

COLLISION AVOIDANCE MECHANISMS FOR UAV

TAN JIE SIM

BACHELOR OF MECHATRONICS ENGINEERING WITH
HONOURS

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2024

COLLISION AVOIDANCE MECHANISMS FOR UAV

TAN JIE SIM

A report submitted

in partial fulfilment of the requirements for the degree of

Bachelor of Mechatronics Engineering with Honours

Faculty of Electrical Technology and Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2024

DECLARATION

I declare that this thesis entitled "COLLISION AVOIDANCE MECHANISMS FOR UAV

is the result of my own research except as cited in the references. The thesis has not been

accepted for any degree and is not concurrently submitted in the candidature of any other

degree.

Signature : Sim

Name : TAN JIE SIM

Date : 17/06/2024

APPROVAL

I hereby declare that I have checked this report entitled "Collision Avoidance Mechanisms

for UAV", and in my opinion, this thesis fulfils the partial requirement to be awarded the

degree of Bachelor of Mechatronics Engineering with Honours.

Signature :

Supervisor Name : MADAM FADILAH BINTI ABDUL AZIS

Date :

user
Cop n sign

user
Typewriter
24 JUNE 2024

DEDICATIONS

To my beloved family and fellow friends.

1

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my deepest gratitude to the contribution

of people in this report. There is no denying the fact that researching and writing the

report is quite challenging. I am incredibly grateful that I can write this report with the

support and guidance of my supervisors, family and fellow friends.

First and foremost, I would like to express my appreciation to my supervisor, Madam

Fadilah Binti Abdul Azis. She provides a lot of guidance and mental support

throughout the whole project. Her expertise and knowledge assist me in enhancing my

project. I feel grateful for her willingness to offer help for my project.

In addition, I would like to convey my appreciation to my family for their physical and

mental support throughout my whole project. Their encouragement acts as my guiding

light, providing me with the strength to persevere through challenges, especially when

facing problems in my project. I am deeply grateful for their presence in my life.

Last but not least, I would like to give a special thank you to my supportive fellow

friends who are involved in my project. Without their assistance and motivation, this

project will not be presented here.

In conclusion, I am deeply grateful to those who have contributed to the development

of this project. Their contribution has led to the outcome of this project.

2

ABSTRACT

Unmanned Aerial Vehicles (UAV) is an aircraft which can fly autonomously without

the presence of pilot. There has been significant development in UAV over the past

few years. Nowadays, UAV is widely used in various applications such as delivery,

monitoring and filming. There is a high probability that UAV may collide with objects

because it always flies to an unpredictable environment. This shows the importance of

a collision avoidance system with the correct algorithm for UAV when carrying out

its mission. In real world applications, there are many inherent uncertainties during the

flight of UAV. The aim of this project is to investigate the collision avoidance

algorithms that are suitable for UAV. Analyzing the performance of APF algorithm

under 3 different conditions is one of the objectives in this project. Collision avoidance

algorithm coupled with distance sensors is a recommended safety improvement for

UAVs in real world applications. To carrying out this project, a comparison between

the algorithms is computed to choose a suitable algorithm for this project. Then, the

selected algorithm is modelled on MATLAB. The performance of the algorithm in

virtual environment with different numbers of obstacles, extreme goal position and

wind disturbances are analyzed by calculating RMSE value. Some experiments are

carried out to make a comparison between the ultrasonic sensor and infrared sensor.

By the end of this project, APF algorithm is selected and modelled on MATLAB. In

virtual simulations, APF algorithm effectively plans paths for UAV to reach goal

position without colliding with obstacles. In environment with wind disturbances, the

RMSE value increased by 36.5% if compared to environment without wind

disturbances.

3

ABSTRAK

Kenderaan Udara Tanpa Pemandu (UAV) ialah pesawat yang boleh terbang secara

autonomi tanpa kehadiran juruterbang. Terdapat perkembangan ketara dalam UAV

sejak beberapa tahun kebelakangan ini. Kini, UAV digunakan secara meluas dalam

pelbagai aplikasi seperti penghantaran, pemantauan dan penggambaran. Terdapat

kebarangkalian tinggi bahawa UAV mungkin berlanggar dengan objek kerana ia

sentiasa terbang ke persekitaran yang tidak dapat diramalkan. Ini menunjukkan

kepentingan sistem pengelakan perlanggaran dengan algoritma yang betul untuk UAV

semasa menjalankan misinya. Dalam aplikasi dunia sebenar, terdapat banyak

ketidakpastian yang wujud semasa penerbangan UAV. Matlamat projek ini adalah

untuk menyiasat algoritma pengelakan perlanggaran yang sesuai untuk UAV.

Penganalisisan prestasi algoritma APF di bawah 3 keadaan berbeza adalah salah satu

objektif dalam projek ini. Algoritma pengelakan perlanggaran ditambah dengan

penderia jarak adalah penambahbaikan keselamatan yang disyorkan untuk UAV.

Untuk melaksanakan projek ini, perbandingan antara algoritma dikira untuk memilih

algoritma yang sesuai untuk projek ini. Kemudian, algoritma yang dipilih dimodelkan

pada MATLAB. Prestasi algoritma dalam persekitaran maya dengan bilangan

halangan yang berbeza, kedudukan matlamat yang melampau dan gangguan angin

dianalisis dengan mengira nilai RMSE. Beberapa eksperimen dijalankan untuk

membuat perbandingan antara sensor ultrasonik dan sensor inframerah. Menjelang

akhir projek ini, algoritma APF dipilih dan dimodelkan pada MATLAB. Dalam

simulasi maya, algoritma APF secara berkesan merancang laluan untuk UAV

mencapai kedudukan matlamat tanpa bertembung dengan halangan. Dalam

persekitaran dengan gangguan angin, nilai RMSE meningkat sebanyak 36.5% jika

dibandingkan dengan persekitaran tanpa gangguan angin.

4

TABLE OF CONTENTS

PAGE

DECLARATION

APPROVAL

DEDICATIONS

ACKNOWLEDGEMENTS 1

ABSTRACT 2

ABSTRAK 3

TABLE OF CONTENTS 4

LIST OF TABLES 6

LIST OF FIGURES 8

LIST OF SYMBOLS AND ABBREVIATIONS 10

LIST OF APPENDICES 11

 INTRODUCTION 13
1.1 Background 13
1.2 Motivation 14
1.3 Problem Statement 15
1.4 Objective 16
1.5 Scope and Limitation 17
1.6 K-Chart 18

 LITERATURE REVIEW 19
2.1 Overview of UAV 19
2.2 Previous Studies on Algorithm of UAV 22

2.2.1 Artificial Potential Field 23
2.2.2 Rapid-exploration Random Tree 25
2.2.3 Vector Field Histogram 27

2.3 Sensor 31
2.3.1 Ultrasonic Sensor 31
2.3.2 Infrared Sensor 33

 METHODOLOGY 36
3.1 Table Structure of Project 36
3.2 Flow Chart of Project 37
3.3 Gantt Chart 39
3.4 Block Diagram 40
3.5 Collision Avoidance Algorithm: Artificial Potential Field (APF) 41
3.6 Performance of Artificial Potential Field (APF) Algorithm 45

3.6.1 Number of Obstacles 45

5

3.6.2 Extreme Position of Goal 47
3.6.3 Wind Disturbances 48

3.7 Experiment for Sensor 49
3.7.1 Experiment 1: Maximum detection range of sensor 49

3.7.1.1 Ultrasonic Sensor 49
3.7.1.2 Infrared (IR) sensor 51

3.7.2 Experiment 2: Accuracy of sensor 53
3.7.2.1 Ultrasonic Sensor 53
3.7.2.2 Infrared Sensor 55

 RESULTS AND DISCUSSIONS 57
4.1 Outline 57
4.2 Performance of Artificial Potential Field Algorithm (UAV Trajectory) 59

4.2.1 Number of Obstacle 59
4.2.1.1 Number of Obstacle: Without Obstacle 59
4.2.1.2 Number of Obstacle: 1 Obstacle 60
4.2.1.3 Number of Obstacle: 2 Obstacles 62
4.2.1.4 Number of Obstacle: 3 Obstacles 63

4.2.2 Extreme Position of Goal 66
4.2.2.1 Extreme Position of Goal: Without obstacle 66
4.2.2.2 Extreme Position of Goal: 3 Obstacles 68

4.2.3 Wind Disturbance 71
4.2.3.1 Wind Disturbances: Without Obstacles 71
4.2.3.2 Wind Disturbances: 3 Obstacles 73

4.3 Effectiveness of Sensor 75
4.3.1 Experiment 1: Maximum Detection Range of Sensor 75

4.3.1.1 Ultrasonic Sensor 75
4.3.1.2 Infrared Sensor 77

4.3.2 Experiment 2: Accuracy of sensor 78
4.3.2.1 Ultrasonic Sensor 78
4.3.2.2 Infrared Sensor 81

 CONCLUSION AND RECOMMENDATIONS 83
5.1 Conclusion 83
5.2 Recommendation 83

REFERENCES 84

APPENDICES 90

6

LIST OF TABLES

Table 2.1 Classification of UAV [11] 20

Table 2.2 Types of UAV and its description [15] 21

Table 2.3 Notation and its description for equation (2-1) to (2-3) 23

Table 2.4 Notation and its description for equation (2-4) to (2-5) 24

Table 2.5 Comparison between APF, RRT and VFH algorithm 30

Table 2.6 Comparison between ultrasonic and infrared sensor 35

Table 3.1 Table structure of the project 36

Table 3.2 Notation and its description for equation (3-1) 41

Table 3.3 Notation and its description for equation (3-2) 42

Table 3.4 Noatation and its description for equation (3-3) 42

Table 3.5 Notation and its description for equation (3-5) 43

Table 4.1 UAV's position in environment without obstacle 59

Table 4.2 UAV's position in environment with 1 obstacle 60

Table 4.3 UAV's position in environment with 2 obstacles 62

Table 4.4 UAV's position in environment with 3 obstacles 63

Table 4.5 Notation and its description for equation (4-1) 65

Table 4.6 RMSE value for different number of obstacle 65

Table 4.7 UAV position in an obstacle free environment for extreme goal

positions 66

Table 4.8 UAV position in environment with obstacle for extreme goal position

 68

Table 4.9 RMSE value for extreme position of goal 70

7

Table 4.10 UAV position in an obstacle free environment with wind

disturbance 71

Table 4.11 UAV position in an environment with 3 obstacles and wind

disturbances 73

Table 4.12 RMSE value for wind disturbances 74

Table 4.13 Maximum detection range of ultrasonic sensor 76

Table 4.14 Maximum detection range of infrared sensor 77

Table 4.15: Accuracy of ultrasonic sensor 80

Table 4.16 Different incident angle of infrared sensor 81

8

LIST OF FIGURES

Figure 1.1 Application of UAV in 2019 [5] 14

Figure 1.2 UAV incidents from 2014 to 2016 [7] 15

Figure 1.3 K-chart of Unmanned Vehicle 18

Figure 2.1 UAV used for surveillance and mapping [10] 19

Figure 2.2 UAV used for spraying pesticide on crops [10] 19

Figure 2.3 Main components of UAV system [16] 22

Figure 2.4 Tree expansion process for RRT algorithm [22] 25

Figure 2.5 Flowchart of basic principle of RRT algorithm [21] 26

Figure 2.6 Flowchart of basic principle of VFH algorithm [26] 28

Figure 2.7 Grid map diagram [26] 29

Figure 2.8 Polar coordinate histogram H [26] 29

Figure 2.9 Block diagram of ultrasonic distance detection with Arduino [32] 32

Figure 2.10 Pin configuration of ultrasonic sensor [33] 32

Figure 2.11 Working principle of ultrasonic sensor [34] 33

Figure 2.12 Infrared sensor [39] 34

Figure 3.1 Flow chart of project 38

Figure 3.2 Gantt chart for project 39

Figure 3.3 Block diagram for collision avoidance system with UAV system 40

Figure 3.4 Resultant artificial force of potential function 42

Figure 3.5 Simulation environment with different number of obstacles 46

Figure 3.6 Simulation environment with extreme position of goal 47

Figure 3.7 Simulation environment with wind disturbances 48

9

Figure 3.8: Wiring connection of ultrasonic sensor HC-SR04 and Adruino Uno

 50

Figure 3.9: Experiment 1 setup for ultrasonic sensor 50

Figure 3.10: Wiring connection of infrared sensor KY-032 and Arduino Uno 52

Figure 3.11: Experiment 1 setup for infrared sensor 52

Figure 3.12: Experiment 2 setup for ultrasonic sensor 54

Figure 3.13: Experiment 2 setup for infrared sensor 55

Figure 4.1 Outline for Chapter 4 58

Figure 4.2 UAV trajectory without obstacle 60

Figure 4.3 UAV trajectory with 1 obstacle 61

Figure 4.4 UAV trajectory with 2 obstacles 62

Figure 4.5 UAV trajectory with 3 obstacles 64

Figure 4.6 UAV trajectory without obstacle for extreme position of goal 67

Figure 4.7 UAV trajectory with 3 obstacles for extreme position of goal 69

Figure 4.8 UAV trajectory without obstacle in wind condition 72

Figure 4.9 UAV trajectory with 3 obstacles in wind condition 73

Figure 4.10 Result of maximum detection range of ultrasonic sensor 76

Figure 4.11 Graph of maximum detection range for ultrasonic sensor 76

Figure 4.12 Result of maximum detection range of infrared sensor 77

Figure 4.13 Graph of maximum detection range for infrared sensor 78

Figure 4.14 Result of accuracy of ultrasonic sensor 79

Figure 4.15: Graph of accuracy of ultrasonic sensor 80

Figure 4.16 Result of different incident angle of infrared sensor 81

10

LIST OF SYMBOLS AND ABBREVIATIONS

𝑈𝑎𝑟𝑡 - Artificial potential energy

𝑈𝑔𝑜𝑎𝑙 - Attractive potential energy

𝑈𝑜𝑏𝑠 - Repulsive potential energy

𝑥 - Spatial position of UAV

𝑥𝑑 - Spatial position of goal

𝑘𝑝 - Attractive force gain coefficient

ƞ - Repulsive force gain coefficient

𝜌 - Shortest distance to the obstacle O

𝜌0 Limit distance of the potential field influence

𝐹𝑔𝑜𝑎𝑙 - Attractive force

𝐹𝑜𝑏𝑠 - Repulsive force
𝜕𝜌

𝜕𝑥

- Partial derivatives of variable shortest distance to the obstacle O in

the spatial position of UAV

Cij - Grid confidence matrix

β - Corresponding angle of grid

𝑉 - Velocity of ultrasonic waves

𝑆 - Distance of ultrasonic waves

𝑈(𝑞) - Artificial potential field exerted on UAV

𝑈𝑎𝑡𝑡(𝑞) - Attractive field exerted by goal

𝑈𝑟𝑒𝑝(𝑞) - Repulsive field exerted by obstacle

𝐹(𝑞) - Resultant artificial force which moves the UAV

𝐹𝑎𝑡𝑡(𝑞) - Attractive force which generated by goal

𝐹𝑟𝑒𝑝(𝑞) - Repulsive force which generated by obstacle

𝑘𝑎 - Positive coefficient of gravity for APF

𝑞 - Current position vector of UAV

𝑞𝑑 - Desired goal position vector

𝜌𝑔𝑜𝑎𝑙 - Euclidean distance from UAV’s current position to goal position

𝑘𝑏 - Repulsion gain coefficient

𝑑 - Distance between UAV and obstacle

𝑑0 - Distance of obstacle repulsive force field

𝑥𝑖 - UAV’s position in x-direction

𝑥𝑔𝑖 - Goal position in x-direction

𝑦𝑖 - UAV’s position in y-direction

𝑦𝑔𝑖 - Goal position in y-direction

𝐷 - Maximum detection range

𝑌𝑛 - Actual distance

𝑋𝑛 - Sensor reading

11

LIST OF APPENDICES

APPENDIX A GANTT CHART 90

APPENDIX B MATLAB CODE FOR OBSTACLE-FREE

ENVIRONMENT 91

APPENDIX C MATLAB CODE FOR ENVIRONMENT WITH 1

OBSTACLE 93

APPENDIX D MATLAB CODE FOR ENVIRONMENT WITH 2

OBSTACLES 96

APPENDIX E MATLAB CODE FOR ENVIRONMENT WITH 3

OBSTACLES 99

APPENDIX F MATLAB CODE FOR EXTREME GOAL POSITION IN

OBSTACLE-FREE ENVIRONMENT 103

APPENDIX G MATLAB CODE FOR EXTREME GOAL POSITION IN

ENVIRONMENT WITH 3 OBSTACLE 105

APPENDIX H MATLAB CODE FOR OBSTACLE-FREE

ENVIRONMENT WITH WIND DISTURBANCES 109

APPENDIX I MATLAB CODE FOR ENVIRONMENT WITH WIND

DISTURBANCES AND 3 OBSTACLES 112

APPENDIX J CODE TO CONNECT ULTRASONIC SENSOR WITH

ARDUINO UNO 116

APPENDIX K CODE TO CONNECT INFRARED SENSOR WITH

ARDUINO UNO 117

APPENDIX L EXPERIMENT SETUP FOR MAXIMUM DETECTION

RANGE OF ULTRASONIC SENSOR 118

12

APPENDIX M EXPERIMENT SETUP FOR MAXIMUM DETECTION

RANGE OF INFRARED SENSOR 118

APPENDIX N EXPERIMENT SETUP FOR ACCURACY OF

ULTRASONIC SENSOR 119

APPENDIX O EXPERIMENT SETUP FOR ACCURACY OF INFRARED

SENSOR 119

13

INTRODUCTION

1.1 Background

An Unmanned Aerial Vehicles (UAV) also referred to as drones. UAV is a type of

aircraft that can be fly autonomously or controlled by remote without the presence of

pilot [1]. A communication link, a ground control station, and unmanned aerial

vehicles make up the Unmanned Aerial System. UAV can provide cloud-free and

high-resolution images. Hence, it is widely used in various applications such as

delivering, monitoring and filming.

