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ABSTRACT 

In the era of Industry 4.0, predictive maintenance through vibration analysis has 

gradually improved across various industrial sectors, especially those incorporating 

rotating components like bearings and shafts. Conventional maintenance methods, 

whether reactive, preventive, or proactive, often entail high risks and costs. Reactive 

maintenance, in particular, results in significant drawbacks, causing downtime, 

resource wastage, and substantial monthly repair costs. The project proposes 

employing a Long Short-Term Memory (LSTM) autoencoder deep learning model for 

predictive maintenance, utilizing acceleration data collected from accelerometers. 

This data undergoes preprocessing before being fed into the LSTM autoencoder 

model, implemented using Python with TensorFlow and Keras frameworks in Jupyter 

Notebook. The project concludes with the LSTM autoencoder model demonstrating 

low losses (0.0017), highlighting its effectiveness in flagging anomaly conditions and 

its potential to enhance predictive maintenance in industries with rotating machinery 

components.
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ABSTRAK 

Dalam era Industri 4.0, penyelenggaraan meramal melalui analisis getaran secara 

beransur-ansur meningkat di pelbagai sektor industri, terutamanya dalam sektor yang 

mengandungi komponen putaran seperti bantalan dan shaft. Kaedah 

penyelenggaraan konvensional, sama ada reaktif, pencegahan, atau proaktif, sering 

melibatkan risiko dan kos yang tinggi. Penyelenggaraan reaktif, khususnya, 

membawa kelemahan yang signifikan, menyebabkan masa berhenti, pembaziran 

sumber, dan kos penyelenggaraan bulanan yang besar. Projek ini mencadangkan 

penggunaan model pembelajaran mendalam long short-term memory (LSTM) 

autoencoder untuk penyelenggaraan meramal, dengan menggunakan data pecutan 

yang dikumpulkan daripada pengukur pecutan. Data ini mengalami pra pemprosesan 

sebelum dimasukkan ke dalam model autoencoder LSTM, dilaksanakan menggunakan 

bahasa Python dengan rangka kerja TensorFlow dan Keras dalam Jupyter Notebook. 

Projek ini diakhiri dengan model autoencoder LSTM menunjukkan kerugian rendah 

(0.0017), menyoroti keberkesanannya dalam mengenal pasti keadaan yang tidak 

normal dan potensinya untuk meningkatkan penyelenggaraan meramal dalam 

industri yang melibatkan komponen mesin putaran. 



iii 

 

ACKNOWLEDGEMENTS 

I would like to express my deepest gratitude to my supervisor, Dr. Fakrulradzi Bin 

Idris, for their unwavering support, guidance, and invaluable insights throughout the 

research process. Their expertise and encouragement played a pivotal role in shaping 

the direction of this thesis. 

I am also thankful for the assistance and collaboration of my colleagues and peers 

who provided valuable feedback and constructive criticism, contributing to the 

refinement of this work. 

Special appreciation goes to my family for their constant encouragement, 

understanding, and patience during the challenging phases of this journey. Their love 

and support have been my pillar of strength. 

Lastly, I want to acknowledge the sources, authors, and institutions whose works 

and contributions have been instrumental in shaping the theoretical framework of this 

thesis. 

This accomplishment would not have been possible without the support and 

encouragement of these individuals and organizations. I am truly grateful for their 

contributions to the successful completion of this thesis. 

  



iv 

 

TABLE OF CONTENTS 

Declaration i 

Approval i 

Dedication i 

Abstract i 

Abstrak ii 

Acknowledgements iii 

Table of Contents iv 

List of Figures ix 

List of Tables xi 

List of Symbols and Abbreviations xii 

List of Appendices xiii 

CHAPTER 1 INTRODUCTION 1 

1.1 Background 1 

1.2 Problem Statement 3 

1.3 Objectives 4 

1.4 Project Scope 4 



v 

 

1.4.1 Hardware 4 

1.4.2 Software 5 

1.4.3 Deep Learning Algorithm 6 

1.5 Chapter Outline 6 

CHAPTER 2 BACKGROUND STUDY 8 

2.1 General Background 8 

2.1.1 Vibration 8 

2.1.2 Vibration Analysis 9 

2.1.3 Vibration Monitoring System 9 

2.1.4 Condition Monitoring System 10 

2.1.5 Rotating System 11 

2.1.6 Displacement, Velocity and Acceleration Sensors 11 

2.2 Working Principles of System 12 

2.2.1 MQTT communication protocol 12 

2.2.2 MySQL  13 

2.2.3 Jupyter Notebook 13 

2.2.4 Deep Learning 14 

2.2.5 Fault Diagnosis 15 

2.2.6 Anomaly Detection 15 

2.2.7 Fast Fourier Transform (FFT) Analysis 16 



vi 

 

2.3 Literature Review 18 

2.3.1 Related Paper 18 

2.3.2 Existing Product 22 

CHAPTER 3 METHODOLOGY 26 

3.1 Flow Chart of Project Flow 27 

3.2 Flow chart of Overall Process 28 

3.3 Flowchart of Data Collection 29 

3.3.1 Flowchart of Program Code of ESP32 30 

3.3.2 Flowchart of Node-RED Flow 32 

3.4 Build Deep Learning Model 33 

3.4.1 Data Preprocessing 34 

3.4.2 LSTM Autoencoder Model for Anomaly Detection 36 

3.5 Components 38 

3.5.1 Hibiscus ESP32 38 

3.5.2 Raspberry Pi 3 39 

3.5.3 Resistor  40 

3.5.4 Light Emitting Diode (LED) 40 

3.6 Autoencoder Model 41 

3.6.1 Framework Overview 42 

3.6.2 LSTM Cell 43 



vii 

 

3.6.2.1 Forget Gate 44 

3.6.2.2 Input Gate 44 

3.6.2.3 Cell Status 45 

3.6.2.4 Output Gate 45 

3.6.3 Loss function (MSE) 46 

3.7 Gear Test Experiments 47 

3.7.1 Components of Testbed 47 

3.7.2 Testbed Design 48 

3.7.3 Experiment Setup 52 

CHAPTER 4 RESULTS AND DISCUSSION 56 

4.1 Calibration 57 

4.2 Node-RED 58 

4.2.1 Node-RED User Interface design 59 

4.3 MySQL Database 61 

4.4 Data Preprocessing 62 

4.5 Autoencoder Model 64 

CHAPTER 5 CONCLUSION AND FUTURE WORKS 72 

5.1 Conclusion 72 

5.2 Future Work 74 

REFERENCES 75 



viii 

 

APPENDICES 80 

  



ix 

 

LIST OF FIGURES 

Figure 2.1 Vibration monitoring system ................................................................. 10 

Figure 2.2 MQTT protocol ..................................................................................... 13 

Figure 2.3 Vibration signal in time domain and frequency domain ......................... 17 

Figure 2.4 Vibration monitoring system of ifm company ....................................... 25 

Figure 3.1 Overall flow of the project .................................................................... 27 

Figure 3.2 Overall process of the project ................................................................ 28 

Figure 3.3 Program code of ESP32 microcontroller ............................................... 30 

Figure 3.4 Node-RED flow design ......................................................................... 32 

Figure 3.5 Flow of data preprocessing.................................................................... 34 

Figure 3.6 Flow of LSTM autoencoder model for anomaly detection ..................... 36 

Figure 3.7 Pinout of Hibiscus ESP32 ..................................................................... 38 

Figure 3.8 Sensors MPU6050 embedded on ESP32 module ................................... 39 

Figure 3.9 Raspberry Pi 3 ...................................................................................... 39 

Figure 3.10 LSTM based Autoencoder model ........................................................ 42 

Figure 3.11 LSTM cell ........................................................................................... 43 

Figure 3.12 AutoCAD drawing for testbed design .................................................. 48 

Figure 3.13 Testbed design .................................................................................... 49 

Figure 3.14 Hibiscus ESP32 accelerometer ............................................................ 50 



x 

 

Figure 3.15 Disc plate used in testbed .................................................................... 51 

Figure 3.16 Balanced load condition of the testbed ................................................ 53 

Figure 3.17 Unbalanced load condition of the testbed ............................................ 53 

Figure 3.18 Acceleration Data of Balanced Condition ............................................ 55 

Figure 3.19 Acceleration Data of Unbalanced Condition ........................................ 55 

Figure 4.1 Acceleration data before calibration (value1 = x, value2 = y, value3 = z)
 .............................................................................................................................. 57 

Figure 4.2 Acceleration data after calibration (value1 = x, value2 = y, value3 = z) . 57 

Figure 4.3 User Interface of Node-RED ................................................................. 59 

Figure 4.4 MySQL database................................................................................... 61 

Figure 4.5 Data after preprocessing (balanced data) ............................................... 62 

Figure 4.6 Data after preprocessing (unbalanced data) ........................................... 63 

Figure 4.7 AE model .............................................................................................. 64 

Figure 4.8 AE model loss respect to epoch times ................................................... 65 

Figure 4.9 Loss distribution during training ........................................................... 65 

Figure 4.10 Loss MAE of training dataset .............................................................. 66 

Figure 4.11 Loss MAE of test dataset..................................................................... 66 

Figure 4.12 Loss MAE of train test dataset ............................................................ 67 

Figure 4.13 CNN model ......................................................................................... 69 

Figure 4.14 CNN model loss respect to epoch times............................................... 70 

Figure 4.15 Loss distribution of training ................................................................ 71 



xi 

 

LIST OF TABLES 

Table 3.1: Experiment setup with different conditions 52 

Table 4.1: Comparison between different parameters of AE model                           58 

 

  



xii 

 

LIST OF SYMBOLS AND ABBREVIATIONS 

 
LSTM : Long Short-Term Memory 

AE : Autoencoder 

MQTT : Message Queuing Telemetry Transport 

MEMS : Micro-electromechanical systems 

MSE : Mean Square Error 

RMSE : Root Mean Square Error 

MySQL : My Structured Query Language 

FFT : Fast Fourier Transform 

 

 

 

 

 

 

 

  



xiii 

 

LIST OF APPENDICES 

Appendix A: Different shoot angle of testbed 80 

Appendix B: Datasheet of MPU6050 83 

  

  

  

  

  

 

 

 

 

 

 

 

 



 

 

 

CHAPTER 1  

INTRODUCTION 

In this chapter, a simple introduction to the project will be provided. Explanations 

about the development of vibration monitoring technology will be included to 

familiarize the reader with the system. This chapter comprises background 

information, the problem statement, objectives, scopes, and the project outline for the 

entire project.  

