

DETECTION SYSTEM FOR COVER TAPE OFFSET IN TAP
AND REEL PROCESS WITH PREDICTIVE ANALYSIS

MUHAMMAD IRFAN BIN ROSLI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DETECTION SYSTEM FOR COVER TAPE OFFSET IN TAP
AND REEL PROCESS WITH PREDICTIVE ANALYSIS

MUHAMMAD IRFAN BIN ROSLI

This report is submitted in partial fulfilment of the requirements

for the degree of Bachelor of Electronic Engineering with Honours

Faculty of Electronic and Computer Technology and Engineering
Universiti Teknikal Malaysia Melaka

2024

Tajuk Projek : Detection System for Cover Tape Offset in Tap and

Reel Process with Predictive Analysis
Sesi Pengajian : 2023/2024

Saya MUHAMMAD IRFAN BIN ROSLI mengaku membenarkan laporan
Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat
kegunaan seperti berikut:

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan

pertukaran antara institusi pengajian tinggi.
4. Sila tandakan (✓):

SULIT*

(Mengandungi maklumat yang berdarjah
keselamatan atau kepentingan Malaysia
seperti yang termaktub di dalam AKTA
RAHSIA RASMI 1972)

TERHAD*

(Mengandungi maklumat terhad yang
telah ditentukan oleh organisasi/badan di
mana penyelidikan dijalankan.

 TIDAK TERHAD

 Disahkan oleh:

(TANDATANGAN PENULIS) (COP DAN TANDATANGAN PENYELIA)

Alamat Tetap: No. 26, Jalan
Teratai 2/1,
Saujana Utama 3,
Sungai Buloh
47000, Selangor

Tarikh : 12 Jan 2024 Tarikh : 12 Jan 2024

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan
dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA
FAKULTI TEKNOLOGI DAN KEJUTERAAN ELEKTRONIK DAN

KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN
PROJEK SARJANA MUDA II

KHAIRUN NISA BINTI KHAMIL (Ph.D)
PENSYARAH KANAN

FAKULTI TEKNOLOGI & KEJ. ELEKTRONIK & KOMPUTER (FTKEK)
UNIVERSITI TEKNIKAL MALAYSIA MELAKA

HANG TUAH JAYA
76100, DURIAN TUNGGAL

MELAKA
HP No: +60107667004 (OFFICE HOUR)

User
Typewriter
✔️

User
Typewriter
✓

DECLARATION

I declare that this report entitled “Detection System for Cover Tape Offset in Tap and

Reel Process with Predictive Analysis” is the result of my own work except for quotes

as cited in the references.

Signature : …………………………………

Author : …………………………………

Date : …………………………………

User
Typewriter
Muhammad Irfan Bin Rosli

User
Typewriter
12 Januari 2024

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient

in terms of scope and quality for the award of Bachelor of Electronic Engineering with

Honours.

Signature : …………………………………

Supervisor Name : …………………………………

Date : …………………………………

Khairun Nisa binti Khamil

23 Januari 2024

DEDICATION

I would like to express my sincere gratitude to Allah, the most gracious and

merciful, for blessing me with the strength and patience to successfully accomplish

my final year project. Furthermore, I am extremely thankful to my parents for their

constant and unwavering support in my educational endeavours. I would also like to

extend my heartfelt appreciation to Dr. Khairun Nisa Binti Khamil for his invaluable

guidance throughout this project. Finally, I am grateful to all my friends for their

assistance and companionship during times of need.

i

ABSTRACT

This thesis presents a comprehensive study on the detection of cover tape offset or

misalignment during the tape and reel process, crucial for packaging electronic

components into individual pockets of carrier tape. The research aims to develop an

efficient system utilizing the Raspberry Pi Camera Module for detecting and analysing

cover tape misalignment. The methodology involves integrating the Raspberry Pi

Camera Module with a microcontroller to capture and process images of the carrier

tape, employing image processing techniques for misalignment detection. The

resulting data is displayed in a user-friendly dashboard format using Node-RED.

Additionally, the data is analysed in MATLAB for predictive analysis. The findings

of this research, including the analysis of training results, demonstrate the successful

implementation of a reliable cover tape misalignment detection system. Notably,

Bayesian Regularization (BR) training algorithm outperformed Scaled Conjugate

Gradient (SCG) training algorithm for cover tape offset’s predictive analysis,

exhibiting lower Mean Squared Error (MSE) with 0.0015874 for BR compared to

0.0017839 for SCG, consistently lower Mean Absolute Error values, stronger linear

correlations, and superior overall performance, emphasizing its effectiveness for

accurate predictions.

ii

ABSTRAK

Tesis ini menerangkan tentang satu kajian menyeluruh mengenai pengesanan

ketidakseimbangan pada penutup pita semasa proses “Tap and Reel”. Matlamat kajian

ini adalah untuk membangunkan satu sistem yang efisien menggunakan Modul

Kamera Raspberry Pi untuk mengesan dan menganalisis ketidakseimbangan penutup

pita. Rasional bagi kajian ini adalah untuk meningkatkan kualiti proses ini dengan

mengautomatikkan pengesanan ketidakseimbangan. Metodologi yang digunakan

dalam projek ini melibatkan penggunaan Modul Kamera Raspberry Pi untuk merakam

imej pita pembawa itu. Imej yang dirakam dianalisis menggunakan teknik

pemprosesan imej untuk mengesan dan mengukur ketidakseimbangan penutup pita.

Data yang diperoleh kemudiannya dipaparkan dalam format papan pemuka yang

dikenali sebagai Node-RED. Selain itu, data tersebut dianalisis di MATLAB untuk

analisis prediktif. Hasil kajian ini, termasuk analisis keputusan latihan, menunjukkan

pelaksanaan yang berjaya bagi sistem pengesanan yang boleh dipercayai. Secara

signifikan, algoritma latihan Bayesian Regularization (BR) telah mengatasi algoritma

latihan Scaled Conjugate Gradient (SCG) untuk analisis prediktif ketidaksempurnaan

penutup, menunjukkan Nilai Purata Kuasa Dua (MSE) yang lebih rendah iaitu

0.0015874 untuk BR yang dapat dibandingkan dengan 0.0017839 untuk SCG.

iii

ACKNOWLEDGEMENTS

This is an acknowledgement for everyone who helps me accomplish this project.

First of all, I am grateful to the faculty, the Faculty of Electronic and Computer

Technology and Engineering for giving me the opportunity to do this project titled

‘Detection System for Cover Tape Offset in Tap and Reel Process with Predictive

Analysis’.

Then, I would like to thank my supervisor, Dr. Khairun Nisa Binti Khamil for her

expert advice and encouragement throughout this project. Furthermore, to my parents,

who always supported me in doing this project. It was really touching when they have

provided a huge amount of their precious time and effort.

Finally, I would like to express gratitude to all my friends for their support and

willingness to spend their time answering all questions about this project.

iv

TABLE OF CONTENTS

Declaration i

Approval i

Dedication i

Abstract i

Abstrak ii

Acknowledgements iii

Table of Contents iv

List of Figures viii

List of Tables xi

List of Symbols and Abbreviations xii

List of Appendices xiii

CHAPTER 1 INTRODUCTION 1

1.1 Background of Project 1

1.2 Problem Statement 3

1.3 Objective 4

1.4 Scope of Project 5

v

1.5 Thesis Outline 6

CHAPTER 2 BACKGROUND STUDY 7

2.1 Canny Edge Detection 8

2.2 Hough Line Transform 10

2.3 Cover Tape Offset in Tap and Reel Process 11

2.4 Node-RED 15

2.5 Training Algorithms 17

2.6 Summary 22

CHAPTER 3 METHODOLOGY 24

3.1 Measurement from Industry 25

3.2 Initialize Raspberry Pi Camera Module 28

3.3 Computer Vision Processing 30

3.4 Canny Edge Detection 30

3.5 Hough Line Transform 31

3.6 Display Real-Time Data on Node-Red Dashboard 31

3.7 Generate CSV File 33

3.8 Neural Net Time Series Apps for Predictive Analysis 34

3.9 Summary 35

CHAPTER 4 RESULTS AND DISCUSSION 36

4.1 Node-RED 36

vi

4.2 Bayesian Regularization (BR) 37

4.2.1 Training results 37

4.2.2 Correlation coefficient (R) 42

4.2.3 Mean Squared Error (MSE) 46

4.3 Scaled Conjugate Gradient (SCG) 49

4.3.1 Training results 49

4.3.2 Correlation coefficient (R) 54

4.3.3 Mean Squared Error (MSE) 59

4.4 Comparison for Bayesian Regularization (BR) and Scaled Conjugate Gradient

(SCG) 63

4.4.1 Training Results 63

4.4.2 Correlation coefficient (R) 65

4.4.3 Mean Squared Error (MSE) 67

4.4.4 Prediction results 69

4.5 Summary 73

CHAPTER 5 CONCLUSION AND FUTURE WORKS 74

5.1 Conclusion 74

5.2 Sustainable Development Goals (SDG) 76

5.3 Future Work 77

5.3.1 Real-time Monitoring and Feedback 77

5.3.2 Data Logging and Analytics 77

vii

REFERENCES 79

viii

LIST OF FIGURES

Figure 2.1: Detected Edges in an Image [5]... 9

Figure 2.2: Original Picture and Line Detection Results [9]. 11

Figure 2.3: Tape and Reel Structure [2]. .. 13

Figure 2.4: Node-RED Dashboard [14]. .. 16

Figure 2.5: Regression Plot for BR Algorithm [16]. ... 20

Figure 2.6: Regression Plot for SCG Algorithm [16]. ... 20

Figure 2.7: The Performance of BR Algorithm [16]. .. 21

Figure 2.8: The Performance of SCG Algorithm [16]. .. 21

Figure 3.1: Flowchart for the whole process. .. 25

Figure 3.2: The offset's measurement visualization. .. 26

Figure 3.3: Example visualization of offsets in the industry. 26

Figure 3.4: Cover tape position away from sprocket hole. .. 27

Figure 3.5: Conveyer belt on FMS 200. .. 27

Figure 3.6: Camera’s design setup. .. 28

Figure 3.7: Connection from the camera to the Raspberry Pi. 28

Figure 3.8: Raspberry Pi Camera Module 3 installed on the FMS 200. 29

Figure 3.9: Camera connection to the Raspberry Pi. ... 29

Figure 3.10: Python script on Terminal. .. 30

ix

Figure 3.11: Hough Line detection on the selected Region of Interest...................... 31

