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ABSTRACT 

Unmanned Aerial Vehicles (UAV) is an aircraft which can fly autonomously without 

the presence of pilot. There has been significant development in UAV over the past 

few years. Nowadays, UAV is widely used in various applications such as delivery, 

monitoring and filming. There is a high probability that UAV may collide with objects 

because it always flies to an unpredictable environment. This shows the importance of 

a collision avoidance system with the correct algorithm for UAV when carrying out 

its mission. In real world applications, there are many inherent uncertainties during the 

flight of UAV. The aim of this project is to investigate the collision avoidance 

algorithms that are suitable for UAV. Analyzing the performance of APF algorithm 

under 3 different conditions is one of the objectives in this project. Collision avoidance 

algorithm coupled with distance sensors is a recommended safety improvement for 

UAVs in real world applications. To carrying out this project, a comparison between 

the algorithms is computed to choose a suitable algorithm for this project. Then, the 

selected algorithm is modelled on MATLAB. The performance of the algorithm in 

virtual environment with different numbers of obstacles, extreme goal position and 

wind disturbances are analyzed by calculating RMSE value. Some experiments are 

carried out to make a comparison between the ultrasonic sensor and infrared sensor. 

By the end of this project, APF algorithm is selected and modelled on MATLAB. In 

virtual simulations, APF algorithm effectively plans paths for UAV to reach goal 

position without colliding with obstacles. In environment with wind disturbances, the 

RMSE value increased by 36.5% if compared to environment without wind 

disturbances.  
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ABSTRAK 

Kenderaan Udara Tanpa Pemandu (UAV) ialah pesawat yang boleh terbang secara 

autonomi tanpa kehadiran juruterbang. Terdapat perkembangan ketara dalam UAV 

sejak beberapa tahun kebelakangan ini. Kini, UAV digunakan secara meluas dalam 

pelbagai aplikasi seperti penghantaran, pemantauan dan penggambaran. Terdapat 

kebarangkalian tinggi bahawa UAV mungkin berlanggar dengan objek kerana ia 

sentiasa terbang ke persekitaran yang tidak dapat diramalkan. Ini menunjukkan 

kepentingan sistem pengelakan perlanggaran dengan algoritma yang betul untuk UAV 

semasa menjalankan misinya. Dalam aplikasi dunia sebenar, terdapat banyak 

ketidakpastian yang wujud semasa penerbangan UAV. Matlamat projek ini adalah 

untuk menyiasat algoritma pengelakan perlanggaran yang sesuai untuk UAV. 

Penganalisisan prestasi algoritma APF di bawah 3 keadaan berbeza adalah salah satu 

objektif dalam projek ini. Algoritma pengelakan perlanggaran ditambah dengan 

penderia jarak adalah penambahbaikan keselamatan yang disyorkan untuk UAV. 

Untuk melaksanakan projek ini, perbandingan antara algoritma dikira untuk memilih 

algoritma yang sesuai untuk projek ini. Kemudian, algoritma yang dipilih dimodelkan 

pada MATLAB. Prestasi algoritma dalam persekitaran maya dengan bilangan 

halangan yang berbeza, kedudukan matlamat yang melampau dan gangguan angin 

dianalisis dengan mengira nilai RMSE. Beberapa eksperimen dijalankan untuk 

membuat perbandingan antara sensor ultrasonik dan sensor inframerah. Menjelang 

akhir projek ini, algoritma APF dipilih dan dimodelkan pada MATLAB. Dalam 

simulasi maya, algoritma APF secara berkesan merancang laluan untuk UAV 

mencapai kedudukan matlamat tanpa bertembung dengan halangan. Dalam 

persekitaran dengan gangguan angin, nilai RMSE meningkat sebanyak 36.5% jika 

dibandingkan dengan persekitaran tanpa gangguan angin. 
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INTRODUCTION 

1.1 Background 

An Unmanned Aerial Vehicles (UAV) also referred to as drones. UAV is a type of 

aircraft that can be fly autonomously or controlled by remote without the presence of 

pilot [1]. A communication link, a ground control station, and unmanned aerial 

vehicles make up the Unmanned Aerial System. UAV can provide cloud-free and 

high-resolution images. Hence, it is widely used in various applications such as 

delivering, monitoring and filming. 

Unmanned Aerial Vehicle (UAV) has undergone significant advancements over time. 

In the First World War, UAV was used as a flying bomb. Due to the limitations in 

technology, it cannot focus on the target accurately. In World War II, Pilotless Target 

Aircraft (PTA) was developed which can return after completing the mission. In the 

Cold War, a new UAV, “Lightning Bug” was developed. The advancements in the 

electronics of this UAV allow us to carry out real-time data transmission. In the 1990s, 

the development of UAV make it can gather information such as location of enemy 

[2]. Nowadays, UAV are equipped with cameras by merging the radio-controlled 

aircraft and smartphone technology. Hence, it is suitable to use for inspection and 

photography.  

To enable an UAV to fly autonomously, some important features become main 

consideration of researchers when designing the UAV. Among these features, the 

computer algorithm is particularly important, as it enhances data processing and 

contributes to the overall performance of the UAV system. To stabilize the UAV flight, 

the algorithm can adjust the attitude and position of UAV according to the condition 

by tracking the UAV’s flight data [3]. To ensure the safety of user, integrating sensors 

into the UAV is another important element. Since UAV always fly to an unpredictable 

condition, various types of sensors such as ultrasonic sensors, cameras and radar laser 

sensors are important for UAV to detect the obstacles surrounding it [4].  
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1.2 Motivation 

Recently, UAV has rapidly gained widespread popularity around the globe. The 

worldwide UAV market is expected to expand significantly over the next several 

years. When comparing current UAV technology to earlier models, there have been 

numerous advancements. Consequently, it raises the UAV market around the world. 

The development of UAV technology also spurs my curiosity about looking into a 

UAV-related idea. 

 

 

Figure 1.1 Application of UAV in 2019 [5] 

 

Previously, UAV were mainly used for military purposes. Nowadays, advancement in 

UAV technology such as the integration of cameras on UAV are significantly 

broadening its scope of applications across various fields. For example, UAV can be 

used for gaming, mapping, cartograph, inspection, traffic monitoring, search and 

rescue purpose [6]. Figure 1.1 shows the statistics of the application of UAV in 2019.  



15 

 

Figure 1.2 UAV incidents from 2014 to 2016 [7] 

 

Although there are a lot of advancements in UAV technology, the accidents of UAV 

still cannot be avoided. Figure 1.2 illustrates the rising probability of UAV collision 

accidents between 2014 and 2016. My interest in finding out about the cause of the 

UAV's high collision risk has been awakened by the analysis. There are two main 

issues, which are hardware and software issues which may cause UAV accidents. The 

malfunctions of sensors like faulty GPS or ultrasonic sensors can disrupt flight stability 

and lead to disorientation or unexpected maneuvers. For software, UAV accidents 

happen when there are errors in the flight control software of UAV. The errors may 

affect the flight path and stability of UAV. Therefore, it can lead to erratic movements 

or crashes of UAV.  

1.3 Problem Statement  

The global demand for UAV is on the rise. With the increasing utilization of UAV 

across various sectors, certain limitations of UAV arise. UAV often navigates through 

unpredictable conditions, there is a risk that it may collide with objects. In [8], CNN 

and Aviation Safety Network stated that the number of deaths caused by commercial 

flight accidents is around few hundreds per year. Recently, researchers have been 
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involved in the development of UAV. However, the probability of UAV accidents is 

still high.  

To reduce the probability of UAV’s accidents, obstacle avoidance system plays a 

significant role. This is because obstacle avoidance system consists of algorithms and 

sensors to identify the presence and location of obstacles. Integrating specified 

algorithms on the UAV can aid the UAV to determine the best route to reach the goal 

without colliding with obstacles. Autonomous flights always rely on algorithms to 

perform tasks such as object tracking and path planning. If there are errors in these 

algorithms, it may cause the UAV to deviate from the planned route or fail to react to 

various conditions appropriately. Finally, a collision occurs. 

In addition, sensors are another important feature for UAV. The safety of UAV is 

highly relying on sensors. Sensors measure the surrounding condition of UAV. For 

example, a distance sensor detects the distance between the obstacles and UAV. After 

the sensor detects the obstacles, the data is sent to the flight controllers. After that, the 

controllers will calculate the distance between the UAV and the obstacles. Besides, the 

speed of the UAV decreases according to the distance [9]. Hence, a collision between 

UAV and objects is avoided. 

 

1.4 Objective 

The objectives of this project are: 

1. To investigate the collision avoidance algorithm for UAV. 

2. To model the Artificial Potential Field (APF) algorithm on MATLAB.   

3. To analyze the performance of APF algorithm under 3 conditions, different 

number of obstacles, extreme goal position and wind disturbances.  

4. To analyze the effectiveness of distance sensor.  
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1.5 Scope and Limitation 

The main scope of this project is to explore the collision avoidance algorithm that is 

suitable for UAV. During the algorithm research, the application pros and cons of the 

algorithm are highlighted. In this project, the priority is given to algorithms which are 

suitable for path planning and collision avoidance for UAV. The algorithm is 

simulated on MATLAB by adding some real-world scenarios which affect the 

performance of the algorithm. The performance of the algorithm is analyzed through 

the simulation result of MATLAB. As an advancement of the collision avoidance 

mechanisms, distance sensors can be applied on UAV to detect the distance between 

the UAV and obstacles. In this project, the specifications of ultrasonic sensors HC-

SR04 and infrared sensors KY-032 will be tested and compared. Then, a suitable 

distance sensor is selected.  

The limitation for this project is that the designated virtual environment on MATLAB 

may not fully represent the real-world scenarios. The success obtained in the 

simulation may vary when implemented on the physical UAV which navigates in 

dynamic environments. Furthermore, the testing experiment of sensors is fully carried 

out in the indoor environment. When the selected sensor is applied on physical UAV, 

the performance of the sensor may be affected due to the unpredictable conditions such 

as variable weather and lighting.   
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1.6 K-Chart 

 

Figure 1.3 K-chart of Unmanned Vehicle 
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LITERATURE REVIEW 

2.1 Overview of UAV  

Unmanned aerial vehicles (UAV) are aircraft without a human pilot on board [10]. 

Over the last few decades, UAVs have improved significantly, especially for its 

advancements in component technologies. There is a strong relation between UAV 

with our daily activities. Due to the advancements in their technology, UAV are used 

in various application such as inspecting pipelines, agriculture, surveillance and 

mapping. 

 

Figure 2.1 UAV used for surveillance and mapping [10] 

 

 

 
Figure 2.2 UAV used for spraying pesticide on crops [10] 
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There are many types of UAV available in the market. UAV can be categorized 

according to their size, range and properties. Table 2.1 shows that the classification of 

UAV is based on weight with their specification. 

 

Table 2.1 Classification of UAV [11] 

Type 
Maximum 

weight 

Operating 

altitude 

(m) 

Range 

(km) 

Payload 

(kg) 

Flight 

time 

(min) 

Description 

Nano 200 g 50 5 < 0.2 6 -8 

Easily 

remote and 

reach remote 

locations 

Micro 2 kg < 90 25 0.2-0.5 45 

Operated on 

low altitudes 

with limited 

space for fuel 

and battery 

Mini 20 kg 150 – 300 40 0.5-10.0 18 

Maintain line 

of sight 

between 

aircraft and 

ground 

station 

Small 
25kg-

150kg 
< 1500 150 5.0-50.0 180 

Operated at 

low to 

medium 

altitudes and 

longer loiter 

capabilities 

Tactical >150 kg < 3000 200 
25.0-

200.0 
1800 

Operated at 

high 

altitudes, 

provide 

tracking or 

monitoring 
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There are four major types of UAV which are fixed wing, fixed wing hybrid, single 

rotor and multirotor. 

 

Table 2.2 Types of UAV and its description [15] 

UAV Description 

 

 
Fixed wing [12] 

Features: Long endurance, fast flight 

speed 

 

Requirement: Special skills to operate, 

wide area to launch 

 

Application: Aerial mapping, 

inspection of pipelines 

 

 
Fixed wing hybrid [13] 

Features: vertical takeoff and landing 

(VTOL), long endurance flight 

 

Limitations: Still in development, not 

good at hover or forward flight 

 

Application: Delivery 

 

 
Single rotor [13] 

Features: VTOL, hover and long 

enfurance flight 

 

Requirement: Special skill to operate, 

heavier payload like LiDAR sensor 

 
Multirotor [14] 

Features: VTOL, hover and short 

endurance flight 

 

Limitations: Not suitable for longer 

distance monitoring due to limited 

speed, flight time, energy efficiency 

 

Applications: Photography, Video 

surveillance 
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The combination of airframe and a computer system, Flight Control System enables 

the UAV to fly autonomously [16]. The Flight Control System includes hardware and 

software architecture for UAV. For hardware, it consists of sensors like accelerometers 

and magnetometers, GPS and CPUs. Algorithms are software which is implemented 

in the flight control system of UAV. All these elements collaborate to fly the plane 

without human intervention. Figure 2.3 shows the main components that are embedded 

in the UAV system. 

 

Figure 2.3 Main components of UAV system [16] 

 

2.2 Previous Studies on Algorithm of UAV  

Algorithms play an important role in the operation of UAV. Different algorithms are 

accessible to UAVs. An appropriate algorithm is selected depending on the specific 

requirements. An algorithm is a set of instructions that a computer or person can follow 

to complete a task. In UAV system, there are two types of computers which are flight 

controller and mission computer. Some basic algorithms are pre-loaded into flight 

controller’s firmware to keep the UAV stable. Conversely, the algorithm which relates 

to special mission such as path planning is embedded in the mission computer. In this 

project, the algorithm that will be investigated is related to collision avoidance and 

path planning.  
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2.2.1 Artificial Potential Field 

Artificial Potential Field (APF) is an algorithm which is developed by the Khatib in 

1986 [17].  Due to simplicity, high efficiency and smooth trajectory generation of APF 

algorithm, it is widely used in UAV trajectory planning and obstacle avoidance [18]. 

The trajectory that generated by the APF is the smoothest and safest, but it is not the 

shortest trajectory. The basic concept of APF is applying attractive and repulsive force. 

