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ABSTRACT 

This thesis presents a comprehensive study on the detection of cover tape offset or 

misalignment during the tape and reel process, crucial for packaging electronic 

components into individual pockets of carrier tape. The research aims to develop an 

efficient system utilizing the Raspberry Pi Camera Module for detecting and analysing 

cover tape misalignment. The methodology involves integrating the Raspberry Pi 

Camera Module with a microcontroller to capture and process images of the carrier 

tape, employing image processing techniques for misalignment detection. The 

resulting data is displayed in a user-friendly dashboard format using Node-RED. 

Additionally, the data is analysed in MATLAB for predictive analysis. The findings 

of this research, including the analysis of training results, demonstrate the successful 

implementation of a reliable cover tape misalignment detection system. Notably, 

Bayesian Regularization (BR) training algorithm outperformed Scaled Conjugate 

Gradient (SCG) training algorithm for cover tape offset’s predictive analysis, 

exhibiting lower Mean Squared Error (MSE) with 0.0015874 for BR compared to 

0.0017839 for SCG, consistently lower Mean Absolute Error values, stronger linear 

correlations, and superior overall performance, emphasizing its effectiveness for 

accurate predictions. 
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ABSTRAK 

Tesis ini menerangkan tentang satu kajian menyeluruh mengenai pengesanan 

ketidakseimbangan pada penutup pita semasa proses “Tap and Reel”. Matlamat kajian 

ini adalah untuk membangunkan satu sistem yang efisien menggunakan Modul 

Kamera Raspberry Pi untuk mengesan dan menganalisis ketidakseimbangan penutup 

pita. Rasional bagi kajian ini adalah untuk meningkatkan kualiti proses ini dengan 

mengautomatikkan pengesanan ketidakseimbangan. Metodologi yang digunakan 

dalam projek ini melibatkan penggunaan Modul Kamera Raspberry Pi untuk merakam 

imej pita pembawa itu. Imej yang dirakam dianalisis menggunakan teknik 

pemprosesan imej untuk mengesan dan mengukur ketidakseimbangan penutup pita. 

Data yang diperoleh kemudiannya dipaparkan dalam format papan pemuka yang 

dikenali sebagai Node-RED. Selain itu, data tersebut dianalisis di MATLAB untuk 

analisis prediktif. Hasil kajian ini, termasuk analisis keputusan latihan, menunjukkan 

pelaksanaan yang berjaya bagi sistem pengesanan yang boleh dipercayai. Secara 

signifikan, algoritma latihan Bayesian Regularization (BR) telah mengatasi algoritma 

latihan Scaled Conjugate Gradient (SCG) untuk analisis prediktif ketidaksempurnaan 

penutup, menunjukkan Nilai Purata Kuasa Dua (MSE) yang lebih rendah iaitu 

0.0015874 untuk BR yang dapat dibandingkan dengan 0.0017839 untuk SCG. 
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CHAPTER 1  

INTRODUCTION  

The tape-and-reel process is a widely used method for packaging electronic 

components, which involves placing them in individual pockets of carrier tape for 

protection and ease of handling during manufacturing and shipping. However, during 

the tape and reel process of packaging electronic components, the cover tape offset, or 

misalignment occurs, leading to product defects and waste. This problem can be 

difficult to detect and correct in a timely manner, leading to increased costs and 

decreased productivity. 

1.1 Background of Project 

The packaging of electronic components is a critical process in the electronics 

industry, ensuring the protection and efficient handling of these delicate devices. One 

commonly used method is the tape and reel process, which involves packaging 
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individual components into pockets of carrier tape for ease of handling and automated 

assembly. However, during this process, misalignment or offset of the cover tape can 

occur, leading to various issues such as component damage, improper feeding, and 

increased production defects. 

The current state of knowledge in this area highlights the importance of accurate 

and reliable detection of cover tape misalignment to ensure the quality and efficiency 

of the packaging process. Manual inspection methods are commonly employed, which 

are time-consuming, labor-intensive, and prone to human error. There is a need for an 

automated system that can detect cover tape misalignment in real-time, providing 

prompt feedback for corrective actions. 

Despite the significance of this problem, there is a gap in research regarding the 

development of an integrated and efficient system for cover tape misalignment 

detection. Existing studies have focused on individual components of the system, such 

as image processing techniques or machine vision algorithms. However, there is a lack 

of comprehensive solutions that integrate various technologies to provide a complete 

and user-friendly system for real-time monitoring and analysis. 

The aim of this research project is to address this gap by developing a robust and 

automated system for detecting cover tape misalignment during the tape and reel 

process. The system will utilize the Raspberry Pi Camera Module as a sensor to 

capture images of the carrier tape, which will then be processed and analyzed to detect 

any misalignment. The data from the sensor will be merged into a Raspberry Pi 

microcontroller, which will serve as the central processing unit for the system. 
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To provide a user-friendly interface for data visualization and analysis, the system 

will utilize Node-RED, a powerful dashboard tool. This will enable operators to 

monitor the real-time data and quickly identify any instances of cover tape 

misalignment. Additionally, the data will be transferred to MATLAB to apply 

predictive analysis training algorithms to identify patterns and potential future 

problems, thereby enabling proactive maintenance and minimizing production 

disruptions. 

The scope of this work will encompass the design, development, and integration of 

the complete system for cover tape misalignment detection. The research will focus 

on the technical aspects of image processing, data integration, and system 

implementation. 

1.2 Problem Statement 

The packaging of electronic components is a critical process that ensures the safe 

transport and use of electronic devices. However, this process can be affected by 

various factors that may result in defects and waste, such as misalignment or improper 

handling. C. F. Jeffrey Kuo et al. have addressed the limitations of existing manual 

inspection methods for surface mount devices (SMDs) that are prone to human errors 

and time-consuming [1]. In addition, S. Qiao and L. Q. Tao addressed the issue of 

inconsistent peel force during the tape and reel packaging process for electronic 

components [2]. The authors explain that the peel force, which is the force required to 

remove the carrier tape from the adhesive tape during assembly, must be consistent to 

ensure that the electronic components are properly positioned and aligned. 

Inconsistent peel force can result in misalignment or damage to the components, which 

can lead to defects and waste. 
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Existing solutions for detecting packaging issues in electronic components are 

often expensive and complex, requiring specialized equipment and expertise. 

Additionally, many of these solutions only detect issues after they have already 

occurred, which may be too late to prevent product defects or waste.  

Therefore, to address this problem, our proposed project aims to develop a cost-

effective and user-friendly system for detecting packaging issues in electronic 

components. Our system will have a Raspberry Pi Camera Module, capture images of 

the carrier tape, which will then be processed and analyzed to detect any misalignment. 

The system will be designed to be easy to use and integrate into existing manufacturing 

processes, making it a valuable tool for manufacturers looking to improve efficiency 

and reduce waste. The project outcome is expected to improve productivity, reduce 

waste and lower costs, resulting in significant benefits for the electronics industry. 

 

1.3 Objective 

These objectives collectively focus on developing an efficient cover tape offset 

detection system, integrating it with Node-RED for real-time data visualization, and 

enhancing the system's functionality through predictive analysis using MATLAB. 

The objectives of this project are: 

1. To design a detection system that detects the cover tape offset in tape and reel 

process using a Raspberry Pi Camera Module (R01).  

2. To formulate a Node-RED dashboard for live data monitoring (R02). 

3. To analyze the cover tape offset behavior using predictive analysis (R03). 
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1.4 Scope of Project 

The scope of this project encompasses the development of a system to detect cover 

tape offset or misalignment during the tape and reel process used in packaging 

electronic components into individual pockets of carrier tape. The system will utilize 

the Raspberry Pi Camera Module, employing Canny Edge Detection and Hough Line 

Transform techniques from computer vision to analyze and process images captured 

by the camera module. The data from the sensor will be merged into a Raspberry Pi 

microcontroller for further processing and analysis. 

The project operates within certain constraints. It will be implemented using the 

Raspberry Pi platform and rely on the Raspberry Pi Camera Module for image capture. 

The system design will integrate computer vision techniques, specifically grayscale 

conversion, edge detection, and contour detection, to enable accurate detection of 

cover tape misalignment. Furthermore, the system will be using Node-RED as the 

dashboard for real-time data display. 

The components to be packaged are assumed to have standardized dimensions and 

packaging requirements, facilitating consistent detection procedures. Additionally, it 

is assumed that the Raspberry Pi Camera Module will provide sufficient image quality 

and resolution for effective cover tape misalignment detection. 

The prototype scope of the project focuses primarily on functionality rather than 

mass production considerations. The specific size and weight of the products being 

packaged are not explicitly defined within the scope, as the project's emphasis is on 

developing the cover tape misalignment detection system rather than the physical 

components being packaged. 

The final deliverables of this project will include a working prototype of the cover 

tape misalignment detection system, implemented on the Raspberry Pi platform. The 
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system will provide real-time data display through the Node-RED dashboard, 

facilitating cover tape misalignment monitoring. 

Acceptance criteria for the project include the accurate detection of cover tape 

misalignment within a specified tolerance level and the provision of clear, intuitive, 

and responsive real-time data on the Node-RED dashboard. Excluded from the project 

scope are the design of the tape and reel equipment itself. 

