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ABSTRACT 

Continuous blood pressure (BP) monitoring is crucial for managing 

hypertension. However, current methods have drawbacks such as risks and 

discomfort for the patient. To address this, some studies have explored BP prediction 

through PPG and ECG signals. This project aims to develop two BP prediction 

models: one for systolic and one for diastolic pressure, by identifying and extracting 

BP-related features from PPG and ECG signals along with demographic features, 

using a machine learning model and Shapley Additive Explanations (SHAP). The 

model's performance is evaluated against AAMI and BHS standards. Two 

experiments were conducted, which includes identifying the best machine learning 

model and determining the best feature combination for BP prediction. Initially, 

features were extracted, and both Support Vector Regression (SVR) and Random 

Forest models were trained on the dataset. The results from model selection show 

that Random Forest performs better than SVR, hence, it is used to develop the BP 

prediction models. The results from feature analysis reveal that both signals and 

demographic features contribute to BP prediction. The inclusion of ECG signals and 

demographic features is found reduces the Mean Error (ME) of prediction by 

approximately 24.13% for SBP and 81.50% for DBP compared to using only PPG 

signal. In this project, SHAP feature selection is introduced, which involves ranking 

features according to their importance in machine learning model predictions, 

followed by an iterative process of removing the least important features to select the 

optimized feature combination based on the lowest root mean square error. The 

optimized feature combination is then used to develop the final BP prediction model. 

The final result indicates that SHAP feature selection managed to reduce the number 

of features used in SBP and DBP models by up to 48.72% and 50%, respectively, 

while still providing comparable results to the models with the full set of features. 

This output is expected to be beneficial for medical teams in clinical studies on blood 

pressure and cardiovascular diseases. 
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ABSTRAK 

Pemantauan tekanan darah (BP) yang berterusan adalah penting untuk 

menguruskan hipertensi. Walau bagaimanapun, kaedah yang sedia ada mempunyai 

kelemahan seperti risiko dan ketidakselesaan bagi pesakit. Untuk menangani isu ini, 

beberapa kajian telah meneroka ramalan BP melalui isyarat PPG dan ECG. Projek ini 

bertujuan untuk membangunkan dua model ramalan BP: satu untuk tekanan sistolik 

dan satu untuk tekanan diastolik, dengan mengenal pasti dan mengekstrak ciri-ciri 

berkaitan BP daripada isyarat PPG dan ECG bersama dengan ciri-ciri demografi, 

menggunakan model pembelajaran mesin dan Shapley Additive Explanations 

(SHAP). Prestasi model dinilai berdasarkan piawaian AAMI dan BHS. Dua 

eksperimen telah dijalankan, termasuk mengenal pasti model pembelajaran mesin 

terbaik dan menentukan kombinasi ciri terbaik untuk ramalan BP. Pada awalnya, 

ciri-ciri telah diekstrak dan kedua-dua model Support Vector Regression (SVR) dan 

Random Forest telah dilatih pada set data. Hasil pemilihan model menunjukkan 

bahawa Random Forest berprestasi lebih baik daripada SVR, oleh itu ia digunakan 

untuk membangunkan model ramalan BP. Hasil analisis ciri menunjukkan bahawa 

kedua-dua isyarat dan ciri demografi menyumbang kepada ramalan BP. Kemasukan 

isyarat ECG dan ciri demografi didapati mengurangkan Ralat Purata (ME) ramalan 

sebanyak kira-kira 24.13% untuk SBP dan 81.50% untuk DBP berbanding hanya 

menggunakan isyarat PPG. Dalam projek ini, pemilihan ciri SHAP diperkenalkan, 

yang melibatkan peringkat ciri mengikut kepentingannya dalam ramalan model 

pembelajaran mesin, diikuti dengan proses iterasi mengeluarkan ciri yang paling 

tidak penting untuk memilih kombinasi ciri yang dioptimumkan berdasarkan ralat 

min kuasa dua terendah. Kombinasi ciri yang dioptimumkan kemudian digunakan 

untuk membangunkan model ramalan BP akhir. Hasil akhir menunjukkan bahawa 

pemilihan ciri SHAP berjaya mengurangkan bilangan ciri yang digunakan dalam 

model SBP dan DBP sehingga 48.72% dan 50% masing-masing, sambil masih 

memberikan hasil yang setanding dengan model dengan set ciri penuh. Hasil ini 

dijangka memberi manfaat kepada pasukan perubatan dalam kajian klinikal 

mengenai tekanan darah dan penyakit kardiovaskular. 

. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Motivation 

Blood pressure (BP) refers to the measurement of the pressure or force 

exerted by blood inside human arteries. These arteries deliver oxygen-rich blood 

pumped by the heart to the entire body. It is measured in millimetres of mercury 

(mmHg) and is usually given as systolic blood pressure (SBP) over diastolic blood 

pressure (DBP). SBP indicates the maximum BP in the arteries when the heart 

contracts, while DBP reflects the minimum BP when the heart muscle is resting 

between contractions [1]. Figure 1.1 illustrates the BP categories based on SBP and 

DBP values. 

 

 

Figure 1.1: BP category based on SBP and DBP [1]. 

 

High BP, or hypertension, is often called the silent killer because it typically 

has no symptoms. According to the World Health Organization (WHO), an estimated 

1.28 billion adults between the ages of 30 to 79 worldwide have hypertension, with 

an estimated 46% being unaware of their illness, and less than half (42%) receive a 

diagnosis and appropriate treatment [2]. In the United States, hypertension was a 

primary cause of 691,095 deaths in 2021 [3]. Therefore, continuous BP monitoring is 

crucial, as it serves as the primary method for detecting hypertension. 
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Hypertension is a major risk factor that causes cardiovascular diseases, 

including heart attacks and strokes. Ischemic heart disease (IHD) is a type of 

cardiovascular disease that significantly increases with high SBP [4]. According to 

the Statista Research Department, ischemic heart disease was the leading cause of 

death in Malaysia in 2022, with more than 20 thousand deaths [5], as illustrated in 

Figure 1.2. This highlights the importance of continuous BP monitoring in the early 

detection and monitoring of cardiovascular disease in real-time. 

 

 

Figure 1.2: Leading causes of death in Malaysia in 2022[5]. 

 

Furthermore, for patients with a prior diagnosis of hypertension, continuous 

BP monitoring is crucial for assessing the effectiveness of medication and lifestyle 

modification. These BP readings can guide healthcare professionals in making long-

term clinical decisions and assessing the effectiveness of management strategies [6]. 

Hypertension can be controlled by lifestyle change, as inadequate BP control was 

linked to weight gain, lack of physical activity, and high salt consumption [7]. 

Regularly monitoring BP offers feedback on the effectiveness of lifestyle 

modification. 

 

Low BP, or hypotension, on the other hand occurs when BP reading is lower 

than 90/60 mmHg. Unlike hypertension, hypotension may cause symptoms such as 
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confusion, dizziness, and fainting. Patients often experience arterial hypotension 

during and after surgery, which could affect their recovery [8]. Hypotension can 

cause poor blood flow (hypoperfusion) to essential organs, which may result in organ 

failure [8]. BP monitoring is vital for promptly detecting and predicting hypotension, 

enabling the clinician to offer timely treatment. 

 

These insights have inspired and motivated the initiation of a project aimed at 

developing a non-invasive, continuous BP prediction model, with a specific focus on 

predicting and managing hypertension or hypotension, particularly in the elderly 

population.  

1.2 Problem Statement 

There are two main methods to measure BP: invasive and non-invasive. The 

invasive method is used to obtain the arterial BP by inserting a catheter into a 

peripheral artery, offering continuous BP monitoring. However, invasive BP 

monitoring requires technical expertise and has associated risks, such as excessive 

bleeding from accidental disconnection and traumatic nerve damage [9]. 

 

On the other hand, the non-invasive BP monitoring method offers safer and 

more comfortable monitoring. The most frequently used method involves a cuff-

based instrument that wraps around the patient’s arm and inflates to obtain BP 

values, either manually using mercury sphygmomanometers and a stethoscope or 

automatically using digital sphygmomanometers. However, this method only 

provides intermittent values, which have limitations in continuous monitoring. 

Moreover, frequent cuff inflation can be uncomfortable, particularly during sleep 

[10]. 

 

In order to achieve the objective of continuous BP monitoring, various 

methods have been proposed such as the arterial tonometry method and volume-

clamp method. Arterial tonometry involves using a tonometer that applies light 

pressure to slightly flatten the artery to monitor BP waveforms [11]. Despite offering 

continuous BP measurement, this method has a few disadvantages, such as the need 
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for precise device placement and the requirement for no movement during 

measurements. Figure 1.3 shows the working principle of arterial tonometry. 

 

Figure 1.3: Arterial tonometry method [11]. 

 

For the volume-clamp method, BP is measured using the inflatable finger 

cuff with a photoplethysmography sensor and a pressure controller unit [12]. The 

pressure is applied to the finger cuff until the photoplethysmography signal becomes 

constant, indicating that the blood volume under the cuff is constant to measure the 

BP, as shown in Figure 1.4. While this method allows for continuous BP 

measurement, it comes with the drawbacks of being expensive and potentially 

uncomfortable for the patient. 

 

 

Figure 1.4: Volume-clamp method [12]. 

 

In order to achieve the objective of continuous BP monitoring and ensure 

stable comfort for patients, many researchers in the literature have suggested cuff-

less BP estimation using Photoplethysmography (PPG) and Electrocardiogram 

(ECG) signals. The idea of using PPG and ECG signals to estimate BP is inspired by 

the relationship between pulse transmit time (PTT) or pulse arrival time (PAT), pulse 

wave velocity (PWV), and BP, which will be discussed further in the literature 
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review, under Section 2.2.5. However, due to individual variability, frequent 

calibration is needed [13]. 

 

More recently, with the advancements in machine learning and deep learning, 

an increasing number of studies are employing these methods to predict BP. One 

advantage of the deep learning approach is its capability to automatically learn 

relevant features from raw PPG and ECG signals without the need for manual feature 

engineering in estimating BP. However, using deep learning has its disadvantages, 

including being less interpretable due to its 'black box' and complex architecture, 

requiring a large dataset for training, and being computationally costly, which is 

unsuitable when battery life is limited [14]. 

In traditional machine learning approaches, feature selection is crucial for 

ensuring accurate predictions. Numerous studies have identified various features 

with strong predictive value for estimating BP. However, there is no consensus on 

the optimal combination of features for BP prediction. 

Recent research has highlighted that data leakage is a common issue 

overlooked in many BP studies, leading to overly optimistic results [15, 16, 17]. 

When measures are taken to prevent data leakage, ensuring that records from the 

same subject do not appear in both the training and testing sets, many deep learning 

and traditional machine learning models fail to fulfill the AAMI and BHS criteria. 

PPG signal has been primarily used in BP prediction model by both machine 

learning and deep learning models. Even though ECG has also been extensively used 

to provide diagnostic information about the blood pressure status, little studies have 

been carried out to document the relationship between combination of features from 

PPG and ECG for blood pressure prediction using traditional machine learning while 

addressing data leakage issues which was found in year 2023. 
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1.3 Objective 

The objectives of this project are: 

i. To extract features from PPG and ECG signals which associated with BP 

through their derivatives, as well as their demographic features. 

ii. To develop a blood pressure prediction model based on machine learning 

model, utilizing an optimized feature combination identified through SHapley 

Additive exPlanations (SHAP) with machine learning model. 

iii. To evaluate the performance of the model using mean error (ME), standard 

deviation (SD), and cumulative percentage error based on the criteria set by 

the Advancement of Medical Instrumentation (AAMI) standard and the 

British Hypertension Society (BHS) protocol. 

 

 

1.4 Scope 

The scopes of this project are as follows: 

i. The PPG and ECG signals utilized in this project are obtained from Kaggle 

(https://www.kaggle.com/datasets/weinanwangrutgers/pulsedb-balanced-

training-and-testing/code). This dataset consists of simultaneous 

measurements of Arterial Blood Pressure (ABP), finger-PPG, and channel II 

ECG signals at a 125 Hz sampling rate.  

ii. This project involves only simulation which using MATLAB for feature 

extraction and Python to develop the BP prediction model. 

iii. This project involves relatively clean signals from the dataset, excluding 

those signals that fail to detect the points. 

iv. The SBP limit is set to between 80 to 180 mmHg, while DBP limit is set to 

between 50 to 120 mmHg, excluding very high or low BP values. 

v. The machine learning models considered in this project are Random Forest 

and SVR. 

vi. This project involves only 500 subjects, which is sufficient for the AAMI 

standard and BHS protocol that require at least 85 subjects. 
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CHAPTER 2  

 

 

LITERATURE REVIEW 

2.1 Overview 

This chapter begins with the introduction of PPG and ECG signals in terms of 

the measurement method and the relationship between these signals and BP. Next, 

there are many features can be obtained from PPG and ECG signals, but not all of 

them significantly correlate to BP measurement. Hence, the features for BP 

prediction and feature selection methods will also be briefly discussed in this chapter. 

The last part of this chapter presents the discussion on the existing BP prediction 

models that had been proposed by researchers. 

 

2.2 PPG and ECG signals  

2.2.1 Definition of PPG signal 

 

Photoplethysmography (PPG) is a non-invasive optical measurement that 

uses the light source and photodetector at the surface skin to detect the volumetric 

difference of the blood in peripheral circulation [18]. The signal obtained from this 

measurement is called PPG signal. This method is getting famous due to its 

convenience, non-invasiveness, and inexpensive diagnostic tools.  

 

The PPG signal exhibits a correlation with BP. The PPG signal consists of 

two parts: the upper part represents the contraction of the heart (systolic), and the 

underside represents cardiac expansion (diastolic) [19]. Between the systolic and 

diastolic phases, there is a dicrotic notch, marking the transition between these 
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phases. Nevertheless, the diastolic peak and dicrotic notch may become less 

prominent as people become older [20]. 

 

The first derivative and second derivative of the PPG signal are called the 

velocity photoplethysmogram (VPG) and acceleration photoplethysmogram (APG), 

respectively. The fiducial points of the PPG signal and its derivatives signals are 

important in extracting features related to BP [21]. According to [20], there are four 

fiducial points for PPG (𝑂, 𝑆, 𝑁, 𝐷), four fiducial points for VPG (𝑤, 𝑥, 𝑦, 𝑧), and 

six fiducial points for APG (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓). Figure 2.1 shows the fiducial points of 

the PPG signal and its derivatives signals. 

 

 

Figure 2.1: PPG signal and its derivatives signals [20]. 

 

2.2.2 Some applications of PPG signal in BP prediction 

 

Some studies on continuous BP monitoring using only PPG signal had been 

proposed. One of the approaches involves using the PPG signal and a two-element 

Windkessel model to estimate both SBP and DBP [22, 23]. However, this method 

relies on a fixed assumption for some parameters, which reduces its robustness. 

In [24], a novel smartwatch is presented, which obtains two PPG signals from 

the finger and wrist to estimate BP. This is achieved by measuring the Pulse 

Transmit Time (PTT) and using this parameter together with heart rate in a linear 

regression model to estimate BP. However, it should be noted that this device 

requires continuous calibration for hypertensive patients. 

2.2.3 Definition of ECG signal 
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An Electrocardiogram (ECG) is a non-invasive medical test that records the 

electrical activity of the heart by placing electrodes on specific parts of the body [25]. 

The primary focus of ECG analysis is on diagnosing cardiovascular diseases. 

However, recent studies show an upward trend in an expanded application of 

biometric identification due to its unique features in an individual's ECG [26].  

 

Typical ECG has five waves, which are 𝑃, 𝑄, 𝑅, 𝑆, and 𝑇. Figure 2.2 shows 

the ECG signal together with the fiducial points. Muscle contraction involves 

electrical changes that known as 'depolarization', whereas the state of relaxation is 

known as 'repolarization.' The 𝑃 wave represents the depolarization of the atria, the 

𝑄𝑅𝑆  complex represents the depolarization of the ventricles, and the 𝑇  wave 

represents the repolarization of the ventricles [27]. 

 

 

Figure 2.2: ECG signal in one beat [27]. 

 

A study on estimation BP using only ECG signal was conducted based on 

physiological principles governing the heart's electrical and mechanical activities, 

known as Mechano-Electric Coupling (MEC) [28]. The findings of the study 

revealed a non-linear relationship between the ECG signal and BP. 

 

2.2.4 Some applications of ECG signal in BP prediction 

 

Compared to the PPG signal, fewer studies in the literature focus on the use 

of only ECG signal for BP estimation. In [29], the study demonstrated that the use of 

PPG signal alone in SBP prediction outperforms the one that used ECG signal alone 

and suggest that PPG signal alone may be further explored as a potential single 
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source for BP prediciton. However, in [30], the study conducted BP estimation using 

machine learning based solely on ECG signals. Complexity analysis was performed 

for ECG feature extraction, and the results showed that applying a probability 

distribution-based calibration could achieve results close to those of a certified 

medical device for BP estimation, highlighting the potential of ECG signal in BP 

prediction. 

 

Additionally, some studies also found that the ECG signal is crucial for 

enhancing BP prediction. In [31], certain ECG features were proposed for BP 

prediction. The results from the Genetic Algorithm feature selection indicate the 

preservation of specific ECG features, emphasizing the significant potential of the 

ECG signal in predicting BP. Besides that, in [32], the study suggested that the 

inclusion of the ECG signal with the PPG signal leads to improved performance of 

the deep learning network and allows for better generalization. 