The desired goal acts like an attractive pole while the obstacle acts like a repulsive 

pole.  Khatib modeled the UAV and the target point as particles, and he regarded 

obstacles as circles. The analysis of the Artificial Potential Field (APF) model was 

conducted in two-dimensional space. At any position in the planned space, the 

direction of UAV's movement is determined by the resultant force field, a combination 

of the gravitational field from the target or goal and the repulsion field from the 

obstacles. By considering only a single obstacle present in space, the attractive and 

repulsive potential function can be represented as follows: 

 

 

Table 2.3 Notation and its description for equation (2-1) to (2-3) 

𝑼𝒂𝒓𝒕(𝒙) =  𝑼𝒈𝒐𝒂𝒍(𝒙) +  𝑼𝒐𝒃𝒔(𝒙)     (2-1) 

 

𝑼𝒈𝒐𝒂𝒍(𝒙) =  
𝟏

𝟐
𝒌𝒑(𝒙 − 𝒙𝒅)𝟐 

(2-2) 

 

𝑼𝒐𝒃𝒔(𝒙) =  {
𝟎. 𝟓ƞ(

𝟏

𝝆
−

𝟏

𝝆𝟎
)𝟐 , 𝝆 ≤ 𝝆𝟎

            𝟎             , 𝝆 > 𝝆𝟎

 
(2-3) 

Notation Description 

𝑼𝒂𝒓𝒕 Artificial potential energy 

𝑼𝒈𝒐𝒂𝒍 Attractive potential energy 

𝑼𝒐𝒃𝒔 Repulsive potential energy 

𝒙 Spatial position of UAV  

𝒙𝒅 Spatial position of goal  

𝒌𝒑 Attractive force gain coefficient  

ƞ Repulsive force gain coefficient  

𝝆 Shortest distance to the obstacle O 

𝝆𝟎 Limit distance of the potential field influence 
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After computing the negative gradient of gravitational potential field function, the 

corresponding attractive force function and repulsive force function are determined as 

follows: 

 

𝑭𝒈𝒐𝒂𝒍(𝒙) =  −𝒈𝒓𝒂𝒅[𝑼𝒈𝒐𝒂𝒍(𝒙)] = −𝒌𝒑(𝒙 − 𝒙𝒅) 

 
(2-4) 

𝑭𝒐𝒃𝒔(𝑿) =  −𝒈𝒓𝒂𝒅[𝑼𝒐𝒃𝒔(𝒙)] 
 

=  {
ƞ (

𝟏

𝝆
−

𝟏

𝝆𝟎
)

𝟏

𝝆𝟐

𝝏𝝆

𝝏𝒙
  , 𝝆 ≤ 𝝆𝟎

                  𝟎                , 𝝆 > 𝝆𝟎

 

(2-5) 

 

Table 2.4 Notation and its description for equation (2-4) to (2-5) 

Notation Description 

𝑭𝒈𝒐𝒂𝒍 Attractive force 

𝑭𝒐𝒃𝒔 Repulsive force 

𝝏𝝆

𝝏𝒙
 

Partial derivatives of variable shortest distance to the 

obstacle O in the spatial position of UAV 

When multiple obstacles present, the resultant force is: 

𝑭𝒂𝒓𝒕 =  𝑭𝒈𝒐𝒂𝒍(𝒙) + ∑ 𝑭𝒐𝒃𝒔(𝒙)

𝒏

𝒐𝒃𝒔=𝟏

 (2-6) 

Although the APF algorithm proves effective in path planning and obstacle avoidance, 

it is susceptible to phenomena such as converging on local minimum points, target 

unreachability and trajectory jitter in narrow region.  To overcome those issues, the 

conventional algorithm has been approved. Rostami et al. [19] have introduced that 

inserting a regulatory factor, 𝑅𝐴
𝑀 into algorithm can overcome the local minima and 

unreachable target when the UAV is surrounded by obstacles issue. In this modified 

algorithm, the repulsive force, 𝐹𝑅 is divided into two vector components, 𝐹𝑅1 and 𝐹𝑅2. 

𝐹𝑅1is the force that aligned with the direction from the UAV to the obstacle while 

𝐹𝑅2 is the force that aligned with the direction from the UAV to the target. As the UAV 

approaches the target, 𝐹𝑅1 decreases more rapidly (order M) compared to 𝐹𝑅2. This 

rapid decrease in 𝐹𝑅1 leads it to disappear, facilitating convergence based on 𝐹𝑅2 and 

the attraction force. Hence, the regulatory factor, 𝑅𝐴
𝑀 enables obstacle avoidance and 

convergence to the target. In [20], a gravitational function generated by obstacles into 



25 

the repulsive function is introduced to solve the issue of unreachable target points and 

falling into local optimum. To ensure the UAV fly within the prescribed scope of path 

planning, a border function which can limit the flying area of UAV is implemented. 

 

2.2.2 Rapid-exploration Random Tree 

Rapid-exploration Random Tree (RRT) algorithm is proposed by LaVall [21]. RRT 

algorithm is used as an obstacle avoidance path planning technique which can do 

obstacle avoidance path planning in real time and online. RRT algorithm can construct 

a safe and flyable path within a short period of time for UAVs in a variety of threat 

scenarios. The basic principle of RRT algorithm is representing an initial point as a 

root node. Subsequently, leaf nodes are added to generate a random extension tree. 

The process ends when the leaf node of random extension trees includes target node 

goal x. The tree expansion process is shown in Figure 2.4. To have a better 

understanding of the basic principle of RRT algorithm, its flowchart is represented in 

Figure 2.5.  

 

Figure 2.4 Tree expansion process for RRT algorithm [22] 
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Figure 2.5 Flowchart of basic principle of RRT algorithm [21] 
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Yang et al. [23] proposed a RRT path optimization approach based on ant colony 

algorithm to obtain a global optimal solution. Pheromones are applied to the path 

discovered by the RRT. Then, the next expansion point is chosen based on pheromone 

concentration through roulette wheel selection. Through multiple iterations, an 

improved path is generated. In [24], a refined algorithm, named EPF-RRT, has been 

proposed. It combines the concept of environmental potential field and original RRT 

algorithm. The EPF-RRT guides the RRT growth towards the goal and avoid obstacles 

simultaneously. In [25], an improved algorithm is proposed which integrates the 

Artificial Potential Field (APF) algorithm with RRT algorithm. A path which is close 

to the optimal one will be generated within a shorter time by using the improved 

algorithm. The highlighted point of this algorithm is that some parts of the original 

path that is affected by dynamic obstacles will be discarded. After that, a new path will 

be generated from the current position of UAV to the goal point. 

 

2.2.3 Vector Field Histogram 

Vector Field Histogram (VFH) is a path planning which is proposed by Johann 

Borenstein [26]. The basic concept of VFH is a combination of grid method and 

artificial potential field method. By using VFH algorithm, a polar coordinate histogram 

H is built and an optimal region around the UAV is selected as the motion direction. 

The polar histogram is updated at different angular resolutions [27]. The process of the 

VFH algorithm is shown in Figure 2.6. According to Figure 2.7, an UAV is positioned 

at the center of an active window with gridded space. A grid confidence matrix, Cij 

which represents the obstacle confidence present in each grid is generated. After that, 

Cij is mapped to polar coordinate histogram H. A polar coordinate system is built with 

the position of UAV (pux, puy) as its center. Every grid (i, j) is associated with a vector 

directed towards it by the UAV. According to the vector, the corresponding angle β of 

the grid is calculated as in equation (2-7). The polar obstacle density, POD of the grid 

can also be determined as shown in equation (2-8).  

 

𝜷𝒊𝒋 = 𝒂𝒓𝒄𝒕𝒂𝒏
𝒚𝒋 − 𝒑𝒖𝒚

𝒙𝒊 − 𝒑𝒖𝒙
 

 

(2-7) 
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𝒎𝒊𝒋 = 𝒄𝒊𝒋
𝟐(𝒂 − 𝒃𝒅𝒊𝒋) (2-8) 

Finally, an optimal motion direction is selected by referring to the distribution of 

obstacles in each sector in polar coordinate histogram H. The threshold T is used to 

filter out the peaks and valleys. Then, UAV will select either valley which is closest 

to intended motion direction.  

 

 

Figure 2.6 Flowchart of basic principle of VFH algorithm [26] 
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Figure 2.7 Grid map diagram [26] 

 

 
Figure 2.8 Polar coordinate histogram H [26] 

 

In [28], an enhanced VFH algorithm is proposed by combining the concept of 

kinematic and dynamic constraints of the vehicle. A new active region is generated for 

VFH to ensure that the vehicle can reach all states within the specified region. Hence, 

smoother and collision-free trajectories are generated. H. Zhang et.al. [29] developed 

a Dubins-based improved vector field histogram (VFH) for fixed-wing UAV. A new 

path is inserted into the environment and a collision-free trajectory is generated. In 

[30], VFH algorithm is corporate with sensor by processing the sensor data. After that, 

the desired speed of drone flight is generated based on sensor data. 
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Table 2.5 Comparison between APF, RRT and VFH algorithm 

Comparison 
Artificial Potential 

Field (APF) 

Rapid-exploration 

Random Tree 

(RRT) 

Vector Field 

Histogram (VFH) 

Founder Khatib [17] LaVall [21] 
Johann Borenstein 

[26] 

Principle to 

generate path 

Apply potential 

field [18] 

Build tree structure 

[21] 

Analysis on polar 

coordinate 

histogram [27] 

Adaptability to 

dynamic 

environments 

High adaptability 

since continuous 

adjustment is 

applied to potential 

field [17] 

Moderate 

adaptability, 

increase frequency 

of updating tree 

structure [25] 

Low adaptability, 

reduce the 

reliability of the 

polar coordinate 

histogram [43] 

Path Optimizing 

May not generate 

optimized path due 

to potential local 

minimum [18] 

Can generate a safe 

but not the shortest 

path within a short 

period of time [24] 

Focus on 

generating a path 

without obstacle 

only [30] 

Integration of 

sensor with 

algorithm 

Data is used to 

generate repulsive 

forces in potential 

field [17] 

Data is used to 

determine the 

configuration space 

and exploration of 

tree structure [23] 

Data is used to 

construct polar 

coordinate 

histogram for 

selecting path 

without obstacles 

[30] 
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The pros and cons for three algorithms, APF, RRT and VFH are compared in Table 

2.5. By comparing three algorithms, APF algorithm is simple to implement and can be 

used in dynamic environment but cannot generate an optimized path due to local 

minima. RRT algorithm can be used in dynamic environments but slow to converge 

on a good path. Hence, an optimal path may not be generated by applying RRT 

algorithm. VFH algorithm can be used for generating a path without colliding with 

obstacle but not efficient in dynamic environments.  

In summary, since UAV always navigate through unpredictable environment, it needs 

real-time operation of algorithm which can rapidly respond to the changing 

environment. After comparing three algorithms, APF is more suitable to be applied in 

this project.  The high adaptability of APF to various environments makes it is good 

choice for collision avoidance and path planning in UAV applications.  

 

2.3 Sensor 

2.3.1 Ultrasonic Sensor 

Ultrasonic sensor is a type of distance sensor. This type of sensor is widely used in 

object detection and range detection due to its high efficiency [31]. It is used to 

measure the distance of objects in air through reflection of sound waves [32]. The time 

response of ultrasonic sensor depends on reflectance characteristics of the surface of 

detected object. Ultrasonic sensors can be used with the presence of microcontrollers 

or microprocessors such as Arduino and Raspberry Pi. Figure 2.9 shows the block 

diagram on the cooperation between ultrasonic sensors and other hardware with 

Arduino.  
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Figure 2.9 Block diagram of ultrasonic distance detection with Arduino [32] 

Ultrasonic sensor can detect objects which are located 2 cm-400 cm far from the sensor 

[33]. A 5V power supply is needed for sensor to operate. There are 4 connection pins 

on the ultrasonic sensor which are Vcc, Gnd, Trigger and Echo. For trigger input, it 

requires 10μs pulse as an input. Hence, an ultrasound at 40kHz will be sent out. Echo 

is an output pin which represents the time taken for ultrasonic sound return to sensor. 

 

Figure 2.10 Pin configuration of ultrasonic sensor [33] 

Ultrasonic ranging, phase detection, acoustic amplitude detection method and transit 

time detection are the methods used for ultrasonic sensor [34]. The most common 

method used is transit time detection in which detecting the transmission of ultrasonic 

wave to receiver’s time. The working principle of ultrasonic sensor is shown in Figure 

2.11. To obtain the distance of ultrasonic wave, the formula is in equation (2-9) with 

Δt is the time difference of ultrasonic pulse transmitting and receiving,  𝑉 = 340 𝑚/𝑠  

is the ultrasonic velocity.  
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Figure 2.11 Working principle of ultrasonic sensor [34] 

 

 

𝑺 = 𝑽.
∆𝒕

𝟐
 (2-9)  

In [35], an implementation of ultrasonic sensor, HCSR04 on UAV is proposed. There 

are a total of 4 ultrasonic sensors applied on the UAV system to detect the presence of 

obstacles at left, right, front, and back of UAV. In [36], HC-SR04 ultrasonic sensor is 

connected to Arduino Yun to get the distance between the sensor and the obstacle. 

 

2.3.2 Infrared Sensor 

Infrared sensor KY-032 is another type of distance sensor which is lighter in weight, 

less complexity and lower in cost [37]. It is widely used for obstacle avoidance. 

Infrared radiation is an electromagnetic wave with a frequency below the sensitivity 

range of the human eye. Infrared sensor is used to detect the presence of object through 

reflected infrared radiation [38].  It have an infrared transmitter and a receiver which 

form the sensor pair. The transmitter LED emits an infrared light with the frequency 

which can be detected by receiver LED. The receiving LED detects some of the signal 

back and triggers the digital on or off signal pin when a specific threshold distance has 

been detected.  

There are 3 pins on infrared sensor which are Vcc, Gnd and OUT pin [40]. Vcc is the 

power supply input, GND is power supply ground and OUT is an output pin. The 
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voltage supply for the infrared sensor is 5V DC while the current supply is 20mA. The 

detection range of the infrared sensor is up to 20 centimeters.  

 

Figure 2.12 Infrared sensor [39] 

 

In [40], four infrared (IR) sensors are utilized to prevent collisions by steering in the 

opposite direction. S. A. Daud et.al. [41] applied multiple infrared sensors to rebuild 

the shape of objects by detecting the changes in sensor displacement. Infrared sensors 

possess non-linear characteristics [42]. When measuring the distance, the angle of 

reflecting surface needs to be located directly to the sensor. The range resolution of 

infrared sensors is not as high as ultrasonic sensors. However, certain types of infrared 

sensors which are expensive perform better resolution at long distance. Besides, 

infrared sensors are always used to enhance the real-time response of a mobile robot 

due to its faster response. 
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Table 2.6 Comparison between ultrasonic and infrared sensor 

Comparison Ultrasonic sensor Infrared sensor 

Transmission medium 
Emits ultrasonic sound 

waves [32] 

Emits infrared light [38] 

Working principle 

Determine the distance by 

measuring time taken for 

sounds waves reflects 

from the obstacle [34] 

Determine the presence of 

object by detecting the 

reflected infrared 

radiation [38] 

Operating voltage 5V [33] 5V [39] 

Detection range 2cm to 400cm [33] Up to 20cm [39] 

Factors that affect the 

accuracy of sensor 

Affected by 

environmental factors 

such as temperature [44] 

Affected by reflective 

properties of the surface 

of obstacles [44] 

Response’s speed 

Longer response time due 

to speed of sound [38] 

Shorter response time due 

to faster speed of light 

[38] 

 

In summary, ultrasonic sensor  is suggested to be integrated on the UAV due to its high 

detection range if compared to infrared sensor. The high detection range of ultrasonic 

sensor makes the obstacle which located further from sensor can be detected if 

compared to infrared sensor. Hence, flight controller can make adjustment on UAV to 

avoid collision with obstacles. Last but not least, high compability of APF algorithm 

and ultrasonic sensor  can result an efficient collision avoidance mechanisms for UAV.
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METHODOLOGY 

3.1 Table Structure of Project 

Table 3.1 displays the experiment or task that was conducted and mapping to every 

objective which stated previously. To achieve objective 1, an investigation on suitable 

algorithm for collision avoidance mechanisms of UAV was conducted. For objective 

2, the APF algorithm was modelled on MATLAB and its performance was analyzed 

to achieve objective 3. For objective 4, experiments were carried out to determine the 

effectiveness of sensor. 