Unmanned Aerial Vehicle (UAV) has undergone significant advancements over time.

In the First World War, UAV was used as a flying bomb. Due to the limitations in

technology, it cannot focus on the target accurately. In World War II, Pilotless Target

Aircraft (PTA) was developed which can return after completing the mission. In the

Cold War, a new UAV, “Lightning Bug” was developed. The advancements in the

electronics of this UAV allow us to carry out real-time data transmission. In the 1990s,

the development of UAV make it can gather information such as location of enemy

[2]. Nowadays, UAV are equipped with cameras by merging the radio-controlled

aircraft and smartphone technology. Hence, it is suitable to use for inspection and

photography.

To enable an UAV to fly autonomously, some important features become main

consideration of researchers when designing the UAV. Among these features, the

computer algorithm is particularly important, as it enhances data processing and

contributes to the overall performance of the UAV system. To stabilize the UAV flight,

the algorithm can adjust the attitude and position of UAV according to the condition

by tracking the UAV’s flight data [3]. To ensure the safety of user, integrating sensors

into the UAV is another important element. Since UAV always fly to an unpredictable

condition, various types of sensors such as ultrasonic sensors, cameras and radar laser

sensors are important for UAV to detect the obstacles surrounding it [4].

14

1.2 Motivation

Recently, UAV has rapidly gained widespread popularity around the globe. The

worldwide UAV market is expected to expand significantly over the next several

years. When comparing current UAV technology to earlier models, there have been

numerous advancements. Consequently, it raises the UAV market around the world.

The development of UAV technology also spurs my curiosity about looking into a

UAV-related idea.

Figure 1.1 Application of UAV in 2019 [5]

Previously, UAV were mainly used for military purposes. Nowadays, advancement in

UAV technology such as the integration of cameras on UAV are significantly

broadening its scope of applications across various fields. For example, UAV can be

used for gaming, mapping, cartograph, inspection, traffic monitoring, search and

rescue purpose [6]. Figure 1.1 shows the statistics of the application of UAV in 2019.

15

Figure 1.2 UAV incidents from 2014 to 2016 [7]

Although there are a lot of advancements in UAV technology, the accidents of UAV

still cannot be avoided. Figure 1.2 illustrates the rising probability of UAV collision

accidents between 2014 and 2016. My interest in finding out about the cause of the

UAV's high collision risk has been awakened by the analysis. There are two main

issues, which are hardware and software issues which may cause UAV accidents. The

malfunctions of sensors like faulty GPS or ultrasonic sensors can disrupt flight stability

and lead to disorientation or unexpected maneuvers. For software, UAV accidents

happen when there are errors in the flight control software of UAV. The errors may

affect the flight path and stability of UAV. Therefore, it can lead to erratic movements

or crashes of UAV.

1.3 Problem Statement

The global demand for UAV is on the rise. With the increasing utilization of UAV

across various sectors, certain limitations of UAV arise. UAV often navigates through

unpredictable conditions, there is a risk that it may collide with objects. In [8], CNN

and Aviation Safety Network stated that the number of deaths caused by commercial

flight accidents is around few hundreds per year. Recently, researchers have been

16

involved in the development of UAV. However, the probability of UAV accidents is

still high.

To reduce the probability of UAV’s accidents, obstacle avoidance system plays a

significant role. This is because obstacle avoidance system consists of algorithms and

sensors to identify the presence and location of obstacles. Integrating specified

algorithms on the UAV can aid the UAV to determine the best route to reach the goal

without colliding with obstacles. Autonomous flights always rely on algorithms to

perform tasks such as object tracking and path planning. If there are errors in these

algorithms, it may cause the UAV to deviate from the planned route or fail to react to

various conditions appropriately. Finally, a collision occurs.

In addition, sensors are another important feature for UAV. The safety of UAV is

highly relying on sensors. Sensors measure the surrounding condition of UAV. For

example, a distance sensor detects the distance between the obstacles and UAV. After

the sensor detects the obstacles, the data is sent to the flight controllers. After that, the

controllers will calculate the distance between the UAV and the obstacles. Besides, the

speed of the UAV decreases according to the distance [9]. Hence, a collision between

UAV and objects is avoided.

1.4 Objective

The objectives of this project are:

1. To investigate the collision avoidance algorithm for UAV.

2. To model the Artificial Potential Field (APF) algorithm on MATLAB.

3. To analyze the performance of APF algorithm under 3 conditions, different

number of obstacles, extreme goal position and wind disturbances.

4. To analyze the effectiveness of distance sensor.

17

1.5 Scope and Limitation

The main scope of this project is to explore the collision avoidance algorithm that is

suitable for UAV. During the algorithm research, the application pros and cons of the

algorithm are highlighted. In this project, the priority is given to algorithms which are

suitable for path planning and collision avoidance for UAV. The algorithm is

simulated on MATLAB by adding some real-world scenarios which affect the

performance of the algorithm. The performance of the algorithm is analyzed through

the simulation result of MATLAB. As an advancement of the collision avoidance

mechanisms, distance sensors can be applied on UAV to detect the distance between

the UAV and obstacles. In this project, the specifications of ultrasonic sensors HC-

SR04 and infrared sensors KY-032 will be tested and compared. Then, a suitable

distance sensor is selected.

The limitation for this project is that the designated virtual environment on MATLAB

may not fully represent the real-world scenarios. The success obtained in the

simulation may vary when implemented on the physical UAV which navigates in

dynamic environments. Furthermore, the testing experiment of sensors is fully carried

out in the indoor environment. When the selected sensor is applied on physical UAV,

the performance of the sensor may be affected due to the unpredictable conditions such

as variable weather and lighting.

18

1.6 K-Chart

Figure 1.3 K-chart of Unmanned Vehicle

19

LITERATURE REVIEW

2.1 Overview of UAV

Unmanned aerial vehicles (UAV) are aircraft without a human pilot on board [10].

Over the last few decades, UAVs have improved significantly, especially for its

advancements in component technologies. There is a strong relation between UAV

with our daily activities. Due to the advancements in their technology, UAV are used

in various application such as inspecting pipelines, agriculture, surveillance and

mapping.

Figure 2.1 UAV used for surveillance and mapping [10]

Figure 2.2 UAV used for spraying pesticide on crops [10]

20

There are many types of UAV available in the market. UAV can be categorized

according to their size, range and properties. Table 2.1 shows that the classification of

UAV is based on weight with their specification.

Table 2.1 Classification of UAV [11]

Type
Maximum

weight

Operating

altitude

(m)

Range

(km)

Payload

(kg)

Flight

time

(min)

Description

Nano 200 g 50 5 < 0.2 6 -8

Easily

remote and

reach remote

locations

Micro 2 kg < 90 25 0.2-0.5 45

Operated on

low altitudes

with limited

space for fuel

and battery

Mini 20 kg 150 – 300 40 0.5-10.0 18

Maintain line

of sight

between

aircraft and

ground

station

Small
25kg-

150kg
< 1500 150 5.0-50.0 180

Operated at

low to

medium

altitudes and

longer loiter

capabilities

Tactical >150 kg < 3000 200
25.0-

200.0
1800

Operated at

high

altitudes,

provide

tracking or

monitoring

21

There are four major types of UAV which are fixed wing, fixed wing hybrid, single

rotor and multirotor.

Table 2.2 Types of UAV and its description [15]

UAV Description

Fixed wing [12]

Features: Long endurance, fast flight

speed

Requirement: Special skills to operate,

wide area to launch

Application: Aerial mapping,

inspection of pipelines

Fixed wing hybrid [13]

Features: vertical takeoff and landing

(VTOL), long endurance flight

Limitations: Still in development, not

good at hover or forward flight

Application: Delivery

Single rotor [13]

Features: VTOL, hover and long

enfurance flight

Requirement: Special skill to operate,

heavier payload like LiDAR sensor

Multirotor [14]

Features: VTOL, hover and short

endurance flight

Limitations: Not suitable for longer

distance monitoring due to limited

speed, flight time, energy efficiency

Applications: Photography, Video

surveillance

22

The combination of airframe and a computer system, Flight Control System enables

the UAV to fly autonomously [16]. The Flight Control System includes hardware and

software architecture for UAV. For hardware, it consists of sensors like accelerometers

and magnetometers, GPS and CPUs. Algorithms are software which is implemented

in the flight control system of UAV. All these elements collaborate to fly the plane

without human intervention. Figure 2.3 shows the main components that are embedded

in the UAV system.

Figure 2.3 Main components of UAV system [16]

2.2 Previous Studies on Algorithm of UAV

Algorithms play an important role in the operation of UAV. Different algorithms are

accessible to UAVs. An appropriate algorithm is selected depending on the specific

requirements. An algorithm is a set of instructions that a computer or person can follow

to complete a task. In UAV system, there are two types of computers which are flight

controller and mission computer. Some basic algorithms are pre-loaded into flight

controller’s firmware to keep the UAV stable. Conversely, the algorithm which relates

to special mission such as path planning is embedded in the mission computer. In this

project, the algorithm that will be investigated is related to collision avoidance and

path planning.

23

2.2.1 Artificial Potential Field

Artificial Potential Field (APF) is an algorithm which is developed by the Khatib in

1986 [17]. Due to simplicity, high efficiency and smooth trajectory generation of APF

algorithm, it is widely used in UAV trajectory planning and obstacle avoidance [18].

The trajectory that generated by the APF is the smoothest and safest, but it is not the

shortest trajectory. The basic concept of APF is applying attractive and repulsive force.

The desired goal acts like an attractive pole while the obstacle acts like a repulsive

pole. Khatib modeled the UAV and the target point as particles, and he regarded

obstacles as circles. The analysis of the Artificial Potential Field (APF) model was

conducted in two-dimensional space. At any position in the planned space, the

direction of UAV's movement is determined by the resultant force field, a combination

of the gravitational field from the target or goal and the repulsion field from the

obstacles. By considering only a single obstacle present in space, the attractive and

repulsive potential function can be represented as follows:

Table 2.3 Notation and its description for equation (2-1) to (2-3)

𝑼𝒂𝒓𝒕(𝒙) = 𝑼𝒈𝒐𝒂𝒍(𝒙) + 𝑼𝒐𝒃𝒔(𝒙) (2-1)

𝑼𝒈𝒐𝒂𝒍(𝒙) =
𝟏

𝟐
𝒌𝒑(𝒙 − 𝒙𝒅)𝟐

(2-2)

𝑼𝒐𝒃𝒔(𝒙) = {
𝟎. 𝟓ƞ(

𝟏

𝝆
−

𝟏

𝝆𝟎
)𝟐 , 𝝆 ≤ 𝝆𝟎

 𝟎 , 𝝆 > 𝝆𝟎

(2-3)

Notation Description

𝑼𝒂𝒓𝒕 Artificial potential energy

𝑼𝒈𝒐𝒂𝒍 Attractive potential energy

𝑼𝒐𝒃𝒔 Repulsive potential energy

𝒙 Spatial position of UAV

𝒙𝒅 Spatial position of goal

𝒌𝒑 Attractive force gain coefficient

ƞ Repulsive force gain coefficient

𝝆 Shortest distance to the obstacle O

𝝆𝟎 Limit distance of the potential field influence

24

After computing the negative gradient of gravitational potential field function, the

corresponding attractive force function and repulsive force function are determined as

follows:

𝑭𝒈𝒐𝒂𝒍(𝒙) = −𝒈𝒓𝒂𝒅[𝑼𝒈𝒐𝒂𝒍(𝒙)] = −𝒌𝒑(𝒙 − 𝒙𝒅)

(2-4)

𝑭𝒐𝒃𝒔(𝑿) = −𝒈𝒓𝒂𝒅[𝑼𝒐𝒃𝒔(𝒙)]

= {
ƞ (

𝟏

𝝆
−

𝟏

𝝆𝟎
)

𝟏

𝝆𝟐

𝝏𝝆

𝝏𝒙
 , 𝝆 ≤ 𝝆𝟎

 𝟎 , 𝝆 > 𝝆𝟎

(2-5)

Table 2.4 Notation and its description for equation (2-4) to (2-5)

Notation Description

𝑭𝒈𝒐𝒂𝒍 Attractive force

𝑭𝒐𝒃𝒔 Repulsive force

𝝏𝝆

𝝏𝒙

Partial derivatives of variable shortest distance to the

obstacle O in the spatial position of UAV

When multiple obstacles present, the resultant force is:

𝑭𝒂𝒓𝒕 = 𝑭𝒈𝒐𝒂𝒍(𝒙) + ∑ 𝑭𝒐𝒃𝒔(𝒙)

𝒏

𝒐𝒃𝒔=𝟏

 (2-6)

Although the APF algorithm proves effective in path planning and obstacle avoidance,

it is susceptible to phenomena such as converging on local minimum points, target

unreachability and trajectory jitter in narrow region. To overcome those issues, the

conventional algorithm has been approved. Rostami et al. [19] have introduced that

inserting a regulatory factor, 𝑅𝐴
𝑀 into algorithm can overcome the local minima and

unreachable target when the UAV is surrounded by obstacles issue. In this modified

algorithm, the repulsive force, 𝐹𝑅 is divided into two vector components, 𝐹𝑅1 and 𝐹𝑅2.

𝐹𝑅1is the force that aligned with the direction from the UAV to the obstacle while

𝐹𝑅2 is the force that aligned with the direction from the UAV to the target. As the UAV

approaches the target, 𝐹𝑅1 decreases more rapidly (order M) compared to 𝐹𝑅2. This

rapid decrease in 𝐹𝑅1 leads it to disappear, facilitating convergence based on 𝐹𝑅2 and

the attraction force. Hence, the regulatory factor, 𝑅𝐴
𝑀 enables obstacle avoidance and

convergence to the target. In [20], a gravitational function generated by obstacles into

25

the repulsive function is introduced to solve the issue of unreachable target points and

falling into local optimum. To ensure the UAV fly within the prescribed scope of path

planning, a border function which can limit the flying area of UAV is implemented.

2.2.2 Rapid-exploration Random Tree

Rapid-exploration Random Tree (RRT) algorithm is proposed by LaVall [21]. RRT

algorithm is used as an obstacle avoidance path planning technique which can do

obstacle avoidance path planning in real time and online. RRT algorithm can construct

a safe and flyable path within a short period of time for UAVs in a variety of threat

scenarios. The basic principle of RRT algorithm is representing an initial point as a

root node. Subsequently, leaf nodes are added to generate a random extension tree.

The process ends when the leaf node of random extension trees includes target node

goal x. The tree expansion process is shown in Figure 2.4. To have a better

understanding of the basic principle of RRT algorithm, its flowchart is represented in

Figure 2.5.

Figure 2.4 Tree expansion process for RRT algorithm [22]

26

Figure 2.5 Flowchart of basic principle of RRT algorithm [21]

27

Yang et al. [23] proposed a RRT path optimization approach based on ant colony

algorithm to obtain a global optimal solution. Pheromones are applied to the path

discovered by the RRT. Then, the next expansion point is chosen based on pheromone

concentration through roulette wheel selection. Through multiple iterations, an

improved path is generated. In [24], a refined algorithm, named EPF-RRT, has been

proposed. It combines the concept of environmental potential field and original RRT

algorithm. The EPF-RRT guides the RRT growth towards the goal and avoid obstacles

simultaneously. In [25], an improved algorithm is proposed which integrates the

Artificial Potential Field (APF) algorithm with RRT algorithm. A path which is close

to the optimal one will be generated within a shorter time by using the improved

algorithm. The highlighted point of this algorithm is that some parts of the original

path that is affected by dynamic obstacles will be discarded. After that, a new path will

be generated from the current position of UAV to the goal point.

2.2.3 Vector Field Histogram

Vector Field Histogram (VFH) is a path planning which is proposed by Johann

Borenstein [26]. The basic concept of VFH is a combination of grid method and

artificial potential field method. By using VFH algorithm, a polar coordinate histogram

H is built and an optimal region around the UAV is selected as the motion direction.

The polar histogram is updated at different angular resolutions [27]. The process of the

VFH algorithm is shown in Figure 2.6. According to Figure 2.7, an UAV is positioned

at the center of an active window with gridded space. A grid confidence matrix, Cij

which represents the obstacle confidence present in each grid is generated. After that,

Cij is mapped to polar coordinate histogram H. A polar coordinate system is built with

the position of UAV (pux, puy) as its center. Every grid (i, j) is associated with a vector

directed towards it by the UAV. According to the vector, the corresponding angle β of

the grid is calculated as in equation (2-7). The polar obstacle density, POD of the grid

can also be determined as shown in equation (2-8).

𝜷𝒊𝒋 = 𝒂𝒓𝒄𝒕𝒂𝒏
𝒚𝒋 − 𝒑𝒖𝒚

𝒙𝒊 − 𝒑𝒖𝒙

(2-7)

28

𝒎𝒊𝒋 = 𝒄𝒊𝒋
𝟐(𝒂 − 𝒃𝒅𝒊𝒋) (2-8)

Finally, an optimal motion direction is selected by referring to the distribution of

obstacles in each sector in polar coordinate histogram H. The threshold T is used to

filter out the peaks and valleys. Then, UAV will select either valley which is closest

to intended motion direction.

