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ABSTRACT 

Artificial intelligence (AI) breakthroughs have transformed crop monitoring and quality 

control techniques in the agriculture industry. This study investigates the use of 

convolutional neural networks (CNNs) and the YOLOv8 algorithm to enhance maize quality 

monitoring. Traditional maize sorting techniques are labor-intensive, time-consuming, and 

prone to mistakes. The incorporation of AI technology provides a solution to these 

difficulties. The study's goal is to create an automated system for recognizing and 

categorizing pest and disease-related maize quality concerns using machine learning and 

image recognition techniques. A CNN model was created utilizing labeled information to 

properly identify and categorize maize quality concerns into three groups. The model's 

performance was assessed using the YOLOv8 method, which is noted for its quick and 

accurate object identification capabilities. The training was done in the Google Colab 

environment, with pre-trained weights to speed up model convergence. The findings 

indicated significant increases in detection accuracy and efficiency. The model's overall 

accuracy was 92.4%, with class-specific accuracies of 88% for "Healthy," 65.5% for "Water 

Rot," and 100% for "Bug." The average Precision (mAP) was 92.7%, with an Intersection 

over Union (IoU) of 52.3%. Visual and statistical studies, such as F1-Confidence and Recall-

Confidence curves, offered information about the model's performance at different 

confidence levels. The findings emphasize the potential for AI-powered maize quality 

monitoring systems to improve agricultural practices, lower labor costs, and assure 

consistent and accurate quality evaluation. This study demonstrates the viability of 

implementing advanced deep-learning algorithms in real-world agricultural settings, 

opening the door for future crop monitoring and quality management advances. 
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ABSTRAK 

 

Penemuan kecerdasan buatan (AI) telah mengubah pemantauan tanaman dan teknik kawalan 

kualiti dalam industri pertanian. Kajian ini menyiasat penggunaan rangkaian neural 

convolutional (CNN) dan algoritma YOLOv8 untuk meningkatkan pemantauan kualiti 

jagung. Teknik pengisihan jagung tradisional adalah intensif buruh, memakan masa, dan 

terdedah kepada kesilapan. Penggabungan teknologi AI menyediakan penyelesaian kepada 

kesukaran ini. Matlamat kajian adalah untuk mencipta sistem automatik untuk mengiktiraf 

dan mengkategorikan kebimbangan kualiti jagung berkaitan perosak dan penyakit 

menggunakan pembelajaran mesin dan teknik pengecaman imej. Model CNN dicipta 

menggunakan maklumat berlabel untuk mengenal pasti dan mengkategorikan kebimbangan 

kualiti jagung dengan betul kepada tiga kumpulan. Prestasi model dinilai menggunakan 

kaedah YOLOv8, yang terkenal dengan keupayaan pengenalan objek yang cepat dan tepat. 

Latihan telah dilakukan dalam persekitaran Google Colab, dengan pemberat pra-latihan 

untuk mempercepatkan penumpuan model. Penemuan menunjukkan peningkatan ketara 

dalam ketepatan dan kecekapan pengesanan. Ketepatan keseluruhan model ialah 92.4%, 

dengan ketepatan khusus kelas sebanyak 88% untuk "Sihat", 65.5% untuk "Reput Air" dan 

100% untuk "Pepijat." Purata Ketepatan (mAP) ialah 92.7%, dengan Intersection over Union 

(IoU) sebanyak 52.3%. Kajian visual dan statistik, seperti lengkung F1-Confidence dan 

Recall-Confidence, menawarkan maklumat tentang prestasi model pada tahap keyakinan 

yang berbeza. Penemuan ini menekankan potensi sistem pemantauan kualiti jagung yang 

dikuasakan AI untuk menambah baik amalan pertanian, mengurangkan kos buruh dan 

memastikan penilaian kualiti yang konsisten dan tepat. Kajian ini menunjukkan daya maju 

melaksanakan algoritma pembelajaran mendalam lanjutan dalam tetapan pertanian dunia 

sebenar, membuka pintu untuk pemantauan tanaman masa depan dan kemajuan pengurusan 

kualiti. 
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CHAPTER 1  

                                      INTRODUCTION 

1.1 Background 

         Zea Mays, the scientific name for Corn, is the popular name for the plant, 

which comes from Mexico or Central America. According to data from the US 

Department of Agriculture[1], as of 2020, the United States (US), China, Brazil, and 

Argentina accounted for most of the world's corn yield, or around 64.63% of total 

corn production worldwide. 

       Even though corn farming is a major economic sector in many countries, 

conventional sorting techniques—which primarily rely on human judgment—face 

difficulties related to higher labor costs, irregular time management, and grading 

errors. It is projected that the installation of automated sorting equipment will save 

labor expenses, speed up time management, and guarantee precise and consistent 

sorting of harvested corn. Utilizing developments in AI technology is one way to 

solve this problem. According to recent studies, corn quality indicators can be found 

by integrating AI using machine vision and image processing techniques. This 

method finds and isolates flaws in the corn product in addition to making quality 

inspection easier [2]. 

     There have been significant advancements in the use of AI in corn quality 

monitoring in recent years. By applying machine learning and image recognition 

techniques, AI evaluates visual information such as corn kernels, ears, and plants to 

figure out their quality. In addition to helping identify potential problems like pests, 

illnesses, or abnormal growth patterns, this study gives farmers the tools they need 

to take initiative-taking measures to solve these problems and maximize crop output 

and quality. 

     Corn monitoring involves more than just evaluating quality. It entails a thorough 

assessment that considers things like the existence of pests or diseases, moisture 

content, maturity, and general state. To minimize crop loss and guarantee the 
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security and integrity of the finished product, prompt identification and resolution 

of such issues are essential. Inadequate corn quality monitoring techniques could 

result in increased crop loss since pests and illnesses take longer to detect. This 

could also compromise food safety by distributing inferior produce that is 

contaminated with toxins or pathogens, endangering the health of consumers.  

Inadequate monitoring of corn quality can have negative economic effects as well. 

For example, it might lead to the rejection of subpar output that does not match 

industry requirements, which costs growers and the industry money. In addition, the 

selling of inferior corn could damage the industry's brand and cause it to lose market 

share and consumer confidence. 

         Native American communities in Mesoamerica have relied on corn as a basic 

food source for millennia. quality is influenced by several variables, such as post-

harvest procedures, growth circumstances, and plant genetics. Among the factors 

influencing corn’s condition are moisture content, test weight, disease or insect 

damage, and the presence of foreign materials. New developments in genetic 

engineering (GE) and breeding have produced superior corn cultivars with higher 

nutrient density, improved yields, and insect resistance  as shown in Figure 1.1 for 

the spoiled corn. Moreover, the quality of corn has increased dramatically because 

of sustainable farming methods that prioritize soil health and lessen dependency on 

chemical assistance. 

 

Figure 1.1   Spoiled Corn.                           



13 

        To sum up, the integration of artificial intelligence (AI) technology with 

conventional agricultural practices has the potential to transform the monitoring of 

corn quality, guarantee agricultural sustainability, and satisfy the changing needs of 

the global market. 

1.2 Motivation  

       Marketing fresh fruits and vegetables successfully requires maintaining quality 

through harvest and beyond. According to Cantwell, good visual, nutritional, and 

sensory attributes are closely linked to freshness [3], making this a crucial aspect of 

quality. Accelerated marketing is one way to achieve freshness, but there are other 

ways as well, such maintaining quality under controlled conditions for short periods 

of time (days). Data from MyAgri Consulting normally classifies post-harvest losses 

of fruits, like corn, into two categories: physiological losses and physical losses. 

Physical loss happens when the fruits are picked and either their physical structure 

is damaged, or they are attacked by microorganisms like fungus and bacteria. 

Changes in the color, taste, texture, and nutritional content of the harvested fruits 

result in physiological harm. Fruit sorting and grading are two post-harvest handling 

techniques that are intimately linked to both kinds of losses. A commodity with poor 

handling has a low market value. 

        A reasonable degree of freshness is required for agricultural goods, with a 

tolerance range of 3% to 10% classes for fruits and vegetables, according to records 

from the Federal Agricultural Marketing Board webpage [4]. It is forbidden to 

market items that do not meet the requirement of freshness since doing so would 

lower the quality of the other products in the lot. Freshness signs include the 

product's perfect skin, firm filling texture, softness, and absence of wrinkles.  

A consistent size tolerance of 3% to 10% should be present in agricultural goods of 

a particular grade [4]. When every product in a packing unit weighs less than the 

maximum permitted by the size categorization, the packaging unit is deemed to be 

uniform. 

         Previous studies have shown that a lot of researchers are looking at ways to 

improve the quality of fruits, such as corn, by focusing on post-harvest handling and 
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quality inspection, which involves grading and fresh fruit sorting. Lowering the rate 

of crop damage requires combining a good harvest with an unhealthy yield. 

 

1.3 Problem Statement 

       The major issue that 'Corn Detection' seeks to address is the absence of precise 

and effective techniques for detecting, grading, and categorizing corn products in 

agricultural settings. Existing methods, which are largely based on manual 

evaluation approaches, typically result in labor-intensive procedures, wasteful use 

of time, and an increased chance of subjective mistakes. 

 

        Lack of accuracy in corn detection procedures makes it difficult to maximize 

crop production and impedes accurate quality assessment. This jeopardizes the 

financial stability of corn farming techniques since farmers are unable to accurately 

appraise and market their produce. 

 

         A dearth of industry-standard automated corn detection equipment makes it 

difficult for the sector to discover variances in corn quality promptly. This has an 

impact on resource allocation and causes delays in early intervention measures, 

which are required to ensure optimal crop utilization and compliance with industry 

requirements. 

1.4 Research Objective  

(a) Develop a CNN model using labeled datasets to accurately identify and classify 

corn quality issues caused by pests and diseases. 

(b) Implement a classification system within the model to differentiate between 

three classes in the corn dataset, enhancing automated quality evaluation. 

(c) To evaluate the accuracy and response time of the identification performance by 

using YOLOv8.  
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1.5 Scope 

i. This system aims to systematically monitor corn quality, focusing on 

measurable outcomes such as accurate detection and classification. 

ii. Research will be focusing on three classes (Healthy, Water Rot, and Bug). 

iii. The procedure of detecting systems takes place in a bright area. 

iv. The system's development will be conducted using the Python language, 

integrating TensorFlow, PyTorch, and OpenCV for measurable 

improvements in accuracy. 

v. This system was trained for real-life detection by a microcomputer. 