 

 

2.2.5 PTT/PAT: A PPG and ECG derived parameter 

 

PAT is the sum of PTT and the pre-ejection period (PEP). PTT measures the 

time taken for a pressure pulse to travel between two arterial sites, typically assessed 

using two PPG signals at different locations [33, 34]. Meanwhile, PEP accounts for 

the time delay between the electrical depolarization of the left ventricle and the 

actual of mechanical ventricular ejection [33, 34]. Therefore, PAT includes the 

pressure wave propagation time with the duration between the initiation of electrical 

activity and the subsequent mechanical motion of the heart. 

 

PAT can be measured using the time difference between 𝑅 peak of the ECG 

signal to a point in PPG signal [33, 34]. In the literature, the terms PAT and PTT are 

used interchangeably. However, most of the studies use the time difference between 

𝑅 peak of ECG signal to systolic peak, foot, or maximum slope of PPG which refer 

to PAT. Figure 2.3 shows the difference between PTT and PAT along with the 

methodology for its determination. 
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Figure 2.3: Difference between PAT and PTT [33]. 

 

The relationship between BP and PAT/PTT/pulse wave velocity (PWV) is 

based on the mechanism of arterial wall and the transmission of pressure waves 

within the arteries [35]. The elastic modulus E of arteries changes during the cardiac 

cycle due to the expansion and contraction caused by BP. The relationship between 

arterial elasticity and BP is given by Eqn. (2.1).  

𝐸 = 𝐸0𝑒𝛼𝑃 (2.1) 

where 𝐸0  denotes the Young’s modulus for zero arterial pressure while 𝛼 

denotes vessel parameter.  

PWV is the velocity of pressure pulse travel through the network of arteries. 

PWV is determined by the elasticity of arteries. By assuming the artery to be elastic 

tube, the Moens-Kortweg equation can be used to find relationship between PWV 

with 𝐸 as shown in Eqn. (2.2). 

𝑃𝑊𝑉 = √
ℎ𝐸

𝜌𝑑
 

 

(2.2) 

where ℎ , 𝜌 , and 𝑑 represents thickness, blood density, and diameter, respectively. 
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PWV can be measured by dividing length between two measurement sites, 𝐿 

by time delay (PTT or PAT) as shown in Eqn. (2.3). 

𝑃𝑊𝑉 =
𝐿

𝑡𝑖𝑚𝑒 𝑑𝑒𝑙𝑎𝑦
 

(2.3) 

 

 Finally, by combining Eqns. (2.1), (2.2), and (2.3), the relationship between BP 

and PAT/PTT/PWV can be expressed as in Eqn. (2.4). 

 

𝑃𝑊𝑉 =
𝐿

𝑡𝑖𝑚𝑒 𝑑𝑒𝑙𝑎𝑦
= √

ℎ𝐸0𝑒𝛼𝑃

𝜌𝑑
 

(2.4) 

 

Based on this relationship, several mathematical models have been derived to 

predict BP using these time delays, including logarithmic, linear, inverse, and inverse 

square models [35]. Although PTT/PAT shows a strong correlation with BP, its 

accuracy is significantly influenced by individual physiological properties where 

frequent calibration is needed [13]. 

 

2.3 Feature for BP prediction 

There are multiple features that can be extracted from the PPG and ECG 

signals, different researchers used different combinations of features to predict the 

BP. It is crucial to choose the proper features since incorporating irrelevant features 

during training may slow down the system, makes it more expensive to operate, and 

results in less accurate predictions. 

 

 

2.3.1 A Review of Literature on Features for BP Prediction 

 

PAT or PTT, as mentioned in earlier sections, has a strong correlation with 

BP. Hence, this feature is widely used in many research for predicting BP. It is the 

time difference between the 𝑅 peak of the ECG signal and a specific point of the 

PPG signal. This point can be up to the peak of the PPG signal [13, 14, 31, 36, 37], 
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the maximum slope of the PPG signal [13, 31, 36, 38, 39], or the onset of the PPG 

signal [13, 31, 36, 38]. Figure 2.4 shows an example of extraction of PAT. 

 

Figure 2.4: Extraction of PAT [36]. 

 

Heart rate is another feature commonly used in many studies to estimate BP 

[13, 21, 31, 36, 37, 38, 40]. If heart rate increased while the cardiac output and 

peripheral resistance remain constant, it may lead to an elevation in BP, and vice 

versa [37]. Besides that, the cardiac output can be correlated with PTT through heart 

rate indicating a correlation between heart rate and BP [38]. This feature can be 

obtained from 𝑅-𝑅 interval in ECG signal using Eqn. (2.5), where 𝑓𝑠  is sampling 

frequency and 𝑅𝑅 is time difference between two 𝑅 peaks of ECG. 

 

𝐻𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒 =
60 × 𝑓𝑠

𝑅𝑅
 

(2.5) 

 

PPG_ 𝐾  value is used in some research as one of the features for BP 

prediction [37, 38, 39]. PPG_𝐾 value is a significant parameter in cardiovascular 

research and clinical practice [37]. It reflects factors such as peripheral resistance, 

arterial wall elasticity, and blood viscosity which play a role in affecting BP [38]. By 

referring to one complete cycle PPG signal in Figure 2.5, PPG_𝐾  value can be 

calculated using equation Eqn. (2.6) and Eqn. (2.7). 
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Figure 2.5: One complete cycle of PPG signal [39]. 

 

𝑃𝑃𝐺_𝐾𝑣𝑎𝑙𝑢𝑒 =
𝑝𝑚 − 𝑝𝑑

𝑝𝑠 − 𝑝𝑑
 

 

 

(2.6) 

𝑝𝑚 =
1

𝑇
∫ 𝑃𝑃𝐺(𝑡)𝑑𝑡 

 

 

(2.7) 

where , 𝑝𝑑, 𝑝𝑠 and 𝑇 are shown in Figure 2.5. 

Photoplethysmogram intensity ratio (PIR) is the ratio of PPG peak intensity, 

𝐼𝐻 to PPG bottom intensity, 𝐼𝐿 and be used by other researchers as one of the features 

to estimate BP [31, 39, 41]. PIR is influenced by changes in arterial diameter and 

able to track low-frequency components in BP which is a crucial DBP indicator [41]. 

Figure 2.6 shows the extraction of PIR. 
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Figure 2.6: Extraction of PIR from PPG signal [41]. 

Features obtained from the APG have previously been shown to indicate age-

related stiffness in the arteries. The ratio 𝑏/𝑎 increases with age, whereas 𝑐/𝑎, 𝑑/𝑎, 

and 𝑒/𝑎 decrease with age [29]. These relationships were implemented into a single 

feature using the ageing index (AGI), 𝐴𝑏−𝑐−𝑑−𝑒/𝑎 [29]. This feature also holds a high 

rank in the study [21]. Next, in [14], the study suggested that, from their self-

collected signals, only points 𝑎 and 𝑏 are observed, while points 𝑐, 𝑑, and 𝑒 are less 

prominent. Therefore, ratio 𝑏/𝑎 was used in their study. Besides that, this study also 

used the time difference between start and point 𝑎 of the APG signal, 𝑇𝑂𝑎 as a feature 

to predict BP, and in [21], 𝑇𝑂𝑎 was ranked in the top 20 for SBP. The locations of 

these fiducial points are illustrated in Figure 2.7. 

 

Figure 2.7: Example of features extracted from PPG, VPG, and APG signals 

[21]. 

 

PPG morphology and dynamic features have been used in many studies. For 

example, slope between the onset of PPG to the systolic of PPG, 𝐶𝑠𝑙𝑜𝑝𝑒 [29, 37, 38], 

and the time difference between onset and systolic peak of PPG, 𝑇𝑂𝑠 [14, 21, 38]. 

Additionally, 50% width of PPG signal, Width50, is another feature that has been 

used for predicting BP [29, 42, 43]. In [43] Width50 is located at the top feature for 

SBP after feature selection.  Large artery stiffness index (LASI), the time difference 

between systolic peak and diastolic peak had also been used as one of the features to 
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predict BP [13, 21, 31, 36]. Argument index (AI) is the ratio between diastolic peak 

to the systolic peak of PPG [13, 31, 36, 37]. Inflection point area (IPA) is the ratio 

between two pulse area divided by dicrotic notch [29], while in [13, 31, 36] the study 

used the area 𝑆1, 𝑆2, 𝑆3, and 𝑆4 instead of IPA. Figure 2.8 represents the LASI, 𝑆1, 

𝑆2, 𝑆3, 𝑆4, 𝑥 and 𝑦 in PPG signal, where 𝑥 and 𝑦 correspond to the diastolic and 

systolic peaks of PPG signal, respectively. 

 

Figure 2.8: LASI, 𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑥 and 𝑦 in PPG signal [13]. 

 

Kurtosis, a statistical measure assessing data distribution, plays a crucial role 

in BP prediction as concluded in [29]. In this study, kurtosis of the PPG signal 

achieved the highest feature importance after assessment using SHAP. Furthermore, 

another study [21] employed SHAP to select important features for BP prediction. 

Among the top 6 selected features, which encompassed the morphology and dynamic 

features of PPG, VPG, and APG, were: the slope between the dicrotic notch and 

diastolic peak, 𝐴𝑛𝑔𝑙𝑒𝑁𝐷 , the slope between the systolic peak and diastolic peak, 

𝐴𝑛𝑔𝑙𝑒𝑆𝐷 , the time between the dicrotic notch and diastolic peak, 𝑇𝑁𝐷  , the time 

difference between point 𝑤  in VPG and point 𝑐  in APG, 𝑇𝑤𝑐 , the slope between 

points 𝑧 and 𝑦 in VPG 𝐴𝑛𝑔𝑙𝑒𝑧𝑦, and the slope of points 𝑒 and 𝑑 in APG, 𝐴𝑛𝑔𝑙𝑒𝑒𝑑. 

The details of the extraction of some of these features are shown in Figure 2.7. 
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Hjorth parameters, including Hjorth mobility and Hjorth complexity, have 

been employed in [30] for predicting BP using only ECG signal. Hjorth mobility 

calculates the signal’s mean frequency, while Hjorth complexity calculates the 

signal’s bandwidth [29]. Additionally, these parameters are utilized in [40] for both 

PPG and ECG signals. Hjorth mobility demonstrated significant importance in BP 

prediction after being assessed using SHAP in [29]. The Eqn. (2.8) and Eqn. (2.9) 

show the equation for Hjorth mobility and Hjorth complexity, where 𝑣𝑎𝑟()  is 

variance and 𝑥 is ECG segment.   

𝐻𝑗𝑜𝑟𝑡ℎ 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = √
𝑣𝑎𝑟(𝑥′)

𝑣𝑎𝑟(𝑥)
 

 

 

(2.8) 

𝐻𝑗𝑜𝑟𝑡ℎ 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =
𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 (𝑥′)

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝑥)
 

 

 

(2.9) 

Futhermore, in [44], the prediction of BP using time domain-based features 

achieved better accuracy compared to other feature extraction techniques. The time 

domain-based features used in this study include the peak-to-peak interval of the 

PPG signal or cardiac period (CP), systolic upstroke time (SUT), diastolic upstroke 

time (DT), the width of the PPG pulse at 10%, 25%, 33%, 50%, 66%, and 75% of 

pulse height (DW10+SW10, DW25+SW25, DW33+SW33, DW50+SW50, 

DW66+SW66, and DW75+SW75), the width of the PPG pulse at the diastolic part at 

10%, 25%, 33%, 50%, 66%, and 75% of pulse height (DW10, DW25, DW33, 

DW50, DW60, and DW75), and the ratio of the width of the PPG pulse at the 

diastolic part to the systolic part (DW10/SW10, DW25/SW25, DW33/SW33, 

DW50/SW50, DW60/SW60, and DW75/SW75). Moreover, in [45], all these time 

domain-based features were also used to predict BP. Additionally, the study 

proposed the ratio of the amplitude of APG as additional features, which included the 

ratios 𝑏/𝑎, 𝑐/𝑎, 𝑑/𝑎, and 𝑒/𝑎, as well as the aging index (AGI). Figure 2.9 shows 

the time domain-based features. 
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Figure 2.9: Time domain-based features of PPG signal [44]. 

 

Demographic features such as BMI, age, and weight are found to be 

important for BP prediction in [21]. The researchers also mentioned that although the 

importance ranking of height and gender is lower, these features should also be 

included to improve model generalization. Furthermore, in [46], feature selection 

using ReliefF retained the demographic features of age, weight, and BMI, 

highlighting their importance for BP prediction. Additionally, the researchers 

combined the time-domain features of the PPG signal with demographic features to 

create demographic time-domain features. From ReliefF feature selection, the 

retained features include the ratio of BMI to the systolic peak time of the PPG pulse 

(BMI/𝑡1), the ratio of weight to the PPG pulse interval (Weight/𝑡𝑝𝑖), the ratio of 

weight to the peak-to-peak interval of the PPG signal (Weight/𝑡𝑝𝑝 ), the ratio of 

weight to the systolic peak time of the PPG pulse (Weight/𝑡1), and the ratio of BMI 

to the peak-to-peak interval of the PPG signal (BMI/𝑡𝑝𝑝). 

 

In [31], the researchers proposed using the Womersley number (α) and 

certain ECG features, together with features from the PPG signal, to predict BP. 

Genetic algorithms were used to explore the relevance of the proposed features. The 

results showed that the Womersley number that extracted using second method (𝛼𝑛) 

and some of the ECG features remained after feature selection. These ECG features 

include the 𝑄𝑅𝑆 complex, the 𝑄𝑇 interval (𝑄𝑇), the 𝑄𝑇 interval corrected for heart 

rate ( 𝑄𝑇𝑐 ), the systolic-diastolic time interval (SDI), the new systolic-diastolic 

interval (SDIn), and the amplitudes of the 𝑃, 𝑄, 𝑅, 𝑆, and 𝑇 waves of the ECG signal. 

Some ECG features are shown in Figure 2.10 and the equation of 𝛼𝑛 are shown in 

Eqn. (2.10) and. 
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Figure 2.10: Some of the ECG features [31]. 

𝛼𝑛 = 𝑅√
𝜔𝜌

𝑏
 

 

(2.10) 

 

where 𝑅 is the valley amplitude of the PPG signal, 𝜔 is the frequency of heart rate, 𝜌 

is the density of blood which assume to be 1060 kg/m3 , and 𝑏 is equal to 
1

𝐺𝐻
, where 

𝐺𝐻 is the magnitude of the first derivative of pulse signal at point C as shown in 

Figure 2.11. 

 

Figure 2.11: The extraction of 𝐺𝐻 [31]. 

 

In [47], the morphology features of ECG is used with the PAT to predict the 

BP, this features include time feature like time for a full 𝑄𝑅𝑆 wave of each cardiac 

cycle (𝑄𝑅𝑆), time from 𝑃 peak to 𝑅 peak of each cardiac cycle (𝑅𝑃), Time from 𝑅 

peak to 𝑇 peak of each cardiac cycle (𝑅𝑇), Time from 𝑃 peak to 𝑄 peak of each 

cardiac cycle (𝑃𝑄), Time from 𝑆 peak to 𝑇 peak of each cardiac cycle (𝑆𝑇), time 

from 𝑃 peak to 𝑇 peak of each cardiac cycle (𝑃𝑇) and amplitude feature like 𝑃, 𝑅, 𝑇 , 

ratio of peak of 𝑇  to 𝑅  ( 𝑅𝑇  ratio), 𝑅  peak amplitude difference from 𝑃  peak 

amplitude (𝑅𝑃 diff). The morphological features of ECG signal are shown in Figure 

2.12. 
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Figure 2.12: Morphology features of ECG signal [47].  

 

 

2.3.2 Feature selection method 

 

Different researchers in the literature had employed various feature selection 

methods in selecting the relevant features for BP prediction. As there is non-linearity 

between physiological features and BP, the feature selection method needs to 

account for both linear and non-linear relationships. Some relevant features will be 

missed if non-linear relationship approaches are not taken into consideration [48].  

 

2.3.2.1 Mean Influence Value feature selection 

Several studies utilize the Mean Impact Value (MIV) in feature selection. 

MIV is a quantitative measure of how each feature impacts the model's predictions. 

This is determined by making slight changes to the input values and observing how 

these changes impact the model's output [49]. Figure 2.13 shows the process of MIV 

algorithm. 
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Figure 2.13: The process of MIV algorithm [49]. 

 

MIV was used in [49, 50], to select the optimized feature combination for the 

genetic-algorithm backpropagation neural network to improve efficiency and 

predictive accuracy of the model. These studies suggested that the used of MIV 

contributes to the construction of more accurate and simpler neural network models 

by focusing on the features that have the greatest influence on BP. 

 

Moreover, in another study [37], MIV was used for feature selection in a 

hybrid machine learning GA-SVR model. The study suggested that MIV is able to 

provide strong evidence and describe the non-linear relationship between features 

and BP. Additionally, after applying MIV, the Mean Squared Error (MSE) of the 

model is reduced from 38.33 mmHg to 30.98 mmHg for SBP, and from 5.73 mmHg 

to 4.68 mmHg for DBP by choosing the features with 90% of cumulative 

contribution ratio to train the model. 

 

2.3.2.2 Mutual Information feature selection 

Mutual Information (MI) is a method used in certain studies to select 

optimized feature combination. MI is a measure of the mutual dependence between 

two random variables, with higher values indicating stronger dependence and vice 

versa [38]. In [43], the study aims to observe the relationship between features 

extracted from PPG and ECG with BP, using correlation coefficients, cross-sample 

entropy, and MI. The study suggested that MI is able to capture nonlinear statistical 

dependencies between the features and BP, where this is not achievable by 

correlation coefficients. 
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In another study [38], the Gaussian Copula Mutual Information (GCMI), a 

specific MI formulation tailored for Gaussian-distributed random variables, was used 

to select the optimized feature combination. The algorithm calculated GCMI values 

between each feature and BP, iteratively removing features with lower GCMI values 

until the threshold is reached. By employing the optimized feature combination, it 

manages to reduce the MAE±SD from 9.12±9.83 mmHg to 7.93±9.12 mmHg for 

SBP, and from 8.31±9.23 mmHg to 7.63±8.61 mmHg for DBP. 

