STUDY THE FAILURE PHENOMENON ON PROTON WAJA'S DOOR HANDLE AND REDESIGN THE MODEL TO REDUCE FAILURE

MOHD FAIZAL BIN HALIM

The PSM (Projek Sarjana Muda) report is considered as one of the essential for students to complete their bachelor program in Mechanical Engineering (Automotive)

> Faculty of Mechanical Universiti Teknikal Malaysia Melaka

> > MAY 2008

"Saya akui laporan ini adalah hasil kerja saya sendiri kecuali ringkasan dan petikan yang tiap-tiap satunya saya telah jelaskan sumbernya"

Tarikh

Tandatangan : AND FAIZAL HALIM . 13 -05 -०ह

DEDICATION

To my beloved mother, father, brother and sister, and all my friends

All member of Bachelor of Mechanical Engineering: Automotive (BMCA)

All lecturers from BMCA department

Staff of Faculty Mechanical Engineering

Staff of Universiti Teknikal Malaysia Melaka (UTEM)

ACKNOWLEDGEMENT

With the name of Allah, The Most Gracious and Most Merciful

First and all, thank to my Allah The Almighty God for give me a bless to completed my final year project. Also I would like to express my acknowledgement to my superior and supervisor, Mr. Ahmad Rivai for his wisdom endurance to guide and encourage me to write the best report that I ever made during his supervision period. Not to forget, my parent, brother and sister who support me from the bottom to top through this year. Thank for their concern, encouragement and understanding. Last but not last; to those who have contributed directly or indirectly to the success of this thesis and project whom I have not mentioned their name specifically. Without them, there will be no successful report.

ABSTRACT

The nation's automotive industries have increased tremendously during the recent years. In Malaysia, Proton is one of the automotive industries companies which are top among the Malaysian car users. As a manufacturer of Waja car, Proton basically has improved their research and development in order to ensure that Waja car satisfies the highly standard for quality. However, customers have been facing many problems since the first model was launched. The problems include electrical system, body, power window and door handle. Door handle failure is one the major problems which frequently occur on Waja's car and this failure can impact the overall satisfaction of the users. In order to get better understanding on the failure mechanism of the door handle, failure analysis is required to determine causes so that changes can be made to minimize the failure. Finite element approach is used in the study by using CATIA Analysis. This project also investigates how to reduce failure phenomenon of Waja's door handle. It includes thickness and diameter modification, material modification and some concentration in parameters of injection molding process. It is found that, by increasing the thickness, the stress concentration at the failure area reduced. Material selection also has an important implication on the door handle performance. It is because the proper material properties reduce the possibility of failure on door handle.

ABSTRAK

Bidang automotif negara telah berkembang secara mendadak akhir-akhir ini. Di Malaysia, Proton merupakan sebuah syarikat industri automotif yang menjadi pengeluar utama kereta bagi pengguna di Malaysia. Sebagai pengeluar kereta Waja, Proton secara umumnya telah meningkatkan kajian dan pembangunan untuk memastikan Waja menepati citaras kereta berkualiti tinggi. Walau bagaimanpun, pelanggan menghadapi banyak masalah sejak model pertama di lancarkan. Masalah yang dihadapi termasuklah sistem elektrik, power window, body, dan pembuka pintu. Kerosakan pembuka pintu begitu kerap terjadi pada kereta Waja dan kerosakan ini boleh merosakan keseluruhan kepercayaan pengguna. Bagi memastikan lebih kefahaman terhadap mekanisme kerosakan pembuka pintu tersebut, analisis kerosakan diperlukan untuk memastikan punca kerosakan dan perubahan yang boleh dilakukan bagi mengurangkan kerosakan. Unsur terbatas (Finite element) digunakan didalam kajian dengan mengunakan CATIA Analysis. Ujian ketumpatan juga dilakukan untuk menentukan fenomena kerosakan pada pembuka pintu kereta Waja. Kajian ini juga menyiasat bagaimana cara untuk mengurangkan fenomena kerosaakan pembuka pintu kereta Waja. lanya termasuk pengubahsuaian ketebalan dan ukurlilit, pengubahsuain bahan yang di gunakan, dan tumpuan pada proses suntikan penbentukan. Di dapati bahawa dengan meningkatkan ketebalan, penumpuan tegasan di tempat kerosakan dapat dikurangkan. Pemilihan bahan yang digunakan juga penting membabitkan prestasi pembuka pintu. Ini kerana pengunaan bahan yang betul mengurangkan kemungkinan kerosakan pada pembuka pintu.