 

 

1.6  Research Outline  

There are five primary chapters in the research structure. Sections and subsections 

are further separated into each of them. 

Chapter 1 Provides a comprehensive overview of the issue before focusing on its 

specifics at a technical level. It also outlines the scope and objective of the research. 

Chapter 2 A review of the literature on recent studies on crack detection and 

methods for identifying concrete cracks, together with benefits and drawbacks. It 

also goes over the definition of machine learning and its advantages. Finally, a 

literature summary is given. 

Chapter 3 Explains and delivers the methodology, which includes the tools and 

implementation strategy needed to complete the project. 

Chapter 4 Gives a summary of the project's initial results. 
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Chapter 5 Outlines the primary results and conclusions of the investigation, 

drawing on the issues covered in the earlier chapters, and offers suggestions for 

further research. 
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CHAPTER 2  

                                  LITERATURE REVIEW 

 

2.1 Introduction  

         In terms of contemporary farming and agricultural technology, corn detection 

and identification in agricultural landscapes are highly significant. Conventional 

techniques for corn plant identification, which depend on visual evaluations and 

manual inspection, are frequently time-consuming, tedious, and subjective. 

However, integrating machine vision technologies presents a practical way to 

transform corn detection methods. 

        Machine vision is a branch of artificial intelligence that gives computers the 

ability to understand and interpret visual input, such as images. Corn detection 

applications can benefit from machine vision algorithms, which have enormous 

potential for processing and interpreting visual data when they are used with 

specialized software and hardware. 

        The purpose of this literature review is to examine the effectiveness and 

drawbacks of different machine vision algorithms used especially for corn detection. 

It also looks at the opportunities and difficulties that come with using machine 

vision to accurately identify corn plants, suggesting directions for further study and 

advancement. 

        Through a thorough examination and assessment of the wide range of machine 

vision techniques and their uses in corn detection, this review looks to provide a 

thorough analysis of the state of the field. By using AI-driven methods, it aims to 

supply light on new patterns and insights that will direct future developments in the 

field of corn detection. 
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2.2 Bug/Disease Affect to Corn Plant Appearance 

         Corn (Zea mays) is a global staple crop that serves as a key source of 

nourishment and raw material for a variety of industries. However, effective corn 

farming is often challenged by a slew of pests and diseases that may have a 

substantial influence on the plant's look, output, and general health. The purpose of 

this literature review is to investigate and consolidate existing research on the impact 

of insect and disease infestations on the visual properties of corn plants [5]. 

 

         Insects constantly threaten corn fields, both above and below ground. Visual 

indicators of insect damage, such as leaf browning, wilting, and abnormalities, have 

been studied. Corn earworm (Helicoverpa zea), European corn borer (Ostrinia 

nubilalis), and corn rootworm (Diabrotica spp) are three notable insect pests. The 

effect of these insects on the look of corn plants varies, with some causing noticeable 

damage to foliage and others directly affecting corn's ears [6] 

  

         Fungal infections have a substantial impact on the health and appearance of 

corn plants. Common rust (Puccinia sorghi), northern corn leaf blight (Exserohilum 

turcicum), and southern corn leaf blight (Bipolaris maydis) are notable diseases. 

These diseases frequently present on the leaves as distinctive lesions, yellowing, 

and necrosis, affecting the overall visual quality of the corn plant. Furthermore, 

certain fungi harm corn ears, resulting in lower yield and less aesthetic appeal [7] 

 

          Bacterial and viral diseases are also important variables influencing corn plant 

appearance. Bacterial infections that generate visible streaks, lesions, and wilting 

include bacterial leaf streak (Xanthomonas vasicola) and Goss' wilt (Clavibacter 

michiganensis subsp, nebraskensis). Viral infections, such as corn dwarf mosaic 

virus (MDMV) and corn streak virus (MSV), contribute to mosaic patterns, stunting, 

and leaf deformity, affecting the overall appearance of corn plants as shown in 

Figure 2.1 [8] 



19 

 

Figure 2.1  Illustrates the Bug/Disease in corn [6]. 

 

2.3 Artificial Intelligence 

  Artificial Intelligence (AI) in agriculture has received a lot of interest in recent 

years, with academics looking for new ways to improve crop monitoring and 

management. Corn, being one of the world's most important staple commodities, is 

an important target for AI-based detection and classification systems. This literature 

review is to offer an overview of the current state of research in the area, 

highlighting significant approaches, problems, and advances in the field of artificial 

intelligence for corn identification and categorization [9] 

 

         One popular method for detecting corn is to use remote sensing techniques 

such as satellite photography and unmanned aerial vehicles (UAVs). Researchers 

have investigated the use of AI algorithms in conjunction with these technologies to 

extract important information from corn fields. Convolutional Neural Networks 

(CNNs) have proved to be successful in evaluating high-resolution satellite photos, 

allowing for accurate corn crop identification and mapping [10]. 
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       Corn identification and categorization rely heavily on image processing and 

computer vision. Numerous researchers have used deep learning approaches to 

interpret photos collected in the field, such as CNNs and recurrent neural networks 

(RNNs). These approaches enable the extraction of pertinent information such as 

leaf patterns, plant height, and disease signs, allowing for more exact corn 

categorization [11]. 

 

         Deep learning and object identification technologies may also be used, as 

proven by the lightweight model LW-YOLOv7, which can recognize corn seedlings 

in the field in real-time [12]  Furthermore, for identifying contaminants and 

breakage rates in harvested corn grains, a classification and identification approach 

based on a feature threshold and a backpropagation neural network has been 

presented [13]. 

 

         Despite tremendous advances, obstacles remain in the development and 

deployment of artificial intelligence for Corn identification and categorization. Data 

quality issues, environmental variability, and the requirement for big, labeled 

datasets are all ongoing concerns. Furthermore, the interpretability of sophisticated 

AI models is still an issue, because comprehending the decision-making process is 

critical for establishing confidence and acceptability in agricultural operations. 

2.4 Conventional Neural Network (CNN) 

      In agricultural activities, it is essential to recognize and evaluate the quality of 

corn with pests or diseases. It takes advanced techniques to use artificial intelligence 

(AI) for corn categorization.  Artificial intelligence has been useful in analyzing 

corn quality about pests and illnesses. Specifically, it has done so by using machine 

learning techniques such as CNNs in conjunction with frameworks like You Only 

Look Once (YOLO) combined with Python and OpenCV [14]. 
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          CNNs are highly skilled at identifying patterns and features. They are praised 

for their abilities in a variety of computer vision applications. Their capacity to 

independently assimilate discrete attributes from input data renders them 

indispensable in the identification and classification of any problems that might 

impact corn quality. By using CNN architectures, problematic elements may be 

identified accurately and efficiently, which improves corn health evaluation and 

management [15]. 

 

         Prominent for its real-life item identification, YOLO integrates object 

recognition and classification into one cohesive neural network with ease. Because 

of its accuracy and speed, it can identify and classify various corn quality problems, 

which is in line with the needs of agricultural settings for effective detection. 

YOLO-based solutions enable quick decision-making in the management of corn-

related issues, such as diseases or pests, through real-life analysis [16]. 

 

         Programming languages like Python, which are well-known for their large size 

of libraries and user-friendliness, are perfect for incorporating AI into agriculture. 

The versatility of this language as a bridge language in situations involving cross-

language programming fits in nicely with the many requirements of AI-powered 

agricultural solutions. One of the most advanced image-processing packages for 

Python is OpenCV, which was first created by Microsoft and is a powerful image-

processing program. In the context of evaluating corn health for pests or illnesses, 

its connection with Python simplifies the manipulation and analysis of visual data. 

Data scientists and agricultural specialists may effectively analyze and categorize 

corn quality by utilizing AI techniques, such as CNNs coupled with YOLO and 

Python backed by OpenCV. This will help with proactive pest or disease 

management for increased crop health and yield. like those shown below use Python 

and OpenCV as their primary programming languages [17]. 
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Figure 2.2  Image Classification [15]. 

    

                 

 

 

 

Figure 2.3  Object Detection[17]. 

 

 

 

 

Figure 2.4  Segmentation[17]. 
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 YOLO's integration with OpenCV and Python for feature extraction from traffic 

signs has been thoroughly investigated. In conclusion, Yolo has become the main 

Python and OpenCV-based open-source tool for picture manipulation and detection. 

Furthermore, model testing is possible due to the magnitude of the plant dataset for 

the solutions shown in Figures 2.2, 2.3, and 2.4 [17]. 

2.5 Feature Extraction  

        Data reduction is the process of dividing a huge amount of raw data into 

smaller, more manageable chunks, of which feature extraction is a subset. 

Processing it afterward will be less of a headache [18]. The large number of 

variables included in these enormous datasets is one of their main characteristics. 

Handling these variables comes with a considerable computational cost. Feature 

extraction assists in identifying the optimal feature from such vast data sets by 

selecting and combining variables into features. Using feature extraction algorithms 

may lead to additional benefits including improved data visualization, faster 

training, reduced overfitting risk, and increased accuracy [19]. Rosanna C. et al. 

conducted a second investigation on the categorization of cavendish bananas [20]. 

       Physical characteristics are the key criteria for determining a 

Cavendish banana's grade, banana's grade. Image conversion methods are employed 

to satisfy the requirement of a defect score of 0–2. The finger size requirement is 

meticulously defined and followed during the sample data prequalification 

procedure. You may measure the length of your finger by measuring the outer curve 

from the very tip of the fruit to the very tip of the stem using a measuring tape. 

Establishing a trustworthy sample size and a reference measurement is the aim. 

 

2.5.1 Color Statistical Features 

         Megha's study [2] used ideas like color statistical characteristics and color 

texture features to perform trials on the quality of perfect and flawed tomatoes. 

Typically, an image is taken and then divided into its colors, such as red (R), green 

(G), and blue (B), also referred to as RGB color. The computation of an RGB color's 

mean, standard deviation, and skewness are shown in equations (2–1), (2–2), and 
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(2-3), respectively. These data can be used by authors [2] to calculate an image's 

average color intensity. When a color has a high mean value, it seems bright in the 

image, and when it has a low mean value, it appears dark. 

