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ABSTRACT 

This project focuses on the development and implementation of an object detection system 

utilizing the YOLOv8 (You Only Look Once version 8) deep learning architecture for accurate 

identification of car radiators in the context of assembly line and logistics. The automotive 

assembly industry relies heavily on manual labor for part supply monitoring. Traditional 

methods for radiator detection often fall short in terms of speed and accuracy. Using the 

capabilities of YOLOv8, this approach aims to enhance real-time detection of car radiators, 

enabling swift and precise identification for logistic management system for parts replenish 

applications to assembly lines. By training the model on a comprehensive dataset of annotated 

car radiator images, the aim is to fine-tune the YOLOv8 architecture, specifically to recognize 

the complex features and variations associated with different radiator designs. The project's key 

objectives include optimizing the detection accuracy, minimizing false positives, and ensuring 

real-time processing speed to meet the rigorous requirements of automotive applications. This 

includes providing information on the quantity of logistic parts supply, specifically car 

radiators, within the field of view. The study demonstrates the progressive improvement of 

YOLOv8's performance metrics with increasing epochs. At 10 epochs, YOLOv8 achieves 

moderate precision (0.59862), recall (0.59321), and an F1 score of 0.59, which improves 

significantly at 25 epochs with precision (0.92441), recall (0.8916), and an F1 score of 0.91. By 

50 epochs, YOLOv8 further enhances its performance, achieving a precision of 0.95921, recall 

of 0.95593, and an F1 score of 0.96. At 75 epochs, the model maintains high precision 

(0.96098), recall (0.96816), and an F1 score of 0.96, ultimately reaching outstanding precision 

(0.97493), recall (0.97277), and an F1 score of 0.97 at 100 epochs. Comparatively, YOLOv9 

shows potential with higher initial precision (0.67825) and recall (0.6316) at 10 epochs but 

requires longer training times (6.651 hours) and further optimization, with an F1 score of 0.67. 

The shorter training time of YOLOv8, requiring only 1.664 hours for 10 epochs, makes it 

advantageous for rapid prototyping and iterative model refinement. YOLOv8's successful 

recognition and localization of objects signify its potential contribution to automating logistic 

part supply chains, offering real-time insights for streamlined operations. 
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ABSTRAK 

Projek ini meumpu kan kepada pembangunan dan pelaksanaan sistem pengesanan objek 

menggunakan seni bina “deep learning” YOLOv8 (You Only Look Once version 8) untuk 

mengesan dengan tepat radiator kereta dalam konteks kawasan pemasangan dan logistik. 

Industri pemasangan automotif banyak bergantung kepada buruh manual untuk pemantauan 

bahagian bekalan alat pemasangan. Kaedah tradisional untuk pengesanan radiator mempunyai 

kekurangan dari segi kelajuan dan ketepatan. Menggunakan keupayaan YOLOv8, dapat 

meningkatkan pengesanan dunia nyata radiator kereta, membolehkan pengesanan pantas dan 

tepat untuk sistem pengurusan logistik bagi aplikasi penambahan alat pemasangan pada barisan 

pemasangan. Dengan melatih model pada set data komprehensif, imej radiator kereta 

beranotasi, bertujuan untuk memngajar seni bina YOLOv8, khususnya untuk mengenali ciri 

dan variasi kompleks yang dikaitkan dengan reka bentuk radiator yang berbeza. Objektif utama 

projek termasuk mengoptimumkan ketepatan pengesanan, meminimumkan positif palsu, dan 

memastikan kelajuan pemprosesan masa nyata untuk memenuhi keperluan aplikasi automotif. 

Ini termasuk menyediakan maklumat tentang kuantiti bekalan alat ganti logistik, khususnya 

radiator kereta, dalam sudut pandangan. Kajian ini menunjukkan peningkatan progresif dalam 

metrik prestasi YOLOv8 dengan peningkatan bilangan epoch. Pada 10 epoch, YOLOv8 

mencapai ketepatan sederhana (0.59862), ingatan (0.59321), dan skor F1 sebanyak 0.59, yang 

meningkat dengan ketara pada 25 epoch dengan ketepatan (0.92441), ingatan (0.8916), dan skor 

F1 sebanyak 0.91. Pada 50 epoch, YOLOv8 terus meningkatkan prestasinya, mencapai 

ketepatan sebanyak 0.95921, ingatan sebanyak 0.95593, dan skor F1 sebanyak 0.96. Pada 75 

epoch, model mengekalkan ketepatan tinggi (0.96098), ingatan (0.96816), dan skor F1 

sebanyak 0.96, dan akhirnya mencapai ketepatan cemerlang (0.97493), ingatan (0.97277), dan 

skor F1 sebanyak 0.97 pada 100 epoch. Sebaliknya, YOLOv9 menunjukkan potensi dengan 

ketepatan awal yang lebih tinggi (0.67825) dan ingatan (0.6316) pada 10 epoch, tetapi 

memerlukan masa latihan yang lebih lama (6.651 jam) dan pengoptimuman selanjutnya, dengan 

skor F1 sebanyak 0.67. Masa latihan yang lebih pendek bagi YOLOv8, yang memerlukan hanya 

1.664 jam untuk 10 epoch, menjadikannya lebih sesuai untuk prototaip cepat dan penghalusan 

model berulang. YOLOv8 dalam mengenali dan menempatkan objek menunjukkan potensinya 

untuk menyumbang secara signifikan kepada automasi rantaian bekalan alat logistik, 

menawarkan wawasan masa nyata untuk operasi yang lebih lancar. 
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INTRODUCTION 

1.1 Background 

Time is important for automotive assembly lines, dictating efficiency, productivity, and 

profitability. Every second needs to be accurately planned and optimized to ensure a seamless 

flow of operations. In this high-paced environment, the assembly line must operate perfectly to 

avoid disruptions that will impact production output, thus affecting the number of vehicles 

manufactured within a given period.  

For years, the replenishment of parts (radiators) from the logistics supply chain to the 

assembly lines has relied heavily on manual monitoring by human operators as illustrated in 

Figure 1.1. This traditional approach, however, has been consistently prone to errors and delay. 

After all, humans’ errors or delays along the line can cascade, causing bottlenecks that ripple 

through the entire manufacturing process, leading to increased costs, missed deadlines, and 

potential production halts. Moreover, in the automotive industry, time holds immense financial 

consequences.  

 

Figure 1.1 Manual Monitoring of Parts Replenish.  
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Hence, introducing computer vision with the help of AI algorithm for automated part 

detection to replenish the parts (radiators) into the assembly lines whenever the number is low, 

as shown in Figure 1.2. This idea can eliminate humans’ error and downtime that tend to happen 

traditionally (manual human interaction) 

 

Figure 1.2 Low Number of Radiation 

 

1.2 Motivation 

Improving error management in logistic systems within automotive assembly lines is 

crucial to sustain its efficiency and quality for a big company like SIME DARBY MOTORS 

SDN BHD. Addressing errors within logistic management systems holds the key to rectify the 

operations and enhancing overall productivity. By minimizing errors, such as inventory 

inconsistencies, delayed deliveries, or inaccurate parts allocation, the assembly line can 

function flawlessly, meeting production schedules and maintaining high-quality standards. This 

improvement not only reduces downtime and associated costs but also enhances customer 

satisfaction by delivering products on time with fewer defects.  
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Furthermore, a robust error management system fosters a culture of continuous 

improvement. It encourages proactive problem-solving approaches such as using computer 

vision for automated part detection using AI. This commitment to refining logistic management 

systems serves as a catalyst for progress, pushing the industry toward higher levels of precision, 

reliability, and competitiveness in the global market. Plus, Reduced errors mean fewer 

resources wasted, optimized processes, and improved resource allocation. This contributes 

positively to a greener and more sustainable production model. 

 

1.3 Problem Statement 

In the current operational landscape, the logistics supply chain to the assembly lines has 

relied heavily on manual monitoring to assess the need for radiators replenish. The manual 

nature of monitoring activities introduces inconsistencies that can lead to inaccuracies of 

notifying the logistic management system. Since the monitoring operator are sometime notify 

at the last-minute manners or too early.  This inconsistency not only compromises the reliability 

of the information but also challenges the integrity of decision-making processes of the need to 

supply the radiator.  

Moreover, the manual monitoring approach contributes to a higher likelihood of errors, 

as human operators may unintentionally overlook to notify logistic management system for the 

radiator replenish. This scenario will affect the operator’s decision making and increase the 

probability of supplying the wrong radiator unit. Additionally, the reliance on manual 

monitoring has proven to be a significant cause of delays in the workflows. The time-consuming 

nature of human-centric monitoring activities hampers the agility and responsiveness of the 

operations. As the scenario mentioned before, whenever the operator overlooks to notify the 

logistic management system for supply parts, delayed information causes the bottleneck inside 

the assembly line. 
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1.4 Objective 

i. To develop a computer vision using YOLOv8 that can detect and classify 

logistic parts supply (car radiator). 

ii. To analyse the performance of the detection using YOLOv8 algorithm with 

different epoch (10, 25, 50, 75, and 100).  

iii. To train and compare the performance with other algorithms (YOLOv9) and 

decide on the best algorithm for this type of project. 

 

1.5 Scope 

i. Detect and recognize BMW car radiator for every car model (28 variant) 

assembled in the same assembly line. 

ii. Detect and determine the number of car radiators left within the assembly line 

and notify the logistic management system to replenish the assembly parts if it 

is low. 

iii. Detection from above (1.2 meters from the radiator) during good lighting 

environment, where the car radiator packaging was consistently placed for every 

replenish as shown in Figure 1.3.   

 

 

Figure 1.3 Camera Placement Illustration. 
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1.6 Limitation 

The challenges associated with obtaining datasets, primarily due to the considerable 

distance of the research sites and the demanding schedule constraints. The necessity for on-site 

visits to capture the dataset is hindered by the packed schedule. To mitigate these limitations, 

visiting the site during the holiday period to collect more datasets is required. Plus, applying 

data augmentation techniques to artificially expand the diversity of the dataset is also be 

considered. 
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LITERATURE REVIEW 

2.1 Introduction   

Figure 2.1 breakdown the general approach, processes, techniques, and architecture of 

Logistic Management System for parts replenishment related to this project. 

 

 

Figure 2.1 K-Chart  
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2.2 Manual Monitoring Approach 

Manual human monitoring in assembly part allocation refers to the process of 

overseeing and managing the distribution of components or parts within an assembly line or 

production system using human intervention rather than automated systems. In this context, 

assembly part allocation involves assigning and distributing the necessary parts to different 

stations or workstations along the assembly line where they are needed for the manufacturing 

or assembly of a final product. 

One aspect of manual human monitoring in assembly part allocation involves 

individuals physically observing the production line, checking the availability of parts, and 

ensuring that each station has the necessary components to carry out its specific tasks. This 

process often relies on human judgement, memory, and communication skills to coordinate and 

allocate parts effectively. 

