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ABSTRACT 

Coupled Tank Systems (CTS) are an important technology and are widely used across 

several sectors. Liquid-level management is important and often problematic in the 

processing sector for these coupled tank systems. Consequently, in a coupled tank 

system, the controller becomes the main pillar for controlling the liquid level. 

Traditional proportional-integral derivative (PID) controllers are widely used due to 

their simplicity and effectiveness. However, tuning PID parameters for optimal 

performance remains a challenge, especially for complex or nonlinear systems. 

Therefore, optimization techniques will be used as the tuning to find the controller 

parameter. This study investigates the use of swarm-based metaheuristic algorithms, 

specifically the tunicate swarm algorithm (TSA) and reptile search algorithm (RSA), 

to obtain the PID controller parameter for CTS applications. The objectives include 

designing a PID control system using these algorithms, evaluating controller 

performance, and comparing it with the particle swarm optimization (PSO) method. 

The entire implementation, such as designing, simulation, and analysis, is performed 

on the MATLAB R2023b platforms. The transient system performance (overshoot, 

settling time, peak time, rise time, and steady state error) will be evaluated and 

compared among these algorithms. A performance index, namely the Integral Time 

Square Error (ITSE), is used in this study as comparator to compare the performance 

of different types of PID tuning.  
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ABSTRAK 

Sistem Tangki Berganding (CTS) ialah teknologi penting dan digunakan secara meluas 

merentasi beberapa sektor. Pengurusan tahap cecair adalah penting dan selalunya 

bermasalah dalam sektor pemprosesan untuk sistem tangki berganding ini. Akibatnya, 

dalam sistem tangki berganding, pengawal menjadi tiang utama untuk mengawal paras 

cecair. Proportional-integral-derivative (PID) tradisional digunakan secara meluas 

kerana kesederhanaan dan keberkesanannya. Walau bagaimanapun, penalaan 

parameter PID untuk prestasi optimum kekal sebagai cabaran, terutamanya untuk 

sistem yang kompleks atau tidak linear. Oleh itu, teknik pengoptimuman akan 

digunakan sebagai penalaan untuk mencari parameter pengawal. Kajian ini menyiasat 

penggunaan algoritma metaheuristik berasaskan swarm, khususnya Tunicate Swarm 

Algorithm (TSA) dan Reptile Search Algorithm (RSA), untuk mendapatkan parameter 

pengawal PID untuk aplikasi CTS. Objektif termasuk mereka bentuk sistem kawalan 

PID menggunakan algoritma ini, menilai prestasi pengawal, dan membandingkannya 

dengan kaedah Particle Swarm Optimization (PSO). Keseluruhan pelaksanaan, seperti 

mereka bentuk, simulasi dan analisis, dilakukan pada platform MATLAB R2023b. 

Prestasi sistem sementara (overshoot, masa penyelesaian, masa puncak, masa naik dan 

ralat keadaan mantap) akan dinilai dan dibandingkan antara algoritma ini. Indeks 

prestasi, iaitu Integral Time Square Error (ITSE), digunakan dalam kajian inis sebagai 

pembanding untuk membandingkan prestasi pelbagai jenis penalaan PID. 
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INTRODUCTION 

1.1 Introduction & Motivation 

Nowadays, process industries such as the petrochemical industry, paper 

manufacturing, and water treatment industries require liquids to be pumped, stored in 

tanks, and then flowed to other tanks. Fluid control in tanks and flow between tanks is 

a fundamental problem in the process industry. The above-mentioned industries are 

important industries where liquid level is important. As an example, in chemical 

engineering systems, generally the liquid will be processed by chemical treatment, and 

the liquid level in the tank must always be controlled and regulated. To maintain the 

liquid at a certain height or range, the use of a controller is required. An efficient and 

effective controller will optimize the operating costs. The selected control method will 

determine the effectiveness of controlling the height and range of the liquid level. 

PID controllers are widely used in engineering due to their simple design, ability 

to function effectively despite model errors, and ease of use. PID controller 

performance depends on the suitable combination of proportional, integral and 

derivative parameter. PID control parameter tuning is the process of determining the 

ideal settings for the proportional, integral, and derivative gains of the PID controller 

to achieve the required level of control system performance and stability. PID control 

settings can be adjusted using various techniques, including metaheuristic algorithms 

and traditional tuning. Conventional tuning methods are based on some analytical or 

empirical rules, such as Ziegler-Nichols, Cohen-Coon, and trial and error. This 

technique is simple and easy to use, but it cannot produce sufficient results for complex 

or non-linear systems or for systems with uncertainties and disturbances. Metaheuristic 

algorithms have been widely used for PID control parameter tuning, as they can 

improve the performance and robustness of PID controllers. To improve its accuracy 

and efficiency, metaheuristic algorithms can also be used together with traditional 

tuning techniques. 
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1.2 Problem Statement 

A coupled tank system is formed by connecting two tanks in series. The basic 

objective of operating a coupled tank system is to maintain a constant liquid level in 

the tank during liquid inflow or outflow. Maintaining the desired level requires control 

of the input flow rate[1]. The liquid level is managed using a traditional PID controller. 

PID controllers are the most used controllers in industrial control due to their ease of 

implementation. There are many existing tuning methods, such as the Zeigler-Nichols 

and Cohen-Coon methods[2]. However, when aggressive performance is required, this 

method cannot produce the desired results due to nonlinear dynamics in the system 

and variations in system parameters caused by orifice and tank scaling. It has been 

proposed to use metaheuristics to adjust PID controllers for coupled tank systems [3]. 

Metaheuristic algorithms are chosen for their ability to produce answers when efficient 

optimization techniques cannot be used due to the complexity or duration of the 

problem. Another advantage is that they avoid becoming stuck at local ideal levels 

while exploring for workable solutions[4]. 

1.3 Objectives 

i. To design the PID control system tuned using tunicate swarm algorithm (TSA) 

and reptile search algorithm (RSA) for coupled tank system application. 

ii. To evaluate the performance of PID controller with the implementation of 

tunicate swarm algorithm (TSA) and reptile search algorithm (RSA). 

iii. To compare system performance of PID controller with the implementation of 

the particle swarm optimization (PSO), tunicate swarm algorithm (TSA) and 

reptile search algorithm (RSA). 
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1.4 Project Scopes 

i. Designing and simulating PID controller using MATLAB/Simulink R2023b 

for coupled tank system application. 

ii. Use mathematical model of the coupled tank system from [2]. 

iii. Apply performance index, Integral Time Square (ITSE) to obtain the error of 

the system and as the indicator of system performance. 

iv. Use tunicate search algorithm (TSA), reptile search algorithm (RSA) and 

particle swarm optimization (PSO) method to tuned the PID controller for 

coupled tank system application. 
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LITERATURE REVIEW 

2.1 Introduction 

This section identifies and summarizes a variety of research that pertains to the 

coupled tank system application, the PID controller, PID tuning, and swarm-based 

metaheuristics algorithms, which are Particle Swarm Optimization (PSO), the 

Tunicate Swarm Algorithm (TSA) and the Reptile Search Algorithm (RSA). To further 

understand the research that has been carried out in the past by other researchers, the 

studies will be critically evaluated and briefly described. In this section, the previous 

work that was relevant to the project, such as the theory, analysis, synthesis, and 

evaluation, will be discussed. 

2.2 Coupled Tank System  

The coupled tank system is a classic system of two tanks connected by a pipe 

with a valve that can be opened or closed. Liquid level control is crucial for preventing 

overflows in industries where liquid levels are needed. The coupled tank is one of the 

most popular technologies in industrial control operations because this system is used 

to study concepts of fluid flow, pressure, and level control. 

A coupled tank system is a hydraulic system with two or more tanks or vessels 

connected by pipes or ducts. The liquid moves between the two connected tanks that 

make up the system. Each tank has its own inlet and outflow. The fundamental idea 

behind this system's regulation is to maintain a steady level of liquid in both tanks 

during the inflow and outflow of liquid from each tank. The mathematical model of 

the connected tank system was developed and assessed as a type of linear model in 

order to regulate the liquid level[1]. 
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Figure 2.1 Schematic model of coupled tank system[5] . 

 

2.3 PID Controller 

PID (Proportional-Integral-Derivative) controllers have been widely used in 

control applications due to their simplicity and efficiency. It improves the transient 

response and steady state of the system. Whenever the apparent state of the plant 

deviates from the reference state, an adjustment estimate is calculated using the words 

proportional, integral and derivative. The actuation signal from a PID controller that 

uses the error as input in the Laplace transform is expressed mathematically as [6]: 

𝑢(𝑠) = 𝐾𝑃 + 𝐾𝐼
1

𝑠
+ 𝐾𝐷𝑠 

 

where 𝐾𝑃, 𝐾𝐷,𝐾𝐼 are the PID parameters. The characteristics of the controller variables 

𝑃, 𝐼, and 𝐷 are introduced and explained in brief as follows: 

Proportional term (P) : The closed-loop time constant decreases with the 

proportional parameter, which speeds up the response. However, it also guarantees that 

the order of the system remains unchanged because the output is only proportional to 

the input. However, proportional parameters do not eliminate offset or steady-state 

inaccuracies. Checking the amount of error and response of a proportional PID 

controller is the primary responsibility of the proportional element.[7] 

Integral term (I) : This option increases system properties and order by one while 

removing offsets. The response speed of the system is also increased by this parameter, 

although at the expense of continuous oscillation. Integral control seeks to reduce the 

Tank 1 

Tank 2 
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problems caused by proportional control. It tracks inaccuracies over time and gradually 

increases the size of small errors. The term "rerate" refers to the time component used 

to indicate integrated control modifications.[7] 

Derivative term (D) : In essence, the oscillatory response of the system is 

decreased with this setting. It has no bearing on the type and order of the system, nor 

does it affect the offset. It looks into the rate of variation of the error signal. The 

derivative is what causes the A bigger system's response to alter at a quick rate. With 

time, the derivative word gets modified. Excessive usage of derivative terms might 

lead to unpredictable behaviour or overshoot.[7] 

 

Figure 2.2 Structure of the PID controller.[4] 

2.4 PID Control Tuning 

There are multiple methods of tuning PID controllers, and they fall into the 

categories of conventional techniques and optimization techniques.  