 

1.5 Thesis Outline 

This thesis is organized systematically into the following chapters. Chapter 2 shows 

an overview of the Canny Edge Detection Method, Hough Line Transform, the past 

project that relate with the detection of cover tape offset in Tap and Reel Process, and 

the overview of Node-Red. Chapter 3 highlights the overall process throughout this 

project, focusing on the design and development of the cover tape offset detection 

system using Raspberry Pi camera module and microcontroller. The chapter starts by 

discussing the system requirements and specifications, including the resolution and 

field of view of the camera module, the processing capabilities of the microcontroller, 

and the necessary connectivity interfaces. Chapter 4 highlights the comparative 

analysis between two distinct training algorithms, namely Bayesian Regularization 

(BR) and Scaled Conjugate Gradient (SCG), to analyze their impact on the 

performance of the predictive model. Lastly, Chapter 5 highlights the conclusion for 

this whole project, future recommendation, and the relationship between this project 

to the Sustainable Development Goals (SDG).



 

 

 

CHAPTER 2  

BACKGROUND STUDY 

The utilization of image processing techniques, specifically Canny edge detection, 

holds significance in offset detection within the tap and reel process. The Canny edge 

detection algorithm offers an effective approach for identifying edges and accurately 

measuring offsets. However, challenges such as image noise and threshold selection 

need to be addressed for robust offset detection. The Hough Line Transform is another 

relevant algorithm that can extract and analyze lines in images, aiding in offset 

detection. Variations of the Hough Transform, such as the random and probabilistic 

versions, optimize computational efficiency. Several studies highlight the importance 

of cover tape offset detection in the tap and reel process and propose various 

approaches to address this issue. Additionally, Node-RED, a versatile data integration 

and visualization platform, is applied in both industrial and healthcare domains, 

showcasing its adaptability and effectiveness. In summary, the combined literature 
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underscores the relevance of Canny edge detection, the Hough Line Transform, cover 

tape offset detection, and Node-RED in advancing offset detection processes and 

improving outcomes in manufacturing and healthcare. In this chapter, the combined 

literature underscores the relevance of Canny edge detection, the Hough Line 

Transform, cover tape offset detection, and Node-RED in advancing offset detection 

processes and improving outcomes in manufacturing and healthcare. 

2.1 Canny Edge Detection 

The use of Canny edge detection in offset detection within the tap and reel process 

utilizing image processing techniques holds significance in the field of manufacturing 

and quality control. In this literature review, we will examine the relevance of Canny 

edge detection in offset detection, evaluate its achievements and limitations, and 

justify the need for further investigation in this area. 

Image segmentation plays a vital role in preparing images for the detection step by 

extracting specific features from the source image [3]. In offset detection, edge 

segmentation is a crucial aspect as it helps locate relevant characteristics of objects in 

the image by detecting their edges. Edge-based segmentation reduces image size and 

facilitates analysis by removing extraneous data. Canny edge detection is a widely 

known and effective approach in edge-based segmentation. 

The Canny edge detection algorithm, introduced by John F. Canny in 1986, is 

considered one of the optimal methods for edge detection. It employs a multi-stage 

approach, including Gaussian filters and intensity gradient changes, to identify edges 

in images. The algorithm aims to strike a balance between reducing noise interference 

and maintaining accurate edge detection [4]. Its ability to identify the best edge 

detection method makes it particularly relevant in offset detection tasks. 
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Offset detection in the tap and reel process involves identifying deviations or 

misalignments in the positions of components. By detecting edges using the Canny 

algorithm, it becomes possible to locate the boundaries of the components and 

accurately measure the offsets. This information is crucial for ensuring the quality and 

reliability of the manufacturing process. 

However, despite its effectiveness, the application of the Canny edge detection 

algorithm, which the result can be seen on Figure 2.1, is not without limitations. One 

significant limitation is the sensitivity of edge detection outcomes to image noise [5]. 

The mathematical operations involved in edge detection, based on derivatives, can be 

affected by noise, leading to inaccurate edge detection results. To address this, 

preprocessing techniques such as Gaussian filters are commonly used to reduce noise. 

Implementing Gaussian blur to smooth the image helps eliminate noise and enhance 

the accuracy of offset detection. In addition, the algorithm's performance relies on the 

careful selection of threshold values, which are often set experimentally [6]. Various 

approaches have been proposed to enhance the algorithm, such as adaptive 

thresholding methods and incorporating fuzzy reasoning and genetic algorithms [7]. 

 

Figure 2.1: Detected Edges in an Image [5]. 
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In conclusion, the utilization of the Canny edge detection algorithm in offset 

detection within the tap and reel process using image processing techniques is highly 

relevant. It offers a reliable method for identifying and measuring offsets in 

manufacturing. However, challenges related to image noise and threshold selection 

need to be addressed to ensure accurate and robust offset detection. Further 

investigation in these areas will contribute to the advancement of edge detection 

techniques and enhance the performance of the Canny algorithm in offset detection 

applications. 

2.2 Hough Line Transform 

The Hough Transform (HT) is a widely used algorithm in computer vision and 

pattern recognition, and it holds significant relevance to your project on offset 

detection in the tap and reel process using a Raspberry Pi camera module. By applying 

the HT technique, you can effectively extract and analyze lines in the images captured 

by the Raspberry Pi camera module, aiding in the detection and measurement of 

offsets in the tap and reel process. 

The HT algorithm, originally introduced by Paul Hough in 1962, transforms 

spatially extended patterns into compact features in a parameter space, simplifying the 

line detection problem [8]. In your project, the HT can be leveraged to identify and 

quantify offsets by detecting lines associated with the target objects in the tap and reel 

process. 

The variations of the HT, such as the random Hough transform (RHT) and the 

probabilistic Hough transform (PHT), can be particularly useful in optimizing the 

computational efficiency for real-time offset detection on the Raspberry Pi platform. 

The result for the real-time offset detection can be seen in Figure 2.2 which the method 

can be applied in this project. The RHT, through its reduction of unnecessary 
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computations, can enhance the processing speed, while the PHT's utilization of 

random sampling significantly reduces the computation load [9]. These variations can 

assist in achieving real-time performance, a necessary requirement for applications 

like robot navigation and object tracking. 

 

Figure 2.2: Original Picture and Line Detection Results [9]. 

Implementing the HT on the Raspberry Pi hardware platform, possibly using a 

Field Programmable Gate Array (FPGA), can further enhance the real-time line 

detection capabilities in your project. By leveraging the hardware capabilities of the 

Raspberry Pi, you can efficiently detect and measure offsets, addressing the challenges 

of memory capacity and time-consuming computations highlighted in the literature 

[10]. Additionally, by simplifying the hardware architecture and avoiding 

computationally intensive trigonometric calculations, the implementation can 

optimize the performance and resource requirements. 

 

2.3 Cover Tape Offset in Tap and Reel Process 

Chung-Feng Jeffrey Kuo et al. presented an automated optical inspection system 

for surface mount device light emitting diodes. The paper highlighted a machine vision 

system that utilizes various image processing techniques, such as binarization, 
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morphology, and feature extraction, to detect defects in SMD LEDs which consists of 

a high-resolution camera, lighting sources, and image processing software [1]. The 

research has a success rate of 97.5% in detecting LED defects, demonstrating the 

effectiveness of the proposed approach. In addition, the predictive maintenance aspect 

of the proposed system also aligns with the concept of automation, as it helps prevent 

machine breakdowns before they occur, reducing downtime and maintenance costs. 

However, the paper only focusses on the development of an automated optical 

inspection system and demonstrates the effectiveness of using vision systems for only 

defect detection. Therefore, this study will focus on the concepts and techniques to 

develop a low-cost monitoring system for cover tape offset detection and predictive 

maintenance in the tape and reel process. 

Moreover, Lynn Khine and Joel C. Alimagno discuss the die sticking quality issue 

of tape-and-reel packaging for Wafer-Level Chip-Scale Package (WLCSP) [11]. The 

WLCSP package is widely used in microelectronics industries due to its small form 

factor, light weight, and low cost. The paper highlighted a method to investigate the 

die sticking issue in WLCSP by using a high-speed camera to capture the real-time 

images of the tape-and-reel process. However, the paper only focusses on identifying 

the critical stage where the die sticking occurred, which was found to be caused by the 

excessive deformation of the cover tape during the peeling process. Therefore, this 

study will focus on monitoring the cover tape offset, which the system can help to 

prevent die sticking during the tape-and-reel process. The system can reduce yield loss 

and improve production efficiency.  

Shuai Qiao et al. presented a tape and reel single side peel force test verification 

that discusses the importance of ensuring the quality of the tape and reel packaging 
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process in electronic manufacturing [2]. In this process, cover tape is used to seal the 

components in a carrier tape for protection and transportation. The cover tape is sealed 

by an adhesive, and the single side peel force (SSPF) test is used to measure the 

strength of this adhesive. The paper highlights the significance of the SSPF test in 

verifying the tape and reel packaging quality. The test can identify whether the cover 

tape is properly sealed and can detect any variations in peel force that may indicate 

the presence of defects or issues such as cover tape offset.  

 

Figure 2.3: Tape and Reel Structure [2]. 