However, this manual approach has inherent challenges. Firstly, it is susceptible to 

inconsistency, as different human operators may interpret the requirements differently or make 

decisions based on varying criteria. This can lead to uneven distribution of parts, causing delays, 

disruptions, or errors in the assembly process. Additionally, manual monitoring is prone to 

human error, as individuals may overlook critical details, misinterpret information, or make 

mistakes in part allocation. These errors can result in defective products, increased rework, or 

the need for costly corrections. 

Lastly, the reliance on manual human monitoring for assembly part allocation can lead 

to delays in production. Human operators may struggle to keep pace with the speed required in 

modern manufacturing environments, causing bottlenecks, and reducing overall efficiency. 

This delay can have a cascading effect on the entire production schedule, potentially impacting 

deadlines and customer satisfaction. To address these challenges, organizations often seek to 

implement automated systems for part allocation, leveraging technology to enhance accuracy, 

consistency, and speed in the assembly process. 
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2.3 Vision Based Monitoring Approach. 

Automated vision-based monitoring in assembly part allocation involves the use of 

machine vision or machine learning with computer vision technology to oversee and manage 

the distribution of components or parts within an assembly line or production system. In this 

context, the automated system relies on cameras and image processing algorithms to identify, 

track, and allocate parts to different stations along the assembly line where they are needed for 

the manufacturing or assembly of a final product. The process begins with cameras strategically 

placed along the assembly line, capturing real-time images or video footage of the production 

environment. These cameras feed the visual data to a computer system equipped with advanced 

image processing and computer vision algorithms. 

2.3.1 Machine Vision 

Machine vision technology is a disciplinary field that identifies and verifies components 

based on visual characteristics such as shape, color, size, or unique markings. It utilizes 

computer simulation video screens to extract and recognize targets, offering the benefit of 

achieving high accuracy [1]. Machine vision technology utilizes industrial Charge Coupled 

Device (CCD) cameras for capturing video screen targets, enabling it to preprocess them. [1] 

[2]. Then, data acquisition cards are utilized for the processing and transmission of video screen 

targets. Subsequently, computer terminals are employed to analyze and assess the processed 

targets. Following this, the video screen target detection is accomplished based on the 

computer's output result. The detection and tracking of video objects incorporate the application 

of the video processing module of machine vision technology [1] [3]. Figure 2.2 shows the flow 

of machine vision principle. 
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Figure 2.2 Introduction Principle of Machine Vision Technology [2] 

 

However, machine vision systems are designed for specific tasks and lack adaptability 

to inconsistent datasets. While machine vision excels at recognizing patterns and features, it 

may lack the contextual understanding that humans possess. Understanding the broader context 

of a scene, considering the relationships between objects, or interpreting complex scenarios 

may still be a hurdle for machine vision systems. struggle to adapt to variations in part 

appearance, especially when dealing with diverse or irregularly shaped objects. This gives rise 

to Machine Learning applications. 
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2.4 Machine Learning 

Machine learning is a branch of computer science and artificial intelligence that uses 

data and algorithms to imitate on how human learns by learning from and expanding upon past 

experiences [4]. There are several well-established algorithms for prediction and analysis, such 

as unsupervised learning and deep learning. The Popular libraries for image segmentation 

include SciPy, Scikit, OpenCV, Matplotlib, and Keras [4] 

2.4.1 Unsupervised Machine Learning 

In this approach, algorithms are trained using unlabeled data to extract features, identify 

crucial patterns and structures, and link related objects. These techniques serve practical 

purposes by organizing information, recognizing patterns, and facilitating efficient systems. 

This method doesn't rely on labeled data for training, enabling algorithms to uncover insights 

and relationships independently [4][5]. However, Unsupervised learning encounters certain 

challenges. Duplicating samples accurately poses a significant difficulty, impeding the 

generation of diverse and representative datasets crucial for robust model training. Additionally, 

managing the semantic distributions of collected data are complicated, as ensuring a balanced 

and comprehensive representation of various semantic aspects within the dataset is crucial for 

the model's understanding and generalization abilities. These hurdles underscore the 

complexities inherent in deploying unsupervised learning methods effectively.[4] 

2.4.2 Deep Learning 

People use visual cortex, the essential cortical part of the brain that accountable for 

managing visual information [6], which observes, recognizes [7], and differentiates among 

objects instantly [8]. Research into the deep mechanism of the visual cortex in the brain open 

the way for ANN (artificial neural networks) [9] together with many other computational 

architectures that fall into the deep learning category. For the past few year, due to fast and 

revolutionary developments in the deep learning field [10], researchers worked hard on 

providing effective computers simulation of the human visual system. Enabling computers to 

recognize desired objects within images and video [11]. This field of study are called as 

computer vision (CV) [12]. CV comprised of subfields involving, object detection [13], image 

classification, and object segmentation [14]. These fields shared an architectural theme, which 

the manipulation of CNN (convolutional neural networks) [15]. CNN is used when tackling 

image data. Compared with other conventional image processing, CNN use multiple 
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convolutional layers which is convolution, pooling, and fully connected layers structures to 

extract deep semantic features masked within the image pixels [16]. The industrial sector 

presents a promising opportunity for artificial intelligence (AI) due to its potential for massive 

automation through CV. especially in terms of QI (quality inspection) [17]. But in order to be 

successful, CV-based systems have to meet a strict set of deployment specifications that might 

differ depending on the manufacturing industry [18]. 

2.4.3 Comparison Between Unsupervised Learning and Deep Learning. 

Deep learning indeed holds several advantages over unsupervised learning, primarily in 

delivering more accurate classification results due to its reliance on labeled datasets. The 

presence of clear labels allows the model to learn patterns and relationships effectively, leading 

to precise predictions or classifications. Moreover, the simplicity of training and testing models 

with labeled data streamlines the process, enabling straightforward evaluation and refinement 

[4]. The comparison between these two approaches is shown in Table 2.1. 

Table 2.1 Difference between Unsupervised Learning and Deep Learning 

Type Unsupervised Learning Deep Learning. 

Input data  Unlabeled  Labelled  

Training process  Model receives only input data 

without ground-truth label during 

training  

Model receives input data and 

ground-truth label during 

training  

General purpose  Gain insight from the data  Predict an outcome  

Computational 

Complexity  

More computationally demanding  Computationally demanding  

Time Complexity  Less time consuming  More time consuming  

Performance  Less accurate  More accurate  

Number of Classes  Unknown, the results can be 

arbitrary  

Known in advance  
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Deep learning involves training a model on a labelled dataset, where the input data is 

paired with corresponding output labels. The algorithm learns to map the input to the output by 

generalizing patterns from the labelled examples, making it suitable for tasks like classification 

and regression. On the other hand, unsupervised learning deals with unlabeled data, aiming to 

uncover hidden patterns or structures within the dataset. Algorithms in this category, such as 

clustering or association, don't rely on labelled outputs. Instead, they identify inherent 

relationships or groupings within the data, aiding tasks like customer segmentation or anomaly 

detection. Thus, deep learning is more preferred for application of car radiator detection. 
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2.5 Object Detection 

CNN are classified under feed forward neural networks [19]. Multiple convolutional 

layers are applied to the input layer to obtain a larger collection of feature maps on a smaller 

size. After further processing, these features mapping were converted into one-dimensional 

vectors feature. Subsequently, the vectors are utilized as the input for the fully connected layers. 

To achieve deeper feature maps, multiple convolutional and pooling layers may be stacked 

during the feature extraction and manipulation processes, which are crucial to the network's 

overall accuracy.  

Widely used architectures for extracting features involve AlexNet [20], VGGNet [21], 

GoogleNet [22], and ResNet [23]. AlexNet developed in 2012 which comprises of 5 

convolutional, 3 fully connected layers, and 3 pooling. VGGNet aims for performance 

improvement by deepening the architecture, introducing versions like VGG-16/19 with 

increased layer complexity. In contrast, GoogLeNet innovated with cascading 'inception' 

modules to capture information at various scales efficiently. On the other hand, ResNet 

introduced skip-connections, preserving, and conveying information from earlier to later layers 

for enhanced model training and performance.  

The primary goal of an object detector is to determine whether the desired objects exist 

within an image or frame of a video. In the event of their presence, the detector provides 

information concerning the class and location dimensions of the identified object. There are 

two category of architectures in the object detection domain which is two-stage and single-stage 

detectors. [24].  

2.5.1 Two-stage Detectors 

The detection process are divided for Two-stage detectors: the first stage involves 

feature extraction and proposal, while the second stage encompasses regression and 

classification [25]. While offering elevated accuracy, this approach entails an extensive 

computational requirement, making it impractical for real-time implementation on limited edge 

devices. Two-stage detectors involves well-known R-CNN [26] variants, for example Fast R-

CNN [27] and Faster R-CNN [28].  

2.5.2 Single-stage Detectors. 

Conversely, single-stage detectors merge the classification and regression processes 

into a single stage, markedly diminishing its computational requirements. This renders them 
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more suitable for deployment in production scenarios Several single-stage detectors are SSD 

(single shot detector), D-SSD (deconvolutional single shot detector) [29], RetinaNet [30], and 

the YOLO (You Only Look Once) [31] architectures that is highly compatible with industrial 

needs, due to its lightweight, accuracy, and edge-friendly deployment conditions. The basic 

structure was illustrated in Figure 2.3. 

 

 

Figure 2.3 Structure of Object Detection. 

 

The introduction of YOLO occurred through the paper ‘You Only Look Once: Unified, 

Real-Time Object Detection’ authored by Joseph Redmon et al. [31] that release in 2015. This 

paper redefined the landscape of object detection, outlining it effectively in a single pass. It 

began with pixels of image and progressed to predict bounding boxes and class of probabilities. 

The 'unified' approach, as the core of the methodology, allows for the prediction of numerous 

class probabilities and bounding boxes simultaneously, improving accuracy and speed. From 

the time of its launch in 2016 to the present (2023), the YOLO family has seen constant change. 

Despite the fact that the original inventor, Joseph Redmon, discontinued his work in the 

computer vision field at YOLO-v3 [32]. Many writers have developed further on the usefulness 

and potential of the ‘unified’ concept fundamental. The chronology of the YOLO development 

is shown in Figure 2.4. 
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Figure 2.4 Evolution of YOLO. 
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2.6 Data Acquisition 

In the case of common object detection, the usage of existing datasets can be optional. 

Depending on the specific use case, existing datasets might need leverage that is relevant to 

application. Few popular datasets like COCO (Common Objects in Context) [33] or Pascal 

VOC [34] provide annotated images for a variety of object classes. 

