STEERING SYSTEM DESIGN AND ANALYSIS OF FORMULA VARSITY RACE CAR

ZUWAIRI AMIN BIN MD HATA

This thesis is submitted to the Faculty of Mechanical Engineering, in partial fulfillment of the partial requirement for the Bachelor of Mechanical Engineering (Automotive)

FACULTY OF MECHANICAL ENGINEERING UNIVERSITI TEKNIKAL MALAYSIA MELAKA

MAY 2008

C Universiti Teknikal Malaysia Melaka

DECLARATION

"I admit this thesis is my original work except summary and passage which each of it I already telling its sources has not been previously submitted for assessment in any other course or institution, except where specifically stated"

Signature Author's Name Matric Number Date : MM : Zuwairi Amin Bin Md Hata : B 040410054 : May 2008

C Universiti Teknikal Malaysia Melaka

i

ACKNOWLEDGEMENT

With the name of Allah, The Most Gracious and Most Merciful

Alhamdulillah. All the praise for Allah The Almighty. With His blesses giving me a pink of health, strength and inspiration to complete this thesis.

Firstly I would like to express my gratitude to my Project Supervisor, Mr. Wan Mohd Zailimi Wan Abdullah. Thanks a lot for the guidance, enthusiastic supports and sharing knowledge during the completion of this thesis. He was very helpful in providing materials for reference. He tirelessly extended his help when I needed the most.

Secondly I would like to express my special gratitude to my parent and friends for great support and encouragement to undergo this thesis.

Not forgot, warm appreciation to all the lecturers of UTeM for the knowledge that you all have taught me since 4 years I have been there.

Last but not least a special thank and grateful appreciation to all Faculty of Mechanical Engineering's technicians who were supportive in developing the formula varsity race car.

May Allah Bless Us

ii

ABSTRACT

The Formula Varsity racing car is a purposely built project for engineering students to apply their design and team working skills against each other in an engineering project. The design of a steering system for a Formula Varsity race car must contain all necessary components to ensure maximum handling performance for the car. It must also comply with the formula student rules. In order to design a competitive vehicle with optimum handling performance, many aspect need to be study and test includes the study of handling characteristic, cornering, braking, costing, and designing method which include concept design and design parameter. Once construction of the system was completed, analysis was conducted to investigate the suitable steering geometry that meets team desired. ADAMS software will be use to simulate and analyze the various condition of the system. During the development and construction of the formula varsity race car, some critical parts for improvement were recognized and future recommendations were suggested.

ABSTRAK

Projek kereta lumba Formula Varsity adalah bertujuan untuk pelajar jurusan kejuruteraan bagi mempraktikkan kemahiran dalam menjalankan tugasan secara berkumpulan. Rekabentuk sistem stereng bagi kereta lumba Formula Varsity ini mestilah memenuhi segala kretiria yang diperlukan berpandukan undang-undang yang telah ditetapkan oleh FSAE bagi memastikan tahap prestasi pengendalian yang terbaik untuk kereta lumba tersebut. Dalam merekabentuk sebuah kereta lumba yang mempunyai tahap kawalan yang optima, banyak perkara yang perlu dikaji dan diuji termasuklah, ciri-ciri kawalan, membrek, lencongan dan juga cara merekabentuk sebuah kereta lumba tersebut. Setelah selesai membina sistem tersebut, analisa akan dilakukan ke atas sistem stereng tersebut untuk mengenalpasti geometri stereng yang bersesuaian dengan kehendak kumpulan. Perisian ADAMS View digunakan untuk mensimulasi dan menganalisis pelbagai keadaan sistem tersebut. Semasa membangunkan kereta lumba Formula Varsity ini, terdapat bahagian-bahagian yang kritikal yang perlu diperbaiki dari semasa ke semasa.

CONTENT

CHAPTER	TITLE	PAGE
	DECLARATION	i
	ACKNOWLEDGEMENT	ii
	ABSTRACT	iii
	ABSTRAK	iv
	CONTENT	V
	LIST OF FIGURE	ix
	LIST OF GRAPH	xi
	LIST OF TABLE	xii
	LIST OF APPENDIX	xiii

CHAPTER 1	INTRODUCTION	1
	1.1 Project Background & Problem Statement	1
	1.2 Objective	2
	1.3 Project Scope	2
	1.4 Gant Chart	3

CHAPTER 2	LITERATURE REVIEW	5
	2.1 Formula Student Racing Car	5
	2.2 Formula Student History	6
	2.3 Steering	7

