THE INFLUENCE OF ROOF TILE WASTE AS FINE AGGREGATES ON THE PROPERTIES AND MICROSTRUCTURE OF GREEN CONCRETE

NUR ATHIRAH BINTI MOHD KHAIDIR B052010068

> UNIVERSITI TEKNIKAL MELAYSIA MELAKA 2024

THE INFLUENCE OF ROOF TILE WASTE AS FINE AGGREGATES ON THE PROPERTIES AND MICROSTRUCTURE OF GREEN CONCRETE

NUR ATHIRAH BINTI MOHD KHAIDIR

B052010068

01003-04-0168

FACULTY OF INDUSTRIAL AND MANUFACTURING TECHNOLOGY AND ENGINEERING

2024

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk:THE INFLUENCE OF ROOF TILE WASTE AS FINE AGGREGATES
ON THE PROPERTIES AND MICROSTRUCTURE OF GREEN
CONCRETE

Sesi Pengajian: 2023/2024 Semester 2

Saya NUR ATHIRAH BINTI MOHD KHAIDIR (01100304-0168)

mengaku membenarkan Laporan Projek Sarjana Muda (PSM) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. *Sila tandakan ($\sqrt{}$)

SULIT(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan
Malaysiasebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/ TERHAD badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan oleh:

Alamat Tetap : 23, Lorong 1 Jalan SJ 1/9 Taman Seri Jati Batu Berendam,75350, Melaka. Cop Rasmi:

Tarikh: 20/06/2024

Tarikh: 20/06/2024

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

 Universiti Teknikal Malaysia Melaka Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia. № +606 270 1000
☆ +606 270 1022
₩ www.utem.edu.my

FAKULTI TEKNOLOGI DAN KEJURUTERAAN INDUSTRI DAN PEMBUATAN

Tel: +606 270 2571 | Faks: +606 270 1047

Rujukan Kami (Our Ref): UTeM. Rujukan Tuan (Your Ref): Tarikh (Date): *Rabiulawwal 1445H /* Oktober 2023

Ketua Pustakawan Perpustakaan Laman Hikmah University Teknikal Malaysia Melaka Hang Tuah Jaya, 76100 Durian Tunggal Melaka.

Tuan/Puan,

PENGKELASAN LAPORAN PSM SEBAGAI SULIT/TERHAD LAPORAN PROJEK SARJANA MUDA KEJURUTERAAN PEMBUATAN.

NAMA: NUR ATHIRAH BINTI MOHD KHAIDIR

Sukacita dimaklumkan bahawa Laporan PSM yang tersebut di atas bertajuk "The Influence Of Roof Tile Waste As Fine Aggregates On The Properties And Microstructure Of Green Concrete" mohon dikelaskan sebagai TERHAD untuk tempoh LIMA tahun dari tarikh surat ini.

2. Hal ini adalah kerana ianya merupakan projek yang berada pada peringkat inovasi untuk pengkomersilan melaui geran prototaip UTeM dan kajiannya adalah terhad.

Sekian dimaklumkan. Terima kasih. IKAL MALAYSIA MELAKA

"MALAYSIA MADANI" "BERKHIDMAT UNTUK NEGARA" "KOMPETENSI TERAS KEGEMILANGAN"

Saya yang menjalankan amanah,

PROFESOR MADYA DR JARIAH BINTI MUOHAMAD JUOI Profesor Madya Fakulti Teknologi Dan Kejuruteraan Industri Dan Pembuatan

SEBUAH UNIVERSITI TEKNIKAL AWAM

DECLARATION

I hereby, declared this report entitled "The Influence of Roof Tile Waste as Fine Aggregates on The Properties and Microstructure of Green Concrete" is the result of my

	own research except as cited in references
Signature	اونىۋەرسىتى تىكنىكى مىسىيا ملاك
Author's Na	me : NUR ATHIRAH BINTI MOHD KHAIDIR
Date	UNIVE: 22/06/2024 KNIKAL MALAYSIA MELAKA

APPROVAL

This report is submitted to the Faculty of Industrial and Manufacturing Technology and Engineering of Universiti TeknikalMalaysia Melaka as a partial fulfilment of the requirement for Degree of Manufacturing Engineering (Hons). The member of the supervisory committee is as follow