Figure 2.6 Flowchart of basic principle of VFH algorithm [26]

29

Figure 2.7 Grid map diagram [26]

Figure 2.8 Polar coordinate histogram H [26]

In [28], an enhanced VFH algorithm is proposed by combining the concept of

kinematic and dynamic constraints of the vehicle. A new active region is generated for

VFH to ensure that the vehicle can reach all states within the specified region. Hence,

smoother and collision-free trajectories are generated. H. Zhang et.al. [29] developed

a Dubins-based improved vector field histogram (VFH) for fixed-wing UAV. A new

path is inserted into the environment and a collision-free trajectory is generated. In

[30], VFH algorithm is corporate with sensor by processing the sensor data. After that,

the desired speed of drone flight is generated based on sensor data.

30

Table 2.5 Comparison between APF, RRT and VFH algorithm

Comparison
Artificial Potential

Field (APF)

Rapid-exploration

Random Tree

(RRT)

Vector Field

Histogram (VFH)

Founder Khatib [17] LaVall [21]
Johann Borenstein

[26]

Principle to

generate path

Apply potential

field [18]

Build tree structure

[21]

Analysis on polar

coordinate

histogram [27]

Adaptability to

dynamic

environments

High adaptability

since continuous

adjustment is

applied to potential

field [17]

Moderate

adaptability,

increase frequency

of updating tree

structure [25]

Low adaptability,

reduce the

reliability of the

polar coordinate

histogram [43]

Path Optimizing

May not generate

optimized path due

to potential local

minimum [18]

Can generate a safe

but not the shortest

path within a short

period of time [24]

Focus on

generating a path

without obstacle

only [30]

Integration of

sensor with

algorithm

Data is used to

generate repulsive

forces in potential

field [17]

Data is used to

determine the

configuration space

and exploration of

tree structure [23]

Data is used to

construct polar

coordinate

histogram for

selecting path

without obstacles

[30]

31

The pros and cons for three algorithms, APF, RRT and VFH are compared in Table

2.5. By comparing three algorithms, APF algorithm is simple to implement and can be

used in dynamic environment but cannot generate an optimized path due to local

minima. RRT algorithm can be used in dynamic environments but slow to converge

on a good path. Hence, an optimal path may not be generated by applying RRT

algorithm. VFH algorithm can be used for generating a path without colliding with

obstacle but not efficient in dynamic environments.

In summary, since UAV always navigate through unpredictable environment, it needs

real-time operation of algorithm which can rapidly respond to the changing

environment. After comparing three algorithms, APF is more suitable to be applied in

this project. The high adaptability of APF to various environments makes it is good

choice for collision avoidance and path planning in UAV applications.

2.3 Sensor

2.3.1 Ultrasonic Sensor

Ultrasonic sensor is a type of distance sensor. This type of sensor is widely used in

object detection and range detection due to its high efficiency [31]. It is used to

measure the distance of objects in air through reflection of sound waves [32]. The time

response of ultrasonic sensor depends on reflectance characteristics of the surface of

detected object. Ultrasonic sensors can be used with the presence of microcontrollers

or microprocessors such as Arduino and Raspberry Pi. Figure 2.9 shows the block

diagram on the cooperation between ultrasonic sensors and other hardware with

Arduino.

32

Figure 2.9 Block diagram of ultrasonic distance detection with Arduino [32]

Ultrasonic sensor can detect objects which are located 2 cm-400 cm far from the sensor

[33]. A 5V power supply is needed for sensor to operate. There are 4 connection pins

on the ultrasonic sensor which are Vcc, Gnd, Trigger and Echo. For trigger input, it

requires 10μs pulse as an input. Hence, an ultrasound at 40kHz will be sent out. Echo

is an output pin which represents the time taken for ultrasonic sound return to sensor.

Figure 2.10 Pin configuration of ultrasonic sensor [33]

Ultrasonic ranging, phase detection, acoustic amplitude detection method and transit

time detection are the methods used for ultrasonic sensor [34]. The most common

method used is transit time detection in which detecting the transmission of ultrasonic

wave to receiver’s time. The working principle of ultrasonic sensor is shown in Figure

2.11. To obtain the distance of ultrasonic wave, the formula is in equation (2-9) with

Δt is the time difference of ultrasonic pulse transmitting and receiving, 𝑉 = 340 𝑚/𝑠

is the ultrasonic velocity.

33

Figure 2.11 Working principle of ultrasonic sensor [34]

𝑺 = 𝑽.
∆𝒕

𝟐
 (2-9)

In [35], an implementation of ultrasonic sensor, HCSR04 on UAV is proposed. There

are a total of 4 ultrasonic sensors applied on the UAV system to detect the presence of

obstacles at left, right, front, and back of UAV. In [36], HC-SR04 ultrasonic sensor is

connected to Arduino Yun to get the distance between the sensor and the obstacle.

2.3.2 Infrared Sensor

Infrared sensor KY-032 is another type of distance sensor which is lighter in weight,

less complexity and lower in cost [37]. It is widely used for obstacle avoidance.

Infrared radiation is an electromagnetic wave with a frequency below the sensitivity

range of the human eye. Infrared sensor is used to detect the presence of object through

reflected infrared radiation [38]. It have an infrared transmitter and a receiver which

form the sensor pair. The transmitter LED emits an infrared light with the frequency

which can be detected by receiver LED. The receiving LED detects some of the signal

back and triggers the digital on or off signal pin when a specific threshold distance has

been detected.

There are 3 pins on infrared sensor which are Vcc, Gnd and OUT pin [40]. Vcc is the

power supply input, GND is power supply ground and OUT is an output pin. The

34

voltage supply for the infrared sensor is 5V DC while the current supply is 20mA. The

detection range of the infrared sensor is up to 20 centimeters.

Figure 2.12 Infrared sensor [39]

In [40], four infrared (IR) sensors are utilized to prevent collisions by steering in the

opposite direction. S. A. Daud et.al. [41] applied multiple infrared sensors to rebuild

the shape of objects by detecting the changes in sensor displacement. Infrared sensors

possess non-linear characteristics [42]. When measuring the distance, the angle of

reflecting surface needs to be located directly to the sensor. The range resolution of

infrared sensors is not as high as ultrasonic sensors. However, certain types of infrared

sensors which are expensive perform better resolution at long distance. Besides,

infrared sensors are always used to enhance the real-time response of a mobile robot

due to its faster response.

35

Table 2.6 Comparison between ultrasonic and infrared sensor

Comparison Ultrasonic sensor Infrared sensor

Transmission medium
Emits ultrasonic sound

waves [32]

Emits infrared light [38]

Working principle

Determine the distance by

measuring time taken for

sounds waves reflects

from the obstacle [34]

Determine the presence of

object by detecting the

reflected infrared

radiation [38]

Operating voltage 5V [33] 5V [39]

Detection range 2cm to 400cm [33] Up to 20cm [39]

Factors that affect the

accuracy of sensor

Affected by

environmental factors

such as temperature [44]

Affected by reflective

properties of the surface

of obstacles [44]

Response’s speed

Longer response time due

to speed of sound [38]

Shorter response time due

to faster speed of light

[38]

In summary, ultrasonic sensor is suggested to be integrated on the UAV due to its high

detection range if compared to infrared sensor. The high detection range of ultrasonic

sensor makes the obstacle which located further from sensor can be detected if

compared to infrared sensor. Hence, flight controller can make adjustment on UAV to

avoid collision with obstacles. Last but not least, high compability of APF algorithm

and ultrasonic sensor can result an efficient collision avoidance mechanisms for UAV.

36

METHODOLOGY

3.1 Table Structure of Project

Table 3.1 displays the experiment or task that was conducted and mapping to every

objective which stated previously. To achieve objective 1, an investigation on suitable

algorithm for collision avoidance mechanisms of UAV was conducted. For objective

2, the APF algorithm was modelled on MATLAB and its performance was analyzed

to achieve objective 3. For objective 4, experiments were carried out to determine the

effectiveness of sensor.

Table 3.1 Table structure of the project

 Objective

 1

Objective

 2

Objective

 3

Objective

 4

Investigation of collision

avoidance algorithm for UAV
 √

Modelling of APF algorithm

on MATLAB

 √

Analyzation of APF

algorithm’s performance under

conditions different numbers of

obstacles, extreme goal

position and wind

disturbances.

 √

Experiment: Effectiveness of

Sensor

 √

37

3.2 Flow Chart of Project

The overall process of this project is summarized as shown in Figure 3.1. A previous

study on collision avoidance algorithm for UAV was conducted. After that, a suitable

algorithm was selected to be modelled on MATLAB. The forward step was designing

a virtual environment with varying conditions, different number of obstacles, extreme

goal position and wind disturbances to test the functionality of the selected algorithm,

Artificial Potential Field (APF) algorithm. The performance of APF algorithm was

analyzed by calculating the RMSE value. To enhance the collision avoidance

mechanisms of UAV, a sensor was suggested to be implemented on the UAV for real

time application. The maximum detection range and accuracy of ultrasonic sensor and

infrared sensor were determined through experiment.

38

Figure 3.1 Flow chart of project

39

3.3 Gantt Chart

Figure 3.2 Gantt chart for project

40

3.4 Block Diagram

Figure 3.3 shows the block diagram of the collision avoidance system embedded with

UAV system. Firstly, sensors were used to measure the distance between UAV and

obstacles. The real-time data and distance measurements were sent to Arduino Uno.

The collision avoidance algorithm was embedded in the Arduino Uno. An ideal path

was generated by the algorithm according to the surrounding condition of UAV.

Lastly, control signals which include the adjustment of UAV’s flight parameter were

sent from Arduino Uno to UAV system. Hence, collision with obstacles could be

avoided by UAV.

Figure 3.3 Block diagram for collision avoidance system with UAV system

41

3.5 Collision Avoidance Algorithm: Artificial Potential Field (APF)

The selected collision avoidance algorithm in this project is Artificial Potential Field

(APF) algorithm. APF algorithm is an algorithm which is frequently used for path

planning due to its safety and simplicity. Potential field is suitable for real-time

applications. APF algorithm involves two forces which are attractive and repulsive

force to perform the collision avoidance of UAV. Repulsive force is a force which is

generated by obstacle while attractive force is generated by goals. The strength of the

forces varies with the distance between UAV and obstacle or goal. By applying APF

algorithm, the obstacle repels UAV while the goal attracts it. The resultant forces of

the fields on UAV are used to determine the direction of UAV’s motion.

When applying APF algorithm, the position vector of UAV is considered as 𝑞 =

(𝑥, 𝑦)𝑇. The APF function is represented as equation (3-1).

𝑼(𝒒) = 𝑼𝒂𝒕𝒕(𝒒) + 𝑼𝒓𝒆𝒑(𝒒) (3-1)

Table 3.2 Notation and its description for equation (3-1)

Notation Description

𝑼(𝒒) Artificial potential field exerted on UAV

𝑼𝒂𝒕𝒕(𝒒) Attractive field exerted by goal

𝑼𝒓𝒆𝒑(𝒒) Repulsive field exerted by obstacle

According to Figure 3.4, there is an attractive force, 𝑭𝒂𝒕𝒕 which is direct towards to

goal. This means that the attractive force is generated from goal to attract the UAV to

move towards it. At the same time, there is a repulsive force, 𝑭𝒓𝒆𝒑 which is direct

towards the opposite side of obstacle. This means that the repulsive force is generated

from obstacle to repel the UAV. From equation (3-2), the force is the negative gradient

of potential field. The resultant force, 𝑭 is the combination force of attractive force,

𝑭𝒂𝒕𝒕 and repulsive force, 𝑭𝒓𝒆𝒑 . The direction of resultant force, 𝑭 shows that the

direction of motion of UAV.

42

Figure 3.4 Resultant artificial force of potential function

𝑭(𝒒) = −𝛁𝑼(𝒒)
 = −𝛁𝑼𝒂𝒕𝒕(𝒒) − 𝛁𝑼𝒓𝒆𝒑(𝒒)

 = 𝑭𝒂𝒕𝒕(𝒒) + 𝑭𝒓𝒆𝒑(𝒒)

(3-2)

Table 3.3 Notation and its description for equation (3-2)

Notation Description

𝑭(𝒒) Resultant artificial force which moves the UAV

𝑭𝒂𝒕𝒕(𝒒) Attractive force which generated by goal

𝑭𝒓𝒆𝒑(𝒒) Repulsive force which generated by obstacle

The attractive field between UAV and goal is assembled to attract the UAV to the

goal area. The attractive field between UAV and goal can be calculated by using the

equation (3-3).

𝑼𝒂𝒕𝒕(𝐪) =
𝟏

𝟐
× 𝒌𝒂 × 𝝆𝟐

𝒈𝒐𝒂𝒍(𝐪)

 =
𝟏

𝟐
 𝒌𝒂||𝒒 − 𝒒𝒅||𝟐

(3-3)

Table 3.4 Noatation and its description for equation (3-3)

Notation Description

𝒌𝒂 Positive coefficient of gravity for APF

𝒒 Current position vector of UAV

𝒒𝒅 Desired goal position vector

𝝆𝒈𝒐𝒂𝒍 Euclidean distance from UAV’s current position to goal

position

43

The attractive force which is applied on the UAV can be calculated as the negative

gradient of attractive potential field as shown in equation (3-4).

𝑭𝒂𝒕𝒕(𝐪) = −𝛁𝑼𝒂𝒕𝒕(𝒒)

 = −
𝟏

𝟐
 𝒌𝒂 𝝆𝟐

𝒈𝒐𝒂𝒍(𝒒)

 = −𝒌𝒂 (𝒒 − 𝒒𝒅)

(3-4)

From the aspect of potential field, UAV should be repelled away from obstacles. When

the UAV is away from obstacles, the motion of UAV is not affected by obstacle.

Hence, the repulsion potential field, 𝑼𝒓𝒆𝒑(𝒒) may considered as 0. When the UAV is

close to the goal, repulsion potential field will gradually decrease. The repulsion

potential field will become 0 when the UAV has reached the goal. The repulsion

potential field which experienced by UAV can be calculated by using equation (3-5).

𝑼𝒓𝒆𝒑(𝐪) = {

𝟏

𝟐
 𝒌𝒃 (

𝟏

𝒅(𝒒)
−

𝟏

𝒅𝟎
)𝟐 , 𝒅(𝒒) ≤ 𝒅𝟎

 𝟎 , 𝒅(𝒒) ≥ 𝒅𝟎

(3-5)

Table 3.5 Notation and its description for equation (3-5)

Notation Description

𝒌𝒃 Repulsion gain coefficient

𝒅 Distance between UAV and obstacle

𝒅𝟎 Distance of obstacle repulsive force field

Consider the configuration of obstacle which is closest to the latest position of UAV

as 𝒒𝒄 = (𝒙𝒄, 𝒚𝒄). The shortest distance between UAV and obstacles is considered as

𝒅 = ||𝒒 − 𝒒𝒄|| while the largest impact distance of obstacle to the UAV is considered

as 𝑑0. When the UAV is close to the obstacle, a repulsive force is exerted on the UAV.

Conversely, there is no impact on UAV when the distance between the UAV and

obstacle is greater than the largest impact distance, 𝒅𝟎. Hence , the repulsive force can

be considered as 0.

44

𝑭𝒓𝒆𝒑(𝒒) = {
𝒌𝒃 (

𝟏

𝒅(𝒒)
−

𝟏

𝒅𝟎
) (

𝟏

𝒅𝟐(𝒒)
) (

𝝏𝒅(𝒒)

𝒅𝒙
) , 𝒅(𝒒) ≤ 𝒅𝟎

 𝟎 , 𝒅(𝒒) ≥ 𝒅𝟎

 = {
𝒌𝒃 (

𝟏

𝒅(𝒒)
−

𝟏

𝒅𝟎
) (

𝟏

𝒅𝟐(𝒒)
) (

𝒒 − 𝒒𝒄

||𝒒 − 𝒒𝒄||
) , 𝒅(𝒒) ≤ 𝒅𝟎

 𝟎 , 𝒅(𝒒) ≥ 𝒅𝟎

(3-6)

According to the equation (3-6), the repulsive force which exerted on the UAV are the

combination of its cartesian components which are repulsion force in x, 𝑭𝒓𝒆𝒑𝒙 and y

direction, 𝑭𝒓𝒆𝒑𝒚. The cartesian components of repulsion force, 𝑭𝒓𝒆𝒑𝒙 and 𝑭𝒓𝒆𝒑𝒚 can

be calculated by applying equation (3-7) and (3-8).

𝑭𝒓𝒆𝒑𝒙(𝒒)

= {
𝒌𝒃 (

𝟏

𝒅(𝒒)
−

𝟏

𝒅𝟎
) (

𝟏

𝒅𝟐(𝒒)
) (

𝒙 − 𝒙𝒄

||𝒒 − 𝒒𝒄||
) , 𝒅(𝒒) ≤ 𝒅𝟎

 𝟎 , 𝒅(𝒒) ≥ 𝒅𝟎

(3-7)

𝑭𝒓𝒆𝒑𝒚(𝒒)

= {
𝒌𝒃 (

𝟏

𝒅(𝒒)
−

𝟏

𝒅𝟎
) (

𝟏

𝒅𝟐(𝒒)
) (

𝒚 − 𝒚𝒄

||𝒒 − 𝒒𝒄||
) , 𝒅(𝒒) ≤ 𝒅𝟎

 𝟎 , 𝒅(𝒒) ≥ 𝒅𝟎

(3-8)

Since there are n number of obstacles are designed in MATLAB environment, the

artificial potential field, 𝑼(𝒒) and artificial force, 𝑭(𝒒) can be obtained as shown in

equation (3-9) and (3-10) repectively.