 

               Color Mean                                                (2-1) 

 

           Customers may then calculate the standard deviation by utilizing the values 

of each pixel as well as the average. Users may be able to learn something about the 

image's color contrast by looking at its standard deviation. There is a lot of color 

contrast in the image if the standard deviation of a group of hues is high. Less 

fluctuation in the histogram levels will result in a less noticeable color contrast [21]. 

Standard Deviation                     (2-2) 

 

           The degree of skewness measures the degree of dissymmetry. Researchers 

determine that a data set is symmetrical when there is little to no change in the data 

from left to right. Since a normal distribution has skewness near zero, any symmetric 

data should likewise have skewness close to zero. 

Skewness =                                                  (2-3) 

 

2.5.2 Color Texture Features  

         The image's grey-level co-occurrence matrices (GLCM) are used to extract the 

four features from each color channel. The components of 𝑖, 𝑗LCM reflect the 

probability density function 𝑃𝑖𝑗, which counts the instances of pixel pairs with 

intensity values (𝑖,𝑗) being separated by a specified distance along the direction T. 

With an inter-pixel length of 1, the current study [2], [22] considers four angular 

directions: 0, 45, 90, and 135 degrees. The formulae for the contrast, correlation, 
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energy, and homogeneity of the attributes extracted from the GLCM are shown in 

equations (2–4), (2–5), (2–6), and (2–7), respectively. 

Contrast =                   (2-4) 

Correlation =          (2-5) 

Energy =                      (2-6) 

Homogeneity =                                 (2-7) 

 

            Based on this experiment, M. P. Arakeri et al. [2] have concluded that a 

tomato's color is an excellent predictor of its maturity stage. As a result, to identify 

whether a tomato is ripe or not, the color feature is extracted from the image. These 

formulae are used to extract the R, G, and B values from the picture and average 

them. The threshold level is established by comparing the mean R with the criteria. 

Researchers can determine if a tomato is ripe if its level rises beyond a specific 

threshold; if not, it is not. Equation (2-8), (2-9), and (2-10) displays the formula for 

the mean value of the red layer, green layer, and blue layer, respectively. 

     Mean R =                                                           (2-8) 

Mean G =                                                                (2-9) 

  Mean B =                                                             (2-10) 

 

            The tomato image is broken down into 12 color texture features and 9 color 

statistical characteristics, for a total of 21 attributes in total, according to [2]. To 

improve classification accuracy, a suitable feature set is selected from the original 
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feature vector using the sequential forward selection (SFS) approach. Using an 

empty set as input, this greedy selection approach iteratively adds one characteristic 

from the subset to the subgroup if doing so improves the best possible answer. 

2.6 Object Detection and Classification 

      Finding and categorizing things that are already in an image, along with marking 

them with rectangular bounding boxes that stand for the degree of certainty in their 

existence, is the process of object detection. Object-detecting methods can be used 

in two types of frameworks. One makes use of the conventional object detection 

pipeline, which starts with the creation of regional suggestions and continues with 

classifying each proposal based on the diverse kinds of objects. The second method 

takes a regression or classification approach to object identification, using a unified 

framework to swiftly arrive at the necessary results (locations and classifications) 

[23]. 

 

2.6.1 YOLO (You Only Look Once) 

 

      Researchers have been interested in pre-trained models like YOLO in recent 

years due to their ease of use and increased item identification accuracy. YOLO, an 

acronym for "You Only Look Once," is a CNN-based model that starts learning by 

transfer learning using pre-trained weights. In contrast to conventional CNN 

models, YOLO analyses the complete image in a single instance, which enables it 

to anticipate object class probability and bounding box locations. Compared to 

creating a CNN from scratch, this method requires a lot less work, which leads to 

faster learning and real-life detection capabilities as Figure 2.8 shows. 
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Figure 2.5  One-stage Detector Architecture [24]. 

          Take a closer look at each element of the architecture, beginning with the 

backbone, which is a trained network that is intended to extract sophisticated picture 

information. In this technique, the image's spatial resolution is decreased but its 

feature channel resolution is improved. Subsequently, the neck component that 

extracts feature pyramids is incorporated into the model. This aids in the model's 

good generalization to objects with varying scales and sizes. Finally, by adding 

anchor boxes to the feature maps, the model head completes the last duties. It 

produces the output, which consists of bounding boxes, classes, and abjectness 

scores [24] 

 

 

Figure 2.6  Is a Timeline of the YOLO Version [24] 

                

       The evolution of YOLO (You Only Look Once) models is shown in Figure 2.9, 

which shows the development from YOLOv1 to the most recent YOLOv8. 

Architecture, feature extraction, and performance optimization are improved with 

every iteration. This in-depth analysis seeks to disentangle the unique features of 

every YOLO iteration, clarifying the complex advancements and changes included 

in their designs. 

 

1- YOLOv1 uses Darknet-19, a simple convolutional neural network (CNN) 

structure, as the foundation for its feature extraction system. 

2- YOLOv2 improves performance by Darknet-19 (v2), a more resilient CNN 

architecture that uses residual connections to manage deep networks. 
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3- YOLOv3 uses a unique design known as Darknet-53 that makes use of shortcut 

connections as well as residual connections to increase performance. 

4- YOLOv4 presents a new backbone architecture known as CSP-Darknet-53, 

which is an improvement on Darknet-53. Cross-Stage-Partial (CSP) connections 

are included to improve performance even more. 

5- YOLOv5 has as its foundation the CSPDarknet-53 network design, which is an 

improved version of the YOLOv4 architecture. Interestingly, to enhance its 

capabilities, it integrates several feature extraction pathways with different 

resolutions and sizes. 

 

6- YOLOv6 presents a PAN neck, an efficient decoupled head, and an efficient 

backbone known as EfficientRep. Label assignment, new losses, quantization 

techniques, and self-distillation are all incorporated. With an accuracy and 

performance improvement over earlier models, YOLOv6 achieved an AP of 

57.2% on the MS COCO test-dev at 29 frames per second on an NVIDIA Tesla 

T4. 

 

7-  YOLOv7 outperformed other object detectors in terms of accuracy and speed. 

Changes to the architecture were added, including scaling for concatenation-

based models and the creation of the Extended Efficient Layer Aggregation 

Network (E-ELAN). Several other "bag-of-freebies" were also used by YOLOv7, 

such as planned re-parameterized convolution, batch normalization in conv-bn-

activation, coarse and fine label assignment, implicit knowledge from YOLOR, 

and exponential moving average for inference. Although they lengthened the 

training period, these improvements increased accuracy without 

 compromising inference speed. 

8- YOLOv8 supports a range of vision activities and provides five scaled variants. 

Although its structure is identical to that of YOLOv5, it adds modifications to the 

CSPLayer, which is now known as the C2f module. These modifications improve 

detection accuracy by merging contextual data with high-level features, with its 

anchor-free model and decoupled head, YOLOv8 improves accuracy by letting 
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each branch concentrate on its specific task. For bounding box loss, it employs 

CIoU and DFL loss functions; for classification loss, binary cross-entropy is 

used. The semantic segmentation model, YOLOv8-Seg, maintains speed and 

efficiency while achieving state-of-the-art results. YOLOv8 offers deployment, 

training, and labeling integration options. Using an NVIDIA A100 and 

TensorRT, the largest version, YOLOv8x, obtains an AP of 53.9% at a 640-pixel 

input size at 280 frames per second. 

       The official YOLOv1–YOLOv4 models previously used The Darknet 

framework, an open-source convolutional neural network based on C language. But 

in 2020, Ultralytics released YOLOv5, which made use of the PyTorch framework. 

PyTorch is an open-source machine learning library that can be used with Python or 

C++ to create and train deep learning models. Using PyTorch, YOLOv5 beat 

YOLOv4 and YOLOv3 in terms of accuracy and training and inference speeds, 

according to comparative analyses conducted on the MSCOCO dataset [18] It is 

important to keep in mind that YOLO may be utilized with TensorFlow, Keras, and 

Caffe—three additional popular deep-learning frameworks. The object detection 

models YOLOv6, YOLOv7, and YOLOv8 are incremental improvements upon one 

another. An efficient decoupled head, PAN neck, and backbone are introduced by 

YOLOv6 and YOLOv7 uses scaling approaches, and E-ELAN architecture 

modifications to increase training efficiency and accuracy. YOLOv8 achieves state-

of-the-art performance in a variety of vision tasks by introducing an anchor-free 

model with a decoupled head, while still using a comparable backbone to YOLOv5. 

Every version offers options for speed, accuracy, and particular use cases in object 

detection, while also bringing advancements in performance, loss functions, and 

training methodologies [19] 

 

 

Figure 2.7  YOLO Architecture [25].                                 
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       The effectiveness of YOLO models can be evaluated by comparing the 

Intersection over Union (IoU) of the ground truth bounding box (red in Figure 2.10) 

with the predicted bounding box (blue in Figure 2.11). An IoU number greater than 

1 (which ranges from 0 to 1) shows an exact prognosis. To evaluate the quality of 

forecasts, a threshold is set to classify predictions as good or bad based on this IoU 

value [25]. 

 

 

Figure 2.8  Intersection Over Union Concept [25]. 

 

2.6.2 You Only Look Once (YOLO) Framework 

 

Guojin Li et al. created Lemon-YOLO (L-YOLO), a sophisticated object 

recognition system designed exclusively for recognising lemons in natural settings. 

This method includes numerous significant enhancements over typical YOLO 

models. The main change is the addition of a new backbone network, 

SE_ResGNet34, which replaces the DarkNet53 seen in YOLOv3. This 

improvement dramatically increases feature extraction capabilities, allowing the 

algorithm to better locate lemons in complicated backdrops. Additionally, the 

addition of SE_ResNet modules improves the quality of convolutional features, 

resulting in more accurate detections. 