Figure 3.12: Node-RED workflow. ... 32

Figure 3.13: Dashboard generated from Node-RED. .. 33

Figure 3.14: Real-time monitoring view. ... 33

Figure 3.15: Data logged into CSV file. .. 34

Figure 3.16: Implementation of Training Algorithm using MATLAB. 34

Figure 4.1: Offset graph in Node-RED dashboard. ... 37

Figure 4.2: Training results in Day 1 (BR). ... 38

Figure 4.3: Training results in Day 2 (BR). ... 39

Figure 4.4: Training results in Day 3 (BR). ... 40

Figure 4.5: Training results in Day 4 (BR). ... 41

Figure 4.6: Scatter plot for Day 1 (BR). .. 43

Figure 4.7: Scatter plot for Day 2 (BR). .. 43

Figure 4.8: Scatter plot for Day 3 (BR). .. 44

Figure 4.9: Scatter plot for Day 4 (BR). .. 45

Figure 4.10: Graph for Best Training Performance (Day 1). 46

Figure 4.11: Graph for Best Training Performance (Day 2). 47

Figure 4.12: Graph for Best Training Performance (Day 3). 48

Figure 4.13: Graph for Best Training Performance (Day 4). 48

Figure 4.14: Training results in Day 1 (SCG). ... 50

Figure 4.15: Training results in Day 2 (SCG). ... 51

Figure 4.16: Training results in Day 3 (SCG). ... 52

Figure 4.17: Training results in Day 4 (SCG). ... 53

x

Figure 4.18: Scatter plot for Day 1 (SCG). .. 55

Figure 4.19: Scatter plot for Day 2 (SCG). .. 56

Figure 4.20: Scatter plot for Day 3 (SCG). .. 57

Figure 4.21: Scatter plot for Day 4 (SCG). .. 58

Figure 4.22: Graph for Best Training Performance (Day 1). 59

Figure 4.23: Graph for Best Training Performance (Day 2). 60

Figure 4.24: Graph for Best Training Performance (Day 3). 61

Figure 4.25: Graph for Best Training Performance (Day 4). 62

Figure 4.26: Training results for combined data (BR). .. 64

Figure 4.27: Training results for combined data (SCG). ... 64

Figure 4.28: Scatter plot for combined data (BR). ... 66

Figure 4.29: Scatter plot for combined data (SCG). .. 66

Figure 4.30: Graph for Best Training Performance (Combined data). 68

Figure 4.31: Graph for Best Training Performance (Combined data). 68

Figure 4.32: Comparison between actual and predicted value using BR training. 70

Figure 4.33: Comparison between actual and predicted value using SCG training. . 70

Figure 4.34: Plot for MAE between actual and predicted value (BR). 71

Figure 4.35: Plot for MAE between actual and predicted value (SCG). 72

Figure 4.36: Comparison plot between MAE for BR and SCG. 73

xi

LIST OF TABLES

Table 2.1: Method summary 22

Table 4.1: Performance for 4 days of data using BR 42

Table 4.2: Correlation coefficient comparison for BR training 45

Table 4.3: Best Training Performance for 4 days of data using BR. 49

Table 4.4: Performance for 4 days of data using SCG. 54

Table 4.5: Correlation coefficient comparison for SCG training 58

Table 4.6: Best Training Performance for 4 days of data using SCG. 63

Table 4.7: Overall performance for combined data. 65

Table 4.8: Correlation coefficient comparison between BR and SCG. 67

Table 4.9: Best Training Performance for combined data. 69

xii

LIST OF SYMBOLS AND ABBREVIATIONS

SMD : Surface Mount Device

HT : Hough Transform

FPGA : Field Programmable Gate Array

WLCSP : Wafer-Level Chip-Scale Package

SSPF : Single Side Peel Force

AOI : Automated Optical Inspection

LED : Light-Emitting Diode

MSE : Mean Square Error

MAE : Mean Absolute Error

CSV : Comma-Separated Values

BR : Bayesian Regularization

SCG : Scaled Conjugate Gradient

mm : millimeter

xiii

LIST OF APPENDICES

Appendix A: Coding for The System 84

CHAPTER 1

INTRODUCTION

The tape-and-reel process is a widely used method for packaging electronic

components, which involves placing them in individual pockets of carrier tape for

protection and ease of handling during manufacturing and shipping. However, during

the tape and reel process of packaging electronic components, the cover tape offset, or

misalignment occurs, leading to product defects and waste. This problem can be

difficult to detect and correct in a timely manner, leading to increased costs and

decreased productivity.

1.1 Background of Project

The packaging of electronic components is a critical process in the electronics

industry, ensuring the protection and efficient handling of these delicate devices. One

commonly used method is the tape and reel process, which involves packaging

2

individual components into pockets of carrier tape for ease of handling and automated

assembly. However, during this process, misalignment or offset of the cover tape can

occur, leading to various issues such as component damage, improper feeding, and

increased production defects.

The current state of knowledge in this area highlights the importance of accurate

and reliable detection of cover tape misalignment to ensure the quality and efficiency

of the packaging process. Manual inspection methods are commonly employed, which

are time-consuming, labor-intensive, and prone to human error. There is a need for an

automated system that can detect cover tape misalignment in real-time, providing

prompt feedback for corrective actions.

Despite the significance of this problem, there is a gap in research regarding the

development of an integrated and efficient system for cover tape misalignment

detection. Existing studies have focused on individual components of the system, such

as image processing techniques or machine vision algorithms. However, there is a lack

of comprehensive solutions that integrate various technologies to provide a complete

and user-friendly system for real-time monitoring and analysis.

The aim of this research project is to address this gap by developing a robust and

automated system for detecting cover tape misalignment during the tape and reel

process. The system will utilize the Raspberry Pi Camera Module as a sensor to

capture images of the carrier tape, which will then be processed and analyzed to detect

any misalignment. The data from the sensor will be merged into a Raspberry Pi

microcontroller, which will serve as the central processing unit for the system.

3

To provide a user-friendly interface for data visualization and analysis, the system

will utilize Node-RED, a powerful dashboard tool. This will enable operators to

monitor the real-time data and quickly identify any instances of cover tape

misalignment. Additionally, the data will be transferred to MATLAB to apply

predictive analysis training algorithms to identify patterns and potential future

problems, thereby enabling proactive maintenance and minimizing production

disruptions.

The scope of this work will encompass the design, development, and integration of

the complete system for cover tape misalignment detection. The research will focus

on the technical aspects of image processing, data integration, and system

implementation.

1.2 Problem Statement

The packaging of electronic components is a critical process that ensures the safe

transport and use of electronic devices. However, this process can be affected by

various factors that may result in defects and waste, such as misalignment or improper

handling. C. F. Jeffrey Kuo et al. have addressed the limitations of existing manual

inspection methods for surface mount devices (SMDs) that are prone to human errors

and time-consuming [1]. In addition, S. Qiao and L. Q. Tao addressed the issue of

inconsistent peel force during the tape and reel packaging process for electronic

components [2]. The authors explain that the peel force, which is the force required to

remove the carrier tape from the adhesive tape during assembly, must be consistent to

ensure that the electronic components are properly positioned and aligned.

Inconsistent peel force can result in misalignment or damage to the components, which

can lead to defects and waste.

4

Existing solutions for detecting packaging issues in electronic components are

often expensive and complex, requiring specialized equipment and expertise.

Additionally, many of these solutions only detect issues after they have already

occurred, which may be too late to prevent product defects or waste.

Therefore, to address this problem, our proposed project aims to develop a cost-

effective and user-friendly system for detecting packaging issues in electronic

components. Our system will have a Raspberry Pi Camera Module, capture images of

the carrier tape, which will then be processed and analyzed to detect any misalignment.

The system will be designed to be easy to use and integrate into existing manufacturing

processes, making it a valuable tool for manufacturers looking to improve efficiency

and reduce waste. The project outcome is expected to improve productivity, reduce

waste and lower costs, resulting in significant benefits for the electronics industry.

1.3 Objective

These objectives collectively focus on developing an efficient cover tape offset

detection system, integrating it with Node-RED for real-time data visualization, and

enhancing the system's functionality through predictive analysis using MATLAB.

The objectives of this project are:

1. To design a detection system that detects the cover tape offset in tape and reel

process using a Raspberry Pi Camera Module (R01).

2. To formulate a Node-RED dashboard for live data monitoring (R02).

3. To analyze the cover tape offset behavior using predictive analysis (R03).

5

1.4 Scope of Project

The scope of this project encompasses the development of a system to detect cover

tape offset or misalignment during the tape and reel process used in packaging

electronic components into individual pockets of carrier tape. The system will utilize

the Raspberry Pi Camera Module, employing Canny Edge Detection and Hough Line

Transform techniques from computer vision to analyze and process images captured

by the camera module. The data from the sensor will be merged into a Raspberry Pi

microcontroller for further processing and analysis.

The project operates within certain constraints. It will be implemented using the

Raspberry Pi platform and rely on the Raspberry Pi Camera Module for image capture.

The system design will integrate computer vision techniques, specifically grayscale

conversion, edge detection, and contour detection, to enable accurate detection of

cover tape misalignment. Furthermore, the system will be using Node-RED as the

dashboard for real-time data display.

The components to be packaged are assumed to have standardized dimensions and

packaging requirements, facilitating consistent detection procedures. Additionally, it

is assumed that the Raspberry Pi Camera Module will provide sufficient image quality

and resolution for effective cover tape misalignment detection.

The prototype scope of the project focuses primarily on functionality rather than

mass production considerations. The specific size and weight of the products being

packaged are not explicitly defined within the scope, as the project's emphasis is on

developing the cover tape misalignment detection system rather than the physical

components being packaged.

The final deliverables of this project will include a working prototype of the cover

tape misalignment detection system, implemented on the Raspberry Pi platform. The

6

system will provide real-time data display through the Node-RED dashboard,

facilitating cover tape misalignment monitoring.

Acceptance criteria for the project include the accurate detection of cover tape

misalignment within a specified tolerance level and the provision of clear, intuitive,

and responsive real-time data on the Node-RED dashboard. Excluded from the project

scope are the design of the tape and reel equipment itself.

1.5 Thesis Outline

This thesis is organized systematically into the following chapters. Chapter 2 shows

an overview of the Canny Edge Detection Method, Hough Line Transform, the past

project that relate with the detection of cover tape offset in Tap and Reel Process, and

the overview of Node-Red. Chapter 3 highlights the overall process throughout this

project, focusing on the design and development of the cover tape offset detection

system using Raspberry Pi camera module and microcontroller. The chapter starts by

discussing the system requirements and specifications, including the resolution and

field of view of the camera module, the processing capabilities of the microcontroller,

and the necessary connectivity interfaces. Chapter 4 highlights the comparative

analysis between two distinct training algorithms, namely Bayesian Regularization

(BR) and Scaled Conjugate Gradient (SCG), to analyze their impact on the

performance of the predictive model. Lastly, Chapter 5 highlights the conclusion for

this whole project, future recommendation, and the relationship between this project

to the Sustainable Development Goals (SDG).

CHAPTER 2

BACKGROUND STUDY

The utilization of image processing techniques, specifically Canny edge detection,

holds significance in offset detection within the tap and reel process. The Canny edge

detection algorithm offers an effective approach for identifying edges and accurately

measuring offsets. However, challenges such as image noise and threshold selection

need to be addressed for robust offset detection. The Hough Line Transform is another

relevant algorithm that can extract and analyze lines in images, aiding in offset

detection. Variations of the Hough Transform, such as the random and probabilistic

versions, optimize computational efficiency. Several studies highlight the importance

of cover tape offset detection in the tap and reel process and propose various

approaches to address this issue. Additionally, Node-RED, a versatile data integration

and visualization platform, is applied in both industrial and healthcare domains,

showcasing its adaptability and effectiveness. In summary, the combined literature

8

underscores the relevance of Canny edge detection, the Hough Line Transform, cover

tape offset detection, and Node-RED in advancing offset detection processes and

improving outcomes in manufacturing and healthcare. In this chapter, the combined

literature underscores the relevance of Canny edge detection, the Hough Line

Transform, cover tape offset detection, and Node-RED in advancing offset detection

processes and improving outcomes in manufacturing and healthcare.

2.1 Canny Edge Detection

The use of Canny edge detection in offset detection within the tap and reel process

utilizing image processing techniques holds significance in the field of manufacturing

and quality control. In this literature review, we will examine the relevance of Canny

edge detection in offset detection, evaluate its achievements and limitations, and

justify the need for further investigation in this area.

Image segmentation plays a vital role in preparing images for the detection step by

extracting specific features from the source image [3]. In offset detection, edge

segmentation is a crucial aspect as it helps locate relevant characteristics of objects in

the image by detecting their edges. Edge-based segmentation reduces image size and

facilitates analysis by removing extraneous data. Canny edge detection is a widely

known and effective approach in edge-based segmentation.