However, for specific object detection like car radiators, data acquisition involves 

collecting and preparing a dataset that will be used to train, validate, and test an object detection 

model are needed. The process typically includes a diverse set of images collection that 

represent the scenarios in which the object detection model will operate. These images should 

cover different environments, and variations in object appearances. Additionally, data 

augmentation can also be used to increase the diversity of your dataset. Common augmentations 

include rotation, flipping, scaling, changes in brightness, and variations in contrast. Data 

augmentation helps the model generalize better to different scenarios. Consequently, images 

annotations are needed where are annotated with bounding boxes around the objects of interest. 

Each bounding box is labeled with the corresponding object class. This annotation process is 

crucial for training the model to recognize and localize objects. Several tools and frameworks 

can be employed for data acquisition in object detection. These tools aid in the annotation and 

organization of images, making the data suitable for training object detection models. 

 

2.6.1 Roboflow  

Roboflow is a comprehensive platform that simplifies and streamlines the entire process 

of preparing, managing, and deploying computer vision models. Offering a diverse set of tools 

and workflows, Roboflow addresses various tasks in the realm of computer vision. One of its 

notable features is its robust image annotation capabilities, supporting tasks like object 

detection, image segmentation, and keypoint annotation with versatile annotation types such as 

bounding boxes, polygons, and segmentation masks. The platform goes beyond simple 

annotation by providing powerful data augmentation capabilities, empowering users to 

effortlessly apply transformations like rotation, flipping, scaling, and brightness adjustments, 

thereby enhancing dataset diversity. 
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Roboflow stands out for its versatility in format conversion, allowing datasets to 

seamlessly transition between different annotation formats, including COCO JSON, Pascal 

VOC XML, YOLO, and TensorFlow Record. Version control for datasets enables efficient 

tracking of modifications and facilitates easy reverting to previous versions, promoting a clear 

and organized history of dataset changes. 

The platform integrates seamlessly with popular deep learning frameworks such as 

TensorFlow, PyTorch, and Keras. It not only assists in generating code snippets and 

configurations but also provides preprocessing capabilities for standardizing and optimizing 

images before model training. While Roboflow's primary focus lies in data preparation, it offers 

integration with external model training services like Google Colab, Kaggle, and custom GPU 

servers, allowing users to connect datasets directly to their preferred training platforms. 

 

2.6.2 CVAT (Computer Vision Annotation Tool) 

CVAT is an open-source, web-based platform designed to facilitate the annotation of 

images and videos for computer vision tasks. Developed by the Computer Vision team at Intel, 

CVAT serves as a versatile tool for creating high-quality annotated datasets, particularly for 

object detection, image segmentation, and other computer vision applications. One of CVAT's 

key strengths lies in its user-friendly interface, making it accessible to both individual users and 

collaborative teams involved in machine learning projects. The platform supports various 

annotation types, including bounding boxes, polygons, polylines, and segmentation masks, 

providing flexibility for different annotation needs. CVAT offers robust features for both image 

and video annotation, allowing users to define and label objects within frames accurately 

Additionally, CVAT provides tools for handling complex scenarios, such as tracking objects 

across multiple frames in video annotation projects. The tool's extensibility allows for 

integration with different deep learning frameworks, facilitating a seamless workflow from 

annotation to model training. Annotations created in CVAT can be exported in various formats 

compatible with popular deep learning frameworks. Common export formats include PASCAL 

VOC, COCO JSON, and YOLO format. 
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2.7 Training Algorithm 

Training an object detection model involves using a specific algorithm to learn patterns 

and features that allow it to recognize and locate objects within images or videos. Several 

popular algorithms and architectures have their own approach. For instance, YOLO employs a 

single-stage approach, dividing the image into a grid and predicting bounding boxes and class 

probabilities simultaneously. Moreover, SSD is also a single-stage approach, but predicts 

multiple bounding boxes at different scales for each object. However, Faster R-CNN utilizes a 

two-stage approach with region proposals and object classification. 

2.7.1 YOLO-v6. 

Meituan Technical Team based in China published the YOLO-v6 [35] codebase in June 

2022. The goal of the authors' design approach was to create an object detector that was targeted 

at the industry. The architecture needs to be extremely efficient on a variety of hardware 

configurations, while retaining high speed and precision, in order to fulfill the needs of real-

world applications. Table 2.2 illustrates the many variations of YOLO-v6 that are available to 

meet the requirements of a wide range of industrial applications. YOLO-v6-nano is the quickest 

variant with the fewest parameters, while YOLO-v6-large offers great accuracy at the cost of 

speed. 

Table 2.2 Comparison of YOLOv6 Variant  

Variant mAP 0.5:0.95 (COCO-val) FPS Tesla T4 Parameters (Million) 

YOLO-v6-N 35.9 (300 epochs) 802 4.3 

YOLO-v6-T 40.3 (300 epochs) 449 15.0 

YOLO-v6-RepOpt 43.3 (300 epochs) 596 17.2 

YOLO-v6-S 43.5 (300 epochs) 495 17.2 

YOLO-v6-M 49.7 233 34.3 

 

Numerous advancements incorporated into the YOLO-v6 design are responsible for the 

outstanding performance seen in Table 2.1. Few points can be used to summarize the major 

contributions. Firstly, YOLO-v6 chooses an anchor-free technique instead of an anchor-based 

one, which makes it 51% quicker than its predecessors. 

Second, the authors presented a redesigned reparametrized neck and backbone that they 

called the Rep-PAN neck and the EfficientRep backbone [36]. That is to say, the regression 

and classification heads were identical up to and including YOLO-v5. Figure 2.3 illustrates 
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how YOLO-v6 implements the decoupled head, which differs from convention. Because of 

this, the design includes extra layers that divide features from the final head, has been 

methodically demonstrated to enhance performance. 

Third, a two-loss function is required by YOLO-v6. The classification loss is 

distribution focal loss (DFL) [37], and the regression loss is SIoU/GIoU [38], using Varifocal 

loss (VFL) [39]. As a focal loss derivative, VFL balances the learning signals from both types 

of data by assigning different weights to positive and negative samples. Box regression in the 

medium and large forms of YOLO-v6 is implemented using DFL, which treats the continuous 

distribution of the box locations as a discretized probability distribution. This approach has 

been demonstrated to be especially effective in cases when the ground truth box borders are 

hazy. The basic architecture of YOLOv6 was illustrated in Figure 2.5. 

 

 

Figure 2.5 Basic Architecture of YOLOv6. 

 

Further advancements focused toward industrial usage include knowledge distillation 

[40], which involves using a teacher model to train a student model in which the teacher model's 

predictions serve as soft labels in addition to the ground truth for the student model's training. 

Since the main goal is to train a smaller (student) model to mimic the high performance of the 

bigger (teacher) model, this is accomplished without increasing the computing cost. It is evident 

by comparing YOLO-v6's performance with that of its other past version, YOLO-v5 included, 

on the benchmark COCO dataset in Figure 2.6. YOLO-v6 accomplishes a higher mAP at 

different FPS. 
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Figure 2.6 YOLOv5 vs YOLOv6. 

 

2.7.2 YOLO-v7. 

After YOLO-v6 was launched, YOLO-v7 was released the month after that [41]. Other 

versions, such as YOLO-X [42] and YOLO-R [43], were published in the meantime, however 

they were mostly concentrated on improving GPU speed for inferencing. In order to retain fast 

detection speeds and increase accuracy, YOLO-v7 suggests a number of architectural changes. 

Two types may be distinguished from the suggested changes: Trainable BoF (bag-of-freebies) 

and architectural reforms. Inspired by research breakthroughs in network efficiency, 

architectural improvements included the deployment of the E-ELAN (extended efficient layer 

aggregation network) [44] in the YOLO-v7 backbone. The study of variables including memory 

access cost, input/output channel ratio, and gradient path that affect accuracy and speed served 

as the basis for the creation of the E-ELAN. 

Figure 2.7 depicts the second architectural reform, known as compound model scaling. 

The goal was to provide a broader range of application needs. For instance, some applications 

could value speed above accuracy, while others would emphasize both. For parameter-specific 

scaling to discover the optimal factors, NAS (network architecture search) [45] can be used, 

although the scaling factors are independent [46]. On the other hand, the concatenation-based 

networks' width and depth may be scaled coherently using the compound-scaling process, 

preserving the best possible network design even at varying sizes. 
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Figure 2.7 Compound Scaling of YOLOv7. 

 

To create a more robust network, re-parameterization planning is predicated on 

averaging a set of model weights [47][48]. Module level re-parameterization goes even farther 

by allowing individual network segments to control how they parameterize themselves. 

Gradient flow propagation processes are employed by YOLO-v7 in order to observe which 

internal network modules need to implement re-parameterization procedures. 

A performance comparison between YOLO-v7 and the previous YOLO versions on the 

MS COCO dataset is shown in Figure 2.8, demonstrate that all YOLO-v7 variations 

outperformed the compared object detectors in terms of accuracy and speed within the 5–160 

FPS range. But as the YOLO-v7 authors point out, it's crucial to remember that none of the 

YOLO-v7 variations are intended for CPU-based mobile device deployment. The YOLOv7-

tiny/v7/W6 variants are optimized for cloud, consumer, and edge GPUs, respectively. 

However, only high-end cloud GPUs are intended for use with YOLO-v7-E6/D6/E6E. 
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Figure 2.8 YOLOv7 vs Alternative Object Detectors [41]. 

 

Table 2.3 displays the YOLO-v7 internal variation comparison. It is clear that YOLO-

v7-tiny performs significantly worse than the computationally intensive YOLO-v7-D6, at least 

in terms of mAP. On the other hand, it would not be appropriate for edge deployment onto a 

device with limited processing power. 

Table 2.3 Comparison of YOLOv7 Variant  

Model Size (Pixels) mAP (@50) Parameters FLOPs 

YOLO-v7-tiny 640 52.8% 6.2 M 5.8G 

YOLO-v7 640 69.7% 36.9 M 104.7G 

YOLO-v7-X 640 71.1% 71.3 M 189.9G 

YOLO-v7-E6 1280 73.5% 97.2 M 515.2G 

YOLO-v7-D6 1280 73.8% 154.7 M 806.8G 
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2.7.3 YOLO-v8. 

In January 2023, Ultralytics reported the introduction of YOLO-v8, the most recent 

addition to the YOLO family. YOLOv8 represents the pinnacle of YOLO models for tasks such 

as object detection, image classification, and instance segmentation. Its design not only 

enhances the ease of use for developers but also streamlines bounding box predictions through 

its anchor-free approach, enabling quicker non-max suppression (NMS). Drawing inspiration 

from YOLOv5, the YOLOv8 architecture introduces alterations in the convolution layers [49].  