 

These enhancements have yielded exceptional performance figures on the lemon 

test set, with an average detection accuracy of 96.28% and a processing speed of 

106 frames per second (FPS). The algorithm's excellent accuracy assures that it can 

correctly recognise lemons, while its quick processing speed makes it suited for real-

time applications. Lemon-YOLO was developed and tested using PaddlePaddle 
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1.7.0 and Python 3.7.3 on a Windows 10 environment. These software tools offered 

a stable environment for developing and testing the algorithm, proving its usefulness 

and efficiency in real-world scenarios. Lemon-YOLO is a significant advancement 

in the specialised field of agricultural object recognition, providing a strong tool for 

increasing the efficiency and accuracy of lemon harvesting and quality control 

procedures. 

 

 Table 2-1 compares the performance of several object identification models on 

the Lemon dataset. It focuses on the backbone architecture, input size, average 

precision (AP) %, and frames per second (FPS). Among the models, L-YOLO has 

the greatest AP (96.28%) and the quickest processing speed (106 FPS). Other 

models, such as YOLOv4 and EfficientDet-D0, demonstrate good accuracy but vary 

in speed. SSD is known for its speed, whereas RetinaNet and Faster R-CNN provide 

great accuracy but are slower. Overall, L-YOLO has the most accuracy and 

quickness[26]. 

 

Table 2-1 Performance of Different Models on Lemon Dataset[26]. 

 

 

Wei Chen et al. looked at real-time apple detection in natural settings to improve 

the efficiency of autonomous harvesting robots and orchard management. They 

suggested Des-YOLO v4, an upgraded version of YOLO v4 with increased 

detection speed and accuracy. Key innovations include the use of an AP-Loss-based 

class loss algorithm to control sample imbalance and the replacement of traditional 
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NMS with Soft-NMS to better handle overlapping apples. The software tools used 

included a modified YOLO v4, Matlab for preprocessing, and Labelling for 

annotation. The hardware arrangement included a small OV2640 camera installed 

in an eye-in-hand position, allowing the robot to continually choose fruit. When 

tested on a custom dataset, Des-YOLO v4 has a mean average precision (mAP) of 

97.13% and a recall of 90% at 51 frames per second. Practical testing revealed that 

the robot could select apples in 8.7 seconds per fruit, with a 92.9% 

 

. Table 2-2 and Figure 2.9 compare the performance of Faster R-CNN, YOLO 

v4, and Des-YOLO v4 detection algorithms, emphasizing their backbone networks, 

mean Average Precision (mAP), and detection times. Des-YOLO v4 is the most 

accurate, with a mAP of 93.1% and a respectable detection rate. Faster R-CNN and 

YOLO v4 had mAPs of 88.1% and 87.9%, respectively. The accompanying photos 

show the apple identification process using YOLO v4, which includes partitioning 

the image into grids, forecasting class probabilities, regressing bounding boxes, and 

fine-tuning the final result. This visualization demonstrates YOLO v4's ability to 

effectively recognize and localize apples inside images[27]. 

 

 

Table 2-2 Performance Comparison of Different Algorithms[27]. 

 

 
Figure 2.9 Apple detection based on YOLO v4. (a) Dividing image into S∗S grids. (b) 

Predicted class probability. (c) Regression bounding[27]. 
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Baoju Wang et al. suggested an upgraded lightweight YOLOv5s model with the 

goal of enhancing maize and weed detection precision for optimal spraying 

applications. The model's achievements are focused on tackling critical difficulties 

in agricultural computer vision, including data imbalance and model size efficiency. 

To address data imbalance, the researchers used advanced data augmentation 

techniques, which were critical in improving the model's capacity to reliably 

discriminate between maize and weeds. Furthermore, the SENet (Squeeze-and-

Excitation Network) module improves the model's capacity to focus on essential 

characteristics, resulting in higher overall detection accuracy. Furthermore, the C3-

Ghost-bottleneck module plays an important role in lowering the model's size while 

preserving or even improving its performance metricsThe improved YOLOv5s 

model was trained and evaluated on a high-performance computer environment 

designed for deep learning. Windows 10, CUDA 10.2, Python 3.7, and PyTorch 

1.10 were installed to ensure software framework compatibility and efficiency. 

 

 Empirical findings showed considerable improvements over the baseline 

model, including a 3.2% increase in mAP%0.5. The average accuracy (AP) for corn 

detection went from 93.2% to 96.3%, while weed AP rose from 85.6% to 88.9%. 

These advances demonstrate the usefulness of model adjustments in attaining more 

exact crop and weed identification, which is critical for optimizing spraying 

operations in precision agricultural applications. Weeds were recognized in 418 of 

the 465 occurrences, with 386 TP, 32 FN, 60 false positives (FP), 380 precise, and 

126 wrong sprays[28]. 

 

 

Table 2-3  Test results of field precision spraying operation[28]. 

 
 

Table 2-4 compares the performance of the YOLOv5s with its upgraded version: 

for maize, the AP (average precision) increased from 96% to 97%, the mAP@0.5 

(mean average precision at 0.5 IoU) from 91.7% to 93.4%, and the speed increased 
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from 6ms/frame to 3.2ms/frame. For weed detection, AP increased from 87.4% to 

89.8%, while mAP@0.5 increased from 91.7% to 93.4%, with comparable speed 

gains. This shows that the improved model has higher precision and faster 

processing[28]. 

 

Table 2-4  Evaluation results of test set under different conditions[28]. 

 
 

 

Chen Jiyao et al. created an improved algorithm for corn cob defect recognition 

based on the YOLOv7 architecture, which included novel components to boost 

detection accuracy. The Explicit Visual Centre Block (EVCBlock), which was 

created to improve the identification of minute and detailed flaws on maize cobs, is 

central to their strategy. This feature solves a typical issue in agricultural imaging: 

small objects necessitate precise localization and categorization. Furthermore, the 

Receptive Field Enhancement Module (RFEM) was created to extract complete 

characteristics from defective maize cobs, boosting the model's capacity to detect 

small alterations that indicate a defect. 

 

 The improved YOLOv7 model was experimentally validated under controlled 

settings using Python 3.9, using four batches and 200 epochs of training. The 

findings showed significant performance improvements, with the model reaching 

an average accuracy (mAP) of 88.1%. This is a significant 12.2 percentage point 

increase over the original YOLOv7 baseline. Such developments are critical in 

agricultural quality control applications, where precise defect identification is 

essential for assuring product quality and optimizing production operations. By 

combining EVCBlock and RFEM, the improved model not only improves detection 

sensitivity but also provides a solid framework for automating inspection duties in 

agricultural contexts, thereby lowering operational costs and increasing overall 

efficiency. [29] 

. 
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2.7 Application and Algorithm in Fruit Classification System 

2.7.1 Region Proposal-Based Model 

 

 

      The region proposal-based model is a basic method that is like the attentional 

mechanism of the human brain and is applicable in the field of corn detection. This 

model works in two phases: first, it performs an exhaustive scan of the entire image, 

and then it focuses on analyzing those areas that are important to the overall visual 

environment. When it comes to corn detection, this approach is effective at finding 

areas that are most likely to have corn plants. Through close examination of the 

innate traits and attributes of these chosen areas, the model skillfully distinguishes 

between areas that are corn-producing and areas that are not, so enhancing the 

precision and efficacy of corn plant identification [30] 

 

      By integrating Convolutional Neural Networks (CNNs) with the sliding window 

technique, this model allows bounding boxes (BBs) to be directly predicted from 

positions on the post-confidence evaluation of the highest-level feature map of 

underlying object categories. The exact location of corn plants inside the image is 

made possible by the prediction approach, which involves inferring BBs directly 

from specified coordinates on the feature map [31]. 

 

2.7.1.1 R-CNN 

In the Fruit Classification System, R-CNN plays a crucial role in enhancing the 

quality and accuracy of candidate bounding boxes (BBs) by leveraging a deep 

architecture to extract high-level features from the input data [32]. suggested R-

CNN as a remedy for these problems. They surpassed the previous best result by 

more than 30% with a mean average precision (MAP) of 53.3% in their study [33]. 

There are three main phases in the R-CNN flowchart, each of which has a 

specialized function in the detection process as shown in Figure 2.5. 
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Region Proposal Generation: For each image, the Fruit Classification System 

generates approximately two thousand region proposals using a technique called 

selective search [26]. This method of selective search effectively generates accurate 

candidate bounding boxes of varied sizes by combining saliency signals with 

bottom-up grouping. This technique allows for faster and more exact detection 

results by reducing the search area needed for item detection [24]. 

 

CNN-Based Deep Feature Extraction: To obtain a consistent resolution, each 

region proposal is scaled or cropped at this stage. The final representation of the 

area is then obtained by extracting a 4096-dimensional feature using the CNN 

module. For every proposed region, a robust, semantically rich, and high-level 

feature representation can be obtained because of CNN's large learning capacity, 

expressive skills, and hierarchical structure [34]. 

 

Classification and Localization: Using pre-trained category specific linear 

SVMs for several classes, each region proposal is given a score that considers both 

positive and background (negative) regions. The scored regions are filtered using a 

greedy non-maximum suppression (NMS) algorithm to produce the final bounding 

boxes for the detected object locations. Bounding box regression is then used for 

refining. 

 

                        

                           Figure 2.10  Flowchart Of R-CNN [33].               

2.7.1.2     Fast R-CNN 

      The independent CNN forward propagation for every area proposal, which does 

not use shared computing, is the main bottleneck in an R-CNN performance. These 

regions often overlap; therefore, a significant amount of computation is duplicated 
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during independent feature extractions. The fact that CNN forward propagation is 

only conducted on the entire image is among the most important improvements 

provided by the fast R-CNN over the R-CNN as in Figure 2.6 [33].  

 

 

Figure 2.11  Architecture of Fast R-CNN [33]. 

                             

Fast R-CNN major computations are as follows: 

 

In contrast to the R-CNN, the rapid R-CNN more effectively uses the complete 

image as input for feature extraction. As a result, considering each area suggestion 

independently is no longer necessary Figure 2-2 Architecture of Fast R-CNN [34]. 

Moreover, training is possible for the CNN that powers the fast R-CNN. When a 

picture is fed into this CNN, the resultant form is 1×c×h_1×w_1, where c stands for 

the number of channels and h_1 and w_1 stand for the output's height and width, 

respectively. 

