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ABSTRACT 

An individual's gait is a unique characteristic impacted by various variables. Gait patterns, 

the way a person walks, can be used for verification as they are often unconscious 

behaviors. Conventional gait pattern studies use machine learning, which requires complex 

data extraction and achieves limited accuracy with unimodal data. This study employs 

deep learning to classify gait patterns into walking straight, turning right, and turning left. 

It also explores the impact of unimodal versus multimodal data for higher accuracy. 

Advanced algorithms are used to visualize 2- and 3-dimensional gait and posture data in 

Python, processing the data for deep learning. Gait patterns from 14 participants on 

different paths along a corridor are extracted. The methodology is divided into three 

phases: data pre-processing, data processing, and data classification. In data pre-

processing, Spyder software is used to visualize each participant's gait and posture frames 

based on timestamp files from an open-source database. In data processing, the Time 

Frequency Domain (TFD) method, utilizing Short Time Frequency Transformation (STFT) 

in Spyder, is chosen to overcome limitations in frequency and time domains. In data 

classification, results from unimodal and multimodal data using deep learning algorithms, 

specifically Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN), 

are compared for different gait situations. 
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ABSTRAK 

Gaya berjalan seseorang individu adalah ciri unik yang dipengaruhi oleh pelbagai 

pembolehubah. Corak gaya berjalan, cara seseorang berjalan, boleh digunakan untuk 

pengesahan kerana ia selalunya merupakan tingkah laku tidak sedarkan diri. Kajian corak 

gait konvensional menggunakan pembelajaran mesin, yang memerlukan pengekstrakan 

data yang kompleks dan mencapai ketepatan terhad dengan data unimodal. Kajian ini 

menggunakan pembelajaran mendalam untuk mengklasifikasikan corak berjalan kepada 

berjalan lurus, membelok ke kanan dan membelok ke kiri. Ia juga meneroka kesan data 

unimodal berbanding multimodal untuk ketepatan yang lebih tinggi. Algoritma lanjutan 

digunakan untuk menggambarkan data gait dan postur 2 dan 3 dimensi dalam Python, 

memproses data untuk pembelajaran mendalam. Corak berjalan daripada 14 peserta di 

laluan berbeza di sepanjang koridor diekstrak. Metodologi dibahagikan kepada tiga fasa: 

pra-pemprosesan data, pemprosesan data, dan klasifikasi data. Dalam pra-pemprosesan 

data, perisian Spyder digunakan untuk menggambarkan bingkai gaya berjalan dan postur 

setiap peserta berdasarkan fail cap masa daripada pangkalan data sumber terbuka. Dalam 

pemprosesan data, kaedah Domain Frekuensi Masa (TFD), menggunakan Transformasi 

Frekuensi Masa Singkat (STFT) dalam Spyder, dipilih untuk mengatasi had dalam domain 

kekerapan dan masa. Dalam klasifikasi data, hasil daripada data unimodal dan multimodal 

menggunakan algoritma pembelajaran mendalam, khususnya Rangkaian Neural Konvolusi 

(CNN) dan Rangkaian Neural Berulang (RNN), dibandingkan untuk situasi berjalan yang 

berbeza. 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Research Background 

In today's gait pattern analysis studies, radiology and medical evaluation such as X-

ray are used. Although an X-ray scanner can diagnose knee osteoarthritis (OA) with great 

precision, these advantages come with a cost. Additionally, it is not recommended for 

patients to be often exposed to X-rays during medical evaluations, which makes it 

challenging to track the development of knee OA over time [1]. This is where deep 

learning can take place. Deep learning will overcome these challenges such as patients will 

not have to be exposed to radiology for a long period of time and it will also decrease the 

cost for gait pattern evaluation. Furthermore, deep learning method can help to improve the 

accuracy rate of gait pattern analysis. 

This deep learning method will work with multimodal datasets. Current studies that 

use unimodal system exhibits numerous shortcomings such as noisy information, intra-

class variation and inter-class resemblance [2]. By using multimodal datasets, noisy 

information can be extinguished. Based on the studies that have been conducted, the 

multiple device identification found in current smartwatches provides a convenient 

substitute for the standard smartphone methods of authentication [2]. Its main benefit is 

that identification can be done without requiring input from the user. The user's gait may 

be determined from the paces at which he walks, which is determined by the smartphone's 

inbuilt sensors, and his cardiac activity can be deduced from the electrocardiogram (ECG) 
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that the watch records [2]. It is simple to merge those patterns and utilize them for 

authentication. 

The integration of multimodal datasets and deep learning method prove to be 

beneficial for patients and also medical practitioners. This work shows the enormous 

potential for diagnostics and treatment components to transfer from clinical settings to the 

home, decreasing costs and the strain on both practitioners and patients. This is especially 

important given the ageing population's growing need for medical support [3]. 

Furthermore, it can help medical professionals to identify which gait cycle that the patient 

struggles the most and allow the professionals to focus more on that specific gait cycle to 

help the patient [4]. 

1.2 Motivation 

Nowadays, there are many different studies that has been conducted regarding 

diseases that are related to gait abnormalities. Some of the studied diseases are Alzheimer 

[5], Freezing of Gait which is a symptom of Parkinson’s Disease [6] and Multiple Sclerosis 

[7]. A few statistics for Alzheimer, Parkinson and Multiple Sclerosis were found. Globally, 

roughly 50 million individuals suffer from dementia and Alzheimer's disease. It has been 

shown that there is a close relationship between dementia, ageing, and abnormal gait [8]. 

For Parkinson disease, it affects approximately 1% of people over 60, and the frequency 

rises with age. Parkinsonism is an illness that affects about 20% of adults over the age of 

80. It is characterized by tremor, bradykinesia, rigidity, and instability of posture in 

different configurations that leads to gait abnormalities [9]. While for Multiple Sclerosis 

disease, in 93.7 percent of cases of multiple sclerosis, there is a loss in gait efficiency. 

Throughout any twelve-month period, the majority of persons (63%) who have multiple 

sclerosis will experience a fall and 45% of those people will go on to have falls on a 
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regular basis [10]. Based on past studies, it is found that each of the diseases has its own 

gait abnormalities characteristics. For Alzheimer, the patient exhibits lack of balance in 

their steps [5]. For Freezing of Gait, the patient exhibit reduced leg movement speed and 

steps shorter but faster [6]. Lastly, for Multiple Sclerosis, the patient exhibit longer stride 

duration, slower gait, larger base of support and shorter single support period in their steps 

[7]. 

By conducting this study that analyzing gait and posture pattern by using deep 

learning with multimodal data, it is hope that this study can lead to future study that can 

detect the early stage of the gait pattern related diseases by inspecting and analyzing the 

gait and posture pattern. 

1.3 Problem Statement 

Healthcare, assistive technology, and human-computer interaction are just a few of 

the fields that depend on the understanding and classification of human posture and gait 

patterns. Classifying complicated and variable posture and gait patterns remains an 

enormous challenge, particularly in everyday life, unregulated contexts, even if artificial 

intelligence has showed promise in picture and sensor data processing. 

In current method for example machine learning, it requires long and intricate 

procedure in extracting the data manually. The rate of accuracy of this machine learning 

method also hugely depends on this data extracting. Existing methods also fail to attain 

high accuracy and generalization because it frequently rely on single-modal data sources. 