ABSTRACT

Roof tile waste (RTW) constitutes a huge part of construction waste generated at sites and is mostly disposed of in landfills. This study analyses the characteristics of different kinds of RTW as fine aggregates in green concrete, the effect of different types of roof tile wastes on physical and mechanical properties, and the influences on the microstructure of green concrete. This study assesses some of the physical properties of green concrete containing 50 wt% unglazed (URTW) and 20 wt% glazed (GRTW) fine aggregates with the following techniques: particle size analyses (PSA), scanning electron microscopy (SEM), Brunauer-Emmett-Teller analyses (BET), X-ray fluorescence analyses (XRF), and X-ray diffraction (XRD). Green concrete GRTW accounts for the highest compressive strength at 31.2 N/mm², with the lowest water absorption rate of 4.15% and a density of 2231 kg/m³. Green concrete URTW had a density of 2295 kg/m³, an absorption rate of 5.7% by water, and a compressive strength of 26.9 N/mm². In contrast, the control concrete had the lowest density, at 2164 kg/m³, with the largest rate of water absorption at 6.43% and the lowest compressive strength at 24.1 N/mm². The results indicate that the addition of RTW aggregates, particularly GRTW, to green concrete gives it high mechanical strength, lower water absorption, and a refined microstructure in comparison with traditional sand.

ABSTRAK

Sisa jubin bumbung (RTW) merupakan sebahagian besar daripada sisa yang dihasilkan di tapak pembinaan dan kebanyakannya dibuang ke tapak pelupusan sampah. Dalam kajian ini, penganalisisan ciri-ciri pelbagai jenis RTW sebagai agregat halus dalam konkrit hijau, kesan perbezaan jenis sisa jubin bumbung pada sifat fizikal dan mekanikal, serta pengaruhnya pada struktur mikro konkrit hijau. Dalam kajian ini, penilaian beberapa sifat fizikal konkrit hijau yang mengandungi 50 wt% jubin bumbung tidak berkaca (URTW) dan 20 wt% jubin bumbung berkaca (GRTW), sebagai agregat halus menggunakan teknik berikut: analisis saiz zarah (PSA), mikroskop elektron pengimbas (SEM), analisis Brunauer-Emmett-Teller (BET), analisis pancaran sinar-X (XRF), dan pembelauan sinar-X (XRD). Konkrit hijau GRTW menunjukkan kekuatan mampatan tertinggi pada 31.2 N/mm², dengan kadar penyerapan air terendah iaitu 4.15% dan ketumpatan 2231 kg/m³. Konkrit hijau URTW mempunyai ketumpatan 2295 kg/m³, kadar penyerapan air sebanyak 5.7%, dan kekuatan mampatan sebanyak 26.9 N/mm². Sebaliknya, konkrit kawalan mempunyai ketumpatan terendah pada 2164 kg/m³, dengan kadar penyerapan air terbesar sebanyak 6.43% dan kekuatan mampatan terendah sebanyak 24.1 N/mm². Keputusan ini menunjukkan bahawa penambahan agregat RTW, terutamanya GRTW, kepada konkrit hijau memberikan kekuatan mekanikal yang tinggi, penyerapan air yang lebih rendah, dan struktur mikro yang lebih halus berbanding dengan pasir tradisional.

DEDICATION

In the Name of Allah, the Most Gracious, the Most Merciful. First and foremost, I would like to thank and praise Allah the Almighty, my Creator, my Sustainer, for everything I received since the beginning of my life. I would like to extend my appreciation to the UniversitiTeknikal Malaysia Melaka (UTeM) for providing the research platform. This report is dedicated to my beloved family - mama, papa, adik, yaya, and baby. Throughout my academic path, their constant support, inspiration, and compassion have been vital. It is because of their unwavering love and faith in me that I have had the courage and drive to overcome any obstacles and follow my ambitions. I would also like to express my sincere gratitude to my supervisor, Profesor Madya Dr. Jariah Binti Mohamad Juoi, for the invaluable guidance she has provided me in completing this study. To my close friends, my classmates, and the precious friends I made during my manufacturing engineering journey you were always there for me, through the late nights, the tears, and the laughter. Whether we were staying up together, singing in the car, or working side-by-side in the lab or in the class, your constant support and companionship made this achievement possible. I sincerely appreciate having you in my life, you're my diamonds that I will treasure. Lastly, I want to thank myself. Even when I doubted and felt down, I persevered and made it here. I'm so proud of you athirah, for not giving up. To show you all how much I care for and appreciate you, I have dedicated this to you.