 

2.3.2.3 Genetic Algorithm feature selection 

Genetic Algorithm (GA) is a well-known optimization technique inspired by 

the process of natural selection. This algorithm has been employed in various studies 

to find optimal feature combinations for BP prediction. In [39], data mining 

techniques, including GA, were utilized to identify indicators reflecting changes in 

BP before model construction. In this study, GA worked by iteratively evolves and 

selects feature subsets aiming to maximize the fitness function, particularly the 

correlation coefficient. The study's results demonstrated that the proposed method is 

not only more accurate but also slightly improved robustness compared to the 

traditional PAT-PIR-based model. 

 

Different from aforementioned study, which implemented GA before 

constructing the model, [31, 51, 52] employed binary GA along with the model for 

feature selection, a technique known as the wrapper method. In these studies, GA 

worked by finding an optimal binary vector, where each bit corresponds to the 

inclusion or exclusion of any feature, to optimize the model prediction accuracy. A 

study suggested that applying GA to select the optimized feature combination for 

Random Forest led to a reduction in MAE values [31]. Specifically, the model 

achieved lower MAE values, decreasing from 13.20 to 9.54 mmHg for SBP and from 

9.91 to 5.48 mmHg for DBP. 

 

Moreover, in [51], GA was employed to select optimal feature combinations 

as an alternative method to overcome the limitations of the moving backward 
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algorithm, which arise from correlations between features. By using optimized 

feature combination through GA, the prediction accuracy is higher compared to 

feature combination obtained through the moving backward algorithm, with MAE ± 

SD values of 5.59±0.30 mmHg for SBP and 4.45±0.16 mmHg for DBP. 

 

However, in [52], the study indicated that incorporating GA for feature 

selection does not significantly enhance the model’s prediction accuracy in 

predicting BP compared to Principal Component Analysis (PCA), a mathematical 

dimension reduction technique. 

 

2.3.2.4 SHapley Additive exPlanations feature selection 

SHapley Additive exPlanations (SHAP) is a game theoretical approach that 

explains the output of machine learning models [53]. The fundamental concept 

behind SHAP is to compute Shapley values which represent the influence of a 

feature on a model's prediction. Shapley values are computed by determining the 

average marginal contribution of a feature value across all possible combinations of 

feature sets. 

 

In [53], SHAP is employed to interpret the most relevant features from PPG 

signal for BP prediction in a machine learning model. The study utilizes 

visualizations, such as bar plots and beeswarm plots, to interpret SHAP values. The 

use of SHAP provides insights into the features' relevance for BP prediction. 

Furthermore, in another study [29], SHAP values and ranking coefficients were 

employed to evaluate the individual importance of PPG and ECG features in 

predicting BP. The use of SHAP allowed a robust assessment of feature importance, 

applicable to both linear and non-linear machine learning models including Random 

Forest. 

 

The aforementioned studies use SHAP to identify the relevant features for BP 

prediction based on their importance in machine learning output. In [54], SHAP was 

used with Random Forest to select the optimized feature combination for BP 

prediction and personalized recommendations for managing BP. Shapley values were 
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used for feature selection, reducing MAE for SBP from 5.79 mmHg to 5.34 mmHg, 

and for DBP from 3.95 mmHg to 3.80 mmHg.This study also demonstrated SHAP's 

superiority over other feature selection methods employed in that study. Although 

this study does not use features from PPG and ECG signals to predict BP, it still 

provides valuable insight into how SHAP can be used for feature selection and 

enhance BP prediction using the machine learning model. 

 

Furthermore, in [21], the study integrated SHAP with Light Gradient 

Boosting Machine, to select an optimized feature combination from PPG and its 

derivatives signals for BP prediction. This approach addressed the limitations of 

traditional feature selection methods, which often lack of sensitivity to non-linear 

data and exhibits low interpretability. The application of this combined method 

resulted in a notable reduction in the number of features from 121 to 20 and 16 for 

SBP and DBP, respectively. Additionally, by using the optimized feature 

combination, the MAE decreased from 4.23 mmHg to 3.41 mmHg for SBP and from 

2.81 mmHg to 2.17 mmHg for DBP. 

 

 

 

 

 

2.3.3 Summary of features for BP prediction 

Table 2.1 shows the summary of features for BP prediction from literature. 

 

Table 2.1: Summary of features for BP prediction from literature. 

Feature Description 

PAT peak 

[13, 14, 31, 36, 37] 

The time difference between the 𝑅 peak of the ECG and a 

specific point of the PPG signal. 

PAT maxslope 

[13, 31, 36, 38, 39] 

PAT onset 

[13, 31, 36, 38] 

Heart rate 

[13, 21, 31, 36, 38, 39, 

Heart rate of the subject  
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40] 
𝐻𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒 =

60 × 𝑓𝑠

𝑅𝑅
 

PPG_𝐾 value 

[37, 38, 39] 

Can be obtained from PPG using following equation. 

𝑝𝑝𝑔_𝐾𝑣𝑎𝑙𝑢𝑒 =
𝑝𝑚 − 𝑝𝑑

𝑝𝑠 − 𝑝𝑑
 

𝑝𝑚 =
1

𝑇
∫ 𝑃𝑃𝐺(𝑡)𝑑𝑡 

 

PIR 

[31, 37, 39] 

Ratio between PPG peak intensity to PPG bottom intensity 

𝐴𝑏−𝑐−𝑑−𝑒/𝑎 

[21, 29, 45] 

Ageing index, can be obtained using amplitude of fiducial 

points in APG 

𝑇𝑂𝑎 

[14, 29] 

The time difference between 𝑂 in PPG and 𝑎 in APG 

𝐶𝑠𝑙𝑜𝑝𝑒 

[29, 37, 38] 

The slope between 𝑂 and 𝑆 in PPG 

𝑇𝑂𝑠 

[14, 21, 38] 

The time difference between 𝑂 and 𝑆 in PPG 

LASI 

[13, 14, 21, 31, 36] 

The time difference between 𝑆 and 𝐷 in PPG 

AI 

[13, 14, 31, 36, 37] 

Ratio between 𝐷 to 𝑆 in PPG 

IPA 

[29] 

Ratio between two pulse area divided by dicrotic notch in 

PPG 

𝑆1, 𝑆2, 𝑆3,𝑆4 

[13, 31, 36] 

Area of PPG signal 

Kurtosis 

[29] 

Kurtosis of PPG 

𝐴𝑛𝑔𝑙𝑒𝑁𝐷 

[21] 

The slope between 𝑁 and 𝐷 in PPG 

𝐴𝑛𝑔𝑙𝑒𝑆𝐷 

[21] 

The slope between 𝑆 and 𝐷 in PPG 
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𝑇𝑁𝐷 

[21] 

The time difference between 𝑁 and 𝐷 in PPG 

𝑇𝑤𝑐 

[21] 

The time difference between 𝑤 in VPG and 𝑐 in APG 

𝐴𝑛𝑔𝑙𝑒𝑧𝑦 

[21] 

The slope between 𝑧 and 𝑦 in APG 

𝐴𝑛𝑔𝑙𝑒𝑒𝑑 

[21] 

The slope between 𝑒 and 𝑑 in APG 

Hjorth mobility 

[29, 30, 40] 

Represent the signal’s mean frequency. 

𝐻𝑗𝑜𝑟𝑡ℎ 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = √
𝑣𝑎𝑟(𝑥′)

𝑣𝑎𝑟(𝑥)
 

Hjorth complexity 

[29, 30, 40] 

Represent the signal’s bandwidth. 

𝐻𝑗𝑜𝑟𝑡ℎ 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =
𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 (𝑥′)

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝑥)
 

DW10+SW10 

[44, 45] 

Width of PPG pulse at 10% amplitude 

DW25+SW25 

[44, 45] 

Width of PPG pulse at 25% amplitude 

DW33+SW33 

[44, 45] 

Width of PPG pulse at 33% amplitude 

DW50+SW50 

[29, 42, 43, 44, 45] 

Width of PPG pulse at 50% amplitude 

DW66+SW66 

[44, 45] 

Width of PPG pulse at 66% amplitude 

DW75+SW75 

[44, 45] 

Width of PPG pulse at 75% amplitude 

DW10 

[44, 45] 

Width of PPG pulse at 10% amplitude in diastolic part 

DW25 

[44, 45] 

Width of PPG pulse at 25% amplitude in diastolic part 
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DW33 

[44, 45] 

Width of PPG pulse at 33% amplitude in diastolic part 

DW50 

[44, 45] 

Width of PPG pulse at 50% amplitude in diastolic part 

DW60 

[44, 45] 

Width of PPG pulse at 66% amplitude in diastolic part 

DW75 

[44, 45] 

Width of PPG pulse at 75% amplitude in diastolic part 

DW10/SW10 

[44, 45] 

Ratio of the width in the diastolic part to the width in the 

systolic part of the PPG pulse at 10% amplitude 

DW25/SW25 

[44, 45] 

Ratio of the width in the diastolic part to the width in the 

systolic part of the PPG pulse at 25% amplitude 

DW33/SW33 

[44, 45] 

Ratio of the width in the diastolic part to the width in the 

systolic part of the PPG pulse at 33% amplitude 

DW50/SW50 

[44, 45] 

Ratio of the width in the diastolic part to the width in the 

systolic part of the PPG pulse at 50% amplitude 

DW60/SW60 

[44, 45] 

Ratio of the width in the diastolic part to the width in the 

systolic part of the PPG pulse at 60% amplitude 

DW75/SW75 

[44, 45] 

Ratio of the width in the diastolic part to the width in the 

systolic part of the PPG pulse at 75% amplitude 

CP 

[44, 45] 

Cardiac period, the peak-to-peak interval of the PPG signal 

DT 

[44, 45] 

Diastolic time of PPG 

𝑏/𝑎 

[14, 29, 45] 

Ratio of 𝑏 to 𝑎 in APG 

𝑐/𝑎 

[29, 45] 

Ratio of 𝑐 to 𝑎 in APG 

𝑑/𝑎 

[29, 45] 

Ratio of 𝑑 to 𝑎 in APG 

𝑒/𝑎 

[29, 45] 

Ratio of 𝑒 to 𝑎 in APG 
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BMI 

[21, 46] 

BMI of the subject 

Age 

[21, 46] 

Age of the subject 

Weight 

[21, 46] 

Weight of the subject 

Height 

[21, 46] 

Height of the subject 

Gender 

[21, 46] 

Gender of the subject 

𝛼𝑛 

[31] 

Womersley number 

𝛼𝑛 = 𝑅√
𝜔𝜌

𝑏
 

𝑄𝑅𝑆 complex 

[31, 47] 

Time duration of the 𝑄𝑅𝑆 wave in the ECG signal 

𝑄𝑇 

[31] 

Time difference between 𝑄 and 𝑇 wave end in the ECG 

signal 

𝑄𝑇𝑐 

[31] 

𝑄𝑇 interval corrected for heart rate 

𝑄𝑇𝑐 =
𝑄𝑇

√𝑅𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
 

SDI 

[31] 

Systolic Diastolic time interval 

SDIn 

[31] 

New systolic diastolic interval 

𝑃 

[31, 47]   

Amplitude of P wave in ECG signal 

𝑄 

[31, 47] 

Amplitude of Q wave in ECG signal 

𝑅 

[31, 47] 

Amplitude of R wave in ECG signal 

𝑆 

[31, 47] 

Amplitude of S wave in ECG signal 

𝑇 Amplitude of T wave in ECG signal 
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[31, 47] 

𝑅𝑃 

[47] 

Time difference between 𝑅 and 𝑃 in the ECG signal 

𝑅𝑇 

[47] 

Time difference between 𝑅 and 𝑇 in the ECG signal 

𝑃𝑄 

[47] 

Time difference between 𝑃 and 𝑄 in the ECG signal 

𝑆𝑇 

[47] 

Time difference between 𝑆 and 𝑇 in the ECG signal 

𝑃𝑇 

[47] 

Time difference between 𝑃 and 𝑇 in the ECG signal 

𝑅𝑇 ratio 

[47] 

The ratio of T peak to R peak in ECG signal 

𝑅𝑃 diff 

[47] 

The difference between 𝑅 peak amplitude from 𝑃 peak 

amplitude 

 

 

2.4 BP prediction model 

This section discusses the existing models of BP prediction using PPG and 

ECG signals. These models are separated into deep learning approach and traditional 

machine learning approach. Due to differences in datasets, preprocessing techniques, 

feature selection methods, different hyperparameters setting, and different validation 

method, the results vary even when the same model is employed. 

 

2.4.1 Deep learning model for BP prediction 

2.4.1.1 Long short-term memory (LSTM) 

Long Short-Term Memory (LSTM) is a type of recurrent neural network 

(RNN) which widely been used in predicting BP. In [55], the study used LSTM with 

ABP signal processing technique called Two-stage Zero-order Holding algorithm to 
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predict BP from PPG and ECG signals, the result demonstrated a good prediction 

accuracy with RMSE of 2.751 mmHg for SBP and 1.604 mmHg for DBP. The 

choice of LSTM was motivated by its dynamic temporal behaviour, making it 

suitable for continuous BP prediction. However, the study only utilized 25 records 

from the UCI dataset. Since the UCI dataset lacks subject information, there is a 

possibility that the selected records are from the same individual. This could 

potentially lead to an over-optimistic result due to data leakage, a topic that will be 

further discussed in Section 2.4.3. 

 

Some studies use features from PPG and ECG as input to the LSTM instead 

of using raw signals. In [56], the study used Bidirectional LSTM (Bi-LSTM) for BP 

prediction with additional ballistocardiogram signal features alongside PPG and ECG 

features. The study suggested that Bi-LSTM is capable of grasping patterns in both 

forward and backward directions which outperforms LSTM. The study assessed 

generalization performance using Leave-One-Subject-Out (LASO) analysis, 

achieving MAE and RMSE of 5.82 mmHg and 6.82 mmHg for SBP, while 5.24 

mmHg and 6.06 mmHg for DBP, in multi-day tests.  

 

However, the study included only 18 subjects with 30-minutes recording, 

with only about 8% and 2% of the BP data falling within the hypertension stage 1 

and stage 2 ranges, respectively. Moreover, the MAE and RMSE values previously 

mentioned were obtained using a tuned model, where the fully connected layer was 

trained with 20% of the data from the excluded subject.Without applying the tuning, 

the MAE and RMSE increased to 10.01 mmHg and 11.26 mmHg for SBP, and 5.60 

mmHg and 6.52 mmHg for DBP. 

 

 

Furthermore, in [57], the study proposed a model with Bi-LSTM as the first 

layer, followed by residual connected LSTM layers to predict BP based on features 

from PPG and ECG signals. The use of Bi-LSTM enhances the learning of long-term 

dependencies, and the residual connected LSTM layers help in overcoming the 

vanishing gradient problem. The proposed model has the ability to understand the 

connection between input features and BP output by learning patterns over time. The 
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study reported an MAE, SD and RMSE of 6.726 mmHg, 14.505 mmHg, and 

8.051mmHg for SBP, while 2.516 mmHg, 6.442 mmHg, and 3.998 mmHg for DBP. 

However, the authors using 3000 record with 678202 cycle of record from UCI 

dataset and randomly select the training and testing set. Hence, there might be  data 

leakage issue. 

 

In [58], the study employed an LSTM network integrated with an 

autoencoder aiming to convert raw PPG signals into a continuous ABP signal. LSTM 

was chosen in this study to replace feed-forward neural network as the base of 

autoencoder due to its ability to handle varying length series efficiently. The result 

demonstrated strong performance in BP prediction with MAE, SD, and RMSE of 

4.05 mmHg, 4.60 mmHg, and 5.25 mmHg for SBP, while 2.41 mmHg, 3.11 mmHg, 

and 3.17 mmHg for DBP. However, this study uses 5289 records with 250000 

segments of signals from the UCI dataset. Hence, there might be a possibility of data 

leakage. 

2.4.1.2 Hybrid Convolution Neural Network with Long short-term memory 

(CNN+LSTM) 

Some studies in literature combined Convolution Neural Network (CNN) 

with LSTM to form a hybrid deep learning model (CNN+LSTM) for BP prediction. 

CNN offers the advantage of being able to learn relevant features across different 

scales, and the weight-sharing mechanism helps minimize memory usage compared 

to fully connected networks [59]. 

 

 In [59], two CNNs were used to extract morphological features from PPG 

signals to make initial SBP and DBP predictions. The next stage was followed by 

two-layer stacked LSTMs to capture temporal dependencies and enhance predictions 

by incorporating the dynamic relationship between SBP and DBP. Combining CNN 

with LSTM improved accuracy by considering both local and temporal variations 

compared to using only CNN. The study achieved ME±SD and MAE of +1.91±5.55 

mmHg and 3.97 mmHg for SBP, while +0.67±2.84 mmHg and 2.10 mmHg for DBP. 

However, in this study, 200 records were utilized. Each record was divided into three 

segments comprising 70%, 10%, and 20% of the record's length for training, 
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validation, and testing purposes, respectively. This method raises concerns regarding 

potential data leakage. 