To lower the number of channels, the initial 6x6 convolution layer in the model's stem 

has been replaced by a 3x3 layer, and the 3x3 convolution layer in the bottleneck has been 

replaced by a 1x1 layer. The efficacy and efficiency of YOLOv8 training may be attributed to 

the use of mosaic augmentation, which combines 4 photos in each epoch to enable the model 

to learn about objects in varied locations while also dealing with partial obstructions and diverse 

surrounding pixels. However, in the last 10 epochs of training, mosaic augmentation is halted 

in order to prevent any decline in performance when evaluating the model on validation and 

test datasets [49]. 

Initial comparisons between the YOLOv8 and its version show its supremacy. Figure 

2.9 shows that, when YOLO-v8 is compared to YOLO-v5 and YOLOv6 trained on 640 image 

resolution, all YOLO-v8 versions provide higher throughput with the same number of 

parameters, demonstrating hardware-efficient architectural changes. Ultralytics has presented 

YOLO-v8 and YOLO-v5, with YOLO-v5 providing notable real-time performance, and based 

on Ultralytics' initial benchmarking results, it is broadly assumed that YOLO-v8 will focus on 

controlled edge device deployment at high-inference speed. 
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Figure 2.9 YOLOv8 vs Alternative YOLO Version. 
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Z. Mahboob et al. [49] study, trained all five models of YOLOv8 with YOLOv7 and 

YOLOv5. A fair comparison of the performance of the models undergone 50 epochs 

consistently on the same dataset. Although YOLOv8 have a relatively smaller number of 

parameters because of the network in network [50] architecture, it achieved a mAP of over 

90%. The performance of models on test data were highlighted in Table 2.4, where YOLOv8m 

as the superior performer with a mean average precision of 96.4% on Tobset dataset, excelling 

other models.v 

 

Table 2.4 Performance on Validation and Test Datasets [49] 

Model Parameters 

Million (M) 

Inference Time 

Milliseconds (ms) 

mAP@0.5 

YOLOv5n 1.9M 7.5 88.3 

YOLOv5s 7.2M 10.1 90 

YOLOv5m 21.2M 15.5 91.2 

YOLOv5l 46.5M 20.8 88.7 

YOLOv5x 86.7M 39 92.2 

YOLOv7 36.5M 16.8 94.5 

YOLOv7x 37.19M 18 76 

YOLOv8n 3.2M 9.7 93.5 

YOLOv8s 11.2M 14 91.6 

YOLOv8m 25.9M 19.5 96.4 

YOLOv8l 43.7M 28 90. 6 

YOLOv8x 68.2M 44 95.6 

 

  



39 

2.7.4 Single-Shot MultiBox Detector 

Single-Shot MultiBox Detector is one of the deep learning models for object detection 

which detects objects from an image by using a single forward pass. Different from YOLO, 

SSD consists of two main components: multi-scale feature maps and convolutional predictor. 

Multi scale feature maps are a pre-trained model (VGG-16) that will be used to classify images. 

Next, SSD applies a 3x3 matrix convolution filter to each cell to make prediction. 

Single-Shot MultiBox Detector has a different approach when dealing with multiple 

bounding boxes Single-Shot MultiBox Detector uses anchor box, a pre-trained fixed sized 

boxes for IOU approach when the score is more than 0.5 and based on that the initial course for 

bounding-box regression is set. Table 2.5 below shows a few of the differences between YOLO 

and SSD. 

 

Table 2.5 Differences Between YOLO and SSD 

You Only Look Once (YOLO)  Single-Shot Multibox Detector (SSD)  

Consists of 3 steps  Consist of 2 steps  

Higher speed with accuracy trades off  Slower speed but higher accuracy  

Used grid-based approach for object 

detection  

Uses anchor boxes  

Able to detect small object with accuracy  Decrease in performance when detecting small 

object  

 

  



40 

2.7.5 Regional Convolutional Neural Network (R-CNN)  

A study by Niu et al. [51] describes a deep convolutional neural network (CNN) 

approach to detecting traffic lights in real-time for use in self-driving vehicles. The author 

proposed a method which utilizes CNN to analyze images and video camera mounted on the 

vehicle and detect traffic lights in the scene, with an emphasis on real-time performance. The 

proposed method, which is the combination of CNN classifier model and ROI candidate 

detection algorithm will then be compared to a few of the existing object detection models to 

evaluate the performance. Table 2.6 below shows the result obtained from the experiment. 

 

Table 2.6 Comparison Between Object Detection Models 

Model  IOU  Fps  Recall  

YOLOv2  27.21%  4.7%  15.15%  

YOLOv2-tiny  27.65%  3.9%  19.03%  

YOLOv3  19.9%  1.96%  6.9%  

YOLOv3-tiny  38.13%  5.2%  32.47%  

SSD  11.37%  11.37%  3.3%  

Faster R-CNN  14.77%  3.5%  7.3%  

Proposed Method  40.45%  10.6%  31.4%  

 

The third version of R-CNN, Faster R-CNN were published in 2015 by Girshick et al. 

[28]. By incorporating a Region Proposal Network (RPN) that simultaneously predicts object 

bounds and objectiveness scores at each location, Faster R-CNN aims to enhance region 

proposal generation. The default configuration has 9 positions anchors that predict whether an 

image is in the foreground or background. Anchor boxes are also used to control variations in 

object aspect ratio and scale. Figure2.10 below illustrates the process of the Faster R-CNN 

Pipeline. 
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Figure 2.10 Faster R-CNN Pipeline 

 

2.7.6 Comparison of Faster-RCNN, YOLO, and SSD. 

J. Kim et al. [52] investigates a deep learning-based technique for recognizing vehicle 

kinds. This study presents faster-RCNN, YOLO, and SSD, which have high accuracy when 

dealing with real time detection. Researchers trained each algorithm on an automotive training 

dataset and examined the results to identify the best model for vehicle type detection. The 

YOLOv4 model excels other mentioned approaches with 93% accuracy as shown in Table 2.7 

and Figure 2.11. 

 

Table 2.7 Deep Learning Models Performance [52]  

Models F1score Precision Recall mAP FPS 

YOLOv4 0.96 0.93 0.98 98.19 82.1 

SSD 0.88 0.90 0.87 90.56 105.14 

Faster R-CNN 0.90 0.86 0.94 93.40 36.32 
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Figure 2.11 Performance Comparison 

 

The Faster-RCNN model is the fastest among R-CNN models, however it does not have 

a suitable FPS since it uses CNN. On the other hand, SSD is faster, but the model is light and 

uses mobile-v1, resulting in lower accuracy. YOLOv4 uses FPN (Feature Pyramid Network), 

where features were predicted for each layer. As high-resolution features are mirrored in 

detection, it eliminates the drawback of not spotting small objects. Thus, YOLOv4 gave the 

best outcome. 
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2.8 Summary of Past Research 

To summarize this chapter the finding from various highlighted past research were gather for better overview as shown in Table 2.7  

 

Table 2.8 Past Research Training Algorithm 

Author  Title  Algorithm/Method Datasets  Results and findings  

C. Fu, W. Liu, A. 

Ranga et al. [29] 

DSSD: Deconvolutional 

Single Shot Detector 

Deconvolutional Single 

Shot Detection (DSSD) 

and Single Shot 

MultiBox Detector 

(SSD). 

ILSVRC 

CLS-LOC  

When comparing the R-FCN to the SSD 513 

model, it is observed that both have similar speed 

and accuracy. However, the DSSD 513 model 

offers improved accuracy, with slightly slower 

speed. On the other hand, the DSSD 321 model 

maintains a speed advantage over R-FCN with a 

minor decrease in accuracy. When compared to 

the SSD, the DSSD model demonstrates 

enhancements in two specific scenarios. Firstly, 

in scenes involving small or densely packed 

objects, where the small input size of SSD proves 

less effective. Secondly, the DSSD model 

outperforms SSD for certain classes that possess 

distinct contextual features. 

C. Li, L. Li. H. 

Jiang et al., [35] 

YOLOv6: A Single-Stage 

Object Detection 

YOLO v5 and YOLO v6. COCO 

dataset 

The YOLOv6-N model achieves a 35.9% AP 

with a throughput of 1234 FPS on the NVIDIA 
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Framework for Industrial 

Applications 

Tesla T4 GPU. In comparison, YOLOv6-S 

demonstrates impressive performance, achieving 

a 43.5% AP at a faster speed of 495 FPS, 

surpassing YOLOv5-S, YOLOX-S, and 

PPYOLOE-S. Even the quantized version of 

YOLOv6-S achieving a 43.3% AP at an increased 

throughput of 869 FPS Additionally, the 

YOLOv6-M/L models outperform their 

predecessors, boasting better accuracy 

performance at 49.5% and 52.3%, respectively. 

Wang, C. Y., 

Bochkovskiy, A.,  

Liao, H. Y. [41] 

YOLOv7: Trainable Bag-

of-Freebies Sets New 

State-of-the-Art for Real-

Time Object Detectors  

YOLOv7, YOLOv5, 

YOLOv4 and Faster R-

CNN  

MS COCO 

dataset 

YOLOv7 surpasses other object detectors in both 

speed and accuracy in the range from 5 FPS to 

160 FPS. YOLOv7 showed 69.7% AP@0.5 with 

161 FPS. Followed by YOLOv5 with 50.7% 

AP@0.5 at 83 FPS. While, YOLOv4 has 68.2% 

AP@0.5 with 70 FPS. Faster R-CNN shows 44% 

AP@0.5 with 20 FPS.   

C. Li, T. Tang, 

G. Wang et al. 

[45] 

BossNAS: Exploring 

Hybrid CNN-transformers 

with Block-wisely Self-

BossNAS ImageNet, 

CIFAR-10, 

and CIFAR-

100 

The hybrid CNN-transformer model achieves an 

impressive accuracy of 82.5% on ImageNet, 

surpassing EfficientNet by 2.4% while 

maintaining a comparable compute time. 
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supervised Neural 

Architecture Search 

Z. Mahboob, A. 

Zeb, U. Khan et 

al. [49] 

YOLO v5, v7 and v8: A 

Performance Comparison 

for Tobacco Detection in 

Field 

YOLOv5, YOLOv7 and 

YOLOv8 

Tobset 

Dataset 

The YOLOv8m model stands out for its 

remarkable performance and precision, 

positioning it as a promising choice for precision 

application. Its swift inference time of 9.7ms 

further enhances its suitability for real-world 

deployment. However, challenges may arise in 

the detection of small leaves, and the accuracy of 

bounding boxes may be affected by the presence 

of weeds. In this context, YOLOv8n emerges as a 

viable alternative with comparable performance. 