Conventional techniques include making assumptions about the intended plant 

and output to determine controller settings. This method aims to determine a specific 

process through analysis and graphics. This method is quick and easy to use, but due 

to various assumptions, the set of controller parameters may not always give the 

desired result; therefore, initial controller parameter setup is required[6]. The most 

popular conventional tuning techniques for PID controllers are Ziegler and Nichols (Z-

N). It invented in the 1940s by John G. Ziegler and Nathaniel B. Nichols. In the 

method, the 𝐾𝐼 and 𝐾𝐷 gains are required to set to zero before the tuning procedure. 

During the period of oscillation, 𝑇𝑈,  where 𝐾𝑃 is increased to the ultimate gain, 𝐾𝑈, 

the output of the loop begins to change.  
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Aside from the Z-N tuning method, the Cohen-Coon tuning method is the second 

most used and was published in 1953 by Cohen and Coon. Cohen-Coon has an 

advantage over Z-N method when it involves a larger operating range. Other method 

to determine the PID parameter values is trial and error. It is one of the easiest methods 

compared to others because there is no mathematical calculation required. However, 

an experienced practitioner is required to obtain the ideal parameter value for the 

controller. In the method, it is necessary to set the 𝐾𝐼 and 𝐾𝐷 values to zero before 

increasing the 𝐾𝐷.[2] 

Optimization techniques are used to determine the best result in a given situation. 

The terms "maximize" and "minimize" are used for different aspects of optimization. 

This method is used for differentiable and continuous functions to determine the best 

solution in constrained or in maxima or minima. This approach finds the best answer 

by using differential calculus techniques. This method could be used for single variable 

and multivariable functions. Some examples of traditional optimization techniques are 

stochastic programming, dynamic programming, linear programming, and calculus 

methods. These traditional optimization methods have been further used to propose 

new algorithms, as listed in [7]. The disadvantages of conventional optimization, due 

to limited non-differentiable and discontinuous functions, have been addressed by 

advanced optimization techniques. Proposed annealing, evolutionary algorithms, 

genetic algorithms, particle swarm optimization (PSO), ant colony optimization 

(ACO), and artificial bee colony (ABC) are some examples of advanced optimization 

approaches [6]. 

2.5 PID Control Tuning for Coupled Tank System 

A coupled tank system is a device that has two tanks connected by pipes, and 

each tank's liquid level is managed by a pump or valve. A PID controller is a type of 

feedback controller that modifies the input signal according to the difference between 

the intended and actual output signal. PID is the term for proportional, integral, and 

derivative, the three terms that comprise the equation for the controller.[8] 

PID control tuning is the process of determining ideal PID parameter values (Kp, 

Ki, and Kd) to reduce errors and improve system performance. PID control tuning can 

be done in several ways, including conventional techniques such as automatic tuning, 
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Ziegler-Nichols, Cohen-Coon, and optimization techniques such as PSO. Each 

technique has varying benefits and drawbacks based on system requirements and 

characteristics.[9] 

Table 2.1 and Figure 2.3 compares several previous studies on the performance 

of various PID tunings using traditional approaches, namely Z-N[3][8], auto-

tuning[8], trial and error[8], and  for coupled tank systems. Ts, Tr, OS, ISE, and IAE 

are the performance measures used to measure the system performance of the tuning 

method. Lower values of these metrics indicate better performance, except for IAE, 

which is higher for better performance. The Z-N techniques have the fastest and 

smoothest responses since their Ts and OS values are the lowest. The trial-and-error 

and auto-tuning approaches have the slowest and most oscillatory responses because 

their Ts and OS values are the greatest. 

Table 2.1 Dynamic Performance Comparison of different conventional tuning 

method. 

Method Settling 

Time, Ts 

(s) 

Rise Time, 

Tr (s) 

Overshoot, 

OS (%) 

ISE IAE 

Z-N[3] - 46.5 22.7 35.19 69.56 

Z-N[8] 32.09 3.29 38.54 - - 

Auto-

tuning[8] 

53.34 9.14 1.81 - - 

Trial and 

Error[8] 

84.4 24.03 6.86 - - 

C-C[8] 23.59 2.81 33.7 - - 
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Figure 2.3 Dynamic Performance Comparison of different conventional tuning 

method in bar graph. 

According to Table 2.2 and Figure 2.4, five PID tuning optimization methods, 

namely PSO[3][8][10][11], M-ACO[3], BA (ITSE)[9], BA (IAE)[9],BA (ISE)[9] and 

DE[11], from previous studies are compared. The PSO approach exhibits the best 

performance in Tr and Ts, showing the fastest response time to reach the setpoint. With 

the least amount of overshoot or variation from the setpoint, the BA (ITSE) approach 

shows the best performance in OS. With the lowest cumulative error over time, the BA 

(IAE) technique performed best in both ISE and IAE. The M-ACO and DE approaches 

performed relatively poorly across the board. 

Table 2.2 Dynamic Performance Comparison of different optimization tuning 

method. 

Method Settling 

Time, Ts 

(s) 

Rise Time, 

Tr (s) 

Overshoot, 

OS (%) 

ISE IAE 

PSO[3] - 12.13 0.8 3.01 6.47 

M-ACO[3] -  10.58 0 2.58 5.37 

PSO[8] 17.75 3.27 16.19 - - 

BA (ITSE) 

[9] 8.73 1.18 34.8 
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BA (IAE)  

[9] 45.35 27.85 0.024 

- - 

BA (ISE) 

[9] 3.68 0.62 4.09 

- - 

PSO[10] 1.46 0.22 11.6 - - 

PSO[11] 10.3 1.52 - - - 

DE[11] 8.19 2.9 - - - 

 

 

Figure 2.4 Dynamic Performance Comparison of different optimization tuning 

method in bar graph. 

2.6 Metaheuristic Algorithm 

Metaheuristic optimization algorithms have gained much popularity and use due 

to their advantages, including nonlinear search space, easy-to-understand concepts, 

simple implementation, independence of problem types, and efficiency in non-linear 

and non-convex environments[12]. Metaheuristics work by iteratively improving the 

solution to a problem. They start with a first answer and then refine it based on a 

collection of guidelines or heuristics. Finding a better solution than the existing one is 

the goal. This procedure is repeated until a workable resolution is reached. 

These algorithms are inspired by natural phenomena such as evolution, swarm, 

and learning. One of the major advantages of metaheuristic algorithms is their ability 
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to provide near-optimal solutions in a reasonable amount of time. Unlike other 

traditional optimization methods, metaheuristic algorithms do not require any 

assumptions about the problem's structure, making them suitable for a wide range of 

applications. They are also highly adaptable can be easily modified to suit specific 

problem requirements. Additionally, metaheuristic algorithms can handle large and 

high-dimensional data sets, making them various fields such as engineering, finance, 

and medicine. These have made metaheuristic algorithms essential tool for solving 

complex optimization problems. 

 

Figure 2.5 Nature-inspired metaheuristic algorithms. 

Meta-heuristic algorithms were inspired by natural phenomena such as wildlife, 

animals, birds, insects, plants, living beings, physical laws, biological sciences, 

genetics, game rules, human activities, and other natural evolutionary processes. 

Metaheuristic algorithms may be categorized into five types according to the main 

source of inspiration for the design: swarm-based, evolutionary-based, physics-based, 

game-based, and human-based techniques.[12] 
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2.6.1 Evolutionary-based metaheuristic algorithm 

Recently, evolutionary-based metaheuristic algorithms based on genetics, 

biological science, and random operator simulations have been introduced. 

Differential Evolutionary (DE) and Genetic Algorithm (GA) are two of the most 

popular and extensively utilized evolutionary algorithms. The mathematical modelling 

of the reproduction process, the idea of natural selection, and the use of random 

operators for crossover, mutation, and selection have all contributed to the 

development of GA and DE.[12] 

 

2.6.2 Physics-based metaheuristic algorithm 

Physics-based metaheuristic algorithms have been developed on the foundation 

of mathematical modelling of various physical laws and phenomena. Two popular 

physics-based algorithms are the Gravitational Search Algorithm (GSA) and 

Simulated Annealing (SA). The physical process of melting and then cooling metals—

known as annealing in metallurgy—is the foundation of SA. The primary source of 

inspiration for the creation of GSAs has been the modelling of Gravitational Forces in 

a system including objects with varying masses and separations from one another. The 

Water Cycle Algorithm (WCA) was designed with inspiration from the physical 

phenomena of the water cycle and its changes in nature. The Multi-Verse Optimizer 

(MVO) was designed primarily with influence from cosmological principles. Some 

other physics-based methods are as follows: Flow Regime Algorithm (FRA), Nuclear 

Reaction Optimization (NRO), Spring Search Algorithm (SSA), and Equilibrium 

Optimizer (EO).[12] 

 

2.6.3 Game-based metaheuristic algorithm 

Game-based metaheuristic algorithms have been created based on simulations 

of the laws governing various games and the actions of players, coaches, and other 

persons who have an impact on the games. Football League: The primary concept 

behind the Football Game-Based Optimization (FGBO) and Volleyball Premier 

League (VPL) algorithms, respectively, was the creation of modelling contests in the 

volleyball league. The primary source of inspiration for the Puzzle Optimization 
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Algorithm (POA) design was the players' tactics and dexterity in piecing together 

puzzle pieces. The Tug-of-war Optimization (TWO) technique was primarily inspired 

by the tug-of-war players' efforts.[12] 

2.6.4 Human-based metaheuristic algorithm 

Human-based metaheuristic algorithms are introduced based on mathematical 

modelling of diverse human behaviours with an evolution-based approach. The most 

well-known human-based algorithm, Teaching-Learning-Based Optimization 

(TLBO), was created by simulating teacher-student interaction and communication in 

a classroom. The primary concept behind Poor and Rich Optimization (PRO) has been 

the economic actions of the wealthy and the impoverished in society. Human Mental 

Search (HMS) is based on the simulation of human behaviour versus online auction 

marketplaces to achieve success.[12] 

2.7 Swarm-based metaheuristic 

Swarm intelligence algorithms are metaheuristics inspired by the collective 

behaviour of species such as birds, fish, bees, and ants. They have simplicity, 

flexibility, and scalability, which makes them useful in a wide range of optimization 

issues. These algorithms balance the exploration and exploitation phases to achieve 

the required convergence during the search. Numerous fields, including global 

optimization, bioinformatics, power engineering, networking, machine learning, 

image processing, and environmental applications, can benefit from the use of these 

metaheuristics.[13] 

Popular algorithms include Artificial Bee Colony (ABC), Firefly Algorithm 

(FA), Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO). The 

primary concept in PSO design has been the natural behaviour of a swarm of fish or 

birds searching for food, with their movement impacted by swarming intelligence and 

individual experiences. The FA design takes advantage of mathematical modelling of 

the firefly's natural light-flashing characteristic. The main idea behind ABC design is 

to mimic the intelligence of swarming bee colonies in their search for nourishment. 