1.1 Background 

Nowadays, vibration monitoring technology plays an essential role in industrial 

factories for diagnosing potential machine failures. This technology is crucial because 

a breakdown in the production chain can lead to significant economic losses [1]. The 

mechanical vibration signals generated by the machine are analyzed to assess the 
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overall performance of the mechanical equipment or specific mechanical parts during 

operation [2]. 

In the early years, vibration monitoring technology could only be implemented with 

a cable connection. However, wired vibration monitoring technology has its 

limitations, making it unsuitable for use in all industrial environments. For instance, 

attaching a wired sensor reliably to the surface of rotating machinery is unsafe. 

Additionally, the presence of cables may pose risks of human and material accidents. 

Moreover, the traditional wired technology incurs high installation and maintenance 

costs, especially in remote monitoring scenarios. On top of that, users need to 

manually replace old cables with new ones, adding inconvenience due to the low 

mobility imposed by this type of technology [3,4]. 

Recently, a new wireless vibration technology, capable of monitoring machines 

without any cables, has been developed. This technology is more convenient than 

wired sensors, offering extensive coverage in remote monitoring areas. Furthermore, 

it is low-cost and easy to install since there is no need for wiring and trenching. 

Vibration-based condition monitoring is one of the most widely used approaches 

for predictive maintenance, given its ease of measurement and data analysis. Vibration 

analysis is a measurement technique employed to assess a machine's operating 

condition, identifying potential issues before they lead to failure and extensive 

damage. Consequently, the implementation of this technology in the industry can lead 

to simultaneous reductions in maintenance costs and downtime [5]. 

Condition monitoring methodologies for predictive maintenance can be simplified 

into four steps. First, vibration data, such as the acceleration signal, is collected from 
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the sensor. Second, the signal undergoes processing to remove noise. Third, the signal 

is analyzed to detect the presence of any potential failure. Lastly, the system identifies 

the type of failure and determines the machine's condition by comparing the actual 

measurement results with manufacturer-set standards. Actions are then decided based 

on statistical information and years of experience.  

Based on the statistics, a factory implementing condition-based predictive 

maintenance will experience a 25-30 percent decrease in maintenance activities and a 

35-45 percent decrease in machine breakdowns. Additionally, it is stated that there is 

a 20-25 percent increase in production rates and return on investment when the 

monitoring system is employed in industrial factories [6]. Therefore, the wireless 

vibration monitoring system has fewer limitations compared to the traditional wired 

monitoring system. 

1.2 Problem Statement 

With Industry 4.0, proactive maintenance is being replaced by predictive 

maintenance. In the industrial field, many machines consist of rotational parts such as 

bearings or shafts. However, maintenance methods like reactive, preventive, or 

proactive maintenance pose high risks and costs. Reactive maintenance, in particular, 

leads to machine malfunctions causing downtime and wastage of raw resources, 

incurring substantial monthly repair costs [7]. Production halts result in decreased line 

productivity, especially when replacement times are lengthy. When bearings become 

faulty, it affects various geometrical parameters in the frequency response [8,9]. 

Unknown errors in bearing faults can lead to extra maintenance fees and extended 

downtime, which is not ideal for businesses. Beyond fault identification, the 

Remaining Useful Life (RUL) of the machine provides crucial information for 
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industries [10]. Without knowledge of the machine lifespan, companies struggle to 

predict when machines might fail, leading to extended waiting times for new machines 

or spare parts and significantly increasing maintenance costs. Therefore, this project 

aims to develop an LSTM deep learning predictive maintenance model using time-

series vibration data to analyze the RUL of machines. 

 

1.3 Objectives 

The objectives of this project are: 

 To design wireless vibration monitoring system 

 To develop a deep learning-based LSTM model 

 To analyze and compare the performance of the LSTM model with 

parameter of model loss. 

 

1.4 Project Scope 

This project aims to develop a deep learning model for vibration predictive 

maintenance. The model will utilize data collected from parameters such as 

acceleration, temperature, and sound. After collecting the data, it will be labeled and 

fed into the deep learning model as both training and testing data. The primary focus 

of this project is on the LSTM model. Additionally, other machine learning models 

will be explored and built to compare the performance of the LSTM predictive 

maintenance model. The project encompasses both hardware and software 

implementation. 

1.4.1 Hardware 

For the hardware component of the system, it is designed to collect raw vibration 

data from the machine. The setup includes the Hibiscus ESP32, Raspberry Pi 3, 
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resistors, LEDs, TP4056 charging module, 3.7V Lithium rechargeable batteries, and 

DPDT switches. In this configuration, the Raspberry Pi 3 functions as a broker, 

facilitating communication between the Hibiscus ESP32 and a laptop simultaneously. 

The Hibiscus ESP32 module incorporates the MPU6050 chip, which houses an 

accelerometer sensor and a built-in temperature sensor. The accelerometer within the 

MPU6050 chip measures vibrations in three axes (X, Y, Z). Green LEDs are connected 

to both modules to indicate MQTT connection status. A lit green LED signals 

successful MQTT connection, while an unlit LED indicates a lack of connection to 

MQTT.  

1.4.2 Software 

Several software applications are used in developing this project. For designing the 

hardware system, Arduino IDE, Node-RED, mySQL are used for configuring the 

hardware in term of communication and data collection. First, the Arduino IDE is used 

to write the program code for publishing acceleration and temperature data to 

Raspberry Pi 3 through the MQTT protocol. Then, the Node-RED is used as a 

programming tool to create the system's functionality by wiring the data flow between 

nodes using a browser. Next, mySQL is used as a cloud to store the data obtained from 

raspberry pi. It able to provides data file in several extension such a .db and .csv.  

For analyzing the data, Python programming will be used to model the predictive 

maintenance model. In this project, two models will be designed: a fault diagnosis 

model and an RUL prediction model. These models can be designed and run in a 

Jupyter notebook application programmed with Python code. 
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1.4.3 Deep Learning Algorithm 

Deep learning algorithms are a group of machine learning algorithms that mimic 

the structure of the human brain, particularly neural networks. These algorithms learn 

and extract meaningful representations or features from large amounts of data without 

requiring in-depth knowledge of mathematical relationships or specific field 

knowledge. In this project, the main model designed for anomaly detection will be the 

LSTM model. Additionally, other models, such as the Convolutional Current Network 

(CNN), will be developed for performance comparison. 

1.5 Chapter Outline 

The wireless vibration monitoring system for predictive maintenance was 

described, focusing on the improvement of the wired vibration monitoring system 

through the utilization of the Internet of Things (IoT) concept. All the details about 

this project are defined in each chapter of this report, as shown below. 

Chapter 1: In this chapter, it will show a simple introduction of the project. Some 

explanations about the development of vibration monitoring technology will be 

considered to acknowledge the system. It consists of background, problem statement, 

objectives, scopes, and the project outline for the whole project in this chapter.  

Chapter 2: This chapter will discuss sources, website, patents and journals that 

related to the project. It also consists of the existing products that can be found on the 

market. To briefly understand the project, there are many sources and researches done 

before.  

Chapter 3: This chapter will mention about steps and methods involve completing 

the project. There are several steps to be applied in designing wireless vibration 
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monitoring system for predictive maintenance. This part consists of project flowchart, 

methodology that being used and the explanation about tools and components used for 

this project. 

Chapter 4: In this chapter, it shows the result obtained that have been achieved 

throughout this project. Besides, it will also discuss about the result of the project 

based on testing of the finished project. 

Chapter 5: This chapter will describe about conclusion and recommendation for 

the wireless vibration monitoring system for predictive maintenance. This section 

includes project summary, project finding and further recommendation to improve the 

project. 



 

 

 

CHAPTER 2  

BACKGROUND STUDY 

This chapter will discuss sources, website, patents, and journals that related to the 

project. It also consists of the existing products that can be found on the market. To 

briefly understand the project, there are many sources and research done before. 

 

2.1 General Background 

2.1.1 Vibration 

Vibration is defined as a physical process that occurs in kinetic structures and 

wheeling machines. Vibration can be generated by different types of sources, such as 

rotating electric field and shafts, components with bearing, flowing in liquid and 

ignition phenomenon. There are specific sensors invented depending on various 

vibrations such as PZT sensors, proximity probes, MEMS and etc. Different sensors 
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with various measuring techniques are used to evaluate displacement, velocity and 

acceleration. Vibrations are expressed in both periodicity and intensity by frequency 

and amplitude respectively. Furthermore, vibration can be detected in any condition 

of machines. 

 

2.1.2 Vibration Analysis 

Vibration analysis is an action that detects the level of vibration and also inspects 

the pattern of vibration signals. Vibration analysis is frequently conducted on 2 

characteristics which are time waveform and frequency spectrum. Frequency 

spectrum is acquired by substituting formula of Fourier Transform on time waveform. 

The analysis for time domain shows the normality and abnormality of vibration 

pattern, and these are studied in several parameters such as RMS, crest factor, standard 

deviation, peak amplitude etc. Moreover, FFT technique is established to ease the 

process of frequency analysis as it provides quick responses and has high efficiency. 

Vibration analysis is applied on machines, components, and structures such as 

bearings, wheels, gearboxes, motors and etc. Vibration analysis is able to detect issues 

including imbalances, failures on bearing and gearbox, misalignment and etc. 

2.1.3 Vibration Monitoring System 

A vibration monitoring system is a series of combined apparatus aimed at detecting 

the health changes of machinery and instruments by evaluating one or more variables. 

It is essential to many industries for safety purposes and keeping the operating system 

running. This is due to vibration monitoring helping a lot at forecasting machine 

failures. The failures include but are not limited to misalignment, bearing faults and 

etc. Additionally, having a vibration monitoring system could prevent financial losses 
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due to scheduled predictive maintenance. The latest vibration monitoring system 

applies wireless transmission and long-lasting batteries which have gradually replaced 

the wired accelerometers that have been used in industry. Vibration monitoring 

systems are executed by applying vibration trend analysis. It is a process that tracks 

for irregularities in the vibration system of an operating machine. When the amplitude 

of vibration increases or decreases significantly with steady state conditions, it is a 

symptom that changes occurred in machines. 