ACKNOWLEDGEMENT

Praise Allah for the strength, guidance and knowledge that was given by Allah for me to complete this study. I appreciate the opportunity to collaborate on this project study with everyone. I want to start by expressing my gratitude to my supervisor, Associates Profesor Madya Dr. Jariah Binti Mohamad Juoi for her kindness and instructions upon completing this study. I want to sincerely thank and appreciate everyone who helped make this report possible. Suraya, Ika, Elsee, Farihah, Aiman, Umairah, Muiz, Najmi and Nurrahassiken, my seniors, for the help on preparing all the samples. I also would like to thank Nurrahassiken as my senior for conducting weekly meetings, providing details and guidance to me to complete this study. Also, my deepest gratitude to laboratory technicians who consulted me upon operating laboratory machines, tools, and equipment. I could not even conduct the study without the Faculty of Industrial and Manufacturing Technology and Engineering providing me on using the facilities and utilities for my analysis process. Lastly, to whoever has been involved in this study direct nor indirectly that I forgot to mention. I am so thankful for the help and guidance given by everyone. May Allah bless you all.

TABLE OF CONTENTS

Abstract			i
Abstrak			ii
Dedication			iii
Acknowled	lgement		iv
Table of Co	ontents		v
List of Tab	les		viii
List of Figu	ures		ix
List of Abb	previations		xi
List of Syn	nbols	AYSIA	xiii
CHAPTEI	R 1: INTRO		
1.1	Background	of Study	1
1.2	Problem Sta	tement	3
1.3	Objectives	1.16.6.	4
1.4	Scope	اويوم سيبي بيه يسب المسب	4
	UNIVER	SITI TEKNIKAL MALAYSIA MELAKA	
CHAPTEI	R 2: LITERA	ATURE REVIEW	
2.1	Green Conc	rete	5
2.2	Role of Fine	Aggregates	6
	2.2.1	Physical Properties of Porous Recycled Roof Tile Waste Fine Aggregates	7
	2.2.2	Porosity	7
	2.2.3	Particle Size Distribution	8
2.3	Curing of co	oncrete	9
2.4	Influence of curing on the hydration reaction process		10
2.5	Curing Dura Microstructu	tion Influences Concrete Strength and Porosity are Relationship	14
2.6	Influence of Performance	Aggregate Properties on Hydration and Concrete	16
2.7	Hydration P	rocess in Concrete	17

2.8	Significance of Concrete Mix Design	18
2.9	Structural and Mechanical Attributes of Green Concrete	19
2.10	Previous Studies on Recycled Roof Tile Waste in Concrete	21
2.11	Summary	23

CHAPTER 3: METHODOLOGY

3.1	Introduction	25
3.2	Preparation of Raw Materials	27
3.3	Sieve Analyses	29
3.4	Particle Size Distribution	33
3.5	Concrete Mixing Process	33
3.6	Slump Test	35
3.6	Curing of the Concrete Mixing	37
3.8	Water Absorption Test	37
3.9	Density Test	38
3.10	Compression Testing	39
3.11	Microstructure Analyses	40
	3.11.1 BET Analyses	41
	3.11.2 XRD Analyses	42
	3.11.3 XRF Analyses	43
	3.11.4 SEM Analyses	44
3.12	Summary RSITI TEKNIKAL MALAYSIA MELAKA	45

CHAPTER 4: RESULTS AND DISCUSSIONS

4.1	Characterization of Roof Tile Waste (URTW & GRTW) as Fine Aggregates		
	4.1.1	Particle Size Distribution Analyses	48
	4.1.2	Surface Area and Porosity Analyses	49
	4.1.3	Crystalline Phase Analyses	52
	4.1.4	Composition Analyses	53
	4.1.5	Microstructure Analyses	56
4.2	Characteriza	tion of Green Concrete	59
	4.2.1	Surface Area and Porosity Analyses	59
	4.2.2	Crystalline Phase Analyses	62
	4.2.3	Composition Analyses	64

	4.2.4	Microstructure Analyses	66
4.3	Physical and	d Mechanical Properties	70
	4.3.1	Water Absorption and Density	70
	4.3.2	Compressive Strength	73

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclusion	75
5.2	Recommendations	78
5.3	Sustainability Element	79