𝑼(𝐪) = 𝑼𝒂𝒕𝒕(𝒒) + ∑ 𝑼𝒓𝒆𝒑(𝒒)

𝒏

𝒊=𝟏

(3-9)

𝑭(𝐪) = 𝑭𝒂𝒕𝒕(𝒒) + ∑ 𝑭𝒓𝒆𝒑(𝒒)

𝒏

𝒊=𝟏

(3-10)

By referring the mathematical equation of potential field and resultant force above, the

APF algorithm is modelled and simulated on MATLAB.

45

3.6 Performance of Artificial Potential Field (APF) Algorithm

Artificial Potential Field (APF) algorithm is widely used in UAV systems for path

planning and collision avoidance. According to research, some indirect factors may

affect the performance of collision avoidance algorithm for UAV. As a consequence,

UAV may collide with the obstacle. Hence, a framework to test the performance of the

APF algorithm under varying conditions was outlined. There were 3 conditions which

were number of obstacles, goal positioning and wind disturbance. The simulation was

carried out on MATLAB which is a programming and numeric computing platform to

analyze data, develop algorithms and create models.

3.6.1 Number of Obstacles

In practical application, UAV always fly into an environment containing an uncertain

number of obstacles. The risk of collision may increase when UAV flies to an

environment which contains high number of obstacles. The objective of this simulation

is to evaluate how the APF algorithm performs when the number of obstacles between

UAV’s initial position and goal position is gradually increase. In the simulation

environment, UAV is designed to fly to the goal position without collide with the static

obtacle such as wall. The starting point of UAV is (0,0) and the final point which is

the goal position is at (3.5, 3.5). Initially, UAV is simulated to fly in an environment

without obstacles. After that, the number of obstacles is gradually increase from 1

obstacle until 3 obstacles. Figure 3.5 shows the UAV’s simulation environment with

different number of obstacles.

46

 Without Obstacle

 1 Obstacle

 2 Obstacles

 3 Obstacles

Figure 3.5 Simulation environment with different number of obstacles

47

3.6.2 Extreme Position of Goal

In real world application, goals are not frequently located at the same position. When

designing the APF algorithm, it is crucial to consider a wide range of goal positions

within the environment. Hence, this simulation is carried out to analyze the

effectiveness of APF algorithm when goal is placed at extreme position within the

environment. The starting position of UAV is at (0,0). In previous case, the goal

position is at (3.5, 3.5). Conversely, in this case, the extreme position of goal is located

at (100, 100). The simulation is carried out under 2 conditions which are without

obstacles and with obstacles. The ability of the UAV to reach the goal is evaluated

based on the simulation result.

 Without Obstacle

 With Obstacle

Figure 3.6 Simulation environment with extreme position of goal

48

3.6.3 Wind Disturbances

In real world application, there are many types of disturbance exists in the environment

during the flight of UAV. The most common type of disturbance is wind disturbances.

Wind may affects the UAV’s trajectory by pushing UAV towards obstacles or change

its intended path. Hence, it may leads to the collision of UAV and obstacle. Artificial

Potential Field (APF) algorithm is required to account for wind forces to guide the

UAV to its goal position accurately without deviating. In this simulation, UAV starts

to fly from position (0,0) to goal position (3.5, 3.5). The simulation is carried out under

2 conditions which are without and with obstacles. The performance of APF algorithm

is analyzed based on the simulation result.

 Without Obstacle

 With Obstacle

Figure 3.7 Simulation environment with wind disturbances

49

3.7 Experiment for Sensor

An ideal UAV system typically requires APF algorithm and sensors for optimal

performance. APF algorithm provides a framework for path planning and obstacle

avoidance. Sensors also play a crucial role in providing real-time environmental data

to the UAV. By combining the APF algorithm with sensor inputs, the UAV can

navigate safely and efficiently in dynamic uncertain environments.

For the following section, 2 experiments are carried out to analyze the effectiveness of

the ultrasonic and infrared sensor. The maximum detection range of ultrasonic and

infrared sensors are determined through Experiment 1 while the accuracy of ultrasonic

and infrared sensors is tested through Experiment 2.

3.7.1 Experiment 1: Maximum detection range of sensor

3.7.1.1 Ultrasonic Sensor

Objective: To determine the maximum detection distance of the ultrasonic sensor.

Apparatus:

1. Breadboard

2. Arduino Uno

3. Ultrasonic Sensor HC-SR04

4. Jumper Wires

5. Cardboard (Obstacles)

6. Computer

7. Steel measuring tape

50

Figure 3.8: Wiring connection of ultrasonic sensor HC-SR04 and Adruino Uno

Figure 3.9: Experiment 1 setup for ultrasonic sensor

51

Procedures:

1. Ultrasonic sensor was connected with Arduino UNO as shown in Figure 3.8.

2. The Arduino Uno was connected with PC via USB connector.

3. Cardboard was placed at a distance of 400 cm in front of ultrasonic sensor.

4. Arduino code was written in Arduino software and uploaded to Arduino Uno.

5. Cardboard was moved towards the direction of ultrasonic sensor.

6. After uploading the code to Arduino Uno, the ultrasonic sensor reading was shown

in Serial Monitor.

7. The ultrasonic sensor reading was recorded once the cardboard was detected by

the ultrasonic sensor.

8. Step 3 to 7 were repeated 5 times.

3.7.1.2 Infrared (IR) sensor

Objective: To determine the maximum detection distance of infrared sensor.

Apparatus:

1. Breadboard

2. Arduino Uno

3. Infrared Sensor KY-032

4. Jumper Wires

5. Cardboard (Obstacles)

6. Computer

7. Steel Measure Tape

52

Figure 3.10: Wiring connection of infrared sensor KY-032 and Arduino Uno

Figure 3.11: Experiment 1 setup for infrared sensor

53

Procedures:

1. Infrared sensor was connected with Arduino Uno as shown in Figure 3.10.

2. The Arduino Uno was connected with PC via USB connector.

3. Cardboard was placed at a distance of 20 cm from infrared sensor.

4. Arduino code was written in Arduino software and uploaded to Arduino Uno.

5. Cardboard was moved towards the direction of infrared sensor.

6. After uploading the code to Arduino Uno, the infrared sensor result was shown in

Serial Monitor.

7. The infrared sensor result was recorded once the cardboard was detected by the

infrared sensor.

8. Step 3 to 7 were repeated 5 times.

3.7.2 Experiment 2: Accuracy of sensor

3.7.2.1 Ultrasonic Sensor

Objective: To compare the reading of ultrasonic sensor with actual distance.

Apparatus:

1. Breadboard

2. Arduino Uno

3. Ultrasonic Sensor HC-SR04

4. Jumper Wires

5. Cardboard (Obstacles)

6. Computer

7. Steel measuring tape

54

Figure 3.12: Experiment 2 setup for ultrasonic sensor

Procedures:

1. Ultrasonic sensor was connected with Arduino Uno on breadboard as shown in

Figure 3.8.

2. The Arduino Uno was connected with PC via USB connector.

3. Cardboard was placed at a distance of 100 cm from ultrasonic sensor.

4. Arduino code was written in Arduino software and uploaded to Arduino Uno.

5. After uploading the code to Arduino Uno, ultrasonic sensor reading was shown in

Serial Monitor.

6. The reading of ultrasonic sensor was recorded.

7. The percentage of errors between ultrasonic sensor reading and actual distance was

calculated and analyzed.

8. Step 3 to 6 were repeated by replacing the distance between cardboard and

ultrasonic sensor as 200 cm, 300 cm and 390cm.

55

3.7.2.2 Infrared Sensor

Objective: To evaluate the accuracy of infrared sensor with different incident angle.

Apparatus:

1. Breadboard

2. Arduino Uno

3. Infrared Sensor KY-032

4. Jumper Wires

5. Cardboard (Obstacles)

6. Computer

7. Steel measuring tape

8. Protractor

Figure 3.13: Experiment 2 setup for infrared sensor

56

Procedures:

1. Infrared sensor was connected with Arduino Uno on breadboard as shown in

Figure 3.10.

2. The Arduino Uno was connected with PC via USB connector.

3. Cardboard was placed at a distance of 15 cm from infrared sensor.

4. The infrared sensor was located perpendicular, 0° to the cardboard.

5. Arduino code was written in Arduino software and uploaded to Arduino Uno.

6. After uploading the code to Arduino Uno, infrared sensor result was shown in

Serial Monitor.

7. The infrared sensor result was recorded.

8. Step 4 to 7 were repeated by replacing the incident angle of infrared sensor as

15°, 30°, 45° and 60°.

57

RESULTS AND DISCUSSIONS

4.1 Outline

There are 2 parts of results that will be shown in the following part. The first part is

the MATLAB simulation result for the Artificial Potential Field algorithm’s

performance under conditions different number of obstacles, extreme position of goal

and wind disturbances. The second part is the experiment result which can be used to

evaluate the effectiveness of sensors. 2 experiments are carried out for ultrasonic

sensors and infrared sensors respectively. The project outline for Chapter 4 is shown

in Figure 4.1.

58

Figure 4.1 Outline for Chapter 4

59

4.2 Performance of Artificial Potential Field Algorithm (UAV Trajectory)

4.2.1 Number of Obstacle

In this part, the results shown are related to the 4 simulation environments which are

without obstacle, 1 obstacle, 2 obstacles and 3 obstacles. The position of UAV and

distance between UAV and goal position are updated from time to time in the

MATLAB command window. The UAV’s initial and final position for each conditions

are recorded as shown in Table 4.1, Table 4.2, Table 4.3 and Table 4.4. UAV trajectory

for each conditions are shown in Figure 4.2, Figure 4.3, Figure 4.4 and Figure 4.5.

4.2.1.1 Number of Obstacle: Without Obstacle

Table 4.1 UAV's position in environment without obstacle

Initial

Final

Travel time

60

Figure 4.2 UAV trajectory without obstacle

According to Table 4.1, the travel time taken for UAV from its initial position (0,0) to

goal position (3.5, 3.5) is 25.4 seconds. In Artificial Potential Field (APF) algorithm,

an attractive force is generated from the goal. According to Figure 4.2, it shows that

the UAV is attracted to the direction of goal due to the presence of attractive force.

Since there are no obstacles, there is no repulsive field in this condition.

4.2.1.2 Number of Obstacle: 1 Obstacle

Table 4.2 UAV's position in environment with 1 obstacle

Initial

Final

Travel time

61

Figure 4.3 UAV trajectory with 1 obstacle

According to Table 4.2, the travel time taken for UAV from its initial position (0,0) to

goal position (3.5, 3.5) is 27.1 seconds. Due to the presence of obstacle, UAV takes

longer time to reach the goal position if compared to previous. In this condition, an

attractive force and repulsive force is exerted on UAV. According to Figure 4.3, the

initial position of UAV is close to the obstacle, hence a repulsive force is exerted on

the UAV. Hence, UAV successfully avoids colliding with obstacle. Simultaneously,

an attractive force is exerted on the UAV to guide it toward the goal. As UAV moves

away from obstacle or close to goal position, repulsion potential field gradually

decrease. The repulsion potential field becomes 0 when the UAV has reached the goal.

62

4.2.1.3 Number of Obstacle: 2 Obstacles

Table 4.3 UAV's position in environment with 2 obstacles

Initial

Final

Travel time

Figure 4.4 UAV trajectory with 2 obstacles

63

According to Table 4.3, the travel time taken for UAV from its initial position (0,0) to

goal position (3.5, 3.5) is 29.8 seconds. Due to the higher number of obstacle, UAV

takes longer time to reach the goal position if compared to previous. In this condition,

an attractive force and repulsive force is exerted on UAV. According to Figure 4.4,

there are 2 obstacles in the simulation environment. The overall repulsion potential

field in the environment is higher than previous. The UAV’s trajectory is altered by

considering the repulsion potential field by both obstacles in simulation environment.

The initial position of UAV is close to the first obstacle, hence a repulsive force is

exerted on the UAV. Hence, UAV successfully avoids colliding with first obstacle.

After that, UAV’s trajectory is altered again due to the presence of second obstacle.

Simultaneously, an attractive force is exerted on the UAV to guide it toward the goal.

As UAV moves away from obstacle or close to goal position, repulsion potential field

gradually decrease. The repulsion potential field become 0 when the UAV has reached

the goal.

4.2.1.4 Number of Obstacle: 3 Obstacles

Table 4.4 UAV's position in environment with 3 obstacles

Initial

Final

Travel time

64

Figure 4.5 UAV trajectory with 3 obstacles

According to Table 4.4, the travel time taken for UAV from its initial position (0,0) to

goal position (3.5, 3.5) is 30.7 seconds. Due to the higher number of obstacle, UAV

takes longest time to reach the goal position if compared to previous. In this condition,

an attractive force and repulsive force is exerted on UAV. According to Figure 4.5,

there are 3 obstacles in the simulation environment. The overall repulsion potential

field in the environment is the combination repulsion field from 3 obstacles. The

UAV’s trajectory is altered by considering the repulsion potential field by 3 obstacles

in simulation environment. The initial position of UAV is close to the first obstacle,

hence a repulsive force is exerted on the UAV. Therefore, UAV successfully avoids

colliding with first obstacle. After that, UAV’s trajectory is altered again due to the

presence of second and third obstacle. Simultaneously, an attractive force is exerted

on the UAV to guide it toward the goal. As UAV close to goal position, repulsion

potential field gradually decrease. The repulsion potential field become 0 when the

UAV has reached the goal.

According to the simulation result, the accuracy of UAV’s positioning system can be

determined by applying Root Mean Square Error as shown in equation (4-1).

65

𝑹𝒐𝒐𝒕 𝑴𝒆𝒂𝒏 𝑺𝒒𝒖𝒂𝒓𝒆 𝑬𝒓𝒓𝒐𝒓, 𝑹𝑴𝑺𝑬

= √
𝟏

𝒏
 ∑(𝒙𝒊 − 𝒙𝒈𝒊)𝟐 + (𝒚𝒊 − 𝒚𝒈𝒊)𝟐

𝒏

𝒊=𝟏

 (4-1)

Table 4.5 Notation and its description for equation (4-1)

Notation Description

𝒙𝒊 UAV’s position in x-direction

𝒙𝒈𝒊 Goal position in x-direction

𝒚𝒊 UAV’s position in y-direction

𝒚𝒈𝒊 Goal position in y-direction

Table 4.6 RMSE value for different number of obstacle

i

UAV’s

 x-position
 𝒙𝒊

UAV's

y-position

𝒚𝒊

Goal's

x-position

𝒙𝒈𝒊

Goal's

y-position

𝒚𝒈𝒊
RMSE

Without

Obstacle

1 3.4487 3.4474 3.5 3.5

0.05921

2 3.4546 3.4535 3.5 3.5

3 3.4599 3.4589 3.5 3.5

4 3.4645 3.4636 3.5 3.5

5 3.4686 3.4678 3.5 3.5

1

Obstacle

1 3.4356 3.4551 3.5 3.5

0.06330

2 3.4430 3.4603 3.5 3.5

3 3.4496 3.4648 3.5 3.5

4 3.4554 3.4689 3.5 3.5

5 3.4606 3.4725 3.5 3.5

2

Obstacles

1 3.4660 3.4355 3.5 3.5

0.05874

2 3.4699 3.4430 3.5 3.5

3 3.4734 3.4496 3.5 3.5

4 3.4765 3.4554 3.5 3.5

5 3.4792 3.4605 3.5 3.5

3

Obstacles

1 3.4296 3.4651 3.5 3.5

0.06349

2 3.4376 3.4691 3.5 3.5

3 3.4447 3.4727 3.5 3.5

4 3.4510 3.4759 3.5 3.5

5 3.4565 3.4787 3.5 3.5

66

According to Table 4.6, RMSE value is calculated for 4 simulation environments,

without obstacles, 1 obstacle, 2 obstacle and 3 obstacles. The deviation of UAV from

goal position can be determined through RMSE value. A lower RMSE value shows

that the actual position of UAV is close to the goal position while a higher RMSE

value shows that there is a discrepancy between the UAV’s position and goal position.

As the number of obstacles increases, the RMSE value increases. Higher number of

obstacles generate more repulsive force towards UAV. Hence, UAV experiences

greater deviation from its original path to avoid collision with obstacles. The

deviations lead to higher value of RMSE.

4.2.2 Extreme Position of Goal

In this part, the results shown are related to the 2 simulation environments which are

without obstacle and with obstacles. The position of UAV and distance between UAV

and goal position are updated from time to time in the MATLAB command window.

The UAV’s initial and final position for each conditions are recorded as shown in

Table 4.7 and Table 4.8. UAV trajectory for each conditions are shown in Figure 4.6

and Figure 4.7.

4.2.2.1 Extreme Position of Goal: Without obstacle

Table 4.7 UAV position in an obstacle free environment for extreme goal positions

Initial

Final

Travel time

67

Figure 4.6 UAV trajectory without obstacle for extreme position of goal

According to Table 4.7, the travel time taken for UAV from its initial position (0,0) to

goal position (100, 100) is 707.7 seconds which is around 11.795 minutes. In the

Artificial Potential Field (APF) algorithm, the attractive force exerted by the goal

becomes stronger as the distance between the UAV and the goal increases. This means

that the APF algorithm is suitable for extreme position of goal. According to Figure

4.6, it shows that the UAV is attracted to the direction of goal due to the presence of

attractive force. The attractive force is stronger when the UAV is far away from goal

position. As UAV approaches the goal, the attractive force acting on UAV decreases.