 

However, the paper only focusses on analyzing the results of the SSPF test and 

manufacturers can take corrective actions to improve the tape and reel packaging 

process. The proposed project of developing a low-cost monitoring system using 

Raspberry Pi Camera Module to detect cover tape offset in tape and reel process is 

highly relevant to this research paper. The SSPF test measures the strength of the 

adhesive used to seal the cover tape, and the proposed monitoring system can detect 

variations in the position of the cover tape that may affect the strength of the adhesive. 

By detecting and analyzing cover tape offset, the monitoring system can provide early 
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warning of potential defects or issues in the tape and reel packaging process, allowing 

for timely corrective actions to be taken. 

Alejandro Gallegos-Hernandez and Francisco J. Ruiz-Sanchez present a 2D 

automated visual inspection system for the remote quality control of surface mount 

device (SMD) assembly [12]. The system is designed to detect defects such as missing 

components, component misplacement, and polarity errors, among others. In the 

proposed project, diffuse-reflective sensor is used to detect cover tape offset in tape 

and reel process, whereas in the Gallegos-Hernandez and Ruiz-Sanchez paper, a 

camera is used to capture images of SMD board for defect detection. Moreover, the 

proposed project aims to develop a low-cost monitoring system for detecting cover 

tape offset, while the Gallegos-Hernandez and Ruiz-Sanchez paper presents a remote 

quality control system for SMD assembly. Both the proposed project and the Gallegos-

Hernandez and Ruiz-Sanchez paper aim to improve the quality of electronic 

components, which is crucial for the reliability and durability of electronic devices. 

Yuqiao Cen et al. presented a Defect patterns study of pick-and-place machine 

using automated optical inspection data assembly that discusses the use of automated 

optical inspection (AOI) to detect defects in the pick-and-place process of surface 

mount devices (SMDs) [13]. The paper highlighted that AOI systems are widely used 

in SMD assembly lines to improve quality control by detecting defects such as missing 

components, misplaced components, and soldering defects. However, AOI systems 

can be limited in their ability to detect defects that occur during the pick-and-place 

process, such as defects caused by the offset of cover tape in tape and reel packaging. 

Additionally, the development of a predictive maintenance system based on the 
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situation can improve the overall efficiency of the SMD assembly process by reducing 

downtime and minimizing the need for manual inspection and maintenance. 

2.4 Node-RED 

This literature review aims to compare the applications of Node-RED in two 

distinct domains: industrial environments for cover tape offset detection and 

predictive maintenance, as discussed in the research paper by Katalin Ferencz and 

József Domokos, and healthcare systems for connecting patients, staff, and medical 

equipment, as explored in the research paper by Junior Asante and Joel Olsson. By 

examining the similarities and differences between these two domains, this review 

seeks to provide insights into the versatility and effectiveness of Node-RED in diverse 

application areas. 

Both research papers highlight the benefits of using Node-RED as a data integration 

and visualization platform. Node-RED's visual programming interface simplifies the 

development process, enabling the creation of event-driven applications and 

workflows. Its ability to connect disparate data sources, devices, and services allows 

for seamless data integration and interoperability. The customizability and scalability 

of Node-RED make it adaptable to the evolving needs of both industrial and healthcare 

environments. Additionally, Node-RED's real-time visualization capabilities facilitate 

efficient decision-making and enhance overall system performance. 

In the industrial context, the research paper by Ferencz and Domokos focuses on 

detecting cover tape offset and performing predictive maintenance using Node-RED. 

The research emphasizes the benefits of Node-RED in creating a user-friendly 

dashboard for monitoring and analyzing cover tape offset data [14]. 
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Figure 2.4: Node-RED Dashboard [14]. 

The research paper by Asante and Olsson explores the application of Node-RED in 

healthcare systems to connect patients, staff, and medical equipment. Node-RED is 

utilized to integrate patient monitoring devices, enabling real-time data collection and 

transmission for enhanced patient care. The platform also streamlines staff 

communication by integrating various communication channels, facilitating effective 

collaboration and prompt response to emergencies [15]. Moreover, Node-RED 

enables the integration of medical equipment, allowing for real-time monitoring, 

predictive maintenance, and data-driven decision-making in healthcare settings. 

While both applications share common benefits and features of Node-RED, there 

are notable domain-specific differences. In the industrial domain, the focus is on 

detecting and preventing issues related to cover tape offset, contributing to product 

quality and reliability. On the other hand, in the healthcare domain, Node-RED plays 

a vital role in connecting patients, staff, and medical equipment, enhancing patient 

care, and improving operational efficiency. The integration of medical devices and 
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analytics platforms in healthcare applications enables data-driven decision support and 

personalized treatment [15]. 

In conclusion, Node-RED demonstrates its versatility and effectiveness in diverse 

application areas, as highlighted by the research papers reviewed. In industrial 

environments, Node-RED aids in cover tape offset detection and predictive 

maintenance, while in healthcare systems, it connects patients, staff, and medical 

equipment. Both applications leverage Node-RED's capabilities for seamless data 

integration, real-time visualization, and interoperability. The comparison of these 

applications emphasizes the adaptability of Node-RED to different domains and 

underscores its potential for enhancing processes and outcomes in various industries. 

2.5 Training Algorithms 

This section explores key studies that utilize various training techniques, including 

Bayesian Regularization (BR) and Scaled Conjugate Gradient (SCG), in diverse 

applications such as load forecasting, crosstalk analysis, and neural network training. 

In the context of machine learning, training algorithms are computational procedures 

that enable a model to learn patterns, relationships, and representations from data. 

These algorithms iteratively adjust the model's parameters based on input data and 

their corresponding output labels, with the goal of minimizing the difference between 

predicted and actual outcomes [16]. These studies provide important insights into the 

importance and applications of the training algorithms, providing foundations for 

additional research in the context of cover tape offset detection and predictive analysis 

in this project. 

A. Abbasi presented Bayesian Regularization Based Electrical Load Forecasting 

that discusses the use of Bayesian Regularization in short-term load forecasting. The 
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paper highlights that accurate short-term load forecasting is crucial for optimized load 

generation planning, decreasing the generation-demand gap, and reducing power 

losses [17]. The paper also discusses the performance of different training techniques, 

including Bayesian Regularization, Scaled Conjugate Gradient, and Levenberg–

Marquardt [17]. 

Y. Wang presented Application of Neural Network Analysis Based on Bayesian 

Regularization in Crosstalk of Cable that discusses the use of an artificial neural 

network based on Bayesian regularization training function for the internal twisted 

pair electromagnetic crosstalk system of aircraft. The prediction results show that the 

prediction value of the neural network based on Bayesian regularization training 

function is close to the input value, and the regression analysis shows that the 

prediction reliability of the network is high [18]. In relation to the project, this article 

can provide valuable insights into the application of Bayesian Regularization in 

predictive models. Specifically, the methodologies used in the paper which to apply 

Bayesian Regularization in the Neural Net Time Series Apps for predictive 

maintenance. The comparison of different training techniques in the paper can be 

referred to for the analysis of Bayesian Regularization and Scaled Conjugate Gradient 

(SCG) in your project.  

Furthermore, Murat Kayri concludes that the Bayesian regularization training 

algorithm shows better performance than the Levenberg-Marquardt algorithm. The 

objective of this study is to compare the predictive ability of Bayesian regularization 

with Levenberg-Marquardt Artificial Neural Networks. The study examines the best 

architecture of neural networks by testing one-, two-, three-, four-, and five-neuron 

architectures. MATLAB was used for analyzing the Bayesian regularization and 
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Levenberg-Marquardt learning algorithms. Bayesian regularization artificial neural 

networks have the advantage of revealing potentially complex relationships, making 

them suitable for quantitative studies and providing a robust model [19]. 

The paper by Thibaut Le Magueresse discusses the application of instantaneous 

Bayesian regularization to RT-NAH for the reconstruction of non-stationary sound 

sources using a planar microphone array. It introduces Bayesian estimation of the 

regularization parameter based on prior knowledge of the problem, allowing for the 

consideration of fluctuating properties of the sound field [20]. The superiority of 

Bayesian regularization over state-of-the-art methods is observed numerically and 

experimentally for the reconstruction of non-stationary sources. This could be relevant 

to the project as it involves the use of Bayesian regularization that could potentially 

improve the accuracy of the predictive maintenance system. 

Bayesian regularization improves accuracy by providing a more robust and 

adaptive approach to regularization in the reconstruction of non-stationary sources 

[20]. It introduces the estimation of the regularization parameter based on prior 

knowledge of the problem, allowing for the consideration of fluctuating properties of 

the sound field. Compared to state-of-the-art methods, Bayesian regularization has 

been observed to offer superior results in the reconstruction of non-stationary sources. 

Furthermore, the paper by Al Bataineh compares the performance of three 

algorithms, Levenberg-Marquardt, Bayesian Regularization, and Scaled Conjugate 

Gradient, in training artificial neural networks using the housing dataset. The 

algorithms are evaluated based on their ability to fit curves to the data, measured using 

Mean Square Error (MSE). The mean squared error is computed for each algorithm, 

with Levenberg-Marquardt having an MSE of 7.0902, Scaled Conjugate Gradient at 
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15.2932, and Bayesian Regularization at 5.3480 [16]. It was found that Bayesian 

Regularization gave the best accuracy at 96.78%, followed by Levenberg-Marquardt 

at 94.53% and Scaled Conjugate Gradient at 90.51%. 