The Canny edge detection algorithm, introduced by John F. Canny in 1986, is

considered one of the optimal methods for edge detection. It employs a multi-stage

approach, including Gaussian filters and intensity gradient changes, to identify edges

in images. The algorithm aims to strike a balance between reducing noise interference

and maintaining accurate edge detection [4]. Its ability to identify the best edge

detection method makes it particularly relevant in offset detection tasks.

9

Offset detection in the tap and reel process involves identifying deviations or

misalignments in the positions of components. By detecting edges using the Canny

algorithm, it becomes possible to locate the boundaries of the components and

accurately measure the offsets. This information is crucial for ensuring the quality and

reliability of the manufacturing process.

However, despite its effectiveness, the application of the Canny edge detection

algorithm, which the result can be seen on Figure 2.1, is not without limitations. One

significant limitation is the sensitivity of edge detection outcomes to image noise [5].

The mathematical operations involved in edge detection, based on derivatives, can be

affected by noise, leading to inaccurate edge detection results. To address this,

preprocessing techniques such as Gaussian filters are commonly used to reduce noise.

Implementing Gaussian blur to smooth the image helps eliminate noise and enhance

the accuracy of offset detection. In addition, the algorithm's performance relies on the

careful selection of threshold values, which are often set experimentally [6]. Various

approaches have been proposed to enhance the algorithm, such as adaptive

thresholding methods and incorporating fuzzy reasoning and genetic algorithms [7].

Figure 2.1: Detected Edges in an Image [5].

10

In conclusion, the utilization of the Canny edge detection algorithm in offset

detection within the tap and reel process using image processing techniques is highly

relevant. It offers a reliable method for identifying and measuring offsets in

manufacturing. However, challenges related to image noise and threshold selection

need to be addressed to ensure accurate and robust offset detection. Further

investigation in these areas will contribute to the advancement of edge detection

techniques and enhance the performance of the Canny algorithm in offset detection

applications.

2.2 Hough Line Transform

The Hough Transform (HT) is a widely used algorithm in computer vision and

pattern recognition, and it holds significant relevance to your project on offset

detection in the tap and reel process using a Raspberry Pi camera module. By applying

the HT technique, you can effectively extract and analyze lines in the images captured

by the Raspberry Pi camera module, aiding in the detection and measurement of

offsets in the tap and reel process.

The HT algorithm, originally introduced by Paul Hough in 1962, transforms

spatially extended patterns into compact features in a parameter space, simplifying the

line detection problem [8]. In your project, the HT can be leveraged to identify and

quantify offsets by detecting lines associated with the target objects in the tap and reel

process.

The variations of the HT, such as the random Hough transform (RHT) and the

probabilistic Hough transform (PHT), can be particularly useful in optimizing the

computational efficiency for real-time offset detection on the Raspberry Pi platform.

The result for the real-time offset detection can be seen in Figure 2.2 which the method

can be applied in this project. The RHT, through its reduction of unnecessary

11

computations, can enhance the processing speed, while the PHT's utilization of

random sampling significantly reduces the computation load [9]. These variations can

assist in achieving real-time performance, a necessary requirement for applications

like robot navigation and object tracking.

Figure 2.2: Original Picture and Line Detection Results [9].

Implementing the HT on the Raspberry Pi hardware platform, possibly using a

Field Programmable Gate Array (FPGA), can further enhance the real-time line

detection capabilities in your project. By leveraging the hardware capabilities of the

Raspberry Pi, you can efficiently detect and measure offsets, addressing the challenges

of memory capacity and time-consuming computations highlighted in the literature

[10]. Additionally, by simplifying the hardware architecture and avoiding

computationally intensive trigonometric calculations, the implementation can

optimize the performance and resource requirements.

2.3 Cover Tape Offset in Tap and Reel Process

Chung-Feng Jeffrey Kuo et al. presented an automated optical inspection system

for surface mount device light emitting diodes. The paper highlighted a machine vision

system that utilizes various image processing techniques, such as binarization,

12

morphology, and feature extraction, to detect defects in SMD LEDs which consists of

a high-resolution camera, lighting sources, and image processing software [1]. The

research has a success rate of 97.5% in detecting LED defects, demonstrating the

effectiveness of the proposed approach. In addition, the predictive maintenance aspect

of the proposed system also aligns with the concept of automation, as it helps prevent

machine breakdowns before they occur, reducing downtime and maintenance costs.

However, the paper only focusses on the development of an automated optical

inspection system and demonstrates the effectiveness of using vision systems for only

defect detection. Therefore, this study will focus on the concepts and techniques to

develop a low-cost monitoring system for cover tape offset detection and predictive

maintenance in the tape and reel process.

Moreover, Lynn Khine and Joel C. Alimagno discuss the die sticking quality issue

of tape-and-reel packaging for Wafer-Level Chip-Scale Package (WLCSP) [11]. The

WLCSP package is widely used in microelectronics industries due to its small form

factor, light weight, and low cost. The paper highlighted a method to investigate the

die sticking issue in WLCSP by using a high-speed camera to capture the real-time

images of the tape-and-reel process. However, the paper only focusses on identifying

the critical stage where the die sticking occurred, which was found to be caused by the

excessive deformation of the cover tape during the peeling process. Therefore, this

study will focus on monitoring the cover tape offset, which the system can help to

prevent die sticking during the tape-and-reel process. The system can reduce yield loss

and improve production efficiency.

Shuai Qiao et al. presented a tape and reel single side peel force test verification

that discusses the importance of ensuring the quality of the tape and reel packaging

13

process in electronic manufacturing [2]. In this process, cover tape is used to seal the

components in a carrier tape for protection and transportation. The cover tape is sealed

by an adhesive, and the single side peel force (SSPF) test is used to measure the

strength of this adhesive. The paper highlights the significance of the SSPF test in

verifying the tape and reel packaging quality. The test can identify whether the cover

tape is properly sealed and can detect any variations in peel force that may indicate

the presence of defects or issues such as cover tape offset.

Figure 2.3: Tape and Reel Structure [2].

However, the paper only focusses on analyzing the results of the SSPF test and

manufacturers can take corrective actions to improve the tape and reel packaging

process. The proposed project of developing a low-cost monitoring system using

Raspberry Pi Camera Module to detect cover tape offset in tape and reel process is

highly relevant to this research paper. The SSPF test measures the strength of the

adhesive used to seal the cover tape, and the proposed monitoring system can detect

variations in the position of the cover tape that may affect the strength of the adhesive.

By detecting and analyzing cover tape offset, the monitoring system can provide early

14

warning of potential defects or issues in the tape and reel packaging process, allowing

for timely corrective actions to be taken.

Alejandro Gallegos-Hernandez and Francisco J. Ruiz-Sanchez present a 2D

automated visual inspection system for the remote quality control of surface mount

device (SMD) assembly [12]. The system is designed to detect defects such as missing

components, component misplacement, and polarity errors, among others. In the

proposed project, diffuse-reflective sensor is used to detect cover tape offset in tape

and reel process, whereas in the Gallegos-Hernandez and Ruiz-Sanchez paper, a

camera is used to capture images of SMD board for defect detection. Moreover, the

proposed project aims to develop a low-cost monitoring system for detecting cover

tape offset, while the Gallegos-Hernandez and Ruiz-Sanchez paper presents a remote

quality control system for SMD assembly. Both the proposed project and the Gallegos-

Hernandez and Ruiz-Sanchez paper aim to improve the quality of electronic

components, which is crucial for the reliability and durability of electronic devices.

Yuqiao Cen et al. presented a Defect patterns study of pick-and-place machine

using automated optical inspection data assembly that discusses the use of automated

optical inspection (AOI) to detect defects in the pick-and-place process of surface

mount devices (SMDs) [13]. The paper highlighted that AOI systems are widely used

in SMD assembly lines to improve quality control by detecting defects such as missing

components, misplaced components, and soldering defects. However, AOI systems

can be limited in their ability to detect defects that occur during the pick-and-place

process, such as defects caused by the offset of cover tape in tape and reel packaging.

Additionally, the development of a predictive maintenance system based on the

15

situation can improve the overall efficiency of the SMD assembly process by reducing

downtime and minimizing the need for manual inspection and maintenance.

2.4 Node-RED

This literature review aims to compare the applications of Node-RED in two

distinct domains: industrial environments for cover tape offset detection and

predictive maintenance, as discussed in the research paper by Katalin Ferencz and

József Domokos, and healthcare systems for connecting patients, staff, and medical

equipment, as explored in the research paper by Junior Asante and Joel Olsson. By

examining the similarities and differences between these two domains, this review

seeks to provide insights into the versatility and effectiveness of Node-RED in diverse

application areas.

Both research papers highlight the benefits of using Node-RED as a data integration

and visualization platform. Node-RED's visual programming interface simplifies the

development process, enabling the creation of event-driven applications and

workflows. Its ability to connect disparate data sources, devices, and services allows

for seamless data integration and interoperability. The customizability and scalability

of Node-RED make it adaptable to the evolving needs of both industrial and healthcare

environments. Additionally, Node-RED's real-time visualization capabilities facilitate

efficient decision-making and enhance overall system performance.

In the industrial context, the research paper by Ferencz and Domokos focuses on

detecting cover tape offset and performing predictive maintenance using Node-RED.

The research emphasizes the benefits of Node-RED in creating a user-friendly

dashboard for monitoring and analyzing cover tape offset data [14].

16

Figure 2.4: Node-RED Dashboard [14].

The research paper by Asante and Olsson explores the application of Node-RED in

healthcare systems to connect patients, staff, and medical equipment. Node-RED is

utilized to integrate patient monitoring devices, enabling real-time data collection and

transmission for enhanced patient care. The platform also streamlines staff

communication by integrating various communication channels, facilitating effective

collaboration and prompt response to emergencies [15]. Moreover, Node-RED

enables the integration of medical equipment, allowing for real-time monitoring,

predictive maintenance, and data-driven decision-making in healthcare settings.

While both applications share common benefits and features of Node-RED, there

are notable domain-specific differences. In the industrial domain, the focus is on

detecting and preventing issues related to cover tape offset, contributing to product

quality and reliability. On the other hand, in the healthcare domain, Node-RED plays

a vital role in connecting patients, staff, and medical equipment, enhancing patient

care, and improving operational efficiency. The integration of medical devices and

17

analytics platforms in healthcare applications enables data-driven decision support and

personalized treatment [15].

In conclusion, Node-RED demonstrates its versatility and effectiveness in diverse

application areas, as highlighted by the research papers reviewed. In industrial

environments, Node-RED aids in cover tape offset detection and predictive

maintenance, while in healthcare systems, it connects patients, staff, and medical

equipment. Both applications leverage Node-RED's capabilities for seamless data

integration, real-time visualization, and interoperability. The comparison of these

applications emphasizes the adaptability of Node-RED to different domains and

underscores its potential for enhancing processes and outcomes in various industries.

2.5 Training Algorithms

This section explores key studies that utilize various training techniques, including

Bayesian Regularization (BR) and Scaled Conjugate Gradient (SCG), in diverse

applications such as load forecasting, crosstalk analysis, and neural network training.

In the context of machine learning, training algorithms are computational procedures

that enable a model to learn patterns, relationships, and representations from data.

These algorithms iteratively adjust the model's parameters based on input data and

their corresponding output labels, with the goal of minimizing the difference between

predicted and actual outcomes [16]. These studies provide important insights into the

importance and applications of the training algorithms, providing foundations for

additional research in the context of cover tape offset detection and predictive analysis

in this project.

A. Abbasi presented Bayesian Regularization Based Electrical Load Forecasting

that discusses the use of Bayesian Regularization in short-term load forecasting. The

18

paper highlights that accurate short-term load forecasting is crucial for optimized load

generation planning, decreasing the generation-demand gap, and reducing power

losses [17]. The paper also discusses the performance of different training techniques,

including Bayesian Regularization, Scaled Conjugate Gradient, and Levenberg–

Marquardt [17].