On the other hand, processing data with Time Domain method require a lot of processing 

and frequent sampling for some condition [11] while for Frequency domain, there is only 

little intricacy in signal analysis involved which means it can only process straight forward 

and simple signal and data and could not work with complex data [12]. Consequently, the 
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issue at hand is the requirement for a method with analyzing data with Time Frequency 

Domain, multimodal data and efficient deep learning system for the classification of 

posture and gait. 

1.4 Research Objective  

The main aim of this research is to classify gait pattern and posture based on the 

specific dataset with reasonable accuracy. Specifically, the objectives are as follows: 

a) To analyze accelerometer & camera data during walking using Time 

Frequency Domain. 

b) To classify gait and posture pattern using multimodal deep learning. 

c) To compare unimodal & multimodal deep learning result based on its 

accuracy. 

1.5 Scope of Research 

The simulation of physiological data that were used to evaluate the gait pattern is 

the main goal of this study. Modern techniques must be used to construct the physiological 

signals, and the process must be followed progressively. Dataset that were used was 

collected and taken using camera and accelerometer by Manuel Palermo and published in 

an open-source site, Physionet. The time-frequency domain (TFD) technique is used to 

extract the properties of physiological data in order to obtain a STFT graph of three distinct 

walking situations: walking straight ahead, walking right on a corridor, and walking left on 

a corridor. The best classifier to use for physiological signal applications utilizing CNN 

and RNN networks will also be determined as part of this study. Software called Spyder 

was used to visualize the excel file data that contains gait and posture data of the 
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participants and were also used to generate the STFT graphs before feeding the graphs to 

the deep learning classifier. 
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CHAPTER 2  
 

 

LITERATURE REVIEW 

2.1 Introduction 

This chapter starts with the diseases that are related to gait pattern abnormalities to 

explain on the needs for study regarding gait pattern classification, explanation about gait 

pattern and its phases, deep learning classifiers and comparison to machine learning and 

also comparison between multimodal and unimodal dataset. Next, a discussion of the best 

method for action or suggestion will follow, along with a description of the literature 

review. 

2.2 Needs to Study on Gait Pattern Classification 

A methodical evaluation of the variables that define how people walk is called gait 

analysis. It is widely employed in many different contexts in particular, clinical studies of 

abnormal gait associated with cognitive deficits, non-neurological injuries, and 

neurological impairments that grow into other kinds of functional problems [13]. This 

study can help to find abnormal gait pattern that can lead to discovering diseases related to 

the abnormal gait pattern. There are several past studies that have been conducted 

regarding abnormalities in gait pattern. Table 2-1 shows past studies that have been 

conducted for diseases related to gait abnormalities. 
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Table 2-1  Past Studies for diseases related to gait abnormalities 

Title Gait Abnormalities 

 
Deep Learning based Gait Abnormality 

Detection using Wearable Sensor System 
[13] 

 

 
• Hemiplegic 
• Parkinsonian 
• Sensory-Ataxic 

 
Prediction of Freezing of Gait in  

Parkinson’s Disease Using Wearables and 
Machine Learning [6] 

 
• Freezing of Gait (FOG) 

(A symptom of Parkinson’s 
disease) 
 

 
Application of Supervised Machine 

Learning Algorithms in the Classification 
of Sagittal Gait Patterns of Cerebral Palsy 

Children with Spastic Diplegia [14] 
 

 
• Categorization of Cerebral 

Palsy children's sagittal gait 
patterns with spastic 
diplegia 

 
Early Alzheimer’s Disease Diagnosis  

Using Wearable Sensors and Multilevel 
Gait Assessment: A Machine Learning 

Ensemble Approach [5] 
 

 
• Early Diagnosis of 

Alzheimer's Disease 

 
Deep Learning for Multiple Sclerosis 

Differentiation Using Multi-Stride 
Dynamics in Gait [7] 

 

 
• Multiple Sclerosis 

 

 

These are the past studies that were found regarding diseases that exhibit 

abnormalities in the patients’ gait pattern. 
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From past studies, each disease related to gait pattern abnormalities have its own 

gait characteristics. Table 2-2 shows the finding from past studies about gait characteristics 

that patient with gait abnormalities diseases exhibit. 

Table 2-2 Gait characteristics of diseases that are related to gait abnormalities 

Disease Gait Characteristics 
 

Parkinson 
 

 
• Trunk and pelvis rotate 

simultaneously. (For normal gait, 
trunk rotation is followed by pelvic 
rotation.) 

• Less step length 
• Tremor while walking 

 
 

Hemiplegic 
 

 
• The afflicted leg frequently exhibits 

plantar flexion and extension. 
• Leg circumduction is frequently 

observed during the swing phase. 
• Stance with the ipsilateral arm 

flexed. 
 

 
Sensory Ataxic 

 

 
• Lack of awareness of joint and limb 

position that leads to stomping. 
• Not able of sensing where their foot 

is in relation to the floor leads to 
asymmetrical gait. 

• Less step length 
• Wide based stance 

 
 

Freezing of Gait  
(Parkinson’s symptom) 

 

 
• Reduced leg movement speed  
• Steps shorten and get faster. 

 
 

Alzheimer 
 

 
• Lack of balance 

 
Multiple Sclerosis 

 

 
• Longer stride duration. 
• Slower gait 
• Larger base of support 
• Shorter single support period 
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Study of gait proved to be beneficial and abnormal gait patterns were found based 

on past studies conducted. To further understand the gait classification, normal gait pattern 

and phases needs to be understood. 
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2.3 Gait Pattern and Phases 

Every normal human have gait phases that are almost the same from one’s 

perspective. [15] stated that a common gait cycle are comprised of eight phases, beginning 

with the first foot impact and ending with the terminal swing, or the subsequent foot 

impact. These eight phases can be divided into two primary periods, stance cycle [16] and 

swing cycle [15]. To further understand this stance cycle and swing cycle, [17] explained 

that the stance cycle involves the duration during which a person’s foot touches the ground 

from any angle. On the other hand, the swing cycle begins as soon as the stance cycle is 

over and is characterized by a forward-facing instant of leg swing. To further break down 

these phases, according to [17], a stance time can be further divided into five distinct parts: 

• Heel Strike: The heel is making contact with the floor. 

• Foot Flat: This position involves total contact between the foot and the 

floor. 

• Mid-Stance: This is merely the middle part of the stride. 

• Heel Off: This refers to the act of the heel lifting off the floor. 

• Toe Off: This refers to the act of the toe leaving the floor. 

While for swing cycle, the phases are divided into three distinct parts: 

• Acceleration: The attempt is made to move the leg forward. 

• Mid-Swing: This part of the swing involves keeping a leg in the center of 

the swing phase. 

• De-acceleration: Attempting to slow down the leg for the subsequent heel, 

one becomes ready for the subsequent stance phase. 
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The stance cycle makes up 60% of the gait cycle on average, whereas the swing 

cycle makes up 40%. Additionally, each phase contains a series of both Single Support and 

Double Support, when only one foot is in contact with the ground during each sub-cycle 

[18].  

In other finding by [16] states that gait cycle includes: 

• First contact: also known as heel strike (HS), this is the instant the foot 

makes contact with the ground. 

• Loading response: this stage starts as soon as the foot makes contact with 

the ground and lasts until the opposite leg is raised for the swing phase. 