 

Table 3.1 Table structure of the project 

 Objective 

        1       

Objective  

        2 

Objective 

         3 

Objective 

        4 

Investigation of collision 

avoidance algorithm for UAV 
       √ 

   

Modelling of APF algorithm 

on MATLAB 
 

       √   

Analyzation of APF 

algorithm’s performance under 

conditions different numbers of 

obstacles, extreme goal 

position and wind 

disturbances.  

 

                 √ 

 

Experiment: Effectiveness of 

Sensor  

  
         

       √ 
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3.2 Flow Chart of Project 

The overall process of this project is summarized as shown in Figure 3.1. A previous 

study on collision avoidance algorithm for UAV was conducted. After that, a suitable 

algorithm was selected to be modelled on MATLAB. The forward step was designing 

a virtual environment with varying conditions, different number of obstacles, extreme 

goal position and wind disturbances to test the functionality of the selected algorithm, 

Artificial Potential Field (APF) algorithm. The performance of APF algorithm was 

analyzed by calculating the RMSE value. To enhance the collision avoidance 

mechanisms of UAV, a sensor was suggested to be implemented on the UAV for real 

time application. The maximum detection range and accuracy of ultrasonic sensor and 

infrared sensor were determined through experiment.  
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Figure 3.1 Flow chart of project 
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3.3 Gantt Chart 

 

Figure 3.2 Gantt chart for project
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3.4 Block Diagram 

Figure 3.3 shows the block diagram of the collision avoidance system embedded with 

UAV system. Firstly, sensors were used to measure the distance between UAV and 

obstacles. The real-time data and distance measurements were sent to Arduino Uno. 

The collision avoidance algorithm was embedded in the Arduino Uno. An ideal path 

was generated by the algorithm according to the surrounding condition of UAV. 

Lastly, control signals which include the adjustment of UAV’s flight parameter were 

sent from Arduino Uno to UAV system. Hence, collision with obstacles could be 

avoided by UAV.  

 

 

Figure 3.3 Block diagram for collision avoidance system with UAV system 
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3.5 Collision Avoidance Algorithm: Artificial Potential Field (APF) 

The selected collision avoidance algorithm in this project is Artificial Potential Field 

(APF) algorithm. APF algorithm is an algorithm which is frequently used for path 

planning due to its safety and simplicity. Potential field is suitable for real-time 

applications. APF algorithm involves two forces which are attractive and repulsive 

force to perform the collision avoidance of UAV. Repulsive force is a force which is 

generated by obstacle while attractive force is generated by goals. The strength of the 

forces varies with the distance between UAV and obstacle or goal. By applying APF 

algorithm, the obstacle repels UAV while the goal attracts it. The resultant forces of 

the fields on UAV are used to determine the direction of UAV’s motion.   

When applying APF algorithm, the position vector of UAV is considered as 𝑞 =

(𝑥, 𝑦)𝑇. The APF function is represented as equation (3-1).  

 

𝑼(𝒒) =  𝑼𝒂𝒕𝒕(𝒒) +  𝑼𝒓𝒆𝒑(𝒒) (3-1) 

 

Table 3.2 Notation and its description for equation (3-1) 

Notation Description 

𝑼(𝒒) Artificial potential field exerted on UAV 

𝑼𝒂𝒕𝒕(𝒒) Attractive field exerted by goal 

𝑼𝒓𝒆𝒑(𝒒) Repulsive field exerted by obstacle 

 

 

According to Figure 3.4, there is an attractive force, 𝑭𝒂𝒕𝒕 which is direct towards to 

goal.  This means that the attractive force is generated from goal to attract the UAV to 

move towards it. At the same time, there is a repulsive force, 𝑭𝒓𝒆𝒑 which is direct 

towards the opposite side of obstacle. This means that the repulsive force is generated 

from obstacle to repel the UAV. From equation (3-2), the force is the negative gradient 

of potential field. The resultant force, 𝑭 is the combination force of attractive force,  

𝑭𝒂𝒕𝒕 and repulsive force, 𝑭𝒓𝒆𝒑 . The direction of resultant force, 𝑭  shows that the 

direction of motion of UAV.   
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Figure 3.4 Resultant artificial force of potential function 

 

𝑭(𝒒) =  −𝛁𝑼(𝒒) 
           =  −𝛁𝑼𝒂𝒕𝒕(𝒒) − 𝛁𝑼𝒓𝒆𝒑(𝒒) 

           = 𝑭𝒂𝒕𝒕(𝒒) +  𝑭𝒓𝒆𝒑(𝒒) 

(3-2) 

 

Table 3.3 Notation and its description for equation (3-2) 

Notation Description 

𝑭(𝒒) Resultant artificial force which moves the UAV 

𝑭𝒂𝒕𝒕(𝒒) Attractive force which generated by goal 

𝑭𝒓𝒆𝒑(𝒒) Repulsive force which generated by obstacle 

 

 

The attractive field between UAV and goal is assembled to attract the UAV to the 

goal area. The attractive field between UAV and goal can be calculated by using the 

equation (3-3).  

 

𝑼𝒂𝒕𝒕(𝐪) =  
𝟏

𝟐
× 𝒌𝒂 × 𝝆𝟐

𝒈𝒐𝒂𝒍(𝐪) 

 

               =  
𝟏

𝟐
 𝒌𝒂||𝒒 − 𝒒𝒅||𝟐 

 

(3-3) 

 

Table 3.4 Noatation and its description for equation (3-3) 

Notation Description 

𝒌𝒂 Positive coefficient of gravity for APF  

𝒒 Current position vector of UAV 

𝒒𝒅 Desired goal position vector  

𝝆𝒈𝒐𝒂𝒍 Euclidean distance from UAV’s current position to goal 

position 
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The attractive force which is applied on the UAV can be calculated as the negative 

gradient of attractive potential field as shown in equation (3-4).  

 

𝑭𝒂𝒕𝒕(𝐪) =  −𝛁𝑼𝒂𝒕𝒕(𝒒) 

               =  −
𝟏

𝟐
 𝒌𝒂 𝝆𝟐

𝒈𝒐𝒂𝒍(𝒒) 

               =  −𝒌𝒂 (𝒒 − 𝒒𝒅) 

 

(3-4) 

 

From the aspect of potential field, UAV should be repelled away from obstacles. When 

the UAV is away from obstacles, the motion of UAV is not affected by obstacle. 

Hence, the repulsion potential field, 𝑼𝒓𝒆𝒑(𝒒) may considered as 0. When the UAV is 

close to the goal, repulsion potential field will gradually decrease. The repulsion 

potential field will become 0 when the UAV has reached the goal. The repulsion 

potential field which experienced by UAV can be calculated by using equation (3-5).  

 

𝑼𝒓𝒆𝒑(𝐪) =  {

𝟏

𝟐
 𝒌𝒃 (

𝟏

𝒅(𝒒)
− 

𝟏

𝒅𝟎
)𝟐   , 𝒅(𝒒) ≤ 𝒅𝟎

                      𝟎                , 𝒅(𝒒)  ≥  𝒅𝟎

 

 

(3-5) 

 

Table 3.5 Notation and its description for equation (3-5) 

Notation Description 

𝒌𝒃 Repulsion gain coefficient 

𝒅 Distance between UAV and obstacle 

𝒅𝟎 Distance of obstacle repulsive force field  

 

Consider the configuration of obstacle which is closest to the latest position of UAV 

as 𝒒𝒄 = (𝒙𝒄, 𝒚𝒄). The shortest distance between UAV and obstacles is considered as 

𝒅 = ||𝒒 −  𝒒𝒄|| while the largest impact distance of obstacle to the UAV is considered 

as 𝑑0. When the UAV is close to the obstacle, a repulsive force is exerted on the UAV. 

Conversely, there is no impact on UAV when the distance between the UAV and 

obstacle is greater than the largest impact distance, 𝒅𝟎. Hence , the repulsive force can 

be considered as 0.   

 

 

 

 



44 

𝑭𝒓𝒆𝒑(𝒒) =  {
𝒌𝒃 (

𝟏

𝒅(𝒒)
− 

𝟏

𝒅𝟎
) (

𝟏

𝒅𝟐(𝒒)
) (

𝝏𝒅(𝒒)

𝒅𝒙
)          , 𝒅(𝒒) ≤ 𝒅𝟎

                                   𝟎                                     , 𝒅(𝒒) ≥ 𝒅𝟎

 

 

               =  {
𝒌𝒃  (

𝟏

𝒅(𝒒)
− 

𝟏

𝒅𝟎
) (

𝟏

𝒅𝟐(𝒒)
) (

𝒒 −  𝒒𝒄

||𝒒 − 𝒒𝒄||
) , 𝒅(𝒒) ≤ 𝒅𝟎

                                   𝟎                                    ,        𝒅(𝒒) ≥ 𝒅𝟎

 

 

(3-6) 

 

According to the equation (3-6), the repulsive force which exerted on the UAV are the 

combination of its cartesian components which are repulsion force in x, 𝑭𝒓𝒆𝒑𝒙 and y 

direction, 𝑭𝒓𝒆𝒑𝒚. The cartesian components of repulsion force,  𝑭𝒓𝒆𝒑𝒙 and 𝑭𝒓𝒆𝒑𝒚 can 

be calculated by applying equation (3-7) and (3-8).  

 

𝑭𝒓𝒆𝒑𝒙(𝒒)

=  {
𝒌𝒃  (

𝟏

𝒅(𝒒)
−  

𝟏

𝒅𝟎
) (

𝟏

𝒅𝟐(𝒒)
) (

𝒙 − 𝒙𝒄

||𝒒 − 𝒒𝒄||
) , 𝒅(𝒒) ≤ 𝒅𝟎 

                                    𝟎                                     , 𝒅(𝒒) ≥ 𝒅𝟎  

 

 

(3-7) 

𝑭𝒓𝒆𝒑𝒚(𝒒)

=  {
𝒌𝒃  (

𝟏

𝒅(𝒒)
−  

𝟏

𝒅𝟎
) (

𝟏

𝒅𝟐(𝒒)
) (

𝒚 − 𝒚𝒄

||𝒒 − 𝒒𝒄||
) , 𝒅(𝒒) ≤ 𝒅𝟎 

                                    𝟎                                     , 𝒅(𝒒) ≥ 𝒅𝟎  

 

 

(3-8) 

 

Since there are n number of obstacles are designed in MATLAB environment, the 

artificial potential field, 𝑼(𝒒) and artificial force, 𝑭(𝒒) can be obtained as shown in  

equation (3-9) and (3-10) repectively.   

𝑼(𝐪) =  𝑼𝒂𝒕𝒕(𝒒) + ∑ 𝑼𝒓𝒆𝒑(𝒒)

𝒏

𝒊=𝟏

 

 

(3-9) 

𝑭(𝐪) =  𝑭𝒂𝒕𝒕(𝒒) + ∑ 𝑭𝒓𝒆𝒑(𝒒)

𝒏

𝒊=𝟏

 

 

(3-10) 

 

By referring the mathematical equation of potential field and resultant force above, the 

APF algorithm is modelled and simulated on MATLAB.  
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3.6 Performance of Artificial Potential Field (APF) Algorithm 

Artificial Potential Field (APF) algorithm is widely used in UAV systems for path 

planning and collision avoidance. According to research, some indirect factors may 

affect the performance of collision avoidance algorithm for UAV. As a consequence, 

UAV may collide with the obstacle. Hence, a framework to test the performance of the 

APF algorithm under varying conditions was outlined. There were 3 conditions which 

were number of obstacles, goal positioning and wind disturbance.  The simulation was 

carried out on MATLAB which is a programming and numeric computing platform to 

analyze data, develop algorithms and create models.  

 

3.6.1 Number of Obstacles 

In practical application, UAV always fly into an environment containing an uncertain 

number of obstacles. The risk of collision may increase when UAV flies to an 

environment which contains high number of obstacles. The objective of this simulation 

is to evaluate how the APF algorithm performs when the number of obstacles between 

UAV’s initial position and goal position is gradually increase. In the simulation 

environment, UAV is designed to fly to the goal position without collide with the static 

obtacle such as wall. The starting point of UAV is (0,0) and the final point which is 

the goal position is at (3.5, 3.5). Initially, UAV is simulated to fly in an environment 

without obstacles. After that, the number of obstacles is gradually increase from 1 

obstacle until 3 obstacles. Figure 3.5 shows the UAV’s simulation environment with 

different number of obstacles.  
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     Without Obstacle 

 

 

             1 Obstacle 

 

 

         2 Obstacles 

 

 

           3 Obstacles 

Figure 3.5 Simulation environment with different number of obstacles 
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3.6.2 Extreme Position of Goal 

In real world application, goals are not frequently located at the same position. When 

designing the APF algorithm, it is crucial to consider a wide range of goal positions 

within the environment. Hence, this simulation is carried out to analyze the 

effectiveness of APF algorithm when goal is placed at extreme position within the 

environment. The starting position of UAV is at (0,0). In previous case, the goal 

position is at (3.5, 3.5). Conversely, in this case, the extreme position of goal is located 

at (100, 100). The simulation is carried out under 2 conditions which are without 

obstacles and with obstacles. The ability of the UAV to reach the goal is evaluated 

based on the simulation result. 

 

 

 

    Without Obstacle 

 

 

        With Obstacle 

Figure 3.6 Simulation environment with extreme position of goal 
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3.6.3 Wind Disturbances 

In real world application, there are many types of disturbance exists in the environment 

during the flight of UAV. The most common type of disturbance is wind disturbances. 

Wind may affects the UAV’s trajectory by pushing UAV towards obstacles or change 

its intended path. Hence, it may leads to the collision of UAV and obstacle. Artificial 

Potential Field (APF) algorithm is required to account for wind forces to guide the 

UAV to its goal position accurately without deviating. In this simulation, UAV starts 

to fly from position (0,0) to goal position (3.5, 3.5). The simulation is carried out under 

2 conditions which are without and with obstacles. The performance of APF algorithm 

is analyzed based on the simulation result.  

 

 

 
     Without Obstacle 

 

 
       With Obstacle 

Figure 3.7 Simulation environment with wind disturbances 
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3.7 Experiment for Sensor 

An ideal UAV system typically requires APF algorithm and sensors for optimal 

performance. APF algorithm provides a framework for path planning and obstacle 

avoidance. Sensors also play a crucial role in providing real-time environmental data 

to the UAV. By combining the APF algorithm with sensor inputs, the UAV can 

navigate safely and efficiently in dynamic uncertain environments. 