Y. Wang presented Application of Neural Network Analysis Based on Bayesian

Regularization in Crosstalk of Cable that discusses the use of an artificial neural

network based on Bayesian regularization training function for the internal twisted

pair electromagnetic crosstalk system of aircraft. The prediction results show that the

prediction value of the neural network based on Bayesian regularization training

function is close to the input value, and the regression analysis shows that the

prediction reliability of the network is high [18]. In relation to the project, this article

can provide valuable insights into the application of Bayesian Regularization in

predictive models. Specifically, the methodologies used in the paper which to apply

Bayesian Regularization in the Neural Net Time Series Apps for predictive

maintenance. The comparison of different training techniques in the paper can be

referred to for the analysis of Bayesian Regularization and Scaled Conjugate Gradient

(SCG) in your project.

Furthermore, Murat Kayri concludes that the Bayesian regularization training

algorithm shows better performance than the Levenberg-Marquardt algorithm. The

objective of this study is to compare the predictive ability of Bayesian regularization

with Levenberg-Marquardt Artificial Neural Networks. The study examines the best

architecture of neural networks by testing one-, two-, three-, four-, and five-neuron

architectures. MATLAB was used for analyzing the Bayesian regularization and

19

Levenberg-Marquardt learning algorithms. Bayesian regularization artificial neural

networks have the advantage of revealing potentially complex relationships, making

them suitable for quantitative studies and providing a robust model [19].

The paper by Thibaut Le Magueresse discusses the application of instantaneous

Bayesian regularization to RT-NAH for the reconstruction of non-stationary sound

sources using a planar microphone array. It introduces Bayesian estimation of the

regularization parameter based on prior knowledge of the problem, allowing for the

consideration of fluctuating properties of the sound field [20]. The superiority of

Bayesian regularization over state-of-the-art methods is observed numerically and

experimentally for the reconstruction of non-stationary sources. This could be relevant

to the project as it involves the use of Bayesian regularization that could potentially

improve the accuracy of the predictive maintenance system.

Bayesian regularization improves accuracy by providing a more robust and

adaptive approach to regularization in the reconstruction of non-stationary sources

[20]. It introduces the estimation of the regularization parameter based on prior

knowledge of the problem, allowing for the consideration of fluctuating properties of

the sound field. Compared to state-of-the-art methods, Bayesian regularization has

been observed to offer superior results in the reconstruction of non-stationary sources.

Furthermore, the paper by Al Bataineh compares the performance of three

algorithms, Levenberg-Marquardt, Bayesian Regularization, and Scaled Conjugate

Gradient, in training artificial neural networks using the housing dataset. The

algorithms are evaluated based on their ability to fit curves to the data, measured using

Mean Square Error (MSE). The mean squared error is computed for each algorithm,

with Levenberg-Marquardt having an MSE of 7.0902, Scaled Conjugate Gradient at

20

15.2932, and Bayesian Regularization at 5.3480 [16]. It was found that Bayesian

Regularization gave the best accuracy at 96.78%, followed by Levenberg-Marquardt

at 94.53% and Scaled Conjugate Gradient at 90.51%.

Figure 2.5: Regression Plot for BR Algorithm [16].

Figure 2.6: Regression Plot for SCG Algorithm [16].

21

Figure 2.7: The Performance of BR Algorithm [16].

Figure 2.8: The Performance of SCG Algorithm [16].

Based on the visualized plots, Bayesian Regularization is the optimal solution for

achieving higher prediction accuracy. However, it requires more iterations for training

and is more time-consuming compared to other algorithms. The Scaled Conjugate

22

Gradient algorithm is less accurate than the other techniques mentioned, however it

has a faster training time than Bayesian Regularization. The Scaled Conjugate

Gradient algorithm is advantageous because of its lower memory consumption.

2.6 Summary

Table 2.1: Method Summary

Reference Year Title Summary Method

[1] 2016 Automated optical

inspection system for

surface mount device

light emitting diodes

Chung-Feng Jeffrey Kuo et al. introduced an

automated optical inspection system for

detecting defects in surface mount device

light-emitting diodes (SMD LEDs).

[11] 2019 Die sticking quality

issue of tape-and-reel

packaging for WLCSP

Lynn Khine and Joel C. Alimagno address the

die-sticking quality issue in tape-and-reel

packaging for Wafer-Level Chip-Scale

Packages (WLCSP).

[2] 2016 Tape & Reel single

side peel force test

verification

Shuai Qiao and collaborators introduced a

tape and reel single-side peel force (SSPF)

test verification method to ensure the quality

of the tape and reel packaging process

[12] 2002 2D automated visual

inspection system for

the remote quality

control of SMD

assembly

Alejandro Gallegos-Hernandez and

Francisco J. Ruiz-Sanchez introduced a 2D

automated visual inspection system tailored

for remote quality control of surface mount

device (SMD) assembly.

23

[13] 2022 Defect patterns study

of pick-and-place

machine using

automated optical

inspection data

Yuqiao Cen and team explore defect patterns

in pick-and-place machines during surface

mount device (SMD) assembly, utilising

automated optical inspection (AOI) data.

Table 2.1 provides an extensive background study for the project, focusing on the

significance of studies on cover tape offset detection, contributing unique insights, and

highlighting the need for further research to overcome challenges and improve the

performance of these techniques.

Furthermore, the chapter also includes studies on image processing techniques,

specifically Canny edge detection and the Hough Line Transform in offset detection

within the tap and reel process. It provides the relevance of these methods in

manufacturing and quality control, highlighting their crucial role in detecting cover

tape misalignments. Node-RED's versatility in data integration and visualisation for

industrial applications, such as cover tape offset detection and healthcare systems, is

explored.

Furthermore, the chapter also includes a brief section comparing Scaled Conjugate

Gradient with Bayesian Regularization, emphasising their roles in training neural

networks.

24

CHAPTER 3

METHODOLOGY

The methodology section is important in detecting cover tape offset or

misalignment from the carrier tape during the tape and reel process using computer

vision and neural network techniques. It outlines the systematic approach taken to

answer the research question. This part is an organised roadmap outlining the

sequential actions and techniques to achieve the study's objectives.

 The flowchart in Figure 3.1 outlines the project process, which aims to detect cover

tape offset or misalignment from the carrier tape during the tape and reel process. The

process begins with the initialisation of the Raspberry Pi Camera Module 3, which

captures real-time video of the ongoing process. This video feed is then subjected to

computer vision processing using the OpenCV library. The system checks for any

offset on the cover tape. The system calculates the offset value in millimetres if an

offset is detected.

25

This information is then used in two ways, which is, it is recorded in a CSV file,

and it is displayed in real-time on a Node-RED dashboard. The CSV data is

subsequently transferred to a MATLAB environment. The data is implemented in

MATLAB on Neural Net Time Series Apps for predictive analysis. This marks the

completion of the process.

Figure 3.1: Flowchart for the whole process.

3.1 Measurement from Industry

Analysing the offset's measurement from the industry is an important step in the

project. It helps to understand the industry standards and requirements related to

26

detecting cover tape offset or misalignment during the tape-and-reel process. In the

industry, detecting cover tape offset or misalignment during the tape-and-reel process

is critical to ensure the quality of the packaged components. Any offset greater than

8mm would be considered a defect and could result in the rejection of the packaged

components, as shown in Figure 3.2.

Figure 3.2: The offset's measurement visualisation.

The cover tape also can be in the offset position with more than 20mm towards the

sprocket hole as shown in Figure 3.3.

Figure 3.3: Example visualisation of offsets in the industry.

There is also a case where the cover tape offset is away from the sprocket hole as

shown in Figure 3.4.

27

Figure 3.4: Cover tape position away from sprocket hole.

In the context of the project, understanding the industry standards for cover tape

offset measurement is important to design a system that meets these requirements.

Mainly, the cover tape should be precisely at the very bottom area of the sprocket hole.

The Raspberry Pi Camera Module 3 used in the project should be capable of providing

accurate measurements of the cover tape position within the industry-standard

tolerance levels. This will ensure that the components meet the industry standards.

For the testing phase of the system, the camera was not evaluated on an actual tape

and reel process. Instead, the testing was conducted on the conveyor belt of the FMS

200 as shown in Figure 3.5, which has some misalignments that can be evaluated and

analyzed. This serves as a good initial test before implementing it in the actual tape

and reel process.

Figure 3.5: Conveyer belt on FMS 200.

28

3.2 Initialize Raspberry Pi Camera Module

In this initial phase, the Raspberry Pi Camera Module is set up to capture real-time

data during the tape and reel process. Figure 3.6 shows the setup for the camera with

the support of camera case and adjustable arm to protect the camera and to easily make

the camera mounted in the industry.

Figure 3.6: Camera’s design setup.

The configuration involves ensuring proper connectivity, initializing the camera

module, and configuring settings such as resolution and frame rate. This step

establishes the foundation for subsequent image acquisition and processing. Figure 3.7

shows the connection from the camera to the Raspberry Pi via CSI port.

Figure 3.7: Connection from the camera to the Raspberry Pi.

29

Figure 3.8 shows the Raspberry Pi Camera Module 3 installed on the FMS 200,

precisely positioned to observe the conveyor belt. The camera’s lens focuses on the

ongoing processes.

Figure 3.8: Raspberry Pi Camera Module 3 installed on the FMS 200.

Figure 3.9 shows the Raspberry Pi Camera Module 3 was connected to the

Raspberry Pi via the CSI port on the FMS 200 machine.

Figure 3.9: Camera connection to the Raspberry Pi.

30

3.3 Computer Vision Processing

Utilizing the OpenCV library, this section focuses on image processing techniques

to extract meaningful information from the captured frames. This step aims to enhance

the quality of the captured images and prepare them for subsequent analysis.

OpenCV, a powerful computer vision library, offers the Canny edge detection

method as a robust technique for identifying edges within images [21]. Moreover, it

provides the Hough Line Transform method, which plays a pivotal role in identifying

the lines that represent the boundaries of the tape [9]. Figure 3.10 shows the Python

script on Terminal where the code started with the declaration of OpenCV that used

to implement the computer vision processing.

Figure 3.10: Python script on Terminal.

3.4 Canny Edge Detection

Within the broader context of computer vision processing, Canny Edge Detection

is specifically employed to identify edges within the images. This technique enhances

the delineation of objects in the images, providing a foundation for subsequent steps

in the analysis [22].

31

In python script, the lower threshold for the edges was set to 50. Any gradient value

below this threshold is considered not to be an edge. Meanwhile, the higher threshold

for the edges was set to 150. Any gradient value above this threshold is considered to

be a strong edge, and values between the lower and higher thresholds are considered

to be weak edges unless they are connected to strong edges.

3.5 Hough Line Transform

Building on the results of Canny Edge Detection, the Hough Line Transform is

applied to detect lines within the images. This step is crucial for identifying features

such as the alignment and orientation of the cover tape during the tape and reel process

[23].

Figure 3.11 shows the detection of straight lines on the selected region of interest.

The most prominent feature in this image is the green line, which represents the

straight line detected by the Hough line detection algorithm.

Figure 3.11: Hough Line detection on the selected Region of Interest.

3.6 Display Real-Time Data on Node-Red Dashboard

To facilitate real-time monitoring, the captured and processed data is seamlessly

integrated into Node-Red. Figure 3.12 shows the Node-RED workflow. The “Camera”

32

node is used to capture images or data from the Raspberry Pi Camera Module 3. This

data is then passed to the next node in the flow. Then, the “debug 2” node used to

display messages during development or testing phases. It might be showing real-time

data or logging information about the cover tape alignment process. Finally, all data

will be passed to the dashboard node to generate a dashboard in the graph style.