The primary concept behind the ACO's design has been the capacity of an ant colony 

to choose the quickest route between itself and food sources. 
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Many metaheuristic algorithms, including the Tunicate Search Algorithm 

(TSA), Reptile Search Algorithm (RSA), Whale Optimization Algorithm (WOA), 

Orca Predation Algorithm (OPA), Marine Predator Algorithm (MPA), Pelican 

Optimization Algorithm (POA), Snow Leopard Optimization Algorithm (SLOA), 

Gray Wolf Optimization (GWO) algorithm, Artificial Gorilla Troops Optimizer 

(GTO), African Vultures Optimization Algorithm (AVOA), Farmland Fertility, 

Spotted Hyena Optimizer (SHO), and Tree Seed Algorithm (TSA) have all been 

inspired by hunting and attacking prey strategies and the process of finding food 

sources among living organisms.[12]. 

 

Table 2.3 Previous study for swarm-based metaheuristics. 

ALGORITHM REF FINDING SYSTEM 

Particle Swarm 

Optimization 

(PSO) 

[14] The outcomes of the simulation 

showed that PSO works better than 

the SA, TSA, and SDP methods. 

Wireless system 

network 

[15] The PSO approach can more rapidly 

and simply handle the finding and 

tuning issues related to PID controller 

settings compared to the GA 

technique. It also has more robust 

stability and efficiency. 

PID controller 

parameter 

optimization 

[16] Comparing the BF-PSO optimization 

algorithm based PID tuning approach 

to other conventional techniques, it is 

determined to provide good transient 

performance. 

HVAC system 

Tunicate Search 

Algorithm (TSA) 

[17] TSA has a more efficient optimum 

solution than PSO. 

IEEE 8-bus test 

system 

[18] TSA-tuned PID speed control 

performed better for the specified 

PMSM with reduced settling time, 

peak overshoot, and ripple than 

traditional and PSO approaches. 

Permanent 

Magnet 

Synchronous 

Motor (PMSM) 

[19] When it comes to the damping ratio, 

the TSA-based approach outperforms 

the BSA-based approach, and it also 

requires less time to adjust the 

controller settings. 

Single machine 

infinite bus 

(SMIB) network  

incorporated 

with a unified 

power flow 

controller 

(UPFC) 
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Reptile Search 

Algorithm 

(RSA) 

[20] The RSA-tuned PID controller offers 

best transient response metrics 

compared to BFO, GSA, and PSO 

Doubly fed 

induction 

generator-based 

wind turbine 

energy 

conversion 

system 

[21] The RSA method is far more accurate 

in identifying the best solutions, and 

it is thus advised for the adoption of 

large-scale distribution systems 

compared to MTLBO, JAYA, GWO, 

and IRRO approaches,  

Radial 

distribution 

system 

[22] An investigation of run times is also 

conducted, and the results show that 

PSO is the quickest method, followed 

by RSA and GA. RSA often has more 

fitness than PSO and GA, according 

to performance analysis tools like the 

DB-index. It is therefore clear that 

although while PSO requires less 

computing time, its performance is 

not as good as that of RSA. As a 

result, RSA is a promising technique 

for image segmentation. 

Side Scan Sonar 

(SSS) image 

object detection 

Whale 

Optimization 

Algorithm 

(WOA) 

[23] Proposed WOA-based solutions 

outperform GA in terms of 

convergence rate, and optimum 

solutions are reached on efficient 

frontiers. 

Portfolio 

selection 

problem 

[24] Those benchmark tests show that 

WOA is more effective. However, 

there are a few areas that still require 

improvement 

Dendritic 

neuron model 

(DNM) 

[25] In terms of the amount of time needed 

to prioritize various size sets of needs, 

the RP-WOA performs around 40% 

better than the AHP technique. 

Requirements 

prioritizations 

(RP) 

Marine Predator 

Algorithm 

(MPA) 

[26] This research demonstrated that the 

MPA algorithm computes the flatness 

error more quickly than the GA and 

PSO approach when comparing the 

computation results. The computed 

results exhibit more stability and are 

capable of efficiently assessing the 

flatness error. 

Flatness error 

evaluation 

[27] The MPA provides the best fuel cost 

values. The MPA algorithm produced 

a superior result with the help of the 

given objective function. 

Economic Load 

Dispatch with 

Valve-Point 

Loading Effects 
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[28] In terms of error rates, transient 

response, steady state response, and 

convergence performance, the 

suggested MPA:PID controller 

outperforms the TLBO:PID and 

SCA:PID controllers. 

PID Controller 

for Frequency 

Regulation of 

Standalone 

Microgrid 

Pelican 

Optimization 

Algorithm 

(POA) 

[29] The original gradient dependent line 

search approach is outperformed by 

the NSPOA method in terms of global 

convergence, time efficiency, and 

iteration speed compared to the GD 

and SGD methods. 

Locally Linear 

Embedding 

[30] The faults of POA, such as the 

tendency to slip into local 

optimization and the decline in swarm 

diversity at the conclusion of the 

iteration, are significantly improved 

by MSPOA. When comparing the 

most recent state-of-the-art 

algorithms with the traditional meta-

heuristic algorithms, MSPOA comes 

out on top. 

Mixed strategy-

based improved 

Pelican 

Optimization 

Algorithm 

(MSPOA) 

[31] The jamming resource allocation 

optimization problem is solved by the 

enhanced POA method. In addition to 

providing a suitable allocation 

method and locating the global 

optimal solution inside the solution 

space, it also introduces a novel 

notion for this type of WTA discrete 

optimization issue. 

Jamming 

resource 

allocation model 

Gray Wolf 

Optimization 

(GWO) 

[32] When compared to previous methods, 

GWO may always reduce the overall 

cost. Therefore, when compared to 

other inquiries in the article, GWO 

using the 14 and 30 IEEE frameworks 

obtains lower values for the objective 

function and transmission loss. 

Optimal power 

flow (OPF) 

[33] A high-speed CPU may be used to 

execute the GWO technique, and the 

optimized gain values can be updated 

in the SMC controller. The more 

search agents and repetitions there 

are, the more accurate the technique 

becomes. 

Sliding Mode  

Control  

[34] (GWO) method performs better in 

makespan when using the same data 

separately. 

 

Integrating of 

process planning 

and scheduling 

(IPPS) 
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Artificial Gorilla 

Troops 

Optimizer 

(GTO) 

[35] GTO beat the AHA algorithm and 

offers performance that is extremely 

competitive. 

Optimal power 

flow (OPF) 

problems 

considering 

stochastic wind 

power 

[36] The AGTO algorithm outperforms 

HBA, SMO, ABC, and PSO in terms 

of outcomes. 

Wind farm 

integrated 

system 

[37] The hybrid microgrid system with the 

optimal sizing is GTO, not ALO or 

GWO. The convergence 

characteristics showed that the GTO 

quickly arrives at the best solution. 

Design an 

optimal sizing of 

a microgrid 

system 

African Vultures 

Optimization 

Algorithm 

(AVOA) 

[38] In a short number of iterations, 

AVOA converges quickly and 

provides the best results for a variety 

of filter settings, including maximum 

SBA, less PBR, lower SBR, and TW. 

Performance 

Analysis of 

Optimal FIR 

LPF and HPF 

[39] After distributed generation (DG) 

access, voltage distribution may be 

improved by AVOA, which has a 

quick convergence time and robust 

optimization properties. 

Optimal 

Planning of 

Distributed 

Generation 

[40] When compared to GWO and PSO, 

the AVOA algorithm has 

demonstrated better qualities 

including accurate solution, 

consistent convergence 

characteristic, and high computing 

efficiency. 

Optimal power 

flow solution 

including SVC 

devices 

Spotted Hyena 

Optimizer (SHO) 

[41] Optimal cost, little variance, and less 

losses are found with the SHO. 

When compared to other meta 

heuristic techniques, this strategy 

achieves an optimal cost. 

Dynamic 

Economic 

Dispatch (DED) 

[42] An effective optimizer for analyzing 

exploration and exploitation is the 

SHO algorithm. The outcomes of 

engineering design issues show how 

the SHO method may be applied with 

little processing effort in high-

dimensional environments. 

25-bar truss 

design and 

multiple disk 

clutch brake 

design 

[43] SHO demonstrated a faster rate of 

convergence, improved fuel 

economy, superior computing 

capability, and more thoughtful 

accomplishment. By employing the 

best fuel selections and optimal 

generation outputs, the SHO would 

Complex 

Economic 

Dispatch (ED) 

problem 
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be a workable way to provide a power 

grid with the best possible scenario to 

optimize dependability and decrease 

costs. 

Tree Seed 

Algorithm (TSA) 

[44] When compared to PSO-based 

RBFN, the TSA offers more precise 

numerical function mapping and, 

hence, superior fitness values. 

Radial Basis 

Function 

Networks 

(RBFN) 

[45] On the five benchmark functions, the 

impact of boundary conditions 

mechanisms on TSA performance is 

examined. When it comes to selecting 

boundary conditions for optimizing 

numerical benchmark functions, the 

TSA is resilient. 

Search space 

limitation 

techniques 

[46] When compared to the current 

techniques, the suggested AVR 

system with the TSA optimized PID 

controller performs better in terms of 

both transient and steady state 

responses of its voltage tracking 

performance. 