 

Figure 2.5: Regression Plot for BR Algorithm [16]. 

 

Figure 2.6: Regression Plot for SCG Algorithm [16]. 
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Figure 2.7: The Performance of BR Algorithm [16]. 

 

Figure 2.8: The Performance of SCG Algorithm [16]. 

Based on the visualized plots, Bayesian Regularization is the optimal solution for 

achieving higher prediction accuracy. However, it requires more iterations for training 

and is more time-consuming compared to other algorithms. The Scaled Conjugate 
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Gradient algorithm is less accurate than the other techniques mentioned, however it 

has a faster training time than Bayesian Regularization. The Scaled Conjugate 

Gradient algorithm is advantageous because of its lower memory consumption. 

2.6 Summary 

Table 2.1: Method Summary  

Reference Year  Title Summary Method 

[1] 2016 Automated optical 

inspection system for 

surface mount device 

light emitting diodes 

Chung-Feng Jeffrey Kuo et al. introduced an 

automated optical inspection system for 

detecting defects in surface mount device 

light-emitting diodes (SMD LEDs).  

[11] 2019 Die sticking quality 

issue of tape-and-reel 

packaging for WLCSP 

Lynn Khine and Joel C. Alimagno address the 

die-sticking quality issue in tape-and-reel 

packaging for Wafer-Level Chip-Scale 

Packages (WLCSP).  

[2] 2016 Tape & Reel single 

side peel force test 

verification 

Shuai Qiao and collaborators introduced a 

tape and reel single-side peel force (SSPF) 

test verification method to ensure the quality 

of the tape and reel packaging process  

[12] 2002 2D automated visual 

inspection system for 

the remote quality 

control of SMD 

assembly 

Alejandro Gallegos-Hernandez and 

Francisco J. Ruiz-Sanchez introduced a 2D 

automated visual inspection system tailored 

for remote quality control of surface mount 

device (SMD) assembly. 
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[13] 2022 Defect patterns study 

of pick-and-place 

machine using 

automated optical 

inspection data 

Yuqiao Cen and team explore defect patterns 

in pick-and-place machines during surface 

mount device (SMD) assembly, utilising 

automated optical inspection (AOI) data. 

 

Table 2.1 provides an extensive background study for the project, focusing on the 

significance of studies on cover tape offset detection, contributing unique insights, and 

highlighting the need for further research to overcome challenges and improve the 

performance of these techniques. 

Furthermore, the chapter also includes studies on image processing techniques, 

specifically Canny edge detection and the Hough Line Transform in offset detection 

within the tap and reel process. It provides the relevance of these methods in 

manufacturing and quality control, highlighting their crucial role in detecting cover 

tape misalignments. Node-RED's versatility in data integration and visualisation for 

industrial applications, such as cover tape offset detection and healthcare systems, is 

explored.  

Furthermore, the chapter also includes a brief section comparing Scaled Conjugate 

Gradient with Bayesian Regularization, emphasising their roles in training neural 

networks.  
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CHAPTER 3  

METHODOLOGY  

The methodology section is important in detecting cover tape offset or 

misalignment from the carrier tape during the tape and reel process using computer 

vision and neural network techniques. It outlines the systematic approach taken to 

answer the research question. This part is an organised roadmap outlining the 

sequential actions and techniques to achieve the study's objectives.  

 The flowchart in Figure 3.1 outlines the project process, which aims to detect cover 

tape offset or misalignment from the carrier tape during the tape and reel process. The 

process begins with the initialisation of the Raspberry Pi Camera Module 3, which 

captures real-time video of the ongoing process. This video feed is then subjected to 

computer vision processing using the OpenCV library. The system checks for any 

offset on the cover tape. The system calculates the offset value in millimetres if an 

offset is detected. 
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This information is then used in two ways, which is, it is recorded in a CSV file, 

and it is displayed in real-time on a Node-RED dashboard. The CSV data is 

subsequently transferred to a MATLAB environment. The data is implemented in 

MATLAB on Neural Net Time Series Apps for predictive analysis. This marks the 

completion of the process. 

 

Figure 3.1: Flowchart for the whole process. 

3.1 Measurement from Industry 

Analysing the offset's measurement from the industry is an important step in the 

project. It helps to understand the industry standards and requirements related to 
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detecting cover tape offset or misalignment during the tape-and-reel process. In the 

industry, detecting cover tape offset or misalignment during the tape-and-reel process 

is critical to ensure the quality of the packaged components. Any offset greater than 

8mm would be considered a defect and could result in the rejection of the packaged 

components, as shown in Figure 3.2. 

 

Figure 3.2: The offset's measurement visualisation. 

The cover tape also can be in the offset position with more than 20mm towards the 

sprocket hole as shown in Figure 3.3. 

 

Figure 3.3: Example visualisation of offsets in the industry. 

There is also a case where the cover tape offset is away from the sprocket hole as 

shown in Figure 3.4.  
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Figure 3.4: Cover tape position away from sprocket hole. 

In the context of the project, understanding the industry standards for cover tape 

offset measurement is important to design a system that meets these requirements. 

Mainly, the cover tape should be precisely at the very bottom area of the sprocket hole. 

The Raspberry Pi Camera Module 3 used in the project should be capable of providing 

accurate measurements of the cover tape position within the industry-standard 

tolerance levels. This will ensure that the components meet the industry standards. 

For the testing phase of the system, the camera was not evaluated on an actual tape 

and reel process. Instead, the testing was conducted on the conveyor belt of the FMS 

200 as shown in Figure 3.5, which has some misalignments that can be evaluated and 

analyzed. This serves as a good initial test before implementing it in the actual tape 

and reel process. 

 

Figure 3.5: Conveyer belt on FMS 200. 



28 

 

3.2 Initialize Raspberry Pi Camera Module 

In this initial phase, the Raspberry Pi Camera Module is set up to capture real-time 

data during the tape and reel process. Figure 3.6 shows the setup for the camera with 

the support of camera case and adjustable arm to protect the camera and to easily make 

the camera mounted in the industry. 

 

Figure 3.6: Camera’s design setup. 

The configuration involves ensuring proper connectivity, initializing the camera 

module, and configuring settings such as resolution and frame rate. This step 

establishes the foundation for subsequent image acquisition and processing. Figure 3.7 

shows the connection from the camera to the Raspberry Pi via CSI port. 

 

Figure 3.7: Connection from the camera to the Raspberry Pi. 
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Figure 3.8 shows the Raspberry Pi Camera Module 3 installed on the FMS 200, 

precisely positioned to observe the conveyor belt. The camera’s lens focuses on the 

ongoing processes. 

 

Figure 3.8: Raspberry Pi Camera Module 3 installed on the FMS 200. 

Figure 3.9 shows the Raspberry Pi Camera Module 3 was connected to the 

Raspberry Pi via the CSI port on the FMS 200 machine. 

 

Figure 3.9: Camera connection to the Raspberry Pi. 
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3.3 Computer Vision Processing  

Utilizing the OpenCV library, this section focuses on image processing techniques 

to extract meaningful information from the captured frames. This step aims to enhance 

the quality of the captured images and prepare them for subsequent analysis. 

OpenCV, a powerful computer vision library, offers the Canny edge detection 

method as a robust technique for identifying edges within images [21]. Moreover, it 

provides the Hough Line Transform method, which plays a pivotal role in identifying 

the lines that represent the boundaries of the tape [9]. Figure 3.10 shows the Python 

script on Terminal where the code started with the declaration of OpenCV that used 

to implement the computer vision processing. 

 

Figure 3.10: Python script on Terminal. 

3.4 Canny Edge Detection 

Within the broader context of computer vision processing, Canny Edge Detection 

is specifically employed to identify edges within the images. This technique enhances 

the delineation of objects in the images, providing a foundation for subsequent steps 

in the analysis [22].  



31 

 

In python script, the lower threshold for the edges was set to 50. Any gradient value 

below this threshold is considered not to be an edge. Meanwhile, the higher threshold 

for the edges was set to 150. Any gradient value above this threshold is considered to 

be a strong edge, and values between the lower and higher thresholds are considered 

to be weak edges unless they are connected to strong edges. 

3.5 Hough Line Transform 

Building on the results of Canny Edge Detection, the Hough Line Transform is 

applied to detect lines within the images. This step is crucial for identifying features 

such as the alignment and orientation of the cover tape during the tape and reel process 

[23].  

Figure 3.11 shows the detection of straight lines on the selected region of interest. 

The most prominent feature in this image is the green line, which represents the 

straight line detected by the Hough line detection algorithm. 

 

Figure 3.11: Hough Line detection on the selected Region of Interest. 

3.6 Display Real-Time Data on Node-Red Dashboard 

To facilitate real-time monitoring, the captured and processed data is seamlessly 

integrated into Node-Red. Figure 3.12 shows the Node-RED workflow. The “Camera” 
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node is used to capture images or data from the Raspberry Pi Camera Module 3. This 

data is then passed to the next node in the flow. Then, the “debug 2” node used to 

display messages during development or testing phases. It might be showing real-time 

data or logging information about the cover tape alignment process. Finally, all data 

will be passed to the dashboard node to generate a dashboard in the graph style.  