Figure 3.12: Node-RED workflow.

Figure 3.13 shows the dashboard generated after the data was passed to the Node-

RED. A custom dashboard was created to visually represent the real-time information,

allowing for easy observation and analysis of the cover tape alignment during the

process. The graph on the dashboard, titled “Offset during Tap and Reel Process”,

appears to be showing fluctuations in offset over time. The offset values range

approximately from 8.2 mm to 8.7 mm. This could represent the variation in the

alignment of the cover tape during the tape and reel process. If the offset value is high,

it means the cover tape is not properly aligned with the carrier tape.

33

Figure 3.13: Dashboard generated from Node-RED.

Figure 3.14 shows a real-time monitoring view of the captured images from the

conveyor belt and the display of the offset values on the Node-RED dashboard in a

graph form.

Figure 3.14: Real-time monitoring view.

3.7 Generate CSV File

Simultaneously with real-time data display, the processed data is logged into a CSV

file as shown in Figure 3.15. This file serves as a structured repository of the captured

information, enabling further analysis and providing a basis for data transfer to

external platforms, such as MATLAB, for advanced analysis.

34

Figure 3.15: Data logged into CSV file.

3.8 Neural Net Time Series Apps for Predictive Analysis

This section involves integrating the CSV data into MATLAB and implementing

Neural Net Time Series Apps for predictive maintenance analysis. A key focus is

placed on the comparison analysis between two distinct training algorithms, Bayesian

Regularization (BR) and Scaled Conjugate Gradient (SCG). Figure 3.16 shows the

process of implementing a training algorithm using MATLAB.

Figure 3.16: Implementation of Training Algorithm using MATLAB.

35

3.9 Summary

In summary, the methodology outlined in this section provides a comprehensive

and systematic approach for detecting cover tape offset or misalignment during the

tape and reel process using computer vision and neural network techniques. The use

of Canny Edge Detection and Hough Line Transform enhances the analysis of

captured frames, and real-time data is displayed on a Node-RED dashboard while

being logged into a CSV file for further analysis. The final step involves implementing

Neural Net Time Series Apps in MATLAB for predictive maintenance analysis,

comparing the efficiency of Bayesian Regularization and Scaled Conjugate Gradient

algorithms.

36

CHAPTER 4

RESULTS AND DISCUSSION

In this analysis, a comparison is performed between two different training

techniques, Bayesian Regularization (BR) and Scaled Conjugate Gradient (SCG), to

determine their impact on the prediction model's performance. BR is well-known for

its ability to reduce overfitting by using a probabilistic approach to weight

regularization [24]. SCG, a quasi-Newton optimization approach, is well-known for

its ability to quickly reach minima on the error surface [25]. Both techniques are

implemented in the Neural Network Time Series applications in MATLAB, and their

impacts on training dynamics and overall forecast accuracy are examined.

Furthermore, this analysis also discuss about the results in Node-RED’s graph along

with the behavior of it.

4.1 Node-RED

The graph on the Node-RED dashboard as shown in Figure 4.1 displays

fluctuations in offset values over a specific time period, allowing for monitoring and

analysis of variations that occur during this process.

37

Figure 4.1: Offset graph in Node-RED dashboard.

The offset values fluctuate between 8.2 mm and 8.7 mm. This range could be

indicating the variability in the alignment of the cover tape during the tape and reel

process. This also suggests that the alignment of the cover tape is not constant and

varies throughout the process. Apart from that, there is a noticeable spike in the offset

value.

The Fluctuations and the noticeable spike in the offset values could be due to wear

and tear of the conveyor belt on the FMS 200 machine. As the conveyor belt wears

out, it can cause misalignments or variations in the alignment. By detecting changes

in the offset, prediction can be made for potential issues with the conveyor belt and

corrective action can be taken before failure occurs [26].

4.2 Bayesian Regularization (BR)

4.2.1 Training results

For this section, the training results were shown to evaluate the performance of the

model. By looking at metrics such as accuracy, loss, or mean squared error, the model

can understand how well our model is learning and predicting. The training algorithm

used was Bayesian Regularization (trainbr), and the performance metric used was

38

Mean Squared Error (MSE). Figure 4.2 shows the training results from the data for

day 1.

Figure 4.2: Training results in Day 1 (BR).

The training stopped at epoch 511, before reaching the target value of 1000 epochs.

This could be due to reaching the maximum µ (mu), which is a parameter used in the

BR algorithm. The elapsed time for the training was 21 seconds. The performance of

the model improved significantly during the training process, from an initial mean

squared error (MSE) of 0.0237 to a final MSE of 0.00099. This indicates that the

model was able to learn and improve its predictions over time.

The value of µ increased from an initial value of 0.005 to its maximum at 5e+10.

This is a parameter in the BR algorithm that controls the balance between fitting the

data closely (which risks overfitting) and keeping the weights small (which improves

generalization). The fact that µ reached its maximum value suggests that the algorithm

was prioritizing generalization over fitting the training data closely [27].

39

Figure 4.3 shows the training results from the data for day 2. The training stopped

at epoch 410, which is earlier than the previous run that stopped at epoch 511. This

indicates a faster convergence of the model.

The elapsed time for the training was 19 seconds, which is slightly less than the 21

seconds from the previous run. This could suggest an improvement in computational

efficiency.

Figure 4.3: Training results in Day 2 (BR).

The performance of the model, as measured by the mean squared error (MSE),

improved from an initial MSE of 0.817 to a final MSE of 0.000687. The performance

(as measured by MSE) improved significantly on both days, but the starting and

ending MSE were different. This could be due to differences in the data or initial

conditions.

The value of µ increased from an initial value of 0.005 to its maximum at 5e+10,

similar to the previous run. This suggests that the algorithm was prioritizing

generalization over fitting the training data closely in both runs.

40

Figure 4.4 shows the training results from the data for day 3. The training stopped

at epoch 666, which is later than the previous run that stopped at epoch 410. This could

indicate a slower convergence of the model.

Figure 4.4: Training results in Day 3 (BR).

The elapsed time for the training on Day 3 was 25 seconds, which is longer than

the 19 seconds from the previous run. This could suggest a decrease in computational

efficiency. The performance of the model, as measured by the mean squared error

(MSE), improved from an initial MSE of 0.432 to a final MSE of 0.00188. Moreover,

the value of µ increased from an initial value of 0.005 to its maximum at 5e+10, similar

to the previous run.

Figure 4.5 shows the training results from the data for day 4. The training stopped

at epoch 341, which is earlier than the previous run that stopped at epoch 666. This

could indicate a faster convergence of the model.

41

The elapsed time for the training on Day 4 was 17 seconds, which is shorter than

the 25 seconds from the previous run. This could suggest an improvement in

computational efficiency. Moreover, the performance of the model, as measured by

the mean squared error (MSE), improved from an initial MSE of 0.349 to a final MSE

of 0.00131.

Figure 4.5: Training results in Day 4 (BR).

Based on the training results over the four days as shown in Table 4.1, we can

observe that the number of epochs at which training stopped varied each day,

indicating differences in the speed of convergence. Furthermore, faster convergence

could suggest that the model is learning the patterns in the data more quickly. For

computational efficiency, the elapsed time for training decreased over the four days,

suggesting improvements in computational efficiency. Moreover, the performance of

the model, as measured by the mean squared error (MSE), improved each day. This

indicates that the model’s predictions are becoming more accurate.

42

Table 4.1: Performance for 4 days of data using BR

Day Mean Squared Error (MSE) Number of Epochs

1 0.0237 0.00099 511

2 0.817 0.000687 410

3 0.432 0.00188 666

4 0.349 0.00131 341

4.2.2 Correlation coefficient (R)

For this section, scatter plot was generated to represent the results of a Bayesian

Regularization (BR) training neural network from data for Day 1,2,3 and 4. The scatter

plot is a graphical representation of the relationship between the target values and the

output values. The scatter plot provides a visual representation of the model’s

performance. The closer the points are to the diagonal line (y=x), the better the model’s

predictions are to the actual values [28]. The identity line (Y = T) represents perfect

predictions. If all data points were on this line, it would mean that the model’s

predictions were exactly equal to the actual values.

Based on Figure 4.6, the correlation coefficient is 0.90385, which indicates a strong

positive linear relationship between the target and output values. This suggests that

the model has a high degree of accuracy in its predictions.

43

Figure 4.6: Scatter plot for Day 1 (BR).

Figure 4.7 shows scatter plot of a neural network trained using Bayesian

Regularization (BR) on Day 2. The correlation coefficient for Day 2 is 0.92842, which

is higher than the R value from Day 1 (0.90385).

Figure 4.7: Scatter plot for Day 2 (BR).

44

Figure 4.8 shows scatter plot of a neural network trained using Bayesian

Regularization (BR) on Day 3. The correlation coefficient for Day 3 is 0.87387, which

is lower than the R value from Day 2 (0.92842). This suggests that the model’s

predictions on Day 3 have a slightly weaker linear relationship with the actual values

compared to Day 2.

Figure 4.8: Scatter plot for Day 3 (BR).

Figure 4.9 shows scatter plot of a neural network trained using Bayesian

Regularization (BR) on Day 4. The correlation coefficient for Day 4 is 0.9511, which

is higher than the R value from Day 3 (0.87387). This suggests that the model’s

predictions on Day 4 have a stronger linear relationship with the actual values

compared to Day 3.

45

Figure 4.9: Scatter plot for Day 4 (BR).

Over the four days, the model’s performance seems to be improving, as indicated

by the increasing R value and the data points becoming closer to the fit line as shown

in Table 4.2. This suggests that the model is learning effectively, and its predictions

are becoming more accurate over time.

Table 4.2: Correlation coefficient comparison for BR training

Day Correlation Coefficient (R)

1 0.90385

2 0.92842

3 0.87387

4 0.9511

46

4.2.3 Mean Squared Error (MSE)

For this section, a graph representing the Mean Squared Error (MSE) was generated

to represent the results of a Bayesian Regularization (BR) training neural network

from data for day 1,2,3 and 4.

The graph in Figure 4.10 shows the MSE for both the training and testing datasets

over epochs from the data for day 1. The graph indicates that the best training

performance, an MSE of approximately 0.00098985, was achieved at epoch 267. The

MSE for both the training and testing datasets appears to decrease rapidly during the

initial epochs, then continues to decrease more gradually. This suggests that the model

is learning effectively from the data, as it can reduce the errors over time [29].

Moreover, both training and testing errors are decreasing. This suggests that the model

is not overfitting, as it is performing well on both the training data and the unseen

testing data.

Figure 4.10: Graph for Best Training Performance (Day 1).

47

The graph in Figure 4.11 shows the MSE for both the training and testing datasets

over epochs from the data for day 2. The graph indicates that the best training

performance, an MSE of approximately 0.00068677, was achieved at epoch 305. It

appears that the model’s performance has improved on Day 2, as indicated by the

lower MSE at epoch 305 compared to the MSE at epoch 267 on Day 1. The model

seems to be learning effectively and is not overfitting on both days, as evidenced by

the decreasing errors for both training and testing datasets.

Figure 4.11: Graph for Best Training Performance (Day 2).

The graph in Figure 4.12 shows the MSE for both the training and testing datasets

over epochs from the data for day 3. The graph indicates that the best training

performance, an MSE of approximately 0.0018774, was achieved at epoch 488. It

appears that the model’s performance has slightly decreased on Day 3, as indicated by

the higher MSE at epoch 488 compared to the MSE at epoch 305 on Day 2.

48

Figure 4.12: Graph for Best Training Performance (Day 3).

The graph in 3 shows the MSE for both the training and testing datasets over epochs

from the data for day 4. The graph indicates that the best training performance, an

MSE of approximately 0.001307, was achieved at epoch 340.