Automatic 

voltage 

regulator (AVR) 

system 

 

2.8 Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) is a population-based stochastic 

optimization technique introduced in 1995 by Kennedy and Eberhart. PSO is based on 

the social biological and social-cognitive behaviour of various group living species 

such as birds and fish, which have been shown to share knowledge to promote group 

survival to achieve common goals. Each particle adjusts its position based on its own 

experience and the experience of its neighbours. Working together allows group 

members to share the greatest knowledge, which can be used to determine optimal 

hunting locations. Unlike other optimization techniques, this technique requires only 

an objective function and does not rely on the gradient of the goal or any other form 

of differentiation.[47] 

The PSO algorithm's definition of a group of particles exhibits stochastic 

behaviour, as each particle in the group is constantly updating its position based on 

velocity. Velocity is updated according to each particle's memory, which is like 

autobiographical memory, and according to the group's collective knowledge, which 
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is similar to learning from others. Both purposes are specifically expressed in terms of 

the social and cognitive dimensions of speed updates. The cognitive parameter 

determines how confident the particle is in its initial judgment. The social parameter 

determines the extent to which each particle in the group trusts the other particles. The 

social behaviour of the swarm, which constantly adapts to its environment to find a 

better placement over time (e.g., iteration), is what updates the position of particles in 

the swarm.[47] 

2.9 Tunicate Swarm Algorithm (TSA) 

One of the latest swarm-based metaheuristic algorithms, the Tunicate Swarm 

Algorithm (TSA), was originally developed by S. Kaur, L.K. Awasthi, and G. Dhiman 

[26] for non-linear restricted problems. It mimics the behaviour of tunicates during 

navigation and hunting for food sources. Using it on 74 benchmark issues involving a 

wide variety of functions demonstrates its performance. TSA differs from various 

competing algorithms. When handling high-dimensional and complex situations, TSA 

is prone to getting stuck at local optima, just like other metaheuristic techniques. As a 

result, TSA performance can still be improved to deal with complex and real-world 

issues such as the economic delivery dilemma.[48] 

A cylinder-like animal with one of its two ends opens the tunicates move through 

the water at a speed similar to a jet [33]. Even if they don't know where to hunt for 

food first, they may still look for it in the waters. TSA's optimization approach is based 

on swarm intelligence and propulsion such as jet tunicates. The best solution to the 

TSA optimization puzzle is found in the food supply. To properly demonstrate the 

motion of the TSA jet thruster, several requirements must be met. Before anything else 

happens, two things have to happen: Tunicates must, first, avoid conflict and, second, 

continue their path to run their best search agents. Finally, they must stay close to the 

agent. Other tunics in the mathematical model use swarm intelligence to adjust their 

placement with respect to the best solution.[49] 
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Figure 2.6 Swarm behaviour of tunicate in deep ocean. [50] 

2.10 Reptile Search Algorithm (RSA) 

The Reptile Search Algorithm (RSA) was created based on the dynamics of the 

natural surroundings, hunting process and social behaviour of crocodiles. The 

development of random population groups is the first step in the optimization process. 

RSA searches every potential place for a near-optimal solution throughout the iterative 

process. Each solution replaces the location it moves away from the ideal solution 

according to the proposed RSA approach.[21] 

Under some restrictions, RSA's population-based and gradient-free 

methodology can help with both basic and complicated optimization issues. Crocodiles 

that belong to cohesive groups are more resilient and actively cooperate with one 

another. Crocodiles hunt mostly at night and have superb night vision. They take 

advantage of the deficiencies of their prey, such as poor night vision.[21] 

In short, crocodiles are among the most intelligent and skilled hunters—perhaps 

second only to humans. Mathematical optimization, which selects the best option 

given constraints, is used to describe crocodile behaviour. Advances in search 

techniques have sparked the interest of researchers in various sectors. Optimization 

difficulties appear in a wide range of quantitative disciplines, spanning from 

engineering, economics, and computer science to operations and industrial research. 

Surrounding and chasing prey serves as the inspiration for the proposed algorithm 

(RSA).[21] 
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2.11 Performance Index 

The cost function is extracted and used to determine the optimal controller. The 

cost function is mostly determined by the controller's response to certain disturbances. 

We can define the infinitive criterion in reality. It is a quantitative indicator of system 

performance chosen to highlight critical system requirements. Criterion measurements 

based on the integral of the control error function and possibly additional variables 

(such as time) form the performance index. Control loop performance is improved by 

having a smaller integral criterion value.[51] Several popular performance indicators 

include: Integral Square Error (ISE), Integral Absolute Error (IAE), Integral Time 

Square Error (ITSE) and Integral Time Absolute Error (ITAE) and given in equation: 

𝐼𝑆𝐸 = ∫ (𝑒(𝑡))2
𝑡

0

𝑑𝑡 

To eliminate negative error components, ISE squares the error. ISE distinguishes 

between systems that are under- or over-damped; a compromise is made to reduce the 

ISE.[52] 

𝐼𝐴𝐸 = ∫ |𝑒(𝑡)|
𝑡

0

𝑑𝑡 

To eliminate negative error components, IAE obtains the absolute value of the error. 

IAE is often beneficial for simulation research.[52] 

𝐼𝑇𝐴𝐸 = ∫ |𝑒(𝑡)|𝑡
𝑡

0

𝑑𝑡 

The ITAE emphasizes error values later in the response rather than early large errors 

because it weighs errors over time.[52] 

𝐼𝑇𝑆𝐸 = ∫ (𝑒(𝑡))2𝑡
𝑡

0

𝑑𝑡 

In contrast to ITAE's performance standards, ITSE places greater emphasis on error 

values and weighs the squared error over time.[52]  
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Where e(t) is the error signal in a time domain. 

2.12 Chapter Summary 

This study focuses on the tuning of PID control parameters in a coupled tank 

system using three metaheuristic algorithms: Particle Swarm Optimization (PSO), 

Tunicate Swarm Algorithm (TSA), and Reptile Search Algorithm (RSA). The goal is 

to optimize proportional, integral and derivative gains for efficient liquid level control 

in industrial processes, leveraging the strength of these algorithms in dealing with 

complex optimization problems and potential system uncertainties. 

Table 2.4 lists several controllers that have been used in coupled tank systems in 

past studies. These controllers include sliding mode control[53][54], inverted 

decoupling controller[55], internal model control (IMC)[55], PID[10] and LQR[10]. 

In addition, the PID tuning technique is one of the tuning techniques frequently applied 

to coupled tank systems[56][57][58]. Lastly, the coupled tank system now 

successfully increases system performance through the implementation of 

optimization techniques including modified-ACO[3], PSO[8][10], bat algorithms[9] 

and different evolution[11]. 

 

Table 2.4 Previous study for coupled tank system. 

TOPIC REF FINDING SYSTEM 

Coupled tank 

system 

 

[53] It was possible to effectively develop second 

order sliding mode control for a nonlinear 

linked tank liquid level system with a variety of 

input circumstances. 

Coupled 

tank 

system 

[55] Two controllers are used to a coupled-tank 

liquid level system: an inverted decoupling 

controller and an internal model control 

decoupling controller. It has been discovered 

through modelling and experimental research 

that the inverted decoupling strategy is more 

reliable than internal model control. 

Coupled 

tank 

system 

[54] Second order SMC Sub-optimal and Drift 

HOSMC is considered to regulate coupled tank 

systems. Using the drift method, tank two filled 

more quickly, and the sub-optimal algorithm 

used less time than the first order SMC. 

Coupled 

tank 

system 
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[10] System performance is improved by LQR 

compared to PID. The better overall transient 

response of LQR than PID supports the 

conclusion. 

Coupled 

tank 

system 

Coupled tank 

system with 

PID 

controller 

 

 

 

 

 

 

 

 

 

 

 

[56] FOPID performs significantly better than 

IOPID under IAE performance metrics. IOPID 

performs better than FOPID under the ISE 

performance metric and both controllers 

perform almost equally under the ITSE 

performance metric. 

Coupled 

tank 

system 

[57] AMPC shows better performance in reaching 

the reference value when compared to FOPID 

and PID controllers. For nonlinear industrial 

processes, the AMPC approach results in 

superior undershoot and response time. 

Coupled 

conical 

tank 

system 

 

 

[58] The differences between FOPID and traditional 

PID are compared, and the best performance is 

determined by analyzing the rising, peak, 

settling, and peak overshoot timings. 

Spherical 

coupled 

tank 

system 

Coupled tank 

system with 

PID 

controller 

tuning using 

optimization 

[3] The findings show that the performance of m-

ACO-tuned PID is better than previous 

research. 

Coupled 

tank 

system 

[8] PID-tuned by PSO performed better than 

traditional approaches and successfully reduced 

the values of Ts, Tr, OS, and SSE 

Coupled 

tank 

system 

[9] Better results are achieved with the BA-

optimized PID controller, with a lower 

percentage of overshoot, an increase in value 

and solution time. This is especially true when 

using ISE with objective functions. 

Coupled 

tank 

system 

[10] PSO may be used to adjust both controllers, 

with LQR providing slightly higher 

performance than PID. 

Coupled 

tank 

system 

[11] The results achieved with DE, whether with TSI 

or existing, are better than those achieved with 

other methods. TSI helps in improving the ideal 

value produced by the current algorithm. 

Coupled 

tank 

system 

 

Figure 2.7 shows the outcomes of PID tuning using both conventional methods 

and Particle Swarm Optimization (PSO) for coupled tank system . These results 

analyse various transient response characteristics, such as rise time (Tr), settling time 

(Ts), peak time (Tp), overshoot (%OS), steady-state error (ess), and integral time 

square error (ITSE). 

The tuning methods considered are trial and error, Ziegler Nichols, Cohen Coon, 

autotuning, and PSO. The controller parameters in Table 2.5 for trial and error, Ziegler 
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Nichols, Cohen Coon, and autotuning are based on [2] while PSO-based PID 

parameters are referred from [8].  

 

Table 2.5 Parameter of PID Controller 

Method Parameter 

Kp Ki Kd 

Trial and error 15.00 1.00 8.00 

Z-N 168.00 35.00 201.60 

Cohen Coon 235.88 33.92 203.21 

Autotuning 53.40 1.54 -2.98 

PSO 250.99 4.35 171.64 

 

Table 2.6 and Figure 2.8 show the response characteristics for each tuning 

method are compared, and PSO shows the best rise time (3.27 s) and settling time 

(17.75 s). Although PSO has a high overshoot (16.19%), its peak time is 6.40 s, and 

the ITSE is the smallest (12.84). Consequently, PSO is selected as the benchmark for 

the TSA and RSA algorithms. 