 

Assume that distinct region suggestions of varying forms are produced by a 

selective search method. These region suggestions pinpoint interesting areas in 

CNN’s output, which also come in a variety of forms. Additional features of the 

same shape—specified as height h_2 and width w_2—are taken from these regions 

of interest to make concatenation easier. To do this, the fast R-CNN adds a layer 

known as the area of interest (ROI) pooling layer. This layer receives the region 

suggestions and CNN output as inputs, producing concatenated features with the 

shape n×c×h_2×w_2. For every region suggestion, these concatenated features are 

then extracted. Concatenate the features and create an output with the form n × d, 
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where d is a model-designed variable. This can be done by using a fully connected 

layer. 

 

The bounding box and class are determined using the fast R-CNN for each of 

the proposed regions. To anticipate the classes, the fully connected layer's output is 

specifically changed into the shape of n×q, where q is the number of classes. To 

forecast the bounding boxes, the output is additionally further converted into an n×4 

shape. For class prediction, the SoftMax regression approach is used. 

 

2.7.1.3 Faster R-CNN 

       The fast R-CNN model usually uses selective search to provide many region 

recommendations to increase object detection accuracy. In place of selective search, 

the quicker RCNNN model presents a region proposal network. By using this 

method, fewer regions are suggested while maintaining the same degree of accuracy 

[35]. The faster R-CNN uses a region proposal network in place of selective search, 

which is the main way in which it differs from the fast R-CNN in terms of how it 

proposes regions. The model's remaining elements are unaltered as table 2.1 below 

explains the differences. 

 

Table 2-5  Difference between R-CNN, Faster R-CNN, and Faster R-CNN [28]. 

 

 

Yunling Liu et al. used sophisticated object identification algorithms to 

recognise maize tassels, combining the Faster R-CNN framework with ResNet and 

VGGNet as feature extraction networks. The process entailed taking photographs of 

maize tassels with a UAV and a cell phone, then annotating bounding boxes around 

the tassels. These annotated photos were then used to train Faster R-CNN models to 

correctly identify maize tassels. An important adjustment to their technique was 



39 

altering the anchor sizes in the Region Proposal Network (RPN) to improve the 

identification of little tassels, which is a critical step in boosting recognition 

accuracy. 

 

 

The investigation provided substantial results, confirming ResNet models' 

higher performance over VGGNet. The ResNet101 model obtained a remarkable 

average accuracy (AP) of 94.99% on 600x600 UAV pictures and 89.96% on 

5280x2970 UAV images with the upgraded anchors. Furthermore, when used with 

mobile phone photographs, the method proved to be quite successful. After resizing 

the photos, the approach had an AP of 95.95%. These findings demonstrate the 

effectiveness of deploying UAVs and mobile devices for agricultural surveillance, 

giving a dependable and precise method of recognising maize tassels. The study 

emphasises the possibility of combining sophisticated neural networks with novel 

imaging techniques to improve precision agriculture operations[36]. 

 

 
Figure 2.12 Faster R-CNN: Feature Extraction, Region Proposal, and 

Classification[36]. 

 

Figure 2.12 depicts the architecture of a region-based convolutional neural 

network (R-CNN) for object identification. The method begins with a backbone 

network (a), which is made up of five convolutional layers that create feature 

mappings from the input picture. The Region Proposal Network (RPN) later 

processes these feature maps. The RPN uses 3×3 and 1×1 convolutions to detect 

areas with objects, discriminate between foreground and background, and perform 

initial bounding box regression. The RPN-proposed areas are next subjected to 

Region of Interest (RoI) Pooling (c), which resizes them for further processing using 

fully linked layers. During this stage, each region is classified into particular item 
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categories using a softmax function, and the bounding box coordinates are refined 

for exact object localization[36]. 

 

In terms of image recognition of figure 2.13 , the graphic depicts a VGG19 

convolutional neural network (CNN) architecture. This deep learning model is 

excellent at recognising and categorising items in photos. VGG19 does this by 

methodically processing the image using a number of layered layers. The early 

convolutional layers function as feature detectors, distinguishing edges, shapes, and 

other basic visual components. Subsequent pooling layers compress this data, 

making it easier to handle on the network. Finally, fully-connected layers analyse 

the retrieved characteristics and assign probabilities, effectively identifying which 

category the picture belongs to (for example, cat, automobile). The complicated 

interplay between these layers enables VGG19 to understand complex patterns and 

perform outstanding picture recognition[36]. 

 

 
Figure 2.13  Extracted feature map using VGG19 with 600*600 resolution image. Conv 

represents convolutional neural network[36]. 

 

2.7.1.4 Mask R-CNN 

         For precise object instance segmentation, Mask R-CNN is a potent deep 

learning system that combines object identification with pixel-level mask creation. 

For our project, used the Mask R-CNN model that Matterport Mask_RCNN offered. 

Pretrained on a variety of datasets, the model provides a solid basis for use. By 

adding more training and manually annotating the model, improved its performance 

in a particular target domain. This research goals are facilitated by the exact object 
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recognition and segmentation made possible by the incorporation of Mask R-CNN 

into our system as shown in Figure 2.7 [37]. 

 

 

 

Figure 2.14  The Mask R-CNN Framework, for Instance, and Segmentation [37]. 

                            

           Mask R-CNN's capacity to manage many items in an image at once is one of 

its key features. This is accomplished by adding, alongside the branches for object 

recognition and classification, a new branch to the network that oversees the 

production of binary masks. Additionally, Mask R-CNN can manage several object 

classes in a single image. The network uses discrete, fully connected layers for each 

object class to achieve this, which enables the network to notice and recognize the 

unique characteristics of each class. 

 

    The Mask R-CNN technique has become a potent object instance segmentation 

solution in a variety of fields, including image editing, autonomous driving, and 

medical picture analysis. Due to its adaptability and efficiency, it has gained 

popularity in various areas where it allows for the exact and accurate delineation of 

object boundaries for advanced driving systems, improved visual comprehension, 

and medical diagnostic applications. 

 

Henry O. Velesaca et al. used the Mask R-CNN architecture with a ResNet-101 

backbone for maize kernel instance segmentation. For classification, they created 

the CK-CNN, a one-of-a-kind lightweight network made up of three convolutional 
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layers and two fully linked layers. The researchers assembled a comprehensive 

collection of maize kernel photos, which included shots of both clusters of kernels 

and single kernels arranged in a grid. The Mask R-CNN was trained on cluster 

pictures to separate distinct kernel instances. The CK-CNN divided these segmented 

cases into three categories: great corn, flawed corn, and contaminants as shown in 

figure 2.15, and 2.16[38]. 

 

 

Figure 2.15 Mask R-CNN architecture used for corn kernel instance segmentation[38]. 

 

 

 
Figure 2.16  Proposed corn kernel classification network (CK-CNN)[38]. 

 

The suggested pipeline displayed excellent performance. The Mask R-CNN has 

an average Intersection over Union (IoU) of 0.903 for binary mask segmentation 

and 0.890 for instance segmentation. The CK-CNN has a classification accuracy of 

97.9% for good maize, 90.0% for defective maize, and 97.3% for pollutants. This 

performance oumethods butther models such as VGG16, ResNet50, and Mask R-

CNN classification methods, but utilizing substantially less parameters[38]. 
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Furthermore, the segmentation and classification pipeline stood out for its 

efficiency and accuracy. The Mask R-CNN's strong IoU scores show precise 

segmentation capabilities, which are essential for correctly detecting and separating 

individual kernels from clusters. Following segmentation, the CK-CNN's excellent 

classification accuracy guarantees that each kernel is accurately recognised, 

increasing the system's dependability. The findings indicate that combining Mask 

R-CNN for segmentation and CK-CNN for classification may successfully meet the 

issues of maize kernel quality evaluation, resulting in a robust solution for 

agricultural applications. The lightweight CK-CNN's efficiency benefits emphasise 

the potential for real-time applications, making this method suitable for 

implementation in realistic situations[38]. 

 

Table 2-6  Results of classification stage for 3-classes[38]. 

 
 

 

 

2.7.2 Other Machine Vision Approach 

 

      Various machine vision approaches, such as Support Vector Machines (SVM) 

and Artificial Neural Networks (ANN), can be very important in the field of corn 

detection. Using a hyperplane that is defined in a multi-dimensional space, SVM, 

for example, may successfully separate various corn varieties or attributes within 

the image. By drawing a border that separates different kinds of corn, this approach 

makes it easier to classify new data points as positive (corn) or negative (non-corn) 

depending on how they are positioned about this hyperplane. This technique makes 

it easier to classify different types of corn, similar to the strategy used to distinguish 

plastic products in Figures 2.17, and 2.18 [39]. 
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Figure 2.17  Hyperplane of SVM [39]. 

 

Figure 2.18  Sample Artificial Neural Network Architecture [39]. 

 

        Conversely, although drawing inspiration from biological neural networks, 

Artificial Neural Networks (ANNs) may lack the specialized capabilities needed to 

tackle computer vision problems related to corn detection. In this domain, 

Convolutional Neural Networks (CNNs) are often more effective than classic 

ANNs, demonstrating higher skills to solve intricate visual tasks related to 

distinguishing various corn plant kinds or attributes in farm scenes [40]. 

 

          The primary distinction between YOLO and SSD is that the former uses priors 

(anchor boxes) while the latter deals with numerous bounding boxes for the same 

instance of an object. Priors are pre-calculated, fixed-size boxes with a score greater 

than 0.5 that use the IOU methodology. They bear similarities to the original 

ground-truth boxes. They laid the groundwork for bounding-box regression right 
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away. Following that, there will be less accuracy loss and more precision as the 

convolution model starts to regress towards the ground-truth bounding boxes [39]. 

 

 

Figure 2.19  SSD framework[40]. 

 

2.8 Comparison Between Object Detection Models 

         In this part, Yolo, SSD, and Faster-RCNN will be evaluated for real-time 

vehicle type recognition [41]. However, it's important to remember that reliable 

comparisons across various object detectors might be difficult. There is no simple 

solution to the debate over which model is superior. Decisions are made in the 

context of real-world applications to strike a compromise between speed and 

accuracy. In addition to the different types of detectors, additional factors that could 

affect performance must also be considered. The dataset for the experiment is 

shown in Table 2-7. 

Table 2-7  Data Set for Vehicle Type Recognition [41]. 