Hence, UAV can stopped precisely at the goal position. Since there are no obstacles in

the simulation environment, there is no repulsive field in this condition.

68

4.2.2.2 Extreme Position of Goal: 3 Obstacles

Table 4.8 UAV position in environment with obstacle for extreme goal position

Initial

Final

Travel time

69

Figure 4.7 UAV trajectory with 3 obstacles for extreme position of goal

According to Table 4.8, the travel time taken for UAV from its initial position (0,0) to

goal position (100, 100) is 709 seconds which is around 11.817 minutes. According

to Figure 4.7, an attractive force and repulsive force is exerted on UAV. There are 3

obstacles in the simulation environment. The attractive force is stronger when the

UAV is far away from goal position. To reach the goal position, UAV must consider

the total repulsion potential field from 3 obstacles. By observing the simulation result,

it shows that UAV successfully avoid colliding with obstacles due to the presence of

repulsive force. When UAV is repelled away from obstacle, there is an attractive force

which attracts UAV to move towards the direction of goal. As UAV approaches the

goal, the attractive force acting on UAV decreases. Finally,UAV can stopped at the

goal position.

70

Table 4.9 RMSE value for extreme position of goal

i
UAV's

x-position
𝒙𝒊

UAV's
y-position

𝒚𝒊

Goal's
x-position

𝒙𝒈𝒊

Goal's
y-position

𝒚𝒈𝒊
RMSE

Without
Obstacle

1 99.9443 99.9443 100 100

0.06351
2 99.9507 99.9507 100 100
3 99.9564 99.9564 100 100
4 99.9615 99.9614 100 100
5 99.9659 99.9659 100 100

3
Obstacles

1 99.9450 99.9439 100 100

0.06338
2 99.9513 99.9503 100 100
3 99.9569 99.9561 100 100
4 99.9619 99.9611 100 100
5 99.9663 99.9656 100 100

According to Table 4.9, RMSE value is calculated for 2 simulation environments,

without obstacles and 3 obstacles when the goal is located at an extreme position. The

deviation of UAV from goal position can be determined through RMSE value. A lower

RMSE value shows that the actual position of UAV is close to the goal position while

a higher RMSE value shows that there is a discrepancy between the UAV’s position

and goal position. When the goal is located at an extreme position, UAV needs to take

a long path to reach the goal. As UAV navigates over a long distance, small deviations

are accumulated over a long path. Hence, the RMSE value when goal is located at

(100,100) is higher than goal at (3.5, 3.5). The RMSE value for environment without

obstacles is higher than environment with obstacle. This is because APF algorithm can

be used in environments without obstacles. However, it cannot provide the most

optimal path for the environment without obstacles. The working principle of APF

algorithm is to generate an ideal path by balancing the attractive and repulsive force.

In an environment without obstacles, it can cause UAV to overshoot the goal position.

Hence, it can lead to higher RMSE value.

71

4.2.3 Wind Disturbance

In this part, the results shown are related to the 2 simulation environments which are

without obstacle and with obstacles. The position of UAV and distance between UAV

and goal position are updated from time to time in the MATLAB command window.

The UAV’s initial and final position for each conditions are recorded as shown in

Table 4.10 and Table 4.11. UAV trajectory for each conditions are shown in Figure

4.8 and Figure 4.9.

4.2.3.1 Wind Disturbances: Without Obstacles

Table 4.10 UAV position in an obstacle free environment with wind disturbance

Initial

Final

72

Figure 4.8 UAV trajectory without obstacle in wind condition

In practical application, some inherent uncertainties may arise during the flight of

UAV. The inherent uncertainties such as wind can significantly affect the UAV’s flight

path. This is because wind can cause deviations from the intended path. In this

simulation environment, there is a wind blowing from the south to the north. UAV

needs to navigate from its initial position (0, 0) to the goal position (3.5, 3.5).

According to Figure 4.8, UAV is attracted to the direction of goal due to the presence

of attractive force. As UAV moves to the goal’s direction, it can be seen that UAV

deviates from its intented path due to the presence of wind. The Artificial Potential

Field (APF) algorithm detects the deviation and increases the attractive force towards

the goal to counteract the wind. Finally, UAV reaches the goal’s position successfully.

73

4.2.3.2 Wind Disturbances: 3 Obstacles

Table 4.11 UAV position in an environment with 3 obstacles and wind disturbances

Initial

Final

Figure 4.9 UAV trajectory with 3 obstacles in wind condition

According to Figure 4.9, there is a wind blowing from the south to the north and there

are 3 obstacles present in the simulation environment. Hence, UAV is required to

navigate from its initial position (0,0) towards its designated goal position (3.5, 3,5)

74

while simultaneously avoiding obstacles in its path. At the same time, UAV needs to

counteract wind disturbances. When UAV starts to navigate, there is a repulsive force

exerted on UAV to repel the UAV away from first obstacle. From the previous

simulation environment without wind disturbances, UAV navigates between the first

and second obstacles. However, in this condition, the trajectory of UAV has been

altered due to the presence of wind disturbance. This is because the wind can cause

deviation of UAV’s trajectory from its intended path. Finally, a path as shown in

Figure 4.9 is generated by APF algorithm after considering the presence of 3 obstacles

and wind disturbances.

Table 4.12 RMSE value for wind disturbances

i
UAV's

x-position
𝒙𝒊

UAV's
y-position

𝒚𝒊

Goal's
x-position

𝒙𝒈𝒊

Goal's
y-position

𝒚𝒈𝒊
RMSE

Without
Obstacle

1 3.5000 3.5867 3.5 3.5

0.08666
2 3.5000 3.5867 3.5 3.5
3 3.5000 3.5867 3.5 3.5
4 3.5000 3.5866 3.5 3.5
5 3.5000 3.5866 3.5 3.5

3
Obstacles

1 3.5001 3.5867 3.5 3.5

0.08670
2 3.5001 3.5867 3.5 3.5
3 3.5000 3.5867 3.5 3.5
4 3.5000 3.5867 3.5 3.5
5 3.5000 3.5867 3.5 3.5

According to Table 4.12, RMSE value is calculated for 2 simulation environments,

without obstacles and 3 obstacles with wind disturbances. The deviation of UAV from

goal position can be determined through RMSE value. A lower RMSE value shows

that the actual position of UAV is close to the goal position while a higher RMSE

value shows that there is a discrepancy between the UAV’s position and goal position.

With wind disturbances, the RMSE value is higher than the condition without wind

disturbances. Wind can cause UAV to drift off its intended path making it difficult to

maintain a stable flight. Therefore, APF algorithm is designed to counteract wind

effects. From the simulation result, it shows that UAV reaches the goal position

successfully despite the wind condition.

75

4.3 Effectiveness of Sensor

4.3.1 Experiment 1: Maximum Detection Range of Sensor

This experiment is carried out to determine the maximum detection range of ultrasonic

sensors and infrared sensors. The cardboard is moved towards the direction of the

sensor. Once the sensor detects the presence of cardboard, that is the maximum

detection range of sensor. The results are taken from serial monitor of Arduino

software. To increase the accuracy of the result, 5 readings of maximum detection

range of sensors are taken. After that, the average maximum detection range is

calculated by using the equation (4-2). Lastly, a graph is generated based on the results

obtained.

 𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒅𝒆𝒕𝒆𝒄𝒕𝒊𝒐𝒏 𝒓𝒂𝒏𝒈𝒆

 =
𝑺𝒖𝒎 𝒐𝒇 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒅𝒆𝒕𝒆𝒄𝒕𝒊𝒐𝒏 𝒓𝒂𝒏𝒈𝒆, 𝑫𝑻

𝒕𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒓𝒆𝒂𝒅𝒊𝒏𝒈 𝒕𝒂𝒌𝒆𝒏

 =
𝑫𝟏 + 𝑫𝟐 + 𝑫𝟑 + 𝑫𝟒 + 𝑫𝟓

𝟓

 (4-2)

4.3.1.1 Ultrasonic Sensor

The maximum detection range of ultrasonic sensor is obtained from serial monitor of

Arduino IDE and recorded in Table 4.13. The average maximum detection range is

calculated by applying equation (4-2). After that, a graph is generated as shown in

Figure 4.11 based on the reading obtained from Table 4.13.

76

Figure 4.10 Result of maximum detection range of ultrasonic sensor

Table 4.13 Maximum detection range of ultrasonic sensor

Ultrasonic sensor

1 2 3 4 5 Average

Maximum detection

range, D (cm)
385.93 405.33 388.72 389.30 393.50 392.56

Figure 4.11 Graph of maximum detection range for ultrasonic sensor

375

380

385

390

395

400

405

410

1 2 3 4 5

M
ax

im
u

m
 d

et
ec

ti
o

n
 r

an
ge

 (
cm

)

Number of reading taken

Maximum Detection Range for Ultrasonic Sensor

77

From Table 4.13, it shows that the maximum detection range for ultrasonic sensors is

between 385.93cm to 405.33cm. The average maximum detection range for the

ultrasonic sensor is 392.56 cm.

4.3.1.2 Infrared Sensor

According to the result as shown in Figure 4.12, “Obstacle detected” is shown on the

serial monitor for each reading. The maximum detection range of infrared sensor is

measured and recorded in Table 4.14. The average maximum detection range is

calculated by applying equation (4-2). After that, a graph is generated as shown in

Figure 4.13 based on the reading obtained from Table 4.14.

Figure 4.12 Result of maximum detection range of infrared sensor

Table 4.14 Maximum detection range of infrared sensor

Infrared sensor

1 2 3 4 5 Average

Maximum detection

range, D (cm)
16.0 15.8 15.9 15.5 16.1 15.86

78

Figure 4.13 Graph of maximum detection range for infrared sensor

From Table 4.14, it shows that the maximum detection range for infrared sensors is

between 15.8cm to 16.1cm. The average maximum detection range for infrared sensors

is 15.86cm.

By comparing maximum detection range for both sensors, ultrasonic sensors are more

suitable to detect obstacles further distance from the sensor. The early detection of

obstacle gives UAV more time to react and plan a safe path around the obstacle.

4.3.2 Experiment 2: Accuracy of sensor

The experiment is carried out to determine the accuracy of ultrasonic and infrared

sensors. The cardboard is located at a certain distance from the sensors. The sensor

readings are shown in the Serial Monitor of Arduino software.

4.3.2.1 Ultrasonic Sensor

The ultrasonic sensor is located at 4 different distances from the cardboard which are

100cm, 200cm, 300cm, and 390cm. Since the maximum detection distance obtained

from previous experiment of ultrasonic sensor is 392.56cm, the last distance is set as

15.2

15.3

15.4

15.5

15.6

15.7

15.8

15.9

16

16.1

16.2

1 2 3 4 5

M
ax

im
u

m
 d

et
ec

ti
o

n
 r

an
ge

 (
cm

)

Number of reading taken

Maximum Detection Range for Infrared Sensor

79

390cm to ensure the accuracy of the result. Then, the results are tabulated. To

determine the accuracy of sensor, the error between the actual distance and sensor

reading is required to be calculated first by using the equation (4-3).

𝑷𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 𝒐𝒇 𝑬𝒓𝒓𝒐𝒓

=
𝑨𝒄𝒕𝒖𝒂𝒍 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆, 𝒀𝒏 − 𝒔𝒆𝒏𝒔𝒐𝒓 𝒓𝒆𝒂𝒅𝒊𝒏𝒈, 𝑿𝒏

𝑨𝒄𝒕𝒖𝒂𝒍 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆, 𝒀𝒏
 × 𝟏𝟎𝟎%

 (4-3)

After that, the average percentage error is calculated by using the equation (4-4).

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒑𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 𝒆𝒓𝒓𝒐𝒓

 =
𝑺𝒖𝒎 𝒐𝒇 𝒑𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 𝒆𝒓𝒓𝒐𝒓

𝒕𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒓𝒆𝒂𝒅𝒊𝒏𝒈 𝒕𝒂𝒌𝒆𝒏

=
𝑺𝒖𝒎 𝒐𝒇 𝒑𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 𝒆𝒓𝒓𝒐𝒓

𝟒

 (4-4)

The accuracy of sensor is computed by using equations (4-5).

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝒐𝒇 𝒔𝒆𝒏𝒔𝒐𝒓

= 𝟏𝟎𝟎% − 𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒑𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 𝒆𝒓𝒓𝒐𝒓, %𝒆𝒓𝒓𝒐𝒓

 (4-5)

Figure 4.14 Result of accuracy of ultrasonic sensor

80

Table 4.15: Accuracy of ultrasonic sensor

No.
Actual distance,

Yn (cm)

Ultrasonic sensor

reading, Xn (cm)

Percentage of error

(%)

1 100 92.40 7.60

2 200 191.10 4.45

3 300 286.40 4.53

4 390 379.47 2.70

Average percentage error, % error 4.82

Accuracy 95.18

A graph is generated to compare the difference between the actual distance and sensor

reading.

Figure 4.15: Graph of accuracy of ultrasonic sensor

From the results obtained, there is only a small deviation between the ultrasonic sensor

reading and actual distance. The accuracy of ultrasonic sensor is 95.18%. It shows the

high reliability of ultrasonic sensors in detecting the presence of obstacles. Hence,

ultrasonic sensors are suitable distance sensors to be used in the collision avoidance

mechanisms for UAV.

0

50

100

150

200

250

300

350

400

450

1 2 3 4

D
is

ta
n

ce
 (

cm
)

Number of reading taken

Accuracy of Ultrasonic Sensor

Actual distance Sensor reading

81

4.3.2.2 Infrared Sensor

In previous experiment, the maximum detection range of ultrasonic sensor is 15.86cm.

The infrared sensor is located at a distance of 15cm from the cardboard. The result of

of the experiment is shown in Figure 4.16. The different incident angle (0°, 15°, 30°,

45° and 60°) of infrared sensor is recorded in Table 4.16.

Figure 4.16 Result of different incident angle of infrared sensor

Table 4.16 Different incident angle of infrared sensor

Incident angle Detection of Obstacle

0° Obstacle is detected.

15° Obstacle is detected.

30° No obstacle is detected.

45° No obstacle is detected.

60° No obstacle is detected.

According to Table 4.16, the obstacle is detected when the incident angle is 0° and 15°

while the obstacle is not detected when the incident angle is 30°, 45° and 60°. Infrared

sensor detects the presence of obstacles through reflected infrared light. The accuracy

of the infrared sensor is the highest when the infrared sensor is placed at the

perpendicular to the cardboard. This is because infrared sensors receive the maximum

amount of reflected infrared radiation from the cardboard. As the incident angle of

infrared sensors increases, the infrared radiation cannot be reflected from cardboard to

infrared sensor. Hence, the accuracy of infrared sensors decreases. As a result, the risk

of UAV colliding with obstacles is higher.

82

After comparing the accuracy of both sensors, ultrasonic sensors are more suitable to

be used for obstacle detection. Since there are many inherent uncertainties present in

UAV navigation environment, utilizing ultrasonic sensors can reduce the factors

contributing to sensor inaccuracy.

83

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In conclusion, all objectives of this project are achieved. This project is mainly focused

on the collision avoidance mechanisms which are suitable for UAV. The collision

avoidance algorithm which is suitable to be used in this project is investigated from

the previous studies. The specifications of each algorithm have been analyzed. In this

project, the algorithm that is decided to be modelled on MATLAB is Artificial

Potential Field (APF) algorithm. Several virtual environments such as different

number of obstacles, extreme position of goal and wind disturbances have been

designed on MATLAB. All the simulation results show that the UAV can reach the

goal position without colliding with obstacles for each condition. In an environment

with a different number of obstacles, the RMSE value is between 0.05874 and 0.06349.

When the goal is located at extreme position, the range of RMSE value is similar with

previous which is between 0.06338 to 0.06351. However, in the virtual environment

with wind disturbances, it shows the highest RMSE value which is between 0.08666

to 0.08670. This shows that there is a discrepancy between UAV’s position and goal

position. Lastly, ultrasonic sensors with 95.18% accuracy is selected to be integrated

with the collision avoidance algorithm as an advancement of the collision avoidance

mechanisms for UAV.

5.2 Recommendation

For future work, the APF algorithm and ultrasonic sensor are recommended to be

integrated to apply on a physical UAV system. The Artificial Potential Field (APF)

model on MATLAB is translated into a compatible programming language for UAV’s

onboard computer. Hence, a functioning UAV system which can avoid obstacles is

developed. To improve the accuracy and efficiency of UAV’s navigation, the APF

algorithm can be optimized by refining the potential field equations or incorporating

additional sensor data for better decision making.

84

REFERENCES

[1] Singhal, G., Bansod, B., & Mathew, L. (2018, November 27). Unmanned Aerial

Vehicle Classification, Applications and Challenges: A Review.

https://doi.org/10.20944/preprints201811.0601.v1

[2] M. Palik and M. Nagy, “Brief history of UAV development,” Repüléstudományi

Közlemények, vol. 31, no. 1, pp. 155–166, 2019, doi: 10.32560/rk.2019.1.13.

[3] J. Dong and Y. Zhang, "Optimization of Autonomous UAV Control Technology

based on Computer Algorithms," 2022 IEEE International Conference on Advances in

Electrical Engineering and Computer Applications (AEECA), Dalian, China, 2022, pp.

194-197, doi: 10.1109/AEECA55500.2022.9919083.