C Universiti Teknikal Malaysia Melaka

v

CHAPTER TITLE

PAGE

2.4 Steering Linkage	
2.4.1 Pitman arm	9
2.4.2 Centre link	10
2.4.3. Idler arm	10
2.4.4 Ball sockets	10
2.4.5 Tie-rod assemblies	11
2.5 Manual Steering Systems	11
2.5.1 Rack and pinion	11
2.6 Steering Geometry	13
2.6.1 Camber	13
2.6.2 Caster	15
2.6.3. Kingpin Inclination	16
2.6.4 Scrub Radius	17
2.6.5 Toe	18
2.6.6 Turning radius	20
2.6.6. Tracking	21
2.7. Steering Ratio	
2.8 UTeM Formula Varsity Steering System 2	

CHAPTER 3	METHODOLOGY	26
	3.1 Process Methodology	26
	3.1.1 Problem Formulation	28
	3.1.2 Concept Design	30
	3.1.3 Design Configuration	32

CHAPTER TITLE

PAGE

3.1.4 Design Parameter	32
3.1.5 Detail Design and Prototyping	34
3.2 Tooling	34
3.2.1 Overview of Software Used	34
3.2.1.1. Construct solid models	35
of the steering system	
using Solid Work	
3.2.1.2. Analyze solid models	36
using ADAMS	
3.3 The Analysis Process	37
3.3.1. Idealization	37
3.3.2. Model Generation	40
3.3.3. Generate Equations	44
3.3.4. Equations Solution	46
3.3.5. Presentation of Results	47
3.4. Calculation	49
3.4.1. Weight Distribution	49
3.4.1.1. Formula Varsity Race Car	49
Specification	
3.4.1.2. Weight Distribution	50
3.4.1.3. Freebody Diagram	51
3.4.1.5. Calculation	51
3.4.2. Steady-State Handling	52
Characteristics	
3.4.2.1. Neutral Steer	52
3.4.2.2. Understeer	53
3.4.2.3. Oversteer	53
3.4.2.4. Improve the Car From	54
Oversteer to Neutral Steer	

CHAPTER	TITLE	PAGE
CHAPTER 4	RESULT AND DISCUSSION	56
	4.1. Result with Detail Explanations	56
	4.1.1. Graph for Flat Road Condition	57
	for Front Right Tire	
	4.1.2. Graph for 60mm Bump and	62
	Rebound Road Condition	
	4.2. Minimum Turning Radius at	65
	Neutral Steer Handling Property	
	4.3. Steer Angle for Neutral Steer	66
	Handling Property	
	4.4. Steering Ratio	68

CHAPTER 5	CONCLUSION AND RECOMMENDATION	69
	5.1. Conclusion	69
	5.2. Recommendation	70

REFERENCE	71
APPENDIX A	73
APPENDIX B	77

LIST OF FIGURE

.

NO.

TITLE

2.1	Jim Hall with the University of Texas at Austin entry	7
2.2	Parallelogram steering linkage	9
2.3	Steering rack and pinion	12
2.4	Camber angle	14
2.5	A- positive caster and B- negative caster	16
2.6	Kingpin inclination	17
2.7	Front suspension with positive scrub radius	18
2.8	Toe angle	19
2.9	Difference of radii between inner and outer wheels	20
2.10	Top view -Steering rack mounting position	24
2.11	Font view - Steering system	25
3.1	The sequence of product design development process	27
3.2	The sequence flow of the problem formulation process	29
3.3	The process flow of the conceptual design	31
3.4	The process flow for design parameter phase	33
3.5	Complete Steering & Suspension System	37
3.6	Schematic diagram for steering system analysis	38
3.7	Top view of steering system analysis model	47
3.8	Front View of steering system analysis model	48
3.9	Side view of steering system analysis model	48

ix

PAGE

NO.	TITLE	PAGE
3.10	Example of graph requested	49
	(bump height and rack travel vs. time)	
3.11	Components and driver position in Formula Varsity race car	50
3.12	Freebody diagram	51
4.1	Model top view show rack movement that effect handling	58
	behavior	
4.2	Model front view show tie rod position	58

-

LIST OF GRAPH

NO.	TITLE	PAGI
NO.	TITLE	PA

4.1	Rack travel vs. time	57
4.2	Steer angle vs. rack travel	59
4.3	Steer angle vs. time for different toe out angle	59
4.4	Camber angle vs. rack travel	60
4.5	Bump height vs. rack travel	61
4.6	Bump height and rack travel vs. time	62
4.7	Steer angle vs. rack travel	63
4.8	Camber angle vs. rack travel	64
4.9	Steer angle vs. turning radius	66

LIST OF TABLE

NO.	TITLE	PAGE
1.1	PSM 1 gant chart	3
1.2	PSM 2 gant chart	4
4.1	Steer angle result and turning radius data	67

LIST OF APPENDIX

0.
0.