TABLE OF CONTENT

CHAPTER	TITLE	PAGE
	PENGAKUAN	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENT	vii
	LIST OF TABLE	X
	LIST OF FIGURE	xi
	LIST OF ABBREVIATIONS	xiv
	LIST OF APPENDIX	XV
1	INTRODUCTION	1
	1.1 Introduction	1
	1.2 Objective	4
	1.3 Scope of The Project	4
2	LITERATURE REVIEW	5
	2.1 Theory of Failure	5
	2.1.1 Common Features and Difference	es in
	Performance or Failure of All Ma	terial 7
	2.1.2 The Unintentional Factor Affecting	

	2.1.3	Types and Causes of Failure	11
	2.1.4	The Most Common Mistakes In Design Of	
		Plastic	13
		2.1.4.1 Creep	14
		2.1.4.2 Stress	14
		2.1.4.3 Shrinkage	14
		2.1.4.4 Gates Marks	15
		2.1.4.5 Sink Marks	15
		2.1.4.6 Time	15
	2.15	Designs for Service Life and Service Conditions	15
	2.16	Crack Phenomena in Fracture	16
	2.1.7	Failure by Fatigue	20
		2.1.7.1 Failure by crack propagation	21
		2.1.7.2 Effect of environment	22
		2.1.8 Failure by creep	22
		2.1.9 Failure by impact	23
		2.1.9.1 Design effect	24
		2.1.9.2 Material effect	24
	2026 - 112		25
	2.2 Material l	•	25
	2.3 Finite Ele	ment Analysis	27
3	METHODOI	LOGY	29
	3.1 Introducti	on	29
	3.2 Prepare th	ne Sample of Failure Door Handle	29
	3.3 Finite Ele	ement Analysis	30
	3.4 Modificat	ion analysis	31
	3.5 Critical S	tress Intensity Factor	32
	3.5.1	Stress state in a crack	32

4	RESULTS AND DISCUSSION	40
	4.1 Surface Fracture Analysis	40
	4.2 Fatigue Analysis	43
	4.3 Finite Element Analysis	45
	4.3.1 Stress Analysis using CATIA	45
	4.3.1.1 Finite Element Modeling	46
	4.3.1.2 Boundary Condition and Force	46
	4.3.1.3 Meshing	47
	4.3.1.4 Results	48
	4.4 Design and Modification	50
	4.4.1 Modification of thickness	50
	4.4.1.1 Stress analysis of different	
	thickness	52
	4.4.2 Modification of diameter	53
	4.5 Change The Materials	55
	4.6 Discussion	57
5	CONCLUSIONS AND RECOMMENDATIONS	59
	5.1 Conclusions	59
	5.2 Recommendations	60
	REFERENCES	61
	APPENDIX 1	62
	APPENDIX 2	63
	APPENDIX 3	64
	APPENDIX 4	65
	APPENDIX 5	66

LIST OF TABLE

BIL.	TITLE	PAGE
3.1	The Properties of The Torsion Coil Spring	36
4.1	Effect of Different Thickness to the Stress	53