• Midstance: the moment that begins when the opposite leg is raised off the 

ground and ends when the body weight is in line with the forefoot. 

• Terminal stance: this phase lasts from the moment the heel rises in the 

frontal plane until the opposite leg makes first contact. 

• Pre-swing: this stage begins with the opposite leg's first contact and 

concludes with the same leg being raised off the ground. 

• Swing stage: First swing: this stage, also known as toe off (TO), involves 

raising the foot off the ground and continuing until the knee flexion reaches 

its maximum range. 

• Mid swing: this stage lasts until the tibia is vertical and starts right after 

bending the knee. 

• Terminal swing: this stage starts just prior to the first point of contact and 

continues after the tibia is vertical. 
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For stance cycle, the stages involved are first contact, loading response, mid stance, 

terminal stance, and pre-swing while for swing cycle, the stages involved are first swing, 

mid swing and terminal swing. To further understand about gait phases, Figure 2-1 shows 

the visualization of human walking through each gait phase. 

 

Figure 2-1 Normal human gait phases 

To compare, both of the findings are very much identical to each other. Both of the 

findings involved stance and swing cycle. Using these gait cycle, gait analysis to analyze 

human gait can be done because human gait is a fundamental function, and a person’s 

everyday stride patterns reveal important details about their psychological and physical 

well-being [19]. Other than psychological, physical well-being and gait related diseases, 

gait also can be used to determine a person's age, sex and diagnosis of illnesses [17]. To do 

this gait analysis, we need to determine gait parameters to distinguish every gait pattern 

according to its classification. 
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2.4 Gait Parameters 

The following is a list of the most popular statistical parameters that might be 

derived from the detection of gait cycle [20]: 

• Step length (m) is the measurement of the separation between one foot 

(Heel Strike) and the opposing feet at the beginning of contact. 

• Stride length (m) is the space between consecutive locations of first contact 

(Heel Strike) made by the same foot. 

• Step width (m) is the distance measured laterally between each foot.  

• Step time (s) is the interval between both heel strikes in a row. 

• Gait Cycle Time or Stride Time (s) is the total amount of time required to 

finish a gait cycle and the interval separating two successive heel strikes by 

the exact same foot. 

• Gait Speed (m/s) is the stride length split by the total amount of gait cycle 

time.  

• Cadence (steps/min) is the total amount of steps in a minute (steps/min). 
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Figure 2-2 shows the visualization of gait parameters. As explained above, it can be 

seen that step length is indeed the measurement of separation between one foot and the 

other foot at the start contact while stride length is the measurement of separation at the 

start contact made by the same foot. On the other hand, step width is the measurement of 

distance laterally between each foot. By knowing all these parameters, it can help to 

classify gait patterns efficiently. 

 

Figure 2-2 Visualization of gait parameters 

This can be approved with research conducted to assess how an 8-week 

hippocampal treatment intervention affects walking ability and spatiotemporal gait 

characteristics in relapsing-remitting multiple sclerosis patients [21]. In order to conduct 

the research, spatiotemporal gait parameters were taken and analyzed and the parameters 

that were taken were gait speed (m/s), cadence (steps/min), step length (m), step width (m), 

stance time (s) and step time (s). After analyzing the gait parameters, it is found that          

8-week hippocampal treatment intervention does bring impact by improving walking 

ability and spatiotemporal gait characteristics in relapsing-remitting multiple sclerosis 

patients [21]. 

After understanding gait parameters, gait and posture data can be collected and 

measured using an electronic device that integrates multiple sensors known as Inertial 



25 

Measurement Unit (IMU).  These sensors reading data is a crucial part before feeding the 

data into the artificial intelligence (AI) technology like deep learning for further analysis.  

2.5 Inertial Measurement Unit (IMU) 

An electrical device that combines several sensors, including accelerometers, 

gyroscopes, and magnetometers, is called an Inertial Measurement Unit. This electronic 

gadget could have a secure digital (SD) card, an antenna (wireless technology), or even an 

output pin that is connected via wire to a base station. The most widely used abbreviation 

for this electronic gadget is (IMU) [22]. A major innovation in the field of biomechanics 

and wearable sensors was the development of the inertial measurement unit (IMU), which 

allows for spatiotemporal and kinematic assessments. These devices are affordable, enable 

the evaluation of nearly infinite steps, and enable the evaluation of gait and movement 

disorders outside of the restricted settings of clinical and research laboratories [23]. One of 

the examples for Inertial Measurement Unit is Xsens MTw Awinda. 

2.5.1 Xsens MTw Awinda 

Xsens' second generation wireless inertial-magnetic movement sensor is called the 

MTw Awinda. The MTw provides extremely precise orientation through a hidden setup, 

enabling real-time 3D kinematic applications with many motion trackers [24]. Figure 2-3 

and Figure 2-4 shows the The Xsens MTw Awinda hardware. 
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Figure 2-3 MTW Motion Tracker 

 

Figure 2-4 Awinda Dongle 

Figure 2-3 shows the MTW Motion Tracker. The motion tracker weighs 16g and 

measures 47mm by 30mm by 13mm in its packaging. The MTw motion tracker uses 

inertial sensor components, specifically a 3D accelerometer and a 3D rate gyroscope, to 

detect motion. It also has a thermometer, a barometer, and a 3D magnetometer [24]. 

Figure 2-4 shows the Awinda Dongle. The Awinda Dongle is a compact USB 

gadget that measures just 45 mm by 20.4 mm by 10.6 mm when it has a USB connector 

and 33 mm by 20.4 mm by 10.6 mm when it does not [24]. 

After the gait and posture data is collected using Inertial Measurement Unit (IMU), 

then the data will be feed into Artificial Intelligence algorithms. 
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2.6 Comparison Between Deep Learning and Machine Learning 

Table 2-3 shows past studies that have been conducted and its findings about gait patterns classification using machine learning and deep 

learning. Table 2-3 also contains type of sensors that were used to conduct each study, type of gait pattern classification, type of machine 

learning and deep learning algorithms that were used and the accuracy result of the algorithms to classify the gait pattern. 

Table 2-3 Past studies related with gait pattern classification using machine learning and deep learning. 

Author Type of Sensor Gait Type of 
Classification 

Classification 
Algorithm 

Result 

Using Machine 
Learning 

Algorithms for 
Identifying Gait 

Parameters 
Suitable to 

Evaluate Subtle 
Changes in Gait in 

People with 
Multiple 

Sclerosis[25] 
 

- Accelerometers 
 

- Gyroscopes 
 

- Magnetometers 
 
 

- Healthy 
 

- Mild disability 
 

- Experienced 
fatigue 

 
 

- Decision Tree 
 

- KNN 
 

- SVM (Linear 
Kernel) 

 
Machine Learning 

- Decision Tree 
= 62% 

 
- KNN = 61.3% 

 
- SVM = 63.2% 
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Supervised 

machine learning 
scheme for 

electromyography-
based pre-fall 

detection 
system[26] 

 

 
- Semg Sensor 

 
- Human 

imbalance 
detection 

 
 

 
- Surface 

Electromyographic 
(sEMG)-based  

Machine Learning 

 
- The solution 

based on sEMG 
reaches 89.5% 
sensitivity and 

91.3% 
specificity. 