For the following section, 2 experiments are carried out to analyze the effectiveness of 

the ultrasonic and infrared sensor. The maximum detection range of ultrasonic and 

infrared sensors are determined through Experiment 1 while the accuracy of ultrasonic 

and infrared sensors is tested through Experiment 2.  

 

3.7.1 Experiment 1: Maximum detection range of sensor 

3.7.1.1 Ultrasonic Sensor 

Objective: To determine the maximum detection distance of the ultrasonic sensor. 

 

Apparatus: 

1. Breadboard 

2. Arduino Uno 

3. Ultrasonic Sensor HC-SR04 

4. Jumper Wires 

5. Cardboard (Obstacles) 

6. Computer 

7. Steel measuring tape  
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Figure 3.8: Wiring connection of ultrasonic sensor HC-SR04 and Adruino Uno 

 

 

 
Figure 3.9: Experiment 1 setup for ultrasonic sensor 

 

 

 

 

 



51 

Procedures:  

1. Ultrasonic sensor was connected with Arduino UNO as shown in Figure 3.8.  

2. The Arduino Uno was connected with PC via USB connector.  

3. Cardboard was placed at a distance of 400 cm in front of ultrasonic sensor. 

4. Arduino code was written in Arduino software and uploaded to Arduino Uno.  

5. Cardboard was moved towards the direction of ultrasonic sensor.  

6. After uploading the code to Arduino Uno, the ultrasonic sensor reading was shown 

in Serial Monitor.  

7. The ultrasonic sensor reading was recorded once the cardboard was detected by 

the ultrasonic sensor.  

8. Step 3 to 7 were repeated 5 times.  

 

3.7.1.2 Infrared (IR) sensor 

Objective: To determine the maximum detection distance of infrared sensor. 

 

 

Apparatus: 

1. Breadboard 

2. Arduino Uno 

3. Infrared Sensor KY-032 

4. Jumper Wires 

5. Cardboard (Obstacles) 

6. Computer 

7. Steel Measure Tape 
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Figure 3.10: Wiring connection of infrared sensor KY-032 and Arduino Uno 

 

 

 
Figure 3.11: Experiment 1 setup for infrared sensor 
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Procedures:  

1. Infrared sensor was connected with Arduino Uno as shown in Figure 3.10.  

2. The Arduino Uno was connected with PC via USB connector.  

3. Cardboard was placed at a distance of 20 cm from infrared sensor.  

4. Arduino code was written in Arduino software and uploaded to Arduino Uno.  

5. Cardboard was moved towards the direction of infrared sensor.  

6. After uploading the code to Arduino Uno, the infrared sensor result was shown in 

Serial Monitor. 

7. The infrared sensor result was recorded once the cardboard was detected by the 

infrared sensor.  

8. Step 3 to 7 were repeated 5 times.  

 

 

3.7.2 Experiment 2: Accuracy of sensor 

3.7.2.1 Ultrasonic Sensor 

Objective: To compare the reading of ultrasonic sensor with actual distance. 

 

Apparatus: 

1. Breadboard 

2. Arduino Uno 

3. Ultrasonic Sensor HC-SR04 

4. Jumper Wires 

5. Cardboard (Obstacles) 

6. Computer 

7. Steel measuring tape  
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Figure 3.12: Experiment 2 setup for ultrasonic sensor 

 

Procedures: 

1. Ultrasonic sensor was connected with Arduino Uno on breadboard as shown in 

Figure 3.8.  

2. The Arduino Uno was connected with PC via USB connector. 

3. Cardboard was placed at a distance of 100 cm from ultrasonic sensor.  

4. Arduino code was written in Arduino software and uploaded to Arduino Uno. 

5. After uploading the code to Arduino Uno, ultrasonic sensor reading was shown in 

Serial Monitor.  

6. The reading of ultrasonic sensor was recorded.  

7. The percentage of errors between ultrasonic sensor reading and actual distance was 

calculated and analyzed. 

8. Step 3 to 6 were repeated by replacing the distance between cardboard and 

ultrasonic sensor as 200 cm, 300 cm and 390cm.  
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3.7.2.2 Infrared Sensor 

Objective: To evaluate the accuracy of infrared sensor with different incident angle. 

 

 

Apparatus: 

1. Breadboard 

2. Arduino Uno 

3. Infrared Sensor KY-032 

4. Jumper Wires 

5. Cardboard (Obstacles) 

6. Computer 

7. Steel measuring tape  

8. Protractor 

 

 

Figure 3.13: Experiment 2 setup for infrared sensor 

 

 

 

 

 



56 

Procedures: 

1. Infrared sensor was connected with Arduino Uno on breadboard as shown in 

Figure 3.10. 

2. The Arduino Uno was connected with PC via USB connector. 

3. Cardboard was placed at a distance of 15 cm from infrared sensor.  

4. The infrared sensor was located perpendicular, 0° to the cardboard.  

5. Arduino code was written in Arduino software and uploaded to Arduino Uno. 

6. After uploading the code to Arduino Uno, infrared sensor result was shown in 

Serial Monitor.  

7. The infrared sensor result was recorded.  

8. Step 4 to 7 were repeated by replacing the incident angle of infrared sensor as 

15°, 30°, 45° and 60°.   
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RESULTS AND DISCUSSIONS 

4.1 Outline 

There are 2 parts of results that will be shown in the following part. The first part is 

the MATLAB simulation result for the Artificial Potential Field algorithm’s 

performance under conditions different number of obstacles, extreme position of goal 

and wind disturbances. The second part is the experiment result which can be used to 

evaluate the effectiveness of sensors. 2 experiments are carried out for ultrasonic 

sensors and infrared sensors respectively. The project outline for Chapter 4 is shown 

in Figure 4.1.  
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Figure 4.1 Outline for Chapter 4 
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4.2 Performance of Artificial Potential Field Algorithm (UAV Trajectory) 

4.2.1 Number of Obstacle 

In this part, the results shown are related to the 4 simulation environments which are 

without obstacle, 1 obstacle, 2 obstacles and 3 obstacles. The position of UAV and 

distance between UAV and goal position are updated  from time to time in the 

MATLAB command window. The UAV’s initial and final position for each conditions 

are recorded as shown in Table 4.1, Table 4.2, Table 4.3 and Table 4.4. UAV trajectory 

for each conditions are shown in Figure 4.2, Figure 4.3, Figure 4.4 and Figure 4.5.  

 

4.2.1.1 Number of Obstacle: Without Obstacle 

 

Table 4.1 UAV's position in environment without obstacle 

Initial 

 
 

Final 

 
 

Travel time  
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Figure 4.2 UAV trajectory without obstacle 

 

According to Table 4.1, the travel time taken for UAV from its initial position (0,0) to 

goal position (3.5, 3.5) is 25.4 seconds. In Artificial Potential Field (APF) algorithm, 

an attractive force is generated from the goal. According to Figure 4.2, it shows that 

the UAV is attracted to the direction of goal due to the presence of attractive force. 

Since there are no obstacles, there is no repulsive field in this condition. 

4.2.1.2 Number of Obstacle: 1 Obstacle 

Table 4.2 UAV's position in environment with 1 obstacle 

Initial 

 
 

Final 

 
 

Travel time 
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Figure 4.3 UAV trajectory with 1 obstacle 

 

According to Table 4.2, the travel time taken for UAV from its initial position (0,0) to 

goal position (3.5, 3.5) is 27.1 seconds. Due to the presence of obstacle, UAV takes 

longer time to reach the goal position if compared to previous. In this condition, an 

attractive force and repulsive force is exerted on UAV. According to Figure 4.3, the 

initial position of UAV is close to the obstacle, hence a repulsive force is exerted on 

the UAV. Hence, UAV successfully avoids colliding with obstacle. Simultaneously, 

an attractive force is exerted on the UAV to guide it toward the goal. As UAV moves 

away from obstacle or close to goal position, repulsion potential field gradually 

decrease. The repulsion potential field becomes 0 when the UAV has reached the goal.  
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4.2.1.3 Number of Obstacle: 2 Obstacles 

Table 4.3 UAV's position in environment with 2 obstacles 

Initial 

 
 

Final 

 
 

Travel time 

 

 

 

 
Figure 4.4 UAV trajectory with 2 obstacles 
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According to Table 4.3, the travel time taken for UAV from its initial position (0,0) to 

goal position (3.5, 3.5) is 29.8 seconds. Due to the higher number of obstacle, UAV 

takes longer time to reach the goal position if compared to previous. In this condition, 

an attractive force and repulsive force is exerted on UAV. According to Figure 4.4, 

there are 2 obstacles in the simulation environment. The overall repulsion potential 

field in the environment is higher than previous. The UAV’s trajectory is altered by 

considering the repulsion potential field  by both obstacles in simulation environment. 

The initial position of UAV is close to the  first obstacle, hence a repulsive force is 

exerted on the UAV. Hence, UAV successfully avoids colliding with first obstacle. 

After that, UAV’s trajectory is altered again due to the presence of second obstacle. 

Simultaneously, an attractive force is exerted on the UAV to guide it toward the goal. 

As UAV moves away from obstacle or close to goal position, repulsion potential field 

gradually decrease. The repulsion potential field become 0 when the UAV has reached 

the goal.  

4.2.1.4 Number of Obstacle: 3 Obstacles 

Table 4.4 UAV's position in environment with 3 obstacles 

Initial 

 
 

Final 

 
 

Travel time 
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Figure 4.5 UAV trajectory with 3 obstacles 

 

According to Table 4.4, the travel time taken for UAV from its initial position (0,0) to 

goal position (3.5, 3.5) is 30.7 seconds. Due to the higher number of obstacle, UAV 

takes longest time to reach the goal position if compared to previous. In this condition, 

an attractive force and repulsive force is exerted on UAV. According to Figure 4.5, 

there are 3 obstacles in the simulation environment. The overall repulsion potential 

field in the environment is the combination repulsion field from 3 obstacles. The 

UAV’s trajectory is altered by considering the repulsion potential field  by 3 obstacles 

in simulation environment. The initial position of UAV is close to the  first obstacle, 

hence a repulsive force is exerted on the UAV. Therefore, UAV successfully avoids 

colliding with first obstacle. After that, UAV’s trajectory is altered again due to the 

presence of second and third obstacle. Simultaneously, an attractive force is exerted 

on the UAV to guide it toward the goal. As UAV close to goal position, repulsion 

potential field gradually decrease. The repulsion potential field become 0 when the 

UAV has reached the goal.  

According to the simulation result, the accuracy of UAV’s positioning system can be 

determined by applying Root Mean Square Error as shown in equation (4-1).  
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𝑹𝒐𝒐𝒕 𝑴𝒆𝒂𝒏 𝑺𝒒𝒖𝒂𝒓𝒆 𝑬𝒓𝒓𝒐𝒓, 𝑹𝑴𝑺𝑬 

=  √
𝟏

𝒏
 ∑(𝒙𝒊 − 𝒙𝒈𝒊)𝟐 + (𝒚𝒊 − 𝒚𝒈𝒊)𝟐

𝒏

𝒊=𝟏

 

        (4-1) 

 

 

Table 4.5 Notation and its description for equation (4-1) 

Notation Description 

𝒙𝒊 UAV’s position in x-direction 

𝒙𝒈𝒊 Goal position in x-direction 

𝒚𝒊 UAV’s position in y-direction 

𝒚𝒈𝒊 Goal position in y-direction 

 

 

Table 4.6 RMSE value for different number of obstacle 

 

i 

UAV’s 

 x-position 
 𝒙𝒊 

UAV's  

y-position 

𝒚𝒊 

Goal's  

x-position 

𝒙𝒈𝒊 

Goal's  

y-position 

𝒚𝒈𝒊 
RMSE 

Without 

Obstacle 

1 3.4487 3.4474 3.5 3.5 

0.05921 

2 3.4546 3.4535 3.5 3.5 

3 3.4599 3.4589 3.5 3.5 

4 3.4645 3.4636 3.5 3.5 

5 3.4686 3.4678 3.5 3.5 

1 

Obstacle 

1 3.4356 3.4551 3.5 3.5 

0.06330 

2 3.4430 3.4603 3.5 3.5 

3 3.4496 3.4648 3.5 3.5 

4 3.4554 3.4689 3.5 3.5 

5 3.4606 3.4725 3.5 3.5 

2 

Obstacles 

1 3.4660 3.4355 3.5 3.5 

0.05874 

2 3.4699 3.4430 3.5 3.5 

3 3.4734 3.4496 3.5 3.5 

4 3.4765 3.4554 3.5 3.5 

5 3.4792 3.4605 3.5 3.5 

3 

Obstacles 

1 3.4296 3.4651 3.5 3.5 

0.06349 

2 3.4376 3.4691 3.5 3.5 

3 3.4447 3.4727 3.5 3.5 

4 3.4510 3.4759 3.5 3.5 

5 3.4565 3.4787 3.5 3.5 
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According to Table 4.6, RMSE value is calculated for 4 simulation environments, 

without obstacles, 1 obstacle, 2 obstacle and 3 obstacles. The deviation of UAV from 

goal position can be determined through RMSE value. A lower RMSE value shows 

that the actual position of UAV is close to the goal position while a higher RMSE 

value shows that there is a discrepancy between the UAV’s position and goal position. 

As the number of obstacles increases, the RMSE value increases. Higher number of 

obstacles generate more repulsive force towards UAV. Hence, UAV experiences 

greater deviation from its original path to avoid collision with obstacles. The 

deviations lead to higher value of RMSE.  

 

4.2.2 Extreme Position of Goal 

 

In this part, the results shown are related to the 2 simulation environments which are 

without obstacle and with obstacles. The position of UAV and distance between UAV 

and goal position are updated  from time to time in the MATLAB command window. 

The UAV’s initial and final position for each conditions are recorded as shown in 

Table 4.7 and Table 4.8. UAV trajectory for each conditions are shown in Figure 4.6 

and Figure 4.7. 

4.2.2.1 Extreme Position of Goal: Without obstacle 

Table 4.7 UAV position in an obstacle free environment for extreme goal positions 

Initial 

 

Final 

 
 
Travel time  

 



67 

 
Figure 4.6 UAV trajectory without obstacle for extreme position of goal 

 

According to Table 4.7, the travel time taken for UAV from its initial position (0,0) to 

goal position (100, 100) is 707.7 seconds which is  around 11.795 minutes. In the 

Artificial Potential Field (APF) algorithm, the attractive force exerted by the goal 

becomes stronger as the distance between the UAV and the goal increases. This means 

that the APF algorithm is suitable for extreme position of goal. According to Figure 

4.6, it shows that the UAV is attracted to the direction of goal due to the presence of 

attractive force. The attractive force is stronger when the UAV is far away from goal 

position. As UAV approaches the goal, the attractive force acting on UAV decreases. 