REFERENCES

80

LIST OF TABLES

2.1	Results of compression, tensile, and flexural strength experiments.	
	(Afroughsabet & Ozbakkaloglu, 2015)	14
2.2	The compressive strength of GRTW concrete at different weight	
	fractions increases by 28 days (Umairah, 2022)	15
2.3	Cube weight before and after cure (Mu'iz, 2023)	15
2.4	(a) Compressive strength URTW (b) Compressive strength GRTW	23
3.1	Grading for coarse aggregates Farihah (2022).	31
3.2	Grading for fine aggregate of SAND (Ika Eliyana, 2021)	31
3.3	Grading for fine aggregate of URTW (Ika Eliyana, 2021)	32
3.4	Grading for fine aggregate of GRTW (Farihah, 2022).	32
3.5	M25 Design Mix for Control, Green Concrete URTW & Green	
	Concrete GRTW	35
3.6	The value of slump test for control, green concrete URTW & green concrete GRTW	36
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	
4.1	BET & BJH Analyses of Type of Aggregate from Micromeritics Test	51
4.2	Composition analyses of Sand, URTW and GRTW using XRF	55
4.3	Surface Morphology of Sem Image with 1000x Magnification	58
4.4	BET & BJH Analyses of Type of Concrete from Micromeritics Test	61
4.5	Composition analyses of Control, Green Concrete URTW and GRTW	
	using XRF	66
4.6	Surface Morphology of Sem Image with 1000x Magnification	68

LIST OF FIGURES

Compressive strengths of samples of concrete cured through curing	
chemical compounds (Xue et al., 2015)	10
SEM analysis on concrete samples that were cured using a curing	
compound (Xue et al., 2015)	11
Compressive strength test for 7th and 28th days (Mohe et al., 2022)	12
The comparison of the compressive strength in various curing methods	
at intervals of time. (Rahman et al., 2012).	13
XRD patterns of waste ceramic pastes with or without ceramic waste	
(CW) (El-Kattan et al., 2020)	17
The different types of ITZs present in UHPC created with different fine	
aggregate: (a) in UHPC with entirely NFA (quartz or river sand), and (b)	
in UHPC with NFA partially replaced by RFA. (H. Zhang et al., 2018)	19
(a) Sieve analysis graph for river sand (Ika Eliyana, 2021),	
(b) Sieve analysisgraph for URTW (Ika Eliyana, 2021), (c) Sieve analysis	
graph for GRTW (Farihah,2022)	22
UNIVERSITI TEKNIKAL MALAYSIA MELAKA	
Methodology Flowchart	26
Roof Tile Waste	27
Manual Hammering Technique	28
(a) Grinding machine & (b) RTW conditions after grinding process	28
(a) Planetary ball milling machine, (b) Two large and three steel	
balls & (c) powdery form of RTW	29
(a) Sieve shaker & (b) Particle retained in sieve.	30
(a) PSA machine & (b) The sample in PSA	33
Mixture of the aggregate	34
(a) Slump Test, (b) Tamping process & (c) Self compacting process	36
Hardened concrete	37
Water Absorption process	38
	Compressive strengths of samples of concrete cured through curing chemical compounds (Xue et al., 2015) SEM analysis on concrete samples that were cured using a curing compound (Xue et al., 2015) Compressive strength test for 7 th and 28 th days (Mohe et al., 2022) The comparison of the compressive strength in various curing methods at intervals of time. (Rahman et al., 2012). XRD patterns of waste ceramic pastes with or without ceramic waste (CW) (El-Kattan et al., 2020) The different types of ITZs present in UHPC created with different fine aggregate: (a) in UHPC with entirely NFA (quartz or river sand), and (b) in UHPC with NFA partially replaced by RFA. (H. Zhang et al., 2018) (a) Sieve analysis graph for river sand (Ika Eliyana, 2021), (b) Sieve analysisgraph for URTW (Ika Eliyana, 2021), (c) Sieve analysis graph for GRTW (Farihah,2022) UNIVERSITTEKNIKAL MALAYSIA MELAKA Methodology Flowchart Roof Tile Waste Manual Hammering Technique (a) Grinding machine & (b) RTW conditions after grinding process (a) Planetary ball milling machine, (b) Two large and three steel balls & (c) powdery form of RTW (a) Sieve shaker & (b) Particle retained in sieve. (a) PSA machine & (b) The sample in PSA Mixture of the aggregate (a) Slump Test, (b) Tamping process & (c) Self compacting process Hardened concrete Water Absorption process

3.12	Density Testing Machine	39
3.13	Compressive Strength Testing	40
3.14	BET Machine	42
3.15	XRD Machine	43
3.16	XRF Machine	44
3.17	Size of the Sample	45
4.1	Particle Size Distribution of Fine Aggregates	49
4.2	XRD analyses of sand, URTW, and GRTW as fine aggregates	53
4.3	XRD analyses of Control, Green Concrete URTW and Green Concrete	
	GRTW	64
4.4	Water absorption of Control, Green Concrete URTW, and Green Concrete	
	GRTW	71
4.5	Density of Control, Green Concrete URTW, and Green Concrete GRTW	72
4.6	Compressive Strength of Control, Green Concrete URTW, and Green	
	Concrete GRTW اونيونر، سيتي تيكنيكل مليسيا ملاك	74
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF ABBREVIATIONS