 

 
A Deep Learning 

Approach to 
EMG-Based 

Classification of 
Gait Phases during 

Level Ground 
Walking [27] 

 

 
- Stance/swing phases 

 
- Prediction of the foot–

floor-contact signal 
 

 
- Natural 

deceleration, 
reversing, curve, 
and acceleration 

 
- Surface 

Electromyographic 
(sEMG)-based 

 
 

Machine Learning 

 
- Results, 

indeed, showed 
an average 

classification 
accuracy of 94.9 

for learned 
subjects and 

93.4 for 
unlearned ones 

 
Deep Learning-

Based Multimodal 
Abnormal Gait 
Classification 
Using a 3D 

Skeleton and 
Plantar Foot 
Pressure [28] 

 

 
- Depth Camera 

 
- Plantar Foot Pressure 

 
- Normal Gait 

 
- Abnormal Gait 

Eg: (antalgic, 
lurching, 

steppage, stiff-
legged, and 

Trendelenburg) 
 

 
- Recurrent Neural 
Network (RNN) 

 
- Convolutional 
Neural Network 

(CNN) 
 

Deep Learning 

 
- The proposed 

multimodal 
hybrid model 

showed 
improved 

performance 
with an 

accuracy of 
95.66% 
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Classification of 
Gait Type Based 
on Deep Learning 

Using Various 
Sensors with 
Smart Insole 

[29] 
 

 
- Pressure Sensor Array 

 
- Acceleration Sensor Array 

 
- Gyro Sensor Array 

 

 
- Walking 

 
- Fast Walking 

 
- Running 

 
- Stair Climbing 

 
- Stair Descending 

 
- Hill Climbing 

 
- Hill Descending 

 
- DCNN 

 
 

Deep Learning 

 
- High 

classification 
rate of more 

than 90% 

 
Deep Neural 

Network-Based 
Gait Classification 

Using Wearable 
Inertial Sensor 

Data 
[30] 

 
- 3-axis accelerometer 

 
- 3-axis gyroscope 

 

 
- Athlete 

 
- Normal Foot 

 
- Deformed Foot 

 

 
- Convolutional 
Neural Network 

(CNN) 
 
 

Deep Learning 

 
- Using the 
same model 

validation and 
evaluation 

method, up to 
98.19% 

accuracy was 
achieved from 

the 
convolutional 

neural network-
based classifier 
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Based on Table 2-3 above, for previous studies related with gait pattern using 

machine learning, the average accuracy was 82.5%. In other hand, for previous studies 

related with gait pattern using deep learning, the average accuracy was 94%. There is one 

specific study conducted by [31] to help with recovery planning using modern machine 

learning and deep learning techniques to give patients a safe gait evaluation covering all 

common gait-related parameters founds that bidirectional long short-term memory (Bi-

LSTM), a deep learning classifier obtained an average of 90.54%, 90.41%, and 90.38% for 

precision, recall, and F1-score, respectively. On the other hand, 86.99%, 86.62%, and 

86.67%, respectively, for SVM, a machine learning classifier. To conclude, based on the 

findings, Deep Learning is the best method to conduct gait pattern analysis for maximum 

accuracy. Deep learning have different types of algorithms such as Convolutional Neural 

Network (CNN) and Recurrent Neural Network (RNN) that are suitable with different 

types of data. 

2.6.1 Convolutional Neural Network (CNN) 

A type of feedforward mechanism neural network called a Convolutional Neural 

Network (CNN) can extract characteristics from input that has convolution structures. In 

contrast to the old feature extraction technique like Scale Invariant Feature Transform 

(SIFT), CNN eliminates the need for characteristics extraction manually [32]. CNNs are an 

effective kind of neural network that are frequently employed in tasks involving 

recognizing images. They are composed of one or more fully connected layers that employ 

the features extracted from the input image to produce predictions, after which a sequence 

of convolutional and pooling layers collect pertinent features from the image. CNN needs 

to first be trained on a sizable dataset of labelled images that contain the objects of interest 

in order to be used for image classification. Through replication and optimization, CNN 
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gains the ability to correlate the extracted features with the appropriate labels during 

training. Once trained, CNN may be used to predict new, unknown images by running the 

picture through the network and choosing the description with the greatest probability of 

accuracy [33]. Figure 2-5 shows the visualization of CNN layers that allow CNN to work. 

 

Figure 2-5 CNN layer 

Three layers make up a convolutional neural network in general: the input layer, the 

hidden layer, and the output layer. The unprocessed initial picture is the input layer, the 

feature classification result is the output layer, and the hidden layer is a neural network 

layer with an intricate multi-layer nonlinear structure that consists of a convolution layer 

and a sub-sampling layer. Features in hidden layers are extracted and classified by 

convolutional neural networks. As a result, optimizing the single-layer perceptron and 

convolutional layer can enhance the precision of feature extraction and maximize the 

categorization result [34]. 

2.6.2 Recurrent Neural Network (RNN) 

Recurrent Neural Network (RNN) employs the recurrence relation and learns via 

backpropagation via time. Every aspect in the sequence data is dependent on time. 

Sequence data is produced by numerous real-time applications, such as picture captioning, 

speech synthesis, speech recognition, and music production. For managing these kinds of 

data, RNN was created. By determining the short- and long-term sequence relationships 

between various data points, it effectively manages the sequence data. The RNN uses this 
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information to forecast by extracting the hidden pattern from these connections. RNN has 

different types of structures depending on number of inputs and outputs generated and is 

shown in Figure 2-6. 

 

Figure 2-6 RNN Structure 

RNN is interesting because it allows to work with lengthy vector patterns. The 

predictive accuracy of RNN can be enhanced by building the RNN’s grid both horizontally 

and vertically. In figure 2-6, the RNN structure are divided into 4 categories which are one 

to one, one to many, many to one and many to many [35]. 

For motion prediction by using RNN, the way various body parts interact can make 

the traditional RNN structure inefficient for motion predictions [36]. This is where 

predictive accuracy of RNN can be enhanced by including components and coordinating 

functional units as an answer. The coordination unit examines how the various body parts 

interact, while the component unit studies the trajectory of a particular body part linked to 

a particular human stance. Figure 2-7 shows the base RNN structure that were used for 

motion prediction of a human. 
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Figure 2-7 Motion prediction using RNN 

For the enhanced RNN, every operational unit's network structure is derived from 

the standard RNN structure in figure 2-7. The difference is to depict a whole human body, 

a total of five separate parts (two arms, two legs, and one spine) and four coordination 

units (arm-arm, arm-spine, leg-leg, and leg-spine) were included. The Backpropagation 

algorithm trains the RNN structure with operational components collectively. Figure 2-8 

shows the enhanced RNN structure that were derived from base RNN structure for motion 

prediction of a human. 

 

Figure 2-8 Enhanced RNN structure for motion prediction 

Reducing prediction error, such an improved network structure makes it possible to 

forecast the human motion trajectory more accurately in the context of both its own history 
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and the interactions between the various body parts. Contrary to the RNN structure without 

operational components, there has been a roughly 40% decrease in the mean divergence 

between the predicted and actual locations of body joints [36]. 

2.7 Comparison Between Unimodal and Multimodal 

In this study, multimodal data were used to classify gait and posture patterns. This 

decision were made based on past studies that have been conducted using unimodal and 

multimodal data. Table 2-4 shows the comparison between unimodal and multimodal data 

that supported the decision to choose multimodal data for this study. 