Niu, J., Liu, Y., 

Guizani, M., 

Ouyang, Z. [51] 

Deep CNN-based Real-

time Traffic Light Detector 

for Self-driving Vehicles  

YOLOv2, YOLOv2 tiny, 

YOLOv3, YOLOv3 tiny, 

SSD, and Faster R-CNN  

VIVA 

dataset  

While Yolo3-tiny excels in managing the full 

resolution of 1280x960, Yolo2-tiny and SSD need 

to resize the input resolution to meet memory 

requirements. Although Yolo2-tiny, Yolo3-tiny, 

and SSD can achieve a commendable speed of up 

to 10 FPS the resizing (down-sampling) process 
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comes with a trade-off, as it contributes to a 

degradation in detection performance. 

YOLOv2, IOU = 27.21%, Recall = 15.15%  

YOLOv2 tiny, IOU = 22.55%, Recall = 13.29%  

YOLOv3, IOU = 19.9%, Recall = 6.9%  

YOLOv3 tiny, IOU = 17.71%, Recall = 5.59%  

SSD, IOU = 11.37%, Recall = 3.3%  

Faster R-CNN, IOU = 14.77%, Recall = 7.3%  

D. Wu, S. Jiang, 

E. Zhao et al. 

[53] 

Detection of Camellia 

oleifera Fruit in Complex 

Scenes by Using YOLOv7 

and Data Augmentation 

YOLOv3, YOLOv5, 

YOLOv7 and Faster R-

CNN 

Custom 

dataset 

In contrast to the YOLOv5s, YOLOv3-spp, and 

Faster R-CNN target detection networks, the 

findings indicate that the YOLOv7 model 

outperforms with a mean Average Precision 

(mAP) of 95.74%. It also boasts a remarkable F1 

score of 93.67%, Precision at 94.21%, Recall at 

93.13%, and an average detection time of 0.025s 
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2.9 Conclusion 

An extensive study and benchmarking of training algorithm SSD, DSSD, R-CNN and 

YOLO object detectors, including YOLOv8, v7, v5 and v6, was performed. YOLOv8m is the 

most robust of all the mentioned object detection. In terms of real-time implementation and 

processing performance, YOLOv8n is a reasonable solution, with an inference time of 9.7 ms. 

In conclusion, the current study demonstrates that YOLOv8 is the best option for creating a 

detection system that requires high precision, especially when dataset availability is limited 

[49]. The results indicated that YOLOv8 outperformed its progenitors, with YOLOv7 showing 

worse performance due to alterations in its convolution layers, obtaining a mAP of 94.5% [49]. 

YOLOv8n's small size, with just 3.2 million parameters, makes it an ideal candidate for 

use in real-world applications. Despite a little discrepancy in mAP compared to the most 

accurate model (YOLOv8m) which contains 25.9 million parameters, YOLOv8n has a huge 

speed improvement, being more than twice as fast as YOLOv8m. Thus, YOLOv8 will be 

utilized within this project. Furthermore, the datasets used are a custom dataset of the radiator 

picture that collected from the assembly lines, so the data acquisition needs to be done manually. 

The data acquisition tool CVAT will be utilized. 
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METHODOLOGY 

3.1 Introduction 

The YOLOv8 model is commonly utilized in object detection. It may encounter 

numerous issues when detecting diverse objects and situations [53]. Therefore, researchers must 

enhance the model in accordance with the actual scene and adapt it to various settings. 

Currently, the model's improvement focus is mostly on increasing detection accuracy and 

speed. YOLOv8 is a relatively advanced object detector at the moment [41]. 

 

3.2 Project Overview 

Here the flow of the whole project was illustrated using the flow chart as shown in 

Figure 3.1 

 

Figure 3.1 Project Flowchart 
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3.2.1 Training Algorithm for Object Recognition and Classification 

The training process flowchart illustrated in Figure 3.2 shown the with respect to 

training algorithm YOLOv8n. 

 

 

Figure 3.2 Recognition and Classification Using Artificial Intelligence Flowchart 
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3.2.1.1 Experimental Setup 

 
Figure 3.3 Experimental Setup 

 

The camera is positioned at a height of 1.2 meters from the top of the box. The setup 

involves a controlled environment where the box of radiators is placed within a predefined area 

to ensure consistency. The camera is securely mounted on metal beam to maintain a stable view 

and is connected to a computer running the trained YOLOv8n model. Adequate lighting is 

provided to minimize shadows and enhance image clarity. This setup aims to simulate real-

world conditions and assess the model's performance in recognizing and accurately counting 

the radiators from a top-down perspective. 

3.2.1.2 Experimental Datasets 

For datasets collection, the dataset is collected at BMW Powertrain Assembly, Sime 

Darby Auto Engineering the dataset collected inside the assembly line where assembly parts 

are placed before assembly process. The datasets collected for this study is a set of videos and 

images of a radiator inside a box with the imitation of the camera position (top-down 

perspective). The video which is recorded using mobile phone is restricted to 30 fps. Videos 

and images captured from above to simulate the real-world situation on the factory when 

operator assemble the parts as shown in Figure 3.3.  

 

1.2 meters 

Box of 

radiator 

Camera 
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Figure 3.4 Image Datasets Overview 

 

Consequently, the datasets used for results are generated and annotated using Computer 

Vision Annotation Tool (CVAT) as shown in in Table 3.1. 

 

Table 3.1 Experiment Dataset 

Dataset Specification 

Number of images  426 images  

Train data  426 images 

Validation data  426 images 

Number of annotations  1679 annotations  

Average image size  1.3 Mp  

Median image ratio  1880 x 1280  
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3.2.1.3 Data Labelling and Annotation. 

The process of giving labels or annotations to data used in machine learning and deep 

learning algorithms is known as data labelling and annotation. Usually, this is done to train and 

evaluate models, as well as to enhance their performance and accuracy. Data labelling is done 

manually, and the labels or annotations can take a variety of shapes, such as segmentation 

masks, class labels, or bounding boxes. The effectiveness of the deep learning model is 

significantly influenced by the calibre and volume of the labelled data. For this project, the 

annotation and labelling of data is conducted in Computer Vision Annotation Tool (CVAT) as 

shown in Figure 3.4. 

 

 

Figure 3.5 Computer Vision Annotation Tool (CVAT) Software 

Figure 3.4 shows the interface in Computer Vision Annotation Tool (CVAT) which 

enables users to annotate custom data according to the user objectives. After the object in the 

image was annotated, the data then labelled. Since the object detection according to the project 

requirement is only one object type, so only one label was needed. 
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3.3 Experimental Environment 

The environment setup (laptop) used to undergo the process of the algorithm training 

was shown in Table 3.2 

Table 3.2 Experimental Setup Specification Hardware Specification 

Hardware Specification 

Central Processing Unit Intel(R) Core (TM) i5-5300U CPU @ 

2.30GHz  

Graphic Processing Unit   Intel(R) HD Graphics 5500 

Operating System  Windows 10 Pro 

Random Access Memory  8 GB DDR3 

Software Specification 

Python  Version 3.11.5 

Anaconda Navigator Version 2.5.1  

Visual Code Version 1.85.1 

 

3.4 Training Model 

After data labelling and annotation has finished, the dataset is used to train the deep 

learning model (YOLOv8). The model will be trained using Anaconda Navigator and Visual 

Code in python coding language. It supports several well-known machine learning and deep 

learning libraries, which are also a part of AI, and they can be instantly loaded into library. 

The first step in model training is to upload the labeled datasets by using the download 

code generated from Computer Vision Annotation Tool (CVAT). The installation of required 

dependencies and the cloning of YOLOv8 is conducted by using the code; 

# To clone the yolo algorithm from ultralytics 

from ultralytics import YOLO 

 

# To Load a YOLOv8 model 

model = YOLO("yolov8n.yaml")  # To build a new model from scratch 

Then create a “yaml” file name config.yaml.; 

# To specify the data file path 

path: C:\Users\User\Documents\data  

train: images/train  

val: images/train 
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#To specify classes 

names: 

  0: radiator 

 

After all the steps above are done, the training process of the object detection model will 

take place by using the code; 

# Use the YOLOv8 model for training 

# Epoch for number of cycle trains 

results = model.train(data="config.yaml", epochs=100)   

# Load the path of the data from yaml file  

 

For video inference, the code; 

import os 

import time 

 

from ultralytics import YOLO 

import cv2 

 

model_path  = os.path.join('.', 'runs', 'detect', 'train3', 'weights', 

'best.pt') 

model = YOLO(model_path) 

 

VIDEOS_DIR = os.path.join('.', 'videos') 

video_path = os.path.join(VIDEOS_DIR, 'radiator2.mov') 

cap = cv2.VideoCapture(video_path) 

 

ret = True 

 

while ret: 

    ret, frame = cap.read() 

 

    results = model.track(frame, persist=True) 

    frame_ = results[0].plot() 

    cv2.imshow('frame', frame_) 

    if cv2.waitKey(25) & 0xFF == ord('q'): 

        break 
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3.5 Evaluation Indicators of Model 

The YOLO algorithm divides the input image into a grid of S x S cells and localizes 

each object within its associated cell, along with its respective probability score. A single 

regression module determines the attributes of the bounding boxes and presents them in the 

form of vector.  Intersection over Union (IOU) metric is used to eliminate unrelated boxes. 

IOU: 

𝐼𝑜𝑈𝑝𝑟𝑒𝑑 
𝑡𝑟𝑢𝑡ℎ =  

𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
 

Precision, Recall, Mean Average Precision (mAP) and F1 score were used to evaluate 

the performance of the model accurately and objectively. Precision is the most common 

evaluation index, and it is the number of right targets divided by the number of detected targets. 

In general, the higher the Precision is, the better the detection effect will be.  Precision is a very 

intuitive evaluation index, although sometimes high Precision does not represent the truth. 

Consequently, mAP, Recall and F1 score were established for thorough evaluation. Precision, 

Recall, mAP, and F1 score were calculated as follows:  

Precision:  

𝑃 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
  × 100% 

Recall:  

𝑅 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
  × 100% 

where, TP (True Positive) represents the number of objects that are correctly detected. 

While FP (False Positive) represents the number of other objects detected and FN (False 

Negative) represents the number of object that are undetected/missed. 

Average Precision:  

AP =  ∫ P(r)
1

0

 dr 

Mean Average Precision: 

mAP =
1

𝑛
∑ AP1

𝑛

𝑖−1

   

F1 score:  

F1 =  2 ×
P ×  R 

P +  R
 

(2) 

(3) 

(4) 

(5) 

(6) 

(1) 
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RESULTS AND DISCUSSIONS 

4.1 Training Result  

The result of the trained YOLOv8 algorithm was shown in Table 4.1 and Figure 4.1. 

Where, it will further explain in this chapter. 

