpub.com/book/iot-and-hardware/9781783987443/1/ch01lvl1sec03/installing-ros-on-desktop-systems
https://subscription.packtpub.com/book/iot-and-hardware/9781783987443/1/ch01lvl1sec03/installing-ros-on-desktop-systems

112

[31] Alatise, M. B., & Hancke, G. P. (2020). A Review on Challenges of Autonomous

Mobile Robot and Sensor Fusion Methods. In IEEE Access (Vol. 8).

https://doi.org/10.1109/ACCESS.2020.2975643

[32] Teleweck, P. E., & Chandrasekaran, B. (2019). Path Planning Algorithms and

Their Use in Robotic Navigation Systems. Journal of Physics: Conference Series,

1207(1). https://doi.org/10.1088/1742-6596/1207/1/012018

[33] Dai, Y. (2022). Research on Robot Positioning and Navigation Algorithm Based

on SLAM. Wireless Communications and Mobile Computing, 2022.

https://doi.org/10.1155/2022/3340529

[34] Zhou, B., Du, M., Chen, Z., Liu, Y., Zhang, Y., & Wang, Y. (2022). Design and

Implementation of Intelligent Security Robot Based on Lidar and Vision Fusion.

Journal of Physics: Conference Series, 2216(1). https://doi.org/10.1088/1742-

6596/2216/1/012013

[35] Escobar-Naranjo, J., Caiza, G., Ayala, P., Jordan, E., Garcia, C. A., & Garcia, M.

v. (2023). Autonomous Navigation of Robots: Optimization with DQN. Applied

Sciences (Switzerland), 13(12). https://doi.org/10.3390/app13127202

[36] Nandkumar, C., Shukla, P., & Varma, V. (2021). Simulation of Indoor

Localization and Navigation of Turtlebot 3 using Real Time Object Detection.

Proceedings of IEEE International Conference on Disruptive Technologies for

Multi-Disciplinary Research and Applications, CENTCON 2021.

https://doi.org/10.1109/CENTCON52345.2021.9687937

[37] Gurel, C., Sathyam, R., & Guha, A. (2018). ROS-based Path Planning for

Turtlebot Robot using Rapidly Exploring Random Trees (RRT*).

Researchgate.Net, May.

https://doi.org/10.1109/ACCESS.2020.2975643
https://doi.org/10.1088/1742-6596/1207/1/012018
https://doi.org/10.1155/2022/3340529
https://doi.org/10.1088/1742-6596/2216/1/012013
https://doi.org/10.1088/1742-6596/2216/1/012013
https://doi.org/10.3390/app13127202
https://doi.org/10.1109/CENTCON52345.2021.9687937

113

[38] Abdelwahab, M., Parque, V., Fath Elbab, A. M. R., Abouelsoud, A. A., & Sugano,

S. (2020). Trajectory tracking of wheeled mobile robots using Z-Number based

fuzzy logic. IEEE Access, 8. https://doi.org/10.1109/ACCESS.2020.2968421

[39] Boztaş, G., & Aydoğmuş, Ö. (2021). Implementation of Pure Pursuit Algorithm

for Nonholonomic Mobile Robot using Robot Operating System. Balkan Journal

of Electrical and Computer Engineering, 9(4), 337-341.

https://doi.org/10.17694/bajece.983350

[40] A. Ali, “10+ Advantages and Disadvantages of Night Vision Technology »

Hubvela,” Hubvela, Jun. 20, 2023.

https://hubvela.com/hub/technology/advantages-disadvantages/night-vision-

technology/

[41] Daneshyar, S. A., & Nahvi, M. (2017). Moving objects tracking based on

improved particle filter algorithm by elimination of unimportant particles. Optik,

138. https://doi.org/10.1016/j.ijleo.2017.03.100

[42] FlyGuys, “LiDAR vs. Sonar: What’s the Difference? - FlyGuys,” FlyGuys, Jul.

07, 2023. https://flyguys.com/lidar-vs-sonar-whats-the-difference/

[43] T. Test, “Ultrasonic Sensors vs. LiDAR: Which One Should You Use?,”

MaxBotix, Apr. 20, 2021. https://maxbotix.com/blogs/blog/ultrasonic-sensors-vs-

lidar-which-one-should-you-use

[44] Yang, M., Sun, X., Jia, F., Rushworth, A., Dong, X., Zhang, S., Fang, Z., Yang,

G., & Liu, B. (2022). Sensors and Sensor Fusion Methodologies for Indoor

Odometry: A Review. Polymers, 14(10). https://doi.org/10.3390/polym14102019

[45] Zhang, J., & Singh, S. (2015). Visual-lidar odometry and mapping: Low-drift,

robust, and fast. Proceedings - IEEE International Conference on Robotics and

Automation, 2015-June(June). https://doi.org/10.1109/ICRA.2015.7139486

https://doi.org/10.1109/ACCESS.2020.2968421
https://doi.org/10.17694/bajece.983350
https://hubvela.com/hub/technology/advantages-disadvantages/night-vision-technology/
https://hubvela.com/hub/technology/advantages-disadvantages/night-vision-technology/
https://doi.org/10.1016/j.ijleo.2017.03.100
https://flyguys.com/lidar-vs-sonar-whats-the-difference/
https://maxbotix.com/blogs/blog/ultrasonic-sensors-vs-lidar-which-one-should-you-use
https://maxbotix.com/blogs/blog/ultrasonic-sensors-vs-lidar-which-one-should-you-use
https://doi.org/10.3390/polym14102019
https://doi.org/10.1109/ICRA.2015.7139486

114

[46] Jiang, F., Chen, J., & Ji, S. (2021). Panoramic Visual-Inertial SLAM Tightly

Coupled with a Wheel Encoder. ISPRS Journal of Photogrammetry and Remote

Sensing, 182. https://doi.org/10.1016/j.isprsjprs.2021.10.006

[47] Olalekan, A. F., Sagor, J. A., Hasan, M. H., & Oluwatobi, A. S. (2021).

Comparison of two SLAM algorithms provided by ROS (Robot Operating

System). 2021 2nd International Conference for Emerging Technology, INCET

2021. https://doi.org/10.1109/INCET51464.2021.9456164

[48] Yagfarov, R., Ivanou, M., & Afanasyev, I. (2018). Map Comparison of Lidar-

based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International

Conference on Control, Automation, Robotics and Vision, ICARCV 2018.

https://doi.org/10.1109/ICARCV.2018.8581131

[49] Tian, C., Liu, H., Liu, Z., Li, H., & Wang, Y. (2023). Research on Multi-Sensor

Fusion SLAM Algorithm Based on Improved Gmapping. IEEE Access, 11.

https://doi.org/10.1109/ACCESS.2023.3243633

https://doi.org/10.1016/j.isprsjprs.2021.10.006
https://doi.org/10.1109/INCET51464.2021.9456164
https://doi.org/10.1109/ICARCV.2018.8581131
https://doi.org/10.1109/ACCESS.2023.3243633

115

APPENDICES

APPENDIX A: GANTT CHART FOR FINAL YEAR PROJECT

Final Year Project 1

Final Year Project 2

116

APPENDIX B: K-CHART

117

APPENDIX C: CODING OF TURTLEBOT 3

TurtleBot 3 SLAM launch file

TurtleBot 3 teleoperation launch file

118

TurtleBot 3 teleoperation node

119

120

TurtleBot 3 navigation launch file

121

APPENDIX D: AUTONOMOUS RACING NAVIGATION SCRIPT

122

123