Figure 4.13: Graph for Best Training Performance (Day 4).

49

Over the four days, the model’s performance varied, with the best performance

achieved on Day 2 as shown in Table 4.3. The model seemed to be learning effectively

on all days, as evidenced by the decreasing MSE. However, the speed of convergence

varied, with the model converging fastest on Day 1 and slowest on Day 3.

Table 4.3: Best Training Performance for 4 days of data using BR.

Day Epoch Best Training Performance (MSE)

1 267 0.00098985

2 305 0.00068677

3 488 0.0018774

4 340 0.001307

4.3 Scaled Conjugate Gradient (SCG)

4.3.1 Training results

For this section, the training results were shown to evaluate the performance of the

model. By looking at metrics such as accuracy, loss, or mean squared error, the model

can understand how well our model is learning and predicting. The training algorithm

used was Scaled Conjugate Gradient (SCG). Figure 4.14 shows the training results

from the data for day 1.

The training stopped at epoch 141, which is significantly less than the target value

of 1000. This indicates that the model achieved convergence early. Meanwhile, the

performance improved from an initial value of 0.0546 to a stopped value of 0.00216.

This shows that the model’s accuracy increased during the training. For the gradient

optimization, the gradient decreased to a very small number (0.000683), suggesting

that the optimization was successful and reached a minimum error.

50

Figure 4.14: Training results in Day 1 (SCG).

Figure 4.15 shows the training results from the data for day 2. The training on Day

2 stopped at a later epoch (205) compared to Day 1 (141). This might indicate that the

model required more iterations to converge on Day 2. Meanwhile, the initial

performance on Day 2 (0.799) was significantly higher than on Day 1 (0.0546),

indicating that the initial error was much larger on Day 2. However, the stopped value

of performance on Day 2 (0.00108) is comparable to Day 1 (0.00216), suggesting that

despite starting from a higher error, the model was able to reduce the error to a similar

level.

The stopped value of the gradient on Day 2 (0.00136) is slightly higher than on Day

1 (0.000683), indicating that the optimization process on Day 2 might not have been

as effective in reducing the error rate as on Day 1.

51

Figure 4.15: Training results in Day 2 (SCG).

Figure 4.16 shows the training results from the data for day 3. The training on Day

3 stopped at an earlier epoch (119) compared to Day 2 (205). This might indicate that

the model required fewer iterations to converge on Day 3. Meanwhile, the initial

performance on Day 3 (0.161) was significantly lower than on Day 2 (0.799),

indicating that the initial error was much smaller on Day 3. However, the stopped

value of performance on Day 3 (0.00258) is slightly higher than Day 2 (0.00108),

suggesting that despite starting from a lower error, the model was not able to reduce

the error to the same level as on Day 2.

The stopped value of the gradient on Day 3 (0.00633) is higher than on Day 2

(0.00136), indicating that the optimization process on Day 3 might not have been as

effective in reducing the error rate as on Day 2.

52

Figure 4.16: Training results in Day 3 (SCG).

Figure 4.17 shows the training results from the data for day 4. The training on Day

4 stopped at an earlier epoch (76) compared to Day 3 (119). This might indicate that

the model required fewer iterations to converge on Day 4. Meanwhile, the initial

performance on Day 4 (0.181) was slightly higher than on Day 3 (0.161), indicating

that the initial error was a bit larger on Day 4. However, the stopped value of

performance on Day 4 (0.00327) is slightly higher than Day 3 (0.00258), suggesting

that despite starting from a slightly higher error, the model was not able to reduce the

error to the same level as on Day 3.

The stopped value of the gradient on Day 4 (0.00674) is slightly higher than on Day

3 (0.00633), indicating that the optimization process on Day 4 might not have been as

effective in reducing the error rate as on Day 3.

53

Figure 4.17: Training results in Day 4 (SCG).

Based on the training results from day 1 to day 4, The model converged at different

epochs each day, with the earliest convergence on day 4 (epoch 76) and the latest on

day 2 (epoch 205) as shown in Table 4.4. This suggests that the model’s learning rate

or initial weights might have varied across the days.

Moreover, the initial performance varied each day, with the highest initial error on

day 2 (0.799) and the lowest on day 1 (0.0546). However, by the end of training each

day, the model was able to reduce the error significantly. The lowest final error was

achieved on day 2 (0.00108), suggesting the best performance on that day.

Furthermore, the gradient at the end of training also varied each day, with the

smallest value on day 1 (0.000683) and the largest on day 4 (0.00674). This indicates

that the optimization process was most effective on day 1.

54

Table 4.4: Performance for 4 days of data using SCG.

Day Mean Squared Error (MSE) Number of Epochs

1 0.0546 0.00216 141

2 0.799 0.00108 205

3 0.161 0.00258 119

4 0.181 0.00327 76

4.3.2 Correlation coefficient (R)

For this section, scatter plot was generated to represent the results of a Scaled

Conjugate Gradient (SCG) training neural network from data for Day 1,2,3 and 4.

Based on Figure 4.18, the correlation coefficient (R) is 0.78294, which indicates a

strong positive correlation between the Target and Output. This means that as the

Target value increases, the Output value also tends to increase.

The line labeled “Output = 0.61*Target+3.3” is the line of best fit for the data. It

represents the relationship between Target and Output. The slope of the line (0.61)

suggests that for each unit increase in the Target, the Output increases by

approximately 0.61 units. Apart from that, the spread of data points around the line of

best fit gives an indication of the variability or noise in the data.

55

Figure 4.18: Scatter plot for Day 1 (SCG).

Based on Figure 4.19, the R value is higher on day 2 (0.8832) compared to day 1

(0.78294), indicating a stronger positive correlation between the Target and Output on

day 2. Moreover, the slope of the line of best fit is higher on day 2 (0.7) compared to

day 1 (0.61), suggesting that for each unit increase in the Target, the Output increases

by a larger amount on day 2.

56

Figure 4.19: Scatter plot for Day 2 (SCG).

Based on Figure 4.20, the R value is lower on day 3 (0.82129) compared to day 2

(0.8832), indicating a slightly weaker positive correlation between the Target and

Output on day 3. Furthermore, the slope of the line of best fit is lower on day 3 (0.67)

compared to day 2 (0.7), suggesting that for each unit increase in the Target, the Output

increases by a slightly smaller amount on day 3.

57

Figure 4.20: Scatter plot for Day 3 (SCG).

Based on Figure 4.21, the R value is higher on day 4 (0.87764) compared to day 3

(0.82129), indicating a stronger positive correlation between the Target and Output on

day 4. Moreover, the slope of the line of best fit is slightly higher on day 4 (0.7)

compared to day 3 (0.67), suggesting that for each unit increase in the Target, the

Output increases by a slightly larger amount on day 4.

58

Figure 4.21: Scatter plot for Day 4 (SCG).

Over the four days, these results suggest that the model’s predictions were most

accurate on day 2, as indicated by the highest R value which is (0.8832) as shown in

Table 4.5. The highest slope was on day 2 and day 4 (0.7), indicating a larger increase

in Output for each unit increase in the Target on those days.

Table 4.5: Correlation coefficient comparison for SCG training

Day Correlation Coefficient (R)

1 0.78294

2 0.8832

3 0.82129

4 0.87764

59

4.3.3 Mean Squared Error (MSE)

For this section, a graph representing the Mean Squared Error (MSE) was generated

to represent the results of a Scaled Conjugate Gradient (SCG) training neural network

from data for day 1,2,3 and 4.

The graph in Figure 4.22 represents the Mean Squared Error (MSE) during the

training of a neural network using the Scaled Conjugate Gradient (SCG) method from

the data for Day 1. The errors for all datasets rapidly decrease during the initial epochs,

indicating that the model is learning quickly at the start of the training process.

The best validation performance is achieved at epoch 135 with an MSE of

0.0021512. This is the point where the model has the lowest error on the validation

set, indicating the most effective learning up to that point.

Figure 4.22: Graph for Best Training Performance (Day 1).

The graph in Figure 4.23 represents the Mean Squared Error (MSE) from the data

for Day 2. The best validation performance improved from 0.0021512 at epoch 135

60

on day 1 to 0.0011513 at epoch 199 on day 2. This indicates that the model performed

better on the validation set on day 2. However, the number of epochs increased from

141 on day 1 to 205 on day 2. This could suggest that the model needed more time to

converge on the second day.

Figure 4.23: Graph for Best Training Performance (Day 2).

The graph in Figure 4.24 represents the Mean Squared Error (MSE) from the data

for Day 3. The best validation performance changed from 0.0011513 at epoch 199 on

day 2 to 0.002633 at epoch 113 on day 3. This indicates that the model performed

slightly worse on the validation set on day 3 compared to day 2. However, the number

of epochs at which the best validation performance was achieved decreased from 199

on day 2 to 113 on day 3. This could suggest that the model converged faster on the

third day.

61

Figure 4.24: Graph for Best Training Performance (Day 3).

The graph in Figure 4.25 represents the Mean Squared Error (MSE) from the data

for Day 4. The best validation performance changed from 0.002633 at epoch 113 on

day 3 to 0.0032003 at epoch 70 on day 4. This indicates that the model performed

slightly worse on the validation set on day 4 compared to day 3. However, the number

of epochs at which the best validation performance was achieved decreased from 113

on day 3 to 70 on day 4. This could suggest that the model converged faster on the

fourth day.

62

Figure 4.25: Graph for Best Training Performance (Day 4).

The MSE for all four days shows a rapid decrease in the initial epochs, indicating

that the model quickly learned to minimize errors as shown in Table 4.6. After

approximately 20 epochs, the MSE stabilizes, suggesting that the model has

essentially learned the pattern in the data and is now refining its parameters for optimal

performance. However, the number of epochs at which the best validation

performance was achieved varied each day. This could suggest that the model’s speed

of convergence was inconsistent across the four days.

The model’s performance, as indicated by the best validation performance,

improved from day 1 to day 2 but then worsened on days 3 and 4. This could be due

to various factors such as changes in the data or model parameters.

63

Table 4.6: Best Training Performance for 4 days of data using SCG.

Day Epoch Best Training Performance (MSE)

1 135 0.0021512

2 199 0.0011513

3 113 0.0026330

4 70 0.0032003

4.4 Comparison for Bayesian Regularization (BR) and Scaled Conjugate

Gradient (SCG)

4.4.1 Training Results

Figure 4.26 shows the training results for combined data (4 days). The training

algorithm used was Bayesian Regularization. The training reached the maximum

number of epochs (1000). This could indicate that the training was stopped because it

reached this limit. Moreover, the performance improved from an initial value of 0.064

to a stopped value of 0.00159. This shows a significant enhancement in model

performance.

Furthermore, the gradient decreased significantly from an initial value of 0.395 to

a very small number close to zero. This suggests that the model may have reached a

minimum in the loss function, indicating convergence. When the gradient is close to

zero, it means that the model’s parameters are not changing much with each update,

suggesting that the model has found a minimum in the loss function [30]. This is

usually a good sign as it indicates that the model has likely learned to predict the target

variable accurately.

64

Figure 4.26: Training results for combined data (BR).

Figure 4.27 shows the training results for combined data (4 days). The training

algorithm used was Scaled Conjugate Gradient (SCG).

Figure 4.27: Training results for combined data (SCG).

The training met the validation criterion at 613 epochs. This is fewer than the 1000

epochs it took with Bayesian Regularization (BR), suggesting that SCG may have

65

converged faster. However, the performance metric stopped at 0.00185. This is

slightly higher than the 0.00159 achieved with BR, indicating that BR might have

resulted in a slightly better fit to the training data.