 

Figure 3.12: Node-RED workflow. 

Figure 3.13 shows the dashboard generated after the data was passed to the Node-

RED. A custom dashboard was created to visually represent the real-time information, 

allowing for easy observation and analysis of the cover tape alignment during the 

process. The graph on the dashboard, titled “Offset during Tap and Reel Process”, 

appears to be showing fluctuations in offset over time. The offset values range 

approximately from 8.2 mm to 8.7 mm. This could represent the variation in the 

alignment of the cover tape during the tape and reel process. If the offset value is high, 

it means the cover tape is not properly aligned with the carrier tape.  
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Figure 3.13: Dashboard generated from Node-RED. 

Figure 3.14 shows a real-time monitoring view of the captured images from the 

conveyor belt and the display of the offset values on the Node-RED dashboard in a 

graph form.  

 

Figure 3.14: Real-time monitoring view. 

3.7 Generate CSV File 

Simultaneously with real-time data display, the processed data is logged into a CSV 

file as shown in Figure 3.15. This file serves as a structured repository of the captured 

information, enabling further analysis and providing a basis for data transfer to 

external platforms, such as MATLAB, for advanced analysis. 
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Figure 3.15: Data logged into CSV file. 

3.8 Neural Net Time Series Apps for Predictive Analysis 

This section involves integrating the CSV data into MATLAB and implementing 

Neural Net Time Series Apps for predictive maintenance analysis. A key focus is 

placed on the comparison analysis between two distinct training algorithms, Bayesian 

Regularization (BR) and Scaled Conjugate Gradient (SCG). Figure 3.16 shows the 

process of implementing a training algorithm using MATLAB. 

 

Figure 3.16: Implementation of Training Algorithm using MATLAB. 
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3.9 Summary 

In summary, the methodology outlined in this section provides a comprehensive 

and systematic approach for detecting cover tape offset or misalignment during the 

tape and reel process using computer vision and neural network techniques. The use 

of Canny Edge Detection and Hough Line Transform enhances the analysis of 

captured frames, and real-time data is displayed on a Node-RED dashboard while 

being logged into a CSV file for further analysis. The final step involves implementing 

Neural Net Time Series Apps in MATLAB for predictive maintenance analysis, 

comparing the efficiency of Bayesian Regularization and Scaled Conjugate Gradient 

algorithms. 
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CHAPTER 4  

RESULTS AND DISCUSSION 

In this analysis, a comparison is performed between two different training 

techniques, Bayesian Regularization (BR) and Scaled Conjugate Gradient (SCG), to 

determine their impact on the prediction model's performance. BR is well-known for 

its ability to reduce overfitting by using a probabilistic approach to weight 

regularization [24]. SCG, a quasi-Newton optimization approach, is well-known for 

its ability to quickly reach minima on the error surface [25]. Both techniques are 

implemented in the Neural Network Time Series applications in MATLAB, and their 

impacts on training dynamics and overall forecast accuracy are examined. 

Furthermore, this analysis also discuss about the results in Node-RED’s graph along 

with the behavior of it. 

4.1 Node-RED  

The graph on the Node-RED dashboard as shown in Figure 4.1 displays 

fluctuations in offset values over a specific time period, allowing for monitoring and 

analysis of variations that occur during this process. 
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Figure 4.1: Offset graph in Node-RED dashboard. 

The offset values fluctuate between 8.2 mm and 8.7 mm. This range could be 

indicating the variability in the alignment of the cover tape during the tape and reel 

process. This also suggests that the alignment of the cover tape is not constant and 

varies throughout the process. Apart from that, there is a noticeable spike in the offset 

value.  

The Fluctuations and the noticeable spike in the offset values could be due to wear 

and tear of the conveyor belt on the FMS 200 machine. As the conveyor belt wears 

out, it can cause misalignments or variations in the alignment. By detecting changes 

in the offset, prediction can be made for potential issues with the conveyor belt and 

corrective action can be taken before failure occurs [26]. 

4.2 Bayesian Regularization (BR) 

4.2.1 Training results 

For this section, the training results were shown to evaluate the performance of the 

model. By looking at metrics such as accuracy, loss, or mean squared error, the model 

can understand how well our model is learning and predicting. The training algorithm 

used was Bayesian Regularization (trainbr), and the performance metric used was 
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Mean Squared Error (MSE). Figure 4.2 shows the training results from the data for 

day 1. 

 

Figure 4.2: Training results in Day 1 (BR). 

The training stopped at epoch 511, before reaching the target value of 1000 epochs. 

This could be due to reaching the maximum µ (mu), which is a parameter used in the 

BR algorithm. The elapsed time for the training was 21 seconds. The performance of 

the model improved significantly during the training process, from an initial mean 

squared error (MSE) of 0.0237 to a final MSE of 0.00099. This indicates that the 

model was able to learn and improve its predictions over time. 

The value of µ increased from an initial value of 0.005 to its maximum at 5e+10. 

This is a parameter in the BR algorithm that controls the balance between fitting the 

data closely (which risks overfitting) and keeping the weights small (which improves 

generalization). The fact that µ reached its maximum value suggests that the algorithm 

was prioritizing generalization over fitting the training data closely [27]. 
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Figure 4.3 shows the training results from the data for day 2. The training stopped 

at epoch 410, which is earlier than the previous run that stopped at epoch 511. This 

indicates a faster convergence of the model. 

The elapsed time for the training was 19 seconds, which is slightly less than the 21 

seconds from the previous run. This could suggest an improvement in computational 

efficiency. 

 

Figure 4.3: Training results in Day 2 (BR). 

The performance of the model, as measured by the mean squared error (MSE), 

improved from an initial MSE of 0.817 to a final MSE of 0.000687. The performance 

(as measured by MSE) improved significantly on both days, but the starting and 

ending MSE were different. This could be due to differences in the data or initial 

conditions. 

The value of µ increased from an initial value of 0.005 to its maximum at 5e+10, 

similar to the previous run. This suggests that the algorithm was prioritizing 

generalization over fitting the training data closely in both runs. 
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Figure 4.4 shows the training results from the data for day 3. The training stopped 

at epoch 666, which is later than the previous run that stopped at epoch 410. This could 

indicate a slower convergence of the model. 

 

Figure 4.4: Training results in Day 3 (BR). 

The elapsed time for the training on Day 3 was 25 seconds, which is longer than 

the 19 seconds from the previous run. This could suggest a decrease in computational 

efficiency. The performance of the model, as measured by the mean squared error 

(MSE), improved from an initial MSE of 0.432 to a final MSE of 0.00188. Moreover, 

the value of µ increased from an initial value of 0.005 to its maximum at 5e+10, similar 

to the previous run.  

Figure 4.5 shows the training results from the data for day 4. The training stopped 

at epoch 341, which is earlier than the previous run that stopped at epoch 666. This 

could indicate a faster convergence of the model. 
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The elapsed time for the training on Day 4 was 17 seconds, which is shorter than 

the 25 seconds from the previous run. This could suggest an improvement in 

computational efficiency. Moreover, the performance of the model, as measured by 

the mean squared error (MSE), improved from an initial MSE of 0.349 to a final MSE 

of 0.00131.  

 

Figure 4.5: Training results in Day 4 (BR). 

Based on the training results over the four days as shown in Table 4.1, we can 

observe that the number of epochs at which training stopped varied each day, 

indicating differences in the speed of convergence. Furthermore, faster convergence 

could suggest that the model is learning the patterns in the data more quickly. For 

computational efficiency, the elapsed time for training decreased over the four days, 

suggesting improvements in computational efficiency. Moreover, the performance of 

the model, as measured by the mean squared error (MSE), improved each day. This 

indicates that the model’s predictions are becoming more accurate. 
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Table 4.1: Performance for 4 days of data using BR 

Day Mean Squared Error (MSE) Number of Epochs 

1 0.0237 0.00099 511 

2 0.817 0.000687 410 

3 0.432 0.00188 666 

4 0.349 0.00131 341 

 

4.2.2 Correlation coefficient (R) 

For this section, scatter plot was generated to represent the results of a Bayesian 

Regularization (BR) training neural network from data for Day 1,2,3 and 4. The scatter 

plot is a graphical representation of the relationship between the target values and the 

output values. The scatter plot provides a visual representation of the model’s 

performance. The closer the points are to the diagonal line (y=x), the better the model’s 

predictions are to the actual values [28]. The identity line (Y = T) represents perfect 

predictions. If all data points were on this line, it would mean that the model’s 

predictions were exactly equal to the actual values. 

Based on Figure 4.6, the correlation coefficient is 0.90385, which indicates a strong 

positive linear relationship between the target and output values. This suggests that 

the model has a high degree of accuracy in its predictions. 
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Figure 4.6: Scatter plot for Day 1 (BR). 

Figure 4.7 shows scatter plot of a neural network trained using Bayesian 

Regularization (BR) on Day 2. The correlation coefficient for Day 2 is 0.92842, which 

is higher than the R value from Day 1 (0.90385).  