 

Next, CNN+LSTM was used to design a model called ‘PP-Net’ in [60], for 

simultaneous prediction of SBP, DBP, and heart rate based on a single channel of 

PPG signal. This model eliminates the need for manual feature selection and 

extraction, making it less complex. The study reported ME±SD of -1.25±5.65 mmHg 

and 1.55±5.41 mmHg for SBP and DBP, respectively. LSTM layers are incorporated 

into the network to address the long chain problem that arises in CNN when dealing 

with time series data. However, the study also mentioned deep learning algorithms 

are power consuming and intensive memory which may restrict the deployment on 

mobile devices. In this study, only 1557 records are utilized out of a total of 12000 

from the UCI dataset. Consequently, there is a potential risk of data leakage. 

 

Aforementioned CNN+LSTM model uses only PPG signal as the input 

signal. In a different study [61], both PPG and ECG signals were used as the input 

signal to CNN+LSTM for BP prediction. The study suggested that combining CNN 

with LSTM contribute to strong predictive abilities for sequential waveform data like 

BP. Notably, this study conducted separate predictions for SBP and DBP, achieving 

MAE and SD values of 4.41 mmHg and 6.11 mmHg for SBP, while 2.91 mmHg and 

4.23 mmHg for DBP.  

 

In [62], the study employed a CNN+LSTM architecture to capture 

morphological and temporal features from the signal difference between PPG and 

ECG for the simultaneous prediction of SBP and DBP. The study achieved ME±SD 

and MAE values of -0.02±1.6 mmHg and 1.2 mmHg for SBP, while 0.2±1.3 mmHg 

and 1.0 mmHg for DBP, indicating high accuracy. However, the study pointed out 

that the accuracy of LSTM models may be influenced by the duration of data 

measurement and generalizability of the model was not verified. Additionally, this 

study only used 48 patients in their research. Consequently, the optimal results 

reported may be influenced by the small sample size, as acknowledged by the 

authors. 
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In [32], the research examined different deep learning frameworks, 

incorporating Residual Network (ResNet) and WaveNet as CNNs, along with LSTM 

as an RNN for BP prediction. The combination of ResNet with LSTM produced the 

best outcomes, with a MAE and RMSE of 4.118 mmHg and 5.682 mmHg for SBP, 

while 2.228 mmHg and 2.986 mmHg for DBP. However, it is also the most 

computationally expensive. Additionally, the memory is still limited in capturing 

very long patterns observed in PPG signal. Furthermore, in the Leave-One-Out cross-

validation, which excludes one subject from the training set and uses it as the test set, 

the MAE and RMSE increased to 16.128 mmHg and 17.875 mmHg for SBP, and to 

6.743 mmHg and 7.902 mmHg for DBP. 

 

2.4.2  Traditional machine learning model for BP prediction 

2.4.2.1 Support Vector Regression (SVR) 

One of the traditional machine learning algorithms used by many researchers 

for predicting BP is Support Vector Regression (SVR). SVR is a type of Support 

Vector Machine (SVM) used for regression tasks, works by finding a line hyperplane 

that best fits the data points in a higher dimension [42]. This algorithm maps input 

features to a higher-dimensional space through a kernel function [14].  

 

In [42], the study used Linear Regression (LR), Artificial Neural Networks 

(ANN), and SVR based on only the PPG signal for BP prediction, and it suggested 

that SVR outperforms other machine learning algorithms with MAE±SD of 

13.57±3.23 mmHg and 8.30±1.88 mmHg for SBP and DBP, respectively. Another 

study in [13] included some features from both PPG with ECG signals and suggested 

that SVR still outperforms Regularized Linear Regression (RLR) and ANN with 

MAE and SD of 12.38 mmHg and 16.17 mmHg for SBP, while 6.34 mmHg and 8.45 

mmHg for DBP. 

 

Besides that, some studies have employed SVR with real-world, self-

collected data instead of using an online dataset. In [14], SVR showed a better 

performance than Random Forest, Adaboost, and ANN when real-world, self-
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collected PPG and ECG signal is used, with MAE and RMSE of 6.97 mmHg and 

8.15 mmHg for SBP.  

 

After that, in [39], SVR and multivariate linear regression (MLR) were used 

to predict BP with GA as a feature selection method. Three experiments were 

conducted, including a static experiment, a dynamic experiment, and a follow-up 

experiment at 1 day, 3 days, and 6 months. SVR outperformed MLR, with ME±SD 

of −0.001±3.102 mmHg and −0.004±2.199 mmHg for SBP and DBP, respectively. 

The prediction accuracy remained relatively stable from one day to six months after 

the experiment's initiation. However, the study divided the 10-minute record of each 

subject is divided into 2 subsets, on for training and the other for testing, Hence, 

there are data leakage.  

 

Moreover, in [63], the study proposed a hybrid model, where the SVR model 

was used as the last output layer of CNN model for BP prediction. The use of CNN 

removed the need of engineered feature extraction, and the result showed a good 

performance with MAE±SD and RMSE of 1.23±2.45 mmHg and 1.89 mmHg for 

SBP, while 3.08±5.67 mmHg and 3.91mmHg for DBP. In their study, the database 

was divided into training and test sets based on the number of subjects, ensuring 

there is no data leakage. 

 

Furthermore, in [37], GA were implemented to optimize the hyperparameters 

of the SVR model, resulting in a reduction of the MSE from 337.37 mmHg to 38.33 

mmHg for SBP and from 40.83 mmHg to 5.73 mmHg for DBP. This underscores the 

significance of fine-tuning SVR hyperparameters to improve the accuracy of BP 

predictions. The final model, when combined with MIV, achieved a MAE±SD of 

3.27±5.52 mmHg and 1.16±1.97 mmHg for SBP and DBP, respectively. However, 

the authors only mentioned that 772 sets of waveform data were acquired without 

specifying the number of subjects involved, and they randomly selected the data to 

form the training and test sets. Hence, there is a possibility of data leakage. 
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2.4.2.2 Random Forest 

Random Forest is another traditional machine learning algorithm used by 

many researchers in literature. Random forest utilizes ensemble learning techniques, 

combining multiple decision trees to make predictions through random sampling 

with replacement [38]. It is called ‘Random’ Forest as each tree in it is grown using 

randomized subset of predictors [64]. In regression tasks, the final value is obtained 

based on the average value predicted by each tree.  

 

In [65], the study used Random Forest for BP prediction based on features 

from PPG and ECG signals. The result displayed in RMSE which were 13.01 mmHg 

and 12.89 mmHg for SBP and DBP, respectively. The study confirmed the potential 

of Random Forest in non-invasive BP estimation. After that, in [38], the Random 

Forest was used with GCMI to predict the BP by using online dataset to train the 

model and test the model using self-collected dataset. After calibration, the result 

showed MAE±SD of 5.21±5.98 mmHg and 4.15±5.66 mmHg for SBP and DBP, 

respectively, which demonstrate a good prediction performance. The calibration 

includes selecting a quarter of the testing set to fine-tune the model. Additionally, 

this study only focused on younger people. 

 

Besides that, Random Forest outperformed other traditional machine learning 

including SVR in some studies. In [36], the study extracted parameter and whole 

based features from PPG and ECG and predicted BP using different traditional 

machine learning models. From the result, Random Forest achieved lower SD value 

compared to other traditional machine learning such as RLR, decision tree 

regression, SVR, and Adaboost, with MAE and SD of 11.80 mmHg and 9.87 mmHg 

for SBP, while 5.83 mmHg and 5.71 mmHg for DBP. Additionally, Random Forest 

also showed better performance in [31] when compared to other traditional machine 

learning models including LR, ridge regression, SVR, and Adaboost. After 

implementation of GA for feature optimization, the Random Forest model achieved 

MAE and RMSE of 9.54 mmHg and 13.83 mmHg for SBP, while 5.48 mmHg and 

6.80 mmHg for DBP. 
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Furthermore, in [66], the study used the tree-based pipeline optimization tool 

(TPOT), an automated machine learning tool that uses genetic programming to find 

the optimized machine learning pipelines for BP estimation. According to the study, 

Random Forest was chosen as the best machine learning algorithm for SBP 

estimation with an MAE and MSE of 6.52 mmHg and 7.48 mmHg, suggesting that 

Random Forest would perform better than others. However, in this study, only 1000 

records from the UCI dataset were included, posing a significant risk of data leakage. 

 

Moreover, in [67], the study focused on non-invasive BP prediction based on 

Random Forest. In the study, SVR was used for comparison with the performance of 

Random Forest. GA was used to optimize the hyperparameters of SVR, and grid 

search was employed for Random Forest. The study suggested that Random Forest is 

significantly better than SVR under the same conditions, with an MAE of 4.45 

mmHg and 3.95 mmHg for SBP and DBP, respectively.  

 

In [47], MLR, SVR, and Random Forest were used to predict BP by 

combining morphological features of the ECG signal with PAT. From the results 

obtained, Random Forest achieved an MAE±SD of 6.12±9.52 mmHg for SBP and 

4.02±6.58 mmHg for DBP. However, this study included approximately 3500 

records from 227 patients, with data randomly selected to form the training and 

testing sets. This introduces a potential risk of data leakage, which could impact the 

robustness of the findings. 

 

2.4.3 Data leakage in BP research 

BP datasets usually contain multiple records for the same subject. If special 

care is not taken to prevent data leakage when splitting the dataset into training and 

testing sets, it can lead to misleading and overly optimistic results, as records from 

the same subject may appear in both sets. This issue is commonly overlooked in BP 

research, particularly for those using the UCI dataset. Recently, some researchers 

have addressed this problem in BP research and demonstrated the significant impact 

of data leakage on the results. 



49 

The University of California, Irvine (UCI) dataset, also known as the Cuff-

Less Blood Pressure Estimation dataset [13, 36], consists of simultaneous ABP, PPG, 

and ECG signals, originally obtained from the Multi-parameter Intelligent 

Monitoring in Intensive Care (MIMIC) II database. Some preprocessing techniques 

have been applied to the original data, as detailed in [13]. This dataset includes 

information for 12000 records across various blood pressure categories. Due to its 

large size, this dataset has been widely used by researchers. However, it has the 

limitation of lacking a patient index number related to each record segment. 

Consequently, there is a risk that records from the same patient could appear in both 

the training and test sets, leading to overly optimistic results. 

In [17], researchers conducted a benchmark study for machine learning-based 

non-invasive BP estimation using PPG signals. This study encompassed both 

traditional machine learning methods (LightGBM, SVR, Multi-Layer Perceptron, 

AdaBoost, and Random Forest) and deep learning approaches (ResNet, 

SpectroResNet, MLP-BP, U-Net, PPGIABP, and V-Net) to predict BP using four 

different publicly available datasets. The findings revealed that in scenarios where 

data leakage occurred, the results surpassed those of scenarios without leakage for 

both traditional machine learning and deep learning, irrespective of the evaluation 

metric employed.  

Specifically, the mean absolute scaled error (MASE) of SBP and DBP 

dropped from approximately 98–92% to below 60%, while the SD metric (AAMI 

standard) also exhibited a significant decrease. Traditional machine learning methods 

outperformed deep learning for smaller datasets. For instance, one of their findings 

indicated that the SVR achieved MAE and ME±SD of 15.60 mmHg and -0.00±19.68 

mmHg for SBP, and 7.50 mmHg and -1.45±9.81 mmHg for DBP. 

Furthermore, in [16], the researchers addressed this issue by using the term 

"intra-subject" to denote the data leakage scenario and "inter-subject" to represent 

scenarios without data leakage. This study incorporated both feature-based machine 

learning (XGBoost, LightGBM, and CatBoost) and deep learning approaches 

(Residual U-Net, ResNet-18, and ResNet-LSTM) to predict BP from PPG signals 

using two distinct datasets. 
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The results obtained indicated that for the intra-subject scenario, almost all 

models met the AAMI standard, except for ResNet-LSTM. This suggests that both 

feature-based machine learning and deep learning approaches are equally capable of 

addressing the problem. However, in the inter-subject scenario, none of the methods 

met the AAMI standard, as the standard deviations of SBP and DBP averages of the 

dataset were 21.27 mmHg and 10.07 mmHg, respectively. Additionally, all methods 

failed to achieve the BHS standard, falling into Grade D. 

Furthermore, in [15], the study also addressed the issue of data leakage in 

their results. XGBoost and CatBoost were utilized to predict BP based on features 

extracted from PPG signal. The findings indicated that CatBoost demonstrated 

superior performance, achieving a MAE and ME±SD of 5.368 mmHg and 

0.050±7.837 mmHg for SBP, and 2.521 mmHg and 0.022±3.767 mmHg for DBP. 

However, these results were obtained when considering data leakage. When the 

researchers minimized the data leakage, the MAE and ME±SD increased to 18.209 

mmHg and -1.230±22.368 mmHg for SBP, and 7.524 mmHg and -0.257±9.784 

mmHg for DBP. 

 

 

2.4.4 Summary of BP prediction model 

 

In summary, the deep learning approach, particularly Long Short-Term 

Memory (LSTM) networks, outperforms traditional machine learning approaches in 

handling temporal dependencies, such as those exhibited by BP. However, this 

technique has the disadvantage of low interpretability, which is a significant concern 

in healthcare settings where model comprehension and transparency are essential. 

Additionally, deep learning requires a large amount of data to achieve good results, 

especially for predicting BP from PPG and ECG signals, as these signals vary among 

individuals. Consequently, substantial data is needed for tuning the model, which 

may not be feasible in real-world scenarios. Furthermore, recent research has 

suggested that many previous studies using deep learning approaches have 

overlooked data leakage issues, leading to overly optimistic results. 
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For traditional machine learning approaches, despite requiring a manual 

feature engineering process, offer benefits in terms of interpretability. This approach 

is less complex compared to deep learning, allowing for the identification of crucial 

aspects of PPG and ECG signals that contribute the most to predicting BP. 

Additionally, traditional machine learning requires less data and is less 

computationally expensive, making it more suitable for real-world scenarios. 

Random Forest and SVR are non-linear machine learning models that have 

demonstrated good accuracy in BP prediction in the literature. Hence, these two 

models were chosen to be compared in this project. 

 

2.5 Summary 

There are various features can be extracted from the PPG and ECG signals. 

Most of the researchers focused on the features from PPG. Even though some 

include the features from ECG in their prediction model, but involvement of ECG 

features is limited compared to PPG. Since ECG is proven to provide diagnostic 

information about the BP status, hence, there is a need to further explore into features 

from ECG which may be relevant to BP status in order to come out with a better set 

of features used in BP prediction. Besides, this project also aims to identify the best 

set of features among different combinations of PPG, ECG and their demographic 

features. 

BP prediction models often involve deep learning or machine learning 

techniques. Deep learning extracted features automatically while machine learning 

involves the physiological feature extraction to improve accuracy. Deep learning is 

well-known with its powerful automated modelling but with large data size. Machine 

learning has the substantial practical benefit over deep learning where the features 

used are known, which benefit to medical teams in clinical study on BP and 

cardiovascular diseases, and it needs much smaller size of data. Hence, machine 

learning is chosen over deep learning in this project. The pro and cons of commonly 

used machine learning methods are discussed in Section 2.4.4.  
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In order to identify the best set of features for BP prediction model to be fed 

into machine learning, feature selection will be applied. There are a number of 

feature selection methods used by researchers to obtain the best combination of 

features. The most common used are MIV, MI, GA and SHAP. The MIV and MI 

have potential bias towards high-cardinality features and scalability issues, while GA 

has the risk of premature convergence. Even though SHAP has potential 

approximation errors, it has several advantages over the other three methods, 

particularly in terms of interpretability, consistency, and the ability to handle 

complex models. Hence, SHAP is chosen as the feature selection method in this 

project. 
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CHAPTER 3  

 

 

METHODOLOGY 

3.1 Introduction 

This chapter provides a brief overview of the proposed method’s 

implementation, utilizing SHAP with traditional machine learning model for 

optimized feature combination selection, and traditional machine learning model as 

the final BP prediction model. It also guides through the step-by-step process of 

predicting BP based on PPG and ECG signals, covering the preprocessing method, 

feature extraction approach, and model evaluation. Several experiments are also 

proposed. The BP prediction model includes both SBP model and DBP model. 

3.2 Project overview 

This project overview outlines a step-by-step process for completing the 

project. It begins by defining the problem statement and setting project objectives 

and scope. Next, a literature review is conducted to identify potential solutions, and a 

method for solving the problem is proposed. The project is then progressed to 

analyze the results and draw conclusions. Figure 3.1 shows the flow chart for the 

final year project development. 



54 

 

Figure 3.1: Flow chart for the final year project development. 

3.3 Proposed methodology 

In order to predict BP based on PPG and ECG signals, a series of steps must 

be taken. First, the relevant signals, including PPG, ECG, and ABP, are imported. 

Next, preprocessing is conducted on the PPG and ECG, this process involves 

excluding the corrupted signals to ensure the quality of the signal used. Once 

preprocessing is completed, the reference SBP and DBP values are extracted from 

the ABP signal, and relevant features are extracted from the PPG and ECG signals. 

Demographic features, which include subject characteristics, are also included in this 

study. 

After extracting all the features, two experiments were conducted. The first 

experiment includes selection of the best machine learning model to form the model 

for BP prediction. The second experiment include testing different features 

combination towards prediction of BP to investigate the impact. The feature selection 

technique was also proposed to select the optimized feature combination. The final 

BP prediction models are developed for both SBP and DBP separately, based on 

their selected feature combination. The model’s performance is then evaluated. The 
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flow chart of the process for developing the BP prediction model is shown in Figure 

3.2. 

 

 

Figure 3.2: The flow chart of the process for developing the blood pressure 

prediction model. 
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3.4 Data Preprocessing 

3.4.1 Dataset 

 

Recently, a large cleaned dataset called “PulseDB” has been published [68]. 