WRP	-	Waste Rubber Powder	
FTKIP	-	Faculty of Industrial and Manufacturing Technology and	
Engineering			
PSA	-	Particle Size Analyses	
PCC	-	Portland Composite Cement	
BJH	-	Barrett-Joyner-Halenda	
SiO ₂	-	Silicon Dioxide	
Al ₂ O ₃	-	Aluminium Oxide	
C-A-S-H	-	Calcium Aluminate Silicate Hydrates	
K ₂ O	MALAYSI,	Potassium Oxide	
Fe ₂ O ₃	The second	Ferric Oxide	
ICDD	TEKN	International Centre for Diffraction Data	
ASR	L'avanna .	Alkali Silica Reaction	
	بسيا ملاك	اونيومرسيتي تيكنيكل ملي	
	UNIVERSIT	I TEKNIKAL MALAYSIA MELAKA	

LIST OF SYMBOLS

Wt%	-	Weight percentage
°C	-	Celsius
g/cm ³	-	Gram per cubic centimetre
mm	-	Millimeter
N/mm ²	-	Newtons per millimeter squared
MPa	-	Megapascals
mm ³	- 8- 10	Cubic millimetre
kg	TEKU	Kilogram
μm	LUST	Microns
kPa	~11	Kilopascal
ρ	ملاك	اونيوبرسيتي تيڪنيڪل مليبي
v	UNIVE	Volume TEKNIKAL MALAYSIA MELAKA
kN	-	Kilo Newton
g	-	Grams
m²/g	-	Square meter per grams
cm³/g	-	Cubic centimetre per gram
Å	-	Angstrom
0	-	Angle
a.u	-	Arbitrary Units

CHAPTER 1 INTRODUCTION

The first chapter presents the background of the study, the problem statement, the objectives, and the scope of the study. The background of the study elaborates on the influence of roof tile waste as fine aggregates on the properties and microstructure of green concrete. The problem statement describes the problems faced in current study based on review of previous findings reported in the literature. The objectives represent this research's main goal, while the scope of the study shows the focus and limitations of this research.

1.1 Background of Study EKNIKAL MALAYSIA MELAKA

ى تيكنيكل مليسيا ملاك

The common use of roof tiles in construction, particularly in Malaysia due to urban expansion, has led to an increased demand for roof tile houses. However, it has resulted in a proportional increase in roof tile waste (RTW). Therefore, this study aims to analyze the characteristics of different types of roof tile waste as fine aggregates in green concrete. As the construction industry seeks sustainable practices, understanding the different types of roof tile waste of these recycled materials on concrete performance is crucial for advancing eco-friendly construction methods.

Roof tile waste (RTW) refers to discarded materials obtained from roof tiles that have the potential to be recycled and used in a variety of applications. According to Mulyono et al. (2014), the increased demand for roof tile houses has resulted in an increase in the volume of roof tile trash, underlining the importance of sustainable management and reuse of these materials. In response to this environmental concern, researchers have investigated the use of RTW in building materials like eco-friendly concrete, emphasizing its potential as a resource for sustainable building methods.

The construction industry significantly contributes to resource depletion and environmental degradation due to its large carbon and material footprint. Buildings account for approximately 40% of total global CO₂ emissions, according to (Sangmesh et al., 2023), and construction materials account for around 15% of emissions. Green concrete aims to advance this evolution by exploring ways to reuse construction waste streams like recycled roof tiles in concrete mixes, which can help reduce waste and emissions from traditional concrete production. As the sector accounts for a substantial portion of global impacts, transitioning to greener building approaches is imperative to achieve emissions targets (Labaran et al., 2022).

This research focuses on exploring the influence of the physical and mechanical properties of green concrete. Working with roof tile waste can be challenging due to its uneven behavior and difficulty in machining. It requires careful consideration of water content to achieve the right balance for strong concrete without causing it to take too long to set (Achak et al., 2023). The primary objective is to investigate the effect of different types of roof tile waste on the physical and mechanical properties of green concrete. Farihah (2022) studied that the use of different types of roof tile waste in green concrete significantly impacts its physical and mechanical properties. Unglazed fired roof tile waste (URTW) has been shown to enhance the compressive strength of concrete, achieving strengths above the target mean strength of M25 concrete, particularly at a 50wt% replacement level, although it reduces workability at higher percentages while glazed roof tile waste (GRTW) improves the mechanical performance of concrete at a 20wt% replacement level, increasing workability and compressive strength.