 

Figure 2.1 Vibration monitoring system  

 

2.1.4 Condition Monitoring System 

Condition monitoring is the action of inspecting a specific condition in machines 

to make certain of the alteration which indicates the occurring faults. The condition 

that provides alteration could be vibration, temperature and others which are 

manipulated. It is an important part for predictive maintenance to be scheduled after 

abnormal pattern of signal is observed to prevent further breakdown and unexpected 
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downtime. Condition monitoring could be used on a variety of equipment, including 

rotating machines, and additional systems. Conventional type of condition monitoring 

applies vibration analysis while on the other hand, modern yet innovative technologies 

such as sensors are used to detect various parameters and notify users when a fault is 

detected. To fasten the process of being notified, the Internet of Things (IoT) is 

executed and combined therefore smart machines could act as a platform for engineers 

in different positions to make decision before system breakdown. Types of condition 

monitoring include electrical monitoring, motor circuit analysis, oil analysis, 

thermography, vibration analysis and radiography. 

2.1.5 Rotating System 

The rotating electric machines are used to convert mechanical energy to electrical 

energy or vice versa. The three basic types of rotating electric machines are DC electric 

machines, synchronous machines and induction motors or asynchronous machines. 

The examples of DC electric machines are DC motors and DC generators while the 

example of synchronous machines are alternators and synchronous machines. All 

existing rotating electric machines have two fundamental parts where the first one is 

rotor, and second part is stator which is stationary. These two parts are fabricated from 

highly permeable magnetic material, for example silicon steel. 

2.1.6 Displacement, Velocity and Acceleration Sensors 

Vibration sensors are measuring devices which sense the vibration of movement 

for the equipment or system which the sensors are attached to. Amplitude and 

frequency of vibration collected will be studied and investigated. General types of 

vibration sensors are displacement sensor, velocity sensor, and accelerometer. 

Accelerometer is the best option among these three sensors. It is mostly used in 
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industrial rotating machines for its simplicity to apply and quite sensitive to the high 

frequencies during vibration which is typically an indicator of failed machines. 

Examples of industrial accelerometers are piezoelectric accelerometers and micro 

electromechanical systems (MEMS) accelerometers. 

 

2.2 Working Principles of System 

In this project, the working principles involved are the general knowledge for this 

project. It may include theory of a data process algorithm, communication ways and 

the software used to carry out the task.  

2.2.1 MQTT communication protocol 

MQTT had been widely used in the IoT project. IoT, Internet of Thing ia the 

interconnection devices such as appliances, devices, sensors, or components [11]. 

MQTT, Message Queuing Telemetry Transport, is a lightweight messaging protocol 

for communication between two devices. It consists of a publish-subscribe messaging 

pattern, where devices can publish the data to assign topic, vice versa, the devices also 

able to subscribe to the topic that interested to collect.  

As shown in Figure 2.2, the sensors and valve or cloud server are type of MQTT 

clients, they can subscribe and publish the data to the MQTT broker. With the 

technology of MQTT nowadays, the MQTT can be installed in Raspberry Pi and the 

microprocessor with Wi-Fi module able to subscribe and publish the data to the MQTT 

broker. 



13 

 

 

Figure 2.2 MQTT protocol 

2.2.2 MySQL 

MySQL is an open-source database management system that is used for managing 

structured data. It is commonly used in web applications and acts as an online database 

(cloud). It helps to communicate between hardware with the broker. It can operate in 

several operating systems such as Linux, Solaris, macOS, Windows and FreeBSD. 

Since MySQL is open source, the application and use of MySQL is free of license and 

can be modified with the user creativity. 

2.2.3 Jupyter Notebook 

Jupyter Notebook is an open-source web application that allows users to create and 

share documents containing live code, equations, visualizations, and explanatory text. 

It provides an interactive computational environment that supports various 

programming languages, including Python, R, Julia, and others. Jupyter Notebook is 

widely used for data analysis, prototyping, machine learning, and scientific computing 

tasks. In Jupyter notebooks, it is interactive and self-contained, where it consists of 

series of cells that can contain code, text, equations, or visualizations. Under the 
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notebooks, users can execute the code within the notebook. All the Code cells can 

contain snippets of code written in the supported programming languages. When a 

code cell is executed, the code is run in a separate kernel, and the output or result is 

displayed below the cell. Furthermore, Jupyter Notebook integrates well with libraries 

for data visualization and plotting, such as Matplotlib, Seaborn, and Plotly. 

Visualizations can be displayed directly in the notebook, allowing users to create 

interactive charts, graphs, and other visual representations of their data. 

2.2.4 Deep Learning 

It is an important branch of machine learning that achieved significant advances in 

theory [12] and applications to many fields, for example, image processing [13], 

automatic driving [14], natural language processing[15,16], etc. Deep learning is a 

subfield of machine learning that focuses on training artificial neural networks to learn 

and make predictions or decisions without explicit programming. It is inspired by the 

structure and function of the human brain, specifically the interconnected network of 

neurons. The key component of deep learning is the artificial neural network, which 

consists of interconnected nodes or artificial neurons. These neurons receive inputs, 

apply a weighted sum, pass the result through an activation function, and produce an 

output. Deep neural networks typically have multiple layers, including an input layer, 

one or more hidden layers, and an output layer. The learning process in deep learning 

involves two main steps: training and inference. During training, the network learns 

from a labeled dataset by adjusting the weights and biases of the neurons to minimize 

the difference between its predictions and the true labels. This process is often 

performed using optimization algorithms like stochastic gradient descent. Inference is 

the phase where the trained model is used to make predictions on new, unseen data. 
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2.2.5 Fault Diagnosis 

In fault diagnosis of the vibration object, acceleration and velocity data are the main 

parameter that can retrieve the characteristics of the rotatory part. An object vibrates 

when it moves repeatedly back and forth from its stationary position. This can be 

demonstrated with a spring where the spring is stretched and forced to move its weight 

to the minimum limit when force is put on. When force is taken out, it will result in 

the weight moving upwards, passing through the stationary point to reach the 

maximum limit. This is due to the stored energy in the spring. In common knowledge, 

velocity is the first derivative of displacement with respect to time, and known as the 

rate of change in displacement. Acceleration is the second derivative of displacement, 

and the rate of change of velocity. In vibration analysis, all rotating machines generate 

vibrations because of the dynamics of the machine. By determining the amplitude of 

vibration at specified frequencies, informative values are obtained such as the 

accuracy of alignment, the condition of used bearings etc. 

2.2.6 Anomaly Detection 

The identification of anomalies in vibration applications holds paramount 

significance in the realms of predictive maintenance and condition monitoring across 

diverse industries, such as manufacturing, aerospace, and energy. Vibration signals 

serve as key indicators of the condition and operational efficacy of rotating machinery, 

with anomalies in these signals serving as potential precursors to faults or imminent 

failures. The primary aim of anomaly detection lies in the discernment of deviations 

from established norms in vibration patterns, thereby signalling irregularities in the 

machinery. 
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An array of methodologies is deployed for anomaly detection in vibration 

applications, encompassing statistical methods, machine learning algorithms, and 

signal processing techniques. Statistical approaches often entail the formulation of 

baseline models representing typical vibration behaviour, with deviations being 

identified through rigorous statistical analysis. Machine learning strategies leverage 

algorithms trained on historical data to discern patterns associated with normal 

operation, facilitating the identification of anomalous behaviour. Signal processing 

techniques are focused on extracting pertinent features from vibration signals and 

subsequently comparing them to predefined thresholds. The amalgamation of these 

methodologies facilitates early fault detection, consequently mitigating downtime, 

curtailing maintenance expenditures, and augmenting overall operational efficiency 

within industrial contexts. 

 

2.2.7 Fast Fourier Transform (FFT) Analysis 

FFT which known as Fast Fourier Transform is applied when analysing signals for 

various application domains. FFT performs signals transformation from time domain 

to frequency domain. In time domain, it is expressed in one waveform that carries the 

summation of all characteristics. On the other hand, the signal characteristics are 

expressed in individual frequency components during frequency domain.  
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Figure 2.3 Vibration signal in time domain and frequency domain 

In frequency domain, examination of measured data is usually the first stage of 

tracking and analysing signals. FFT analysis provides features where engineers can 

observe the process of instruments respond at different independent frequencies when 

performing vibration testing at instruments and components. This has proven that with 

the aid of frequency spectra, engineers can perform better when dealing with design 

optimization and defining deflection limitations. With obtained frequency values, FFT 

spectra can be used to recognize acceptable tolerance graphs. Moreover, notification 

will be received by engineers when level of critical vibration is beyond the maximum 

frequencies level. Transformation of FFT spectra is derived using algorithm from DFT 

which known as Discrete Fourier Transform that can be defined as: 

𝐴𝐴(𝑓𝑓𝑘𝑘) =
1
𝑁𝑁� 𝑎𝑎(𝑡𝑡𝑛𝑛)𝑒𝑒−𝑖𝑖

2𝜋𝜋𝑘𝑘𝑛𝑛
𝑁𝑁

𝑁𝑁−1

𝑛𝑛=0

(1) 
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Digitized signals from all different kinds of sensors can be analysed with the aid of 

FFT analysers. Based on its application, the most suitable and related sensors are 

operated. For instance, accelerometers are utilized when performing machine 

diagnostics and structural measurements. 

 

2.3 Literature Review 

2.3.1 Related Paper 

Before design and development of project, several research to similar topic has 

been done. The first reference is "Vibration analysis of electrical rotating machines 

using FFT: A method of predictive maintenance" [17]. It is a research paper written 

by Patil and Gaikwad (2013) with regards to vibration analysis using FFT. This paper 

mentions that detection of faults should be done to increase the reliability of rotating 

equipment as the demand from the market has been increasing in a critical way. 

Therefore, vibration analysis for predictive maintenance is proposed to overcome 

these issues as it can analyze the fundamental cause within any instruments or plants. 