This dataset consists of 5245454 high-quality 10-second segments of ECG, PPG, and 

ABP signal from 5361 subjects retrieved from the MIMIC-III waveform database 

matched subset and the VitalDB database. One of the advantages of this dataset is 

that it includes subjects’ identification and demographic information, allowing for 

the evaluation of the generalizability of models to unseen data and avoiding data 

leakage that could lead to overly optimistic results. The authors have shared a subset 

of PulseDB derived from the VitalDB dataset on Kaggle. Hence, this dataset has 

been used in this project. 

 

From the dataset on Kaggle, the ‘VitalDB_Train_Subset’ is selected as it 

contains more subjects. Taking advantage of feature-based machine learning, which 

requires less data compared to deep learning, 10 signal segments and the subjects’ 

age, gender, weight, height, and body mass index (BMI) from 500 subjects are 

selected. Each signal segment consists of simultaneous, non-overlapping 10-second 

segments of ABP, PPG, and ECG signals. 

 

 

 

 

3.4.2 Preprocessing of PPG and ECG signals 

 

The dataset on Kaggle is the pre-processed version, and the process has been 

clearly explained in [68]. The filtering process involved resampling the ABP, PPG, 

and ECG signals from 500 Hz to 125 Hz, filtering the PPG signal with an 8th order 

Chebyshev-II filter with cutoff frequencies of 0.5-8 Hz, and filtering the ECG signal 

with an 8th order Butterworth filter with cutoff frequencies of 0.5-40 Hz. 

Additionally, the amplitudes of the PPG and ECG signals have been normalized to a 

range between 0 and 1. Figure 3.3 shows an example 10 second segment of the ABP, 

PPG, and ECG signals. 
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Figure 3.3: An example 10 second segment of the ABP, PPG, and ECG signals. 

 

Despite some irrelevant signal segments have been discarded in [68], upon 

observation, it was noted that some signals remained corrupted. Figure 3.4 shows an 

example of a corrupted PPG signal, while Figure 3.5 shows an example of a 

corrupted ECG signal.  

 

Figure 3.4: Corrupted PPG signal. 
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Figure 3.5: Corrupted ECG signal. 

 

In order to address this issue, signal segments that were unable to extract 

features were excluded. Additionally, the SBP value is limited between 80 to 180 

mmHg, while the DBP value is limited between 50 to 130 mmHg, as suggested in 

[31, 36]. The DBP is allowed to go as low as 50 mmHg to accommodate some 

hypotensive subjects, compared to [31, 36], which limits the DBP to above 60 

mmHg. 

In addition, certain conditions are set to ensure that the signals involved 

follow the correct sequence, which will be mentioned in next Section. 

 

 

3.4.3 Segmentation of ABP, PPG and ECG Signals 

 

All the 𝑅 peak of the ECG signal is obtained using the ‘findpeaks’ function in 

MATLAB. The first and last 𝑅 peak of the ECG signal is set as the beginning and the 

end of each of the segment as shown in Figure 3.6. This range will be used for 

feature extraction. 
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Figure 3.6: The range consideration for BP prediction. 

 

Some predefined conditions are established to ensure that the extracted 

signals adhere to the correct order. Firstly, since one complete PPG cycle comprises 

one systolic peak and two onsets, if the total systolic peaks do not equal the total 

onsets plus one, the signal segments are excluded. Secondly, the number of systolic 

peaks in the PPG signal must be fewer than the number of R peaks in the ECG signal 

by two. Thirdly, any segment where the heart rate is more than 30 bpm higher than 

the average heart rate for that segment is excluded. The detection of the points will 

be discussed in the next section. 

 

3.5 Feature extraction 

3.5.1  Extraction of SBP and DBP values 

 

The SBP and DBP values serve as the target values for BP prediction in this 

project. Initially, the 𝑅 peaks of the ECG signal are detected using the ‘findpeaks’ 

function in Matlab. Subsequently, the SBP value is derived from the ABP signal by 

referencing the maximum value between the first 𝑅 peak and the last 𝑅 peak of the 

ECG signal,  while DBP value is derived by referencing the minimum value between 

the first 𝑅  peak and the last ABP systolic peak as illustrated in Figure 3.7. 

MATLAB’s ‘findpeaks’ function is utilized to detect these values. Once all SBP and 

DBP values are detected, their averages are computed to form the final SBP and DBP 

values for that signal segment. 
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Figure 3.7: Reference points identified in the segmented signal. 

 

3.5.2 Fiducial point detection for PPG signal 

 

Some features require the identification of the signal’s fiducial points before 

extraction becomes possible. For PPG and its derivatives signals, a total of 15 

fiducial points need to be detected for the features used in this project.  

 

A single PPG cycle starts and ends with onset points. Initially, the onset 

points of the PPG signal are detected using the ‘findpeaks’ function in MATLAB. 

This is done by finding the minimum point between the first ABP onset until the last 

𝑅 peak of the ECG signal, as shown in Figure 3.8. Next, the systolic peak of the PPG 

is detected by referring to the maximum point between the first systolic peak of ABP 

until the last onsets of PPG using the ‘findpeaks’ function, as shown in Figure 3.8. 
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Figure 3.8: Detection of systolic peak and onsets of PPG signal. 

 

 After that, the first and second derivatives of the PPG signal, known as the 

VPG and APG signals respectively, are obtained using the ‘gradient’ function in 

Matlab. Figure 3.9 shows an example of the 10 cycles of the PPG signal with its 

derivative signals. The peak of the VPG signal in each PPG cycle will be used to 

determine the maximum slope of the PPG cycle. 

 

 

Figure 3.9: 10 cycles of the PPG signal with its derivative signals. 

 

 Once the derivative signals have been obtained, each cycle of the PPG signal 

will be used to extract features. The features of the VPG and APG signals will also 

be extracted based on the start and end of the PPG cycles. This process will repeat, 

starting from the PPG cycle after the first 𝑅 peak until the PPG cycle before the last 

𝑅 peak. Figure 3.10 shows an example of the single PPG cycle with its derivatives. 
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Figure 3.10: The first PPG cycle and its derivatives. 

 

 

A normal PPG signal requires detecting a total of five points: two onset 

points, one systolic peak, one dicrotic notch, and one diastolic peak. Additionally, the 

maximum slope of the PPG cycle is essential for feature extraction in this project. 

The two onset points, one systolic peak, and the maximum slope of the PPG cycle 

can be detected by following the aforementioned procedure. However, the 

identification of the dicrotic notch and diastolic peak, which may be less pronounced, 

relies on the locations of points 𝑒  and 𝑓  in the APG, representing the second 

derivative of the PPG. 

 

For the VPG, the first derivative of the PPG. There are three points in total 

that need to be detected which are 𝑤, 𝑦, and 𝑧. These points can be detected using 

the ‘findpeak’ function. The 𝑤  is the referring to the maximum peak of VPG 

between the first onset and systolic peak of the PPG, 𝑦 is the minimum point of the 

VPG, and 𝑧 is the sub-peak of VPG after the 𝑦.  

 

For the APG, the second derivative of the PPG. There are five points in total 

that need to be detected which are 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, and 𝑓. For point 𝑎, 𝑏, 𝑒, and 𝑓, the 

‘findpeaks’ function is used. For 𝑎, it is an early systolic positive peak, detected by 

locating the maximum peak, while for 𝑏 , it is an early systolic negative peak, 
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detected by locating the trough of the APG after 𝑎. For 𝑒, it is an early diastolic 

positive wave, detected by locating the maximum peak after 𝑏, while for 𝑓, it is a 

diastolic negative wave, detected by locating the trough after 𝑒 . The point 𝑒  and 

𝑓 correspond to dicrotic notch and diastolic peak of PPG signal, respectively. 

 

For points 𝑐 and 𝑑, which are less prominent in most of the subjects in the 

dataset. Hence, the third derivative of PPG, called jerk photoplethysmography (JPG) 

is used, to detect these points [69]. There are three different cases for detecting points 

𝑐 and 𝑑. Case 1 for  𝑐 and 𝑑 when they are not prominent, case 2 for 𝑐 and 𝑑 when 

they are undetectable, and case 3 points 𝑐 and 𝑑 when they are prominent. All these 

cases are illustrated in Figure 3.11.   

 

 

Figure 3.11: APG fiducial point detection for three different cases [69]. 

 

For case 1, point 𝑐 is detected by referring to the maximum peak of JPG, and 

point 𝑑 is detected by referring to the 2nd zero-crossing of APG. For case 2, the point 

𝑐 is detected by adding the location of 2nd minima of JPG with 2.5% of the total 

length of APG signal, while point 𝑑 is detected by subtracting the location of the 2nd 

minima of JPG with 2.5% of the total length of APG signal. For case 3, the point 𝑐 

and 𝑑 are detected by referring to the maxima and minima of APG between 𝑏 and 𝑒, 

respectively. 
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3.5.3 Wave detection for ECG signal 

 

There are a total of 5 wave that need to be detected on the ECG signal, 

namely 𝑃, 𝑄, 𝑅, 𝑆, and 𝑇, as shown in Figure 3.12. Additionally, the end of the 𝑇 

wave also needs to be identified to extract some features. 

 

 

Figure 3.12: Wave for ECG signal. 

 

 

As mentioned earlier, the 𝑅 peak of the ECG signal is detected by referring to 

the maximum of the ECG signal. After detecting the 𝑅  peak, 𝑄  is detected by 

referring to the last minimum point between the previous 𝑅 peak and the current 𝑅 

peak, while 𝑆 is detected based on the first minimum point between the current 𝑅 

peak and the next 𝑅 peak. Next, 𝑃 is detected by referring to the last peak between 

the previous 𝑅 peak and the current 𝑄. Following that, 𝑇 is detected by referring to 

the first peak between the current 𝑆 and the next 𝑃. Finally, the end of the 𝑇 wave is 

detected by referring to the minimum between the current 𝑇 and the next 𝑃.  

 

All these points are detected using the ‘findpeaks’ function in MATLAB, 

starting from the first R peak until the last R peak of the ECG signal. Figure 3.13 

displays a 10-second segment of the ECG signal with all the detected points. 
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Figure 3.13: 10-second segment of the ECG signal. 

 

3.5.4 Morphological and dynamic features of PPG and ECG signals 

 

Based on previous studies, 78 features were selected and extracted from PPG 

and ECG signals. These features include morphological and dynamic features. 

Demographic features, consisting of subject information, were also extracted. All 

features were extracted using MATLAB R2020b. Features extracted individually 

from PPG and ECG are displayed in Tables 3.1 and 3.2, respectively, while features 

extracted from both PPG and ECG signals are displayed in Table 3.3, and 

demographic features are displayed in Table 3.4. For features from PPG and ECG 

signals, the features are extracted from each of the cycles within the first and last R 

peak of ECG. These features from all cycles are then averaged to obtain a single 

representative set of features 

 

PPG features 

Table 3.1: PPG features. 

No Feature name   Feature extraction method  

1 PPG_𝐾 value PPG_𝐾 value is computed using the following equation 

𝑝𝑝𝑔𝐾𝑣𝑎𝑙𝑢𝑒 =  
𝑝𝑚 − 𝑝𝑑

𝑝𝑠 − 𝑝𝑑
 

where 𝑝𝑠  is the systolic peak in PPG, 𝑝𝑑  is onset value in 

systolic phase, and 𝑝𝑚 =
1

𝑇
∫ 𝑃𝑃𝐺(𝑡)𝑑𝑡, respectively. 

2 PIR PIR is computed by taking the ratio of maximum value to the 

minimum value in the PPG signal. 

3 𝐴𝑏−𝑐−𝑑−𝑒/𝑎  𝐴𝑏−𝑐−𝑑−𝑒/𝑎  is computed using the following formula, 

𝐴𝑏 − 𝐴𝑐 − 𝐴𝑑 − 𝐴𝑒

𝐴𝑎
 

where 𝐴𝑎 , 𝐴𝑏 , 𝐴𝑐 , 𝐴𝑑 , and 𝐴𝑒  represent the amplitude of 
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points 𝑎, 𝑏, 𝑐, 𝑑, and 𝑒 in the APG, respectively. 

4 𝑇𝑂𝑎 𝑇𝑂𝑎 is computed by measuring the time difference between the 

onset in PPG systolic phase and the point 𝑎 in the APG. 

5 𝐶𝑠𝑙𝑜𝑝𝑒 𝐶𝑠𝑙𝑜𝑝𝑒 is computed by determining the slope from the onset in 

systolic phase to the systolic peak in the PPG. Slope is 

calculated by dividing the change in amplitude to the change 

in time. 

6 𝑇𝑂𝑆 𝑇𝑂𝑆 is computed by measuring the time difference between the 

onset in systolic phase and systolic peak in PPG. 

7 LASI LASI is computed by measuring the time difference between 

the systolic peak and diastolic peak in PPG. 

8 AI AI is computed by calculating the ratio of diastolic peak to 

systolic peak in PPG. 

9 IPA IPA is computed by calculating the ratio of the diastolic area to 

the systolic area. MATLAB’s ‘trapz’ function is utilized for 

area calculation. The systolic area is determined by integrating 

the PPG from the onset in the systolic phase to the dicrotic 

notch, while the diastolic area is measured by integrating the 

PPG from the dicrotic notch to the onset in the diastolic phase. 

10 𝑆1 𝑆1  is computed using the ‘trapz’ function in MATLAB, 

integrating the PPG from the onset in systolic phase to the 

location of the maximum slope (corresponding to the location 

of 𝑤 in the VPG). 

11 𝑆2 𝑆2  is computed using the ‘trapz’ function in MATLAB, 

integrating the PPG from the maximum slope to the systolic 

peak. 

12 𝑆3 𝑆3  is computed using the ‘trapz’ function in MATLAB, 

integrating the PPG from the systolic peak to the diastolic 

peak. 

13 𝑆4 𝑆4  is computed using the ‘trapz’ function in MATLAB, 

integrating the PPG from the diastolic peak to the onset in 

diastolic phase. 

14 Kurtosis Kurtosis is computed using ‘kurtosis’ function in MATLAB. 

15 𝐴𝑛𝑔𝑙𝑒𝑁𝐷 𝐴𝑛𝑔𝑙𝑒𝑁𝐷  is computed by determining the slope from the 
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location of the dicrotic notch to the location of the diastolic 

peak in the PPG. Slope is calculated by dividing the change in 

amplitude to the change in time.  

16 𝐴𝑛𝑔𝑙𝑒𝑆𝐷 𝐴𝑛𝑔𝑙𝑒𝑆𝐷  is computed by determining the slope from the 

location of the systolic peak to the location of the diastolic 

peak in the PPG. Slope is calculated by dividing the change in 

amplitude to the change in time. 

17 𝑇𝑁𝐷 𝑇𝑁𝐷 is computed by measuring the time difference between the 

dicrotic notch and the diastolic peak in PPG. 

18 𝑇𝑤𝑐 𝑇𝑤𝑐  is computed by measuring the time difference between 

point 𝑤 in VPG and point 𝑐 in the APG. 

19 𝐴𝑛𝑔𝑙𝑒𝑧𝑦 𝐴𝑛𝑔𝑙𝑒𝑧𝑦  is computed by determining the slope from point 𝑧 to 

the point 𝑦 in the VPG. Slope is calculated by dividing the 

change in amplitude to the change in time. 

20 𝐴𝑛𝑔𝑙𝑒𝑒𝑑 𝐴𝑛𝑔𝑙𝑒𝑒𝑑 is computed by determining the slope from point 𝑒 to 

the point 𝑑  in the APG. Slope is calculated by dividing the 

change in amplitude to the change in time. 

21 Width10  Width10 or DW10+SW10 is computed by measuring the time 

difference between two points in the PPG signal where the 

amplitude is at 10% of the peak, encompassing both the 

systolic and diastolic part. 

22 Width25 Width25 or DW25+SW25 is computed by measuring the time 

difference between two points in the PPG signal where the 

amplitude is at 25% of the peak, encompassing both the 

systolic and diastolic part. 

23 Width33 Width33 or DW33+SW33 is computed by measuring the time 

difference between two points in the PPG signal where the 

amplitude is at 33% of the peak, encompassing both the 

systolic and diastolic part. 

24 Width50 Width50 or DW50+SW50 is computed by measuring the time 

difference between two points in the PPG signal where the 

amplitude is at 50% of the peak, encompassing both the 



68 

systolic and diastolic part. 

25 Width66 Width66 or DW66+SW66 is computed by measuring the time 

difference between two points in the PPG signal where the 

amplitude is at 66% of the peak, encompassing both the 

systolic and diastolic part. 

26 Width75 Width75 or DW75+SW75 is computed by measuring the time 

difference between two points in the PPG signal where the 

amplitude is at 75% of the peak, encompassing both the 

systolic and diastolic part. 

27 DW10 DW10 is computed by measuring the time interval between the 

systolic peak and the point in the diastolic phase where the 

PPG amplitude falls to 10% of the peak. 

28 DW25 DW25 is computed by measuring the time interval between the 

systolic peak and the point in the diastolic phase where the 

PPG amplitude falls to 25% of the peak. 

29 DW33 DW33 is computed by measuring the time interval between the 

systolic peak and the point in the diastolic phase where the 

PPG amplitude falls to 33% of the peak. 

30 DW50 DW50 is computed by measuring the time interval between the 

systolic peak and the point in the diastolic phase where the 

PPG amplitude falls to 50% of the peak. 

31 DW66 DW66 is computed by measuring the time interval between the 

systolic peak and the point in the diastolic phase where the 

PPG amplitude falls to 66% of the peak. 

32 DW75 DW75 is computed by measuring the time interval between the 

systolic peak and the point in the diastolic phase where the 

PPG amplitude falls to 75% of the peak. 

33 DW10/SW10 DW10/SW10 is computed by calculating the ratio between 

DW10 to the SW10, SW10 is similar with DW10 but referring 

to the point in systolic phase to the systolic peak. 