LIST OF FIGURE

BIL.	TITLE	PAGE
1.1	Failure phenomena of Proton Waja door handle	3
2.1	Fracture of water faucet seal around screw holes	6
2.2	Fatigue fracture surface of polystyrene	6
2.3	Fracture of the Proton Waja's door handle	7
2.4	Fractured impact polystyrene clothespin cracked at the pin arm	9
2.5	Propagation of fatigue fracture within staggered fatigue striation	
	in ductile polymers	9
2.6	Dynamic fatigue fracture in a door handle sample	12
2.7	Fatigue fracture in brittle polymer with fatigue fracture paths	
	limited by sharp edges, striations, and secondary cracks	13
2.8	Formation of cleavage stops	16
2.9	Failure stress as a function of flaw size	17
2.10	Modes of crack growth	19
2.11	Laboratory fracture of PS at room temperature	21
2.12	Polypropylene ethylene/propylene (diene) copolymers	
	(PP-EP (D) M) used for cover of door handle	26
2.13	Polycarbonate polybutyleneterephlate (PC-PBT) used for pad	
	and lever of the door handle	26
3.1	Microscope to investigate fracture surface	29
3.2	Proton Waja's door handle drawn by using CATIA software	30
3.3	Force at the model	31
3.4	Plate of length 2h, width 2b, containing a central crack of length	
	2a	32
3.5	Crack propagation of Proton Waja's door handle	33
3.6	Central crack loaded in longitudinal tension	34
3.7	The maximum force at Proton Waja's door handle	35

3.8	The applied force at the Proton Waja's door handle handle	
	for crack length is 1.1mm	36
3.9	The applied force at the Proton Waja's door handle handle	
	for crack length is 1.0mm	37
3.10	The applied force at the Proton Waja's door handle for	
	crack length is 0.9mm	38
3.11	Flowchart of door handles failure analysis	39
4.1	Fracture surface for sample 1	40
4.2	Fracture surface for sample 2	40
4.3	Fracture surface for sample 3	41
4.4	Fracture surface for sample 4	41
4.5	Fracture surface for sample 5	41
4.6	Fracture surface for sample 6	41
4.7	Fracture surface for sample 7	42
4.8	Fracture surface for sample 8	42
4.9	The theoretical year that Proton Waja's door handle become failed	44
4.10	The geometrical modeling of the door handle	46
4.11	Boundary condition and force apply at the door handle	46
4.12	Surface mesh of door handle	47
4.13	Von Misses Stress Contour for 3D analysis	48
4.14	The location of higher Von Misses Stress	48
4.15	Details view at Failure area	49
4.16	Failure areas that are frequently occur on the Proton Waja's	
	door handle	50
4.17	Stress vs. modification area	51
4.18	Stress distribution of thickness modification	52
4.19	The higher stress concentration area of the Proton Waja's door	
	Handle	53
4.20	Stress distribution of different diameter	54
4.21	Flexural fatigue strength for PC-PET	55
4 22	Flexural fatigue strength for PC-PBT	55

4.23	Finite element analysis for different materials	56
4.24	Plate of length 2h, width 2b, containing a central crack of length	
	2a (New Thickness)	57
4.25	Central crack loaded in longitudinal tension	58

LIST OF ABBREVIATIONS

DEFINITION SYMBOL

Critical stress σ_{c}

Kc Critical Stress Intensity Factor

 K_{IC} Fracture Toughness of material

Ε Young Modulus

Poison ratio ν

Length of crack a

Length of plate h

Width of plate b

Fatigue strength S_{f}

Number of cycle N

Endurance limit S_{e}

Ultimate tensile strength S_{ut}

F Force

Yield stress of the material σ_{Ym}

Von Misses stress σ_{VM}

LIST OF APPENDIX

NO	TITLE	PAGI
1	Waja Door Handle CATIA Drawing	62
2	Result of Analysis	63
3	Graph Flexural Fatigue for PC-PET & PC-PBT	64
4	Central crack loaded in longitudinal tension Graph	65
5	Polycarbonate Properties	66