 

Figure 2.7 Performance response of coupled tank system for all controller. 
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Table 2.6 Performance of coupled tank system based on conventional method and 

PSO. 

 

 

𝑻𝑷(𝒔𝒆𝒄) 𝑻𝒔 (sec) 𝑻𝑹 (sec) OS (%) SSE 

(cm) 

ITSE 

Trial and 

error 

52.7 84.40 24.00 6.86 0.00 203.10 

Z-N 7.9 32.10 3.29 38.50 0.00 22.03 

Cohen 

Coon 

6.7 23.59 2.81 33.70 0.00 17.36 

Auto-

tuning 

17.70 53.40 9.14 1.81 0.00 46.70 

PSO 6.40 17.75 3.27 16.19 0.00 12.84 

 

 
 

Figure 2.8 Performance of coupled tank system based on conventional method and 

PSO in terms of bar graph
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METHODOLOGY 

3.1 Introduction 

This chapter discusses the entire scope of the project, beginning with the 

mathematical design of the Coupled Tank System (CTS), PID tuning using 

optimization techniques and performance evaluation of all the techniques. 

3.2 Flowchart of Research Activity 

A literature review was conducted to improve understanding of the project 

according to previous studies after the selection of the title. The literature has been 

completed using the latest research on the subject, which includes optimization 

techniques, PID tuning methods and other related topics. Figure 3.1 illustrates the 

flowchart of research activity. 

The project’s parameter controller will undergo tuning using optimization 

techniques, including Tunicate Swarm Algorithm (TSA), Reptile Search Algorithm 

(RSA) and Particle Swarm Optimization (PSO).  TSA and RSA represent the latest 

algorithms developed by S. Kaur, L.K. Awasthi, and G. Dhiman.[50][59] 
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Figure 3.1 Methodology Flowchart. 

Research about coupled-tank system and swarm-based metaheuristics 

Start 

End 

PID control tuning method identification 

Selection of optimization technique 

Define objective function to guide the optimization 

Tunicate Swarm Algorithm coding development using MATLAB 

Reptile Search Algorithm coding development using MATLAB 

Implement the Particle Swarm Optimization algorithm 

Result analysis 

Standard Deviation ITSE Transient response Time 
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3.3 Mathematical Model of Coupled Tank System [2] 

 
Figure 3.2 Coupled tank liquid level system.[5] 

 

The fluid levels in Tanks 1 and 2 are denoted by 𝐻1 and 𝐻2. It is measured in 

relation to the corresponding outlet. The net flow of fluid into each tank is equal to the 

rate of change of volume of fluid in each tank when considering the basic mass 

balance. So here are the equations for Tanks 1 and 2: 

𝐴1
𝑑𝐻1

𝑑𝑡
= 𝑄𝑖1 − 𝑄𝑜1 − 𝑄3                                     (3.1) 

𝐴2
𝑑𝐻2

𝑑𝑡
= 𝑄𝑖2 − 𝑄𝑜2 + 𝑄3                                     (3.2) 

 

Where : 

𝐻1, 𝐻2    = height of fluid in Tank 1 and 2 respectively 

𝐴1, 𝐴2   = cross-sectional area of Tank 1 and 2 respectively 

𝑄3      = flow rate of fluid between tanks 

𝑄𝑖1, 𝑄𝑖2  = pump flow rate into Tank 1 and 2 respectively 

𝑄𝑜1, 𝑄𝑜2 = flow rate of fluid out of Tank 1 and 2 respectively 

 

One may represent any outlet drain as a straightforward orifice. The outlet flow 

in each tank is proportional to the square root of the water head in the tank, according 

to Bernoulli's equation for steady, non-viscous, incompressible flow. In a similar vein, 

the square root of the head difference determines the flow between the tanks. As a 

result: 

𝑄𝑜1 = 𝛼1√𝐻1                                             (3.3) 
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𝑄𝑜2 = 𝛼2√𝐻2                                             (3.4) 

𝑄3 = 𝛼3√𝐻1 − 𝐻2                                          (3.5) 

 

where α1, α2, and α3 are the cross-sectional area of each orifice, the gravitational 

constant, and the coefficients of discharge provide the proportionality constants. The 

following nonlinear state equations, which represent the system dynamics of the CTS 

apparatus, may be obtained by substituting (3.3), (3.4), and (3.5) into (3.1) and (3.2): 

 

𝐴1
𝑑𝐻1

𝑑𝑡
= 𝑄𝑖1 − 𝛼1√𝐻1 − 𝛼3√𝐻1 −𝐻2                             (3.6) 

𝐴2
𝑑𝐻2

𝑑𝑡
= 𝑄𝑖2 − 𝛼2√𝐻2 + 𝛼3√𝐻1 − 𝐻2                             (3.7)

                             

The manipulated variable in the second order configuration is q1, and the process 

variable is h2. It is assumed that q2 is zero. The second-order system's block diagram 

may be made simpler, as seen in Figure 3.3.  

 

 

Figure 3.3 Block diagram of second order system 

 

Thus, the nonlinear CTS can be obtained as: 

 

ℎ2(𝑠)

𝑞1(𝑠)
=

𝑘1𝑘2

(𝑇1𝑠+1)(𝑇2𝑠+1)−𝑘12𝑘21
  

ℎ2(𝑠)

𝑞1(𝑠)
=

𝑘1𝑘2

𝑇1𝑇2𝑠2+(𝑇1+𝑇2)𝑠+(1−𝑘12𝑘21)
                                 (3.8) 

 

Where: 
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𝑇1 =
𝐴1

(
𝛼1

2√𝐻1
)+(

𝛼3
2√𝐻1−𝐻2

)
                                        (3.9) 

𝑇2 =
𝐴2

(
𝛼2

2√𝐻2
)+(

𝛼3
2√𝐻1−𝐻2

)
                                       (3.10) 

𝑘1 =
1

(
𝛼1

2√𝐻1
)+(

𝛼3
2√𝐻1−𝐻2

)
                                       (3.11) 

𝑘2 =
1

(
𝛼1

2√𝐻2
)+(

𝛼3
2√𝐻1−𝐻2

)
                                       (3.12) 

𝑘12 =

𝛼3
2√𝐻1−𝐻2

(
𝛼1

2√𝐻1
)+(

𝛼3
2√𝐻1−𝐻2

)
                                       (3.13) 

𝑘21 =

𝛼3
2√𝐻1−𝐻2

(
𝛼2

2√𝐻2
)+(

𝛼3
2√𝐻1−𝐻2

)
                                      (3.14) 

 

The values that were supplied from [9] can be substituted to get the plant's transfer 

function; these parameters are displayed in Table 3.1. 

 

Table 3.1 Parameter of coupled-tank system 

Parameters Value Unit 

𝐻1 17 Cm 

𝐻2 15 cm 

𝛼1 10.78 𝑐𝑚3/2/sec 

𝛼2 11.03 𝑐𝑚3/2/sec 

𝛼3 11.03 𝑐𝑚3/2/sec 

𝐴1 32 cm2 

𝐴2 32 cm2 

 

Then, all the parameters in Table 3.1 have been inserted into (3.8). Thus, the actual 

transfer function of the plant with the completed value is: 

 

𝐺𝑝(𝑠) =
ℎ2(𝑠)

𝑞1(𝑠)
=

0.0361

36.9406𝑠2+12.1565𝑠+0.4514
                          (3.15) 
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3.4 Optimization Technique 

This study will implement the tunicate swarm algorithm (TSA) and reptile search 

algorithm (RSA) as optimization techniques. The system's transient response 

performance of the two algorithm is evaluated by comparing it to the PSO algorithm. 

The proposed method's advantages and disadvantages can be determine by comparing 

the three algorithms. 

3.4.1 Tunicate Search Algorithm (TSA) 

The TSA is a metaheuristic optimization method inspired by the life of tunicates, 

marine organisms that exhibit interesting collective behaviour. The flowchart of TSA 

is shown in Figure 3.4 below. The mathematical model system to simulate jet 

propulsion behaviour as follows with three conditions [49] : 

1) First Condition : avoid the conflicts between search agent. 

A vector is used for updating the new position of tunicate, and mathematically 

as follows : 

→
𝐴
=
→
𝐺
/
→
𝑀

                                         (3.16) 

→
𝐺
= 𝑐2 + 𝑐3 −

→
𝐹

                                      (3.17) 

→
𝐹
= 2 × 𝑐1                                        (3.18) 

→
𝑀
= ⌊𝑃𝑚𝑖𝑛 + 𝑐1. 𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛⌋                              (3.19) 

Where :  

→
𝐺

 is gravity force , 
→
𝐹

 is the water flow advection, 
→
𝑀
 is the social forces 

between search agents, 𝑃𝑚𝑖𝑛 and 𝑃𝑚𝑎𝑥 are the limitations of speeds to make 

social interaction, and (𝑐1, 𝑐2, 𝑐3) are random values between (0,1). 
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2) Second condition : movement towards the position of search agent. 

All tunicates try to move towards the best agent position in this condition. 

→
𝑃𝐷

= |
→
𝐹𝑆

− 𝑟𝑎𝑛𝑑. 𝑃𝑝
→(𝑥)|                               (3.20) 

Where  

→
𝑃𝐷

 is the distance between search agent and foods, 
→
𝐹𝑆

 is the position of food 

source, 𝑟𝑎𝑛𝑑 is a random value between (0,1) , and 𝑃𝑝
→(𝑥) is the agent position. 

3) Third condition : remains close to the best search agent. 

The tunicates are move in the direction of the best agent, and mathematically 

as follows: 

𝑃𝑝
→(𝑥) = {

𝐹→𝑆 + 𝐴→. 𝑃→𝐷, 𝑖𝑓 𝑟𝑎𝑛𝑑 ≥ 0.5

𝐹→𝑆 − 𝐴→. 𝑃→𝐷, 𝑖𝑓 𝑟𝑎𝑛𝑑 < 0.5
                    (3.21) 

 

Finally, the swarm behaviour is simulated by updating the agent position due 

to the best agent, and mathematically as: 

𝑃𝑝(𝑥
→ + 1) =

𝑃𝑝
→(𝑥)+𝑃𝑝(𝑥

→+1)

2+𝑐1
                            (3.22) 

 

Table 3.2 Parameter initialization in TSA algorithm 

Initialization 

𝑐1, 𝑐2, 𝑐3 = values between (0,1) 

𝑃𝑚𝑖𝑛 = 1 

𝑃𝑚𝑎𝑥 = 4 
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Figure 3.4 TSA Flowchart 
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1. Setting up the TSA population. 