34 DW25/SW25 DW25/SW25 is computed by calculating the ratio between 

DW25 to the SW25, SW25 is similar with DW25 but referring 

to the point in systolic phase to the systolic peak. 



69 

35 DW33/SW33 DW33/SW33 is computed by calculating the ratio between 

DW33 to the SW33, SW33 is similar with DW33 but referring 

to the point in systolic phase to the systolic peak. 

36 DW50/SW50 DW50/SW50 is computed by calculating the ratio between 

DW50 to the SW50, SW50 is similar with DW50 but referring 

to the point in systolic phase to the systolic peak. 

37 DW66/SW66 DW66/SW66 is computed by calculating the ratio between 

DW10 to the SW66, SW66 is similar with DW66 but referring 

to the point in systolic phase to the systolic peak. 

38 DW75/SW75 DW75/SW75 is computed by calculating the ratio between 

DW75 to the SW75, SW75 is similar with DW75 but referring 

to the point in systolic phase to the systolic peak. 

39 𝑡𝑝𝑝 𝑡𝑝𝑝  or Cardiac period is computed by measuring the time 

difference between currect systolic peak to the next systolic 

peak in PPG signal.  

40 DT DT is computed by measuring the time difference between 

systolic peak to the onset at the diastolic phase in PPG. 

41 𝑏/𝑎 𝑏/𝑎 is computed by calculating the ratio of the amplitude of 

point 𝑏 to the amplitude of point 𝑎 in APG. 

42 𝑐/𝑎 𝑐/𝑎 is computed by calculating the ratio of the amplitude of 

point 𝑐 to the amplitude of point 𝑎 in APG. 

43 𝑑/𝑎 𝑑/𝑎 is computed by calculating the ratio of the amplitude of 

point 𝑑 to the amplitude of point 𝑎 in APG. 

44 𝑒/𝑎 𝑒/𝑎 is computed by calculating the ratio of the amplitude of 

point 𝑒 to the amplitude of point 𝑎 in APG. 

45 𝛼𝑛 𝛼𝑛 is computed  by using the following equation, 

𝛼𝑛 = 𝑅√
𝜔𝜌

𝑏
 

where 𝑅 is the valley amplitude of the PPG signal, 𝜔 is the 

frequency of heart rate, 𝜌 is the density of blood which assume 

to be 1060 kg/m3 , and 𝑏 is the inverse magnitude between the 

point in the VPG signal corresponding to the 𝜔 in VPG and 

the location that aligns with the systolic peak in the PPG signal 
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Table 3.2: ECG features. 

No Feature name Description 

1 Heart rate Heart rate is computed by using the following equation,  

Heart rate =
60 × 𝑓𝑠

𝑅𝑅
 

where 𝑓𝑠  represents the sampling frequency, and the 𝑅𝑅 

interval is obtained by measuring time difference between 

the first and second 𝑅 peaks in the ECG signal. 

2 Hjorth mobility 

 

Hjorth mobility is computed using the following equation,  

𝐻𝑗𝑜𝑟𝑡ℎ 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = √
𝑣𝑎𝑟(𝑥′)

𝑣𝑎𝑟(𝑥)
 

where 𝑥 represents the ECG segment, 𝑥′ is the derivative of 

the ECG, and var denotes variance, respectively. 

3 Hjorth 

complexity 

 

Hjorth complexity is computed by calculating the ratio of the 

mobility of the derivative of the ECG to the mobility of the 

ECG. 

𝐻𝑗𝑜𝑟𝑡ℎ 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =
𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 (𝑥′)

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 (𝑥)
 

 

4 𝑄𝑅𝑆 complex 𝑄𝑅𝑆 complex is computed by measuring the time difference 

between 𝑄 and 𝑆 in ECG signal 

5 𝑄𝑇 𝑄𝑇 is computed by measuring the time difference between 𝑄 

and 𝑇 wave end in the ECG signal 

6 𝑄𝑇𝑐 𝑄𝑇𝑐  is computed by dividing the 𝑄𝑇 interval by the square 

root of the 𝑅𝑅 interval in the ECG signal.  

𝑄𝑇𝑐 =
𝑄𝑇

√𝑅𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
 

where the 𝑅𝑅 interval is the time difference between current 

𝑅 peak to the next 𝑅 peak. 

7 SDI SDI is computed by calculating the ratio of the 𝑄𝑇 interval 

to the 𝑇𝑄 interval in the ECG signal. 
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𝑆𝐷𝐼 =
𝑄𝑇

𝑇𝑄
 

where the 𝑇𝑄 is time difference between currect 𝑇 wave end 

to the next 𝑄. 

8 SDIn SDIn is computed by calculating the ratio of 𝑄𝑇 to the 𝑅𝑅 

interval in the ECG signal 

𝑆𝐷𝐼𝑛 =
𝑄𝑇

𝑅𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
 

 

where the 𝑅𝑅 interval is the time difference between current 

𝑅 peak to the next 𝑅 peak. 

9 𝑃   𝑃 is computed by taking the amplitude of 𝑃 wave in ECG 

signal. 

10 𝑄  𝑄 is computed by taking the amplitude of 𝑄 wave in ECG 

signal. 

11 𝑅 𝑅 is computed by taking the amplitude of 𝑅 wave in ECG 

signal. 

12 𝑆 𝑆 is computed by taking the amplitude of 𝑆 wave in ECG 

signal. 

13 𝑇 𝑇 is computed by taking the amplitude of 𝑇 wave in ECG 

signal. 

14 𝑃𝑅 𝑃𝑅 is computed by measuring the time difference between 𝑃 

and 𝑅 in the ECG signal. 

15 𝑅𝑇 𝑅𝑇 is computed by measuring the time difference between 𝑅 

and 𝑇 in the ECG signal. 

16 𝑃𝑄 𝑃𝑄 is computed by measuring the time difference between 𝑃 

and 𝑄 in the ECG signal. 

17 𝑆𝑇 𝑆𝑇 is computed by measuring the time difference between 𝑆 

and 𝑇 in the ECG signal. 

18 𝑃𝑇 𝑃𝑇 is computed by measuring the time difference between 𝑃 

and 𝑇 in the ECG signal. 

19 𝑅𝑇 ratio 𝑅𝑇 ratio is computed by calculating the ratio of 𝑇 peak to 𝑅 

peak in ECG signal. 
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20 𝑅𝑃 diff 𝑅𝑃 diff is computed by calculating the difference between 𝑅 

peak amplitude from 𝑃 peak amplitude. 

 

Features from both PPG and ECG 

Table 3.3: Features from both PPG and ECG. 

No Feature name Description 

1 PAT peak PAT peak is computed by measuring the time difference 

between the first 𝑅 peak in the ECG and the systolic peak in 

the PPG.  

2 PAT maxslope 

 

PAT maxslope is computed by measuring the time 

difference between the first 𝑅  peak in the ECG and the 

maximum slope in the PPG. The maximum slope is obtained 

by referring to the maximum peak of VPG. 

3 PAT onset PAT onset is computed by measuring the time difference 

between the first 𝑅 peak in the ECG and the onset in systolic 

phase in the PPG. 

 

Demographic feature 

Table 3.4: Demographic features. 

No Feature name Description 

1 BMI BMI of the subject 

2 Age Age of the subject 

3 Weight Weight of the subject 

4 Height Height of the subject 

5 Gender Gender of the subject 

6 BMI/𝑡1 BMI/𝑡1 is computed by calculating the ratio of the BMI of 

the subject to the time difference between the onset in 

systolic phase and systolic peak in PPG. 

7 Weight/𝑡𝑝𝑖 Weight/𝑡𝑝𝑖 is computed by calculating the ratio of the weight 

of the subject to the time difference between onset in systolic 

phase and onset in diastolic phase of PPG. 

8 Weight/𝑡𝑝𝑝 Weight/ 𝑡𝑝𝑝  is computed by calculating the ratio of the 
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weight of the subject to the peak-to-peak interval of the PPG 

signal 

9 Weight/𝑡1 Weight/𝑡1 is computed by calculating the ratio of the weight 

of the subject to the time difference between the onset in 

systolic phase and systolic peak in PPG. 

10 BMI/𝑡𝑝𝑝 BMI/𝑡𝑝𝑝 is computed by calculating the ratio of the BMI of 

the subject to the peak-to-peak interval of the PPG signal 

 

3.5.5 Optimized feature selection using SHAP with machine learning model 

 

Having an optimized feature combination helps to improve the model 

performance since having too many features can lead to overfitting in machine 

learning and increase computational costs. In this project, SHAP is used with best 

perform machine learning model to select optimized feature combinations for 

prediction of BP. The details about the machine learning model will be explained in 

Section 3.6. Figure 3.14 shows the flow chart of feature selection using SHAP with 

machine learning model. 
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Figure 3.14: Flow chart of feature selection using SHAP with machine learning 

model. 

 

SHAP works based on a fundamental concept in cooperative game theory, 

which aims to quantify the contribution of each player to a game or cooperative 

effort [21]. This method assigns an importance value which is called SHAP value to 

each of the features based on their contribution to the output of machine learning 

model. The core of this method is to calculate the sum of SHAP value of each using 

the formula in Eqn. (3.1): 

𝑔(𝑥) = ∅0 + ∑ ∅𝑖𝑥𝑖

𝑀

𝑖=1

 

(3.1)  
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where 𝑔 is the explanatory model of the prediction model 𝑓, 𝑀 is number of input 

features, ∅0 is the average prediction of the model, ∅𝑖 is the SHAP values of the 𝑖-th 

eigenvalue 𝑥𝑖 ∈ {0,1}𝑀  which indicates whether the corresponding feature is used 

where 𝑥𝑖=0 indicates not in used while 𝑥𝑖=1 indicates in used. 

 

If the model 𝑔 satisfies three desirable properties known as local accuracy, 

missingness, and consistency. SHAP values can be calculated using the formula in 

Eqn. (3.2): 

∅𝑖(𝑓, 𝑥) = ∑
|𝑆|! (𝑀 − |𝑆| − 1)!

𝑀!
[𝑓

𝑥
(𝑆 ∪ {𝑖}) − 𝑓

𝑥
(𝑆)]

S⊆N{i}

 

 

(3.2)  

where 𝑁 is the set of all features, 𝑀 is the number of features, 𝑆 is a subset of 𝑁 with 

2𝑀−1 potential combinations, |𝑆|  is the count of elements in 𝑆 , 𝑓𝑥(𝑆 ∪ {𝑖})  is the 

model’s predicted value when only the features in 𝑆 ∪ {𝑖} are considered, and 𝑓𝑥(𝑆) 

is the predicted value when only the features in 𝑆 are considered. The results from 

[𝑓𝑥(𝑆 ∪ {𝑖}) − 𝑓𝑥(𝑆)]  shows the boundary contribution of the 𝑖 -th feature in the 

subset 𝑆. 

 

From Eqns. (3.1) and (3.2), SHAP reflects both positive and negative 

influence of features in each sample. This aids in understanding how each feature 

contributes to predictions and enhances sensitivity to non-linear data.  

 

In this project, the SHAP library is imported into the Python environment. 

The mean absolute SHAP value for each of the features is calculated across all 

subjects. The importance of each feature is determined by its mean absolute SHAP 

value, where a higher value indicates greater importance. The features are sorted in 

decreasing order of importance. 

 

Before selecting the optimized feature combination, a feature correlation 

analysis is performed to eliminate redundant features. The correlation analysis is 

performed on the features, and features with correlation values above 0.9 are being 
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removed from the dataset. The correlation between features is calculated using the 

Pearson correlation coefficient (𝑟) formula in Eqn.(3.3). 

𝑟 =
∑ (𝑎𝑖 − 𝑎̅)(𝑏𝑖 − 𝑏̅)𝑁

𝑖=1

√∑ (𝑎𝑖 − 𝑎̅)2𝑁
𝑖=1 √∑ ((𝑏𝑖 − 𝑏̅)2𝑁

𝑖=1

 
(3.3)  

 

where 𝑎𝑖 is the value of feature 1 for the 𝑖-th sample,  𝑏𝑖 is the value of feature 2 for 

the 𝑖 -th sample, 𝑎̅  is the average value of feature 1 across all samples, 𝑏̅  is the 

average value of feature 2 across all samples, and 𝑁 is the total number of samples. 

 

 Mutual Information (MI) is then used to decide which features should be 

removed. MI is a measure of the mutual dependence between two random variables, 

with higher values indicating stronger dependence and vice versa. Among the highly 

correlated features, those with low MI values with respect to the SBP and DBP will 

be discarded. The MI values are calculated using the mutual_info_regression 

function from the sklearn library. 

 

In order to select the optimized feature combination, the best perform 

machine learning model is first trained using the whole set features after correlation 

test, and feature importance scores are calculated for all features. The backward 

elimination technique is used to determine the appropriate number of features. This 

technique starts with all features included in the model and iteratively removes the 

least important features one at a time. The machine learning model is retrained with 

different numbers of features, and performance is assessed using the RMSE metric 

with validation set. The optimal number of features is determined based on the 

lowest RMSE, indicating the most informative subset for accurate prediction.  

 

The selected features are subsequently used to train the final machine 

learning model, with two separate models developed, one for SBP and one for DBP. 

Both models use different optimized feature combinations. 
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3.6 Blood pressure prediction model 

3.6.1 Random forest model 

 

Random Forest is machine learning algorithm which combines multiple 

decision tree models in making a prediction [38, 64, 65]. It is highly effective for 

predictive analysis and capable of accurately estimating output values even when the 

features are not directly related to the targets in a linear manner.  

 

A decision tree is a statistical model which consists of root nodes, decision 

nodes and leaf nodes. During the training phase, the algorithm divides the input data 

at each of the nodes based on specific conditions, aiming to optimize the parameters 

of split functions to best suit the dataset. The splitting process continues until 

reaching a terminal node or tree leaves, based on the hyperparameter setting. At the 

end of the training process, a prediction function ℎ̂ (𝑋, 𝑆𝑛) is constructed over 𝑆𝑛, 

where 𝑋 represents the input vector containing a number of features and 𝑆𝑛 is the 

training set containing n observations. 

 

The random forest model is the extension of decision tree, aims to improve 

prediction performance by constructing multiple uncorrelated decision trees, where 

each grown with a randomized subset of predictors. Random forest is built by 

randomly sampling features and training data subsets for each decision tree using a 

process called 'bootstrap'. A bootstrap sample is formed by randomly choosing 𝑛 

observations with replacement from 𝑆𝑛.  

 

The bagging or bootstrap aggregation algorithm create a set of 𝑞 prediction 

trees by choosing multiple bootstrap samples, 𝑆𝑛
𝜃𝑞

, and apply these samples to the 

decision tree algorithm. The ensemble generates 𝑞  outputs corresponding to each 

tree, denoted as 𝑌̂ = ℎ̂(𝑋, 𝑆𝑛
𝜃𝑞) . Subsequently, the aggregation is carried out by 

averaging the outputs of all trees and obtain the estimation 𝑌̂of the output. The 

estimation 𝑌̂ of the output can be calculated using the formula in Eqn. (3.4): 

𝑌̂ =
1

𝑞
∑ ℎ̂(𝑋, 𝑆𝑛

𝜃𝑙)

𝑞

𝑙=1

 

 

(3.4)  
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where  𝑙 = 1,2,3, …,𝑞. Figure 3.15 illustrates the construction of Random Forest.  

 

 

Figure 3.15: Illustration of Random Forest construction [64]. 

 

Like many other machine learning models, Random Forest has adjustable 

parameters that can be optimized. These include the number of trees (n_estimators), 

the maximum depth of tree (max_depth), the number of features sampled 

(max_features), the minimum number of samples in a leaf node (min_samples_leaf), 

and the minimum number of samples required to split a node (min_samples_split).  

In summary, by combining the predictions from each tree, the Random Forest 

model effectively diminishes the variance of the overall model. Additionally, it 

exhibits insensitivity to outliers and demonstrates enhanced capabilities in preventing 

overfitting and ensuring stability. 

3.6.2 SVR 

SVR is another machine learning algorithm that having advantages in solving 

the small sample and non-linear regression problem. In SVR, the input sample x is 

transformed into a high-dimensional feature space using the non-linear mapping, 

∅(𝑥) , after which the regression function is estimated using a linear model 

constructed within this feature space [37, 63]. The equation used is shown in Eqn. 

(3.5) 



79 

𝑓(𝑥, 𝜔) = 𝜔 ∙ ∅(𝑥) + 𝑏 

 

 

(3.5)  

where 𝜔 is the weight vector, and 𝑏 is the threshold. The 𝜔 an 𝑏 can be obtained 

using the optimization equation in Eqn. (3.6) 

min
1

2
‖𝜔‖2 + 𝑐 ∑(𝜉i + 𝜉𝑖

∗)

𝑙

𝑖=1

 

subject to: 

𝑦𝑖 − (𝑤𝑇𝑥𝑖 + 𝑏) < 𝜀 + 𝜉𝑖  

(𝑤𝑇𝑥𝑖 + 𝑏) − 𝑦𝑖 <  𝜀 + 𝜉𝑖
∗ 

𝜉𝑖 + 𝜉𝑖
∗ ≥ 0 

 

(3.6)  

where 𝑐  is a penalty factor, 𝜀  is the loss function, and 𝜉𝑖  and 𝜉𝑖
∗  are different 

relaxation factors. 

For simplifying the computation, Lagrange multipliers were utilized to 

convert the constrained optimization problems in (3.5) into a dual problem as shown 

in Eqn. (3.7). 