Table 4.1 Summary of Training Parameters and Results for Yolov8 

Epoch Training Time Precision Recall mAP@0.5 mAP@0.5:0.95 F1 Score 

10 1.664 hours 0.59862 0.59321 0.62497 0.27365 0.59 at 0.212 

25 2.856 hours 0.92441 0.8916 0.95978 0.54239 0.91 at 0.345 

50 5.461 hours 0.95921 0.95593 0.98747 0.61195 0.96 at 0.414 

75 8.103 hours 0.96098 0.96816 0.98932 0.64048 0.96 at 0.404 

100 15.087 hours 0.97493 0.97277 0.99043 0.6642 0.97 at 0.401 

 

Table 4.2 Summary of Training Parameters and Results for Yolov9 

Epoch Training Time Precision Recall mAP@0.5 mAP@0.5:0.95 F1 Score 

10 6.651 hours 0.67825 0.6316 0.71249 0.36352 0.67 at 0.227 

 

 

Figure 4.1 Validation image overview 
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4.2 Confusion Matrix 

From the confusion matrix as shown in Figure 4.2, 4.3, 4.4, 4.5, 4.6, and 4.7. is a matrix 

used for the evaluation of a machine learning model's performance, especially in classification 

tasks can be obtained. It allows for a detailed examination of how well the model is performing 

in terms of making predictions for different classes. The value was tabulated in Table 4.3, 4.4, 

4.5, 4.6, 4.7, and 4.8. The evaluation parameters like Precision, Recall, mAP and F1 score were 

calculated using this value for every epoch using equation (1), (2), (3), (4), (5) and (6). 

 

4.2.1 Comparison for YOLOV8 Between 25, 50, 75 and 100 Epochs. 

 

Figure 4.2 Confusion Matrix 25 epoch 
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Table 4.3 Confusion Matrix Values for 25 epoch 

Parameters Value 

TP 1580 

FP 263 

FN 99 

 

The YOLOv8n model, after 25 epochs of training, demonstrates a significant 

improvement in detection performance. The model achieved 1580 true positives (TP), 

accurately identifying 1580 radiators. With only 263 false positives (FP), the model shows a 

relatively low rate of misidentifying non-radiator objects as radiators. Additionally, the model 

has 99 false negatives (FN), indicating a reduced number of missed detections. 

The model achieves a precision of 0.92441, indicating that 92.44% of the detected 

objects are correctly identified as radiators. The recall rate is 0.8916, meaning the model 

successfully detects 89.16% of all actual radiators present. The mean Average Precision (mAP) 

at an IoU threshold of 0.5 is very high at 0.95978, reflecting the model's excellent ability to 

balance precision and recall across various object sizes and scales. The mAP at a range of IoU 

thresholds (0.5:0.95) is 0.54239, showing good performance even under stricter localization 

criteria. The F1 score, a harmonic mean of precision and recall, is 0.91 at a threshold of 0.345, 

underscoring the model's robust and reliable detection capabilities. These metrics indicate that 

the model is highly effective in accurately identifying and locating radiators, making it a 

powerful tool for practical applications in this domain. 
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Figure 4.3 Confusion Matrix for 50 epoch 

 

Table 4.4 Confusion Matrix Values for 50 epoch 

Parameters Value 

TP 1657 

FP 263 

FN 22 

 

After 50 epochs of training, the YOLOv8 model exhibits outstanding performance in 

radiator detection, as indicated by the confusion matrix values. The model achieves 1657 true 

positives (TP), correctly identifying 1657 radiators. With 263 false positives (FP), the model 

shows a consistent rate of misidentifications, which remains low relative to the number of 

correct detections. The model has significantly reduced false negatives (FN) to just 22, 

highlighting its improved ability to detect nearly all radiators present.  
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The precision of 0.95921 indicates that 95.92% of the detected objects are accurately 

identified as radiators, while the recall of 0.95593 shows that the model correctly detects 

95.59% of all actual radiators present. The mean Average Precision (mAP) at an IoU threshold 

of 0.5 is exceptionally high at 0.98747, reflecting the model's excellent ability to balance 

precision and recall across different object sizes and scales. Even with stricter localization 

criteria, the mAP at a range of IoU thresholds (0.5:0.95) is 0.61195, indicating strong 

performance. The F1 score, which harmonizes precision and recall, is 0.96 at a threshold of 

0.414, underscoring the model's robust and reliable detection capabilities. These highlight the 

model's high accuracy, minimal error rates, and overall effectiveness. 

 

 

Figure 4.4 Confusion Matrix for 75 epoch 
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Table 4.5 Confusion Matrix Values for 75 epoch 

Parameters Value 

TP 1668 

FP 218 

FN 11 

 

Through 75 epoch, the model gives 1668 true positives (TP), the model correctly 

identifies 1668 radiators from the dataset. The false positive count (FP) stands at 218, implying 

that the model incorrectly identifies 218 non-radiator objects as radiators. Furthermore, the 

model exhibits a very low false negative count (FN) of 11, indicating that it misses only 11 

actual radiators in the dataset.  

With a precision of 0.96098, the model accurately identifies 96.098% of the detected 

objects as radiators. The recall rate is 0.96816, indicating that the model successfully detects 

96.816% of all actual radiators present in the dataset. The mean Average Precision (mAP) at an 

IoU threshold of 0.5 is very high at 0.98932, reflecting the model's outstanding ability to balance 

precision and recall across various object sizes and scales. Even under more stringent criteria, 

with a mAP at a range of IoU thresholds (0.5:0.95) of 0.64048, the model maintains strong 

performance. The F1 score, a harmonic mean of precision and recall, is 0.96 at a threshold of 

0.404, underscoring the model's robust and reliable detection capabilities. These metrics 

collectively highlight the model's high accuracy, comprehensive detection coverage, and 

consistent performance, making it an excellent choice for real-world applications requiring 

precise and reliable object detection. 
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Figure 4.5 Confusion Matrix for 100 epoch 

 

Table 4.6 Confusion Matrix Values for 100 epoch 

Parameters Value 

TP 1666 

FP 133 

FN 13 

 

The model achieved 1666 true positives (TP), accurately identifying 1666 radiators from 

the dataset. It also produced 133 false positives (FP), indicating instances where non-radiator 

objects were mistakenly identified as radiators. Furthermore, the model has a low false negative 

count (FN) of 13, meaning it missed only 13 actual radiators in the dataset.  
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These values translate to a precision of approximately 0.97493, the model accurately 

identifies 97.493% of the detected objects as radiators. The recall rate is 0.97277, indicating 

that the model successfully detects 97.277% of all actual radiators present in the dataset. The 

mean Average Precision (mAP) at an IoU threshold of 0.5 is very high at 0.99043, showcasing 

the model's outstanding ability to balance precision and recall across various object sizes and 

scales. Even under stricter criteria, with a mAP at a range of IoU thresholds (0.5:0.95) of 0.6642, 

the model maintains strong performance. The F1 score, a harmonic mean of precision and 

recall, is 0.97 at a threshold of 0.401, underscoring the model's robust and reliable detection 

capabilities. 

 

 

4.2.2 Comparison Between YOLOV8 and YOLOV9 with 10 Epochs. 

 

Figure 4.6 Confusion Matrix of Yolov8 for 10 epoch 
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Table 4.7 Confusion Matrix Values of Yolov8 for 10 epoch 

Parameters Value 

TP 888 

FP 370 

FN 791 

 

The model with 10 epochs for Yolov8 gives a mixed performance. With 888 true 

positives (TP), the model successfully identified 888 radiators correctly. However, the model 

also produced 370 false positives (FP), indicating instances where it mistakenly identified non-

radiator objects as radiators. Additionally, there were 791 false negatives (FN), meaning the 

model failed to detect 791 actual radiators. 

This model trained for 10 epochs gives a precision of 0.59862, the model accurately 

identifies approximately 59.86% of the detected objects as true radiators. Its recall rate is 

0.59321, indicating that it correctly detects 59.32% of all actual radiators present in the dataset. 

The mean Average Precision (mAP) at an IoU threshold of 0.5 is 0.62497, reflecting the model's 

ability to balance precision and recall for different object sizes and scales, while the mAP at a 

range of IoU thresholds (0.5:0.95) is lower at 0.27365, suggesting decreased performance for 

more stringent localization criteria. The F1 score, a harmonic mean of precision and recall, is 

0.59, showing a moderate level of overall performance. This suggests that while the model is 

fairly competent in detecting radiators, there is room for improvement in enhancing both 

precision and recall, achieving more robust and reliable detection results. 
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Figure 4.7 Confusion Matrix of Yolov9 with 10 epoch 

 

Table 4.8 Confusion Matrix Values of Yolov9 with 10 epoch 

Parameters Value 

TP 954 

FP 481 

FN 618 

 

Meanwhile for trained Yolov9 model with 10 epoch, the model achieved 954 true 

positives (TP), meaning it accurately identified 954 radiators. However, it also produced 481 

false positives (FP), indicating instances where the model mistakenly identified non-radiator 

objects as radiators. Additionally, the model has 618 false negatives (FN), which means it failed 

to detect 618 actual radiators in the dataset. 
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The precision of 0.67825 indicates that 67.825% of the objects identified as radiators 

are correctly classified, showing the model's accuracy in making positive identifications. The 

recall of 0.6316 suggests that the model detects 63.16% of all actual radiators present in the 

dataset, indicating some missed detections. The mean Average Precision (mAP) at an IoU 

threshold of 0.5 is 0.71249, reflecting a good balance of precision and recall for different object 

sizes and scales within this threshold. However, the mAP at a range of IoU thresholds (0.5:0.95) 

drops to 0.36352, indicating a decrease in performance under stricter localization criteria, which 

means the model struggles more with precise object localization. The F1 score of 0.67 at a 

threshold of 0.227, which balances precision and recall, points to an overall moderate 

performance level.  

However, despite the small differences in performance between the 10-epoch models of 

YOLOv8 and YOLOv9, YOLOv8 is more favorable due to its significantly shorter training 

time. YOLOv8 requires only 1.664 hours for 10 epochs, compared to the much longer 6.651 

hours for YOLOv9. This substantial difference in training time highlights YOLOv8's 

efficiency, making it a better choice for rapid prototyping and iterative model refinement, thus 

enabling faster development and deployment in practical applications. 
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4.3 F1 Confidence Curve 

The F1 curve, a metric used to evaluate the balance between precision and recall in classification tasks, represents the harmonic mean of 

precision and recall values at different thresholds. Where an F1 score of 1.0 indicates a perfect classifier, and a score of 0.0 indicates a classifier 

that is making no correct predictions. On the other hand, threshold is the point at which the model decides whether a prediction should be classified 

as positive or negative. A lower threshold generally leads to more positive predictions. 

 

4.3.1 Comparison for YOLOV8 Between 25, 50, 75 and 100 Epochs. 

 

Figure 4.8 F1 Confidence Curve for 25 Epoch   

 

Figure 4.9 F1 Confidence Curve for 50 Epoch
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Figure 4.10 F1 Confidence Curve for 75 Epoch   

 

Figure 4.11 F1 Confidence Curve for 100 Epoch 
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A high F1 score, such as 0.91 in Figure 4.8, indicates that the model's predictions are both accurate (high precision) and comprehensive 

(high recall) at this particular confidence threshold of 0.345. Adjusting the confidence threshold can impact the trade-off between precision and 

recall, a higher threshold may yield higher precision but lower recall, while a lower threshold may increase recall but decrease precision. 