Additionally, the research aims to evaluate the influence of different types of roof tile waste on the microstructure of green concrete. Porous ceramic roof-tile waste aggregate (PCA) serves as an effective internal curing material, promoting hydration and improving microhardness around the aggregate, which enhances compressive strength and reduces autogenous shrinkage. (Shigeta et al., 2018). It involves studies that utilize various imaging and analytical techniques, such as scanning electron microscopy (SEM) to assess changes in

microstructural features. This comprehensive analysis involves conducting various tests utilising URTW and GRTW in the lab.

1.2 Problem Statement

Roof tile waste (RTW) constitutes a significant portion of construction waste, often ending up in landfills and causing environmental harm. In order to help solve this issue, the purpose of this study is to analyze the properties of several RTW types that are used as fine aggregates in green concrete. Particle size distribution, surface area, porosity, and composition of RTW are the main areas of focus for this study. Understanding that RTW is a suitable, sustainable replacement for natural sand in concrete mixtures requires an understanding of these characteristics.

The study also seeks to fill the gap in comprehensive studies regarding the way that control samples with 50wt% URTW and 20wt% GRTW interact with the cement matrix. The characteristics, properties, and overall performance of green concrete are significantly influenced by this interaction. The study's goal is to determine how different RTW types influence green concrete's physical and mechanical characteristics by analyzing these interactions. This involves analyzing elements including water absorption, density, and compressive strength.

Lastly, the research evaluates how different RTW types influence the microstructure of green concrete. Analyzing the microstructural elements, such as pore structure and hydration product development, provides an understanding of how effectively RTW performs as time passes in green concrete. By achieving these objectives, this research aims to help in the development of environmentally friendly building materials that can reduce the impact of construction waste on the environment while promoting the recycling of remaining building waste.

1.3 Objectives

The objectives of this research are:

- i. To analyse the characteristic of different type roof tile waste as fine aggregates in green concrete.
- ii. To analyse the effect of different type roof tile waste on the physical and mechanical properties of green concrete.
- iii. To evaluate the influence different type roof tile waste on the microstructure of green concrete.
- 1.4 Scope

• Recycled roof tile waste (RTW) served as the primary raw material, replacing fine aggregates in concrete. A grinding machine and a planetary milling ball machine were utilized to achieve a fine aggregate from RTW. By using 50wt% unglazed roof tile waste (URTW) and 20wt% glazed roof tile waste (GRTW).

• Sieve analysis (gradation test) determined the adequacy of ceramic RTW particle size and grading for use in concrete mixing. Slump tests assessed concrete workability, while water absorption tests evaluated durability, incorporating additional RTW.

• Brunauer-Emmett-Teller analysis (BET) is used to analyse particle size distribution, surface area, pore size, and pore volume. The characterization of RTW is being conducted using scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray fluorescence (XRF). The characterization of green concrete is being conducted to analyse the physical properties of density, water absorption, and compressive strength.

CHAPTER 2 LITERATURE REVIEW

The chapter summarizes the current finding related to this research. It concentrate on a reviewing, green concrete, role of fine aggregates, physical properties of porous recycled roof tile waste fine aggregates, hydration process in concrete, curing of concrete, influence of curing on the hydration reaction process, curing duration influences concrete strength and porosity-microstructure relationship, significance in concrete mix design, influence of aggregate properties on hydration and concrete performance, structural and mechanical attributes previous studies on recycled roof tile waste in concrete

اونيومرسيتي تيكنيكل مليسيا ملاك

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2.1 Green Concrete

Green concrete is a more sustainable and eco-friendlier alternative to conventional concrete. It is made using waste materials such as ceramic waste, fly ash, and recycled aggregates. The properties of green concrete vary depending on the specific materials used. Adding ceramic waste as a partial substitute for natural coarse aggregates in self-compacting concrete (SCC) can decrease efficiency but increase compressive strength and resistance against segregation (Tafheem et al., 2011; Achak et al., 2023).

Green concrete offers the potential to significantly reduce the climate impact of conventional concrete by using alternative binder materials. In Datta et al. (2019) experimental study investigating the replacement of fine aggregate with scrap metal and