To inspect the vibration signals and identify the health conditions of machines, Fast 

Fourier Transform (FFT) is suggested. By running rotating electrical machines with 

different operating conditions, the author concludes that vibration analysis could be 

proceeded only if all machines are in healthy modes and thus producing vibration 

pattern that is quite stable. While comparing to the stable patterns, the abnormal 

patterns spotted indicate that the machine tested needs repairing and predictive 

maintenance could be scheduled. Moreover, this paper also focuses on the restriction 

of vibration analysis in the traditional way. 
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Nowadays, industry 5.0 is an evolution of manufacturing technology that utilizes 

advanced data analytics and machine learning techniques to optimize production 

process. Therefore, predictive maintenance with machine learning becomes more 

crucial as technology evolves. With predictive maintenance, the performance of the 

equipment can be monitored and predict the potential fault condition. However, with 

machine learning, the data processing can be automated and perform better decision 

and prediction [18]. 

The target object to be tested will be a rolling element bearings and gear. It is 

because both of them are the key components in rotating machinery, which plays an 

important role in power and motion transmission and is widely used in many major 

fields of industrial production [19]. For analyze the data, FFT is usually the first 

analysis to be conducted for the vibration signal from time domain to frequency 

domain [20]. 

From the journal “Gearbox fault diagnosis based on multi-scale deep residual 

learning and stacked LSTM model” written by K.N. Ravikumar, he introduces a fault 

diagnosis model that includes a multi-scale deep residual learning with a stacked long 

short-term memory (MDRL-SLSTM) to address sequence data in a gearbox health 

prediction task. The model achieved better diagnostic performance with vibration data 

of gearbox. The classification accuracy of 94.08% and 94.33% are attained on bearing 

datasets and 2nd driving gear of gearbox respectively [21]. 

Furthermore, in the journal entitled “LSTM-Autoencoder for vibration anomaly 

detection in vertical carousel storage and retrieval system (VCSRS)” written by Jae 

Seok Do, the vibration data was collected and analyzed to identify potential issues 

with the system’s operation. An LSTM-autoencoder (long short-term memory) model 
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was used for training and testing further to enhance the accuracy of the anomaly 

detection process. The combination of the correlation coefficient model and the 

LSTM-autoencoder resulted in an accuracy rate of 97.70% for detecting anomalies in 

the vertical carousel system [22]. 

Next, the journal entitled “A new dynamic predictive maintenance framework 

using deep learning for failure prognostics” written by Khanh T.P. Nguyen in 2019, 

he proposed a new dynamic predictive maintenance framework with sensor 

measurements. In this framework, the prognostics step, based on the Long Short-Term 

Memory network, is oriented towards the requirements of operation planners. It 

provides the probability that the system can fail in different time horizons to decide 

the moment for preparing and performing maintenance activities. For the limitation, 

the model is only considering for perfect maintenance, the different levels of imperfect 

maintenances can be investigated [23]. 

In journal “A Deep Learning Model for Predictive Maintenance in Cyber-Physical 

Production Systems Using LSTM Autoencoders” written by Xanthi Bampula in 2021, 

the author with her team study investigates an approach to enable a transition from 

preventive maintenance activities, that are scheduled at predetermined time intervals, 

into predictive ones. To enable such approaches in a cyber-physical production 

system, a deep learning algorithm is used, allowing for maintenance activities to be 

planned according to the actual operational status of the machine and not in advance. 

An autoencoder-based methodology is employed for classifying real-world machine 

and sensor data, into a set of condition-related labels. However, additional experiments 

are required to further test its performance and accuracy with a larger dataset of proper 

data quality in a greater period [24]. 
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Moreover, in a journal, “A research study on unsupervised machine learning 

algorithms for early fault detection in predictive maintenance” written by Nagdev 

Amruthnath in 2018, the author had chosen a simple vibration data collected from an 

exhaust fan, and have fit different unsupervised learning algorithms such as PCA T 2 

statistic, Hierarchical clustering, K-Means, Fuzzy C-Means clustering and model-

based clustering to test its accuracy, performance, and robustness. T2 statistic provided 

more accurate results compared to GMM method, and no hypothesis was required to 

identify the relationship between cluster and state. In short, although most algorithms 

provided nearly similar results, each algorithm provided deeper insight into the data. 

Hence, if the application is just to detect the faults, T2 statistic would be an excellent 

tool [25]. 

Besides, the journal entitled “A Wind Turbine Vibration Monitoring System for 

Predictive Maintenance Based on Machine Learning Methods Developed under Safely 

Controlled Laboratory Conditions” written by David Perez and his team in 2023 had 

presented a method for simple wind turbine vibration monitoring in the laboratory by 

means of an accelerometer placed on a weathervane under different scenarios, with 

recording of different amplitudes of vibrations caused at a constant speed of 10 km/h. 

The variables, trends, and data captured during vibration monitoring were then used 

to implement a prediction system of synthetic failure using machine learning methods 

such as: Medium Trees, Cubic SVN, Logistic Regression Kernel, Optimized Neural 

Network, and Bagged Trees, with the last demonstrating an accuracy of up to 87% 

[26]. 

Additionally, the journal entitled “The experimental application of popular 

machine learning algorithms on predictive maintenance and the design of IIoT based 



22 

 

condition monitoring system” written by Mustafa Cakir in 2021 had include the data 

such as sound level, current, rotational speed, and temperature to increase the success 

of the classification. The data collected from the experimental setup was modelled for 

classification with popular ML algorithms such as support vector machine (SVM), 

linear discrimination analysis (LDA), random forest (RF), decision tree (DT), and k-

nearest neighbors (KNN). The models were evaluated with accuracy, precision, TPR, 

TNR, FPR, FNR, F1 score and, Kappa metrics. During the evaluation of all models, it 

was observed that with the increase in the number of features in the data set, the 

accuracy, sensitivity, TPR, TNR, F1 score, and Kappa metrics increased above 99% 

at 95% confidence interval, and FPR and FNR metrics fell below 1%. Although ML 

models gave successful results, LDA and DT models gave results much faster than 

others did. On the other hand, the classification success of the LDA model is relatively 

low. However, DT model is the optimum choice for CMS due to its convenience in 

determining threshold values, and its ability to give fast and acceptable classification 

rates [27]. 

 

2.3.2 Existing Product 

Similar products appeared in market is observed and referenced. The first model is 

“Phantom EPH-V11 | Triaxial Vibration Sensor” which is embedded with wireless 

condition-monitoring system and is able to transfer 3 simultaneous FFT and waveform 

recordings in terms of time at once. Moreover, it provides features of analyzing and 

visualizing data from sensors with DigivibeMX. [28] 
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Phantom EPH-V11 triaxial vibration sensor 

The second model “Fluke 3561 FC Vibration Sensor” could make predictive 

maintenance process in short time. It can sense the faults, imbalances and 

misalignments. Furthermore, it is a wireless yet compact sensor as a portable 

monitoring device. Its battery usage can last for 3 years which is a useful feature. [29] 

 

Fluke 3561 FC vibration sensor. 

The following instrument “Fluke 805 FC” can measure frequencies from 10Hz up 

to 1kHz in terms of acceleration, speed, and misalignment. Besides that, with the 

support of accelerometer, it is useful in high-altitude or cornered areas that could not 

be reached easily. Furthermore, it is adaptable with the Fluke Connect App which 

includes functions such as mobile data management, remote access to maintenance 

team etc. [30] 
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Fluke 805 FC handheld vibration sensor. 

From ifm company, they had introduced a vibration monitoring system that 

provides vibration monitoring, condition monitoring, machine protection process 

monitoring with easy setup. In this system, it consists of several type of components 

such as vibration sensors, diagnostic electronics and gateway for wireless vibration 

sensors and IO-links. This company do provide wide selection for the vibration 

sensors, including acceleration sensor that measure the raw data of the vibration. Other 

than the system, this company also provides a software for analysing the vibration 

data, which named VSE and VNB. In VSE, the data can be configured and visualized.  
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Figure 2.4 Vibration monitoring system of ifm company 

 



 

 

 

CHAPTER 3  

METHODOLOGY  

This chapter will mention steps and methods involved in completing the project. 

There are several steps to be applied in designing wireless vibration monitoring system 

for predictive maintenance. This part consists of a project flowchart, methodology that 

is being used and the explanation about tools and components used for this project. 
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3.1 Flow Chart of Project Flow 

 

Figure 3.1 Overall flow of the project 

In the course of this project, the initial phase entails a comprehensive investigation 

of prior literature and the examination of existing products. The primary objective of 

this endeavor is to address the void identified in the antecedent scholarly work. 

Subsequently, a wireless vibration monitoring system is meticulously fashioned, 

encompassing hardware design implementation on a dedicated testbed to simulate 

both balanced and unbalanced vibration scenarios. Following this, the construction of 

an LSTM autoencoder model is undertaken with precision and diligence. Post model 

creation, an in-depth performance analysis is executed to discern the optimal model 

amidst various design architectures. Finally, the conclusive stage involves the 

meticulous composition of the thesis report. 
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3.2 Flow chart of Overall Process 

 

Figure 3.2 Overall process of the project 

Foremost, the inception of the wireless vibration data acquisition system, 

recognized as the wireless vibration monitoring system, constituted a pivotal 

undertaking in this initiative. This system was meticulously designed and assembled 

to facilitate the acquisition of vibration data under two distinct scenarios: balanced and 

unbalanced cases. After data collection, a rigorous process of construction and 

preprocessing ensued to prepare the data for integration into the training and testing 

phases of the deep learning model. 

The subsequent phase involved the development of the LSTM autoencoder model, 

with a stringent criterion ensuring that the loss value remained below the threshold of 

1%. Following successful model development, the trained model was preserved and 

subsequently loaded for the purpose of comprehensive testing. The testing phase 

involved the introduction of the test dataset into the model, with subsequent 

performance analysis and comparison executed among diverse design configurations 

of LSTM and CNN models. 



29 

 

3.3 Flowchart of Data Collection 

 

This subsection delineates the methodology employed for the acquisition of 

vibration data. The data collection process is orchestrated through the utilization of 

the ESP32 microcontroller. This microcontroller establishes a seamless connection 

with the Raspberry Pi 3, functioning as the pivotal server in the communication 

network bridging the ESP32 with the cloud. Within this architecture, the Raspberry Pi 

3 assumes the role of an intermediary, facilitating the bidirectional exchange of data 

between the ESP32 and the cloud infrastructure. 