2. Choosing the maximum number of iterations and initial parameters. 

3. Assessing each search agent’s fitness value and calculate the fitness.  

4. After determining the fitness value, the best search agent in the given search 

space is scanned. 

5. Using the equation (3.22), updating the location of each search agent. 

6. In a given search space, adjusting the updated search agent if it exceeds the 

limit. 

7. Working out the updated search agent's fitness value, and updating the optimal 

solution 𝑃𝑝 if a better on exists. 

8. Putting an end to the algorithm if the criteria for halting is met, otherwise, go 

through Steps 5–8 again. 

9. Finally, the best optimum result can be obtained. 

 

 

3.4.2 Reptile Search Algorithm (RSA) 

 

RSA is a meta-heuristic algorithm modeled on the foraging behavior of 

crocodiles. Despite their typically slow movements, crocodiles are capable of rapid, 

aggressive attacks. As apex predators, crocodiles often hunt in groups. Their foraging 

behavior can be categorized into two main phases: the encircling stage, representing 

exploration, and the hunting stage, representing exploitation.[60] 

Flowchart in Figure 3.5 will give a better understanding of RSA algorithm. 
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Figure 3.5 RSA flowchart 
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1. Set up the initial parameters and generate the candidate solutions for RSA. 

2. Initialize the iteration counter t to 1. 

3. Calculate the fitness value of all candidate solutions to determine their quality. 

4. Update the parameters of ES, R, P and ղ. 

5. Check if the current iteration t ≤
1

4
T . If yes, use the high walking strategy. 

6. If no, check if the current iteration t ≤
2

4
T and apply the belly walking. 

7. If the current iteration t ≤
3

4
T , apply the hunting coordination. 

8. If the iteration is beyond t ≤
3

4
T, apply the hunting cooperation. 

9. Check if the current iteration t = T. 

10. If not, increment the iteration counter t by 1. 

11. If the total number of iterations T is reached, update and finalize the best 

solution found. 

In the context of the RSA, RSA will generate N candidate solutions, and the 

dimension size of each solution is dim. The ith solution is 

(𝑋(𝑖,1), 𝑋(𝑖,2), … , 𝑋(𝑖,𝑗), … , 𝑋(𝑖,𝑑𝑖𝑚)). The initialization Formula of the ith solution in the 

jth dimension is as follows: 

𝑋𝑖𝑗 = 𝑟𝑎𝑛𝑑 × (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵, 𝑗 = 1,2, … , 𝑛                      (3.23) 

Where LB is the lower bound and UB is the upper bound. 

3.4.2.1 Encircling phase (exploration) 

Crocodiles will choose two different ways in the process of encircling prey: high 

walking and belly walking. 

 

1. High walking 

The calculation formula for high wallking is expressed in :  

 

𝑋(𝑖,𝑗)(𝑡 + 1) = 𝐵𝑒𝑠𝑡𝑗(𝑡) × ղ(𝑖,𝑗)(𝑡 + 1) × 𝛽 − 𝑅(𝑖,𝑗)(𝑡 + 1) × 𝑟𝑎𝑛𝑑 𝑡 ≤
𝑇

4
   (3.24) 
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Where : 

𝑋(𝑖,𝑗)(𝑡 + 1)  =  the updated position of the ith individual in the jth dimension. 

𝐵𝑒𝑠𝑡𝑗(𝑡)     = the best-known position in the jth dimension up to iteration. 

ղ(𝑖,𝑗)(𝑡 + 1)  = the hunting operator for the ith individual in the jth dimension, 

determined by Equation (3.25). 

𝛽         =  sensitivity control parameter for search capability, set at 0.005. 

𝑅(𝑖,𝑗)(𝑡 + 1)  = adjusts the search area size and is computed using Equation (3.26). 

t           = the current iteration number, and T is the total number of iterations. 

 

{
 
 

 
 ղ(𝑖,𝑗)

(𝑡 + 1) = 𝐵𝑒𝑠𝑡𝑗(𝑡) × 𝑃(𝑖,𝑗)(𝑡 + 1)

𝑃(𝑖,𝑗)(𝑡 + 1) = 𝛼 +
𝑋(𝑖,𝑗)(𝑡)−𝑀(𝑋(𝑗))

𝐵𝑒𝑠𝑡𝑗(𝑡)×(𝑈𝐵(𝑗)−𝐿𝐵(𝑗)+𝜀

𝑀(𝑋(𝑖)) =
1

𝑑𝑖𝑚
∑ 𝑋(𝑖,𝑗)(𝑡)
𝑑𝑖𝑚
𝑗=1

                        (3.25) 

Where : 

 𝑃(𝑖,𝑗)(𝑡 + 1) = the percentage difference between the optimal and current individuals 

in the jth dimension. 

𝛼         = regulates search accuracy and is fixed at 0.1. 

𝑋(𝑖,𝑗)(𝑡)       = the position of the ith individual in the jth dimension prior to updating. 

𝑀(𝑋(𝑖))    = the average value of the ith individual's positions across all dimensions. 

𝜀         = small constant added to prevent division by zero. 

𝑅(𝑖,𝑗)(𝑡 + 1) =
𝐵𝑒𝑠𝑡𝑗(𝑡)−𝑋(𝑟1,𝑗)(𝑡)

𝐵𝑒𝑠𝑡𝑗(𝑡)+𝜀
                                (3.26) 

where 𝑋(𝑟1,𝑗)(𝑡) represents the random individual’s position. 

2. Belly walking. 

The formula for calculating belly walking is presented in Equation (3.27): 

𝑋(𝑖,𝑗)(𝑡 + 1) = 𝐵𝑒𝑠𝑡𝑗(𝑡) × 𝑋(𝑟2,𝑗)(𝑡) × 𝐸𝑆 × 𝑟𝑎𝑛𝑑 𝑡 >
𝑇

4
& 𝑡 ≤

𝑇

2
         (3.27) 
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Where :  

𝑋(𝑟2,𝑗)(𝑡) = the position of a randomly selected individual. 

ES      = the evolutionary direction and is a randomly assigned decreasing value 

ranging between 2 and -2. 

 

The value of ES is determined as follows: 

𝐸𝑆 = 2 × 𝑅𝐴𝑁𝐷 × (1 −
𝑡

𝑇
) , 𝑅𝐴𝑁𝐷 ∈ [1,1]                         (3.28) 

 

3.4.2.2 Hunting Phase (exploitation) 

In line with the hunting behavior of crocodiles, the hunting stage employs two 

strategies which are hunting coordination and hunting cooperation. Unlike the 

encircling stage, where the crocodiles position themselves around the prey, in the 

hunting stage, they remain close to the prey to execute the capture. The formula for 

hunting coordination is given as follows: 

 

𝑋(𝑖,𝑗)(𝑡 + 1) = 𝐵𝑒𝑠𝑡𝑗(𝑡) × 𝑃(𝑖,𝑗)(𝑡 + 1) × 𝑟𝑎𝑛𝑑 𝑡 ≤ 3
𝑇

4
 & 𝑡 >

𝑇

2
          (3.29) 

 

The formula of hunting cooperation is : 

 

𝑋(𝑖,𝑗)(𝑡 + 1) =  𝐵𝑒𝑠𝑡𝑗(𝑡) − ղ(𝑖,𝑗)(𝑡 + 1) × 𝜀 − 𝑅(𝑖,𝑗)(𝑡 + 1) × 𝑟𝑎𝑛𝑑 𝑡 > 3
𝑇

4
  (3.30) 

 

Table 3.3 Parameter initialization in RSA algorithm 

Initialization 

𝐸𝑆 = randomly decreasing values between 2 and −2 

𝛼 = 0.1 

𝛽 = 0.005 
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3.4.3 Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) working principle is based on social sharing 

of a swarm such as fish schooling or bird flocking. During search for food, the 

infromation sharing is happening between them. In PSO, each single solution is a bird 

in the search space which referred as a particle. The particles have the memory of their 

own best position and knowledge of global best. The swarm particles communicate 

through the best position and velocity. Flowchart in Figure 3.6 will give a better 

understanding of PSO algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 PSO Flowchart 
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1. Initialize particles with random position and velocity vectors. In this step, a 

swarm particles is created, each representing a potential solution in the search 

space. The particles are assigned random positions and initial velocities. These 

initial positions serve as starting points for exploration. 

2. For every particle in the swarm, calculate its fitness based on a predefined 

fitness function. The fitness function measures how well the particle’s position 

performs in solving the optimization problem. This evaluation guides the 

particles toward better solutions. 

3. If fitness (p) is better than the best fitness (Pbest), update Pbest. Compare the 

current fitness of particle (p) with its personal best fitness (Pbest). If the current 

fitness is better (i.e., lower or higher, depending on the problem type), update 

Pbest to the current fitness value. This step ensures that each particle 

remembers its best position found so far. 

4. Update particles’ velocity and position: The velocity and position of each 

particle are adjusted based on its own experience and the collective behaviour 

of the swarm. The velocity update formula involves inertia weight, cognitive 

acceleration, and social acceleration. The new velocity determines how the 

particle moves in the search space. The updated position is calculated by 

adding the new velocity to the current position. 

𝑣𝑖
𝑘 = 𝑤𝑣𝑖

𝑘 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖
𝑘 − 𝑥𝑖

𝑘) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡
𝑘 − 𝑥𝑖

𝑘)           (3.31) 

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1                                     (3.32) 

Where 

𝑣𝑖
𝑘 : velocity of the 𝑖th particle at the 𝑘th iteration 

𝑥𝑖
𝑘 : current position of the 𝑖th particle at the 𝑘th iteration 

𝑐1, 𝑐2 : positive constant 

𝑟1, 𝑟2 : random variables with uniform distribution between 0 and 1 

𝑤 : inertia weight 
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5. Loop until all particles have exhausted iterations. The PSO process iterates 

through these steps until a stopping criterion is met (e.g., a maximum number 

of iterations or a desired fitness level). During each iteration, particles explore 

the search space, updating their positions and velocities.  