 

Figure 4.7: Scatter plot for Day 2 (BR). 
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Figure 4.8 shows scatter plot of a neural network trained using Bayesian 

Regularization (BR) on Day 3. The correlation coefficient for Day 3 is 0.87387, which 

is lower than the R value from Day 2 (0.92842). This suggests that the model’s 

predictions on Day 3 have a slightly weaker linear relationship with the actual values 

compared to Day 2. 

 

Figure 4.8: Scatter plot for Day 3 (BR). 

Figure 4.9 shows scatter plot of a neural network trained using Bayesian 

Regularization (BR) on Day 4. The correlation coefficient for Day 4 is 0.9511, which 

is higher than the R value from Day 3 (0.87387). This suggests that the model’s 

predictions on Day 4 have a stronger linear relationship with the actual values 

compared to Day 3. 
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Figure 4.9: Scatter plot for Day 4 (BR). 

Over the four days, the model’s performance seems to be improving, as indicated 

by the increasing R value and the data points becoming closer to the fit line as shown 

in Table 4.2. This suggests that the model is learning effectively, and its predictions 

are becoming more accurate over time. 

Table 4.2: Correlation coefficient comparison for BR training 

Day Correlation Coefficient (R) 

1 0.90385 

2 0.92842 

3 0.87387 

4 0.9511 
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4.2.3 Mean Squared Error (MSE) 

For this section, a graph representing the Mean Squared Error (MSE) was generated 

to represent the results of a Bayesian Regularization (BR) training neural network 

from data for day 1,2,3 and 4.  

The graph in Figure 4.10 shows the MSE for both the training and testing datasets 

over epochs from the data for day 1. The graph indicates that the best training 

performance, an MSE of approximately 0.00098985, was achieved at epoch 267. The 

MSE for both the training and testing datasets appears to decrease rapidly during the 

initial epochs, then continues to decrease more gradually. This suggests that the model 

is learning effectively from the data, as it can reduce the errors over time [29]. 

Moreover, both training and testing errors are decreasing. This suggests that the model 

is not overfitting, as it is performing well on both the training data and the unseen 

testing data. 

 

Figure 4.10: Graph for Best Training Performance (Day 1). 
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The graph in Figure 4.11 shows the MSE for both the training and testing datasets 

over epochs from the data for day 2. The graph indicates that the best training 

performance, an MSE of approximately 0.00068677, was achieved at epoch 305. It 

appears that the model’s performance has improved on Day 2, as indicated by the 

lower MSE at epoch 305 compared to the MSE at epoch 267 on Day 1. The model 

seems to be learning effectively and is not overfitting on both days, as evidenced by 

the decreasing errors for both training and testing datasets. 

 

Figure 4.11: Graph for Best Training Performance (Day 2). 

The graph in Figure 4.12 shows the MSE for both the training and testing datasets 

over epochs from the data for day 3. The graph indicates that the best training 

performance, an MSE of approximately 0.0018774, was achieved at epoch 488. It 

appears that the model’s performance has slightly decreased on Day 3, as indicated by 

the higher MSE at epoch 488 compared to the MSE at epoch 305 on Day 2. 
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Figure 4.12: Graph for Best Training Performance (Day 3). 

The graph in 3 shows the MSE for both the training and testing datasets over epochs 

from the data for day 4. The graph indicates that the best training performance, an 

MSE of approximately 0.001307, was achieved at epoch 340.  

 

Figure 4.13: Graph for Best Training Performance (Day 4). 
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Over the four days, the model’s performance varied, with the best performance 

achieved on Day 2 as shown in Table 4.3. The model seemed to be learning effectively 

on all days, as evidenced by the decreasing MSE. However, the speed of convergence 

varied, with the model converging fastest on Day 1 and slowest on Day 3. 

Table 4.3: Best Training Performance for 4 days of data using BR. 

Day Epoch Best Training Performance (MSE) 

1 267 0.00098985 

2 305 0.00068677 

3 488 0.0018774 

4 340 0.001307 

 

4.3 Scaled Conjugate Gradient (SCG) 

4.3.1 Training results 

For this section, the training results were shown to evaluate the performance of the 

model. By looking at metrics such as accuracy, loss, or mean squared error, the model 

can understand how well our model is learning and predicting. The training algorithm 

used was Scaled Conjugate Gradient (SCG). Figure 4.14 shows the training results 

from the data for day 1.  

The training stopped at epoch 141, which is significantly less than the target value 

of 1000. This indicates that the model achieved convergence early. Meanwhile, the 

performance improved from an initial value of 0.0546 to a stopped value of 0.00216. 

This shows that the model’s accuracy increased during the training. For the gradient 

optimization, the gradient decreased to a very small number (0.000683), suggesting 

that the optimization was successful and reached a minimum error. 
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Figure 4.14: Training results in Day 1 (SCG). 

Figure 4.15 shows the training results from the data for day 2. The training on Day 

2 stopped at a later epoch (205) compared to Day 1 (141). This might indicate that the 

model required more iterations to converge on Day 2. Meanwhile, the initial 

performance on Day 2 (0.799) was significantly higher than on Day 1 (0.0546), 

indicating that the initial error was much larger on Day 2. However, the stopped value 

of performance on Day 2 (0.00108) is comparable to Day 1 (0.00216), suggesting that 

despite starting from a higher error, the model was able to reduce the error to a similar 

level. 

The stopped value of the gradient on Day 2 (0.00136) is slightly higher than on Day 

1 (0.000683), indicating that the optimization process on Day 2 might not have been 

as effective in reducing the error rate as on Day 1. 
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Figure 4.15: Training results in Day 2 (SCG). 

Figure 4.16 shows the training results from the data for day 3. The training on Day 

3 stopped at an earlier epoch (119) compared to Day 2 (205). This might indicate that 

the model required fewer iterations to converge on Day 3. Meanwhile, the initial 

performance on Day 3 (0.161) was significantly lower than on Day 2 (0.799), 

indicating that the initial error was much smaller on Day 3. However, the stopped 

value of performance on Day 3 (0.00258) is slightly higher than Day 2 (0.00108), 

suggesting that despite starting from a lower error, the model was not able to reduce 

the error to the same level as on Day 2. 

The stopped value of the gradient on Day 3 (0.00633) is higher than on Day 2 

(0.00136), indicating that the optimization process on Day 3 might not have been as 

effective in reducing the error rate as on Day 2. 
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Figure 4.16: Training results in Day 3 (SCG). 

Figure 4.17 shows the training results from the data for day 4. The training on Day 

4 stopped at an earlier epoch (76) compared to Day 3 (119). This might indicate that 

the model required fewer iterations to converge on Day 4. Meanwhile, the initial 

performance on Day 4 (0.181) was slightly higher than on Day 3 (0.161), indicating 

that the initial error was a bit larger on Day 4. However, the stopped value of 

performance on Day 4 (0.00327) is slightly higher than Day 3 (0.00258), suggesting 

that despite starting from a slightly higher error, the model was not able to reduce the 

error to the same level as on Day 3. 

The stopped value of the gradient on Day 4 (0.00674) is slightly higher than on Day 

3 (0.00633), indicating that the optimization process on Day 4 might not have been as 

effective in reducing the error rate as on Day 3. 
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Figure 4.17: Training results in Day 4 (SCG). 

Based on the training results from day 1 to day 4, The model converged at different 

epochs each day, with the earliest convergence on day 4 (epoch 76) and the latest on 

day 2 (epoch 205) as shown in Table 4.4. This suggests that the model’s learning rate 

or initial weights might have varied across the days. 

Moreover, the initial performance varied each day, with the highest initial error on 

day 2 (0.799) and the lowest on day 1 (0.0546). However, by the end of training each 

day, the model was able to reduce the error significantly. The lowest final error was 

achieved on day 2 (0.00108), suggesting the best performance on that day. 

Furthermore, the gradient at the end of training also varied each day, with the 

smallest value on day 1 (0.000683) and the largest on day 4 (0.00674). This indicates 

that the optimization process was most effective on day 1. 
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Table 4.4: Performance for 4 days of data using SCG. 

Day Mean Squared Error (MSE) Number of Epochs 

1 0.0546 0.00216 141 

2 0.799 0.00108 205 

3 0.161 0.00258 119 

4 0.181 0.00327 76 

 

4.3.2 Correlation coefficient (R)  

For this section, scatter plot was generated to represent the results of a Scaled 

Conjugate Gradient (SCG) training neural network from data for Day 1,2,3 and 4. 

Based on Figure 4.18, the correlation coefficient (R) is 0.78294, which indicates a 

strong positive correlation between the Target and Output. This means that as the 

Target value increases, the Output value also tends to increase. 

The line labeled “Output = 0.61*Target+3.3” is the line of best fit for the data. It 

represents the relationship between Target and Output. The slope of the line (0.61) 

suggests that for each unit increase in the Target, the Output increases by 

approximately 0.61 units. Apart from that, the spread of data points around the line of 

best fit gives an indication of the variability or noise in the data. 
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Figure 4.18: Scatter plot for Day 1 (SCG). 

Based on Figure 4.19, the R value is higher on day 2 (0.8832) compared to day 1 

(0.78294), indicating a stronger positive correlation between the Target and Output on 

day 2. Moreover, the slope of the line of best fit is higher on day 2 (0.7) compared to 

day 1 (0.61), suggesting that for each unit increase in the Target, the Output increases 

by a larger amount on day 2. 
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Figure 4.19: Scatter plot for Day 2 (SCG). 