The collected data is systematically channelled into a MySQL database, configured 

to accommodate the storage of expansive datasets. This database, designed with the 

capability to export data efficiently, serves as a repository for the amassed vibration 

data. The structured data export functionality ensures accessibility and convenience in 

retrieving datasets for subsequent analysis and utilization. 
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3.3.1 Flowchart of Program Code of ESP32 

 

Figure 3.3 Program code of ESP32 microcontroller 
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First, all the variables, WiFi and MQTT server IP address, were declared. After that, 

the IMU was tested first. If IMU is not functioning, it will loop back until the IMU is 

successfully detected or functions. After that, WiFi and MQTT client servers were set 

up to build the WiFi and MQTT connection between Raspberry Pi and the module 

itself.  

For the following step, the accelerometer was calibrated by using the average 

method. At the calibration phase, it will return a mean value that will be subtracted 

from the instantaneous reading afterwards. Next, the MQTT connection was 

connected. If the MQTT fails to connect, the green LED will turn off, and the system 

will try to reconnect after 5 seconds. This process will keep looping until the MQTT 

is connected.  

When MQTT is successfully connected, the green LED will turn on as an indicator 

for the user. The system will then run for a 100ms delay. The millis() function was 

used in this system instead of delay(). After a 100ms delay, the module will obtain the 

acceleration and temperature value and go through a data process such as subtracting 

calibration value and changing from float type variable into string type variable. The 

string type variable was a better variable type to be sent with the MQTT protocol. The 

data will keep sending until the module is powered off. If the module keeps powering, 

the sensor will continue to obtain the acceleration and temperature data. 
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3.3.2 Flowchart of Node-RED Flow 

 

Figure 3.4 Node-RED flow design 

The successful development of Node-RED is evident in its seamless execution of 

expected functions, as depicted in Figure 4.3. Within this Node-RED flow, data 

acquisition is facilitated through the MQTT node, serving as the initial ingress point 

for the raw vibration data in terms of acceleration. Subsequently, this data is 

dynamically plotted onto the user interface in real time, providing a live visualization 

of the ongoing vibrations. 
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Following the real-time plotting, a filtering mechanism is implemented on the 

acquired data, refining it to 1000 datapoints. This filtering process serves to eliminate 

extremities, enhancing the clarity and interpretability of the real-time data, thereby 

affording more nuanced insights. 

Simultaneously, the raw vibration data undergoes real-time computation for Fast 

Fourier Transform (FFT). The resultant frequency domain information is extracted 

and promptly displayed on the user interface. This dual visualization of time and 

frequency domains provides a comprehensive understanding of the vibration 

characteristics. 

Concurrently, a data storage procedure is executed, with the collected data 

seamlessly integrated into a MySQL database. The stored dataset encompasses x, y, 

and z-axis data, along with FFT data from all three axes. This integrated approach not 

only facilitates real-time analysis but also ensures a comprehensive archival of 

relevant vibration data for subsequent in-depth examinations. 

 

3.4 Build Deep Learning Model 

Within this subsection, a comprehensive elucidation of the deep learning model 

construction process is provided. The focal deep learning model employed in this 

undertaking is the LSTM autoencoder, specifically designed for anomaly detection. 

The entire spectrum of data preprocessing and model development transpired utilizing 

the Python programming language within the Jupyter notebook environment. 

The orchestration of data preprocessing encompasses a series of intricate steps 

aimed at refining and organizing the input data for optimal utilization within the 
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LSTM autoencoder architecture. Subsequently, the Python programming language, 

along with the Jupyter notebook interface, was instrumental in executing the intricate 

process of model creation. The LSTM autoencoder model, a key component of this 

project, was meticulously fashioned to discern anomalies within the acquired vibration 

data, underscoring its pivotal role in the overarching objective of anomaly detection. 

3.4.1 Data Preprocessing 

 

Figure 3.5 Flow of data preprocessing 
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In the realm of data preprocessing, the initial step involves retrieving data from the 

wireless vibration monitoring system, where the data is stored in a MySQL database. 

Following this retrieval, a meticulous selection process is undertaken, culminating in 

the exportation of the data in the form of a .csv file. After this exportation, a critical 

phase of data cleaning transpires, wherein instances of NaN (indicating unknown 

values) are systematically expunged. 

The data is then subjected to a restructuring process involving the segmentation of 

data into windows of 100 datapoints, with a singular mean value encapsulating each 

window. This deliberate reduction in datapoints to a scale of 100 serves a dual 

purpose: enhancing the efficiency of the subsequent training process by expediting 

data processing and ensuring the model's resilience to noise. The dataset undergoes 

further transformation through the application of the. reshape function, resulting in a 

structured format of (datapoints, timestamps, features). 

Following this preparatory phase, the dataset is demarcated into distinct training 

and testing subsets. This demarcation is a pivotal precursor to the input phase for the 

LSTM autoencoder, facilitating the robust training and subsequent evaluation of the 

model's performance. 
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3.4.2 LSTM Autoencoder Model for Anomaly Detection 

 

Figure 3.6 Flow of LSTM autoencoder model for anomaly detection 

Within the framework of this project, the acceleration data underwent training 

using the LSTM autoencoder model. Commencing with the importation of data, a 

meticulous data preprocessing phase ensued, optimizing the dataset for subsequent 

utilization. Following this preparatory step, the model underwent training and testing, 

leveraging dedicated train and test datasets. The training process culminated in the 

establishment of an anomaly threshold, a critical parameter for discerning abnormal 

situations within the vibration data. 
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Armed with the acquired threshold value, the model adeptly identifies anomaly 

conditions during operational use. Specifically, when the Mean Absolute Error (MAE) 

surpasses the predefined threshold, it signifies an anomaly situation in the vibration 

data. Conversely, if the MAE falls below the established threshold, the model 

categorizes the condition as normal. This systematic classification mechanism 

underscores the model's proficiency in distinguishing between normal and anomalous 

states based on the threshold criterion. 
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3.5 Components   

This subsection provides a comprehensive clarification of the components 

employed in the design of the wireless vibration monitoring system. The constituent 

elements of this system encompass the Hibiscus ESP32 microcontroller, Raspberry Pi 

3, resistors, and Light Emitting Diodes (LEDs). Each component plays a pivotal role 

in the overall architecture and functionality of the monitoring system. 

 

3.5.1  Hibiscus ESP32 

The Hibiscus ESP32 is an Internet of Things (IoT) development board powered by 

the dual-core ESP32 microcontroller, embedded with three sensors (APDS9960, 

BME280 & MPU6050) and two actuators. This module also comes with WiFi and 

Bluetooth connectivity. The MPU6050 sensor is a 6 Degree of Freedom (DoF) IMU 

(Inertial Measurement Unit) which consists of an accelerometer and gyroscope. The 

temperature sensor is also embedded on MPU6050. It can sense acceleration in 3-axis, 

which is X, Y and Z. Arduino IDE software can be used to program this module. 

Similary, the green LED is connected to pin 4 of this module. 

 

Figure 3.7 Pinout of Hibiscus ESP32 
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Figure 3.8 Sensors MPU6050 embedded on ESP32 module 

  

3.5.2  Raspberry Pi 3 

The Raspberry Pi 3 is equipped with a quad-core 64-bit Broadcom BCM2837 ARM 

Cortex-A53 SoC processor running at 1.2 GHz. It is one type of small single-board 

computer (SBCs) that comes with WiFi and Bluetooth connectivity. Therefore, it can 

be used for the Internet of Thing (IoT) application. In this project, the Raspberry Pi 3 

acts as a broker to communicate with Arduino Nano RP2040, Hibiscus ESP 32 and 

laptop simultaneously.  

 

Figure 3.9 Raspberry Pi 3 
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3.5.3  Resistor 

Resistor is a passive two-terminal electrical component that reduces the electric 

current. The ability of resistor to reduce the current is known as resistance and is 

shown in units of ohms (symbol: Ω). In this system, a 220Ω resistor is connected in 

before the green LED to prevent excess current flows which can burn out the LED.  

  

3.5.4  Light Emitting Diode (LED) 

The “Light Emitting Diode”, known as LED is a specialised type of diode as they 

have similar electrical characteristics to a PN junction diode. It will pass current in 

forward bias direction but block the flow of current in the reverse bias direction. LED 

function as converting electrical energy into light. In this project, one green LEDs are 

used for each sensor module to indicate the MQTT connection. 
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3.6 Autoencoder Model 

This subsection delves into the theoretical underpinnings and pertinent knowledge 

associated with the LSTM autoencoder. The initial section provides an elucidation of 

the autoencoder architecture incorporating Long Short-Term Memory (LSTM) 

components. Subsequently, a detailed exploration ensues regarding the design and 

equations governing the LSTM cell, shedding light on the intricate mechanisms that 

contribute to its efficacy in capturing temporal dependencies. 

The autoencoder, when employing LSTM, is structured to encode input data into a 

latent space representation, and subsequently decode it back to the original form. This 

iterative process facilitates the extraction and retention of essential temporal features 

inherent in sequential data, making it particularly adept for applications such as 

anomaly detection. 

Within the LSTM cell design, a comprehensive exposition is provided, 

encompassing the inherent gates and memory cells. The equations governing the 

LSTM cell elucidate the intricate interactions within the network, contributing to its 

capacity for capturing long-term dependencies and mitigating issues like vanishing 

gradients encountered in conventional recurrent neural networks. 

In the final segment, attention is directed towards the choice of the Mean Absolute 

Error (MAE) as the loss function for model performance analysis. This metric, known 

for its robustness and interpretability, quantifies the disparity between predicted and 

actual values, serving as a pivotal gauge for the model's fidelity in capturing the 

nuances of the input data. 
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3.6.1 Framework Overview 

 

Figure 3.10 LSTM based Autoencoder model 

The fault diagnosis methodology employed in this project is grounded in the 

synergistic application of LSTM and AE architectures. As depicted in Fig. 3.10, the 

AE comprises an encoder and a decoder, enveloping the input sequence and its 

corresponding reconstructed sequence. Positioned centrally is a bottleneck, 

strategically situated between the encoder and decoder components. Introducing 

LSTM layers between the encoder and decoder fortifies the model's capability to distill 

salient features from the input data. 