CHAPTER I

INTRODUCTION

1.1 Introduction

Perusahaan Otomobil Nasional Berhad (PROTON) incorporated on May 7, 1983 to assemble, manufacture, and sell motor vehicles and related products, including accessories, spare parts and other components. PROTON produced Malaysia's first car, the Proton SAGA, commercially launched on July 9, 1985 by Malaysian Prime Minister at that time, Tun Dr. Mahathir Mohamad, who had firstly conceived the idea of producing a Malaysian car. **PROTON** model line includes the Waja, Satria, GTi, Wira, Iswara, Arena, Perdana V6, Juara, Gen-2 and the latest is Persona. The range of 1.3, 1.5, 1.6, 1.8, and 2.0 liter engines satisfies a wide spectrum of customers both locally and abroad. PROTON made a major step in upgrading its engineering capabilities with the acquisition of Lotus Group International Limited, a British automotive engineering company and manufacturer of luxury sports cars in October 1996. Together, PROTON and Lotus offer largescale manufacturing capabilities with excellent engineering expertise.

PROTON cars are making their mark internationally as competitive and innovative automobiles. They are being exported to 50 countries including the highly competitive United Kingdom and continental European markets. The latest strategy, they try to enter the West Asian countries such as Kuwait, Oman, Syria, Qatar, Iran and Asian countries like Brunei and Singapore.

One of the top models manufactured by PROTON is Proton Waja. The first Proton Waja was produced on September 2000 at Medium Volume Factory (MVF), which is next to the main plant at Shah Alam. There are four types of Proton Waja which is 1.6 A, 1.6 M, 1.8 A and 1.8 M. Petrol blue, artic blue, silver and indium color of Proton Waja makes Proton Waja more stylish compare to the other car.

Proton Waja using 4G18 with emission standard of EC 94/12 engine. The maximum power is 76 KW / 6000 rpm and maximum torque is 140 Nm / 2750 rpm.

Since it was produced on September 2000, Proton Waja has faced many problems in terms of engine performance, body, electrical and electronic system and certain parts malfunction. Door handle failure is one of the major problems which frequently occur on Waja and most of the Waja's users have ever facing a problem of the door handle while using it.

There are two company supply the door handle to the Proton. There are EP Polymer and Delloyd Industries Sdn. Bhd.. EP Polymer is the first company that supplied door handle to the Proton but now Delloyd Industries Sdn. Bhd. has taken the place due to the problems that the previous company couldn't overcome.

Failure of door handle is normally un-expected and often occurs abruptly. Failure is refer to any malfunction or deviation from the normal that significantly detracts from performance. Failure of door handle is a very complex matter that may be fully within the normal expectation or maybe unexpected depending on material, design, processing and service conditions. Figure 1.1 shows the component of the door handle that believe gives problem to almost all Waja's users.