 

 

           Three models were trained on the same set of data: YOLO, SSD, and Faster-

RCNN. YOLO v4 [42], the most recent version, to apply YOLO, and the 

performance was improved. Mobile Net v1 is used for (SSD), and Inception v2 is 

used for faster-RCNN. After comparing MAP and FPS, concluded that YOLOv4 is 
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the most suitable model among the examined object identification techniques. As 

illustrated in Tables 2-8, and 2-9. 

 

Table 2-8  Performance of YOLO v4 Model [41]. 

 

Table 2-9  Performance of Faster R-CNN Model [41]. 

 

Table 2-10  Performance of SSD Model [41] 

 

       

Table 2-11  FPS of Deep Learning Models [41]. 
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Table 2-12  Evaluation of Deep Learning Models [41]. 

 

 

Figure 2.20  Performance of Deep Learning Model 

                                    

2.9  Related Work  

 This section discusses the different sophisticated strategies and algorithms 

described in the literature for agriculture and item identification difficulties. 

Felzenszwalb and colleagues created a cutting-edge object detection system by 

combining multiscale deformable component models and latent SVM for 

discriminative training. He et al. proposed Region Proposal Networks (RPNs), 

which share convolutional characteristics with the downstream object identification 

network and improve efficiency by offering cost-free region proposals. Girshick and 

colleagues created R-CNN, which uses high-capacity convolutional neural networks 

to area suggestions, allowing for reliable object recognition and semantic 

segmentation. 
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 In agricultural contexts, recent studies used J48 decision trees and region-based 

CNNs combining ResNet and Faster R-CNN to classify maize seed lots by 

physiological quality attributes, particularly vigour, and detect maize leaves in 

images with significant weed occlusion, outperforming VGG16 in mean average 

precision. Further research examined the YOLOv3, YOLOv4, and YOLOv5l 

algorithms for locating safe emergency landing places for UAVs using the DOTA 

dataset, evaluating both accuracy and speed. Furthermore, a technique based on 

form (eccentricity) and color (HSV) parameters identified by an artificial neural 

network was presented for determining maize seed quality, efficiently 

differentiating between good and poor seeds. Examining these various approaches 

provides insights into the strengths and limits of present tactics, as well as revealing 

unsolved difficulties and prospective paths for future study in agricultural 

technology and general object identification. 
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Table 2-13 Overview of Related Work 

Citation Authors Research Content Hardware Used Accuracy/mAP Algorithm Used 

[36] 
Yunling Liu, Chaojun 

Cen 

Detection of maize tassels from 

UAV RGB imagery 

UAV DJI Inspires 2 with 

ZENMUSE X5S camera, 

Mobile phone 

mAP up to 94.99% for UAV 

images, 95.95% for mobile 

phone images 

Faster R-CNN with ResNet 

and VGGNet as feature 

extraction networks 

[38] 

Henry O. Velesaca, 

Raúl Mira, Patricia L. 

Suárez 

Proposed a pipeline for segmenting 

and classifying corn kernels into 

good, defective, and impurity 

categories. Created CORN-

KERNEL dataset with annotated 

contours of corn kernels. 

Basler ACE acA645-100gc 

camera, LED lamps 

2-class: Avg. Acc. 0.945 

(CK-CNN), 

3-class: Avg. Acc. 0.956 

(CK-CNN) 

2-class: Avg. Acc. 0.933 

(VGG16), 0.911 

(ResNet50), 0.803 (Mask R-

CNN); 

3-class: Avg. Acc. 0.890 

(VGG16), 0.925 

(ResNet50), 0.647 (Mask R-

CNN). 

CK-CNN (custom lightweight 

CNN) 

VGG16, ResNet50, Mask R-

CNN 

[26] 

Guojin Li, Xiaojie 

Huang, Jiaoyan Ai, 

Zeren Yi, Wei Xie 

Efficient object detection method 

for lemons in natural environment 

Inteli3-8100CPU, NVIDIA 

Tesla V100 GPU 
96.28% AP Lemon-YOLO (L-YOLO) 

[9] Gizele I. Gadotti et al. Classification of corn seed lots Not specified Not reported 
J48, RandomForest, CVR, lBk, 

MLP, NaiveBayes 

[10] 
Mohammad Ibrahim 

Sarker et al. 
Corn leaf detection in images Nvidia Titan X GPU 

70.36% mAP (Faster R-

CNN with ResNet-101) 

Faster R-CNN with VGG16 

and ResNet-101 
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Citation Authors Research Content Hardware Used Accuracy/mAP Algorithm Used 

[34] 
Haddad Alwi Yafie et 

al. 

Corn seed identification based on 

shape and color features 
Not specified 

89% (BIMA-20 Good vs 

Bad), 97% (BIMA-20 Good 

vs NASA-29 Good) 

Artificial Neural Network 

[33] Ross Girshick, Jeff 

Donahue, Trevor 

Darrell, Jitendra Malik 

Object detection using R-CNN Nvidia GPU, CPU 53.7% on VOC 2010 R-CNN with CNN feature 

[32] 

Pedro Felzenszwalb, 

Ross Girshick, David 

McAllester and Deva 

Ramanan 

Object detection system using 

mixtures of multiscale deformable 

part models 

Desktop computer (2.8Ghz 

8-core Intel Xeon) 
Not reported 

Mixtures of multiscale 

deformable part models, 

Latent SVM 

[35] 

Shaoqing Ren, 

Kaiming He, Ross 

Girshick, Jian Sun 

Faster R-CNN for real-time object 

detection with region proposal 

networks 

GPU (unspecified) 
73.2% on PASCAL VOC 

2007, 70.4% on VOC 2012 

59.9% on VOC 2007 (with ZF 

net) 

[18] 

Nepal, U.; Eslamiat, H. 

Comparing YOLOv3, YOLOv4, 

and YOLOv5 for autonomous 

landing spot detection in faulty 

UAVs 

Personal Computer: 

NVIDIA GeForce RTX 

2070 GPU; Companion 

Computer: Nvidia Jetson 

Xavier NX 

Not reported 
YOLOv3: 0.46; YOLOv4: 

0.607; YOLOv5l: 0.633 
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2.10 Research gap 

Beyond yet, little emphasis has been paid to comparing the effectiveness of YOLO 

v8 and Mask R-CNN in the context of corn categorization based on pest or disease 

detection quality. Furthermore, there are few research that outline ways for corn 

categorization based on quality influenced by bugs or illnesses, which is critical for 

evaluating the improvement of contemporary agriculture. This work attempts to 

bridge these gaps by conducting a thorough evaluation of corn detection and 

classification algorithms based on their quality in terms of insect and disease 

presence. 

 

 

2.11 Summary  

      The literature review chapter covers several topics related to object 

identification and machine vision. Begin by introducing the concept of machine 

vision and its many components, including informative region selection, feature 

extraction, and classification. Next, the chapter covers a variety of object 

identification models, including region proposal-based models like R-CNN, Fast R-

CNN, Faster R-CNN, and Mask R-CNN, and regression/classification-based 

models like YOLO and SDD. 

 

      The chapter also covers terms that are often used in the evaluation of object 

identification models, as well as assessment metrics including accuracy, recall, and 

mean average precision (MAP). A comparison of several object detection models 

and a section on related work describing the state-of-the-art in the field are also 

included in this chapter. The chapter concludes with a synopsis of the major 

concepts discussed and identifies the need for more investigation. 
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CHAPTER 3  

                                                    METHODOLOGY 

3.1 Introduction 

      This part will go over the strategy and techniques used to finish this final 

project. First, a flowchart of the entire project procedure and an overview of the 

graduation outcome in an improved. The hardware of the designated microcomputer 

will be covered next. The system illustration must be explained and shown next. 

This chapter's first section will provide the reader with an overview, and the second 

section will go deeper into the processes that this thesis will subsequently address 

and assess. Section three will offer an overview of the data-gathering technique and 

some extra useful details regarding the provided dataset, while Section four will 

concentrate on streamlining and optimizing the modeling process. 

3.2 Project Overview  

      The Project Overview in Figure 3.1 illustrates its general process. A 

flowchart outlining the procedures required to effectively finish this project is 

provided below. In this study, the YOLOv8 model will be utilized to detect corn 

quality. YOLOv8, which stands for "you only look once," is one of the algorithms 

that recognize objects faster and more accurately. This project aims to achieve 

excellent classification. 
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Figure 3.1  Project Overview Flowchart. 
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3.3  Corn Quality Detection and Recognition  

         Corn Quality Detection and Recognition is the process of evaluating and 

classifying corn crop quality via  use of cutting-edge technology, mainly computer 

vision and artificial intelligence. To identify and categorize the several elements 

affecting corn quality, such as the presence of pests, illnesses, or other quality-

related concerns, machine learning models and image processing techniques are 

used. To optimize crop output and promote better agricultural practices, the 

objective is to give farmers and other agricultural experts a methodical and 

automated way to effectively monitor, assess, and manage the quality of corn 

harvests. 

 

 

3.3.1 Training Process YOLOv8 Using Google Colab   

 

     Figure 3.2 below provides a broad overview of the architecture and training 

module YOLOv8 for corn quality detection and identification utilizing the Darknet 

format. This flowchart is used continuously throughout the project, from its 

beginning to the testing of the final dataset. 
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Figure 3.2  YOLOv8 Training Module. 

 

3.4 Collecting Dataset 

    The 771 images in the picture collection for this project were taken using a cell 

phone camera on the farm and show a variety of viewpoints, including angled, above, 

and ground-level views. These photos are real case data taken straight from the farm, 

giving viewers a correct portrayal of the conditions associated with growing corn. This 

collection, in contrast to pictures seen online or in grocery shops, concentrates on 

showing real corn items in their natural environments. Eighty percent of the total 

photos will be used to train the detection system, and the remaining twenty percent will 

be used for validation and testing. Figures 3.3 and 3.4 supply selections from the 

gathered images. Figure 3.3 displays corn with inadequate quality, while Figure 3.4 

represents high-quality corn, illustrating the diversity of conditions observed within the 

farm setting, and Table 3.1 the test and learning process for the collected images after 

being Augmented from 771 to become 1771 images. 
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Table 3-1  Illustrates Testing and Learning Process of a Total of 1771 Images. 

Train Set Valid Set Test Set 

85% 8% 7% 

 

 

 

Figure 3.3  Bad Quality of Corn. 
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Figure 3.4  Good Quality of Corn. 