Based on Figure 4.20, the R value is lower on day 3 (0.82129) compared to day 2 

(0.8832), indicating a slightly weaker positive correlation between the Target and 

Output on day 3. Furthermore, the slope of the line of best fit is lower on day 3 (0.67) 

compared to day 2 (0.7), suggesting that for each unit increase in the Target, the Output 

increases by a slightly smaller amount on day 3. 
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Figure 4.20: Scatter plot for Day 3 (SCG). 

Based on Figure 4.21, the R value is higher on day 4 (0.87764) compared to day 3 

(0.82129), indicating a stronger positive correlation between the Target and Output on 

day 4. Moreover, the slope of the line of best fit is slightly higher on day 4 (0.7) 

compared to day 3 (0.67), suggesting that for each unit increase in the Target, the 

Output increases by a slightly larger amount on day 4. 
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Figure 4.21: Scatter plot for Day 4 (SCG). 

Over the four days, these results suggest that the model’s predictions were most 

accurate on day 2, as indicated by the highest R value which is (0.8832) as shown in 

Table 4.5. The highest slope was on day 2 and day 4 (0.7), indicating a larger increase 

in Output for each unit increase in the Target on those days. 

Table 4.5: Correlation coefficient comparison for SCG training 

Day Correlation Coefficient (R) 

1 0.78294 

2 0.8832 

3 0.82129 

4 0.87764 
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4.3.3 Mean Squared Error (MSE) 

For this section, a graph representing the Mean Squared Error (MSE) was generated 

to represent the results of a Scaled Conjugate Gradient (SCG) training neural network 

from data for day 1,2,3 and 4.  

The graph in Figure 4.22 represents the Mean Squared Error (MSE) during the 

training of a neural network using the Scaled Conjugate Gradient (SCG) method from 

the data for Day 1. The errors for all datasets rapidly decrease during the initial epochs, 

indicating that the model is learning quickly at the start of the training process. 

The best validation performance is achieved at epoch 135 with an MSE of 

0.0021512. This is the point where the model has the lowest error on the validation 

set, indicating the most effective learning up to that point. 

 

Figure 4.22: Graph for Best Training Performance (Day 1). 

The graph in Figure 4.23 represents the Mean Squared Error (MSE) from the data 

for Day 2. The best validation performance improved from 0.0021512 at epoch 135 
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on day 1 to 0.0011513 at epoch 199 on day 2. This indicates that the model performed 

better on the validation set on day 2. However, the number of epochs increased from 

141 on day 1 to 205 on day 2. This could suggest that the model needed more time to 

converge on the second day. 

 

Figure 4.23: Graph for Best Training Performance (Day 2). 

The graph in Figure 4.24 represents the Mean Squared Error (MSE) from the data 

for Day 3. The best validation performance changed from 0.0011513 at epoch 199 on 

day 2 to 0.002633 at epoch 113 on day 3. This indicates that the model performed 

slightly worse on the validation set on day 3 compared to day 2. However, the number 

of epochs at which the best validation performance was achieved decreased from 199 

on day 2 to 113 on day 3. This could suggest that the model converged faster on the 

third day. 



61 

 

 

Figure 4.24: Graph for Best Training Performance (Day 3). 

The graph in Figure 4.25 represents the Mean Squared Error (MSE) from the data 

for Day 4. The best validation performance changed from 0.002633 at epoch 113 on 

day 3 to 0.0032003 at epoch 70 on day 4. This indicates that the model performed 

slightly worse on the validation set on day 4 compared to day 3. However, the number 

of epochs at which the best validation performance was achieved decreased from 113 

on day 3 to 70 on day 4. This could suggest that the model converged faster on the 

fourth day. 
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Figure 4.25: Graph for Best Training Performance (Day 4). 

The MSE for all four days shows a rapid decrease in the initial epochs, indicating 

that the model quickly learned to minimize errors as shown in Table 4.6. After 

approximately 20 epochs, the MSE stabilizes, suggesting that the model has 

essentially learned the pattern in the data and is now refining its parameters for optimal 

performance. However, the number of epochs at which the best validation 

performance was achieved varied each day. This could suggest that the model’s speed 

of convergence was inconsistent across the four days. 

The model’s performance, as indicated by the best validation performance, 

improved from day 1 to day 2 but then worsened on days 3 and 4. This could be due 

to various factors such as changes in the data or model parameters.  
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Table 4.6: Best Training Performance for 4 days of data using SCG. 

Day Epoch Best Training Performance (MSE) 

1 135 0.0021512 

2 199 0.0011513 

3 113 0.0026330 

4 70 0.0032003 

 

4.4 Comparison for Bayesian Regularization (BR) and Scaled Conjugate 

Gradient (SCG) 

4.4.1 Training Results 

Figure 4.26 shows the training results for combined data (4 days). The training 

algorithm used was Bayesian Regularization. The training reached the maximum 

number of epochs (1000). This could indicate that the training was stopped because it 

reached this limit. Moreover, the performance improved from an initial value of 0.064 

to a stopped value of 0.00159. This shows a significant enhancement in model 

performance. 

Furthermore, the gradient decreased significantly from an initial value of 0.395 to 

a very small number close to zero. This suggests that the model may have reached a 

minimum in the loss function, indicating convergence. When the gradient is close to 

zero, it means that the model’s parameters are not changing much with each update, 

suggesting that the model has found a minimum in the loss function [30]. This is 

usually a good sign as it indicates that the model has likely learned to predict the target 

variable accurately. 
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Figure 4.26: Training results for combined data (BR). 

Figure 4.27 shows the training results for combined data (4 days). The training 

algorithm used was Scaled Conjugate Gradient (SCG).  

 

Figure 4.27: Training results for combined data (SCG). 

The training met the validation criterion at 613 epochs. This is fewer than the 1000 

epochs it took with Bayesian Regularization (BR), suggesting that SCG may have 
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converged faster. However, the performance metric stopped at 0.00185. This is 

slightly higher than the 0.00159 achieved with BR, indicating that BR might have 

resulted in a slightly better fit to the training data. 

Furthermore, the gradient is very low at 0.000379, indicating convergence. This is 

similar to the result with BR, suggesting that both methods were able to find a 

minimum in the loss function. Table 4.7 shows the comparison for the overall 

performance for combined data between BR and SCG. 

Table 4.7: Overall performance for combined data. 

Training Algorithm Mean Squared Error (MSE) Number of Epochs 

BR 0.0640 0.00159 1000 

SCG 0.0818 0.00185 613 

 

4.4.2 Correlation coefficient (R)  

For this section, scatter plot was generated to represent the results of a Bayesian 

Regularization (BR) training neural network for the combined data (4 days). Based on 

Figure 4.28, the correlation coefficient (R) is 0.9546, indicating a strong positive linear 

relationship between the Target and Output variables. This suggests that as the Target 

value increases, the Output value also increases. Moreover, the data points are closely 

aligned with the fit line, suggesting that the model has effectively captured the 

relationship between these two variables. 
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Figure 4.28: Scatter plot for combined data (BR). 

Figure 4.29 shows the scatter plot that was generated to represent the results of a 

Scaled Conjugate Gradient (SCG) training neural network for the combined data (4 

days).  

 

Figure 4.29: Scatter plot for combined data (SCG). 
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The correlation coefficient (R) is 0.94756, indicating a strong positive linear 

relationship between the Target and Output variables. This is slightly lower than the 

0.9546 achieved with Bayesian Regularization (BR), suggesting that BR might have 

resulted in a slightly stronger linear relationship. Meanwhile, the data points are 

closely aligned with the fit line, similar to the results with BR. This suggests that both 

methods were able to effectively capture the relationship between these two variables. 

Table 4.8 shows the comparison between BR and SCG in terms of correlation 

coefficient.  

Table 4.8: Correlation coefficient comparison between BR and SCG. 

Training Algorithm Correlation Coefficient (R) 

BR 0.95460 

SCG 0.94756 

 

4.4.3 Mean Squared Error (MSE) 

For this section, a graph representing the Mean Squared Error (MSE) was generated 

to represent the results of Bayesian Regularization (BR) and Scaled Conjugate 

Gradient (SCG) training neural network for the combined data (4 days). 

The graph in Figure 4.30 represents the Mean Squared Error (MSE) during the 

training of a neural network using the Bayesian Regularization (BR) method. The best 

training performance is achieved at epoch 921 with an MSE of 0.0015874. This 

suggests that the model was able to minimize the error significantly during the training 

process. The plot also shows both training and test errors. If these two lines are close 

to each other and both decreasing, it is a good sign that the model is not overfitting. 
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Figure 4.30: Graph for Best Training Performance (Combined data). 

The graph in Figure 4.31 represents the Mean Squared Error (MSE) during the 

training of a neural network using the Scaled Conjugate Gradient (SCG) method.  

 

Figure 4.31: Graph for Best Training Performance (Combined data). 
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The best validation performance is achieved at epoch 607 with an MSE of 

0.0017839. This is slightly higher than the 0.0015874 achieved with Bayesian 

Regularization (BR), suggesting that BR might have resulted in a slightly better fit to 

the training data. However, the model took 607 epochs to achieve the best 

performance. This is fewer than the 921 epochs it took with BR, suggesting that SCG 

may have converged faster. Table 4.9 shows the comparison between BR and SCG in 

terms of performance and convergence time. 