Furthermore, the gradient is very low at 0.000379, indicating convergence. This is

similar to the result with BR, suggesting that both methods were able to find a

minimum in the loss function. Table 4.7 shows the comparison for the overall

performance for combined data between BR and SCG.

Table 4.7: Overall performance for combined data.

Training Algorithm Mean Squared Error (MSE) Number of Epochs

BR 0.0640 0.00159 1000

SCG 0.0818 0.00185 613

4.4.2 Correlation coefficient (R)

For this section, scatter plot was generated to represent the results of a Bayesian

Regularization (BR) training neural network for the combined data (4 days). Based on

Figure 4.28, the correlation coefficient (R) is 0.9546, indicating a strong positive linear

relationship between the Target and Output variables. This suggests that as the Target

value increases, the Output value also increases. Moreover, the data points are closely

aligned with the fit line, suggesting that the model has effectively captured the

relationship between these two variables.

66

Figure 4.28: Scatter plot for combined data (BR).

Figure 4.29 shows the scatter plot that was generated to represent the results of a

Scaled Conjugate Gradient (SCG) training neural network for the combined data (4

days).

Figure 4.29: Scatter plot for combined data (SCG).

67

The correlation coefficient (R) is 0.94756, indicating a strong positive linear

relationship between the Target and Output variables. This is slightly lower than the

0.9546 achieved with Bayesian Regularization (BR), suggesting that BR might have

resulted in a slightly stronger linear relationship. Meanwhile, the data points are

closely aligned with the fit line, similar to the results with BR. This suggests that both

methods were able to effectively capture the relationship between these two variables.

Table 4.8 shows the comparison between BR and SCG in terms of correlation

coefficient.

Table 4.8: Correlation coefficient comparison between BR and SCG.

Training Algorithm Correlation Coefficient (R)

BR 0.95460

SCG 0.94756

4.4.3 Mean Squared Error (MSE)

For this section, a graph representing the Mean Squared Error (MSE) was generated

to represent the results of Bayesian Regularization (BR) and Scaled Conjugate

Gradient (SCG) training neural network for the combined data (4 days).

The graph in Figure 4.30 represents the Mean Squared Error (MSE) during the

training of a neural network using the Bayesian Regularization (BR) method. The best

training performance is achieved at epoch 921 with an MSE of 0.0015874. This

suggests that the model was able to minimize the error significantly during the training

process. The plot also shows both training and test errors. If these two lines are close

to each other and both decreasing, it is a good sign that the model is not overfitting.

68

Figure 4.30: Graph for Best Training Performance (Combined data).

The graph in Figure 4.31 represents the Mean Squared Error (MSE) during the

training of a neural network using the Scaled Conjugate Gradient (SCG) method.

Figure 4.31: Graph for Best Training Performance (Combined data).

69

The best validation performance is achieved at epoch 607 with an MSE of

0.0017839. This is slightly higher than the 0.0015874 achieved with Bayesian

Regularization (BR), suggesting that BR might have resulted in a slightly better fit to

the training data. However, the model took 607 epochs to achieve the best

performance. This is fewer than the 921 epochs it took with BR, suggesting that SCG

may have converged faster. Table 4.9 shows the comparison between BR and SCG in

terms of performance and convergence time.

Table 4.9: Best Training Performance for combined data.

Day Epoch Best Training Performance (MSE)

BR 921 0.0015874

SCG 607 0.0017839

4.4.4 Prediction results

For this section, a graph representing the actual value was compared with the

predicted value. This graph is generated to represent the results of Bayesian

Regularization (BR) and Scaled Conjugate Gradient (SCG) training neural network

for the combined data (4 days).

The red line represents the predicted offset, and the blue line represents the actual

offset as shown in Figure 4.32 and 4.33. If the two lines are closely aligned, it indicates

that the predictions are accurate. In this case, the red and blue lines do not align closely,

suggesting that the predictions may not be very accurate [30]. If the two lines are

closely aligned, it indicates that the predictions are accurate. In this case, the red and

blue lines do not align closely, suggesting that the predictions may not be very

accurate.

70

Figure 4.32: Comparison between actual and predicted value using BR
training.

However, without quantitative measures such as Mean Absolute Error (MAE), it is

difficult to definitively say which method is performing better [31].

Figure 4.33: Comparison between actual and predicted value using SCG
training.

Figure 4.34 and 4.35 shows the Mean Absolute Error (MAE) graph to compare the

performance of Bayesian Regularization (BR) and Scaled Conjugate Gradient (SCG)

training neural network in prediction.

71

Most of the MAE values are concentrated below 0.2, indicating that the predictions

are generally close to the actual values as shown in Figure 4.33. However, there are

noticeable peaks reaching up to approximately 0.5, suggesting moments of significant

error between predicted and actual offsets.

Figure 4.34: Plot for MAE between actual and predicted value (BR).

The numerous spikes in MAE throughout the graph could suggest that the model

struggles with certain patterns in the data. These could be due to outliers, noise, or

complex patterns in the data that the model fails to capture [32]. The graph is also

similar to the graph shown in Figure 4.35 which is quite hard to compare just by

looking at the graph.

72

Figure 4.35: Plot for MAE between actual and predicted value (SCG).

The plot in Figure 4.36 shows the comparison plot between Mean Absolute Error

for BR (blue) and SCG (orange). The MAE for the SCG method is consistently higher

than the MAE for BR method. This suggests that the BR method has lower average

prediction errors and thus performs better than the SCG method.

Lower MAE values indicate better model performance as they represent smaller

average errors between the predicted and actual values. Therefore, the BR method,

which has lower MAE values, is likely to provide more accurate predictions.

73

Figure 4.36: Comparison plot between MAE for BR and SCG.

4.5 Summary

The analysis section of this project provided a thorough examination of the

performance of Bayesian Regularization (BR) and Scaled Conjugate Gradient (SCG)

training algorithms in the context of cover tape offset detection.

The exploration of training results indicated that BR achieved a lower Mean

Squared Error (MSE) and demonstrated a faster convergence compared to SCG.

Scatter plots illustrated strong positive linear relationships between predicted and

actual values for both algorithms, with a slightly better correlation observed in BR.

However, the analysis cautioned against solely relying on visual inspection and

emphasized the need for quantitative measures like Mean Absolute Error (MAE).

The MAE analysis uncovered nuances in prediction accuracy, revealing both the

overall closeness of predictions to actual values and specific instances of significant

errors. Comparison plots highlighted consistently lower MAE values for BR,

suggesting superior performance in terms of average prediction errors.

74

CHAPTER 5

CONCLUSION AND FUTURE WORKS

5.1 Conclusion

The completion of this comprehensive project focused on the detection of cover

tape offset or misalignment during the tape and reel process has yielded valuable

insights and outcomes. Leveraging the capabilities of the Raspberry Pi Camera

Module 3 and employing computer vision techniques through Python's OpenCV

library, real-time monitoring and analysis of the process were achieved. The

integration with Node-RED facilitated a user-friendly dashboard for real-time data

visualization, enhancing the project's accessibility. The utilization of MATLAB,

coupled with Neural Net Time Series Apps, allowed for the implementation of

predictive maintenance using Bayesian Regularization (BR) and Scaled Conjugate

Gradient (SCG) training algorithms.

The analysis of training results indicated that both BR and SCG exhibited

successful convergence, with BR showcasing slightly better performance in terms of

model fit to the training data. The examination of Mean Squared Error (MSE) graphs

75

provided insights into the training dynamics, highlighting the efficiency of both

methods in minimizing errors. Subsequently, the comparison between actual and

predicted values revealed challenges in accurately predicting offsets, emphasizing the

importance of further quantitative measures.

The Mean Absolute Error (MAE) analysis offered a detailed understanding of

prediction accuracy, showcasing occasional spikes that indicated the model's struggle

with specific patterns, potentially influenced by outliers or complex data structures.

Significantly, the comparison between BR and SCG consistently favored BR,

affirming its superiority in providing lower average prediction errors.

Overall, this project has successfully integrated hardware, software, and advanced

analytical techniques to meet its primary objectives. The design and implementation

of a detection system utilizing the Raspberry Pi Camera Module (R01) effectively

addressed the critical aspect of detecting cover tape offset in the tape and reel process.

The creation of a Node-Red dashboard for live data monitoring (R02) not only

facilitated real-time visualization but also enhanced the project's accessibility.

Furthermore, the utilization of predictive analysis (R03) through computer vision,

machine learning, and the implementation of Bayesian Regularization and Scaled

Conjugate Gradient training algorithms opened avenues for enhanced efficiency and

reduced downtime in industrial settings. The successful achievement of these

objectives underscores the project's ability to contribute meaningfully to the

manufacturing process, offering valuable insights and paving the way for advanced

predictive maintenance strategies.

76

5.2 Sustainable Development Goals (SDG)

This thesis strongly corresponds to Sustainable Development Goals (SDGs) 9 and

12, encompassing the core principles of encouraging innovation and advocating for

responsible consumption and production. SDG 9, often known as "Industry,

Innovation, and Infrastructure," highlights the significance of building durable and

sustainable infrastructure, promoting innovation, and improving scientific research.

This project demonstrates the innovative nature of electronic engineering by

combining the Raspberry Pi camera module, OpenCV library, and predictive

maintenance using MATLAB. The initiative aims to improve industrial processes and

drive technological improvements in manufacturing by accurately identifying cover

tape misalignment during the tape and reel operation.

Furthermore, SDG 12, also known as "Responsible Consumption and Production,"

promotes sustainable methods that result in a successful use of resources and

decreased ecological footprint. This thesis aims to optimize the manufacturing process

by introducing predictive maintenance. Detecting cover tape misalignment in real-

time enhances the efficiency of the tape and reel process while also minimizing

downtime and resource loss. This approach is in line with the overall objective of

promoting sustainable consumption and production practices in the field of electronic

manufacturing. The project's focus was to demonstrate the development of a CSV file

and the real-time visualization of data in Node-RED. This highlights the dedication to

optimizing resource usage and promoting sustainable practices in industrial

environments. This project demonstrates how developments in electronic engineering

can effectively contribute to the achievement of global sustainability goals defined in

SDGs 9 and 12.

77

5.3 Future Work

5.3.1 Real-time Monitoring and Feedback

Looking ahead to future improvements for the cover tape offset detection system,

a key focus is on adding real-time feedback features to enhance its functionality [33].

The main goal is to create a reliable alert system that quickly notifies operators when

cover tape misalignments occur in the tape and reel process. By using various

technologies like email notifications, text messages, or on-screen messages, we can

ensure operators receive timely notifications in the way that suits them best.

Additionally, upgrading the Node-Red dashboard with visual indicators or

notifications will be a great improvement. The operators can easily understand and

respond to misalignments. This interactive feature will let operators acknowledge or

dismiss alerts right from the dashboard.

5.3.2 Data Logging and Analytics

In the context of future work, an imperative focus revolves around the

augmentation of data logging capabilities within the cover tape offset detection

system. In addition to the current reliance on CSV file structures, a proposition

involves the incorporation of a more resilient database system to facilitate the storage

and analytical processing of historical data [34]. This proposition serves the dual

purpose of enhancing the organization and accessibility of extensive datasets while

providing a foundation for discerning overarching trends, intricate patterns, and

optimizing maintenance schedules.

Furthermore, a prospective avenue for refinement involves reevaluating the

reliance on MATLAB exclusively for the implementation of Neural Net Time Series

Apps. An exploration into the feasibility of directly integrating machine learning

78

functionalities into the Python codebase is warranted. This strategic shift aims to

streamline the computational workflow and foster a unified coding environment.

Through this approach, the system can be fortified to autonomously train models,

leveraging historical data for predictive analysis of potential cover tape

misalignments. The adoption of such methodologies aligns with contemporary

research trends, enhancing the system's predictive capabilities and fortifying its

technological underpinnings.