Hence, UAV can stopped precisely at the goal position. Since there are no obstacles in 

the simulation environment, there is no repulsive field in this condition. 
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4.2.2.2 Extreme Position of Goal: 3 Obstacles 

Table 4.8 UAV position in environment with obstacle for extreme goal position 

Initial 

 
 

Final 

 
 

Travel time 
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Figure 4.7 UAV trajectory with 3 obstacles for extreme position of goal 

 

According to Table 4.8, the travel time taken for UAV from its initial position (0,0) to 

goal position (100, 100) is 709 seconds which is  around 11.817 minutes. According 

to Figure 4.7, an attractive force and repulsive force is exerted on UAV. There are 3 

obstacles in the simulation environment. The attractive force is stronger when the 

UAV is far away from goal position. To reach the goal position, UAV must consider 

the total repulsion potential field from 3 obstacles. By observing the simulation result, 

it shows that UAV successfully avoid colliding with obstacles due to the presence of 

repulsive force. When UAV is repelled away from obstacle, there is an attractive force 

which attracts UAV to move towards the direction of goal. As UAV approaches the 

goal, the attractive force acting on UAV decreases. Finally,UAV can stopped at the 

goal position.  
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Table 4.9 RMSE value for extreme position of goal 

 

i 
UAV's  

x-position 
𝒙𝒊 

UAV's  
y-position 

𝒚𝒊 

Goal's  
x-position 

𝒙𝒈𝒊 

Goal's  
y-position 

𝒚𝒈𝒊 
RMSE 

Without 
Obstacle 

1 99.9443 99.9443 100 100 

0.06351 
2 99.9507 99.9507 100 100 
3 99.9564 99.9564 100 100 
4 99.9615 99.9614 100 100 
5 99.9659 99.9659 100 100 

3 
Obstacles 

1 99.9450 99.9439 100 100 

0.06338 
2 99.9513 99.9503 100 100 
3 99.9569 99.9561 100 100 
4 99.9619 99.9611 100 100 
5 99.9663 99.9656 100 100 

 

According to Table 4.9, RMSE value is calculated for 2 simulation environments, 

without obstacles and 3 obstacles when the goal is located at an extreme position. The 

deviation of UAV from goal position can be determined through RMSE value. A lower 

RMSE value shows that the actual position of UAV is close to the goal position while 

a higher RMSE value shows that there is a discrepancy between the UAV’s position 

and goal position. When the goal is located at an extreme position, UAV needs to take 

a long path to reach the goal. As UAV navigates over a long distance, small deviations 

are accumulated over a long path. Hence, the RMSE value when goal is located at 

(100,100) is higher than goal at (3.5, 3.5). The RMSE value for environment without 

obstacles is higher than environment with obstacle. This is because APF algorithm can 

be used in environments without obstacles. However, it cannot provide the most 

optimal path for the environment without obstacles. The working principle of APF 

algorithm is to generate an ideal path by balancing the attractive and repulsive force. 

In an environment without obstacles, it can cause UAV to overshoot the goal position. 

Hence, it can lead to higher RMSE value.  
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4.2.3 Wind Disturbance 

In this part, the results shown are related to the 2 simulation environments which are 

without obstacle and with obstacles. The position of UAV and distance between UAV 

and goal position are updated  from time to time in the MATLAB command window. 

The UAV’s initial and final position for each conditions are recorded as shown in 

Table 4.10 and Table 4.11. UAV trajectory for each conditions are shown in Figure 

4.8 and Figure 4.9. 

4.2.3.1 Wind Disturbances: Without Obstacles 

Table 4.10 UAV position in an obstacle free environment with wind disturbance 

Initial 

 
 

Final 
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Figure 4.8 UAV trajectory without obstacle in wind condition 

 

In practical application, some inherent uncertainties may arise during the flight of 

UAV. The inherent uncertainties such as wind can significantly affect the UAV’s flight 

path. This is because wind can cause deviations from the intended path. In this 

simulation environment, there is a wind blowing from the south to the north. UAV 

needs to navigate from its initial position (0, 0) to the goal position (3.5, 3.5). 

According to Figure 4.8, UAV is attracted to the direction of goal due to the presence 

of attractive force. As UAV moves to the goal’s direction,  it can be seen that UAV 

deviates from its intented path due to the presence of wind. The Artificial Potential 

Field (APF) algorithm detects the deviation and increases the attractive force towards 

the goal to counteract the wind. Finally, UAV reaches the goal’s position successfully.  
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4.2.3.2 Wind Disturbances: 3 Obstacles 

Table 4.11 UAV position in an environment with 3 obstacles and wind disturbances 

Initial 

 
 
Final 

 
 

 

 

 
Figure 4.9 UAV trajectory with 3 obstacles in wind condition 

 

According to Figure 4.9, there is a wind blowing from the south to the north and there 

are 3 obstacles present in the simulation environment. Hence, UAV is required to 

navigate from its initial position (0,0) towards its designated goal position (3.5, 3,5) 
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while simultaneously avoiding obstacles in its path. At the same time, UAV needs to 

counteract wind disturbances. When UAV starts to navigate, there is a repulsive force 

exerted on UAV to repel the UAV away from first obstacle. From the previous 

simulation environment without wind disturbances, UAV navigates between the first 

and second obstacles. However, in this condition, the trajectory of UAV has been 

altered due to the presence of wind disturbance. This is because the wind can cause 

deviation of UAV’s trajectory from its intended path. Finally, a path as shown in 

Figure 4.9 is generated by APF algorithm after considering the presence of 3 obstacles 

and wind disturbances.  

 

Table 4.12 RMSE value for wind disturbances 

 

i 
UAV's  

x-position 
𝒙𝒊 

UAV's  
y-position 

𝒚𝒊 

Goal's  
x-position 

𝒙𝒈𝒊 

Goal's  
y-position 

𝒚𝒈𝒊 
RMSE 

Without 
Obstacle 

1 3.5000 3.5867 3.5 3.5 

0.08666 
2 3.5000 3.5867 3.5 3.5 
3 3.5000 3.5867 3.5 3.5 
4 3.5000 3.5866 3.5 3.5 
5 3.5000 3.5866 3.5 3.5 

3 
Obstacles 

1 3.5001 3.5867 3.5 3.5 

0.08670 
2 3.5001 3.5867 3.5 3.5 
3 3.5000 3.5867 3.5 3.5 
4 3.5000 3.5867 3.5 3.5 
5 3.5000 3.5867 3.5 3.5 

 

 

According to Table 4.12, RMSE value is calculated for 2 simulation environments, 

without obstacles and 3 obstacles with wind disturbances. The deviation of UAV from 

goal position can be determined through RMSE value. A lower RMSE value shows 

that the actual position of UAV is close to the goal position while a higher RMSE 

value shows that there is a discrepancy between the UAV’s position and goal position. 

With wind disturbances, the RMSE value is higher than the condition without wind 

disturbances. Wind can cause UAV to drift off its intended path making it difficult to 

maintain a stable flight. Therefore, APF algorithm is designed to counteract wind 

effects. From the simulation result, it shows that UAV reaches the goal position 

successfully despite the wind condition.  
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4.3 Effectiveness of Sensor 

4.3.1 Experiment 1: Maximum Detection Range of Sensor 

This experiment is carried out to determine the maximum detection range of ultrasonic 

sensors and infrared sensors. The cardboard is moved towards the direction of the 

sensor. Once the sensor detects the presence of cardboard, that is the maximum 

detection range of sensor. The results are taken from serial monitor of Arduino 

software. To increase the accuracy of the result, 5 readings of maximum detection 

range of sensors are taken. After that, the average maximum detection range is 

calculated by using the equation (4-2). Lastly, a graph is generated based on the results 

obtained.  

 

                    𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒅𝒆𝒕𝒆𝒄𝒕𝒊𝒐𝒏 𝒓𝒂𝒏𝒈𝒆 

                           =  
𝑺𝒖𝒎 𝒐𝒇 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒅𝒆𝒕𝒆𝒄𝒕𝒊𝒐𝒏 𝒓𝒂𝒏𝒈𝒆, 𝑫𝑻

𝒕𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒓𝒆𝒂𝒅𝒊𝒏𝒈 𝒕𝒂𝒌𝒆𝒏
 

 

                           =  
𝑫𝟏 + 𝑫𝟐 + 𝑫𝟑 + 𝑫𝟒 + 𝑫𝟓

𝟓
  

        (4-2) 

4.3.1.1 Ultrasonic Sensor 

The maximum detection range of ultrasonic sensor is obtained from serial monitor of 

Arduino IDE and recorded in Table 4.13. The average maximum detection range is 

calculated by applying equation (4-2). After that, a graph is generated as shown in 

Figure 4.11 based on the reading obtained from Table 4.13.  
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Figure 4.10 Result of maximum detection range of ultrasonic sensor 

 

Table 4.13 Maximum detection range of ultrasonic sensor 

  
Ultrasonic sensor 

1 2 3 4 5 Average 

Maximum detection 

range, D (cm) 
385.93 405.33 388.72 389.30 393.50 392.56 

 

 

Figure 4.11 Graph of maximum detection range for ultrasonic sensor 
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From Table 4.13, it shows that the maximum detection range for ultrasonic sensors is 

between 385.93cm to 405.33cm. The average maximum detection range for the 

ultrasonic sensor is 392.56 cm.  

4.3.1.2 Infrared Sensor  

According to the result as shown in Figure 4.12, “Obstacle  detected” is shown on the 

serial monitor for each reading. The maximum detection range of infrared sensor is 

measured and recorded in Table 4.14. The average maximum detection range is 

calculated by applying equation (4-2). After that, a graph is generated as shown in 

Figure 4.13 based on the reading obtained from Table 4.14.  

 

 
Figure 4.12 Result of maximum detection range of infrared sensor 

 

 

Table 4.14 Maximum detection range of infrared sensor 

  
Infrared sensor 

1 2 3 4 5 Average 

Maximum detection 

range, D (cm) 
16.0 15.8 15.9 15.5 16.1 15.86 
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Figure 4.13 Graph of maximum detection range for infrared sensor 

From Table 4.14, it shows that the maximum detection range for infrared sensors is 

between 15.8cm to 16.1cm. The average maximum detection range for infrared sensors 

is 15.86cm.  

By comparing maximum detection range for both sensors, ultrasonic sensors are more 

suitable to detect obstacles further distance from the sensor. The early detection of 

obstacle gives UAV more time to react and plan a safe path around the obstacle.    

 

4.3.2 Experiment 2: Accuracy of sensor 

The experiment is carried out to determine the accuracy of ultrasonic and infrared 

sensors. The cardboard is located at a certain distance from the sensors.  The sensor 

readings are shown in the Serial Monitor of Arduino software. 

 

4.3.2.1 Ultrasonic Sensor  

The ultrasonic sensor is located at 4 different distances from the cardboard which are 

100cm, 200cm, 300cm, and 390cm. Since the maximum detection distance obtained 

from previous experiment of ultrasonic sensor is 392.56cm, the last distance is set as 
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390cm to ensure the accuracy of the result. Then, the results are tabulated. To 

determine the accuracy of sensor, the error between the actual distance and sensor 

reading is required to be calculated first by using the equation (4-3).  

𝑷𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 𝒐𝒇 𝑬𝒓𝒓𝒐𝒓 

=  
𝑨𝒄𝒕𝒖𝒂𝒍 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆, 𝒀𝒏 − 𝒔𝒆𝒏𝒔𝒐𝒓 𝒓𝒆𝒂𝒅𝒊𝒏𝒈, 𝑿𝒏

𝑨𝒄𝒕𝒖𝒂𝒍 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆, 𝒀𝒏
 × 𝟏𝟎𝟎% 

        (4-3) 

After that, the average percentage error is calculated by using the equation (4-4).  

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒑𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 𝒆𝒓𝒓𝒐𝒓 

             =
𝑺𝒖𝒎 𝒐𝒇 𝒑𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 𝒆𝒓𝒓𝒐𝒓

𝒕𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒓𝒆𝒂𝒅𝒊𝒏𝒈 𝒕𝒂𝒌𝒆𝒏
  

=
𝑺𝒖𝒎 𝒐𝒇 𝒑𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 𝒆𝒓𝒓𝒐𝒓

𝟒
 

        (4-4) 

The accuracy of sensor is computed by using equations (4-5).  

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝒐𝒇 𝒔𝒆𝒏𝒔𝒐𝒓 

= 𝟏𝟎𝟎% − 𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒑𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 𝒆𝒓𝒓𝒐𝒓, %𝒆𝒓𝒓𝒐𝒓 

        (4-5) 

 

 

 

Figure 4.14 Result of accuracy of ultrasonic sensor 
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Table 4.15: Accuracy of ultrasonic sensor 

No. 
Actual distance,  

Yn (cm) 

Ultrasonic sensor 

reading, Xn (cm) 

Percentage of error 

(%) 

1 100 92.40 7.60 

2 200 191.10 4.45 

3 300 286.40 4.53 

4 390 379.47 2.70 

Average percentage error, % error 4.82 

Accuracy 95.18 

A graph is generated to compare the difference between the actual distance and sensor 

reading. 

 

Figure 4.15: Graph of accuracy of ultrasonic sensor 

From the results obtained, there is only a small deviation between the ultrasonic sensor 

reading and actual distance. The accuracy of ultrasonic sensor is 95.18%. It shows the 

high reliability of ultrasonic sensors in detecting the presence of obstacles. Hence, 

ultrasonic sensors are suitable distance sensors to be used in the collision avoidance 

mechanisms for UAV. 
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4.3.2.2 Infrared Sensor 

In previous experiment, the maximum detection range of ultrasonic sensor is 15.86cm. 

The infrared sensor is located at a distance of 15cm from the cardboard. The result of 

of the experiment is shown in Figure 4.16. The different incident angle (0°, 15°, 30°, 

45° and 60°) of infrared sensor is recorded in Table 4.16. 

 

 

Figure 4.16 Result of different incident angle of infrared sensor 

 

Table 4.16 Different incident angle of infrared sensor  

Incident angle Detection of Obstacle 

0° Obstacle is detected. 

15° Obstacle is detected. 

30° No obstacle is detected. 

45° No obstacle is detected. 

60° No obstacle is detected. 

 

According to Table 4.16, the obstacle is detected when the incident angle is 0° and 15° 

while the obstacle is not detected when the incident angle is 30°, 45° and 60°. Infrared 

sensor detects the presence of obstacles through reflected infrared light. The accuracy 

of the infrared sensor is the highest when the infrared sensor is placed at the 

perpendicular to the cardboard. This is because infrared sensors receive the maximum 

amount of reflected infrared radiation from the cardboard.  As the incident angle of 

infrared sensors increases, the infrared radiation cannot be reflected from cardboard to 

infrared sensor. Hence, the accuracy of infrared sensors decreases. As a result, the risk 

of UAV colliding with obstacles is higher.  
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After comparing the accuracy of both sensors, ultrasonic sensors are more suitable to 

be used for obstacle detection. Since there are many inherent uncertainties present in 

UAV navigation environment, utilizing ultrasonic sensors can reduce the factors 

contributing to sensor inaccuracy. 
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CONCLUSION AND RECOMMENDATIONS  

5.1 Conclusion 

In conclusion, all objectives of this project are achieved. This project is mainly focused 

on the collision avoidance mechanisms which are suitable for UAV. The collision 

avoidance algorithm which is suitable to be used in this project is investigated from 

the previous studies. The specifications of each algorithm have been analyzed. In this 

project, the algorithm that is decided to be modelled on MATLAB is Artificial 

Potential Field (APF) algorithm. Several virtual environments such as different 

number of obstacles, extreme position of goal and wind disturbances have been 

designed on MATLAB. All the simulation results show that the UAV can reach the 

goal position without colliding with obstacles for each condition. In an environment 

with a different number of obstacles, the RMSE value is between 0.05874 and 0.06349. 