At 50 epochs, the model maintains high accuracy in both correctly identifying radiators and minimizing missed detections at this threshold. 

A confidence threshold of 0.414 in Figure 4.9 means that the model assigns a probability of at least 41.4% to a detected object being a radiator 

before confirming it as such. This relatively moderate threshold helps balance between false positives and false negatives, ensuring that the model 

is neither too lenient nor too strict in its detections. As a result, the model achieves an excellent F1 score of 0.96, demonstrating its effectiveness 

in providing reliable and consistent detection results. Following with slightly higher F1 score of 0.97 with higher epoch 

 Additionally, the mode trained with 75 epochs also attains an F1 score of 0.96 in Figure 4.10, but at a slightly lower confidence threshold 

of 0.404. This suggests that with additional training, the model has become slightly more confident in its predictions, requiring a marginally lower 

threshold to maintain the same high level of precision and recall. This indicates improved robustness and a slight enhancement in the model's 

ability to generalize well to new data. 

Furthermore, with 100 epochs the model's performance further improves in Figure 4.11, achieving an F1 score of 0.97 at an even lower 

confidence threshold of 0.401. This indicates that the model has significantly increased its confidence in making accurate predictions while 

maintaining a very high level of precision and recall. The lower confidence threshold combined with the higher F1 score reflects a substantial 

improvement in the model's detection capabilities, making it highly reliable and effective for practical applications. This progressive enhancement 

in performance underscores the benefits of extended training for fine-tuning and optimizing the model. 
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4.3.2 Comparison Between YOLOV8 and YOLOV9 with 10 Epochs.

 

Figure 4.12 F1 Confidence Curve for 10 Epoch with Yolov8 

 

Figure 4.13 F1 Confidence Curve for 10 Epoch with Yolov9

 

The F1 curve as shown in Figure 4.12 generated after training the model give the F1 score value of 0.59 at a threshold of 0.212. This shows 

that the classifier is performing reasonably good and balanced performance. It indicates that the classifier has a moderate to high level of precision 

and recall at 0.212 threshold. 
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On the other hand, YOLOv9 model trained with 10 epochs gives 0.67 F1 score at threshold of 0.227. The confidence threshold of 0.227 is 

relatively low, suggesting that the model is set to make predictions even when it is not highly confident about its classifications. A low confidence 

threshold means the model is more likely to make positive identifications, resulting in higher recall but potentially lower precision. This is reflected 

in the moderate F1 score of 0.67, which shows that the model is detecting a fair number of true positives but is also generating a significant number 

of false positives. The curve indicates that while the model can identify a good number of actual radiators, it also has a tendency to incorrectly 

classify non-radiator objects as radiators. 

Despite the slightly improved performance gap between the 10-epoch models of YOLOv8 and YOLOv9, YOLOv8 emerges as the 

preferable option due to its vastly shorter training time. Training YOLOv8 for 10 epochs takes only 1.664 hours, while YOLOv9 requires a 

significantly longer 6.651 hours. This stark contrast underscores YOLOv8's efficiency and suitability for rapid development cycles. The reduced 

training time of YOLOv8 allows for quicker experimentation and model refinement, making it a more practical choice for real-world applications 

where time is a critical factor. 
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4.4 Precision-Recall (PR) Curve 

A Precision-Recall (PR) curve is used to evaluate the performance of a classification model, particularly in scenarios where the classes are 

imbalanced. It shows the trade-off between precision and recall at different thresholds. This metric is commonly used in object detection tasks, 

where it evaluates how well the predicted bounding boxes match the ground truth boxes. Mean Average Precision (mAP) is an average of the 

precision values calculated at different recall levels. It summarizes the PR curve into a single value, providing an overall assessment of model 

performance across various thresholds. Intersection over Union (IoU) threshold measures the overlap between predicted and ground truth bounding 

boxes. An IoU of 0.5 means the predicted box overlaps by at least 50% with the ground truth box.  

4.4.1 Comparison for YOLOV8 Between 25, 50, 75 and 100 Epochs

 

Figure 4.14 Precision-Recall (PR) Curve for 25 Epoch 

 

Figure 4.15 Precision-Recall (PR) Curve for 50 Epoch 
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 Figure 4.16 Precision-Recall (PR) Curve for 75 Epoch 

 

Figure 4.17 Precision-Recall (PR) Curve for 100 Epoch

 

The precision-recall curve for the YOLOv8 model trained over different epochs demonstrates a clear trend of improvement in both precision 

and recall as the number of epochs increases. At 25 epochs, the model achieves a precision of 0.92441 and a recall of 0.8916, indicating a strong 

ability to correctly identify true positives while minimizing false positives. As training continues to 50 epochs, both metrics improve significantly, 

with precision reaching 0.95921 and recall climbing to 0.95593, showcasing enhanced accuracy and robustness in detection. 
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Further training to 75 epochs results in a slight increase in precision to 0.96098 and a more noticeable rise in recall to 0.96816, suggesting 

that the model is becoming increasingly proficient at identifying almost all relevant instances while still maintaining high accuracy. Finally, at 100 

epochs, the model achieves an outstanding precision of 0.97493 and recall of 0.97277. This high level of performance reflects the model's 

exceptional capability to not only detect objects accurately but also to minimize false negatives and false positives effectively. 

Overall, the precision-recall curve of the YOLOv8 model illustrates a steady enhancement in detection performance with more training 

epochs, highlighting its potential for highly accurate object detection tasks. The model's ability to maintain high precision while significantly 

improving recall suggests a well-balanced and effective training process, making it a reliable tool for practical applications requiring precise and 

comprehensive object detection. 
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4.4.2 Comparison Between YOLOV8 and YOLOV9 with 10 Epochs.

 

Figure 4.18 Precision-Recall (PR) Curve for 15 Epoch Using 

YOLOV8 

 

Figure 4.19 Precision-Recall (PR) Curve for 10 Epoch Using 

YOLOV9

 

The precision-recall evaluation for the 10-epoch models of YOLOv8 and YOLOv9 reveals notable insights into their initial performance 

and potential areas for improvement. At 10 epochs, YOLOv8 achieves a precision of 0.59862 and a recall of 0.59321. These values indicate a 

moderate ability to correctly identify true positives while minimizing false positives, but there is still substantial room for improvement in both 

precision and recall. The model's performance at this stage suggests that while it can detect relevant objects, it may also produce a considerable 

number of false negatives and false positives. 
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In comparison, YOLOv9 at 10 epochs exhibits a higher precision of 0.67825 and a slightly better recall of 0.6316. This indicates that 

YOLOv9, with the same number of epochs, is somewhat better at correctly identifying true positives and reducing false positives compared to 

YOLOv8. The higher precision and recall suggest that YOLOv9 may have a more effective initial learning process, potentially due to different 

architecture or hyperparameter settings. However, it's crucial to consider the training time alongside these metrics. YOLOv9, despite its slightly 

better initial performance, requires significantly longer training time compared to YOLOv8. This difference in training efficiency can be critical in 

practical scenarios where time is important. 
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4.5 Training Loss 

Training Loss (“train/box_loss”, “train/cls_loss” and “train/dfl_loss”) refers to the error or loss calculated during the training phase of a 

machine learning model. It quantifies how well the model is performing on the training data. The loss is calculated using a chosen loss function 

that measures the difference between the predicted values and the actual values. Then again, Validation (or Test) Loss (val/box_loss”, val/cls_loss”, 

val/dfl_loss”,) refers to the error or loss calculated on a separate dataset that the model hasn't seen during training. This set is used to evaluate the 

model's generalization and how well it performs on new, unseen data. Similar to training loss, the validation loss is computed using the same loss 

function.  

Thence, all the graphs show that both of the training and validation loss are decreasing gradually as the training progresses, it suggests that 

the model is improving its performance as shown in Figure 4.20, 4.21, 4.22, 4.23, 4.24, and 4.25. This decline signifies that the model is learning 

more about the underlying patterns in the data and is becoming better at making predictions. On account of this, the precision, recall and mean 

Average Precision (mAP) graphs also increasing gradually over the course of training also indicate it is improving in making prediction. 
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4.5.1 Comparison for YOLOV8 Between 25, 50, 75 and 100 Epoch 

 

Figure 4.20 Training Loss, Validation Loss for 25 Epoch. 

 

Figure 4.21 Training Loss, Validation Loss for 50 Epoch.

 

Figure 4.22 Training Loss, Validation Loss for 75 Epoch. 

 

Figure 4.23 Training Loss, Validation Loss for 100 Epoch. 
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Table 4.9 Last 5 Batch of 25 Epoch 
Epoch Train/box_loss Train/cls_loss Train/dfl_loss Val/box_loss Val/cls_loss Val/dfl_loss 
20 1.6648 1.2368 2.0109 1.5821 1.1593 1.9409 
21 1.6008 1.2042 1.98 1.6165 1.1854 1.9782 
22 1.6247 1.1784 1.9607 1.5466 1.0765 1.8956 
23 1.589 1.0949 1.918 1.539 1.0842 1.8892 
24 1.5822 1.0822 1.9025 1.5232 1.0254 1.8646 
25 1.5507 1.0747 1.8925 1.5004 1.0007 1.8386 

 

Table 4.10 Last 5 Batch of 50 Epoch 
Epoch Train/box_loss Train/cls_loss Train/dfl_loss Val/box_loss Val/cls_loss Val/dfl_loss 
45 1.3845 0.8463 1.691 1.323 0.80141 1.6269 
46 1.4033 0.83674 1.6987 1.3124 0.78005 1.6192 
47 1.3592 0.82837 1.6752 1.309 0.77542 1.6279 
48 1.3802 0.83694 1.6875 1.325 0.78864 1.6377 
49 1.3491 0.81703 1.6578 1.3178 0.77353 1.6206 
50 1.3329 0.81371 1.6548 1.2811 0.75837 1.5957 

 

Table 4.11 Last 5 Batch of 75 Epoch 
Epoch Train/box_loss Train/cls_loss Train/dfl_loss Val/box_loss Val/cls_loss Val/dfl_loss 
70 1.2904 0.74733 1.5705 1.2162 0.68001 1.4871 
71 1.2834 0.72914 1.5556 1.2244 0.68174 1.4992 
72 1.2737 0.7158 1.536 1.2073 0.67585 1.4826 
73 1.2578 0.70433 1.5235 1.2071 0.67026 1.4806 
74 1.2751 0.71625 1.5446 1.208 0.66451 1.4925 
75 1.2477 0.70073 1.5379 1.1939 0.66311 1.4722 

 

Table 4.12 Last 5 Batch of 100 Epoch 
Epoch Train/box_loss Train/cls_loss Train/dfl_loss Val/box_loss Val/cls_loss Val/dfl_loss 
95 1.2156 0.65209 1.5115 1.1812 0.61422 1.46 
96 1.2363 0.65454 1.5132 1.1736 0.61479 1.4578 
97 1.2088 0.63215 1.4932 1.159 0.61001 1.4463 
98 1.2112 0.64612 1.4918 1.1753 0.61039 1.4534 
99 1.2113 0.65144 1.5001 1.1579 0.60069 1.4416 
100 1.2072 0.63557 1.4894 1.1562 0.59765 1.4459 

 

Focusing on the last five batches of epochs 25, 50, 75, and 100. At Epoch 25, the training 

losses for box, classification (cls), and distribution focal loss (dfl) are relatively high, with 

values of 1.6648, 1.2368, and 2.0109, respectively. The validation losses are slightly lower but 

still high, indicating that the model is still learning basic patterns. 
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By Epoch 50, the training losses have significantly decreased to 1.3329 for box, 0.81371 

for cls, and 1.6548 for dfl, showing improvement in the model's learning. The validation losses 

also decreased, indicating that the model is better at generalizing from the training data to new 

data.At Epoch 75, the training losses further decrease to 1.2477 (box), 0.70073 (cls), and 1.5379 

(dfl). The validation losses also continue to drop, though the rate of decrease is slower, 

suggesting that the model is approaching optimal performance. 