[4] N. A. Singh and M. Borschbach, "Effect of external factors on accuracy of distance

measurement using ultrasonic sensors," 2017 International Conference on Signals and

Systems (ICSigSys), Bali, Indonesia, 2017, pp. 266-271, doi:

10.1109/ICSIGSYS.2017.7967054.

[5] T. Murfin, “UAV Report: Growth trends & opportunities for 2019 - GPS World,”

GPS World - The Business and Technology of Global Navigation and Positioning, Oct.

01, 2018. https://www.gpsworld.com/uav-report-growth-trends-opportunities-for-

2019/

[6] N. Muchiri and S. Kimathi, “A Review of Applications and Potential Applications

of UAV,” 2016 Annual Conference on Sustainable Research and Innovation, Nyeri,

Kenya, 2016, pp. 280–283.

[7] “Analysis of New Drone Incident Reports,” Analysis of New Drone Incident

Reports, Mar. 28, 2016. https://dronecenter.bard.edu/analysis-3-25-faa-incidents/

[8] J. N. Yasin, S. A. S. Mohamed, M.-H. Haghbayan, J. Heikkonen, H. Tenhunen,

and J. Plosila, “Unmanned Aerial Vehicles (UAVs): Collision Avoidance Systems and

Approaches,” IEEE Access, vol. 8, pp. 105139–105155, 2020, doi:

10.1109/access.2020.3000064.

https://doi.org/10.20944/preprints201811.0601.v1
https://www.gpsworld.com/uav-report-growth-trends-opportunities-for-2019/
https://www.gpsworld.com/uav-report-growth-trends-opportunities-for-2019/
https://dronecenter.bard.edu/analysis-3-25-faa-incidents/

85

[9] Meng Guanglei and Pan Haibing, "The application of ultrasonic sensor in the

obstacle avoidance of quad-rotor UAV," 2016 IEEE Chinese Guidance, Navigation

and Control Conference (CGNCC), Nanjing, China, 2016, pp. 976-981, doi:

10.1109/CGNCC.2016.7828918.

[10] V. Kangunde, R. S. Jamisola, and E. K. Theophilus, “A review on drones

controlled in real-time,” International Journal of Dynamics and Control, vol. 9, no. 4,

pp. 1832–1846, Jan. 2021, doi: 10.1007/s40435-020-00737-5.

[11] M. Sivakumar and N. M. TYJ, “A Literature Survey of Unmanned Aerial Vehicle

Usage for Civil Applications,” Journal of Aerospace Technology and Management,

vol. 13, 2021, doi: 10.1590/jatm.v13.1233.

[12] “SpyLite - Fixed-wing UAV by BlueBird Aero Systems | DirectIndustry,” Fixed-

wing UAV - SpyLite - BlueBird Aero Systems - civilian / mapping / for

photogrammetry. https://www.directindustry.com/prod/bluebird-aero-

systems/product-61783-1311527.html

[13] Uyanik, Ilyas & Wesley, Avinash. (2019). Next Generation Gas Emission

Monitoring System. 10.2118/195015-MS.

[14] Unknown, “Introduction to Multi rotors,” UAV Society: Introduction to Multi

rotors, May 27, 2014. http://uav-society.blogspot.com/2014/05/introduction-to-multi-

rotors.html

[15] A. Tahir, J. Böling, M.-H. Haghbayan, H. T. Toivonen, and J. Plosila, “Swarms

of Unmanned Aerial Vehicles — A Survey,” Journal of Industrial Information

Integration, vol. 16, p. 100106, Dec. 2019, doi: 10.1016/j.jii.2019.100106.

[16] E. Pastor, J. Lopez and P. Royo, "A Hardware/Software Architecture for UAV

Payload and Mission Control," 2006 ieee/aiaa 25TH Digital Avionics Systems

Conference, Portland, OR, USA, 2006, pp. 1-8, doi: 10.1109/DASC.2006.313738.

[17] A. Loganathan and N. S. Ahmad, “A systematic review on recent advances in

autonomous mobile robot navigation,” Engineering Science and Technology, an

International Journal, vol. 40, p. 101343, Apr. 2023, doi:

10.1016/j.jestch.2023.101343.

https://www.directindustry.com/prod/bluebird-aero-systems/product-61783-1311527.html
https://www.directindustry.com/prod/bluebird-aero-systems/product-61783-1311527.html
http://uav-society.blogspot.com/2014/05/introduction-to-multi-rotors.html
http://uav-society.blogspot.com/2014/05/introduction-to-multi-rotors.html

86

[18] J. Sun, J. Tang, and S. Lao, “Collision Avoidance for Cooperative UAVs With

Optimized Artificial Potential Field Algorithm,” IEEE Access, vol. 5, pp. 18382–

18390, 2017, doi: 10.1109/access.2017.2746752.

[19] S. M. H. Rostami, A. K. Sangaiah, J. Wang, and X. Liu, “Obstacle avoidance of

mobile robots using modified artificial potential field algorithm,” EURASIP Journal

on Wireless Communications and Networking, vol. 2019, no. 1, Mar. 2019, doi:

10.1186/s13638-019-1396-2.

[20] Y. Sun, W. Chen, and J. Lv, “Uav Path Planning Based on Improved Artificial

Potential Field Method,” 2022 International Conference on Computer Network,

Electronic and Automation (ICCNEA), Sep. 2022, Published, doi:

10.1109/iccnea57056.2022.00031.

[21] W. Xinggang, G. Cong and L. Yibo, "Variable probability based bidirectional

RRT algorithm for UAV path planning," The 26th Chinese Control and Decision

Conference (2014 CCDC), Changsha, China, 2014, pp. 2217-2222, doi:

10.1109/CCDC.2014.6852537.

[22] Iram Noreen, Amna Khan, and Zulfiqar Habib, “A Comparison of RRT, RRT*

and RRT*-Smart Path Planning Algorithms,” IJCSNS International Journal of

Computer Science and Network Security, vol. VOL.16, no. No.10, Oct. 2016.

[23] F. Yang et al., “Obstacle Avoidance Path Planning for UAV Based on Improved

RRT Algorithm,” Discrete Dynamics in Nature and Society, vol. 2022, pp. 1–9, Jan.

2022, doi: 10.1155/2022/4544499.

[24] H. Yang, Q. Jia and W. Zhang, "An Environmental Potential Field Based RRT

Algorithm for UAV Path Planning," 2018 37th Chinese Control Conference (CCC),

Wuhan, China, 2018, pp. 9922-9927, doi: 10.23919/ChiCC.2018.8483453.

[25] H. Wang, Z. Sun, D. Li and Q. Jin, "An Improved RRT Based 3-D Path Planning

Algorithm for UAV," 2019 Chinese Control And Decision Conference (CCDC),

Nanchang, China, 2019, pp. 5514-5519, doi: 10.1109/CCDC.2019.8832661.

87

[26] X. Fu, C. Zhi, and D. Wu, “Obstacle avoidance and collision avoidance of UAV

swarm based on improved VFH algorithm and information sharing strategy,”

Computers & Industrial Engineering, vol. 186, p. 109761, Dec. 2023, doi:

10.1016/j.cie.2023.109761.

[27] K. Ding, M. Chen and K. Yong, "Self-Adjusting Angular Resolution-based

Obstacle Avoidance for Inspection Unmanned Aerial Vehicles in Nuclear Power

Stations," 2022 41st Chinese Control Conference (CCC), Hefei, China, 2022, pp.

3730-3735, doi: 10.23919/CCC55666.2022.9901870.

[28] P. Qu, J. Xue, L. Ma and C. Ma, "A constrained VFH algorithm for motion

planning of autonomous vehicles," 2015 IEEE Intelligent Vehicles Symposium (IV),

Seoul, Korea (South), 2015, pp. 700-705, doi: 10.1109/IVS.2015.7225766.

[29] H. Zhang et al., "Path planning for fixed-wing UAVs based on expert knowledge

and improved VFH in cluttered environments," 2022 IEEE 17th International

Conference on Control & Automation (ICCA), Naples, Italy, 2022, pp. 255-260, doi:

10.1109/ICCA54724.2022.9831848.

[30] Q. Liang, Z. Wang, Y. Yin, W. Xiong, J. Zhang, and Z. Yang, “Autonomous

aerial obstacle avoidance using LiDAR sensor fusion,” PLOS ONE, vol. 18, no. 6, p.

e0287177, Jun. 2023, doi: 10.1371/journal.pone.0287177.

[31] J. Park, Y. Je, H. Lee, and W. Moon, “Design of an ultrasonic sensor for

measuring distance and detecting obstacles,” Ultrasonics, vol. 50, no. 3, pp. 340–346,

Mar. 2010, doi: 10.1016/j.ultras.2009.10.013.

[32] Latha, N. A., Murthy, B. R., & Kumar, K. B. (2016). Distance sensing with

ultrasonic sensor and Arduino. International Journal of Advance Research, Ideas and

Innovations in Technology, 2(5), 1-5.

[33] V. A. Zhmud, N. O. Kondratiev, K. A. Kuznetsov, V. G. Trubin, and L. V.

Dimitrov, “Application of ultrasonic sensor for measuring distances in robotics,”

Journal of Physics: Conference Series, vol. 1015, p. 032189, May 2018, doi:

10.1088/1742-6596/1015/3/032189.

88

[34] Meng Guanglei and Pan Haibing, "The application of ultrasonic sensor in the

obstacle avoidance of quad-rotor UAV," 2016 IEEE Chinese Guidance, Navigation

and Control Conference (CGNCC), Nanjing, China, 2016, pp. 976-981, doi:

10.1109/CGNCC.2016.7828918.

[35] S. Bhardwaj, A. Warbhe, and B. Raj Kumar, “Sensor System Implementation for

Unmanned Aerial Vehicles,” Indian Journal of Science and Technology, vol. 8, no. S2,

p. 7, Jan. 2015, doi: 10.17485/ijst/2015/v8is2/57790.

[36] J. S. G. Guerrero, A. F. C. González, J. I. H. Vega, and L. A. N. Tovar,

“Instrumentation of an Array of Ultrasonic Sensors and Data Processing for

Unmanned Aerial Vehicle (UAV) for Teaching the Application of the Kalman Filter,”

Procedia Computer Science, vol. 75, pp. 375–380, 2015, doi:

10.1016/j.procs.2015.12.260.

[37] L. Di, H. Chao and Y. Chen, "A two-stage calibration method for low-cost UAV

attitude estimation using infrared sensor," Proceedings of 2010 IEEE/ASME

International Conference on Mechatronic and Embedded Systems and Applications,

QingDao, China, 2010, pp. 137-142, doi: 10.1109/MESA.2010.5552079.

[38] G. Benet, F. Blanes, J. E. Simó, and P. Pérez, “Using infrared sensors for distance

measurement in mobile robots,” Robotics and Autonomous Systems, vol. 40, no. 4, pp.

255–266, Sep. 2002, doi: 10.1016/s0921-8890(02)00271-3.

[39] WatElectronics, “IR Sensor : Circuit, Types, Working Principle & Its

Applications,” WatElectronics.com, Jul. 21, 2021. https://www.watelectronics.com/ir-

sensor/

[40] N. Gageik, P. Benz and S. Montenegro, "Obstacle Detection and Collision

Avoidance for a UAV With Complementary Low-Cost Sensors," in IEEE Access, vol.

3, pp. 599-609, 2015, doi: 10.1109/ACCESS.2015.2432455.

[41] S. A. Daud, S. S. Mohd Sobani, M. H. Ramiee, N. H. Mahmood, P. L. Leow and

F. K. Che Harun, "Application of Infrared sensor for shape detection," 2013 IEEE 4th

International Conference on Photonics (ICP), Melaka, Malaysia, 2013, pp. 145-147,

doi: 10.1109/ICP.2013.6687095.

89

[42] Tarek Mohammad, “Using Ultrasonic and Infrared Sensors for Distance

Measurement,” World Academy of Science, Engineering and Technology, vol. Vol:3,

Mar. 2009.

[43] H. Liu, X. Li, M. Fan, G. Wu, W. Pedrycz and P. Nagaratnam Suganthan, "An

Autonomous Path Planning Method for Unmanned Aerial Vehicle Based on a Tangent

Intersection and Target Guidance Strategy," in IEEE Transactions on Intelligent

Transportation Systems, vol. 23, no. 4, pp. 3061-3073, April 2022, doi:

10.1109/TITS.2020.3030444.

[44] B. Mustapha, A. Zayegh and R. K. Begg, "Ultrasonic and Infrared Sensors

Performance in a Wireless Obstacle Detection System," 2013 1st International

Conference on Artificial Intelligence, Modelling and Simulation, Kota Kinabalu,

Malaysia, 2013, pp. 487-492, doi: 10.1109/AIMS.2013.89.

90

APPENDICES

APPENDIX A GANTT CHART

91

APPENDIX B MATLAB CODE FOR OBSTACLE-FREE ENVIRONMENT

clear all; close all; clc;

% Initial position and orientation

x = 0;

y = 0;

theta = 0;

% Goal position

x_goal = 3.5;

y_goal = 3.5;

position_accuracy = 0.05;

% APF parameters

zeta = 1.1547;

eta = 0.0732;

dstar = 0.3;

Qstar = 0.75;

% Parameters related to kinematic model

error_theta_max = deg2rad(45);

v_max = 0.2;

Kp_omega = 1.5;

omega_max = 0.5*pi;

figure(1);

t = 1;

dT = 0.1;

t_max = 5000;

X = zeros(1,t_max);

Y = zeros(1,t_max);

X(1) = x;

Y(1) = y;

while norm([x_goal y_goal] - [x y]) > position_accuracy || t > t_max

% Calculate Attractive Potential

 if norm([x y]-[x_goal y_goal]) <= dstar

 nablaU_att = zeta*([x y]-[x_goal y_goal]);

 else

 nablaU_att = dstar/norm([x y]-[x_goal y_goal]) * zeta*([x y]-[x_goal y_goal]);

 end

% Calculate final potential

 nablaU = nablaU_att;

92

% Calculate reference value of linear velocity (v_ref) and orientation (theta_ref)

 theta_ref = atan2(-nablaU(2), -nablaU(1));

 error_theta = theta_ref - theta;

 if abs(error_theta) <= error_theta_max

 alpha = (error_theta_max - abs(error_theta)) / error_theta_max;

 v_ref = min(alpha*norm(-nablaU), v_max);

 else

 v_ref = 0;

 end

% Simple kinematic mobile robot model

% Omitted dynamics.

 omega_ref = Kp_omega * error_theta;

 omega_ref = min(max(omega_ref, -omega_max), omega_max);

 theta = theta + omega_ref * dT;

 x = x + v_ref*cos(theta) * dT;

 y = y + v_ref*sin(theta) * dT;

 t = t + 1;

% Obtain the current position and distance between UAV and goal

 disp("Current position: (" + x + ", " + y + "), Distance to goal: " + norm([x_goal

y_goal] - [x y]));

 % Archive and plot it

 X(t) = x;

 Y(t) = y;

 cla;

 daspect([1 1 1]);

 xlim([-0.5,4]); ylim([-0.5 4]);

 box on; hold on;

 plot(x_goal, y_goal, 'ob');

% Plot traveled path

 plot(X(1:t), Y(1:t), '-b');

% Plot reference orientation of the robot

 plot([x x+0.2*cos(theta_ref)], [y y+0.2*sin(theta_ref)], '-g');

% Plot orientation of the robot

 plot([x x+0.2*cos(theta)], [y y+0.2*sin(theta)], '-r');

 xlabel('X position');

 ylabel('Y position');

 title('UAV Trajectory Without Obstacle');

 legend('Goal position','UAV trajectory', 'Location','northeastoutside');

 drawnow;

 pause(dT);

end

t = t*dT; % scale from iterations to [s]

disp("Travel time: " + t);

93

APPENDIX C MATLAB CODE FOR ENVIRONMENT WITH 1 OBSTACLE

clear all; close all; clc;

% Initial position and orientation

x = 0;

y = 0;

theta = 0;

% Goal position

x_goal = 3.5;

y_goal = 3.5;

position_accuracy = 0.05;

% APF parameters

zeta = 1.1547;

eta = 0.0732;

dstar = 0.3;

Qstar = 0.75;

% Parameters related to kinematic model

error_theta_max = deg2rad(45);

v_max = 0.2;

Kp_omega = 1.5;

omega_max = 0.5*pi;

% Generate obstacles

obst1_points = [linspace(1,2,100) linspace(2,2,100) linspace(2,1,100)

linspace(1,1,100)

 linspace(1,1,100) linspace(1,1.5,100) linspace(1.5,1.5,100)

linspace(1.5,1,100)];

obst1_points(1,:) = obst1_points(1,:) - 0.5;

obst1_points(2,:) = obst1_points(2,:) - 1;

obst2_points = [linspace(1.5,2,100) linspace(2,2,100) linspace(2,1.5,100)

linspace(1.5,1.5,100)

 linspace(1.5,1.5,100) linspace(1.5,2,100) linspace(2,2,100)

linspace(2,1.5,100)];

obst2_points(1,:) = obst2_points(1,:) - 0.5;

obst2_points(2,:) = obst2_points(2,:) - 1;

figure(1);

t = 1;

dT = 0.1;

t_max = 1000;

X = zeros(1,t_max);

Y = zeros(1,t_max);

X(1) = x;

Y(1) = y;

94

while norm([x_goal y_goal] - [x y]) > position_accuracy || t > t_max

% Calculate Attractive Potential

 if norm([x y]-[x_goal y_goal]) <= dstar

 nablaU_att = zeta*([x y]-[x_goal y_goal]);

 else

 nablaU_att = dstar/norm([x y]-[x_goal y_goal]) * zeta*([x y]-[x_goal y_goal]);

 end

% Find the minimum distance from the obstacle

 [obst1_idx, obst1_dist] = dsearchn(obst1_points', [x y]);