The incorporation of LSTM layers facilitates the extraction of pivotal features by 

dynamically adjusting weight allocations. This adaptive learning process significantly 

enhances the efficacy of fault diagnosis. The distinctive advantage of this training 

paradigm lies in its ability to discern and extract key features essential for the accurate 

reconstruction of the raw vibration signal. Consequently, this feature extraction 

mechanism proves instrumental in distinguishing between normal and abnormal 

conditions in rotary parts, thereby optimizing the fault diagnosis efficacy within the 

proposed framework. 
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3.6.2 LSTM Cell 

 

Figure 3.11 LSTM cell 

LSTM is a great architecture for learning the characteristics of time-series data by 

comparing to RNN. LSTM model was first proposed by Ma et al. [31]. In the 

conventional neural network framework, there existed interconnections among nodes 

spanning adjacent layers, with no connections established within the same layer. 

Nevertheless, when dealing with time-series data, the correlation among the data 

points tends to be robust. Consequently, the conventional neural network architecture 

proves less adept at efficiently capturing the data's features in the context of time-

series information, primarily due to the absence of connections among nodes within 

each layer.  

LSTM addresses the issue inherent in the RNN model, wherein there is a propensity 

to forget past information. During the feature extraction process using nonlinear 

transformations, the input data in RNN tends to undergo substantial changes. Fig. 3.11 

shows the structure of the LSTM cell. 
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A crucial aspect of the LSTM model design involves the incorporation of the cell 

state, forget gate, input gate, and output gate structures. The operational principles and 

specific calculation processes for these gate structures are elaborated upon in the 

following detailed description. 

3.6.2.1 Forget Gate 

The LSTM network merges the hidden layer ℎ𝑡𝑡−1 and the input 𝑥𝑥𝑡𝑡 to form 

[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡]. The vector 𝑓𝑓𝑡𝑡 is then computed to determine which information should be 

"forgotten" from the cell state 𝐶𝐶𝑡𝑡−1at time 𝑡𝑡 − 1. The forget gate's control function is 

responsible for this calculation as shown in equation (2). 

𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑓𝑓 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓� (2) 

Where, 

𝜎𝜎 =  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑠𝑠𝑠𝑠𝑓𝑓 

𝑊𝑊𝑓𝑓 = 𝑤𝑤𝑒𝑒𝑠𝑠𝑠𝑠ℎ𝑡𝑡 𝑣𝑣𝑒𝑒𝑓𝑓𝑡𝑡𝑠𝑠𝑣𝑣 𝑠𝑠𝑓𝑓 𝑓𝑓𝑠𝑠𝑣𝑣𝑠𝑠𝑒𝑒𝑡𝑡 𝑠𝑠𝑎𝑎𝑡𝑡𝑒𝑒 

𝑏𝑏𝑓𝑓 = 𝑠𝑠𝑓𝑓𝑓𝑓𝑠𝑠𝑒𝑒𝑡𝑡 𝑣𝑣𝑎𝑎𝑣𝑣𝑓𝑓𝑒𝑒 𝑠𝑠𝑓𝑓 𝑓𝑓𝑠𝑠𝑣𝑣𝑠𝑠𝑒𝑒𝑡𝑡 𝑠𝑠𝑎𝑎𝑡𝑡𝑒𝑒 

3.6.2.2 Input Gate 

The input gate computes the cell state 𝐶𝐶𝑡𝑡�  to be input, considering the input 

information [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡]. Simultaneously, it calculates the vector it to govern which 

information will be incorporated into the cell state 𝐶𝐶𝑡𝑡� . The control function of the input 

gate is responsible for managing this process is shown in equation (3) and (4). 

𝐶𝐶𝑡𝑡� = tanh(𝑊𝑊𝑐𝑐  ∙  [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] +  𝑏𝑏𝑐𝑐) (3) 



45 

 

𝑠𝑠𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) (4) 

Where, 

𝐶𝐶𝑡𝑡� = 𝑓𝑓𝑒𝑒𝑣𝑣𝑣𝑣 𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡𝑒𝑒 𝑣𝑣𝑎𝑎𝑣𝑣𝑓𝑓𝑒𝑒 𝑡𝑡𝑠𝑠 𝑏𝑏𝑒𝑒 𝑠𝑠𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝑓𝑓𝑣𝑣𝑠𝑠𝑠𝑠 𝑓𝑓𝑒𝑒𝑤𝑤 𝑠𝑠𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 

𝑊𝑊𝑐𝑐 = 𝑡𝑡ℎ𝑒𝑒 𝑓𝑓𝑖𝑖𝑠𝑠𝑎𝑎𝑡𝑡𝑒𝑒𝑠𝑠 𝑤𝑤𝑒𝑒𝑠𝑠𝑠𝑠ℎ𝑡𝑡 𝑠𝑠𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑓𝑓𝑒𝑒𝑣𝑣𝑣𝑣 𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡𝑒𝑒 

𝑏𝑏𝑐𝑐 = 𝑡𝑡ℎ𝑒𝑒 𝑓𝑓𝑒𝑒𝑣𝑣𝑣𝑣 𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡𝑒𝑒 𝑏𝑏𝑠𝑠𝑎𝑎𝑠𝑠 𝑣𝑣𝑎𝑎𝑣𝑣𝑓𝑓𝑒𝑒 

tanh = ℎ𝑦𝑦𝑖𝑖𝑒𝑒𝑣𝑣𝑏𝑏𝑠𝑠𝑣𝑣𝑠𝑠𝑓𝑓 𝑡𝑡𝑎𝑎𝑓𝑓𝑠𝑠𝑒𝑒𝑓𝑓𝑡𝑡 𝑎𝑎𝑓𝑓𝑡𝑡𝑠𝑠𝑣𝑣𝑎𝑎𝑡𝑡𝑠𝑠𝑠𝑠𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑠𝑠𝑠𝑠𝑓𝑓 

𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑓𝑓𝑡𝑡𝑖𝑖𝑓𝑓𝑡𝑡 𝑣𝑣𝑒𝑒𝑓𝑓𝑡𝑡𝑠𝑠𝑣𝑣 

𝑊𝑊𝑖𝑖 = 𝑤𝑤𝑒𝑒𝑠𝑠𝑠𝑠ℎ𝑡𝑡 𝑠𝑠𝑎𝑎𝑡𝑡𝑣𝑣𝑠𝑠𝑥𝑥 

𝑏𝑏𝑖𝑖 = 𝑏𝑏𝑠𝑠𝑎𝑎𝑠𝑠 𝑣𝑣𝑎𝑎𝑣𝑣𝑓𝑓𝑒𝑒 𝑠𝑠𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡 𝑠𝑠𝑎𝑎𝑡𝑡𝑒𝑒 

3.6.2.3 Cell Status 

The update of the cell state is determined at time 𝑡𝑡 − 1. Following the computation 

of the forget gate ft and the determination of information 𝐶𝐶𝑡𝑡−1 to be forgotten, the cell 

state 𝐶𝐶𝑡𝑡�  is generated based on the data at time 𝑡𝑡. Utilizing the calculation results of the 

input gate it, a decision is made to ascertain which information can be input. The 

update function of the cell state 𝐶𝐶𝑡𝑡 at time t is then carried out as in equation (5). 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 × 𝐶𝐶𝑡𝑡−1 + 𝑠𝑠𝑡𝑡 × 𝐶𝐶𝑡𝑡�  (5) 

 

3.6.2.4 Output Gate 

The output result ot of the LSTM model is computed through the "output gate." 

Subsequently, the cell state Ct at time t determines the information within the output 

model that is ultimately exported, leading to the final output model result, ht. The 

control function of the output gate is shown in equation (6) and (7). 
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𝑠𝑠𝑡𝑡 =  𝜎𝜎(𝑊𝑊𝑜𝑜  ∙  [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] +  𝑏𝑏𝑜𝑜) (6) 

ℎ𝑡𝑡 =  𝑠𝑠𝑡𝑡  × tanh(𝐶𝐶𝑡𝑡) (7) 

Where, 

𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑓𝑓𝑡𝑡𝑖𝑖𝑓𝑓𝑡𝑡 𝑣𝑣𝑒𝑒𝑓𝑓𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠 

𝑊𝑊𝑜𝑜 = 𝑤𝑤𝑒𝑒𝑠𝑠𝑠𝑠ℎ𝑡𝑡 𝑣𝑣𝑒𝑒𝑓𝑓𝑡𝑡𝑠𝑠𝑣𝑣𝑠𝑠 

𝑏𝑏𝑜𝑜 = 𝑠𝑠𝑓𝑓𝑓𝑓𝑠𝑠𝑒𝑒𝑡𝑡 𝑣𝑣𝑎𝑎𝑣𝑣𝑓𝑓𝑒𝑒𝑠𝑠 

ℎ𝑡𝑡 = 𝑠𝑠𝑓𝑓𝑡𝑡𝑖𝑖𝑓𝑓𝑡𝑡 𝑣𝑣𝑎𝑎𝑣𝑣𝑓𝑓𝑒𝑒 𝑠𝑠𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑣𝑣 𝑎𝑎𝑡𝑡 𝑡𝑡𝑠𝑠𝑠𝑠𝑒𝑒 𝑡𝑡 

3.6.3 Loss function (MSE) 

In this model, the loss function chosen for model training is Mean Absolute Error 

(MAE). The MAE is a metric used to measure the average absolute differences 

between predicted values and actual values in a regression problem. In the context of 

neural network models, which are often employed for regression tasks, the MAE 

calculates the average absolute discrepancies between the predicted and true values 

for each data point in the dataset. Mathematically, it is computed as the mean of the 

absolute differences between the predicted and actual values. Unlike other regression 

loss functions such as Mean Squared Error (MSE), MAE is less sensitive to outliers, 

making it a robust choice when the dataset may contain noisy or extreme values. In 

essence, the MAE provides a straightforward and interpretable measure of the average 

prediction error, making it a suitable choice for regression problems where the 

emphasis is on minimizing the absolute differences between predicted and actual 

values. The equation of MAE is shown in equation (8). 