Table 2-4 Comparison between unimodal and multimodal data 

Unimodal Multimodal 
 

Have a number of flaws that lower 
the system's accuracy such as: 

• noisy data  
• non-universality 
• intra-class variance 
• inter-class similarity. [37] 

 
Using the detection and processing 
of two or more physiological or 
behavioral features, have shown to 
considerably increase the success 
rate of identification and 
verification. [37] 
 

To further strengthen the finding from Table 2-4, a study was conducted between 

unimodal and multimodal for biometric authentication. It is found that for multimodal 

authentication of fingerprint and face, the training accuracy is 99% while for unimodal 

authentication of fingerprint and face, the training accuracy would be 97% and 98% 

respectively [38]. 
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CHAPTER 3  
 

 

METHODOLOGY 

3.1 Introduction 

This chapter will discuss the thorough approach used to categorize the gait pattern 

into three classifications: walking straight, turning right, and walking left on a hallway. A 

means of determining the project's implementation from start to finish is research 

methodology. The project's implementation will also be covered in full in this chapter, 

along with an explanation of how each step is put together. The three stages of this project 

are data classification, data processing and data pre-processing. FYP1 will complete the 

data pre-processing and data processing, and FYP2 (final year project 2) will carry out the 

remaining one phase. Figure 3-1 shows the overview flowchart of the methodology that 

has been and will be conducted in FYP 1 and FYP 2. 
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Figure 3-1 Overview of methodology 
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3.2 Dataset Description 

The dataset that were used in this study were collected based on different walking 

situations. The datasets were contributed by Manuel Palermo to Physionet. For this study, 

the situations are walking straight, turning left and turning right on a corridor. The data 

were collected from 14 healthy participants which are comprised of 10 men and 4 women 

which weight are in 69.7±11.4 kg range, height in 172±10.2 cm range and age in 25.4±2.31 

years-old range. The participants were chosen based on some specific criteria such as they 

exhibit normal mobility and have no previous record of anomalies in their clinical 

condition, current state of complete control over posture, current height in centimeters 

from 150 to 190, are at least 18 years old and given permission in writing to take part in the 

study.  

 

3.3 Data Collection Scenarios 

The steps involved in the experimental protocol were as follows: first, the 

anthropometric measurements of the participants were taken and entered into the MVN 

Analyse in order to adapt the software's biomechanical model (MVN BIOMECH) to their 

physiognomy; second, the MVN BIOMECH was calibrated according to the 

manufacturer's instructions, guaranteeing the accuracy of the calibration for every subject. 

Another IMU was mounted on a stick during the calibration processes, and it was relocated 

to the upper camera to ensure consistent orientation throughout the trials when the 

calibration was complete. 

The following types of data were gathered: i) kinematic data, which included the 

orientation, velocity, and acceleration of segments; the angle of joints; and the free 

acceleration, magnetic field, and orientation of sensors. These were obtained with the 
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MVN software at 60 Hz; and ii) 30 frames per second (fps) depth pictures taken by the 

walker's embedded cameras. A hardware trigger was used to synchronize the time of all the 

data. Figure 3-2 shows how the data collection scenarios was set up for a participant. 

 

Figure 3-2 Gait and posture data collection setup for participants 
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3.4 Ethics and Safety of Data Collection Scenarios 

The Helsinki Declaration and the Oviedo Convention were followed in the data 

collecting process, which was carried out in accordance with the Ethics Committee in Life 

and Health Sciences’ (CEICVS 063/2021) ethical guidelines. By protecting the rights of 

the participants, private personal information was maintaned and is not included in this 

dataset.  

It was advised that participants wear athletic shoes and long pants to avoid 

unnecessary injuries while doing the data collection scenarios as it involves walking 

through different situations along the corridor. The full body inertial motion tracking 

system MTw Awinda was used to monitor each participants’ gait and posture data. 

Seventeen IMUs were strapped onto each participants’ head, shoulders, chest, arms, 

forearms, wrist, waist, thighs, shanks and feet. To determine the orientation of the camera 

with respect to the MVN world axis, an extra IMU was mounted to the upper camera of the 

walker. This was done to give clean data relating to the camera without revealing the 

position of the sensors. The researchers placed the sensors in accordance with the 

manufacturer's instructions, reducing the possibility of errors resulting from incorrect 

sensor placement. 

3.5 Data Pre-processing 

Timestamp files that were captured during acquisition with the walker's embedded 

software are used to synchronize temporally data from the inertial motion tracking and the 

depth images. Each modality's matching temporal indexes were stored in a ".csv" file, 

which retains all of the raw samples acquired and makes data selection simple when 

needed. 
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All of the data from the open-source database were downloaded. In order to further 

understand and visualize the posture and gait data, Python Spyder were used. The coding 

for visualizing the data were given in the database. Figure 3-3 shows the overview 

flowchart of the coding to visualize the gait and posture of each participant walking.  

 

Figure 3-3 Overview flowchart of data-preprocessing coding 

The coding starts with initializing all the variables. All the library that is required 

and compulsory for the code to run is imported here. The examples of the library that are 

required for this code to run are NumPy, Pandas and OpenCV (cv2). NumPy is a Python 

language library that supported complex matrix structures and provide mathematical 

algorithms to manipulate mathematical components. Next, Pandas is an information 

processing and management tool. It offers efficient formats for managing organized 
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information while OpenCV is a library that helps with artificial recognition. Processing 

images and videos are one of its common uses. 

Next, the coding moves to the iterate over subjects’ part. This study involves 14 

participants that walking straight, turning right and left along a corridor. All the data files 

are named with the participant number and walking condition identification. So, to ensure 

that the files will be go through one by one, these lines of coding are important so each 

participant with each walking condition files can be visualized and not one of it will be 

missed.  

After that, the coding will move to a decision-making process which includes 

checking the data availability. If the data for a certain participant with a certain walking 

could not be viewed due to error of the data or corrupted files, the coding will print “Could 

not read data from: participant00 | straight”. It contains the exact information of which 

participant and the conditions of walking file that could not be processed. Once the 

message is generated, it will move back to the iterate over subjects’ process which means it 

will process the next participant or walking condition file. If the data for the participant and 

walking condition can be accessed, it will move to the next part which is the load 

calibration data. 

In load calibration data process, it reads the calibration information of the extrinsic 

and intrinsic for each participant with walking conditions files. In extrinsic information, it 

reveals the positional link between various cameras while for the intrinsic information, 

camera’s unique properties such as the lens’ focal length and primary spot are revealed. 

The imported calibration data is subsequently used in later code segments for additional 

analysis. 
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Moving on, load 3d skeleton process helps to obtain data regarding each 

participants’ joint movements in three dimensions such as the shoulders and knees 

movements. This is where the Pandas library helps to read the complex dataset and process 

it. This part of coding helps to know the dynamics of the participants’ body movement in 3 

dimensions over time. The information is arranged and ready for additional examination or 

be displayed.  For the 2d skeleton process, it works the same way as the 3d skeleton 

process works but the difference is only the 2d skeleton data are in x and y axis whereas 

the 3d skeleton data are in x, y and z axis. 

Furthermore, the code proceeds to process depth frames data. The depth frames 

data were load and this is where the OpenCV library comes in handy. OpenCV read depth 

images that were taken by cameras at certain frames and the images were then processed. 