 

3.4.1  Image Annotation  

 

     The photos in a dataset must be tagged and annotated for the data to be used. 

To enable the module to understand the intended result in this example, the 

identification of corn based on its size the technique aims to assign a class to each 

type of detected item. For labeling reasons, this study divided corn varieties into 

three categories: Healthy, Water Rot, and Bug. While there are other kinds of corn 

available, sweet corn is the one that is most commonly used nowadays. 

 

 

3.4.2  Data Augmentation  

 

      Rotation, flipping, and scaling were some of the techniques used to increase 

the dataset to improve the model's performance and prevent overfitting. Following 

augmentation, the total number of photos was 1771. The augmentation approaches 

applied to the dataset contributed to the improvement of the model's robustness and 

variety by adding changes in the photographs. 
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3.4.3 Roboflow  

 

     Roboflow is a system that facilitates the creation of machine learning datasets. 

It's an online program that facilitates the organization, annotation, and enhancement 

of picture collections. In this study, a unique collection of concrete surfaces with 

various defects and fissures was collected using Roboflow. Because the dataset was 

already tagged, a significant amount of time and effort were saved. Furthermore, the 

Roboflow platform included data augmentation capabilities that expanded the 

dataset and enhanced the functionality of the model. All things considered, 

Roboflow greatly simplified the process of obtaining and preparing the dataset for 

this project. Figure 3.5 User interface For Roboflow. 

 

 

 

Figure 3.5  User Interface for Roboflow. 
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3.5 Building  Machine Learning Model 

    To identify and separate corn, convolutional neural networks are created as part 

of the machine learning model-building process. The YOLO v8 method was chosen 

as the foundation model for this project's implementation since it is a real-life object 

recognition system with several applications, including autonomous driving, photo 

editing, and medical image analysis. 

 

The following actions were taken to construct the model: 

 

1. First, the Ultralytics dependencies were installed to prepare the environment for 

training as shown in Figure 3.6. 

 

 

Figure 3.6  Installing the Dependencies. 

 

2. Second, this code snippet imports the necessary modules, clears the output, and 

executes a YOLO-specific command to check the mode or configuration of the 

YOLO object detection system as shown in Figure 3.7. 

 

 

 

Figure 3.7  Importing YOLOv8 From the Library. 

 

3. Next, the custom dataset obtained from Roboflow was loaded in the YOLO v8 

format as shown in Figure 3.8. 
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Figure 3.8  Downloading the Correctly Formatted Data. 

 

4. The model was then evaluated using the validation dataset to ensure that it 

generalizes well on unseen data. This process is done by measuring the performance 

metrics such as precision, recall, and mean average precision (MAP). 

 

5. Finally, the model's performance was evaluated on test images by running the YOLO 

v8 inference, this process involves applying the trained model on test images and 

measuring the performance metrics as shown in Figure 3.9. 

 

 

Figure 3.9  Testing the Module with 100 Epochs Using Test Images. 

 

3.6 Applications, Libraries, and Tools 

     With the use of GPU assistance for training, this work proposes a real-life corn 

identification and segmentation approach based on the YOLO v8 deep learning 

model. It allows for the quick and hardware-free assessment of corn quality using a 

regular laptop camera. 

 

3.6.1 Python Language  

 

 

    Web development, machine learning, data science, and other diverse fields all 

heavily rely on high-level, open-source Python programming. Python was the 
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primary programming language used in this project, and it was used to implement 

the suggested method for using a convolutional neural network to detect and 

segment concrete fractures in real life. 

 

          One of the main advantages of using Python is the huge ecosystem of libraries and 

tools available for different jobs. In this project, the recommended technique was 

implemented utilizing a variety of well-known Python packages, including:   

 

• TensorFlow: Google developed TensorFlow, an open-source machine learning 

library. It is widely employed in the creation and training of deep learning 

models. TensorFlow was used in this project to build the YOLO v7 approach, 

and the dataset was used to enhance the model. 

• OpenCV: The open-source computer vision library known as OpenCV provides 

a range of image processing and computer vision functionalities. OpenCV was 

used in this project for both data augmentation and picture preparation. 

• NumPy: The robust numerical computation toolkit NumPy supports 

multidimensional arrays and matrices. It handled picture data and performed 

mathematical calculations on the data in this project. 

 

      These libraries were essential to the project's success. They supplied the 

resources and expertise required to implement the recommended method, train, and 

evaluate the model. TensorFlow was used to build the model, OpenCV was used for 

image preprocessing and data augmentation, and NumPy was used for mathematical 

operations on the data. Overall, using Python and these dependable modules greatly 

expedited the development and implementation of the recommended solution. 
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      To verify the performance of our corn condition detection algorithm, we used 

PyCharm, a powerful integrated development environment (IDE), in a real situation. 

Our technique relied on the YOLO (You Only Look Once) object identification 

algorithm, which is known for its speed and accuracy in real-time applications. The 

model was fine-tuned with a pre-trained weights file called best12.pt, which was 

particularly designed to categorize corn into three categories: healthy, water rot, and 

bug. 

 

       In our trial setup, we used the default camera to collect a live video stream that 

served as input for our detection algorithm. The object detection confidence level 

was set at 0.6. This number was carefully determined to strike a compromise 

Figure 3.10 Code Used to Test the Process. 
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between precision and recall, ensuring that the model accurately recognizes corn 

conditions while minimizing false positives. 

 

        The live camera stream was analyzed continually, allowing for real-time 

detection and categorization of the corn's health state. This approach enabled us to 

monitor the model's performance under a variety of scenarios and tweak settings as 

needed to improve accuracy. The dynamic nature of live testing revealed important 

information about the model's robustness and dependability in actual circumstances. 

 

         Overall, the usage of PyCharm for testing, together with the robust YOLO 

detection framework, revealed the model's capacity to correctly and effectively 

recognize various corn situations. This technique not only tested the model's 

performance, but also demonstrated its viability in real-world agricultural 

applications. 

 

 

3.6.2 Google Colab 

 

     The free online application Google Colab provides an easy-to-use interface for 

developing and refining machine learning models. Users may use it to run and 

execute code as well as develop machine learning models. This study used Google 

Colab as the training environment to build the proposed convolutional neural 

network model for real-life corn detection and segmentation. It made it feasible to 

train the deep learning model using the YOLO v8 method using high-performance 

computer resources, such as GPU support. 

 

3.6.3 Microcomputer Camera 

      

        The approach comprised taking pictures and classifying them using a typical 

MSI laptop's built-in camera and its specification GF63 Intel(R) Core(TM) i7-

10750H CPU @ 2.60GHz -64-bit ,x64-based processor. . Although there wasn't a 

dedicated camera module like the Arducam Auto Focus Camera made for Raspberry 

Pi, the laptop's camera performed the crucial job of taking the pictures needed to 

classify the corn's quality. This method allowed for real-life detection by using code 
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to turn on the laptop's camera, and it made it possible to assess the performance of 

the trained model right away without requiring any additional hardware. 

 

3.7 Common Terms in Object Detection Models Evaluation 

          To evaluate the outcomes of the various deep learning-based models, we adopted 

a range of standard measures that are commonly used in the evaluation process of 

machine learning models. 

 

 

3.7.1 Intersection Over Union (IOU) 

 

     The Intersection over Union metric is often used to assess the accuracy of 

localization and identify the faults that localization adds to object identification 

models. To compute the IOU using the predictions and the ground truth, we must 

first find the region that sits at the intersection of the bounding boxes about a 

particular prediction and the bounding boxes relating to the ground truth for the 

same region. The Union, or the total area included by the two bounding boxes, is 

then computed. 

 

        As we can see in Figures 3.11 and 3.12, the ratio of the overlap to the total area 

which is derived by dividing the intersection by the union gives us a reliable 

indication of how closely the bounding box resembles the original forecast. 

 

Figure 3.11   Equation For IOU. 
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Figure 3.12  Evaluating the Performance of the Predicted BBs. 

 

 

 

3.7.2 True Positive, False Positive, False Negative, and True Negative 

 

        When the output categories of the test samples are compared to the categories 

of the real labels, four outcomes are possible. These results are known as true 

positives (TP), false positives (FP), false negatives (FN), and true negatives (TN) 

[43]. 

 

         Can set an IOU threshold value to indicate whether the object detection was 

successful. In this instance, if the IOU is more than or equal to 0.5, the object 

detection will be considered a TP. Suppose for the moment that the IOU is set to 

0.5. If the IOU is less than 0.5, which suggests that the detection was made wrongly, 

we will refer to it as FP. A result should be labeled as false positive (FN) if there is 

a ground truth in the picture, but the model is unable to locate the object. TN refers 

to any region of the image where we did not expect an item to be present. 

Considering that this measure does not.  

 

3.7.3 Precision, Recall, and Mean Average Precision (MAP) 

 

         The observed statistics are used to compute common measures such as recall, 

precision, mean average precision (MAP), F1 score (F1), and frames per second 

(FPS). Recall is the ratio of identified targets to all targets in the sample set when it 

comes to the target detection process, while precision is the ratio of accurately 
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detected targets to all targets that have been detected [43]. Equations 1 and 2 provide 

definitions of precision and recall, respectively: 

 

 

Precision =                  (1) 

 

Recall =                  (2) 

 

       The harmonic weighted average of recall and precision is represented by the 

letter F1. Equation 3[43] provides the following description of the F1 score, which 

is computed using the precision and recall rates: 

 

𝐹1 =                     (3) 

 

      Equation 4 defines "average precision" (AP) as the level of accuracy reached 

across all elements of a specific category [43]: 

 

AP=                 (4) 

 

 

         The overall performance of the model is evaluated using MAP, which is 

computed as the average value of the AP total across all categories [43]. Equation 5 

illustrates the definition, which is as follows: 

 

MAP =              (5) 
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CHAPTER 4  

 

                                  RESULTS AND DISCUSSIONS 

 

4.1  Introduction  

            The first results of the proposed method for real-life corn detection are 

presented in this chapter. The system's output is covered in great length in this 

section. Training and validation loss metrics are among the assessment criteria that 

are used to determine how successful the proposed model is. In addition, the 

system's ability to recognize and categorize corn will be tested using a set of test 

images. 