When the goal is located at extreme position, the range of RMSE value is similar with 

previous which is between 0.06338 to 0.06351. However, in the virtual environment 

with wind disturbances, it shows the highest RMSE value which is between 0.08666 

to 0.08670. This shows that there is a discrepancy between UAV’s position and goal 

position. Lastly, ultrasonic sensors with 95.18% accuracy is selected to be integrated 

with the collision avoidance algorithm as an advancement of the collision avoidance 

mechanisms for UAV.     

5.2 Recommendation 

For future work, the APF algorithm and ultrasonic sensor are recommended to be 

integrated to apply on a physical UAV system. The Artificial Potential Field (APF) 

model on MATLAB is translated into a compatible programming language for UAV’s 

onboard computer. Hence, a functioning UAV system which can avoid obstacles is 

developed. To improve the accuracy and efficiency of UAV’s navigation, the APF 

algorithm can be optimized by refining the potential field equations or incorporating 

additional sensor data for better decision making.  
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APPENDICES 

APPENDIX A GANTT CHART 
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APPENDIX B MATLAB CODE FOR OBSTACLE-FREE ENVIRONMENT 

clear all; close all; clc; 

 

% Initial position and orientation  

x = 0; 

y = 0; 

theta = 0; 

 

% Goal position 

x_goal = 3.5; 

y_goal = 3.5; 

position_accuracy = 0.05; 

 

% APF parameters 

zeta = 1.1547; 

eta = 0.0732; 

dstar = 0.3; 

Qstar = 0.75; 

 

% Parameters related to kinematic model 

error_theta_max = deg2rad(45); 

v_max = 0.2; 

Kp_omega = 1.5; 

omega_max = 0.5*pi;  

 

figure(1);  

t = 1; 

dT = 0.1; 

t_max = 5000; 

X = zeros(1,t_max); 

Y = zeros(1,t_max); 

X(1) = x; 

Y(1) = y; 

 

while norm([x_goal y_goal] - [x y]) > position_accuracy || t > t_max    

% Calculate Attractive Potential 

    if norm([x y]-[x_goal y_goal]) <= dstar 

        nablaU_att =  zeta*([x y]-[x_goal y_goal]); 

    else  

        nablaU_att = dstar/norm([x y]-[x_goal y_goal]) * zeta*([x y]-[x_goal y_goal]); 

    end 

     

% Calculate final potential 

    nablaU = nablaU_att; 
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% Calculate reference value of linear velocity (v_ref) and orientation (theta_ref) 

    theta_ref = atan2(-nablaU(2), -nablaU(1)); 

 

    error_theta = theta_ref - theta; 

    if abs(error_theta) <= error_theta_max 

        alpha = (error_theta_max - abs(error_theta)) / error_theta_max; 

        v_ref = min( alpha*norm(-nablaU), v_max ); 

    else 

        v_ref = 0; 

    end 

 

% Simple kinematic mobile robot model 

% Omitted dynamics. 

    omega_ref = Kp_omega * error_theta; 

    omega_ref = min( max(omega_ref, -omega_max), omega_max); 

    theta = theta + omega_ref * dT; 

    x = x + v_ref*cos(theta) * dT; 

    y = y + v_ref*sin(theta) * dT; 

 

    t = t + 1; 

 

% Obtain the current position and distance between UAV and goal 

    disp("Current position: (" + x + ", " + y + "), Distance to goal: " + norm([x_goal 

y_goal] - [x y])); 

     

    % Archive and plot it 

    X(t) = x; 

    Y(t) = y; 

    cla; 

    daspect([1 1 1]);  

    xlim([-0.5,4]);  ylim([-0.5 4]); 

    box on; hold on; 

    plot(x_goal, y_goal, 'ob'); 

% Plot traveled path     

    plot(X(1:t), Y(1:t), '-b');  

% Plot reference orientation of the robot 

    plot([x x+0.2*cos(theta_ref)], [y y+0.2*sin(theta_ref)], '-g');  

% Plot orientation of the robot 

    plot([x x+0.2*cos(theta)], [y y+0.2*sin(theta)], '-r');  

    xlabel('X position'); 

    ylabel('Y position'); 

    title('UAV Trajectory Without Obstacle'); 

    legend('Goal position','UAV trajectory', 'Location','northeastoutside'); 

    drawnow; 

    pause(dT); 

end 

t = t*dT; % scale from iterations to [s] 

 

disp("Travel time: " + t); 
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APPENDIX C MATLAB CODE FOR ENVIRONMENT WITH 1 OBSTACLE 

clear all; close all; clc; 

 

% Initial position and orientation  

x = 0; 

y = 0; 

theta = 0; 

 

% Goal position 

x_goal = 3.5; 

y_goal = 3.5; 

position_accuracy = 0.05; 

 

% APF parameters 

zeta = 1.1547; 

eta = 0.0732; 

dstar = 0.3; 

Qstar = 0.75; 

 

% Parameters related to kinematic model 

error_theta_max = deg2rad(45); 

v_max = 0.2; 

Kp_omega = 1.5; 

omega_max = 0.5*pi;  

 

% Generate obstacles 

obst1_points = [ linspace(1,2,100) linspace(2,2,100) linspace(2,1,100)             

linspace(1,1,100)  

                           linspace(1,1,100)   linspace(1,1.5,100)   linspace(1.5,1.5,100)  

linspace(1.5,1,100) ]; 

obst1_points(1,:) = obst1_points(1,:) - 0.5; 

obst1_points(2,:) = obst1_points(2,:) - 1; 

 

obst2_points = [ linspace(1.5,2,100) linspace(2,2,100) linspace(2,1.5,100)    

linspace(1.5,1.5,100)  

                           linspace(1.5,1.5,100)   linspace(1.5,2,100)   linspace(2,2,100)  

linspace(2,1.5,100) ]; 

obst2_points(1,:) = obst2_points(1,:) - 0.5; 

obst2_points(2,:) = obst2_points(2,:) - 1; 

 

figure(1);  

t = 1; 

dT = 0.1; 

t_max = 1000; 

X = zeros(1,t_max); 

Y = zeros(1,t_max); 

X(1) = x; 

Y(1) = y; 
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while norm([x_goal y_goal] - [x y]) > position_accuracy || t > t_max    

% Calculate Attractive Potential 

    if norm([x y]-[x_goal y_goal]) <= dstar 

        nablaU_att =  zeta*([x y]-[x_goal y_goal]); 

    else  

        nablaU_att = dstar/norm([x y]-[x_goal y_goal]) * zeta*([x y]-[x_goal y_goal]); 

    end 

 

% Find the minimum distance from the obstacle 

    [obst1_idx, obst1_dist] = dsearchn(obst1_points', [x y]); 

    [obst2_idx, obst2_dist] = dsearchn(obst2_points', [x y]); 

 

% Calculate Repulsive Potential 

    nablaU_rep = [0 0]; 

    if obst1_dist <= Qstar        

        nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst1_dist) * 1/obst1_dist^2)*([x y] - 

[obst1_points(1,obst1_idx)  obst1_points(2,obst1_idx)]); 

    end 

    if obst2_dist <= Qstar  && ~inpolygon(x,y,obst2_points(1,:),obst2_points(2,:))           

        nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst2_dist) * 1/obst2_dist^2)*([x y] - 

[obst2_points(1,obst2_idx)  obst2_points(2,obst2_idx)]); 

    end 

     

% Calculate final potential 

    nablaU = nablaU_att+nablaU_rep; 

 

% Calculate reference value of linear velocity (v_ref) and orientation (theta_ref) 

    theta_ref = atan2(-nablaU(2), -nablaU(1)); 

 

    error_theta = theta_ref - theta; 

    if abs(error_theta) <= error_theta_max 

        alpha = (error_theta_max - abs(error_theta)) / error_theta_max; 

        v_ref = min( alpha*norm(-nablaU), v_max ); 

    else 

        v_ref = 0; 

    end 

 

% Simple kinematic mobile robot model 

% Omitted dynamics. 

    omega_ref = Kp_omega * error_theta; 

    omega_ref = min( max(omega_ref, -omega_max), omega_max); 

    theta = theta + omega_ref * dT; 

    x = x + v_ref*cos(theta) * dT; 

    y = y + v_ref*sin(theta) * dT; 

 

    t = t + 1; 

% Obtain the current position and distance between UAV and goal 

    disp("Current position: (" + x + ", " + y + "), Distance to goal: " + norm([x_goal 

y_goal] - [x y])); 
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% Archive and plot it 

    X(t) = x; 

    Y(t) = y; 

    cla; 

    daspect([1 1 1]);  

    xlim([-0.5 4]);  ylim([-0.5 4]); 

    box on; hold on; 

    plot(obst1_points(1,:), obst1_points(2,:), '-r'); 

    plot(obst2_points(1,:), obst2_points(2,:), '-r'); 

    plot(x_goal, y_goal, 'ob'); 

% Plot traveled path 

    plot(X(1:t), Y(1:t), '-b');  

% Plot reference orientation of the robot 

    plot([x x+0.2*cos(theta_ref)], [y y+0.2*sin(theta_ref)], '-g');  

% Plot orientation of the robot 

    plot([x x+0.2*cos(theta)], [y y+0.2*sin(theta)], '-r');  

    xlabel('X position'); 

    ylabel('Y position'); 

    title('UAV Trajectory With 1 Obstacle'); 

    legend('Obstacle','', 'Goal position','UAV trajectory', 'Location','northeastoutside'); 

    drawnow; 

    pause(dT); 

end 

t = t*dT; % scale from iterations to [s] 

 

disp("Travel time: " + t); 
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APPENDIX D MATLAB CODE FOR ENVIRONMENT WITH 2 OBSTACLES 

clear all; close all; clc; 

 

% Initial position and orientation  

x = 0; 

y = 0; 

theta = 0; 

 

% Goal position 

x_goal = 3.5; 

y_goal = 3.5; 

position_accuracy = 0.05; 

 

% APF parameters 

zeta = 1.1547; 

eta = 0.0732; 

dstar = 0.3; 

Qstar = 0.75; 

 

% Parameters related to kinematic model 

error_theta_max = deg2rad(45); 

v_max = 0.2; 

Kp_omega = 1.5; 

omega_max = 0.5*pi;  

 

% Generate obstacles 

obst1_points = [ linspace(1,2,100) linspace(2,2,100) linspace(2,1,100)    

linspace(1,1,100)  

                           linspace(1,1,100)   linspace(1,1.5,100)   linspace(1.5,1.5,100)  

linspace(1.5,1,100) ]; 

obst1_points(1,:) = obst1_points(1,:) - 0.5; 

obst1_points(2,:) = obst1_points(2,:) - 1; 

 

obst2_points = [ linspace(1.5,2,100) linspace(2,2,100) linspace(2,1.5,100)    

linspace(1.5,1.5,100)  

                           linspace(1.5,1.5,100)   linspace(1.5,2,100)   linspace(2,2,100)  

linspace(2,1.5,100) ]; 

obst2_points(1,:) = obst2_points(1,:) - 0.5; 

obst2_points(2,:) = obst2_points(2,:) - 1; 

 

obst3_points = [ linspace(1.5,2.5,100) linspace(2.5,2.5,100) linspace(2.5,1.5,100)    

linspace(1.5,1.5,100)  

                           linspace(2.5,2.5,100)   linspace(2.5,3,100)   linspace(3,3,100)  

linspace(3,2.5,100) ]; 

obst3_points(1,:) = obst3_points(1,:) - 0.5; 

obst3_points(2,:) = obst3_points(2,:) - 0.5; 

 

figure(1);  
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t = 1; 

dT = 0.1; 

t_max = 1000; 

X = zeros(1,t_max); 

Y = zeros(1,t_max); 

X(1) = x; 

Y(1) = y; 

 

while norm([x_goal y_goal] - [x y]) > position_accuracy || t > t_max    

% Calculate Attractive Potential 

    if norm([x y]-[x_goal y_goal]) <= dstar 

        nablaU_att =  zeta*([x y]-[x_goal y_goal]); 

    else  

        nablaU_att = dstar/norm([x y]-[x_goal y_goal]) * zeta*([x y]-[x_goal y_goal]); 

    end 

 

% Find the minimum distance from the obstacle 

    [obst1_idx, obst1_dist] = dsearchn(obst1_points', [x y]); 

    [obst2_idx, obst2_dist] = dsearchn(obst2_points', [x y]); 

    [obst3_idx, obst3_dist] = dsearchn(obst3_points', [x y]); 

 

% Calculate Repulsive Potential 

    nablaU_rep = [0 0]; 

    if obst1_dist <= Qstar        

        nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst1_dist) * 1/obst1_dist^2)*([x y] - 

[obst1_points(1,obst1_idx)  obst1_points(2,obst1_idx)]); 

    end 

    if obst2_dist <= Qstar  && ~inpolygon(x,y,obst2_points(1,:),obst2_points(2,:))           

        nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst2_dist) * 1/obst2_dist^2)*([x y] - 

[obst2_points(1,obst2_idx)  obst2_points(2,obst2_idx)]); 

    end 

    if obst3_dist <= Qstar      

        nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst3_dist) * 1/obst3_dist^2)*([x y] - 

[obst3_points(1,obst3_idx)  obst3_points(2,obst3_idx)]); 

    end 

     

% Calculate final potential 

    nablaU = nablaU_att+nablaU_rep; 

 

% Calculate reference value of linear velocity (v_ref) and orientation (theta_ref) 

    theta_ref = atan2(-nablaU(2), -nablaU(1)); 

 

    error_theta = theta_ref - theta; 

    if abs(error_theta) <= error_theta_max 

        alpha = (error_theta_max - abs(error_theta)) / error_theta_max; 

        v_ref = min( alpha*norm(-nablaU), v_max ); 

    else 

        v_ref = 0; 

    end 
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% Simple kinematic mobile robot model 

% Omitted dynamics. 

    omega_ref = Kp_omega * error_theta; 

    omega_ref = min( max(omega_ref, -omega_max), omega_max); 

    theta = theta + omega_ref * dT; 

    x = x + v_ref*cos(theta) * dT; 

    y = y + v_ref*sin(theta) * dT; 

 

    t = t + 1; 

 

% Obtain the current position and distance between UAV and goal 

    disp("Current position: (" + x + ", " + y + "), Distance to goal: " + norm([x_goal 

y_goal] - [x y])); 

 

% Archive and plot it 

    X(t) = x; 