This process is also processed and transformed to a floating-point format so that depth 

information may be handled more precisely. After that, the depth frames are ready for 

visualization in the program’s main loop. 

Moreover, visualizing and displaying data involved improving and displaying the 

analyzed data in a visual format. To improve the exposure of the visualization, the 

brightness of the frames was changed, and the visualization are separated in two different 

windows which shows the posture frames and the gait frames. This graphic depiction helps 

to understand the participants’ motions during the examined frames. Once all files of each 

participant with different walking conditions have gone through, the iterations will stop, 

and the process will end. If not, the code will bring back to iterate the next participant with 

different walking conditions file until all the files have been accessed. 
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3.6 Data Processing 

TFD characteristics have been selected for signal processing in this project. This is 

due to the domain's ability to get beyond limitations in the frequency and time domains. 

Next, in order to extract the crucial information from the physiological signals, TFD 

requires modifying the time and frequency resolution.  

Data for gait and posture aligned with time were chosen as Time Frequency 

Representation (TFR) requires time aligned data. The Time-Frequency Representation 

(TFR) will be obtained using Short Time Frequency Transformation (STFT) method using 

Python Spyder software coding in Python. After setting the overlap between adjacent 

segments to 50%, the TFR is produced. The overlap was set at 50% because it makes it 

easier to see how easily the components are changing from moment to the next. Table 3.1 

shows the gait and posture data for participant 1when turning right that are aligned with 

time. 
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Table 3-1 Gait and posture depth data for participant 1 aligned with time 
 

Time(s) Posture Data(mm) Gait Data(mm) 
0 14 14 
1 15 15 
2 17 16 
3 18 17 
4 19 18 
5 20 19 
6 21 20 
7 22 21 
8 23 22 
9 24 23 

10 25 24 
11 26 25 
12 27 27 
13 28 27 
14 29 28 
15 30 30 
16 31 30 
17 32 32 
18 33 33 
… … … 
… … … 

508 523 523 
509 524 524 
510 525 525 

 

It can be seen that in Table 3-1, the gait and posture data for participant 1 starts 

with 0 seconds and ends at 510 seconds. It shows that participant 1 takes about 510 

seconds to finish walking turning right on a corridor. Other participants exhibit roughly 

about the same time to finish the walking on the same condition. These files were used to 

generate TFR using the STFT method.  
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For generating the TFR, Spyder software were once again used, and the coding is 

also in Python language. The STFT method were included in the coding as well as the 

visualization of the TFR. Figure 3-4 shows the overview flowchart of the coding to 

generate Time Frequency Representation (TFR) using Short Time Fourier Transformation 

(STFT) method. 

 

Figure 3-4 Overview flowchart of data processing coding 

Based on the flowchart in Figure 3-4, the coding starts with extracting the data that 

contains time, posture data and gait data as shown in Table 3-1. The time, posture and gait 

data are held into an array by NumPy library that have been imported. The data is then 

separated to 3 columns in the array with time data in array 1, posture data in array 2 and 
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gait data in array 3. These separated arrays store the corresponding temporal and sensor 

reading data during the moment. The exact information elements needed for further data 

processing and analysis which in this case, are for Short Time Fourier Transform (STFT). 

Moving on, the code proceeds to define the STFT parameters. It analyses the data 

frequency shifts over brief short periods of time. The variables used in this code are 

“overlap = 32” and “window size = 64”. The choice between frequency and time resolution 

is influenced by the “window size”, which establishes the number of samples considered in 

every evaluation window. As for the overlap parameter, it affects the amount of overlap 

between time sections by defining the total amount shared between successive windows. 

Next, the code generates the TFR of STFT for posture and gait signals by using the 

SciPy library that have been imported in the earlier part of the code. The SciPy library 

helps to capture the frequency information of the signals during brief overlapping time 

frames. The previously set factors like “window size” and “overlap” help to customize the 

analysis to the specifics of the sensor information. 

Furthermore, for plot STFT results this procedure comprises of visualizing the 

posture and gait sensor readings from the outcome of STFT procedure earlier. The code 

generates two subplots each showing a TFR diagram for posture and gait pattern 

respectively which contains the shifts of frequency over time. The plots help the 

examination of the dynamic properties of the posture and gait pattern by providing a 

thorough visual depiction of the time changes in the frequency domain. It also includes 

axis labels, titles and color bars. 
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3.7 Data Classification 

For data classification, two deep learning algorithms which are Convolutional 

Neural Network (CNN) and Recurrent Neural Network (RNN) were used in order to get 

the accuracy percentage for the classification of gait and posture pattern. STFT diagrams 

that were obtained from data processing method earlier were used for this part. For 

multimodal data, both gait and posture STFT diagram were fed to the selected deep 

learning algorithms while for unimodal data, only gait STFT diagram were used. In order 

to prevent inadequate quantity of training data or an unequal distribution of classes within 

the datasets, an approach called “data augmentation” were used to address the issue [39]. 

For this research, the STFT diagrams were rotated to 0°, 90°, 180° and 270° for the data 

augmentation approach [40]. Furthermore, to avoid dataset overfitting issue, early stopping 

approach have been used in this research [41]. Matlab were used for this data classification 

method as it helps to build the structure of the deep learning algorithms and produce the 

accuracy percentage.  

Unimodal and multimodal datasets for CNN and RNN algorithm requires different 

coding, but all of the coding stands with the same foundation. Figure 3-5 shows the 

overview of the coding of both unimodal and multimodal datasets for CNN and RNN 

algorithm.  
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Figure 3-5 Overview flowchart of data classification coding 

The STFT diagrams that contained the gait and posture data were organized in 

folder according to its classification, turning left, turning right and walking straight for 

both multimodal and unimodal data. So, based on the flowchart in figure 3-5, the coding 

starts with load and preprocess images. This part requires naming the classes, initializing 

empty arrays for each class, defining the path to the primary dataset folder holding 

subdirectories for each class, setting the target image size and creating a random seed for 

reproducibility.  

Next, in splitting data into training, validation and test sets, the datasets for CNN 

were divided in percentage for training, validation and tests. The exact percentage for the 

division is 80% for training, 10% for validation and 10% for tests. Which means for 

multimodal and unimodal datasets, from a total of 168 pictures, 134 pictures were used for 
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training, 17 for validation and 17 for testing. For RNN, the datasets were divided into 80% 

for training and 20% for validation. 

Moving on to define algorithm architecture, for CNN, a 3x3 convolutional layer 

with 8 filters and the same padding to maintain the three dimensions comes after the image 

input layer. The feature maps are then down sampled using max-pooling layers with 2x2 

windows and a stride of 2. This procedure is performed using a different 16-filter 

convolutional layer. The network is trained with a specific learning rate and number of 

epochs using the Adam optimizer. The precision of the network's output is assessed using a 

different test set. While for RNN, A sequence input layer, a flatten layer (to guarantee that 

the input size is compressed), an LSTM layer to analyze sequential information, a fully 

connected layer, a SoftMax layer, and a classification layer make up the RNN architecture. 

The time-dependent relationships between successive inputs are captured by the LSTM 

layer. 

For the specify training options, parameters like learning rate, epochs, batch size 

and validation data were set in this part. The parameters were fine tuned in order to gain 

the highest accuracy possible for every situation. Together, these choices shape the neural 

network's training process and its ability to identify patterns in the data. 