𝑓(𝑥) = ∑(−𝛼𝑖 + 𝛼𝑖
∗)𝐾(𝑥𝑖 , 𝑥) + 𝑏

𝑙

𝑖

 

 

(3.7)  

where 𝛼𝑖 and 𝛼𝑖
∗ are Lagrange multipliers corresponding to support vectors (SVs), 𝑙 

is the number of SVs, and 𝐾(𝑥𝑖, 𝑥) is a kernel function. 

There are different kernel functions, such as the RBF kernel, linear kernel, 

and polynomial kernel. The RBF kernel is selected because it can transform the 

database into a non-linear high-dimensional space compared to the linear kernel, thus 

allowing it to overcome the non-linear relationship between features and BP. 

Additionally, the RBF kernel has fewer tuning parameters compared to the 

polynomial kernel, making it less complex. The equation of the RBF kernel is shown 

in Eqn. (3.8).  

𝐾(𝑥𝑖, 𝑥) = exp  (−𝛾 ‖𝑥 − 𝑥𝑖‖
2)  

(3.8)  
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where 𝛾 is the kernel parameter. 

 

From Eqns. (3.6) and (3.8), the hyperparameters of SVR that need to be tuned 

are the penalty factor 𝑐, the kernel parameter 𝛾, and the loss function 𝜀. For SVR, the 

input features undergo standard scaling before being fed into the model, as it relies 

on optimization and distance calculations. 

 

In this project, SVR and Random Forest models were implemented using the 

scikit-learn library package in Python. The Python version used is 3.11.8, and the 

code was written in a Jupyter notebook with version 7.0.8. 

 

3.6.3 Hyperparameter tunning with Optuna 

 

Optuna is an open-source automatic hyperparameter optimization software 

framework [70]. It is design for automatically tune the hyperparameter of machine 

learning including both traditional machine learning and deep learning. In this 

project, Optuna is used to tune the hyperparameter of both SVR and Random Forest. 

 

Optuna offers several advantages, including define-by-run programming, 

efficient sampling and pruning algorithms, and easy setup. Following are the step for 

hyperparameter using Optuna. 

 

Firstly, the parameter search space for SVR and Random Forest is defined 

individually. The parameter search spaces are shown in Table 3.5. Next, the 

objective function, which serves as a guide in enhancing the models' performance, is 

defined. The prediction of BP values involves a regression task, where the MAE is 

set as the evaluation metric, and the objective function is defined for minimization. 

 

Table 3.5: Parameter search spaces for SVR and Random Forest. 

Algorithm Parameter 

SVR Kernel: 'rbf' 

C: float (1, 100) 

Epsilon: float (0.01, 1) 
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Gamma: ['scale', 'auto'] 

Random Forest n_estimators: [50,100,200,300,400,500,600,700,800,900,1000] 

max_depth: int (10, 100) 

min_samples_split: int (2, 20) 

min_samples_leaf: int (1, 20) 

max_features:[ "sqrt","log2",None] 

 

The Optuna study is run with n_trials iterations of 100 to find the best 

combination of hyperparameters. During each iteration, Optuna automatically tests 

various hyperparameter combinations and records the MAE of the objective function 

to monitor the model's performance. After 100 iterations, the parameters of the SVR 

and Random Forest models are reinitialized with the best hyperparameter 

combination, and the models are retrained using a combination of the training and 

validation datasets, resulting in optimized machine learning models. Subsequently, 

the models' performance is evaluated using the testing dataset. 

 

3.6.4 Model performance evaluation 

For a comprehensive evaluation of the regression model's performance, two 

common metrics for regression are employed, including mean absolute error (MAE), 

root mean squared error (RMSE). The formulas to calculate these metrics are shown 

in Eqns. (3.9) and (3.10). MAE will be used as the metric for Optuna optimization, 

while RMSE will be used in SHAP for feature selection with the machine learning 

model. The Pearson correlation coefficient (𝑟) for actual values against predicted 

values is also calculated. The formula is similar to Equation (3.3), but with the 

variables changed to predicted and actual values, as shown in Equation (3.11). 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑥𝑖|

𝑛

𝑖=1

 

 

 

(3.9)  

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑖 − 𝑥𝑖)2

𝑛

𝑖=1

 

 

(3.10)  
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𝑟 =
∑ (𝑦𝑖 − 𝑦̅)(𝑥𝑖 − 𝑥̅)𝑛

𝑖=1

√∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1 √∑ (𝑥𝑖 − 𝑥̅)2𝑛

𝑖=1

 

 

 

 

 

(3.11)  

 

where 𝑦𝑖 is the actual value, 𝑥𝑖 is predicted value, 𝑛 is number of observations, 𝑦̅ is 

the average of actual values, and 𝑥̅ is the average of predicted values. 

For the AAMI standard, the mean error (ME) and standard deviation (SD) 

need to be calculated. The formulas are shown in Eqns. (3.12) and (3.13).  

𝑀𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑥𝑖)

𝑛

𝑖=1

 
 

(3.12) 

  

 

𝑆𝐷 = √
1

𝑛 − 1
∑(𝑧𝑖 − 𝑧̅)2

𝑛

𝑖=1

 

 

 

(3.13) 

  

where 𝑧𝑖 represents the ME and 𝑧̅ is the mean value. 

Furthermore, to visualize the predictive performance of the model, a simple 

linear regression plot is generated, plotting actual values against predicted values. 

Additionally, Bland-Altman plots, which are analytical tools for evaluating the 

agreement between two measurements, are plotted to investigate the agreement 

between actual and predicted values. 

 MAE, RMSE, and ME determine the errors between predicted and actual 

values. Higher values for these metrics indicate lower prediction accuracy. SD 

measures the variation of a set of values relative to their mean value. Lower SD 
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indicates a better performance. The closer the Pearson correlation coefficient (𝑟) is to 

one, the more accurately the predicted data matches the actual data. 

For regression plot, the closer the data points to the regression line, the better 

is the prediction of model. For Bland-Altman plots, if the mean difference is close to 

zero and a larger proportion of predicted values fall within the 95% limits of 

agreement (± 1.96 SD), it indicates that the actual and predicted values are highly 

consistent. 

The performance of the BP prediction model is assessed based on criteria set 

by AAMI standard [71] and BHS protocol [72], widely used by many researchers to 

validate BP measuring device. According to the AAMI standard, the overall mean 

error (ME) and standard deviation (SD) between the tested BP device and the 

reference should be less or equal to 5 mmHg and 8 mmHg, respectively. In the case 

of BHS protocol, grades are assigned to devices based on the cumulative percentage 

errors under three thresholds: 5, 10, and 15 mmHg, as shown in Table 3.6. To meet 

the BHS protocol, the tested device must achieve at least grade B. Both AAMI and 

BHS required a minimum of 85 subjects for the assessment. 

 

Table 3.6: Grading criteria used by the BHS protocol [72]. 

Grade ≤5mmHg ≤10mmHg ≤15mmHg 

A 60% 85% 95% 

B 50% 75% 90% 

C 40% 65% 85% 

D Worse than C 

 

3.7 Experiments 

In order develop the final model for SBP and DBP prediction, two 

experiments were conducted.  

 

3.7.1 Data partitioning 
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As mentioned earlier in Section 3.4.1, we selected 10 signal segments and 

gathered data on the subjects' age, gender, weight, height, and body mass index 

(BMI) from 500 participants, resulting in a total of 5000 data used in this project.. 

 

The data is split into 60% for the training set to train the model, 20% for the 

validation set for hyperparameter tuning, and the remaining 20% for the test set to 

verify the model's performance on unseen data. The data is split by subject, ensuring 

that the same subject does not appear in both the training and test sets, which 

prevents data leakage. 

 

 

3.7.2 Experiment 1 

The experiment 1 involved model selection, comparing Support Vector 

Regression (SVR) and Random Forest to determine the model that provides better 

results for BP prediction. The model with superior performance is chosen for the 

final SBP and DBP models. 

Both models are first trained using the training set. Afterward, Optuna is used 

to tune the hyperparameters of SVR and Random Forest. The parameter search space 

for SVR and Random Forest is depicted in Table 3.5. Subsequently, the models are 

tested using the test set, and the optimal model is selected based on the evaluation 

results. 

 

 

3.7.3 Experiment 2 

 

Experiment 2 focused on feature testing, involving manipulation of features 

to evaluate their impact on BP prediction accuracy. The combinations of features 

used in this experiment are listed in Table 3.7: 

Table 3.7: Features combinations for Experiment 2. 

No Features combination Number of 
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features 

1 Using all features from PPG signals, ECG signals, and 

demographic features. 

78 

2 Using features from PPG and ECG signals without 

demographic features. 

68 

3 Using features from PPG signals and demographic 

features. 

55 

4 Using features from only PPG signals for prediction. 45 

 

The results from the best combination of features are selected and compared 

with the results obtained when using the features selected by SHAP with the best 

machine learning model. This process is conducted for both SBP and DBP. 

 

 

3.8 Ethics and safety of method 

Even though this project involves simulation only, it is important to consider 

the ethics and safety of the method. The dataset utilized in this project is licensed 

under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 

International (CC BY-NC-SA 4.0) license, which permits the sharing and adaptation 

of the dataset for non-commercial purposes. Consequently, there are no issues 

concerning data privacy and confidentiality, as the dataset is legally obtained and 

used in accordance with its licensing terms. 

One potential hazard of this project is the possibility of inaccuracies in the 

model's predictions, which could lead to misdiagnoses or incorrect treatment 

decisions if deployed in a clinical setting. In order to mitigate this risk, a 

comprehensive risk assessment approach is employed. The two most widely used 

protocols for the BP measurement device, AAMI and BHS, are used to evaluate the 

performance and reliability of the model. 
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In order to ensure the safety of practice, the model should undergo real-world 

experimentation before deployment in clinical settings to assess its efficacy and 

safety in practical scenarios. This includes trials in diverse patient populations to 

assess the model's adaptability and generalizability. Furthermore, continuous 

monitoring and validation of the model's performance over time are essential to 

ensure its safety and effectiveness over time. 

 

3.9 Summary of methodology 

PPG and ECG signals are utilized for BP prediction. The process involves of 

preprocessing these signals, extracting features from both signals as well as 

demographic features, identifying an optimized feature combination, and predicting 

BP through the developed model. Signal segments from a total of 500 subjects are 

utilized, and the reliability of the data is discussed in Section 3.4.1. A total of 78 

features have been successfully extracted from each subject, chosen from related and 

validated research papers. Finally, the optimized feature combination is identified 

using SHAP with a machine learning model, and BP is predicted through the 

developed model using the selected machine learning model. 

 Two experiments have been conducted, including selecting the best machine 

learning model and identify the optimized features combination for BP prediction. 

The methodology is validated by using all the evaluation metrics, as presented in 

Section 4.2.4. The final blood pressure prediction models are validated by evaluating 

the ME and SD for AAMI standard and cumulative percentage error for BHS 

protocol, as presented in Section 4.3. 
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CHAPTER 4  

 

 

RESULTS AND DISCUSSIONS 

A total of 78 features are extracted from PPG and ECG signals, in addition to 

SBP and DBP reference values derived from the ABP signal, along with 

demographic features for 500 subjects. Appendix B provides detailed SBP and DBP 

values for these 500 subjects across 10 signal segments per subject. 

 

4.1 Experiment 1 result 

Based on the results from Optuna optimization using validation set, the best 

parameters for SVR and Random Forest for SBP are shown in Table 4.1, while those 

for DBP are shown in Table 4.2. 

 

 

Table 4.1: Best hyperparameter for SVR and Random Forest for SBP prediction. 

SVR 

C 17.834386610306435 

Epsilon 0.030775864724018196 

Gamma scale 

Random Forest 

n_estimators 200 

max_depth 22 

min_samples_split 11 

min_samples_leaf 7 

max_features sqrt 

 

Table 4.2: Best hyperparameter for SVR and Random Forest for DBP prediction. 
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SVR 

C 36.67809822911926 

Epsilon 0.9950140307880824 

Gamma auto 

Random Forest 

n_estimators 50 

max_depth 61 

min_samples_split 4 

min_samples_leaf 3 

max_features log2 

 

By using the best parameters, both models were retrained with the combined 

training and validation sets. The trained models are then tested with the test set. The 

results for the prediction of SBP are presented in Table 4.3, while the prediction 

results for DBP are shown in Table 4.4. The better results are highlighted in bold. 

 

Table 4.3: Prediction of SBP using SVR and Random Forest with full feature set 

SBP SVR Random Forest 

ME± SD (mmHg) 1.8092 ± 14.6449 0.9673 ± 14.0735 

𝒓 0.5008 0.5146 

Cumulative percentage error  

≤ 5  

27.3 % 29.0 % 

Cumulative percentage error  

≤ 10  

52.5 % 53.3 % 

Cumulative percentage error  

≤ 15  

70.8 % 72.7 % 
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Table 4.4: Prediction of DBP using SVR and Random Forest with full feature set. 

DBP SVR Random Forest 

ME± SD (mmHg) 1.1894± 9.7163 0.041 ± 9.3297 

𝒓 0.4142 0.3890 

Cumulative percentage error  

≤ 5  

41.2 % 40.1 % 

Cumulative percentage error  

≤ 10  

70.0 % 74.6 % 

Cumulative percentage error  

≤ 15  

88.2 % 90.0 % 

 

From Tables 4.3 and 4.4, the results obtained from Random Forest show 

better results compared to SVR when training and testing using the full set of 

features for both SBP and DBP. Even though the cumulative percentage error ≤ 5 

and 𝑟 of SVR is slightly better than that of Random Forest in DBP prediction, overall 

results show that Random Forest performs better. Hence, Random Forest was chosen 

to conduct the next experiment and develop the prediction model for both SBP and 

DBP. 

4.2 Experiment 2 results 

4.2.1 Features analysis  

 

Tables 4.5 and 4.6 show the prediction results for different feature 

combinations for SBP and DBP, respectively, with the better results highlighted in 

bold. 

 

 



90 

 

 

Table 4.5: Feature analysis for SBP. 

 

SBP PPG+ECG 

+Demographic 

PPG+ECG PPG 

+Demographic 

PPG 

ME 

±  

SD 

(mmHg) 

0.9673  

±  

14.0735 

1.0798 

 ±  

14.0859 

1.0409 

 ± 

14.7398 

1.275  

±  

14.7802 

𝒓 0.5146 0.5118 0.4382 0.4362 

Cumulative 

percentage 

error  

≤ 5 

29.0 % 29.4 % 26.1 % 27.1 % 

Cumulative 

percentage 

error  

≤ 10 

53.3 % 53.7 % 49.8 % 52.2 % 

Cumulative 

percentage 

error  

≤ 15 

72.7 % 73.4 % 70.5 % 69.7 % 

  

According to Table 4.5, for SBP model, the combination of all features 

resulted in better prediction accuracy. By comparing Mean Error (ME), by using 

only PPG signals for prediction produced the highest ME value of 1.275 mmHg. 

Meanwhile, by including demographic features, it slightly reduced the error to 

1.0409 mmHg, whereas incorporating PPG with ECG signals slightly increased the 

error to 1.0798 mmHg. Utilizing all features from both PPG and ECG signals, along 

with demographic features, achieved the lowest ME value at 0.9673 mmHg. 
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For SBP, by using only PPG as a reference, incorporating all features resulted 

in a 24.13% reduction in error. The calculation is detailed in Eqn. (4.1). 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =
0.9673 − 1.275

1.275
 × 100% 

= −24.13% 

 

(4.1)  

 

Table 4.6: Feature analysis for DBP. 

DBP PPG+ECG 

+Demographic 

PPG+ECG PPG 

+Demographic 

PPG 

ME 

±  

SD 

(mmHg) 

0.041 

 ±  

9.3297 

0.1227 

± 

9.3486 

0.1936 

±  

9.7038 

0.2216  

 ±  

9.8246 

𝒓 0.3890 0.3843 0.3037 0.2771 

Cumulative 

percentage 

error  

≤ 5 

40.1 % 40.1 % 38.3 % 39.7 % 

Cumulative 

percentage 

error  

≤ 10 

74.6 % 74.3 % 71.3 % 71.1 % 

Cumulative 

percentage 

error  

≤ 15 

90.0 % 90.0 % 90.1 % 88.3 % 
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 Based on Table 4.6, consistent results were observed for DBP, where the ME 

achieves the lowest value when the prediction is done by using all features while the 

highest error achieved when using only PPG signal for prediction. 

For DBP, by using only PPG as a reference, incorporating all features 

resulted in an 81.50% reduction in error. The calculation is detailed in Eqn. (4.2). 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =
0.041 − 0.2216

0.2216
 × 100% 

= −81.50% 

 

(4.2)  

 

The result from feature analysis for both SBP and DBP indicate that the 

inclusion of ECG signal and demographic features enhance the prediction accuracy 

of the models. 

 

4.2.2 Feature selection using SHAP with Random Forest for SBP 

 

After conducting feature correlation analysis, the highly correlated features 

(correlation > 0.9) for both SBP and DBP are listed in Appendix C. The bold-

highlighted features, which have the lower MI values, will be removed. Following 

this removal, 58 features remain for SBP, while 59 features remain for DBP. 

 

The features are ranked based on the mean absolute SHAP values of each 

feature, computed using the Python SHAP library. A higher mean absolute SHAP 

value indicates the tendency of feature to contribute significantly to the output of the 

model. 

 

Afterward, features with the least mean absolute SHAP values are iteratively 

removed, and the model is retrained to find the optimized feature combination for 

predicting SBP. Figure 4.1 displays the results of each iteration of the processes, 

where the y-axis indicates the RMSE of the prediction, and the x-axis indicates the 

number of features. The optimized feature combination is determined based on the 

lowest RMSE.  
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Figure 4.1: RMSE of model across different number of features used for SBP 

prediction. 