79

REFERENCES

[1] C.-F. J. Kuo, T. Fang, C.-L. Lee, and H.-C. Wu, “Automated optical inspection

system for surface mount device light emitting diodes,” J. Intell. Manuf., vol.

30, no. 2, pp. 641–655, Oct. 2016, doi: 10.1007/s10845-016-1270-6.

[2] S. Qiao, L. Q. Tao, T. L. Ren, and Z. L. Liu, “Tape & Reel single side peel

force test verification,” 2016 17th Int. Conf. Electron. Packag. Technol. ICEPT

2016, pp. 1483–1486, 2016, doi: 10.1109/ICEPT.2016.7583404.

[3] Tanviruzzama and S. Mehfuz, “Review: Lane Detection for Autonomous

Vehicles Using Image Processing Techniques,” 2023 Int. Conf. Power,

Instrumentation, Energy Control. PIECON 2023, pp. 1–6, 2023, doi:

10.1109/PIECON56912.2023.10085756.

[4] E. A. Sekehravani, E. Babulak, and M. Masoodi, “Implementing canny edge

detection algorithm for noisy image,” Bull. Electr. Eng. Informatics, vol. 9, no.

4, pp. 1404–1410, 2020, doi: 10.11591/eei.v9i4.1837.

[5] R. R, N. Saklani, and V. Verma, “A Review on Edge detection Technique

‘Canny Edge Detection,’” Int. J. Comput. Appl., vol. 178, no. 10, pp. 28–30,

80

2019, doi: 10.5120/ijca2019918828.

[6] R. Biswas and J. Sil, “An Improved Canny Edge Detection Algorithm Based

on Type-2 Fuzzy Sets,” Procedia Technol., vol. 4, pp. 820–824, 2012, doi:

10.1016/j.protcy.2012.05.134.

[7] R. Liu and J. Mao, “Research on Improved Canny Edge Detection Algorithm,”

MATEC Web Conf., vol. 232, pp. 3–6, 2018, doi:

10.1051/matecconf/201823203053.

[8] A. S. Hassanein, S. Mohammad, M. Sameer, and M. E. Ragab, “A Survey on

Hough Transform, Theory, Techniques and Applications,” 2015, [Online].

Available: http://arxiv.org/abs/1502.02160.

[9] D. Duan, M. Xie, Q. Mo, Z. Han, and Y. Wan, “An improved Hough transform

for line detection,” ICCASM 2010 - 2010 Int. Conf. Comput. Appl. Syst. Model.

Proc., vol. 2, no. Iccasm, pp. V2-354-V2-357, 2010, doi:

10.1109/ICCASM.2010.5620827.

[10] X. Wang, H. Tan, F. Zhou, and Y. Zhao, “Real-time Classified Hough

Transform Line Detection Based on FPGA,” Proc. 2015 5th Int. Conf. Comput.

Sci. Autom. Eng., vol. 42, no. Iccsae 2015, pp. 548–554, 2016, doi:

10.2991/iccsae-15.2016.101.

[11] L. Khine and J. C. Alimagno, “Die sticking quality issue of tape-and-reel

packaging for WLCSP,” 2019 IEEE 21st Electron. Packag. Technol. Conf.

EPTC 2019, pp. 676–678, 2019, doi: 10.1109/EPTC47984.2019.9026568.

[12] A. Gallegos-Hernández, F. J. Ruiz-Sánchez, and J. R. Villalobos-Cano, “2D

81

automated visual inspection system for the remote quality control of SMD

assembly,” IECON Proc. (Industrial Electron. Conf., vol. 3, pp. 2219–2224,

2002, doi: 10.1109/iecon.2002.1185317.

[13] Y. Cen, J. He, and D. Won, “Defect patterns study of pick-and-place machine

using automated optical inspection data,” Solder. Surf. Mt. Technol., vol. 34,

no. 2, pp. 69–78, 2022, doi: 10.1108/SSMT-03-2021-0007.

[14] K. Ferencz and J. Domokos, “Using Node-RED platform in an industrial

environment,” Jubil. Kandó Konf., no. February, p. 13, 2020, [Online].

Available: chrome-

extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.researchgate.net/

profile/Katalin-Ferencz/publication/339596157_Using_Node-

RED_platform_in_an_industrial_environment/links/5e5ab48c4585152ce8fc6a

6c/Using-Node-RED-platform-in-an-industrial-env.

[15] J. Asante and J. Olsson, “Using Node-Red to Connect Patient, Staff and

Medical Equipment,” pp. 1–77, 2016, [Online]. Available: https://www.diva-

portal.org/smash/get/diva2:949264/FULLTEXT01.pdf.

[16] A. Al Bataineh, “A Comparative Study of Different Curve Fitting Algorithms

in Artificial Neural Network using Housing Dataset,” NAECON 2018 - IEEE

Natl. Aerosp. Electron. Conf., pp. 174–178, 2018.

[17] A. Abbasi and M. Jamil, “Bayesian Regularization Based Electrical Load

Forecasting,” 2023 Int. Conf. Recent Adv. Electr. Electron. Digit. Healthc.

Technol., pp. 415–419, 2023, doi: 10.1109/REEDCON57544.2023.10150744.

82

[18] X. Qi, Y. Wang, and G. Zhen, “Application of Neural Network Analysis Based

on Bayesian Regularization in Crosstalk of Cable,” 2020 6th Glob.

Electromagn. Compat. Conf., pp. 1–3, doi:

10.1109/GEMCCON50979.2020.9456685.

[19] M. Kayri, “Predictive Abilities of Bayesian Regularization and Levenberg –

Marquardt Algorithms in Artificial Neural Networks : A Comparative

Empirical Study on Social Data,” 2016, doi: 10.3390/mca21020020.

[20] T. Le Magueresse et al., “Instantaneous Bayesian regularization applied to real-

time near-field acoustic holography To cite this version : HAL Id : hal-

01714326,” 2021, doi: 10.1121/1.4998571.

[21] S. Srivastava, “Path Detection for Self-Driving Carts by using Canny Edge

Detection Algorithm,” 2021 9th Int. Conf. Reliab. Infocom Technol. Optim.

(Trends Futur. Dir., pp. 1–5, 2021, doi: 10.1109/ICRITO51393.2021.9596109.

[22] C. Wu, “An Improved Canny Edge Detection Algorithm with Iteration Gradient

Filter,” 2022 6th Int. Conf. Imaging, Signal Process. Commun., pp. 16–21,

2022, doi: 10.1109/ICISPC57208.2022.00011.

[23] L. Chandrasekar and G. Durga, “Implementation of Hough Transform for

Image Processing Applications,” 2014 Int. Conf. Commun. Signal Process., pp.

843–847, 2014, doi: 10.1109/ICCSP.2014.6949962.

[24] J. Kolluri, V. K. Kotte, M. S. B. Phridviraj, and S. Razia, “Using Novel L1 / 4

Regularization Method,” no. Icoei, pp. 934–938, 2020.

[25] M. Ma, Y. Zhang, Z. Yang, and Y. Shang, “A class of Nonmonotone Spectral

83

conjugate gradient methods with the generalized quasi-Newton equation,” 2011

Int. Conf. Mechatron. Sci. Electr. Eng. Comput., pp. 1880–1883, 2011, doi:

10.1109/MEC.2011.6025852.

[26] C. Webb, “Developing and evaluating predictive conveyor belt wear models,”

2020, doi: 10.1017/dce.2020.1.

[27] H. Li, J. Li, X. Guan, B. Liang, Y. Lai, and X. Luo, “Research on overfitting of

deep learning,” 2019 15th Int. Conf. Comput. Intell. Secur., pp. 78–81, 2019,

doi: 10.1109/CIS.2019.00025.

[28] J. Yuan, “Research on Employee Performance Prediction Based on Machine

Learning,” 2022 IEEE 5th Int. Conf. Electron. Technol., pp. 1296–1302, 2022,

doi: 10.1109/ICET55676.2022.9824477.

[29] G. J. Dolecek, “Using OFB and LDPC Coding to Decrease MSE Produced by

Gaussian and Impulse Noise,” 2018 IEEE 61st Int. Midwest Symp. Circuits

Syst., pp. 639–642, 2018, doi: 10.1109/MWSCAS.2018.8624047.

[30] R. B. Roy, “A Comparative Performance Analysis of ANN Algorithms for

MPPT Energy Harvesting in Solar PV System,” IEEE Access, vol. 9, pp.

102137–102152, 2021, doi: 10.1109/ACCESS.2021.3096864.

[31] N. Ahmad, Y. Ghadi, and S. Member, “Load Forecasting Techniques for Power

System : Research Challenges and Survey,” IEEE Access, vol. 10, no. June, pp.

71054–71090, 2022, doi: 10.1109/ACCESS.2022.3187839.

[32] J. Qi et al., “On Mean Absolute Error for Deep Neural Network Based Vector-

to-Vector Regression,” vol. 27, pp. 1485–1489, 2020, doi:

84

10.1109/LSP.2020.3016837.

[33] D. Torres, P. Dias, I. Tec, H. S. Ferreira, and I. Tec, “Real-time Feedback in

Node-RED for IoT Development : An Empirical Study.”

[34] M. M. Maran and N. A. Paniavin, “Alternative Approaches to Data Storing and

Processing,” pp. 6–9, 2020.

.

85

APPENDIX A

CODING FOR THE SYSTEM

from picamera2 import Picamera2

from libcamera import controls

import cv2

import numpy as np

import time

import csv

picam2 = Picamera2()

config = picam2.create_preview_configuration()

picam2.configure(config)

picam2.set_controls({"AfMode":controls.AfModeEnum.Continuous})

picam2.start()

regulated_line_position = None

pixel_to_mm_ratio = 0.027

start_time = time.time()

interval = 1

csv_filename = "offset_data.csv"

with open(csv_filename, mode='w', newline='') as csv_file:

 fieldnames = ['Timestamp', 'Distance_mm']

 writer = csv.DictWriter(csv_file, fieldnames=fieldnames)

 writer.writeheader()

 while True:

 im = picam2.capture_array()

 gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)

 edges = cv2.Canny(gray, 50, 150)

 roi_y = 220

 roi_height = im.shape[0] // 16

 roi = edges[roi_y:roi_y + roi_height, :]

 lines = cv2.HoughLinesP(roi, 1, np.pi / 180, threshold=100, minLineLength =100,

maxLineGap=10)

86

 if lines is not None:

 min_distance = float('inf')

 for line in lines:

 x1, y1, x2, y2 = line[0]

 angle = np.arctan2(y2 - y1, x2 - x1) * 180 / np.pi

 if 175 <= angle <= 185 or -5 <= angle <= 5 or 176 <= angle <= 186 or -6 <= angle <= 6:

 line_center = y2

 image_center = im.shape[1] / 2

 offset_pixels = line_center - image_center

 distance_mm = abs(offset_pixels) * pixel_to_mm_ratio

 if distance_mm < min_distance:

 min_distance = distance_mm

 cv2.rectangle(im, (x1, roi_y + y1), (x2, roi_y + y2), (0, 255, 0), 2)

 if min_distance != float('inf') and time.time() - start_time >= interval:

 timestamp = time.strftime('%Y-%m-%d %H:%M:%S')

 writer.writerow({'Timestamp': timestamp, 'Distance_mm': min_distance})

 print("Distance to regulated line (mm):", min_distance)

 start_time = time.time()

 cv2.line(im, (0, im.shape[0] // 2), (im.shape[1], im.shape[0] // 2), (255, 0, 0), 1)

 cv2.imshow("Frame", im)

 if cv2.waitKey(1) & 0xFF == ord('q'):

 break

cap.release()

cv2.destroyAllWindows()