Furthermore, in the training the algorithm part, for CNN, training data (X_train) 

and matching labels (Y_train) are sent into the CNN to train it. In order to minimize the 

gap between its predictions and the actual labels, the network modifies its internal 

parameters such as weights and biases during training. This iterative process known as 

optimization takes place over a number of epochs, or one run of the complete training 

dataset. The designated training settings, which include selecting the optimizer, learning 

rate, and mini-batch size, direct the training process which were set in the step before. The 

network gradually becomes better at identifying patterns in the input data as training goes 
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on, which eventually results in a model that can correctly categorize unseen images. While 

the difference in RNN algorithm is the RNN algorithm prepares the sequences, splits the 

data into training and validation sets, then trains the model with predefined training 

choices. It assesses the model's effectiveness using an independent validation dataset. 

On the evaluate the model on test set, The model is trained on the training dataset, 

and after that, its performance is assessed on the test set, which is a different set of data 

that the model did not encounter during training. The purpose of this evaluation is to 

determine how effectively the trained model applies to fresh, untested data. Images 

(X_test) and the true labels (Y_test) that go with them make up the test set. The test images 

are predicted using the trained model, and the accuracy of the model is assessed by 

comparing the predictions with the true labels. 

Lastly, on the display the accuracy part, by dividing the total number of test photos 

by the number of accurate predictions, the code determines accuracy. This ratio, which is 

given as a percentage, shows how well the model classified the test images. By 

demonstrating accuracy, one can gain important understanding of the model's performance, 

as well as how effectively it generalizes to new, untested data and whether it is suitable for 

real-world applications.  
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3.8 Summary 

The deep learning classifier that were chosen, RNN and CNN were chosen for their 

suitability to work with this study’s data which are images. The database utilized for this 

project came from Physionet. which Manuel Palermo, the creator, contributed. Three 

essential steps referred to as data pre-processing, data processing and data classification are 

required for any physiological information. For this study, the data pre-processing were 

done to visualize the gait and posture pattern of each participant in 3d to help understand of 

how every participant walks during different walking situations. For data processing, TFR 

diagram of gait and posture data for each participant will be generated using Spyder 

software through STFT method to analyze the data in time and frequency. For data 

classification, the STFT diagrams will be fed to the deep learning algorithm in order to test 

and obtain the algorithm accuracy percentage based on unimodal and multimodal data. 
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CHAPTER 4  
 

 

RESULTS AND DISCUSSION 

4.1 Introduction 

This chapter, which is organized into three sections, offers the findings and 

discussions from the techniques described in the preceding chapter. The data can be 

visualized and further analyzed during the pre-processing step to comprehend the 

participant's posture and steps while walking in various situations. In the data processing 

stage, the time frequency representation will be obtained through the application of the 

STFT method. The final step will compare the two deep learning models which are CNN 

and RNN in order to recognize the posture and gait patterns of walking ahead, turning 

right, and left along a corridor. 

4.2 Data Pre-Processing 

Figure 4-1 and 4-2 are the representation of the visualized posture and gait pattern 

that were generated from the coding in methodology. Each participant’s gait and posture 

pattern data in .csv file are used through Spyder software. The gait and posture pattern are 

further understood and gait pattern (walking straight, turning right and left on a corridor) 

can be distinguished by watching the visualized data. 
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Figure 4-1 Participants’ posture data visualization while walking 

 

Figure 4-2 Participants’ gait data visualization while walking 

Each of the participants’ gait and posture visualization of gait and posture while 

walking through different conditions (walking straight, turning right and left) were 

recorded and analyzed. It does help with understanding the gait pattern and processing the 

data in the next part which is data processing. 
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4.3 Data Processing 

In data processing, a feature extraction will be extracted from the data. In this 

project, the important part is the TFR diagram through STFT method. Figure 4-3, Figure 4-

4 and Figure 4-5 below shows the STFT diagram for participant 1 turning left, turning right 

and walking straight. These TFR diagrams will act as the dataset and all of participants 

TFR will be fed into the deep learning classifier. Other examples of STFT diagram for 

other selected participants will be shown in Appendix A. 

 

Figure 4-3 TFR diagram for participant 1 turning left 
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Figure 4-4 TFR diagram of participant 1 turning right 

 

Figure 4-5 TFR diagram of participant 1 walking straight 
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The y-axis of the STFT diagram are represented by the frequency of the signal and 

on the x-axis, it is represented by the time of how long the participant finished walking. 

The signal's level of energy at a specific frequency and time is represented by the color 

intensity. The highest amplitude are represented by the yellow color while the lowest 

amplitude is represented by the purple color.  

From the STFT diagrams above, the amplitude gets higher over time because of the 

increased movement of participant walking over time. Figure 4-3 shows the TFR diagram 

of participant 1 walking turning left on a corridor. It can be seen that the obvious changes 

are located at the end of the diagram. During frequency around 0.02 Hz and time around 

700 seconds, power/frequency color waves that occurred there are around 400-600 dB/Hz 

and right after that the power/frequency color drops around 100 dB/HZ. 

For Figure 4-4, it shows the TFR diagram of participant 1 walking turning right on 

a corridor. This diagram also exhibits obvious color changes at the end of the diagram. 

Different from participant walking turning left explained before, for Figure 4-4 during 

frequency around 0.02 Hz and time around 750 seconds, the power/frequency color waves 

that occurred there are around 300-500 dB/Hz only compared to 400-600 dB/Hz in Figure 

4-3 when participant turning right. Right after that, the power/frequency color drops to 0 

dB/Hz. 

Lastly, for Figure 4-5, it shows the TFR diagram of participant 1 walking straight 

and like 2 of the situations of walking before, the obvious color changes occurred at the 

end of the graph as well. During frequency around 0.02 Hz and time around 900 seconds, 

the power/frequency color waves that occurred there are around 650-850 dB/Hz. 

To conclude, walking straight exhibit the highest power/frequency color waves 

compared to turning right and left along a corridor. This some condition might happen 

based on a few reasons. One of it is it might be because of efficiency in energy use while 
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walking straight. Unlike turning left or right, walking straight uses fewer motions of the 

body and feet and less muscles stimulation are needed. This might result in increased 

effectiveness of producing low frequency vibrations that helps to increase the 

power/frequency value. These low frequency waves could be the result of walking-related 

foot impact with the floor or vibrations around the body while walking. 

4.4 Data Classification 

In data classification, CNN and RNN deep learning algorithms were used. Figure 4-

6, Figure 4-7, Figure 4-8, Figure 4-9 shows the result for this data classification. 

 

Figure 4-6 CNN Multimodal Classification Accuracy Percentage 

 

Figure 4-7 RNN Multimodal Classification Accuracy Percentage 
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Figure 4-8 CNN Unimodal Classification Accuracy Percentage 

 

Figure 4-9 RNN Unimodal Classification Accuracy Percentage 

For Figure 4-6, for CNN with multimodal data, as the training time comes to a 

finish, the training accuracy steadily rises and settles at about 80%. Validation accuracy 

improves but varies before levelling off at about 87.50%. A steady drop can be seen in the 

training loss and act as an indication that the model is learning well. The validation loss 

exhibits small swings but also reduces, indicating that the model's performance on the 

validation set may vary. After more than 250 cycles of training and validation, the model's 

ultimate validation accuracy was 87.50%. The set cycles was actually 300 cycles but 
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because of the early stopping method that has been implemented, the cycle stops at 250 

cycles only as the model does not show any improvement anymore. Excellent accuracy is 

indicated by both training and validation metrics, and the model converges well within the 

allocated iterations. 