 

 

The results show that the lowest RMSE is achieved when the first 40 highest-

ranking features are used, with an RMSE value of 15.4405 mmHg on validation set. 

The optimized features combination for SBP are detailed in Appendix D. The feature 

that contribute the most to the SBP prediction is 𝐴𝑛𝑔𝑙𝑒𝑒𝑑. 

 

 

 

4.2.3 Optimized features combination for DBP 

 

The same process is repeated for the Random Forest DBP model. Figure 4.2 

displays the model's RMSE for different numbers of features used. Features are 

iteratively removed starting from the least significant value.  
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Figure 4.2: RMSE of model across different number of features used for DBP 

prediction. 

 

The 39 highest-ranking features are selected for DBP based on the lowest 

RMSE of 8.7329 mmHg on the validation set. The features name are detailed in 

Appendix E. The feature with the highest mean absolute SHAP value for DBP 

prediction is 𝑃𝑇, indicating that this feature contributes the most in predicting DBP.  

 

 

 

 

4.2.4 Comparison of the best feature combinations with optimized 

combinations from SHAP with Random Forest 

 

 

Based on the optimized features selected in Sections 4.2.2 and 4.2.3, both the 

SBP and DBP models were retrained using the training and validation sets, including 

only the selected features. The results obtained using the test set were compared with 

the best feature combinations from Section 4.2.1, and are presented in Tables 4.7 and 

4.8 for SBP and DBP, respectively. 
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Table 4.7: Comparison between features for SBP. 

 

SBP PPG+ECG 

+Demographic 

 

(Number of features=78) 

Feature selection using 

SHAP with Random 

Forest 

(Number of 

features=40) 

ME± SD (mmHg) 0.9673 ± 14.0735 0.9464 ± 14.0502 

𝒓 0.5146 0.5161 

Cumulative percentage 

error  

≤ 5  

29.0 % 28.6% 

Cumulative percentage 

error  

≤ 10 

53.3 % 53.6% 

Cumulative percentage 

error  

≤ 15 

72.7 % 74.2% 

 

 

Based on Table 4.7, by using the optimized feature combination, it is found 

that the number of features for SBP is reduced from 78 to 40, a reduction of 

approximately 48.72%. Additionally, the performance shows slightly overall 

improvement. For instance, ME, the error decreased from 0.9673 mmHg to 0.9464 

mmHg.  

 

 Reducing the number of features while maintaining or improving predictive 

accuracy helps streamline the model's complexity and enhances the efficiency of BP 

predictions, requiring fewer feature extractions. This not only speeds up the process 

but also decreases the risk of overfitting, where the model might otherwise learn to 

fit the noise in the training data. 
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Table 4.8: Comparison between features for DBP. 

DBP PPG+ECG 

+Demographic 

 

(Number of features=78) 

Feature selection using 

SHAP with Random 

Forest 

(Number of 

features=39) 

ME± SD (mmHg) 0.041± 9.3297 0.0574 ± 9.3436 

𝒓 0.3890 0.3868 

Cumulative percentage 

error  

≤ 5 

40.1 % 39.6 % 

Cumulative percentage 

error  

≤ 10 

74.6 % 74.8 % 

Cumulative percentage 

error  

≤ 15 

90.0 % 90.4 % 

 

Based on Table 4.8, the optimized feature combination reduces the number of 

features for DBP prediction from 78 to 39, representing a 50% of reduction. The ME 

increased slightly from 0.0574 mmHg to 0.041 mmHg. However, this difference is 

not significant compared to other feature combinations in Table 4.6. 

These findings indicate that reducing the number of features successfully 

maintains prediction accuracy. This reduction not only simplifies the model but also 

enhances its potential applicability in real-world scenarios by reducing computational 

load. 

Figures 4.3 and 4.4 display the linear regression plots for actual versus 

predicted SBP and DBP values, respectively, by using the optimized feature 

combinations. The closer the data points are to the regression line, the better the 

model’s predictions. 
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Figure 4.3: The regression plot of actual against predicted values for SBP. 

 

 

 
Figure 4.4: The regression plot of actual against predicted values for DBP. 

 

 

From the graphs, both the SBP and DBP models are able to provide good 

predictions for data in the middle range. However, there are noticeable deviations, 

particularly at higher and lower actual values.  

 

 

 

 

 

Figures 4.5 and 4.6 show the Bland-Altman plot for SBP and DBP respectively. 
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Figure 4.5: Bland-Altman plot for SBP. 

 

Figure 4.6: Bland-Altman plot for DBP. 

 

Referring to Figures 4.5 and 4.6, the mean differences are 0.95 and 0.06 for 

SBP and DBP, respectively. These values differ insignificantly from 0 indicate that 

nonexistence of fixed bias for both models. The differences are more widely spread 

at both the lower and higher mean values, indicating variability in prediction 

accuracy across the range of values. There are several points that lie outside the 95% 

limits of agreement, indicating some outliers. However, for both models, 95% of the 

data are found fall within these limits, indicating overall good agreement between the 

actual and predicted values. 
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4.3 Evaluation of the SBP and DBP model based on AAMI and BHS 

As previously discussed in Section 3.6.4, the AAMI standard requires that the 

overall ME and SD between the tested blood pressure device and the reference 

should be less than or equal to 5 mmHg and 8 mmHg, respectively. Additionally, for 

the BHS protocol, the tested device must achieve at least grade B. 

Both the AAMI and BHS standards require testing on a total of 85 subjects. 

After data splitting, the number of subjects remaining is 100, fulfilling this 

requirement. Tables 4.9 and 4.10 show the evaluation of model based on AAMI 

standard and BHS protocol respectively. 

Table 4.9: Evaluation of model based on AAMI standard. 

BP ME (≤5 mmHg) SD (≤ 8mmHg) 

SBP 0.9464 14.0502 

DBP 0.0574 9.3436 

 

 

 

 

 

Table 4.10: Evaluation of model based on BHS protocol. 

 

BP Cumulative percentage error Grade 

≤5 mmHg ≤10 mmHg ≤15 mmHg 

SBP 28.6 % 53.6 % 74.2 % Worse than C 

DBP 39.6 % 74.8 % 90.4 % Worse than C 

 

 

From Table 4.9, ME for both SBP and DBP models are 0.9464 mmHg and 

0.0574 mmHg, respectively, which fall within the range of AAMI standard. 

However, SD of SBP and DBP, which are 14.0502 mmHg and 9.3436 mmHg, 

respectively, exhibit larger value than 8 mmHg. Table 4.10 shows that cumulative 

percentage errors of both models under 3 different categories based on BHS protocol. 

Both models fall below a C grade. The predictive accuracy for SBP is lower than that 
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for DBP due to the greater dynamism of SBP, which reflects higher pressures during 

the heartbeat. With its wider range and more variations, SBP poses a greater 

challenge for accurate prediction 

 

From the results obtained, neither the SBP nor the DBP models meet the 

requirements set by AAMI and BHS. However, these findings are supported by 

recent researches that addressing data leakage [15, 16, 17].  

 

4.4 Comparison with other research papers 

In comparison with other research papers, the study referenced [15] is chosen 

for comparison due to high similarity in the use of feature-based machine learning, 

specifically CatBoost and XGBoost. CatBoost is specifically highlighted due to its 

superior performance. Table 4.11 presents the comparison results with the referenced 

paper, where data leakage issue is addressed. 

Table 4.11: Comparison result with referenced paper [15]. 

Criteria [15] Proposed method 

Dataset (subject/signal 

segment) 

UCI dataset (- / 50182) VitalDB (500 / 5000) 

Method CatBoost Random Forest+ SHAP 

feature select 

Number of features used 

(SBP/DBP) 

133 / 133 39 / 40 

ME±SD (SBP/DBP) -1.23±22.368 mmHg 

/ 

 -0.257±9.784mmHg 

0.9464 ± 14.0502 mmHg 

/ 

0.0574 ± 9.3436 mmHg 

𝒓 (SBP/DBP) 0.218 / 0.306 0.5146 / 0.3890 

CP<5mmHg (SBP/DBP) 16.2% / 40.7% 28.6 % / 39.6 % 

CP<10mmHg 

(SBP/DBP) 

32.3% / 73.2% 53.6 % / 74.8 % 

CP<15mmHg 47.6% / 90.1% 74.2 % / 90.4 % 
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(SBP/DBP) 

 

Noted that the reference paper considered data with SBP values greater than 

70mmHg, DBP values less than 141mmHg, and a difference between SBP and DBP 

greater than 10mmHg, while in this project, SBP values range from 80 to 180 mmHg, 

and DBP values are limited between 50 to 130 mmHg. Based on the results, the SBP 

and DBP models in this project generally exhibit outstanding performance.  

 

4.5 Summary of the result and discussion 

In summary, the Random Forest model demonstrates superior performance 

compared to SVR. Additionally, the integration of SHAP with Random Forest 

optimizes feature selection, helping to maintain or even enhance predictive accuracy 

while number of features used is reduced significantly. This reduction in feature 

count contributes to reducing the model complexity, enhancing computational 

efficiency, and reducing the risk of overfitting, which is particularly crucial in real-

time applications or scenarios with resource limitations. 

Even though neither model meets the requirements of the AAMI standard and 

BHS protocol, the models in this project generally outperform those in the referenced 

paper where data leakage issue is addressed, disparities exist in terms of data 

utilization and thresholds for SBP and DBP. 
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CHAPTER 5  

 

 

CONCLUSION AND RECOMMENDATIONS  

5.1 Conclusion 

In conclusion, the feature extraction code for PPG and ECG signals has been 

successfully implemented using MATLAB. Next, for the model performance testing, 

the Random Forest algorithm demonstrated superior performance compared to SVR 

in predicting SBP and DBP, thus it was selected to form the blood pressure 

prediction model.  

 After that, the results from feature analysis revealed that all features from 

PPG and ECG signals, as well as demographic features, contribute to the prediction 

of BP. The inclusion of ECG signals and demographic features reduces the ME for 

prediction compared to using only PPG signals by approximately 24.13% for SBP 

and 81.50% for DBP. The application of optimized feature selection through SHAP 

with Random Forest helped maintain or even enhance predictive accuracy while 

using significantly fewer features, specifically a reduction of 48.72% for SBP and 

50% for DBP. 

The evaluation of the model based on AAMI standard and BHS protocol 

indicated that the model was unable to fulfill the criteria when addressing the data 

leakage issue, consistent with findings from recent papers. 

The results obtained demonstrate that the extracted features are associated 

with BP and are suitable for application in the BP prediction model. The inclusion of 

ECG signals shows potential for enhancing BP predictions. Nonetheless, creating a 

high-performance BP prediction model that fulfills the AAMI standard and BHS 
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protocol remains challenging due to variations in these signals among individuals 

and the complexity of physiological factors.  

 

5.2 Future Works 

Nevertheless, there are still limitations in this project. Firstly, not all the 

fiducial points of PPG and ECG signals were perfectly detected due to signal 

variability. Additionally, this project involved using relatively clean PPG and ECG 

signals, whereas in real-life applications, the signal may be corrupted due to noise 

and sensors used. Lastly, the results of the model in real-life applications have not 

been explored. 

For future works, it is imperative to delve into advanced signal processing 

techniques aimed at refining the detection of fiducial points in PPG and ECG signals, 

thereby enhancing feature extraction. Furthermore, validation studies carried out in 

real-life clinical settings will be essential for evaluating the performance of the BP 

prediction model across diverse patient populations and conditions. Moreover, it is 

necessary to further evaluate the model's robustness to signal variability and noise 

encountered in real-world scenarios. 

In terms of feature analysis, it is advisable to incorporate more features prior 

to feature selection to thoroughly explore high-potential features for predicting BP. 

Besides that, exploring features that do not rely on the detection of fiducial points 

should be emphasized to enhance the model's applicability to real-life conditions. 

Further exploration into integrating additional signals, such as ballistocardiogram 

signals, could further be explored to enhance prediction accuracy. 

Considering the difficulty of creating a blood pressure (BP) prediction model 

that performs well for all individuals, one potential strategy is to create a 

personalized model that uses an individual's historical data.  
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APPENDICES 

APPENDIX  A: GANTT CHART 

 

Project 

Activities 

Week 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

FYP 1 Briefing                

Chapter 1                

Chapter 2                

Chapter 3                

Early results                

FYP 1 Seminar                

Report writing                

Report Submission                

 

Project 

Activities 

Week 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

FYP 2 Briefing                

Chapter 2                

Chapter 3                

Chapter 4                

Chapter 5                

Report writing                

Report Submission                

FYP 2 seminar                

APPENDIX B: BP DISTRIBUTION 

 

 
 

BP Category SBP and DBP range 

(mmHg) 

Number of signal 

segments 

Hypotension SBP<90 

and 

DBP<60 

110 

 

Normal 90≤SBP<120 

and 

DBP<80 

2621 
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Elevated 120≤SBP≤129 

and 

DBP<80 

855 

 

Hypertension SBP≥130 

and/or 

DBP≥80 

1414 

 

 

 

 

APPENDIX C:HIGHLY CORRELATED FEATURES 

SBP DBP 

PAT maxslope PAT peak PAT maxslope PAT peak 

Heart rate 𝒕𝒑𝒑 Heart rate 𝒕𝒑𝒑 

𝐶𝑠𝑙𝑜𝑝𝑒 𝑻𝑶𝑺 𝐶𝑠𝑙𝑜𝑝𝑒 𝑻𝑶𝑺 

DW10 Width10 DW10 Width10 

DW25 Width25 DW25 Width25 

DW33 Width33 DW33 Width33 

DW50 Width50 DW50 Width50 

Width50 Width66 Width50 Width66 

DW50/SW50 DW66/SW66 DW50/SW50 DW66/SW66 

DW66 Width66 DW66 Width66 

Width66 Width75 Width66 Width75 

DW66/SW66 DW75/SW75 DW75 Width66 

DW75 Width75 BMI/𝑡1 Weight/𝒕𝟏 

BMI/𝒕𝟏 Weight/𝑡1 Weight/𝒕𝒑𝒊 Weight/𝑡𝑝𝑝 

Weight/𝑡𝑝𝑖 Weight/𝒕𝒑𝒑 𝑃 𝑹𝑷 diff 

𝑃 𝑹𝑷 diff 𝑅𝑇 𝑺𝑻 

𝑅𝑇 𝑺𝑻 𝑃𝑇 𝑹𝑻 

𝑷𝑻 𝑅𝑇 𝑃𝑇 𝑸𝑻 

𝑅𝑇 ratio 𝑻 𝑅𝑇 ratio 𝑻 

𝑸𝑻 𝑅𝑇   

 

 

APPENDIX D: OPTIMIZED FEATURES COMBINATION FOR SBP 

Optimized features combination for SBP 

1 𝐴𝑛𝑔𝑙𝑒𝑒𝑑 15 LASI 29 BMI 

2 𝑅𝑇 16 Weight/𝑡𝑝𝑖 30 𝑃𝑅 

3 𝑒/𝑎 17 𝑆2 31 𝑄𝑇𝑐 

4 PAT maxslope 18 Heart rate 32 DW10/SW10 

5 𝑑/𝑎 19 Width10 33 𝑐/𝑎 

6 Kurtosis 20 PAT onset 34 𝑃𝑄 
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7 Width75 21 𝑅𝑇 ratio 35 𝑆3 

8 𝑇𝑁𝐷 22 𝑇𝑤𝑐 36 DW33/SW33 

9 Age 23 Width33 37 𝑃   

10 BMI/𝑡𝑝𝑝 24 Height 38 Weight/𝑡1 

11 𝑏/𝑎 25 DW75/SW75 39 AI 

12 DT 26 DW25/SW25 40 Hjorth mobility 

13 𝐴𝑛𝑔𝑙𝑒𝑧𝑦 27 Weight   

14 DW25 28 𝐴𝑏−𝑐−𝑑−𝑒/𝑎   

 

APPENDIX E: OPTIMIZED FEATURES COMBINATION FOR DBP 

 

Optimized features combination for DBP 

1 𝑃𝑇 15 Weight 29 Width33 

2 LASI 16 Heart rate 30 Hjorth complexity 

3 Kurtosis 17 Height 31 Hjorth mobility 

4 Weight/𝑡𝑝𝑝 18 DT 32 PPG_𝐾 value 

5 AI 19 𝐴𝑛𝑔𝑙𝑒𝑧𝑦 33 𝐴𝑛𝑔𝑙𝑒𝑁𝐷 

6 𝑏/𝑎 20 DW25/SW25 34 𝑆1 

7 𝑑/𝑎 21 BMI 35 𝑃𝑄 

8 DW25 22 𝑇𝑂𝑎 36 𝛼𝑛 

9 Age 23 BMI/𝑡1 37 𝑃𝑅 

10 𝑇𝑁𝐷 24 Width66 38 DW50/SW50 

11 𝐴𝑛𝑔𝑙𝑒𝑒𝑑 25 𝑇𝑤𝑐 39 𝑃 

12 BMI/𝑡𝑝𝑝 26 Width10   

13 𝑄𝑇𝑐 27 DW33/SW33   

14 𝑒/𝑎 28 PAT onset   
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APPENDIX F: FEATURE EXTRATION CODE 
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APPENDIX G: EXPERIMENT 1 CODE (SVR) 
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APPENDIX H: EXPERIMENT 1 CODE (RANDOM FOREST) 
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APPENDIX I: EXPERIMENT 2 CODE (FEATURE ANALYSIS) 
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APPENDIX J: EXPERIMENT 2 CODE (CORRELATION ANALYSIS) 
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APPENDIX K: EXPERIMENT 2 CODE (RANDOM FOREST WITH SHAP) 
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