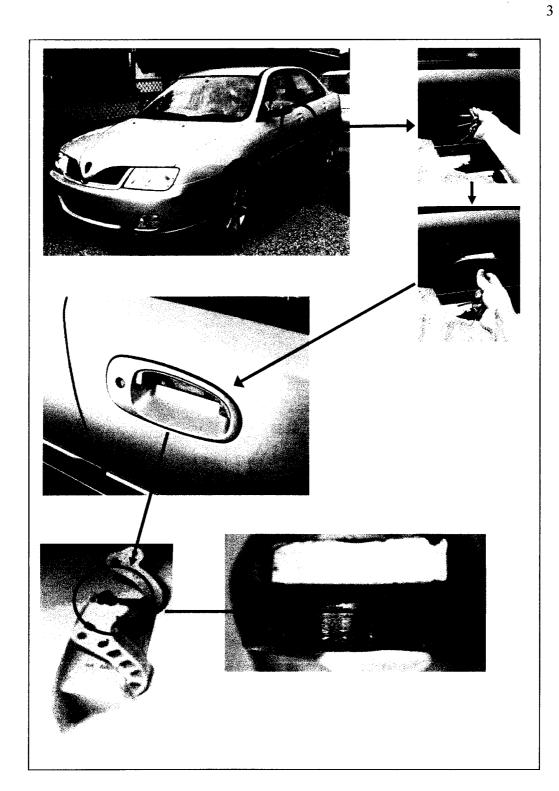


Figure 1.1 Failure phenomena of Proton Waja door handle

1.2 Objective

The main aim of the project is to study the failure phenomenon on Proton Waja door handle by emphasizes on the properties of the material, failure characteristics in terms of fatigue failure and fracture mechanics. The other objective is to investigate the stress concentration using finite element method. This study emphasizes on the stress distribution at Proton Waja door handle. It is hoped that by performing this project, few justifications could make on the door handles failure phenomenon, which occurs at Waja car. Lastly, this project also hopes to investigate any approach that can be carried out to minimize the problem of this door handle.

1.3 Scope of The Project

This project involves experimental and analytical investigation of Proton Waja's door handle. Specimens of failure door handle are collected for the purpose of identification of failure behaviors by referring to the fracture surface and the different factor of failure. The fracture surface of the failure door handle is investigated using microscope. The experimental result will be analyzed to identify the possible factor of failure.

Since the failures are believed due to fatigue behaviors, an approach of fatigue failure is used. This criterion can determine the performance of the component at certain cyclic loading. The analytical or mathematical approach is used to obtain the fatigue failure and fracture mechanics criteria.

The calculated data is then entered in the computer for finite element analysis. For the first step, Proton Waja door handle model will be redrawn using CATIA and the next step is analysis the model using CATIA.

Before the part of failure door handle are analysed, several basic understanding in terms of methods of fabrication, materials used and design gained as the reference in performing the analysis of failure door handle.

CHAPTER II

LITERATURE REVIEW

2.1 Theory of Failure

When a component is subject to increasing loads it eventually fails. It is comparatively easy to determine the point of failure of a component subject to a single tensile force. The strength data on the material identifies this strength. However when the material is subject to a number of loads in different directions some of which are tensile and some of which are shear, then the determination of the point of failure is more complicated

Failure is a malfunction or deviation from the norm that significantly detracts from performance. Excessive plastic deformation or shrinkage, wear or loss of attractive appearance may constitute failure just as much as fracture does. At a times several different modes may combine to produce the resultant failure.

Figure 2.1 shows a plastic washer or seal for a water faucet valve. It had been in service 15 years for hot and cold water. It illustrates the type of fracture that occurs starting at screw holes under pressure of tightened screws and extending into the rest of the part. Figure 2.2 shows a part of a typical polystyrene fatigue fracture surface and it shows two main features, a series of concentric rings and a smooth region. The smooth region surrounding the source is indication of crack propagation through a surface craze.

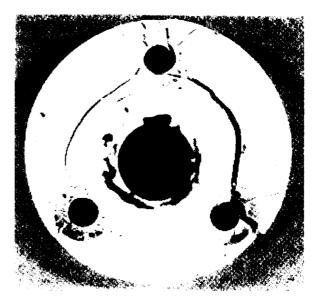


Figure 2.1 Fracture of water faucet seal around screw holes. It had been in service with hot and cold water for about 15 years.

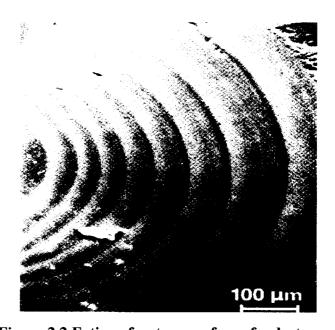


Figure 2.2 Fatigue fracture surface of polystyrene

Failure is the one case may be the intended result in another. High orientation or frozen in stress is usually undesirable in most products, causing shrinkage, distortion and cracking to relieve the stress. While high orientation is required for some application such as fibers or living hinges many plastic are designed for one time, disposable service. If they break when someone make multiple or improper use of them, that should

not be consider failure in the usual sense. At the other end of the service life spectrum are applications requiring life of many years. Failure is to be judged in the light of the product design and expected service life.