    Y(t) = y; 

    cla; 

    daspect([1 1 1]);  

    xlim([-0.5 4]);  ylim([-0.5 4]); 

    box on; hold on; 

    plot(obst1_points(1,:), obst1_points(2,:), '-r'); 

    plot(obst2_points(1,:), obst2_points(2,:), '-r'); 

    plot(obst3_points(1,:), obst3_points(2,:), '-r'); 

    plot(x_goal, y_goal, 'ob'); 

% Plot traveled path 

    plot(X(1:t), Y(1:t), '-b');  

% Plot reference orientation of the robot 

    plot([x x+0.2*cos(theta_ref)], [y y+0.2*sin(theta_ref)], '-g');  

% Plot orientation of the robot 

    plot([x x+0.2*cos(theta)], [y y+0.2*sin(theta)], '-r');  

    xlabel('X position'); 

    ylabel('Y position'); 

    title('UAV Trajectory With 2 Obstacles'); 

    legend('Obstacle','','','Goal position','UAV trajectory', 'Location','northeastoutside'); 

    drawnow; 

    pause(dT); 

end 

t = t*dT; % scale from iterations to [s] 

 

disp("Travel time: " + t); 
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APPENDIX E MATLAB CODE FOR ENVIRONMENT WITH 3 OBSTACLES 

clear all; close all; clc; 

 

% Initial position and orientation  

x = 0; 

y = 0; 

theta = 0; 

 

% Goal position 

x_goal = 3.5; 

y_goal = 3.5; 

position_accuracy = 0.05; 

 

% APF parameters 

zeta = 1.1547; 

eta = 0.0732; 

dstar = 0.3; 

Qstar = 0.75; 

 

% Parameters related to kinematic model 

error_theta_max = deg2rad(45); 

v_max = 0.2; 

Kp_omega = 1.5; 

omega_max = 0.5*pi;  

 

% Generate obstacles 

obst1_points = [ linspace(1,2,100) linspace(2,2,100) linspace(2,1,100)    

linspace(1,1,100)  

                           linspace(1,1,100)   linspace(1,1.5,100)   linspace(1.5,1.5,100)  

linspace(1.5,1,100) ]; 

obst1_points(1,:) = obst1_points(1,:) - 0.5; 

obst1_points(2,:) = obst1_points(2,:) - 1; 

 

obst2_points = [ linspace(1.5,2,100) linspace(2,2,100) linspace(2,1.5,100)    

linspace(1.5,1.5,100)  

                           linspace(1.5,1.5,100)   linspace(1.5,2,100)   linspace(2,2,100)  

linspace(2,1.5,100) ]; 

obst2_points(1,:) = obst2_points(1,:) - 0.5; 

obst2_points(2,:) = obst2_points(2,:) - 1; 

 

obst3_points = [ linspace(1.5,2.5,100) linspace(2.5,2.5,100) linspace(2.5,1.5,100)    

linspace(1.5,1.5,100)  

                           linspace(2.5,2.5,100)   linspace(2.5,3,100)   linspace(3,3,100)  

linspace(3,2.5,100) ]; 

obst3_points(1,:) = obst3_points(1,:) - 0.5; 

obst3_points(2,:) = obst3_points(2,:) - 0.5; 
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obst4_points = [ linspace(3.5,4,100) linspace(4,4,100) linspace(4,3.5,100)    

linspace(3.5,3.5,100)  

                           linspace(2.5,2.5,100)   linspace(2.5,3.5,100)   linspace(3.5,3.5,100)  

linspace(3.5,2.5,100) ]; 

obst4_points(1,:) = obst4_points(1,:) - 0.5; 

obst4_points(2,:) = obst4_points(2,:) - 1; 

 

figure(1);  

t = 1; 

dT = 0.1; 

t_max = 1000; 

X = zeros(1,t_max); 

Y = zeros(1,t_max); 

X(1) = x; 

Y(1) = y; 

 

while norm([x_goal y_goal] - [x y]) > position_accuracy || t > t_max    

% Calculate Attractive Potential 

    if norm([x y]-[x_goal y_goal]) <= dstar 

        nablaU_att =  zeta*([x y]-[x_goal y_goal]); 

    else  

        nablaU_att = dstar/norm([x y]-[x_goal y_goal]) * zeta*([x y]-[x_goal y_goal]); 

    end 

 

% Find the minimum distance from the obstacle 

    [obst1_idx, obst1_dist] = dsearchn(obst1_points', [x y]); 

    [obst2_idx, obst2_dist] = dsearchn(obst2_points', [x y]); 

    [obst3_idx, obst3_dist] = dsearchn(obst3_points', [x y]); 

    [obst4_idx, obst4_dist] = dsearchn(obst4_points', [x y]); 

 

% Calculate Repulsive Potential 

    nablaU_rep = [0 0]; 

    if obst1_dist <= Qstar        

        nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst1_dist) * 1/obst1_dist^2)*([x y] - 

[obst1_points(1,obst1_idx)  obst1_points(2,obst1_idx)]); 

    end 

    if obst2_dist <= Qstar  && ~inpolygon(x,y,obst2_points(1,:),obst2_points(2,:))           

        nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst2_dist) * 1/obst2_dist^2)*([x y] - 

[obst2_points(1,obst2_idx)  obst2_points(2,obst2_idx)]); 

    end 

    if obst3_dist <= Qstar      

        nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst3_dist) * 1/obst3_dist^2)*([x y] - 

[obst3_points(1,obst3_idx)  obst3_points(2,obst3_idx)]); 

    end 

    if obst4_dist <= Qstar      

        nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst4_dist) * 1/obst4_dist^2)*([x y] - 

[obst4_points(1,obst4_idx)  obst4_points(2,obst4_idx)]); 

    end 
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% Calculate final potential 

    nablaU = nablaU_att+nablaU_rep; 

 

% Calculate reference value of linear velocity (v_ref) and orientation (theta_ref) 

    theta_ref = atan2(-nablaU(2), -nablaU(1)); 

 

    error_theta = theta_ref - theta; 

    if abs(error_theta) <= error_theta_max 

        alpha = (error_theta_max - abs(error_theta)) / error_theta_max; 

        v_ref = min( alpha*norm(-nablaU), v_max ); 

    else 

        v_ref = 0; 

    end 

 

% Simple kinematic mobile robot model 

% Omitted dynamics. 

    omega_ref = Kp_omega * error_theta; 

    omega_ref = min( max(omega_ref, -omega_max), omega_max); 

    theta = theta + omega_ref * dT; 

    x = x + v_ref*cos(theta) * dT; 

    y = y + v_ref*sin(theta) * dT; 

    t = t + 1; 

 

% Obtain the current position and distance between UAV and goal 

    disp("Current position: (" + x + ", " + y + "), Distance to goal: " + norm([x_goal 

y_goal] - [x y])); 

 

% Archive and plot it 

    X(t) = x; 

    Y(t) = y; 

    cla; 

    daspect([1 1 1]);  

    xlim([-0.5 4]);  ylim([-0.5 4]); 

    box on; hold on; 

    plot(obst1_points(1,:), obst1_points(2,:), '-r'); 

    plot(obst2_points(1,:), obst2_points(2,:), '-r'); 

    plot(obst3_points(1,:), obst3_points(2,:), '-r'); 

    plot(obst4_points(1,:), obst4_points(2,:), 'r'); 

    plot(x_goal, y_goal, 'ob'); 

% Plot traveled path 

    plot(X(1:t), Y(1:t), '-b'); 

% Plot reference orientation of the robot 

    plot([x x+0.2*cos(theta_ref)], [y y+0.2*sin(theta_ref)], '-g');  

% Plot orientation of the robot 

    plot([x x+0.2*cos(theta)], [y y+0.2*sin(theta)], '-r');  

    xlabel('X position'); 

    ylabel('Y position'); 

    title('UAV Trajectory With 3 Obstacles'); 

    legend('Obstacle','','','','Goal position','UAV trajectory', 'Location','northeastoutside'); 

    drawnow; 
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    pause(dT); 

end 

 

t = t*dT; % scale from iterations to [s] 

 

disp("Travel time: " + t); 
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APPENDIX F MATLAB CODE FOR EXTREME GOAL POSITION IN 

OBSTACLE-FREE ENVIRONMENT 

clear all; close all; clc; 

 

% Initial position and orientation  

x = 0; 

y = 0; 

theta = 0; 

 

% Goal position 

x_goal = 100; 

y_goal = 100; 

position_accuracy = 0.05; 

 

% APF parameters 

zeta = 1.1547; 

eta = 0.0732; 

dstar = 0.3; 

Qstar = 0.75; 

 

% Parameters related to kinematic model 

error_theta_max = deg2rad(45); 

v_max = 0.2; 

Kp_omega = 1.5; 

omega_max = 0.5*pi;  

 

figure(1);  

t = 1; 

dT = 0.1; 

t_max = 10000; 

X = zeros(1,t_max); 

Y = zeros(1,t_max); 

X(1) = x; 

Y(1) = y; 

 

while norm([x_goal y_goal] - [x y]) > position_accuracy || t > t_max    

% Calculate Attractive Potential 

    if norm([x y]-[x_goal y_goal]) <= dstar 

        nablaU_att =  zeta*([x y]-[x_goal y_goal]); 

    else  

        nablaU_att = dstar/norm([x y]-[x_goal y_goal]) * zeta*([x y]-[x_goal y_goal]); 

    end 

     

% Calculate final potential 

    nablaU = nablaU_att; 
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% Calculate reference value of linear velocity (v_ref) and orientation (theta_ref) 

    theta_ref = atan2(-nablaU(2), -nablaU(1)); 

 

    error_theta = theta_ref - theta; 

    if abs(error_theta) <= error_theta_max 

        alpha = (error_theta_max - abs(error_theta)) / error_theta_max; 

        v_ref = min( alpha*norm(-nablaU), v_max ); 

    else 

        v_ref = 0; 

    end 

 

% Simple kinematic mobile robot model 

% Omitted dynamics. 

    omega_ref = Kp_omega * error_theta; 

    omega_ref = min( max(omega_ref, -omega_max), omega_max); 

    theta = theta + omega_ref * dT; 

    x = x + v_ref*cos(theta) * dT; 

    y = y + v_ref*sin(theta) * dT; 

 

    t = t + 1; 

 

% Obtain the current position and distance between UAV and goal 

    disp("Current position: (" + x + ", " + y + "), Distance to goal: " + norm([x_goal 

y_goal] - [x y])); 

 

% Archive and plot it 

    X(t) = x; 

    Y(t) = y; 

    cla; 

    daspect([1 1 1]);  

    xlim([-5 110]);  ylim([-5 110]); 

    box on; hold on; 

    plot(x_goal, y_goal, 'ob'); 

% Plot traveled path 

    plot(X(1:t), Y(1:t), '-b');  

% Plot reference orientation of the robot 

    plot([x x+0.2*cos(theta_ref)], [y y+0.2*sin(theta_ref)], '-g');  

% Plot orientation of the robot 

    plot([x x+0.2*cos(theta)], [y y+0.2*sin(theta)], '-r');  

    xlabel('X position'); 

    ylabel('Y position'); 

    title('UAV Trajectory Without Obstacle For Extreme Position'); 

    legend('Goal position','UAV trajectory', 'Location','northeastoutside'); 

    drawnow; 

    pause(dT); 

end 

t = t*dT; % scale from itetations to [s] 

 

disp("Travel time: " + t); 
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APPENDIX G MATLAB CODE FOR EXTREME GOAL POSITION IN 

ENVIRONMENT WITH 3 OBSTACLE 

clear all; close all; clc; 

 

% Initial position and orientation  

x = 0; 

y = 0; 

theta = 0; 

 

% Goal position 

x_goal = 100; 

y_goal = 100; 

position_accuracy = 0.05; 

 

% APF parameters 

zeta = 1.1547; 

eta = 0.0732; 

dstar = 0.3; 

Qstar = 0.75; 

 

% Parameters related to kinematic model 

error_theta_max = deg2rad(45); 

v_max = 0.2; 

Kp_omega = 1.5; 

omega_max = 0.5*pi;  

 

% Generate obstacles 

obst1_points = [ linspace(29,57,100) linspace(57,57,100) linspace(57,29,100)    

linspace(29,29,100)  

                           linspace(29,29,100)   linspace(29,43,100)   linspace(43,43,100)  

linspace(43,29,100) ]; 

obst1_points(1,:) = obst1_points(1,:) - 14; 

obst1_points(2,:) = obst1_points(2,:) - 29; 

 

obst2_points = [ linspace(43,57,100) linspace(57,57,100) linspace(57,43,100)    

linspace(43,43,100)  

                           linspace(43,43,100)   linspace(43,57,100)   linspace(57,57,100)  

linspace(57,43,100) ]; 

obst2_points(1,:) = obst2_points(1,:) - 14; 

obst2_points(2,:) = obst2_points(2,:) - 29; 

 

obst3_points = [ linspace(43,71,100) linspace(71,71,100) linspace(71,43,100)    

linspace(43,43,100)  

                           linspace(71,71,100)   linspace(71,86,100)   linspace(86,86,100)  

linspace(86,71,100) ]; 

obst3_points(1,:) = obst3_points(1,:) - 14; 

obst3_points(2,:) = obst3_points(2,:) - 14; 
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obst4_points = [ linspace(100,114,100) linspace(114,114,100) linspace(114,100,100)    

linspace(100,100,100)  

                           linspace(71,71,100)   linspace(71,100,100)   linspace(100,100,100)  

linspace(100,71,100) ]; 

obst4_points(1,:) = obst4_points(1,:) - 14; 

obst4_points(2,:) = obst4_points(2,:) - 29; 

 

figure(1);  

t = 1; 

dT = 0.1; 

t_max = 10000; 

X = zeros(1,t_max); 

Y = zeros(1,t_max); 

X(1) = x; 

Y(1) = y; 

 

while norm([x_goal y_goal] - [x y]) > position_accuracy || t > t_max    

% Calculate Attractive Potential 

    if norm([x y]-[x_goal y_goal]) <= dstar 

        nablaU_att =  zeta*([x y]-[x_goal y_goal]); 

    else  

        nablaU_att = dstar/norm([x y]-[x_goal y_goal]) * zeta*([x y]-[x_goal y_goal]); 

    end 

 

% Find the minimum distance from the obstacle 

    [obst1_idx, obst1_dist] = dsearchn(obst1_points', [x y]); 

    [obst2_idx, obst2_dist] = dsearchn(obst2_points', [x y]); 

    [obst3_idx, obst3_dist] = dsearchn(obst3_points', [x y]); 

    [obst4_idx, obst4_dist] = dsearchn(obst4_points', [x y]); 

 

% Calculate Repulsive Potential 

    nablaU_rep = [0 0]; 

    if obst1_dist <= Qstar        

        nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst1_dist) * 1/obst1_dist^2)*([x y] - 

[obst1_points(1,obst1_idx)  obst1_points(2,obst1_idx)]); 

    end 

    if obst2_dist <= Qstar  && ~inpolygon(x,y,obst2_points(1,:),obst2_points(2,:))           

        nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst2_dist) * 1/obst2_dist^2)*([x y] - 

[obst2_points(1,obst2_idx)  obst2_points(2,obst2_idx)]); 

    end 

    if obst3_dist <= Qstar      

        nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst3_dist) * 1/obst3_dist^2)*([x y] - 