𝐿𝐿𝐴𝐴𝑀𝑀 =
∑ |𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖|𝑛𝑛
𝑖𝑖=1

𝑓𝑓
(8) 
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𝐿𝐿𝐴𝐴𝑀𝑀 = 𝑠𝑠𝑒𝑒𝑎𝑎𝑓𝑓 𝑎𝑎𝑏𝑏𝑠𝑠𝑠𝑠𝑣𝑣𝑓𝑓𝑡𝑡𝑒𝑒 𝑒𝑒𝑣𝑣𝑣𝑣𝑠𝑠𝑣𝑣 

𝑦𝑦𝑖𝑖 = 𝑖𝑖𝑣𝑣𝑒𝑒𝑠𝑠𝑠𝑠𝑓𝑓𝑡𝑡𝑠𝑠𝑠𝑠𝑓𝑓 

𝑥𝑥𝑖𝑖 = 𝑡𝑡𝑣𝑣𝑓𝑓𝑒𝑒 𝑣𝑣𝑎𝑎𝑣𝑣𝑓𝑓𝑒𝑒 

𝑓𝑓 = 𝑡𝑡𝑠𝑠𝑡𝑡𝑎𝑎𝑣𝑣 𝑓𝑓𝑓𝑓𝑠𝑠𝑏𝑏𝑒𝑒𝑣𝑣 𝑠𝑠𝑓𝑓 𝑠𝑠𝑎𝑎𝑡𝑡𝑎𝑎 𝑖𝑖𝑠𝑠𝑠𝑠𝑓𝑓𝑡𝑡𝑠𝑠 

  

3.7 Gear Test Experiments 

Within this subsection, the collection of acceleration data is meticulously detailed, 

alongside insights into the design and testing apparatus. The testbed, tailored to 

simulate both normal and abnormal load conditions, encompasses essential 

components essential for a comprehensive analysis. The constituent elements of the 

testbed include a water pump motor, pillow blocks, shaft, coupling, plungers, and the 

load itself. To ensure stability and precision during simulations, all components are 

securely affixed to a flat wooden tile. 

3.7.1 Components of Testbed 

In designing the testbed, several essential components are required, including: 

• Water pump motor (APM37) 

• Pillow block bearing UCP201 

• Aluminium shaft 30cm 

• Aluminium coupler 

• Flange motor shaft coupling 12mm 

• Disc plate 
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3.7.2 Testbed Design 

 

Figure 3.12 AutoCAD drawing for testbed design 

Prior to the construction of the testbed, meticulous measurements were conducted 

to ascertain the precise distances between individual components, ensuring their 

accurate placement within the designated configuration. This preliminary step, critical 

for the structural integrity and functionality of the testbed, serves to prevent any 

deviations from the intended design. 

In the creation of the AutoCAD design, a meticulous process unfolded, wherein the 

dimensions of each component were measured with precision using rulers and 

measuring tape. This comprehensive measurement regime facilitated the accurate 

representation of the testbed in the AutoCAD software. The top view of the AutoCAD 

design as shown in Fig. 3.12, incorporating the measured dimensions, provided a clear 

and detailed illustration of the component lengths and the spatial arrangement within 

the designated area. 
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By incorporating these meticulous measurements and AutoCAD design protocols, 

the construction process was not only streamlined but also guaranteed the adherence 

to the intended specifications. This approach ensures that the components remain 

securely in place, fulfilling their roles effectively within the overall framework of the 

testbed design. 

 

Figure 3.13 Testbed design 

Fig.3.13 shows the testbed that had been constructed. The water pump motor 

(APM37) serves as the primary source of mechanical energy, initiating the rotational 

motion within the system. Pillow blocks and shafts contribute to the structural integrity 

and alignment of the system, while the coupling facilitates the transfer of energy 
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between components. Flanges serve a pivotal role in securing the disc plate in a stable 

position within the assembly. Illustrated in Fig. 3.15, the disc plate incorporates a 

design comprising 8 bolts and nuts strategically positioned on the middle ring. These 

bolts and nuts collectively act as the counterweight for the disc plate, influencing its 

dynamic behavior within the system. Central to the disc plate is a 12mm diameter 

aperture, designed to accommodate the installation of a 12mm diameter aluminum 

shaft. 

 

Figure 3.14 Hibiscus ESP32 accelerometer 

Facilitating further structural integrity, four holes with a diameter of 3mm each are 

strategically positioned around the central aperture. These holes play a crucial role by 

providing anchor points for bolts and nuts, facilitating the secure attachment of the 

disc plate to the flanges. This meticulous arrangement ensures the robust connection 

between the disc plate and flanges, emphasizing the importance of precision 

engineering to uphold the stability and functionality of the overall system. 
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The meticulous fixation of all components onto a flat wooden tile serves a dual 

purpose: providing substantial weight for stability during simulations and ensuring a 

consistent platform for accurate data collection. This systematically designed testbed 

stands as a reliable foundation for the simulation of normal and abnormal load 

conditions, facilitating the acquisition of pertinent acceleration data essential for the 

project's objectives. 

 

Figure 3.15 Disc plate used in testbed 
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3.7.3 Experiment Setup 

The data collection was done with the experiment setup. This experiment setup able 

to obtain different type of dataset for analysis. The experiment had been list down in 

Table 3.1. 

Table 3.1: Experiment setup with different conditions 

Experiment Conditions Speed(rpm) Data collected 

1 No shaft and no load 2900 Acceleration (𝑠𝑠/𝑠𝑠2) 

2 Shaft only 2900 Acceleration (𝑠𝑠/𝑠𝑠2) 

3 Balanced load 2900 Acceleration (𝑠𝑠/𝑠𝑠2) 

4 Unbalanced load 2900 Acceleration (𝑠𝑠/𝑠𝑠2) 

 

The first experiment collected the data from the motor purely without any 

attachment to it. It helps to understand the conditions and operating frequency of the 

motor. Next, the second experiment acts as the control for the testbed design. The 

second experiment was carried out with shaft attached on the motor shaft, but without 

the load. For the third and fourth experiment, the load was attached to the shaft. The 

difference between both experiments was the weight distribution of the disc plate. For 

the balanced load, the 8 holes of the disc plate were screwed with 8 bolts and nuts as 

shown in Figure 3.15. Meanwhile the unbalanced load condition, the 8 holes of the 

disc plate were partially screwed up, remain 4 holes empty as shown in Figure 3.16. 
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Figure 3.16 Balanced load condition of the testbed 

 

Figure 3.17 Unbalanced load condition of the testbed 
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For the collected data, the pure motor vibrations are used as validation purpose. 

Same goes to the data on second experiment. For the third and forth data, the data was 

collected and preprocess to be model training. Where the balanced load as the train 

dataset and the unbalanced load act as the test dataset. 

In Figure 3.18, the acceleration data for the balanced condition is depicted, 

showcasing a rhythmic oscillation within the range of 7 to -7 m/s². In contrast, Figure 

3.19 illustrates the acceleration data for the unbalanced condition, where the 

oscillation amplitude expands, fluctuating between 15 and -15 m/s². The unbalanced 

condition exhibits more vigorous vibrations, and the magnitude of the vibration is 

notably less stable. 

Within the unbalanced condition, distinct spikes are observable at datapoints 

312000 and 329000. These spikes exhibit significantly larger magnitudes compared 

to the relatively stable oscillations between datapoints 314000 and 328000. Following 

the occurrence of the second spike, the vibration becomes increasingly unstable, 

characterized by larger magnitudes and erratic behavior. 

These visualizations provide a clear representation of the differing vibrational 

characteristics between the balanced and unbalanced conditions, aiding in the 

identification of anomalies and further emphasizing the significance of effective 

anomaly detection in this dynamic system. 
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Figure 3.18 Acceleration Data of Balanced Condition 

 

Figure 3.19 Acceleration Data of Unbalanced Condition



 

 

 

CHAPTER 4  

RESULTS AND DISCUSSION 

In this chapter, it will shows the result obtained that have been achieved throughout 

this project. Besides, it will also discuss about the result of the project based on testing 

of the finished project. 
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4.1 Calibration 

 

Figure 4.1 Acceleration data before calibration (value1 = x, value2 = y, value3 = z) 

 

Figure 4.2 Acceleration data after calibration (value1 = x, value2 = y, value3 = z) 

Every sensor has its offset and internal noise in the electronic world. With the offset 

presented on data, the measured data will fluctuate by the offset and cause the data to 

become unreliable. When the accelerometer MPU6050 embedded in ESP32 is turned 

on, the raw output of the acceleration is shown in Figure 4.1. The data showed the z-

axis with nearly 0.8 offsets, the y-axis with close to 0 offsets and the z-axis with 0.4 

offsets. If these offsets are not removed by calibration, the acceleration obtained has 
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been included with these offsets. It makes the value becomes higher and more 

inaccurate. Hence, it is crucial to carry out the sensor calibration for the accelerometer 

to obtain accurate acceleration data.  

The calibration is done by using the average method. When the module is set up, it 

will read 2000 samples and cumulatively add up all the measured values. After that, 

the cumulative value will be divided by 2000 to obtain the mean of the offset value. 

In this stage, the sensor will run calibration for 2 seconds. At the same time, the sensor 

also needs to be in a steady state, without any vibration, to obtain the accurate average 

value. The mean value is also called as calibrate value. Next, this value is subtracted 

from the acceleration data to get an accurate acceleration measurement. The calibrated 

data for the three axes had shown in Figure 4.2. It can be observed that the value of 

the three axes in the steady state had dropped to the range of 0.03 to -0.03, which is 

significantly low compared to the original offset. 

4.2 Node-RED 

Node-RED is an open-source flow-based development platform designed for visual 

programming of Internet of Things (IoT) and automation tasks. Developed by IBM 

Emerging Technology and later contributed to the open-source community, Node-

RED simplifies the creation of applications by allowing users to wire together devices, 

APIs, and online services in a graphical interface. The platform utilizes a browser-

based flow editor that enables users to drag and drop nodes, representing various 

functions or devices, and connect them to define the workflow. With a vast library of 

pre-built nodes and support for numerous protocols, Node-RED facilitates rapid 

development and deployment of IoT applications, making it an accessible tool for both 

beginners and experienced developers seeking a seamless and intuitive approach to 
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IoT and automation projects. In the subsection below will shows the code developed 

in this project and the user interface of the Node-RED. 

 

4.2.1 Node-RED User Interface design 

 

Figure 4.3 User Interface of Node-RED 

As the data seamlessly traverses the designated flow, a user-friendly dashboard is 

generated and conveniently accessed by navigating to the designated website 

[http://Your_RPi_IP_address:1880/ui]. The structured dashboard, exemplified in 
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Figure 4.3, serves as an intuitive interface for users to monitor and analyze the real-

time vibration data. 