6. Set the best of Pbest as Gbest. The global best position (Gbest) represents the 

overall best solution found by any particle in the entire swarm. It is updated 

whenever a particle discovers a better solution than the current Gbest. The final 

Gbest position provides the optimal solution to the optimization problem. 

Table 3.4 Parameter initialization in PSO algorithm 

Velocity initialization 

𝑐1, 𝑐2= 2 Maximum weight = 1 

Maximum velocity = 999 Minimum weight = 0.99 

 

3.5 Performance Evaluation 

3.5.1 Performance Index 

The evaluation of a system’s performance relies on a performance index, which 

can take various forms, such as frequency domain specifications, time-integral 

specifications, or time-domain specifications. In this study, there is no specific 

criterion for the performance index as long as it yields an optimal value. Generally, a 

smaller error of performance index indicates better system performance. 

For this particular study, the chosen performance index is the Integral Time 

Square Error (ITSE). ITSE, also known as time-integral performance, emphasizes both 

settling time and error value. It quantifies the area between the system’s output and the 

desired output, providing a measure of dynamic performance. 

𝐼𝑇𝑆𝐸 =  ∫ (𝑒𝑖(𝑡))
2𝑡𝑑𝑡

𝑡

0
           (3.33) 

𝑒(𝑡) = 𝑦(𝑡) − 𝑟(𝑡)               (3.34) 

Where 
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 𝑒(𝑡) : error in (3.34) 

𝑦(𝑡) : output of system 

𝑟(𝑡) : input of system 

 

3.5.2 Transient Response 

Evaluating the transient response of coupled tank systems involves key 

performance parameters such as rise time, settling time, peak time and overshoot. 

 Rise time measures how quickly the system reaches a certain percentage 

(typically 90% or 95%) of the final value after a step input, with a smaller rise time 

indicating a faster response. The settling time represents the duration required for the 

output to remain within a specified tolerance band around the final value, where a 

shorter settling time indicates better performance. Peak time is the time taken for the 

system output to reach its first peak, or maximum overshoot, during the transient 

phase. Overshoot refers to the maximum deviation of the system output from the 

desired set point during this phase and occurs when the system exceeds the desired 

value before settling. Minimizing overshoot is important to maintain stable and 

accurate control. Collectively, these metrics provide a comprehensive understanding 

of the dynamics and stability of system responses. 

 

3.5.3 Time 

Measurement of execution time involves recording the duration required for 

each run to calculate the Integral Time Squared Error (ITSE) value. This measurement 

represents the time taken by the system or algorithm to perform the necessary 

calculations. By analyzing the execution time, we gain insight into the algorithm's 

efficiency and stability, evaluating both consistency and variability in its performance. 

This analysis helps in understanding how reliably the algorithm can handle 

calculations in different conditions, providing a comprehensive view of its operational 

characteristics. 
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3.6 Parameter determination 

To ensure a fair comparison of TSA, RSA and PSO for PID controller tuning, 

consistent parameters are maintained during code execution. The number of particles, 

or swarm size is kept the same for all three algorithms to provide comparable 

exploration and exploitation capabilities. The maximum iteration is also kept constant 

across TSA, RSA and PSO, allowing a fair assessment of their convergence behaviour. 

Additionally, parameter bounds (such as PID gain) are the same for all algorithms, 

preventing bias due to different search spaces. Adhering to these consistent settings 

allows objective evaluation of each algorithm's performance in optimizing PID 

controller parameters. 

Two key factors when optimizing PID controllers are swarm size and maximum 

iterations. Using a swarm size of 50 is effective because it balances the need to explore 

different solutions while keeping computations manageable. If the swarm is too small, 

the search might end too soon and miss good solutions. If it's too large, it can slow 

down the process without much benefit. Setting the maximum iterations to 100 gives 

the algorithms enough time to find good solutions without overdoing it. This limit 

helps the algorithms converge well without wasting time or overfitting. 

To determine the optimal upper bounds for PID controller optimization, 1000 

and 10,000 were tested by calculating the standard deviation of performance metrics, 

such as ITSE, across multiple runs. A smaller standard deviation indicates more 

consistent results. The upper bound of 10,000 produced greater stability and reliability 

compared to 1000, making 10,000 the preferred choice. Additionally, a lower bound 

of 0.1 is enforced for the PID controller parameters to ensure that the proportional, 

integral, and derivative gains are positive and nonzero, avoiding physically unrealistic 

PID values. 

Table 3.5 Parameter initialization 

Initialization 

No of swarm = 50 Maximum iteration = 100  

Lower bound = 0.1  Upper bound = 10 000 
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RESULTS AND DISCUSSIONS 

4.1 Introduction 

The results of the study will be presented in this chapter. It contains the results 

of PID optimization using Tunicate Swarm Algorithm (TSA), Reptile Search 

Algorithm (RSA), and Particle Swarm Optimization (PSO) techniques. This chapter 

will evaluate and discuss system performance using the PID tuning approach. 

4.2 PID Tuning using Optimization Technique 

Optimization techniques are used to find the ideal PID parameters and to reduce 

the Integral of Time Square Error (ITSE) value when the process is in a steady state. 

The three tuning parameters are derivative gain (Kd), integral gain (Ki), and 

proportional gain (Kp). A performance index that yields a lower integral criteria value 

will yield better closed-loop performance in terms of settling time, rising time, and 

steady-state error. 

The controller utilizing an optimization technique is implemented in the CTS to 

achieve the desired output based on the system's step input. Two novel optimization 

techniques, TSA and RSA, will be evaluated and compared against the well-known 

Particle Swarm Optimization (PSO) algorithm. The comparison focuses on the 

transient response of the system and the fitness value. To ensure a fair evaluation, 

certain parameters are held constant; specifically, the maximum number of iterations 

and the range of PID parameters are set identically for all three algorithms. 

 

4.2.1 PID with Tunicate Swarm Algorithm (PIDTSA) 

 

This research focuses on simulations to identify the lowest fitness value using 

three different algorithms which are PIDTSA, PIDRSA and PIDPSO. Lower fitness 

values are associated with enhanced output, facilitating the determination of the best 
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PID parameters. The selected minimum fitness value leads to the acquisition of the 

optimal PID setting. The simulation process was repeated 20 times, each consisting of 

100 iterations. 

During 20 executions, PIDTSA recorded its lowest ITSE fitness value on the 

13th run, which is 0.3511, while the highest was 0.3569 on the 16th run. The ITSE 

fitness value measures the error in the output signal as the integral of the time-weighted 

absolute error. As illustrated in Figure 4.1, the ITSE value starts at 0.4566 in the first 

iteration and decreases to 0.3854 by the second iteration. It further decreased to 0.3522 

by the eighth iteration and remained constant until the 25th iteration. The value is then 

slightly adjusted to 0.352 and maintained until the 33rd iteration. Between iterations 

36 and 59, it stabilizes at 0.3513, and from iteration 65 onwards, it remains at 0.3512, 

indicating that the optimization has reached convergence. Finally, the fitness value 

decreased slightly to 0.3511 at the 100th iteration. This final fitness value from the 

13th run, which is 0.3511, was chosen to determine the optimal value of the PID 

parameter. 

 

Figure 4.1 Graph fitness function versus iteration for TSA 
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Therefore, the optimal PID values are proportional gain, Kp of 10000, integral 

gain, Ki of 0.1091, and derivative gain Kd of 9597.7062. With these PID parameters, 

the CTS achieves the transient response shown in Figure 4.2, characterized by an 

overshoot of 4.82% and a steady-state achievement time of 1.45 seconds. 

 

Figure 4.2 Step Response of Closed Loop System using TSA 

 

4.2.2 PID with Reptile Search Algorithm (PIDRSA) 

 

Over 20 executions, the PIDRSA algorithm reached its lowest ITSE fitness value 

on the 17th run, clocking in at 0.3539, while the highest reached 0.6120 on the 20th 

run. Figure 4.3 shows that the ITSE starts at 0.6030 in the initial iteration and remains 

stable for twelve iterations, then settles at 0.5837 for the next twenty-four iterations, 

before finally falling to 0.3539 from the seventy-fourth iteration onwards. This final 

fitness value of 0.3539, recorded on the 17th run, was chosen to ensure the optimal 

PID parameter value. 

As a result, the ideal PID parameters were determined as proportional gain, Kp 

of 10000, integral gain, Ki of 20.4944, and derivative gain Kd of 9551.7129. Using 

this value, the CTS shows a transient response as illustrated in Figure 4.4, with an 

overshoot of 4.88% and a steady state reached in 1.46 seconds. 



56 

 

Figure 4.3 Graph fitness function versus iteration for RSA 

 

 
Figure 4.4 Step Response of Closed Loop System using RSA 
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4.2.3 PID with Particle Swarm Optimization (PIDPSO) 

 

The simulations were run 20 times with 100 iterations each, reflecting the 

approach taken for PIDTSA and PIDRSA. The ITSE value remained constant at 

0.3512 throughout the 20 runs, showing consistent performance in this experiment. As 

shown in Figure 4.5, the ITSE value drops dramatically from 0.5232 in the initial 

iteration to about 0.3560 by the ninth iteration. The value then stabilizes around 0.3518 

by the tenth iteration and finally settles at 0.3512 from the twenty-ninth iteration 

onwards, indicating a successful convergence of the optimization process. These 

fitness values are used to determine the optimal PID parameters, which are 

proportional gain Kp of 10000, integral gain Ki of 0.1, and derivative gain Kd of 

9598.6959. Using these parameters, the CTS displays a transient response as illustrated 

in Figure 4.6, with an overshoot of 4.82% and a time to reach steady state of 1.45 

seconds. 

 

Figure 4.5 Graph fitness function versus iteration for PSO 
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Figure 4.6 Step Response of Closed Loop System using PSO 

 

4.3 Performance Evaluation Between PIDTSA, PIDRSA and PIDPSO. 

The PID controller in the CTS is set to the ideal value of the PID parameter in 

Table 4.1 in order to enhance system performance. Figure 4.7 shows the step response 

for the three optimization method after tuned using the optimal PID parameter 

obtained. 