[obst3_points(1,obst3_idx)  obst3_points(2,obst3_idx)]); 

    end 

    if obst4_dist <= Qstar      

        nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst4_dist) * 1/obst4_dist^2)*([x y] - 

[obst4_points(1,obst4_idx)  obst4_points(2,obst4_idx)]); 

    end 
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% Calculate final potential 

    nablaU = nablaU_att+nablaU_rep; 

 

% Calculate reference value of linear velocity (v_ref) and orientation (theta_ref) 

    theta_ref = atan2(-nablaU(2), -nablaU(1)); 

 

    error_theta = theta_ref - theta; 

    if abs(error_theta) <= error_theta_max 

        alpha = (error_theta_max - abs(error_theta)) / error_theta_max; 

        v_ref = min( alpha*norm(-nablaU), v_max ); 

    else 

        v_ref = 0; 

    end 

 

% Simple kinematic mobile robot model 

% Omitted dynamics. 

    omega_ref = Kp_omega * error_theta; 

    omega_ref = min( max(omega_ref, -omega_max), omega_max); 

    theta = theta + omega_ref * dT; 

    x = x + v_ref*cos(theta) * dT; 

    y = y + v_ref*sin(theta) * dT; 

 

    t = t + 1; 

 

% Obtain the current position and distance between UAV and goal 

    disp("Current position: (" + x + ", " + y + "), Distance to goal: " + norm([x_goal 

y_goal] - [x y])); 

 

% Archive and plot it 

    X(t) = x; 

    Y(t) = y; 

    cla; 

    daspect([1 1 1]);  

    xlim([-5 110]);  ylim([-5 110]); 

    box on; hold on; 

    plot(obst1_points(1,:), obst1_points(2,:), '-r'); 

    plot(obst2_points(1,:), obst2_points(2,:), '-r'); 

    plot(obst3_points(1,:), obst3_points(2,:), '-r'); 

    plot(obst4_points(1,:), obst4_points(2,:), 'r'); 

    plot(x_goal, y_goal, 'ob'); 

% Plot traveled path 

    plot(X(1:t), Y(1:t), '-b');  

% Plot reference orientation of the robot 

    plot([x x+0.2*cos(theta_ref)], [y y+0.2*sin(theta_ref)], '-g');  

% Plot orientation of the robot 

    plot([x x+0.2*cos(theta)], [y y+0.2*sin(theta)], '-r');  

    xlabel('X position'); 

    ylabel('Y position'); 

    title('UAV Trajectory With 3 Obstacles For Extreme Position'); 

    legend('Obstacle','','','','Goal position','UAV trajectory', 'Location','northeastoutside'); 
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    drawnow; 

    pause(dT); 

end 

 

t = t*dT; % scale from itetations to [s] 

 

disp("Travel time: " + t); 
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APPENDIX H MATLAB CODE FOR OBSTACLE-FREE ENVIRONMENT WITH 

WIND DISTURBANCES  

clear all; close all; clc; 

 

% Initial position and orientation  

x = 0; 

y = 0; 

theta = 0; 

 

% Goal position 

x_goal = 3.5; 

y_goal = 3.5; 

position_accuracy = 0.05; 

 

% APF parameters 

zeta = 1.1547; 

eta = 0.0732; 

dstar = 0.3; 

Qstar = 0.75; 

 

% Parameters related to kinematic model 

error_theta_max = deg2rad(45); 

v_max = 0.2; 

Kp_omega = 1.5; 

omega_max = 0.5*pi;  

 

% Additional parameters for wind 

wind_speed = 0.1;  % Wind speed  

wind_direction = deg2rad(90);  % Wind direction in radians  

 

figure(1);  

t = 1; 

dT = 0.1; 

t_max = 1000; 

X = zeros(1,t_max); 

Y = zeros(1,t_max); 

X(1) = x; 

Y(1) = y; 

 

while norm([x_goal y_goal] - [x y]) > position_accuracy && t <= t_max    

% Calculate Attractive Potential 

    if norm([x y]-[x_goal y_goal]) <= dstar 

        nablaU_att =  zeta*([x y]-[x_goal y_goal]); 

    else  

        nablaU_att = dstar/norm([x y]-[x_goal y_goal]) * zeta*([x y]-[x_goal y_goal]); 

    end 
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% Calculate final potential 

    nablaU = nablaU_att; 

 

% Calculate reference value of linear velocity (v_ref) and orientation (theta_ref) 

    theta_ref = atan2(-nablaU(2), -nablaU(1)); 

 

    error_theta = theta_ref - theta; 

    if abs(error_theta) <= error_theta_max 

        alpha = (error_theta_max - abs(error_theta)) / error_theta_max; 

        v_ref = min( alpha*norm(-nablaU), v_max ); 

    else 

        v_ref = 0; 

    end 

 

% Simple kinematic mobile robot model 

% Omitted dynamics. 

    omega_ref = Kp_omega * error_theta; 

    omega_ref = min( max(omega_ref, -omega_max), omega_max); 

     

% Calculate wind effect on velocity components 

    wind_vx = wind_speed * cos(wind_direction); 

    wind_vy = wind_speed * sin(wind_direction); 

 

% Update velocity components with wind effect 

    vx_with_wind = v_ref * cos(theta) + wind_vx; 

    vy_with_wind = v_ref * sin(theta) + wind_vy; 

 

% Update UAV position with wind-disturbed velocity components 

    x = x + vx_with_wind * dT; 

    y = y + vy_with_wind * dT; 

 

% Update orientation 

    theta = theta + omega_ref * dT; 

 

    t = t + 1; 

 

% Obtain the current position and distance between UAV and goal 

    disp("Current position: (" + x + ", " + y + "), Distance to goal: " + norm([x_goal 

y_goal] - [x y])); 

 

% Archive and plot it 

    X(t) = x; 

    Y(t) = y; 

    cla; 

    daspect([1 1 1]);  

    xlim([-0.5,4]);  ylim([-0.5 4]); 

    box on; hold on; 

    plot(x_goal, y_goal, 'ob'); 

% Plot traveled path 

    plot(X(1:t), Y(1:t), '-b');  
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% Plot reference orientation of the robot 

    plot([x x+0.2*cos(theta_ref)], [y y+0.2*sin(theta_ref)], '-g'); 

% Plot orientation of the robot 

    plot([x x+0.2*cos(theta)], [y y+0.2*sin(theta)], '-r');  

    xlabel('X position'); 

    ylabel('Y position'); 

    title('UAV Trajectory Without Obstacle in Wind Condition'); 

    legend('Goal position','UAV trajectory', 'Location','northeastoutside'); 

    drawnow; 

    pause(dT); 

end 

 

t = t * dT; % scale from iterations to [s] 

 

disp("Travel time: " + t); 
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APPENDIX I  MATLAB CODE FOR ENVIRONMENT WITH WIND 

DISTURBANCES AND 3 OBSTACLES 

clear all; close all; clc; 

 

% Initial position and orientation  

x = 0; 

y = 0; 

theta = 0; 

 

% Goal position 

x_goal = 3.5; 

y_goal = 3.5; 

position_accuracy = 0.05; 

 

% APF parameters 

zeta = 1.1547; 

eta = 0.0732; 

dstar = 0.3; 

Qstar = 0.75; 

 

% Parameters related to kinematic model 

error_theta_max = deg2rad(45); 

v_max = 0.2; 

Kp_omega = 1.5; 

omega_max = 0.5*pi;  

 

% Generate obstacles 

obst1_points = [ linspace(1,2,100) linspace(2,2,100) linspace(2,1,100)    

linspace(1,1,100)  

                 linspace(1,1,100)   linspace(1,1.5,100)   linspace(1.5,1.5,100)  

linspace(1.5,1,100) ]; 

obst1_points(1,:) = obst1_points(1,:) - 0.5; 

obst1_points(2,:) = obst1_points(2,:) - 1; 

 

obst2_points = [ linspace(1.5,2,100) linspace(2,2,100) linspace(2,1.5,100)    

linspace(1.5,1.5,100)  

                 linspace(1.5,1.5,100)   linspace(1.5,2,100)   linspace(2,2,100)  

linspace(2,1.5,100) ]; 

obst2_points(1,:) = obst2_points(1,:) - 0.5; 

obst2_points(2,:) = obst2_points(2,:) - 1; 

 

obst3_points = [ linspace(1.5,2.5,100) linspace(2.5,2.5,100) linspace(2.5,1.5,100)    

linspace(1.5,1.5,100)  

                 linspace(2.5,2.5,100)   linspace(2.5,3,100)   linspace(3,3,100)  

linspace(3,2.5,100) ]; 

obst3_points(1,:) = obst3_points(1,:) - 0.5; 

obst3_points(2,:) = obst3_points(2,:) - 0.5; 
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obst4_points = [ linspace(3.5,4,100) linspace(4,4,100) linspace(4,3.5,100)    

linspace(3.5,3.5,100)  

                 linspace(2.5,2.5,100)   linspace(2.5,3.5,100)   linspace(3.5,3.5,100)  

linspace(3.5,2.5,100) ]; 

obst4_points(1,:) = obst4_points(1,:) - 0.5; 

obst4_points(2,:) = obst4_points(2,:) - 1; 

 

% Additional parameters for wind 

wind_speed = 0.1;  % Wind speed  

wind_direction = deg2rad(90);  % Wind direction in radians  

 

figure(1);  

t = 1; 

dT = 0.1; 

t_max = 5000; 

X = zeros(1,t_max); 

Y = zeros(1,t_max); 

X(1) = x; 

Y(1) = y; 

 

while norm([x_goal y_goal] - [x y]) > position_accuracy && t <= t_max    

% Calculate Attractive Potential 

    if norm([x y]-[x_goal y_goal]) <= dstar 

        nablaU_att =  zeta*([x y]-[x_goal y_goal]); 

    else  

        nablaU_att = dstar/norm([x y]-[x_goal y_goal]) * zeta*([x y]-[x_goal y_goal]); 

    end 

     

% Find the minimum distance from the obstacle 

    [obst1_idx, obst1_dist] = dsearchn(obst1_points', [x y]); 

    [obst2_idx, obst2_dist] = dsearchn(obst2_points', [x y]); 

    [obst3_idx, obst3_dist] = dsearchn(obst3_points', [x y]); 

    [obst4_idx, obst4_dist] = dsearchn(obst4_points', [x y]); 

 

% Calculate Repulsive Potential 

    nablaU_rep = [0 0]; 

    if obst1_dist <= Qstar        

        nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst1_dist) * 1/obst1_dist^2)*([x y] - 

[obst1_points(1,obst1_idx)  obst1_points(2,obst1_idx)]); 

    end 

    if obst2_dist <= Qstar  && ~inpolygon(x,y,obst2_points(1,:),obst2_points(2,:))           

        nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst2_dist) * 1/obst2_dist^2)*([x y] - 

[obst2_points(1,obst2_idx)  obst2_points(2,obst2_idx)]); 

    end 

    if obst3_dist <= Qstar      

        nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst3_dist) * 1/obst3_dist^2)*([x y] - 

[obst3_points(1,obst3_idx)  obst3_points(2,obst3_idx)]); 

    end 

    if obst4_dist <= Qstar      
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        nablaU_rep = nablaU_rep + (eta*(1/Qstar - 1/obst4_dist) * 1/obst4_dist^2)*([x y] - 

[obst4_points(1,obst4_idx)  obst4_points(2,obst4_idx)]); 

    end 

 

% Calculate final potential 

    nablaU = nablaU_att+nablaU_rep; 

 

% Calculate reference value of linear velocity (v_ref) and orientation (theta_ref) 

    theta_ref = atan2(-nablaU(2), -nablaU(1)); 

 

    error_theta = theta_ref - theta; 

    if abs(error_theta) <= error_theta_max 

        alpha = (error_theta_max - abs(error_theta)) / error_theta_max; 

        v_ref = min( alpha*norm(-nablaU), v_max ); 

    else 

        v_ref = 0; 

    end 

 

% Simple kinematic mobile robot model 

% Omitted dynamics. 

    omega_ref = Kp_omega * error_theta; 

    omega_ref = min( max(omega_ref, -omega_max), omega_max); 

     

% Calculate wind effect on velocity components 

    wind_vx = wind_speed * cos(wind_direction); 

    wind_vy = wind_speed * sin(wind_direction); 

 

% Update velocity components with wind effect 

    vx_with_wind = v_ref * cos(theta) + wind_vx; 

    vy_with_wind = v_ref * sin(theta) + wind_vy; 

 

% Update UAV position with wind-disturbed velocity components 

    x = x + vx_with_wind * dT; 

    y = y + vy_with_wind * dT; 

 

% Update orientation 

    theta = theta + omega_ref * dT; 

 

    t = t + 1; 

 

% Obtain the current position and distance between UAV and goal 

    disp("Current position: (" + x + ", " + y + "), Distance to goal: " + norm([x_goal 

y_goal] - [x y])); 

 

% Archive and plot it 

    X(t) = x; 

    Y(t) = y; 

    cla; 

    daspect([1 1 1]);  

    xlim([-0.5,4]);  ylim([-0.5 4]); 
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    box on; hold on; 

    plot(obst1_points(1,:), obst1_points(2,:), '-r'); 

    plot(obst2_points(1,:), obst2_points(2,:), '-r'); 

    plot(obst3_points(1,:), obst3_points(2,:), '-r'); 

    plot(obst4_points(1,:), obst4_points(2,:), 'r'); 

    plot(x_goal, y_goal, 'ob'); 

% Plot traveled path 

    plot(X(1:t), Y(1:t), '-b');  

% Plot reference orientation of the robot 

    plot([x x+0.2*cos(theta_ref)], [y y+0.2*sin(theta_ref)], '-g');  

% Plot orientation of the robot 

    plot([x x+0.2*cos(theta)], [y y+0.2*sin(theta)], '-r');  

    xlabel('X position'); 

    ylabel('Y position'); 

    title('UAV Trajectory With 3 Obstacles In Wind Condition'); 

    legend('Obstacle','','','','Goal position','UAV trajectory', 'Location','northeastoutside'); 

    drawnow; 

    pause(dT); 

end 

 

t = t * dT; % scale from iterations to [s] 

 

disp("Travel time: " + t); 
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APPENDIX J CODE TO CONNECT ULTRASONIC SENSOR WITH ARDUINO 

UNO 
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APPENDIX K  CODE TO CONNECT INFRARED SENSOR WITH ARDUINO 

UNO 
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APPENDIX L  EXPERIMENT SETUP FOR MAXIMUM DETECTION RANGE 

OF ULTRASONIC SENSOR 

 
 

 

APPENDIX M  EXPERIMENT SETUP FOR MAXIMUM DETECTION RANGE 

OF INFRARED SENSOR 
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APPENDIX N  EXPERIMENT SETUP FOR ACCURACY OF ULTRASONIC 

SENSOR 

 
 

APPENDIX O  EXPERIMENT SETUP FOR ACCURACY OF INFRARED 

SENSOR 

 
 