For Figure 4-7, as for RNN with multimodal data, as the training time comes to a 

finish, the training accuracy increases steadily and settles at 50%. Validation accuracy first 

rises but then varies greatly before stabilizing at roughly 69.70%. A steady drop in training 

loss shows that the model is adapting and getting better. Validation loss initially declines 

but varies, suggesting that the model's performance varies on the validation set. The system 

uses full 300 cycles which means the system shows improvement until the end of the cycle. 

For Figure 4-8, as for CNN with unimodal data, training accuracy increases 

gradually with some swings before stabilizing at 85%. A stronger increasing trend is 

shown by the smoothed training accuracy line (blue), which indicates steady learning. 

Although it fluctuates at first, especially in the later stages of the iterations, the validation 

accuracy improves immediately. By the end of the training phase, it stabilizes at roughly 

75%, demonstrating the model's capacity to generalize to fresh data. The system only uses 

250 cycles out of 300 cycles as it stops improving around 250 cycles.  

For Figure 4-9, as for RNN with unimodal data, the precision of training exhibits a 

tendency of fluctuation followed by a slow increase, indicating that the model is learning 

but rather unstable. The training loss shows some tiny variations but remains rather 

constant, suggesting that the model is learning over rounds but not improving much. The 

system only uses 90 cycles out of 300 cycles as it stops improving around 90 cycles only. 
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Table 4-1 Comparison between CNN and RNN also multimodal and unimodal data 

Description Accuracy Percentage (%) 

CNN (Multimodal) 87.5 

CNN (Unimodal) 75.0 

RNN (Multimodal) 69.7 

RNN (Unimodal) 44.0 

In Table 4-1, comparison between CNN and RNN also multimodal and unimodal 

data were shown. CNN models exhibits a greater result in accuracy compared to the RNN 

models. CNN with multimodal and unimodal data produces accuracy of  87.5% and 75% 

respectively while RNN with multimodal and unimodal data produces accuracy of 69.7% 

and 44%. From this research, it is known that CNN are the better algorithm to conduct gait 

and posture pattern classification compared to RNN algorithm and multimodal data 

produces higher accuracy percentage compared to unimodal data. 
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CHAPTER 5  
 

 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

In the proposed work, the representation of camera and accelerometer data is 

represented in Time Frequency Representation images by using the STFT method. Deep 

learning and multimodal data are used to classify the images according to various walking 

situations, and it is investigated whether this approach is more effective for classifying 

posture and gait patterns than traditional features. Using Spyder software, data from 

fourteen people were split to obtain the Time Frequency Representation for three different 

walking scenarios: straight ahead, turning left, and right on a hallway. Based on result of 

TFR diagram using STFT method for participant 1, when participant 1 walking straight 

exhibits the highest power/frequency reading compared to reading when participant 1 

turning right or left in a corridor. This is because walking straight uses less energy and 

requires less muscle activation that allows effectiveness in producing low frequency 

vibrations that leads to higher power/frequency reading. For the accuracy of the algorithm 

which are CNN and RNN work based on multimodal data, CNN with multimodal data 

produces the highest accuracy percentage which are 87.5%, followed by CNN with 

unimodal data that produces accuracy of 75%. Both RNN with multimodal and unimodal 

data produces accuracy percentage that are lower which are 69.5% and 44% respectively. 
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5.2 Future Works 

For future research, adjustments other than early stopping and data augmentation 

which have been done in this research can be made. There are other adjustments that can 

be made which are dropout regularization and learning rate adjustments. These adjustments 

can be investigated in the near future to ensure that the accuracy percentage can be pushed 

higher and nearer to 100%. 
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APPENDICES 

APPENDIX A TFR OF PARTICIPANTS 

Participant 2 TFR diagram. (a) left, (b) right, (c) straight. 
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Participant 3 TFR diagram. (d) left, (e) right, (f) straight. 
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Participant 4 TFR diagram. (g) left, (h) right, (i) straight. 
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Participant 5 TFR diagram. (j) left, (k) right, (l) straight. 
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Participant 6 TFR diagram. (m) left, (n) right, (o) straight. 
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Participant 7 TFR diagram. (p) left, (q) right, (r) straight. 
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Participant 8 TFR diagram. (s) left, (t) right, (u) straight. 
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Participant 9 TFR diagram. (v) left, (w) right, (x) straight. 
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Participant 10 TFR diagram. (y) left, (z) right, (aa) straight. 
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Participant 11 TFR diagram. (bb) left, (cc) right, (dd) straight. 
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Participant 12 TFR diagram. (ee) left, (ff) right, (gg) straight. 
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Participant 13 TFR diagram. (hh) left, (ii) right, (jj) straight. 
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Participant 14 TFR diagram. (kk) left, (ll) right, (mm) straight. 
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APPENDIX B  PARTICIPANTS METADATA 

Participant 
ID Gender 

Age 
(years) 

Body 
mass (kg) 

Body 
height (m) 

Hip 
height 
(m) 

Shoe 
Lenght 

Shoulder 
Height 

Shoulder 
Width 

Elbow 
Span 

Wrist 
Span 

Arm 
Span 

Hip 
Width 

Knee 
Height 

Ankle 
Height 

participant01 M 23 63 1.8 1.02 0.3 1.52 0.31 0.86 1.38 1.74 0.27 0.53 0.1 
participant02 F 24 50.5 1.51 0.86 0.25 1.18 0.25 0.77 1.18 1.51 0.25 0.45 0.08 
participant03 M 22 89 1.85 1.07 0.3 1.54 0.39 1.06 1.51 1.88 0.3 0.53 0.11 
participant04 F 28 70 1.59 0.95 0.27 1.36 0.36 0.83 1.27 1.56 0.32 0.49 0.1 
participant05 F 27 53 1.57 0.91 0.26 1.3 0.31 0.81 1.28 1.59 0.29 0.43 0.09 
participant06 M 30 68 1.72 0.95 0.28 1.4 0.28 0.86 1.38 1.78 0.25 0.5 0.1 
participant07 M 28 75 1.85 1.01 0.29 1.48 0.32 0.97 1.47 1.87 0.31 0.53 0.1 
participant08 M 24 86 1.7 0.93 0.29 1.38 0.31 0.82 1.36 1.67 0.29 0.46 0.09 
participant09 M 24 72.7 1.7 0.92 0.28 1.36 0.31 0.92 1.34 1.72 0.28 0.43 0.11 
participant10 M 26 84 1.75 0.95 0.29 1.47 0.38 0.97 1.35 1.74 0.28 0.52 0.09 
participant11 M 23 64 1.72 0.94 0.27 1.42 0.32 0.9 1.35 1.73 0.24 0.49 0.1 
participant12 M 26 64 1.75 0.93 29 1.39 0.35 0.95 1.35 1.76 0.3 0.5 0.9 
participant13 M 26 74 1.82 1 0.29 1.47 0.28 0.97 1.47 1.85 0.25 0.52 0.1 
participant14 F 24 63 1.71 0.98 0.27 1.39 0.31 0.92 1.29 1.69 0.28 0.51 0.09 

 