 [obst2_idx, obst2_dist] = dsearchn(obst2_points', [x y]);

% Calculate Repulsive Potential

 nablaU_rep = [0 0];

 if obst1_dist <= Qstar

 nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst1_dist) * 1/obst1_dist^2)*([x y] -

[obst1_points(1,obst1_idx) obst1_points(2,obst1_idx)]);

 end

 if obst2_dist <= Qstar && ~inpolygon(x,y,obst2_points(1,:),obst2_points(2,:))

 nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst2_dist) * 1/obst2_dist^2)*([x y] -

[obst2_points(1,obst2_idx) obst2_points(2,obst2_idx)]);

 end

% Calculate final potential

 nablaU = nablaU_att+nablaU_rep;

% Calculate reference value of linear velocity (v_ref) and orientation (theta_ref)

 theta_ref = atan2(-nablaU(2), -nablaU(1));

 error_theta = theta_ref - theta;

 if abs(error_theta) <= error_theta_max

 alpha = (error_theta_max - abs(error_theta)) / error_theta_max;

 v_ref = min(alpha*norm(-nablaU), v_max);

 else

 v_ref = 0;

 end

% Simple kinematic mobile robot model

% Omitted dynamics.

 omega_ref = Kp_omega * error_theta;

 omega_ref = min(max(omega_ref, -omega_max), omega_max);

 theta = theta + omega_ref * dT;

 x = x + v_ref*cos(theta) * dT;

 y = y + v_ref*sin(theta) * dT;

 t = t + 1;

% Obtain the current position and distance between UAV and goal

 disp("Current position: (" + x + ", " + y + "), Distance to goal: " + norm([x_goal

y_goal] - [x y]));

95

% Archive and plot it

 X(t) = x;

 Y(t) = y;

 cla;

 daspect([1 1 1]);

 xlim([-0.5 4]); ylim([-0.5 4]);

 box on; hold on;

 plot(obst1_points(1,:), obst1_points(2,:), '-r');

 plot(obst2_points(1,:), obst2_points(2,:), '-r');

 plot(x_goal, y_goal, 'ob');

% Plot traveled path

 plot(X(1:t), Y(1:t), '-b');

% Plot reference orientation of the robot

 plot([x x+0.2*cos(theta_ref)], [y y+0.2*sin(theta_ref)], '-g');

% Plot orientation of the robot

 plot([x x+0.2*cos(theta)], [y y+0.2*sin(theta)], '-r');

 xlabel('X position');

 ylabel('Y position');

 title('UAV Trajectory With 1 Obstacle');

 legend('Obstacle','', 'Goal position','UAV trajectory', 'Location','northeastoutside');

 drawnow;

 pause(dT);

end

t = t*dT; % scale from iterations to [s]

disp("Travel time: " + t);

96

APPENDIX D MATLAB CODE FOR ENVIRONMENT WITH 2 OBSTACLES

clear all; close all; clc;

% Initial position and orientation

x = 0;

y = 0;

theta = 0;

% Goal position

x_goal = 3.5;

y_goal = 3.5;

position_accuracy = 0.05;

% APF parameters

zeta = 1.1547;

eta = 0.0732;

dstar = 0.3;

Qstar = 0.75;

% Parameters related to kinematic model

error_theta_max = deg2rad(45);

v_max = 0.2;

Kp_omega = 1.5;

omega_max = 0.5*pi;

% Generate obstacles

obst1_points = [linspace(1,2,100) linspace(2,2,100) linspace(2,1,100)

linspace(1,1,100)

 linspace(1,1,100) linspace(1,1.5,100) linspace(1.5,1.5,100)

linspace(1.5,1,100)];

obst1_points(1,:) = obst1_points(1,:) - 0.5;

obst1_points(2,:) = obst1_points(2,:) - 1;

obst2_points = [linspace(1.5,2,100) linspace(2,2,100) linspace(2,1.5,100)

linspace(1.5,1.5,100)

 linspace(1.5,1.5,100) linspace(1.5,2,100) linspace(2,2,100)

linspace(2,1.5,100)];

obst2_points(1,:) = obst2_points(1,:) - 0.5;

obst2_points(2,:) = obst2_points(2,:) - 1;

obst3_points = [linspace(1.5,2.5,100) linspace(2.5,2.5,100) linspace(2.5,1.5,100)

linspace(1.5,1.5,100)

 linspace(2.5,2.5,100) linspace(2.5,3,100) linspace(3,3,100)

linspace(3,2.5,100)];

obst3_points(1,:) = obst3_points(1,:) - 0.5;

obst3_points(2,:) = obst3_points(2,:) - 0.5;

figure(1);

97

t = 1;

dT = 0.1;

t_max = 1000;

X = zeros(1,t_max);

Y = zeros(1,t_max);

X(1) = x;

Y(1) = y;

while norm([x_goal y_goal] - [x y]) > position_accuracy || t > t_max

% Calculate Attractive Potential

 if norm([x y]-[x_goal y_goal]) <= dstar

 nablaU_att = zeta*([x y]-[x_goal y_goal]);

 else

 nablaU_att = dstar/norm([x y]-[x_goal y_goal]) * zeta*([x y]-[x_goal y_goal]);

 end

% Find the minimum distance from the obstacle

 [obst1_idx, obst1_dist] = dsearchn(obst1_points', [x y]);

 [obst2_idx, obst2_dist] = dsearchn(obst2_points', [x y]);

 [obst3_idx, obst3_dist] = dsearchn(obst3_points', [x y]);

% Calculate Repulsive Potential

 nablaU_rep = [0 0];

 if obst1_dist <= Qstar

 nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst1_dist) * 1/obst1_dist^2)*([x y] -

[obst1_points(1,obst1_idx) obst1_points(2,obst1_idx)]);

 end

 if obst2_dist <= Qstar && ~inpolygon(x,y,obst2_points(1,:),obst2_points(2,:))

 nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst2_dist) * 1/obst2_dist^2)*([x y] -

[obst2_points(1,obst2_idx) obst2_points(2,obst2_idx)]);

 end

 if obst3_dist <= Qstar

 nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst3_dist) * 1/obst3_dist^2)*([x y] -

[obst3_points(1,obst3_idx) obst3_points(2,obst3_idx)]);

 end

% Calculate final potential

 nablaU = nablaU_att+nablaU_rep;

% Calculate reference value of linear velocity (v_ref) and orientation (theta_ref)

 theta_ref = atan2(-nablaU(2), -nablaU(1));

 error_theta = theta_ref - theta;

 if abs(error_theta) <= error_theta_max

 alpha = (error_theta_max - abs(error_theta)) / error_theta_max;

 v_ref = min(alpha*norm(-nablaU), v_max);

 else

 v_ref = 0;

 end

98

% Simple kinematic mobile robot model

% Omitted dynamics.

 omega_ref = Kp_omega * error_theta;

 omega_ref = min(max(omega_ref, -omega_max), omega_max);

 theta = theta + omega_ref * dT;

 x = x + v_ref*cos(theta) * dT;

 y = y + v_ref*sin(theta) * dT;

 t = t + 1;

% Obtain the current position and distance between UAV and goal

 disp("Current position: (" + x + ", " + y + "), Distance to goal: " + norm([x_goal

y_goal] - [x y]));

% Archive and plot it

 X(t) = x;

 Y(t) = y;

 cla;

 daspect([1 1 1]);

 xlim([-0.5 4]); ylim([-0.5 4]);

 box on; hold on;

 plot(obst1_points(1,:), obst1_points(2,:), '-r');

 plot(obst2_points(1,:), obst2_points(2,:), '-r');

 plot(obst3_points(1,:), obst3_points(2,:), '-r');

 plot(x_goal, y_goal, 'ob');

% Plot traveled path

 plot(X(1:t), Y(1:t), '-b');

% Plot reference orientation of the robot

 plot([x x+0.2*cos(theta_ref)], [y y+0.2*sin(theta_ref)], '-g');

% Plot orientation of the robot

 plot([x x+0.2*cos(theta)], [y y+0.2*sin(theta)], '-r');

 xlabel('X position');

 ylabel('Y position');

 title('UAV Trajectory With 2 Obstacles');

 legend('Obstacle','','','Goal position','UAV trajectory', 'Location','northeastoutside');

 drawnow;

 pause(dT);

end

t = t*dT; % scale from iterations to [s]

disp("Travel time: " + t);

99

APPENDIX E MATLAB CODE FOR ENVIRONMENT WITH 3 OBSTACLES

clear all; close all; clc;

% Initial position and orientation

x = 0;

y = 0;

theta = 0;

% Goal position

x_goal = 3.5;

y_goal = 3.5;

position_accuracy = 0.05;

% APF parameters

zeta = 1.1547;

eta = 0.0732;

dstar = 0.3;

Qstar = 0.75;

% Parameters related to kinematic model

error_theta_max = deg2rad(45);

v_max = 0.2;

Kp_omega = 1.5;

omega_max = 0.5*pi;

% Generate obstacles

obst1_points = [linspace(1,2,100) linspace(2,2,100) linspace(2,1,100)

linspace(1,1,100)

 linspace(1,1,100) linspace(1,1.5,100) linspace(1.5,1.5,100)

linspace(1.5,1,100)];

obst1_points(1,:) = obst1_points(1,:) - 0.5;

obst1_points(2,:) = obst1_points(2,:) - 1;

obst2_points = [linspace(1.5,2,100) linspace(2,2,100) linspace(2,1.5,100)

linspace(1.5,1.5,100)

 linspace(1.5,1.5,100) linspace(1.5,2,100) linspace(2,2,100)

linspace(2,1.5,100)];

obst2_points(1,:) = obst2_points(1,:) - 0.5;

obst2_points(2,:) = obst2_points(2,:) - 1;

obst3_points = [linspace(1.5,2.5,100) linspace(2.5,2.5,100) linspace(2.5,1.5,100)

linspace(1.5,1.5,100)

 linspace(2.5,2.5,100) linspace(2.5,3,100) linspace(3,3,100)

linspace(3,2.5,100)];

obst3_points(1,:) = obst3_points(1,:) - 0.5;

obst3_points(2,:) = obst3_points(2,:) - 0.5;

100

obst4_points = [linspace(3.5,4,100) linspace(4,4,100) linspace(4,3.5,100)

linspace(3.5,3.5,100)

 linspace(2.5,2.5,100) linspace(2.5,3.5,100) linspace(3.5,3.5,100)

linspace(3.5,2.5,100)];

obst4_points(1,:) = obst4_points(1,:) - 0.5;

obst4_points(2,:) = obst4_points(2,:) - 1;

figure(1);

t = 1;

dT = 0.1;

t_max = 1000;

X = zeros(1,t_max);

Y = zeros(1,t_max);

X(1) = x;

Y(1) = y;

while norm([x_goal y_goal] - [x y]) > position_accuracy || t > t_max

% Calculate Attractive Potential

 if norm([x y]-[x_goal y_goal]) <= dstar

 nablaU_att = zeta*([x y]-[x_goal y_goal]);

 else

 nablaU_att = dstar/norm([x y]-[x_goal y_goal]) * zeta*([x y]-[x_goal y_goal]);

 end

% Find the minimum distance from the obstacle

 [obst1_idx, obst1_dist] = dsearchn(obst1_points', [x y]);

 [obst2_idx, obst2_dist] = dsearchn(obst2_points', [x y]);

 [obst3_idx, obst3_dist] = dsearchn(obst3_points', [x y]);

 [obst4_idx, obst4_dist] = dsearchn(obst4_points', [x y]);

% Calculate Repulsive Potential

 nablaU_rep = [0 0];

 if obst1_dist <= Qstar

 nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst1_dist) * 1/obst1_dist^2)*([x y] -

[obst1_points(1,obst1_idx) obst1_points(2,obst1_idx)]);

 end

 if obst2_dist <= Qstar && ~inpolygon(x,y,obst2_points(1,:),obst2_points(2,:))

 nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst2_dist) * 1/obst2_dist^2)*([x y] -

[obst2_points(1,obst2_idx) obst2_points(2,obst2_idx)]);

 end

 if obst3_dist <= Qstar

 nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst3_dist) * 1/obst3_dist^2)*([x y] -

[obst3_points(1,obst3_idx) obst3_points(2,obst3_idx)]);

 end

 if obst4_dist <= Qstar

 nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst4_dist) * 1/obst4_dist^2)*([x y] -

[obst4_points(1,obst4_idx) obst4_points(2,obst4_idx)]);

 end

101

% Calculate final potential

 nablaU = nablaU_att+nablaU_rep;

% Calculate reference value of linear velocity (v_ref) and orientation (theta_ref)

 theta_ref = atan2(-nablaU(2), -nablaU(1));

 error_theta = theta_ref - theta;

 if abs(error_theta) <= error_theta_max

 alpha = (error_theta_max - abs(error_theta)) / error_theta_max;

 v_ref = min(alpha*norm(-nablaU), v_max);

 else

 v_ref = 0;

 end

% Simple kinematic mobile robot model

% Omitted dynamics.

 omega_ref = Kp_omega * error_theta;

 omega_ref = min(max(omega_ref, -omega_max), omega_max);

 theta = theta + omega_ref * dT;

 x = x + v_ref*cos(theta) * dT;

 y = y + v_ref*sin(theta) * dT;

 t = t + 1;

% Obtain the current position and distance between UAV and goal

 disp("Current position: (" + x + ", " + y + "), Distance to goal: " + norm([x_goal

y_goal] - [x y]));

% Archive and plot it

 X(t) = x;

 Y(t) = y;

 cla;

 daspect([1 1 1]);

 xlim([-0.5 4]); ylim([-0.5 4]);

 box on; hold on;

 plot(obst1_points(1,:), obst1_points(2,:), '-r');

 plot(obst2_points(1,:), obst2_points(2,:), '-r');

 plot(obst3_points(1,:), obst3_points(2,:), '-r');

 plot(obst4_points(1,:), obst4_points(2,:), 'r');

 plot(x_goal, y_goal, 'ob');

% Plot traveled path

 plot(X(1:t), Y(1:t), '-b');

% Plot reference orientation of the robot

 plot([x x+0.2*cos(theta_ref)], [y y+0.2*sin(theta_ref)], '-g');

% Plot orientation of the robot

 plot([x x+0.2*cos(theta)], [y y+0.2*sin(theta)], '-r');

 xlabel('X position');

 ylabel('Y position');

 title('UAV Trajectory With 3 Obstacles');

 legend('Obstacle','','','','Goal position','UAV trajectory', 'Location','northeastoutside');

 drawnow;

102

 pause(dT);

end

t = t*dT; % scale from iterations to [s]

disp("Travel time: " + t);

103

APPENDIX F MATLAB CODE FOR EXTREME GOAL POSITION IN

OBSTACLE-FREE ENVIRONMENT

clear all; close all; clc;

% Initial position and orientation

x = 0;

y = 0;

theta = 0;

% Goal position

x_goal = 100;

y_goal = 100;

position_accuracy = 0.05;

% APF parameters

zeta = 1.1547;

eta = 0.0732;

dstar = 0.3;

Qstar = 0.75;

% Parameters related to kinematic model

error_theta_max = deg2rad(45);

v_max = 0.2;

Kp_omega = 1.5;

omega_max = 0.5*pi;

figure(1);

t = 1;

dT = 0.1;

t_max = 10000;

X = zeros(1,t_max);

Y = zeros(1,t_max);

X(1) = x;

Y(1) = y;

while norm([x_goal y_goal] - [x y]) > position_accuracy || t > t_max

% Calculate Attractive Potential

 if norm([x y]-[x_goal y_goal]) <= dstar

 nablaU_att = zeta*([x y]-[x_goal y_goal]);

 else

 nablaU_att = dstar/norm([x y]-[x_goal y_goal]) * zeta*([x y]-[x_goal y_goal]);

 end

% Calculate final potential

 nablaU = nablaU_att;

104

% Calculate reference value of linear velocity (v_ref) and orientation (theta_ref)

 theta_ref = atan2(-nablaU(2), -nablaU(1));

 error_theta = theta_ref - theta;

 if abs(error_theta) <= error_theta_max

 alpha = (error_theta_max - abs(error_theta)) / error_theta_max;

 v_ref = min(alpha*norm(-nablaU), v_max);

 else

 v_ref = 0;

 end

% Simple kinematic mobile robot model

% Omitted dynamics.

 omega_ref = Kp_omega * error_theta;

 omega_ref = min(max(omega_ref, -omega_max), omega_max);

 theta = theta + omega_ref * dT;

 x = x + v_ref*cos(theta) * dT;

 y = y + v_ref*sin(theta) * dT;

 t = t + 1;

% Obtain the current position and distance between UAV and goal

 disp("Current position: (" + x + ", " + y + "), Distance to goal: " + norm([x_goal

y_goal] - [x y]));

% Archive and plot it

 X(t) = x;

 Y(t) = y;

 cla;

 daspect([1 1 1]);

 xlim([-5 110]); ylim([-5 110]);

 box on; hold on;

 plot(x_goal, y_goal, 'ob');

% Plot traveled path

 plot(X(1:t), Y(1:t), '-b');

% Plot reference orientation of the robot

 plot([x x+0.2*cos(theta_ref)], [y y+0.2*sin(theta_ref)], '-g');