The left-hand section of the dashboard provides a comprehensive display of the 

real-time vibration data across three axes (x, y, z). This graphical representation 

facilitates a quick and dynamic assessment of the ongoing vibrational patterns, 

allowing for immediate insights into the system's behavior. 

On the right-hand side of the dashboard, the frequency domain of the vibration 

signal is showcased. This visual representation contributes to a more nuanced 

understanding of the vibrational characteristics, offering insights into the various 

frequencies present in the acquired data. 

The accessibility and clarity of this dashboard enhances the user experience, 

providing a centralized platform for real-time monitoring and analysis of the vibration 

data. 
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4.3 MySQL Database 

 

Figure 4.4 MySQL database 

After the data collection from the Node-RED, the data will stored in the MySQL 

database. The database was saved locally and can be accessed using phpMyAdmin, 

which supports HTML (website). In the MySQL database user interface as shown in 

Figure 4.4, the vibration data was saved in database [acceleration] with three different 

table named [accex, accey, accez]. 
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4.4 Data Preprocessing  

 

Figure 4.5 Data after preprocessing (balanced data) 

Before initiating the model training process, a meticulous data preprocessing stage 

was executed, as illustrated in Figure 4.5. The top segment of the figure provides a 

visual representation of the preprocessed mean values of the z-axis acceleration data, 

whereas the bottom segment elucidates the frequency domain of the preprocessed data. 

In the context of model training, the z-axis data was specifically chosen for its 

heightened reliability in capturing vibrations. This choice is attributed to the favorable 

orientation of the sensor in relation to the system dynamics. In the depicted figure, the 

balanced data exhibits a consistent vibration pattern, with values falling between 3 and 

-2. Notably, the major frequency component of the motor vibration is observed at 

100Hz. 
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Figure 4.6 Data after preprocessing (unbalanced data) 

The aftermath of preprocessing the unbalanced data is vividly depicted in Figure 

4.6. The graph exhibits a notable escalation in the magnitude of acceleration, ranging 

from approximately 7 to -6, indicative of pronounced and unstable vibrations. Notably, 

at datapoints 20 and 270, discernible shifts in the vibration signal are evident, 

underscoring the dynamic nature of the system under unbalanced conditions. 

Furthermore, an observable shift in the frequency of the system is discerned, with 

the dominant frequency gravitating towards 250Hz. This alteration in the frequency 

profile aligns with the expected behavior of the system when subjected to unbalanced 

conditions. The comprehensive insights derived from this representation facilitate a 

nuanced understanding of the vibrational characteristics under unbalanced scenarios, 

laying the groundwork for effective anomaly detection in subsequent stages of the 
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4.5 Autoencoder Model 

The AE can learn the features of the data. With the combination of the LSTM layer, 

it can extract the important information carried by time series data. A LSTM AE model 

was developed with 2 layering of LSTM on encoder, with one bottleneck and 2 

layering of LSTM on decoder. The model is shown in Figure 4.7. The input layer 

consists of shape of (none, 1, 1) where the none is the data input, with 1 timestamp 

and 1 feature to be learned. For the first layer, it consists of 16 neurons of LSTM cell 

followed by 4 neurons on the second layer. The repeat vector acts as the bottleneck 

and passes the encoded information to decoder. The decoder will reconstruct the signal 

back and make predictions with the input data received. The decoder also consists of 

two layer which consists of 4 neurons and 16 neurons.  

 

Figure 4.7 AE model 
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After the model train, the training had set to 100 epochs which take around 6ms per 

epoch. The model loses performance during training as shown in Figure 4.8. At the 

epoch 0 to 10, the model loss gradually decreased and around 20 epochs onward, the 

model loss floated around 0 and reach steady nearly to 0 at 100 epochs. 

 

Figure 4.8 AE model loss respect to epoch times 

 

Figure 4.9 Loss distribution during training 

After the model train, the loss distribution can be histogram can be plotted to 

understand more insight of the model. The loss distribution histogram is shown Figure 
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4.9. From Figure 4.9, the maximum loss distribution of the model train using the 

balanced data falls around 0.05. Most of the loss falls in 0.003. From this loss 

distribution, the threshold value for the AE model for identifying anomaly can be 

obtained and assigned as 0.06. 

 

Figure 4.10 Loss MAE of training dataset 

 

Figure 4.11 Loss MAE of test dataset 
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Figure 4.12 Loss MAE of train test dataset 

After obtaining the threshold value, the threshold line can be plotted into the model 

loss refer to the train and test data. In Figure 4.10, it shows loss MAE of the train 

dataset falls under the threshold line, which the condition is flagged as normal 

condition. When the test data is fed to the LSTM AE model, the model loss had 

exceeded the threshold line as shown in Figure 4.11. With the test data, the unbalanced 

dataset, the anomaly can be flagged out using the threshold line. By concatenating the 

train and test, the result can be shown more clearly that the balanced dataset is falls 

under the threshold line while the unbalanced dataset had exceeded the threshold line 

as shown in Figure 4.12. 
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Table 4.1: Comparison between different parameters of AE model 

 

For the next step, the evaluation of the model’s performance is carried out. The 

LSTM AE had been designed using different parameters. As shown in Table 4.1, the 

neurons for the encoder and decoder were manipulated with the scale of 4. All models 

had been trained with similar dataset. The best model among the three models are the 

LSTM AE with the number of LSTM neurons of 8 on layer 1 and layer 5, and number 

of LSTM neurons of 2 on layer 2 and layer 4. The lowest loss obtained was 0.0017 

with validation loss of 0.0006. The MSE falls on 0.0017 and the RMSE of this model 

is 0.0414. 

Consequently, a detailed comparison between the CNN AE model and the LSTM 

AE model was conducted. The train and test datasets were obtained using the same 

dataset and underwent similar steps in the data preprocessing phase. The architectural 

components of the CNN AE model, namely the encoder and decoder, are visually 

represented in Figure 4.13. 

Upon training the CNN model, the progression of the training loss was plotted, 

revealing insightful patterns, as depicted in Figure 4.14. The initial training loss 

commences at 0.19 and undergoes a gradual decrease to 0.11. However, as the epochs 
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progress, the training loss exhibits fluctuations, ultimately settling at 0.11 towards the 

conclusion of the training process. 

Notably, the validation loss of the CNN AE model displays a more dynamic pattern 

compared to the LSTM AE model. The validation loss experiences pronounced 

fluctuations, ranging from 0.35 to 0.03 throughout the entire training period. This 

dynamic behavior in the validation loss underscores the intricacies and challenges 

associated with training the CNN AE model, revealing nuances in its performance 

compared to the LSTM AE model. 

 

Figure 4.13 CNN model 
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Figure 4.14 CNN model loss respect to epoch times 

Moreover, the loss distribution graph has been meticulously plotted, incorporating 

the train, test, and anomaly datasets, as depicted in Figure 4.15. The graph illustrates 

the distribution of losses, with the train data showcasing a predominant concentration 

between 0.05 and gradually tapering off to 0 at the 0.4 loss mark. However, a notable 

observation is the reflection of losses towards the 0.8 mark, indicative of certain 

intricacies in the model's learning process. 

Notably, when the anomaly dataset is introduced to the model, the loss distribution 

surpasses the threshold line, effectively flagging anomalies. This capability 

underscores the model's efficacy in identifying and isolating anomalous patterns 

within the data. 

In comparison to the LSTM AE encoder, the train data does not exceed the 

threshold value, ensuring that balanced data remains unflagged as anomalies. 
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Additionally, the training loss for the LSTM AE model is notably lower at 0.0017 in 

contrast to the CNN AE model, underscoring differences in the performance and 

training characteristics of the two architectures. 

 

Figure 4.15 Loss distribution of training 

 

 



 

 

 

CHAPTER 5  

CONCLUSION AND FUTURE WORKS 

This chapter will describe the conclusion and recommendation for the wireless 

vibration monitoring system for predictive maintenance. This section includes project 

summary, project finding and further recommendation to improve the project. 

5.1 Conclusion 

As a conclusion, a LSTM AE deep learning model had been successfully developed 

to analysis the vibration signal for the predictive maintenance. The proposed method 

can identify the potential anomaly of the motor, bearing or any vibration materials. 

With the help of the LSTM model, the fault can be immediately addressed and 

scheduled for potential fault before the machine or components run to failure.   

This project holds significance across various industries with machinery containing 

rotating components. By facilitating the timely identification of anomalies in 
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machinery, it enables efficient maintenance scheduling, thereby reducing costs 

associated with repairs or the replacement of faulty units. 

Utilizing vibration analysis through deep learning, our predictive maintenance 

approach mitigates significant losses resulting from machine failures and associated 

downtime. This not only aligns with Sustainable Development Goal 8 (SDG8) by 

promoting sustained economic growth but also contributes to SDG9 by enhancing the 

reliability of system components through the identification of vibration anomalies. 

The primary goal of the project was to design wireless vibration monitoring system. 

The wireless monitoring system had been successfully developed using Hibiscus 

ESP32, Raspberry Pi 3 and the platform Node-RED with the database platform, 

MySQL. Apart from that, a deep learning-based LSTM model had successfully 

developed to analysis the vibration data. The proposed method LSTM AE model can 

differentiate the normal and anomaly condition of the testbed motor. Furthermore, 

analyze and compare the performance of the LSTM model with parameter of model 

loss also carried out to identify the best LSTM AE model design and compare the 

LSTM AE model with the CNN AE model. The LSTM AE model with the 8 to 2 

neurons design architecture surpass other design with lowest losses of 0.0017 and the 

loss also significantly lower than the CNN AE model.  
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5.2 Future Work 

Although the LSTM AE model can identify the normal and anomaly conditions of 

certain applications such as motor, bearing, or any other rotary parts, it is unable to 

classify the type of fault present in the rotary parts. Moreover, this model unable to 

predict the RUL of the machine, where RUL also plays a main role in understanding 

the rotary parts behavior. This can be achieved by collecting more dataset by 

modifying the testbed to realize other fault conditions such as misalignment, bearing 

outer wear out, bearing inner wear out etc. For the RUL, the datasets need to collect 

start from a machine that operates from healthy to fail conditions. This may time 

consuming to obtained.
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Appendix B: Datasheet of MPU6050 
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