Finally, by Epoch 100, the training losses are at their lowest, with box loss at 1.2072, 

cls loss at 0.63557, and dfl loss at 1.4894. Validation losses follow the same trend, indicating 

that the model has learned well. Overall, the progressive decrease in losses across these epochs 

demonstrates the YOLOv8 model's learning curve and highlights the optimal model's 

performance. 
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4.5.2 Comparison Between YOLOV8 and YOLOV9 with 10 Epochs.

 

 

Figure 4.24 Training Loss, Validation Loss Precision and Recall for 

10 Epoch with Yolov8. 

 

 

Figure 4.25 Training Loss, Validation Loss Precision and Recall for 

10 Epoch with Yolov9. 

Table 4.13 Last 5 Batch of 10 Epoch with Yolov8 

Epoch Train/box_loss Train/cls_loss Train/dfl_loss Val/box_loss Val/cls_loss Val/dfl_loss 
6 2.5976 2.2301 2.7923 2.4519 2.7623 2.7518 
7 2.3464 2.066 2.7047 2.3168 2.0813 2.6704 
8 2.3017 1.9685 2.6455 2.1732 1.8728 2.5231 
9 2.3239 1.8769 2.6298 2.0879 1.7103 2.4401 
10 2.2152 1.7819 2.5653 2.091 1.6933 2.4334 



82 

 

Table 4.14 Last 5 Batch of 10 epoch with Yolov9 

Epoch Train/box_loss Train/cls_loss Train/dfl_loss Val/box_loss Val/cls_loss Val/dfl_loss 
6 2.4849 2.1221 2.7408 2.4571 2.4008 2.7518 
7 2.4769 2.0171 2.711 2.3518 2.1933 2.6184 
8 2.3579 1.8945 2.6109 2.1301 2.0049 2.5533 
9 2.2639 1.7777 2.5249 2.2239 1. 3192 2.4166 
10 2.1765 1.7306 2.4483 2.062 1. 2131 2.4109 

 

For Yolov8, there is a noticeable decrease in the training losses across the epochs. The 

train/box_loss decreases from 2.5976 at epoch 6 to 2.2152 at epoch 10, train/cls_loss drops 

from 2.2301 to 1.7819, and train/dfl_loss reduces from 2.7923 to 2.5653. Similarly, validation 

losses also show a declining trend. The val/box_loss decreases from 2.4519 at epoch 6 to 2.091 

at epoch 10, val/cls_loss decreases from 2.7623 to 1.6933, and val/dfl_loss reduces from 2.7518 

to 2.4334. 

For Yolov9, a similar trend of decreasing losses is observed. The train/box_loss 

decreases from 2.4849 at epoch 6 to 2.1765 at epoch 10, train/cls_loss drops from 2.1221 to 

1.7306, and train/dfl_loss reduces from 2.7408 to 2.4483. The validation losses also decline 

over the epochs, with val/box_loss decreasing from 2.4571 at epoch 6 to 2.062 at epoch 10, 

val/cls_loss decreasing significantly from 2.4008 to 1.2131, and val/dfl_loss reducing from 

2.7518 to 2.4109. 

Overall, both YOLO versions show an improvement in performance with a consistent 

reduction in both training and validation losses over the last five epochs. This indicates that the 

models are learning effectively and becoming more accurate in their predictions. 

712 

712 
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4.6 Testing Result 

The model is tasked with identifying and localizing objects within 3 videos. When 

running a video testing, the model successfully recognised and localized all presented radiators 

within the frames as shown in Figure 4.26, 4.27 and 4.28. This means that while the model 

accurately detected and classified the distinct objects. This scenario highlights the model's 

capability to identify objects in real-time video streams. 

 

 

Figure 4.26 Result of Video Testing 1. 
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Figure 4.27 Result of Video Testing 2. 
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Figure 4.28 Result of Video Testing 3. 

  



86 

  

 

 

CONCLUSION AND RECOMMENDATIONS  

5.1 Conclusion 

The development of a computer vision system utilizing YOLOv8 for the detection and 

classification of logistic parts supply, specifically car radiators, is undertaken in this project. 

The primary objective is to automate the identification and categorization of car radiators within 

a logistic environment, facilitating efficient supply chain management. Firstly, various images 

of car radiators in logistic settings were collected. Then YOLOv8 is successfully developed on 

this dataset, optimizing its ability to accurately detect and classify radiators within varying 

backgrounds and orientations during daytime or good lighting.  

Starting with YOLOv8, we observe a progressive improvement in performance metrics 

with increasing epochs. At 10 epochs, the model achieves moderate precision (0.59862) and 

recall (0.59321), with an F1 score of 0.59. However, as training progresses to 25, 50, 75, and 

100 epochs, there is a notable enhancement in precision, recall, and F1 score. Particularly, at 

100 epochs, YOLOv8 achieves outstanding precision (0.97493), recall (0.97277), and an 

impressive F1 score of 0.97, indicating its capability to accurately detect radiators with minimal 

errors. 

On the other hand, YOLOv9 exhibits a different trend in performance. At 10 epochs, 

the model shows relatively higher precision (0.67825) and recall (0.6316) compared to 

YOLOv8 at the same epoch. However, the F1 score is lower at 0.67. This suggests that 

YOLOv9 initially performs reasonably well but may require further training or fine-tuning to 

achieve comparable results to YOLOv8's performance at higher epochs. 

In comparing the training times between YOLOv8 and YOLOv9, a notable difference 

emerges. YOLOv9, despite achieving relatively higher initial precision and recall at 10 epochs, 

requires significantly longer training times compared to YOLOv8 across all epochs. YOLOv8 

requires only 1.664 hours for training, whereas YOLOv9 takes substantially longer at 6.651 

hours. This indicates that YOLOv8 offers much faster training compared to YOLOv9 at this 

stage of training. The shorter training time of YOLOv8 can be advantageous in scenarios where 
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rapid prototyping or quick model iterations are required. It allows for faster experimentation 

with different hyperparameters, data augmentation techniques, and training strategies, leading 

to quicker model refinement and optimization. On the other hand, although YOLOv9 has a 

longer training time, it initially demonstrates slightly higher precision and recall compared to 

YOLOv8 at 10 epochs. This suggests that YOLOv9 may require more time to converge to 

optimal performance but could potentially offer better performance with extended training. 

In summary, YOLOv8 demonstrates superior performance in radiator detection as 

training progresses, achieving exceptional precision, recall, and F1 score at 100 epochs. 

YOLOv9 shows potential with decent performance at 10 epochs, but its performance may 

benefit from additional training and optimization. Overall, YOLOv8 showing robustness and 

accuracy in complex detection tasks with extended training. 

While testing with the video feed, the model successfully identified four out of six 

objects in video streams. Despite the partial identification, the success in recognizing and 

localizing the objects signifies the YOLOv8 model's potential to contribute significantly to the 

automation of logistic part supply chains, offering real-time insights and facilitating streamlined 

operations in the context of car radiator logistics. However, it's essential to further the training 

of the YOLOv8 model with larger dataset. 
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5.2 Future Works 

For future work, enhancing the performance of the logistic parts supply detection system 

can be pursued through several strategies. First, visit the site during the holiday period to collect 

more datasets for better model training. Besides, data augmentation techniques also can be 

employed to further diversify the training dataset and train the YOLOv8 model on a more 

extensive and diverse dataset. Plus, utilize transfer learning by fine-tuning a pre-trained 

YOLOv8 model on a large dataset (e.g., COCO dataset) before fine-tuning it specifically for 

radiator detection. Transfer learning can significantly speed up convergence and improve 

performance, especially with limited training data. Last but not least, monitor the model's 

performance regularly and fine-tune it as needed with new data or adjustments to the training 

pipeline. This ensures the model remains effective and adapts to evolving detection 

requirements. 
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APPENDICES 

APPENDIX A 

The installation of required dependencies and the cloning of YOLOv8 is conducted 

by using the code; 

# To clone the yolo algorithm from ultralytics 

from ultralytics import YOLO 

 

# To Load a YOLOv8 model 

model = YOLO("yolov8n.yaml")  # To build a new model from scratch 

Then create a “yaml” file name config.yaml.; 

# To specify the data file path 

path: C:\Users\User\Documents\data  

train: images/train  

val: images/train 

 

#To specify classes 

names: 

  0: radiator 

 

After all the steps above are done, the training process of the object detection model 

will take place by using the code; 

# Use the YOLOv8 model for training 

# Epoch for number of cycle trains 

results = model.train(data="config.yaml", epochs=100)   

# Load the path of the data from yaml file  

 

For video inference, the code; 

import os 

import time 

 

from ultralytics import YOLO 

import cv2 

 

model_path  = os.path.join('.', 'runs', 'detect', 'train3', 'weights', 

'best.pt') 

model = YOLO(model_path) 

 

VIDEOS_DIR = os.path.join('.', 'videos') 

video_path = os.path.join(VIDEOS_DIR, 'radiator2.mov') 

cap = cv2.VideoCapture(video_path) 
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ret = True 

 

while ret: 

    ret, frame = cap.read() 

 

    results = model.track(frame, persist=True) 

    frame_ = results[0].plot() 

    cv2.imshow('frame', frame_) 

    if cv2.waitKey(25) & 0xFF == ord('q'): 

        break 

 

 