% Plot orientation of the robot

 plot([x x+0.2*cos(theta)], [y y+0.2*sin(theta)], '-r');

 xlabel('X position');

 ylabel('Y position');

 title('UAV Trajectory Without Obstacle For Extreme Position');

 legend('Goal position','UAV trajectory', 'Location','northeastoutside');

 drawnow;

 pause(dT);

end

t = t*dT; % scale from itetations to [s]

disp("Travel time: " + t);

105

APPENDIX G MATLAB CODE FOR EXTREME GOAL POSITION IN

ENVIRONMENT WITH 3 OBSTACLE

clear all; close all; clc;

% Initial position and orientation

x = 0;

y = 0;

theta = 0;

% Goal position

x_goal = 100;

y_goal = 100;

position_accuracy = 0.05;

% APF parameters

zeta = 1.1547;

eta = 0.0732;

dstar = 0.3;

Qstar = 0.75;

% Parameters related to kinematic model

error_theta_max = deg2rad(45);

v_max = 0.2;

Kp_omega = 1.5;

omega_max = 0.5*pi;

% Generate obstacles

obst1_points = [linspace(29,57,100) linspace(57,57,100) linspace(57,29,100)

linspace(29,29,100)

 linspace(29,29,100) linspace(29,43,100) linspace(43,43,100)

linspace(43,29,100)];

obst1_points(1,:) = obst1_points(1,:) - 14;

obst1_points(2,:) = obst1_points(2,:) - 29;

obst2_points = [linspace(43,57,100) linspace(57,57,100) linspace(57,43,100)

linspace(43,43,100)

 linspace(43,43,100) linspace(43,57,100) linspace(57,57,100)

linspace(57,43,100)];

obst2_points(1,:) = obst2_points(1,:) - 14;

obst2_points(2,:) = obst2_points(2,:) - 29;

obst3_points = [linspace(43,71,100) linspace(71,71,100) linspace(71,43,100)

linspace(43,43,100)

 linspace(71,71,100) linspace(71,86,100) linspace(86,86,100)

linspace(86,71,100)];

obst3_points(1,:) = obst3_points(1,:) - 14;

obst3_points(2,:) = obst3_points(2,:) - 14;

106

obst4_points = [linspace(100,114,100) linspace(114,114,100) linspace(114,100,100)

linspace(100,100,100)

 linspace(71,71,100) linspace(71,100,100) linspace(100,100,100)

linspace(100,71,100)];

obst4_points(1,:) = obst4_points(1,:) - 14;

obst4_points(2,:) = obst4_points(2,:) - 29;

figure(1);

t = 1;

dT = 0.1;

t_max = 10000;

X = zeros(1,t_max);

Y = zeros(1,t_max);

X(1) = x;

Y(1) = y;

while norm([x_goal y_goal] - [x y]) > position_accuracy || t > t_max

% Calculate Attractive Potential

 if norm([x y]-[x_goal y_goal]) <= dstar

 nablaU_att = zeta*([x y]-[x_goal y_goal]);

 else

 nablaU_att = dstar/norm([x y]-[x_goal y_goal]) * zeta*([x y]-[x_goal y_goal]);

 end

% Find the minimum distance from the obstacle

 [obst1_idx, obst1_dist] = dsearchn(obst1_points', [x y]);

 [obst2_idx, obst2_dist] = dsearchn(obst2_points', [x y]);

 [obst3_idx, obst3_dist] = dsearchn(obst3_points', [x y]);

 [obst4_idx, obst4_dist] = dsearchn(obst4_points', [x y]);

% Calculate Repulsive Potential

 nablaU_rep = [0 0];

 if obst1_dist <= Qstar

 nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst1_dist) * 1/obst1_dist^2)*([x y] -

[obst1_points(1,obst1_idx) obst1_points(2,obst1_idx)]);

 end

 if obst2_dist <= Qstar && ~inpolygon(x,y,obst2_points(1,:),obst2_points(2,:))

 nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst2_dist) * 1/obst2_dist^2)*([x y] -

[obst2_points(1,obst2_idx) obst2_points(2,obst2_idx)]);

 end

 if obst3_dist <= Qstar

 nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst3_dist) * 1/obst3_dist^2)*([x y] -

[obst3_points(1,obst3_idx) obst3_points(2,obst3_idx)]);

 end

 if obst4_dist <= Qstar

 nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst4_dist) * 1/obst4_dist^2)*([x y] -

[obst4_points(1,obst4_idx) obst4_points(2,obst4_idx)]);

 end

107

% Calculate final potential

 nablaU = nablaU_att+nablaU_rep;

% Calculate reference value of linear velocity (v_ref) and orientation (theta_ref)

 theta_ref = atan2(-nablaU(2), -nablaU(1));

 error_theta = theta_ref - theta;

 if abs(error_theta) <= error_theta_max

 alpha = (error_theta_max - abs(error_theta)) / error_theta_max;

 v_ref = min(alpha*norm(-nablaU), v_max);

 else

 v_ref = 0;

 end

% Simple kinematic mobile robot model

% Omitted dynamics.

 omega_ref = Kp_omega * error_theta;

 omega_ref = min(max(omega_ref, -omega_max), omega_max);

 theta = theta + omega_ref * dT;

 x = x + v_ref*cos(theta) * dT;

 y = y + v_ref*sin(theta) * dT;

 t = t + 1;

% Obtain the current position and distance between UAV and goal

 disp("Current position: (" + x + ", " + y + "), Distance to goal: " + norm([x_goal

y_goal] - [x y]));

% Archive and plot it

 X(t) = x;

 Y(t) = y;

 cla;

 daspect([1 1 1]);

 xlim([-5 110]); ylim([-5 110]);

 box on; hold on;

 plot(obst1_points(1,:), obst1_points(2,:), '-r');

 plot(obst2_points(1,:), obst2_points(2,:), '-r');

 plot(obst3_points(1,:), obst3_points(2,:), '-r');

 plot(obst4_points(1,:), obst4_points(2,:), 'r');

 plot(x_goal, y_goal, 'ob');

% Plot traveled path

 plot(X(1:t), Y(1:t), '-b');

% Plot reference orientation of the robot

 plot([x x+0.2*cos(theta_ref)], [y y+0.2*sin(theta_ref)], '-g');

% Plot orientation of the robot

 plot([x x+0.2*cos(theta)], [y y+0.2*sin(theta)], '-r');

 xlabel('X position');

 ylabel('Y position');

 title('UAV Trajectory With 3 Obstacles For Extreme Position');

 legend('Obstacle','','','','Goal position','UAV trajectory', 'Location','northeastoutside');

108

 drawnow;

 pause(dT);

end

t = t*dT; % scale from itetations to [s]

disp("Travel time: " + t);

109

APPENDIX H MATLAB CODE FOR OBSTACLE-FREE ENVIRONMENT WITH

WIND DISTURBANCES

clear all; close all; clc;

% Initial position and orientation

x = 0;

y = 0;

theta = 0;

% Goal position

x_goal = 3.5;

y_goal = 3.5;

position_accuracy = 0.05;

% APF parameters

zeta = 1.1547;

eta = 0.0732;

dstar = 0.3;

Qstar = 0.75;

% Parameters related to kinematic model

error_theta_max = deg2rad(45);

v_max = 0.2;

Kp_omega = 1.5;

omega_max = 0.5*pi;

% Additional parameters for wind

wind_speed = 0.1; % Wind speed

wind_direction = deg2rad(90); % Wind direction in radians

figure(1);

t = 1;

dT = 0.1;

t_max = 1000;

X = zeros(1,t_max);

Y = zeros(1,t_max);

X(1) = x;

Y(1) = y;

while norm([x_goal y_goal] - [x y]) > position_accuracy && t <= t_max

% Calculate Attractive Potential

 if norm([x y]-[x_goal y_goal]) <= dstar

 nablaU_att = zeta*([x y]-[x_goal y_goal]);

 else

 nablaU_att = dstar/norm([x y]-[x_goal y_goal]) * zeta*([x y]-[x_goal y_goal]);

 end

110

% Calculate final potential

 nablaU = nablaU_att;

% Calculate reference value of linear velocity (v_ref) and orientation (theta_ref)

 theta_ref = atan2(-nablaU(2), -nablaU(1));

 error_theta = theta_ref - theta;

 if abs(error_theta) <= error_theta_max

 alpha = (error_theta_max - abs(error_theta)) / error_theta_max;

 v_ref = min(alpha*norm(-nablaU), v_max);

 else

 v_ref = 0;

 end

% Simple kinematic mobile robot model

% Omitted dynamics.

 omega_ref = Kp_omega * error_theta;

 omega_ref = min(max(omega_ref, -omega_max), omega_max);

% Calculate wind effect on velocity components

 wind_vx = wind_speed * cos(wind_direction);

 wind_vy = wind_speed * sin(wind_direction);

% Update velocity components with wind effect

 vx_with_wind = v_ref * cos(theta) + wind_vx;

 vy_with_wind = v_ref * sin(theta) + wind_vy;

% Update UAV position with wind-disturbed velocity components

 x = x + vx_with_wind * dT;

 y = y + vy_with_wind * dT;

% Update orientation

 theta = theta + omega_ref * dT;

 t = t + 1;

% Obtain the current position and distance between UAV and goal

 disp("Current position: (" + x + ", " + y + "), Distance to goal: " + norm([x_goal

y_goal] - [x y]));

% Archive and plot it

 X(t) = x;

 Y(t) = y;

 cla;

 daspect([1 1 1]);

 xlim([-0.5,4]); ylim([-0.5 4]);

 box on; hold on;

 plot(x_goal, y_goal, 'ob');

% Plot traveled path

 plot(X(1:t), Y(1:t), '-b');

111

% Plot reference orientation of the robot

 plot([x x+0.2*cos(theta_ref)], [y y+0.2*sin(theta_ref)], '-g');

% Plot orientation of the robot

 plot([x x+0.2*cos(theta)], [y y+0.2*sin(theta)], '-r');

 xlabel('X position');

 ylabel('Y position');

 title('UAV Trajectory Without Obstacle in Wind Condition');

 legend('Goal position','UAV trajectory', 'Location','northeastoutside');

 drawnow;

 pause(dT);

end

t = t * dT; % scale from iterations to [s]

disp("Travel time: " + t);

112

APPENDIX I MATLAB CODE FOR ENVIRONMENT WITH WIND

DISTURBANCES AND 3 OBSTACLES

clear all; close all; clc;

% Initial position and orientation

x = 0;

y = 0;

theta = 0;

% Goal position

x_goal = 3.5;

y_goal = 3.5;

position_accuracy = 0.05;

% APF parameters

zeta = 1.1547;

eta = 0.0732;

dstar = 0.3;

Qstar = 0.75;

% Parameters related to kinematic model

error_theta_max = deg2rad(45);

v_max = 0.2;

Kp_omega = 1.5;

omega_max = 0.5*pi;

% Generate obstacles

obst1_points = [linspace(1,2,100) linspace(2,2,100) linspace(2,1,100)

linspace(1,1,100)

 linspace(1,1,100) linspace(1,1.5,100) linspace(1.5,1.5,100)

linspace(1.5,1,100)];

obst1_points(1,:) = obst1_points(1,:) - 0.5;

obst1_points(2,:) = obst1_points(2,:) - 1;

obst2_points = [linspace(1.5,2,100) linspace(2,2,100) linspace(2,1.5,100)

linspace(1.5,1.5,100)

 linspace(1.5,1.5,100) linspace(1.5,2,100) linspace(2,2,100)

linspace(2,1.5,100)];

obst2_points(1,:) = obst2_points(1,:) - 0.5;

obst2_points(2,:) = obst2_points(2,:) - 1;

obst3_points = [linspace(1.5,2.5,100) linspace(2.5,2.5,100) linspace(2.5,1.5,100)

linspace(1.5,1.5,100)

 linspace(2.5,2.5,100) linspace(2.5,3,100) linspace(3,3,100)

linspace(3,2.5,100)];

obst3_points(1,:) = obst3_points(1,:) - 0.5;

obst3_points(2,:) = obst3_points(2,:) - 0.5;

113

obst4_points = [linspace(3.5,4,100) linspace(4,4,100) linspace(4,3.5,100)

linspace(3.5,3.5,100)

 linspace(2.5,2.5,100) linspace(2.5,3.5,100) linspace(3.5,3.5,100)

linspace(3.5,2.5,100)];

obst4_points(1,:) = obst4_points(1,:) - 0.5;

obst4_points(2,:) = obst4_points(2,:) - 1;

% Additional parameters for wind

wind_speed = 0.1; % Wind speed

wind_direction = deg2rad(90); % Wind direction in radians

figure(1);

t = 1;

dT = 0.1;

t_max = 5000;

X = zeros(1,t_max);

Y = zeros(1,t_max);

X(1) = x;

Y(1) = y;

while norm([x_goal y_goal] - [x y]) > position_accuracy && t <= t_max

% Calculate Attractive Potential

 if norm([x y]-[x_goal y_goal]) <= dstar

 nablaU_att = zeta*([x y]-[x_goal y_goal]);

 else

 nablaU_att = dstar/norm([x y]-[x_goal y_goal]) * zeta*([x y]-[x_goal y_goal]);

 end

% Find the minimum distance from the obstacle

 [obst1_idx, obst1_dist] = dsearchn(obst1_points', [x y]);

 [obst2_idx, obst2_dist] = dsearchn(obst2_points', [x y]);

 [obst3_idx, obst3_dist] = dsearchn(obst3_points', [x y]);

 [obst4_idx, obst4_dist] = dsearchn(obst4_points', [x y]);

% Calculate Repulsive Potential

 nablaU_rep = [0 0];

 if obst1_dist <= Qstar

 nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst1_dist) * 1/obst1_dist^2)*([x y] -

[obst1_points(1,obst1_idx) obst1_points(2,obst1_idx)]);

 end

 if obst2_dist <= Qstar && ~inpolygon(x,y,obst2_points(1,:),obst2_points(2,:))

 nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst2_dist) * 1/obst2_dist^2)*([x y] -

[obst2_points(1,obst2_idx) obst2_points(2,obst2_idx)]);

 end

 if obst3_dist <= Qstar

 nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst3_dist) * 1/obst3_dist^2)*([x y] -

[obst3_points(1,obst3_idx) obst3_points(2,obst3_idx)]);

 end

 if obst4_dist <= Qstar

114

 nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst4_dist) * 1/obst4_dist^2)*([x y] -

[obst4_points(1,obst4_idx) obst4_points(2,obst4_idx)]);

 end

% Calculate final potential

 nablaU = nablaU_att+nablaU_rep;

% Calculate reference value of linear velocity (v_ref) and orientation (theta_ref)

 theta_ref = atan2(-nablaU(2), -nablaU(1));

 error_theta = theta_ref - theta;

 if abs(error_theta) <= error_theta_max

 alpha = (error_theta_max - abs(error_theta)) / error_theta_max;

 v_ref = min(alpha*norm(-nablaU), v_max);

 else

 v_ref = 0;

 end

% Simple kinematic mobile robot model

% Omitted dynamics.

 omega_ref = Kp_omega * error_theta;

 omega_ref = min(max(omega_ref, -omega_max), omega_max);

% Calculate wind effect on velocity components

 wind_vx = wind_speed * cos(wind_direction);

 wind_vy = wind_speed * sin(wind_direction);

% Update velocity components with wind effect

 vx_with_wind = v_ref * cos(theta) + wind_vx;

 vy_with_wind = v_ref * sin(theta) + wind_vy;

% Update UAV position with wind-disturbed velocity components

 x = x + vx_with_wind * dT;

 y = y + vy_with_wind * dT;

% Update orientation

 theta = theta + omega_ref * dT;

 t = t + 1;

% Obtain the current position and distance between UAV and goal

 disp("Current position: (" + x + ", " + y + "), Distance to goal: " + norm([x_goal

y_goal] - [x y]));

% Archive and plot it

 X(t) = x;

 Y(t) = y;

 cla;

 daspect([1 1 1]);

 xlim([-0.5,4]); ylim([-0.5 4]);

115

 box on; hold on;

 plot(obst1_points(1,:), obst1_points(2,:), '-r');

 plot(obst2_points(1,:), obst2_points(2,:), '-r');

 plot(obst3_points(1,:), obst3_points(2,:), '-r');

 plot(obst4_points(1,:), obst4_points(2,:), 'r');

 plot(x_goal, y_goal, 'ob');

% Plot traveled path

 plot(X(1:t), Y(1:t), '-b');

% Plot reference orientation of the robot

 plot([x x+0.2*cos(theta_ref)], [y y+0.2*sin(theta_ref)], '-g');

% Plot orientation of the robot

 plot([x x+0.2*cos(theta)], [y y+0.2*sin(theta)], '-r');

 xlabel('X position');

 ylabel('Y position');

 title('UAV Trajectory With 3 Obstacles In Wind Condition');

 legend('Obstacle','','','','Goal position','UAV trajectory', 'Location','northeastoutside');

 drawnow;

 pause(dT);

end

t = t * dT; % scale from iterations to [s]

disp("Travel time: " + t);

116

APPENDIX J CODE TO CONNECT ULTRASONIC SENSOR WITH ARDUINO

UNO

117

APPENDIX K CODE TO CONNECT INFRARED SENSOR WITH ARDUINO

UNO

118

APPENDIX L EXPERIMENT SETUP FOR MAXIMUM DETECTION RANGE

OF ULTRASONIC SENSOR

APPENDIX M EXPERIMENT SETUP FOR MAXIMUM DETECTION RANGE

OF INFRARED SENSOR

119

APPENDIX N EXPERIMENT SETUP FOR ACCURACY OF ULTRASONIC

SENSOR

APPENDIX O EXPERIMENT SETUP FOR ACCURACY OF INFRARED

SENSOR