4.2 Performance Evaluation of the Proposed Model 

 

  

Figure 4.1  Results Training has been Completed for YOLOv8. 

 

 

    Figure 4.1 shows in detail the training results obtained by using the YOLOv8 

model in the Google Colab environment. YOLOv8 is well-known for its ability to 

use advanced deep learning algorithms to identify objects in photos quickly and 

correctly. Researchers may benefit from a smooth training experience across a wide 
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range of datasets by leveraging the capabilities of Google Colab, an accessible cloud 

computing platform. The execution of the command "python train.py" with 

meticulously tailored arguments such as "data=/content/Corn-Detection-

7/data.yaml" and "--weights best12.pt" signals the start of the machine learning 

training process, emphasizing the incorporation of pre-trained weights to facilitate 

accelerated model convergence. 

 

      Furthermore, the defined training regimen, which has a batch size of 16 and runs 

for 100 epochs, represents a concerted effort towards complete model optimization 

and rigorous performance evaluation. This collaborative approach to training 

incorporates critical parts of the machine learning model training paradigm, 

enabling not just effective resource utilization but also robust performance 

improvement. Researchers successfully optimize model convergence and improve 

detection accuracy by judiciously using transfer learning approaches and rigorous 

parameter adjustments. This rigorous approach, along with the versatility of Google 

Colab as an instrumental teaching platform, is a huge step towards promoting 

creativity and growth in the field of computer vision research. 

 

 

 

 
Figure 4.2  F1-Confidence Curve. 
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      Figure 4.2  Shows graphical depiction of a classifier's performance at various 

confidence levels, which aids in determining how effectively the model 

discriminates between classes. In our study, we examined the efficacy of our corn 

condition identification algorithm using this curve, which displays the F1 score 

against various confidence levels. The F1 score strikes a compromise between 

precision (accurate positive predictions) and recall (ability to recognise all positive 

cases). Our findings revealed that the "Healthy" class performed consistently well 

across several thresholds, demonstrating trustworthy identification. In contrast, the 

"Bug" and "Water Rot" classes peaked at specified levels, demonstrating their 

sensitivity to the selected threshold. 

 

 

       Overall, the model performed best, with an F1 score of 0.62 and a confidence 

threshold of 0.287. This threshold indicates the ideal equilibrium, with the model 

achieving the best-combined accuracy and recall across all classes. Identifying this 

ideal threshold is critical for adjusting the model and maximizing its efficacy. The 

F1-Confidence Curve gives a complete perspective of the model's performance and 

directs the fine-tuning process to achieve optimal detection accuracy, as well as 

assisting in the establishment of confidence thresholds that improve the model's 

dependability in real-world applications. 
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Figure 4.3  Recall-Confidence Curve 

 

Figure 4.3 depicts the classifier's recall at different confidence levels, providing 

information on its sensitivity to spotting positive examples. In our investigation, the 

curve for the "Healthy" class (orange) had consistently high recall across all 

thresholds, demonstrating that the model can reliably detect healthy corn. 

Conversely, recall for the "Bug" (blue) and "Water Rot" (green) classes decreased 

consistently as the confidence threshold increased, indicating a loss in sensitivity for 

these situations at higher thresholds. 

 

     The model's overall performance, as depicted by the average recall (thick blue 

line), was most impressive at a confidence level of 0.000 when it attained an average 

recall of 0.93. This high recall at the lowest threshold indicates maximal sensitivity, 

implying that the model correctly recognizes virtually all occurrences of the target 

classes when the threshold is low. The Recall-Confidence Curve therefore gives a 

thorough perspective of how recall varies with confidence levels, assisting in the 

selection of acceptable thresholds to balance sensitivity and specificity for various 

application requirements. 
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Figure 4.4  Visualizations Illustrate Width, Height, and instances. 

 

        The visualizations provide a concise yet thorough summary of class 

distribution and detection outcomes. The bar chart graphically depicts the frequency 

of "Healthy," "Bug," and "Water Rot" events, directing model training and 

evaluation procedures. In addition, bounding box distributions and scatter plots give 

information on item placements, sizes, and localization accuracy, which is important 

for fine-tuning detection algorithms and enhancing overall model performance. 

Together, these visualizations provide data scientists with meaningful information 

for iteratively improving object detection algorithms effectively and efficiently. 
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Figure 4.5  Precision-Confidence Curve. 

 

     Figure 4.5 gives extensive information on the model's precision at different 

confidence levels, particularly when all classes are considered. The model achieves 

perfect accuracy (1.00) at a confidence level of 0.924, indicating strong confidence 

in its predictions. Within individual classes, the healthy class constantly maintains 

a high accuracy rate, as seen by the orange curve. However, the Bug (blue) and 

Water Rot (green) classes show higher fluctuation in precision across different 

confidence levels. This variability indicates that the model's dependability in 

predicting these classes varies, with greater uncertainty than in the healthy class. 

Overall, the curve demonstrates the model's ability to forecast the healthy class with 

high precision, as well as areas for possible development in predicting Bug and 

water rot occurrences. 
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Figure 4.6 Confusion matrix 

 

 

Figure 4.7 Confusion Matrix Normalized 

 

Figures 4.6 and 4.7 depict a confusion matrix and its normalized counterpart, 

which are used to assess the performance of a classifier model. The first graphic 

shows the raw counts of true and anticipated classifications across four categories: 

Bug, Healthy, Water Rot, and Background. For example, 111 cases in the Bug 

category were accurately identified as Bug, whereas 56 were incorrectly labelled as 

Healthy, 1 as Water Rot, and 74 as Background. The second figure is the normalized 

confusion matrix, in which the counts are transformed into proportions, reflecting 

relative performance. In this matrix, the Bug class has a 58% accurate classification 
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rate, with considerable misclassifications to Healthy (4%), Water Rot (1%), and 

Background (38%). The Healthy class gets flawless 100% accuracy. The Water Rot 

and Background classes had lower accurate classification percentages (12% and 

11%, respectively), resulting in significant misclassifications into other categories. 

Normalisation allows us to assess the model's accuracy and mistakes in relative 

terms, regardless of the number of examples in each category. 

 

 

 

 

 

      Finally, the model was put through a thorough assessment procedure where it 

was tested against a carefully selected collection of test photos. The exhaustive 

results and conclusions that arise from this assessment stage are carefully recorded 

and illustrated in Figure 4.8 and Table 4.1 shows the summary of data. The report's 

latter sections elaborate on the finer points and perceptive insights that emerged 

from this critical assessment, offering a thorough examination of the model's 

functionality and effectiveness in corn quality identification and detection. 

 

 

 

Table 4-1  Results Training YOLOv8. 
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Figure 4.8  Examples of the Tested Images.       

 

4.3 Frames Per Second on Different GPU  

    Graphics Processing Units (GPUs), such as the Tesla T4 that has been used in this 

project, improve YOLOv8's object recognition capabilities by providing parallel 

computing capacity, which is critical for processing huge datasets in real-time 

applications. YOLOv8, which uses convolutional neural networks (CNNs), depends 

on GPUs to quickly scan and analyze photos and videos, resulting in fast object 

recognition. The Tesla T4 GPU, a popular choice for inference workloads, strikes a 

compromise between performance and cost, resulting in competitive FPS for 

YOLOv8. Specifically, the Tesla T4 enables high-speed inference, making 

YOLOv8 appropriate for real-time video surveillance, smart city infrastructure, and 
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industrial automation. YOLOv8's FPS performance on the Tesla T4 demonstrates 

its capacity to manage large amounts of data effectively, even on mid-range GPUs, 

providing flexibility deployment across many circumstances while retaining rapid. 
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CHAPTER 5  

 

               CONCLUSION AND RECOMMENDATIONS  

 

5.1      Conclusion 

           Finally, the suggested study successfully showed the use of convolutional 

neural networks and the YOLOv8 algorithm to detect corn quality in real-world 

circumstances. The YOLOv8 model was trained and evaluated in the Google Colab 

environment, and the results were substantial across a variety of criteria. The dataset 

included 771 annotated photos, with 85% set out for training, 8% for validation, and 

75 for testing, guaranteeing a thorough and robust training procedure. 

 

        The findings show that the model has an overall accuracy of 92.4%. 

Specifically, the model had an accuracy of 88% for the "Healthy" class, 65.5% for 

the "Water Rot" class, and 100% for the "Bug" class. The overall accuracy for all 

classes was 82%, with a recall of 91.6% and an F1 score of 80%. Over the duration 

of 100 epochs, the mean Average Precision (mAP) was determined to be 92.7%, 

with an Intersection over Union (IoU) of 52.3%. These measures demonstrate the 

model's ability to effectively detect and categorize corn quality. 

 

 

       The YOLOv8 model's outstanding performance may be due to its sophisticated 

design, which expertly catches complex characteristics inside photos. Despite some 

heterogeneity in precision among classes, the model's overall excellent precision 

and recall rates demonstrate its dependability and durability. The findings 

demonstrate the potential of this technique to considerably improve agricultural 

monitoring operations by delivering faster, more accurate, and cost-effective 

solutions. 
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         In summary, the research successfully demonstrated the practical application 

of CNNs with the YOLOv8 algorithm for real-world corn identification, hence 

meeting the project's objectives. This result not only supports the use of 

sophisticated deep learning algorithms for object recognition, but also paves the way 

for future advancements in domains that require accurate and efficient detection 

skills. 

 

5.2       Future Work  

             A number of enhancements are expected to increase the YOLOv8 model's 

performance and accuracy in detecting corn. Increasing the dataset size is a top 

objective for improving robustness and accuracy. Using an external high-resolution 

camera will allow you to capture finer details during detection, resulting in better 

outcomes. Additionally, creating a more advanced training environment will 

improve accuracy and efficiency. 

 

Improving data augmentation techniques is also important. The model's capacity to 

handle data changes may be enhanced by artificially increasing the dataset via 

cropping, flipping, rotating, and introducing noise. Collecting datasets under a 

variety of situations, such as variable object orientations and low-light settings, will 

assure the model's adaptability and dependability in a wide range of scenarios. 

 

These tactics attempt to greatly enhance the performance of the YOLOv8 model, 

making it a more accurate and reliable tool for detecting corn quality in the real 

world. 
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