Table 4.1 PID parameter value for CTS system 

Parameter / Method PIDTSA PIDRSA PIDPSO 

𝐾𝑃 10000 10000 10000 

𝐾𝐼 0.1091 20.4944 0.1 

𝐾𝐷 9597.7062 9551.7129 9598.6959 
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Figure 4.7 Step Response of Closed Loop System using PID optimization (PIDTSA, 

PIDRSA, PIDPSO) 

 

Table 4.2 Analysis of Performance for PIDTSA, PIDRSA and PIDPSO 

 PIDTSA PIDRSA PIDPSO 

ITSE 0.3511 0.3539 0.3512 

 

Transient 

Response 

Overshoot, OS 4.82 4.88 4.82 

Peak Time, Tp 0.58 0.58 0.58 

Settling Time, 

Ts 

1.45 1.46 1.45 

Rise Time,Tr 0.20 0.20 0.20 

Steady State 

Error, ess 

0 0 0 

Standard Deviation 0.0016 0.0796 5e-6 

Time 45.26 47.52 38.44 
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Figure 4.8 Performance transient response of coupled tank system based on PIDTSA, 

PIDRSA and PIDPSO in terms of bar graph 

 

By referring to Table 4.2, the ITSE values for PIDTSA, PIDRSA, and PIDPSO 

methods are closely matched, reflecting their effectiveness in minimizing both the 

magnitude and duration of the error. PIDTSA shows a slight edge with an ITSE value 

of 0.3511, closely followed by PIDPSO at 0.3512, both indicating efficient 

performance in system optimization. PIDRSA, with an ITSE value of 0.3539, is 

marginally less efficient but still within a competitive range, suggesting all three 

methods are robust options for PID control parameter tuning. 

In comparing the transient response of PIDTSA, PIDRSA, and PIDPSO methods 

in Table 4.2 and Figure 4.8, all exhibit a rapid rise time of 0.20 seconds indicating 

efficient system response to changes. PIDTSA and PIDPSO show identical overshoots 

at 4.82%, with PIDRSA slightly higher at 4.88%, while peak times are consistent at 

0.58 seconds across all methods. Settling times are nearly identical, with PIDTSA and 

PIDPSO at 1.45 seconds and PIDRSA marginally longer at 1.46 seconds, 

demonstrating the close performance of these tuning strategies. 

When examining the standard deviation for the ITSE across 20 executions, the 

PIDPSO method stands out with an exceptionally low standard deviation of just 5e-6, 

indicating highly consistent performance. The PIDTSA method also shows a low 

standard deviation at 0.0016, suggesting a reliable and stable tuning process. In 
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contrast, the PIDRSA method has a higher standard deviation of 0.0796, which points 

to greater variability in its performance outcomes. 

In the comparison of performance between PIDTSA, PIDRSA, and PIDPSO 

methods, it was observed that PIDPSO achieved its ITSE value in the shortest amount 

of time, taking only 38.44s. On the other hand, PIDRSA took the longest with 47.52s, 

while PIDTSA required 45.26s to reach its ITSE value. These times reflect the 

efficiency of each algorithm in minimizing the error over time during the tuning 

process of the PID controller for a coupled tank system. 

4.4 Chapter Summary 

From Table 4.3 , PIDTSA offers the best ITSE, with advantages such as low 

overshoot, low settling time, moderate standard deviation, and a moderate time to 

achieve the desired ITSE. In comparison, PIDRSA performs less effectively, having 

the highest overshoot, settling time, standard deviation, and the longest time to achieve 

the desired ITSE. Conversely, PIDPSO achieves a good ITSE, with low overshoot, 

low settling time, the smallest standard deviation, and the shortest time to reach the 

desired ITSE. 

Table 4.3 Performance Evaluation of PID Contollers for CTS 

Metric PIDTSA PIDRSA PIDPSO 

ITSE Best ITSE Less Good 

ITSE 

Good ITSE 

 

 

 

 

Transient 

Response 

Overshoot 

(OS) 

Low 

(same as 

PIDPSO) 

Higher than 

PIDTSA and 

PIDPSO 

Low (same as 

PIDTSA) 

Peak 

Time (Tp) 

Same Same Same 

Settling 

Time (Ts) 

Low 

(same as 

PIDPSO) 

Higher than 

PIDTSA and 

PIDPSO 

Low (same as 

PIDTSA) 

Rise Time 

(Tr) 

Same Same Same 

Steady-

State 

Error 

Zero Zero Zero 

Standard Deviation Moderate Highest Smallest 

Time Moderate Slowest Fastest 
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CONCLUSION AND RECOMMENDATIONS  

5.1 Conclusion 

The PIDPSO method appears to be the most effective and consistent for PID 

control parameter tuning in a coupled tank system. It has an ITSE value comparable 

to that of PIDTSA, indicating its effectiveness in minimizing error magnitude and 

duration. Additionally, it boasts the lowest standard deviation, suggesting high 

consistency across multiple runs. Moreover, it achieves the optimal ITSE value in the 

shortest time, highlighting its efficiency. While PIDTSA and PIDRSA are competitive 

and robust options with similar transient response characteristics to PIDPSO, the 

slightly higher ITSE value and longer execution time for PIDRSA, as well as the higher 

standard deviation compared to PIDPSO for PIDTSA, make them marginally less 

optimal than PIDPSO..In conclusion, while all methods are closely matched and 

robust, PIDPSO stands out as the best method among the three due to its superior 

consistency and efficiency. 

5.2 Recommendation 

For the PIDPSO controller in coupled tank systems, it is recommended to study 

its robustness under varying system conditions, such as parameter uncertainties, 

disturbances, and noise. Additionally, developing strategies to handle these 

uncertainties, including robust control techniques and adaptive tuning methods, will 

be essential to enhance the controller's reliability and effectiveness in diverse and 

unpredictable environments. 
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APPENDIX 

TABLE 1 : SISO data with 20 times execution using TSA 

Run ITSE Time PID Parameter 

P I D 

1 0.3531 54.87 10000 31.9580 9590.5630 

2 0.3531 46.08 10000 31.9649 9591.1218 

3 0.3525 46.91 10000 20.8078 9590.0483 

4 0.3540 46.60 10000 44.7178 9583.2867 

5 0.3512 50.34 10000 0.1 9595.8067 

6 0.3545 45.15 10000 54.6230 9585.4360 

7 0.3512 49.94 10000 0.1 9595.4700 

8 0.3522 46.68 10000 17.2345 9592.5617 

9 0.3545 48.35 10000 53.2353 9583.8012 

10 0.3512 48.18 10000 0.2512 9595.8799 

11 0.3512 55.19 10000 0.1 9596.7564 

12 0.3512 44.66 10000 0.1104 9596.1308 

13 0.3511 45.26 10000 0.1091 9597.7062 

14 0.3512 45.40 10000 0.8279 9597.3956 

15 0.3541 40.89 10000 46.5348 9585.3276 

16 0.3569 57.68 10000 83.7633 9562.8725 

17 0.3543 41.13 10000       51.5816       9584.7035 

18 0.3530 42.28 10000       30.2916       9590.3709 

19 0.3545 50.65 10000       55.6992       9584.9866 

20 0.3538 43.62 10000        42.2808      9585.0311 
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TABLE 2 : SISO data with 20 times execution using RSA 

Run ITSE Time PID Parameter 

P I D 

1 0.3755 74.89 8648.8335 38.4542 8809.5611 

2 0.4827 47.76 4658.5824 17.9813 6047.6268 

3 0.4692 43.20 4980.9853 25.0539 6315.1764 

4 0.5956 84.18 1766.6494 2735.9599 9940.9953 

5 0.4495 43.12 5944.7926 0.4880 6777.8762 

6 0.3744 44.71 8973.3044 2.8725 8836.6941 

7 0.4132 48.12 7731.3673 14.2641 7766.5286 

8 0.4969 43.47 7350.5225 57.5514 5550.5237 

9 0.4077 51.91 7609.1529 64.4402 7981.4502 

10 0.4690 46.28 4807.9634 0.6662 6218.456 

11 0.4668 46.45 5409.1009 26.5933 6478.1557 

12 0.5409 40.59 3499.5890 10.7358 5087.8383 

13 0.6143 52.94 2642.9100 5.6776 4219.9479 

14 0.3824 47.61 9020.1608 96.2711 8789.4937 

15 0.4512 54.87 5792.9081 3.0113 6737.5477 

16 0.5625 64.49 3145.9415 1202.7588 9874.446 

17 0.3539 47.52 10000 20.4944 9551.7129 

18 0.4695 45.31 4799.8454 11.2264 6233.4176 

19 0.3928 47.66 8213.6888 18.4561 8260.6477 

20 0.6199 75.34 1999.1907 1900.3626 9438.1073 
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TABLE 3 : SISO data with 20 times execution using PSO 

Running ITSE Time PID Parameter 

P I D 

1 0.35117 50.88 10000 0.1 9598.70 

2 0.35118 45.95 10000 0.1 9598.6890 

3 0.35118 40.20 10000 0.1 9598.6890 

4 0.35117 42.00 10000 0.1 9598.6959 

5 0.35118 39.19 10000 0.1 9598.6959 

6 0.35118 40.67 10000 0.1 9598.6890 

7 0.35118 38.76 10000 0.1 9598.6890 

8 0.35117 41.04 10000 0.1 9598.6959 

9 0.35117 40.56 10000 0.1 9598.6959 

10 0.35117 40.43 10000 0.1 9598.6959 

11 0.35117 51.60 10000 0.1 9598.6959 

12 0.35118 49.30 10000 0.1 9598.6890 

13 0.35118 42.97 10000 0.1 9598.6890 

14 0.35117 38.44 10000 0.1 9598.6959 

15 0.35118 44.88 10000 0.1 9598.6890 

16 0.35118 36.38 10000 0.1 9598.6890 

17 0.35118 36.70 10000 0.1 9598.6890 

18 0.35117 43.22 10000 0.1 9598.6959 

19 0.35117 41.15 10000 0.1 9598.6959 

20 0.35117 40.30 10000 0.1 9598.6959 

 

 