In the case of my study, the failure of Waja's door handle occurs when the part cannot give a service after fracture. The part must be replaced by a new part to give back its function. Figure 2.3 shows a fracture of the Proton Waja's door handle. The fracture occurs at the end of the part that is connected to the connecting rod. Higher stress at that area is believed to be the main factor contributing to the fracture. The severity of service plays a role but it appears that this product is operating near its limit of strength.

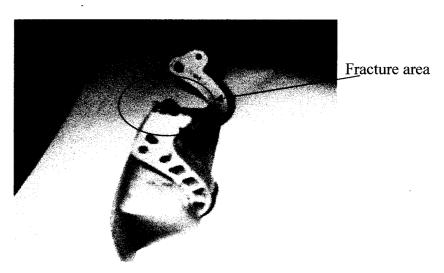


Figure 2.3 Fracture of the Proton Waja's door handle

2.1.1 Common Features and Differences in Performance or Failure of All Material

Basically, the failure of the plastic material must be considered by the manufacturer to ensure a good product can be produced. There are four major areas that need to be considered as follows:

- 1. Material the polymer or polymers plus all additives and contamination
- 2. Design dimensions, reinforcements, stress sites, etc
- 3. Processing- thermal and orientation effect, degradation during processing, uniform dispersion of material, etc
- 4. Service condition heat, humidity, outdoor exposure, chemical resistance, fatigue, etc

The first three are chosen to satisfy the service requirement. Failure is the result of inadequacy in material, design, processing, or end use. There often is considerable interaction of the four factors. One design may tolerate greater variation in material characteristic, such as molecular weight than another design. If sufficient design reinforcements are used, and areas of stress concentration are minimized, the part performance may not depend so much on material properties.

Service conditions are unpredictable and may be underestimated. Furthermore, the simultaneous application of two conditions may cause failure in a way and in a time frame that would not likely occur under the influence of each alone. A common example is environmental stress cracking, to which polyethylene is particularly prone. A chemical alone, not under stress, or stress in the absence of chemical agent, are much less likely to cause failure than when the two conditions are applied together. One of the subtle of failure analysis is that stress sufficient to interact with environmental stress-cracking agents to cause failure may be present within the part as a result of processing.

Figure 2.4 shows a clothes pin that broke under the stress of the spring. The severity of service plays a role, but it appears that this product is operating near its limit of strength. Variables within their normal statistical distribution, such as composition, molding stresses, the spring force, etc can contribute to fracture.

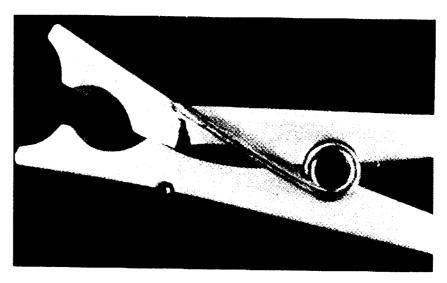


Figure 2.4 Fractured impact polystyrene clothespin cracked at the pin arm

The trick is to introduce into a satisfactory, economical part as little frozen in stress as possible such that it will not fail within its expected service life. Improper processing will make the degree of orientation is lower than needed to achieved the required shrinkage, that product failed for a reason that most other plastics processors work very hard to have in their product ,i.e., a low level of frozen in stress

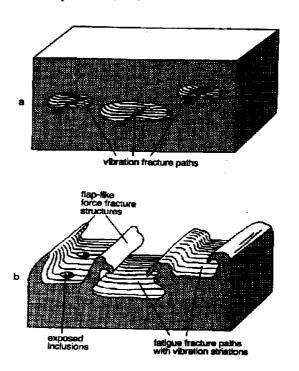


Figure 2.5 Propagation of fatigue fracture within staggered fatigue striation in ductile polymers.