	APPANDIX A	73
1	2007 Formula S.A.E Rules	73
1.1	Steering system	73
1.2	Steering wheel	74
1.3	Wheelbase and vehicle configuration	74
1.4	Vehicle track	74
1.5	Costing	75
2	Formula SAE vehicle dynamics terminology list	75
2.1	Suspension geometry	76
	APPANDIX B	77
1	Steering System Design	77

C Universiti Teknikal Malaysia Melaka

CHAPTER 1

INTRODUCTION

1.1 Project Background and Problem Statement

UTeM Formula Varsity Racing Team is a group design project composed by UTeM's students, lecturers, and technician. All of the team members are from the Bachelor of Mechanical Engineering (Automotive) department and Bachelor of Mechanical Engineering (Design and Innovation) department. The intention is for a common core of group and unique contribution from each team member. The members will have to work as a team as the design of some parts will influence the one from others. So, each design modification that may affect the design of other part –it could be about steering parameter that would influence the handling characteristic. All of these should be discussed with the team-mates. This will be achieved by regular team meetings.

My part of the work deals with the analysis and design generally of the steering system. From my automotive background and my knowledge about formula one race car over the years, I set the analysis in order to design a steering system according to the Formula Student technical regulation (Appendix A). Specific study of handling characteristics and steering geometry various angles such as camber, caster, kingpin inclination, and toe enables me to design a perfect steering system for the Formula Varsity race car.

Then, as the aim was to validate this design, it was decide to complete that step by analyze using ADAMS. A good analysis result will be possible to achieve according to the proper design we made for every single component in the system that meet our team desired.

1.2 Objective

My principal objectives that have been set as project goals in order to accomplice this thesis are to study the handling characteristic and steering geometry, to support on design a steering system for Formula SAE race car, and to analyze and simulate the steering geometry and handling characteristics.

1.3 Project Scope

- 1. Research and study on knowledge related to Formula Student race car generally further deeply learn about the steering system especially on steering geometry, and handling characteristics.
- 2. Exploring the Computer Aided Design (CAD) software such as Solid Work in order to get an ISO detail drawing and to obtain accurate measurement for each steering mechanisms.
- 3. Use Computer Aided Engineering (CAE) such as ADAMS to simulate and analyze the steering system in order to obtain behaviors, parameters, constraints and limitations of the steering system.

1.4 Gant Chart and Flow Chart

Below are the Gant chart and flow chart for the PSM 1 that shows overall work and task flow:

		NEEK														
TASK		2	3	4	5	6	•	8	9	10	11	12	13	14	15	16
PSM TOPIC SELECTION																
PSM TOPIC CONFIRMATION																
LITERATURE REVIEW																
PROBLEM STATEMENT AND DISCUSSION																
CONCEPT DESIGN																
SILDY ON AVALYSIS USING ADAMS																
REPORT PREPARATION																
PSM 1 REPORT DRAFT TO LECTURER																
REPORT CORRECTION																
SUBMIT PSM 1 REPORT																
SEMINAR PREPARATION																
PSM 1 SEMINAR AND PRESENTATION																

Table 1.1: PSM 1 Gant chart

	WEEK														
TASK	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
DRAWING DIMENSION MEASUREMENT															
DESIGN A SCEMATIC DIAGRAM															
BUILT ADAMS CODING IN (.ADM) FILE															
RUN ADAM SIMULATION															
PLOT GRAPH REQUIRED															
DISCUSS THE RESULT															
MAKE CALCULATION REQUIRED															
CONCLUDE THE RESULT								-							
SUBMIT DRAFT & MAKE CORRECTION										_					
SUBMIT PSM REPORT															
SEMINAR PREPARATION															
PSM SEMINAR AND PRESENTATION															

Table 1.2: PSM 2 Gant chart

CHAPTER 2

LITERATURE REVIEW

This Literature review is based on the readings and observation made during the thesis and previous experience. In this way, some pieces of information are difficult to attribute or reference.

2.1 Formula Student Racing Car

Formula Student is the biggest and best of its class over the world. This competition promotes careers and excellence in engineering, by challenging university students to design, build, develop market and competes as a team with a small single seated racing car. It provides the students with a real-life exercise in design and manufacture and the business elements of automotive engineering. It teaches students all about teamwork, under pressure and to tight timescales. It demands total commitment, lots of late nights, and many frustrations and challenges along the way, but the net result is the development of highly talented young engineers.

Formula Student attracts entries from universities all over the world, from the UK, mainland Europe and from the Americas, Asia and Australasia. For the universities, Formula Student represents a valuable project that blends academic work and learning with the development of practical engineering skills. They are increasingly using it to attract school leavers to their degree programs, and to forge closer links with local industry.

Formula Student in Malaysia is still new and there is no single formula student car being developed in this country. Although there is some institute declares that they have developed a formula student car. Their claim is just supported base on the shape of the racing car which is similar to the formula student car but the design is not base on Formula Student Technical and Regulation. For the purpose to develop the first formula student car in Malaysia Universiti Teknikal Malaysia Melaka has granted RM 20 000 research money to develop the formula student car.

2.2 Formula Student History

Formula Student is a UK based racing car competition run by the Institute of Mechanical Engineers (IMechE) in partnership with the Institution of Engineering & Technology (IET), RS Components, Shell and SolidWorks,for Universities and Colleges from all over the world and is based on the successful Formula SAE event which takes place in the USA. In the United States, SAE Inc started running their Formula SAE programme in 1981. In 1998 two US cars and two UK cars competed in a demonstration UK Event that was held at the MIRA Proving Ground. The initiative was considered to be very worthwhile in providing students with excellent learning opportunities and practical skills. The IMechE accepted the management of the European venture in a partnership with SAE. Formula Student is different from Formula SAE in that it is designed to be a progressive learning exercise throughout a three or four year academic course. However, the same rules are used for both Formula Student and Formula SAE (with some minor changes) and this means student teams can enter their cars in the Formula SAE in the US, Formula Student and Formula SAE in Australia. (Source: Electronic Reference, http://www.sae-a.com)

Figure 2.1: Jim Hall with the University of Texas at Austin entry (Source: Electronic Reference, http://www.sae-a.com)

2.3 Steering

Steering is the term applied to the collection of components, linkages, and so on which allow for a vessel (ship, boat) or vehicle (car) to follow the desired course. The steering system allow the driver to guide the vehicle to move along the road either straight line or turning right or left as desired. The steering system must perform several important functions, which are as follows:

1. Provide precise control of front-wheel direction.

2. Maintain the correct amount of effort needed to turn the front wheels.

3.Transmit road feel (slight steering wheel pull caused by road surface) to the operator's hands

4. Absorb most of the shock going to the steering wheel, as the tires hit bumps and holes in the road.

5. Allow for free suspension action.

The most conventional steering arrangement is to turn the front wheels using a hand operated steering wheel which is positioned in front of the driver, via the steering column, which may contain universal joints to allow it to deviate somewhat from a straight line. Other arrangements are sometimes found on different types of vehicles, for example, a tiller or rear wheel steering. Tracked vehicles such as tanks usually employ differential steering that is, the tracks are made to move at different speeds or even in opposite directions to bring about a change of course. (Source: Abdullah M. A, 2004)

2.4 Steering Linkage

Steering linkage is a combination of arms, rods, and ball sockets that connect the steering mechanism to the steering knuckles. The steering linkage mechanisms typically include a pitman arm, center link, idler arm, and two tie-rod assemblies. This configuration of linkage is known as parallelogram steering linkage (Figure 2.2) and it used on many passenger vehicles. Below are the steering linkage mechanisms:

Figure 2.2: Parallelogram steering linkage (Source: Electronic Reference, http://www.tpub.com)

2.4.1 Pitman arm

The pitman arm transfers steering mechanism motion to the steering linkage (Figure 2.2). The pitman arm is splinted to the steering mechanisms output shaft (pitman arm shaft). A large nut and lock washer secure the pitman arm to the output shaft. The outer end of the_pitman arm normally uses a ball-and-socket joint to connect to the center link.

2.4.2 Centre link

The parallelogram steering linkage (Figure 2.2) uses a center link, it also known as an intermediate rod, track rod, or relay rod, which is simply a steel bar that connects the steering arms (pitman arm, tie-rod ends, and idler arm) together. The turning action of the steering mechanism is transmitted to the center link through the pitman arm.

2.4.3. Idler arm

The center link is hinged on the opposite end of the pitman arm by means of an idler arm (Figure 2.2). The idler arm supports the free end of the center link and allows it to move left and right with ease. The idler arm bolts to the frame or subframe.

2.4.4 Ball sockets

Ball sockets are like small ball joints; they provide for motion in all directions between two connected components. Ball sockets are needed to ensure the steering linkage is not damaged or bent when the wheels turn or move up and down over rough roads surface. Ball sockets are filled with grease to reduce friction and wear. Some of the ball sockets have a grease fitting that allows chassis grease to be inserted with a grease gun. Others are sealed by the manufacturer and cannot be serviced. (Source: Electronic Reference, http://www.tpub.com)