Table 4.9: Best Training Performance for combined data. 

Day Epoch Best Training Performance (MSE) 

BR 921 0.0015874 

SCG 607 0.0017839 

 

4.4.4 Prediction results 

For this section, a graph representing the actual value was compared with the 

predicted value. This graph is generated to represent the results of Bayesian 

Regularization (BR) and Scaled Conjugate Gradient (SCG) training neural network 

for the combined data (4 days). 

The red line represents the predicted offset, and the blue line represents the actual 

offset as shown in Figure 4.32 and 4.33. If the two lines are closely aligned, it indicates 

that the predictions are accurate. In this case, the red and blue lines do not align closely, 

suggesting that the predictions may not be very accurate [30]. If the two lines are 

closely aligned, it indicates that the predictions are accurate. In this case, the red and 

blue lines do not align closely, suggesting that the predictions may not be very 

accurate. 
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Figure 4.32: Comparison between actual and predicted value using BR 
training. 

However, without quantitative measures such as Mean Absolute Error (MAE), it is 

difficult to definitively say which method is performing better [31]. 

 

Figure 4.33: Comparison between actual and predicted value using SCG 
training. 

Figure 4.34 and 4.35 shows the Mean Absolute Error (MAE) graph to compare the 

performance of Bayesian Regularization (BR) and Scaled Conjugate Gradient (SCG) 

training neural network in prediction.  
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Most of the MAE values are concentrated below 0.2, indicating that the predictions 

are generally close to the actual values as shown in Figure 4.33. However, there are 

noticeable peaks reaching up to approximately 0.5, suggesting moments of significant 

error between predicted and actual offsets.  

 

Figure 4.34: Plot for MAE between actual and predicted value (BR). 

The numerous spikes in MAE throughout the graph could suggest that the model 

struggles with certain patterns in the data. These could be due to outliers, noise, or 

complex patterns in the data that the model fails to capture [32]. The graph is also 

similar to the graph shown in Figure 4.35 which is quite hard to compare just by 

looking at the graph. 
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Figure 4.35: Plot for MAE between actual and predicted value (SCG). 

The plot in Figure 4.36 shows the comparison plot between Mean Absolute Error 

for BR (blue) and SCG (orange). The MAE for the SCG method is consistently higher 

than the MAE for BR method. This suggests that the BR method has lower average 

prediction errors and thus performs better than the SCG method. 

Lower MAE values indicate better model performance as they represent smaller 

average errors between the predicted and actual values. Therefore, the BR method, 

which has lower MAE values, is likely to provide more accurate predictions. 
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Figure 4.36: Comparison plot between MAE for BR and SCG. 

4.5 Summary  

The analysis section of this project provided a thorough examination of the 

performance of Bayesian Regularization (BR) and Scaled Conjugate Gradient (SCG) 

training algorithms in the context of cover tape offset detection.  

The exploration of training results indicated that BR achieved a lower Mean 

Squared Error (MSE) and demonstrated a faster convergence compared to SCG. 

Scatter plots illustrated strong positive linear relationships between predicted and 

actual values for both algorithms, with a slightly better correlation observed in BR. 

However, the analysis cautioned against solely relying on visual inspection and 

emphasized the need for quantitative measures like Mean Absolute Error (MAE). 

The MAE analysis uncovered nuances in prediction accuracy, revealing both the 

overall closeness of predictions to actual values and specific instances of significant 

errors. Comparison plots highlighted consistently lower MAE values for BR, 

suggesting superior performance in terms of average prediction errors. 
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CHAPTER 5  

CONCLUSION AND FUTURE WORKS 

5.1 Conclusion 

The completion of this comprehensive project focused on the detection of cover 

tape offset or misalignment during the tape and reel process has yielded valuable 

insights and outcomes. Leveraging the capabilities of the Raspberry Pi Camera 

Module 3 and employing computer vision techniques through Python's OpenCV 

library, real-time monitoring and analysis of the process were achieved. The 

integration with Node-RED facilitated a user-friendly dashboard for real-time data 

visualization, enhancing the project's accessibility. The utilization of MATLAB, 

coupled with Neural Net Time Series Apps, allowed for the implementation of 

predictive maintenance using Bayesian Regularization (BR) and Scaled Conjugate 

Gradient (SCG) training algorithms. 

The analysis of training results indicated that both BR and SCG exhibited 

successful convergence, with BR showcasing slightly better performance in terms of 

model fit to the training data. The examination of Mean Squared Error (MSE) graphs 
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provided insights into the training dynamics, highlighting the efficiency of both 

methods in minimizing errors. Subsequently, the comparison between actual and 

predicted values revealed challenges in accurately predicting offsets, emphasizing the 

importance of further quantitative measures. 

The Mean Absolute Error (MAE) analysis offered a detailed understanding of 

prediction accuracy, showcasing occasional spikes that indicated the model's struggle 

with specific patterns, potentially influenced by outliers or complex data structures. 

Significantly, the comparison between BR and SCG consistently favored BR, 

affirming its superiority in providing lower average prediction errors. 

Overall, this project has successfully integrated hardware, software, and advanced 

analytical techniques to meet its primary objectives. The design and implementation 

of a detection system utilizing the Raspberry Pi Camera Module (R01) effectively 

addressed the critical aspect of detecting cover tape offset in the tape and reel process. 

The creation of a Node-Red dashboard for live data monitoring (R02) not only 

facilitated real-time visualization but also enhanced the project's accessibility. 

Furthermore, the utilization of predictive analysis (R03) through computer vision, 

machine learning, and the implementation of Bayesian Regularization and Scaled 

Conjugate Gradient training algorithms opened avenues for enhanced efficiency and 

reduced downtime in industrial settings. The successful achievement of these 

objectives underscores the project's ability to contribute meaningfully to the 

manufacturing process, offering valuable insights and paving the way for advanced 

predictive maintenance strategies. 
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5.2 Sustainable Development Goals (SDG) 

This thesis strongly corresponds to Sustainable Development Goals (SDGs) 9 and 

12, encompassing the core principles of encouraging innovation and advocating for 

responsible consumption and production. SDG 9, often known as "Industry, 

Innovation, and Infrastructure," highlights the significance of building durable and 

sustainable infrastructure, promoting innovation, and improving scientific research. 

This project demonstrates the innovative nature of electronic engineering by 

combining the Raspberry Pi camera module, OpenCV library, and predictive 

maintenance using MATLAB. The initiative aims to improve industrial processes and 

drive technological improvements in manufacturing by accurately identifying cover 

tape misalignment during the tape and reel operation. 

Furthermore, SDG 12, also known as "Responsible Consumption and Production," 

promotes sustainable methods that result in a successful use of resources and 

decreased ecological footprint. This thesis aims to optimize the manufacturing process 

by introducing predictive maintenance. Detecting cover tape misalignment in real-

time enhances the efficiency of the tape and reel process while also minimizing 

downtime and resource loss. This approach is in line with the overall objective of 

promoting sustainable consumption and production practices in the field of electronic 

manufacturing. The project's focus was to demonstrate the development of a CSV file 

and the real-time visualization of data in Node-RED. This highlights the dedication to 

optimizing resource usage and promoting sustainable practices in industrial 

environments. This project demonstrates how developments in electronic engineering 

can effectively contribute to the achievement of global sustainability goals defined in 

SDGs 9 and 12. 
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5.3 Future Work 

5.3.1 Real-time Monitoring and Feedback 

Looking ahead to future improvements for the cover tape offset detection system, 

a key focus is on adding real-time feedback features to enhance its functionality [33]. 

The main goal is to create a reliable alert system that quickly notifies operators when 

cover tape misalignments occur in the tape and reel process. By using various 

technologies like email notifications, text messages, or on-screen messages, we can 

ensure operators receive timely notifications in the way that suits them best. 

Additionally, upgrading the Node-Red dashboard with visual indicators or 

notifications will be a great improvement. The operators can easily understand and 

respond to misalignments. This interactive feature will let operators acknowledge or 

dismiss alerts right from the dashboard. 

5.3.2 Data Logging and Analytics 

In the context of future work, an imperative focus revolves around the 

augmentation of data logging capabilities within the cover tape offset detection 

system. In addition to the current reliance on CSV file structures, a proposition 

involves the incorporation of a more resilient database system to facilitate the storage 

and analytical processing of historical data [34]. This proposition serves the dual 

purpose of enhancing the organization and accessibility of extensive datasets while 

providing a foundation for discerning overarching trends, intricate patterns, and 

optimizing maintenance schedules.  

Furthermore, a prospective avenue for refinement involves reevaluating the 

reliance on MATLAB exclusively for the implementation of Neural Net Time Series 

Apps. An exploration into the feasibility of directly integrating machine learning 
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functionalities into the Python codebase is warranted. This strategic shift aims to 

streamline the computational workflow and foster a unified coding environment. 

Through this approach, the system can be fortified to autonomously train models, 

leveraging historical data for predictive analysis of potential cover tape 

misalignments. The adoption of such methodologies aligns with contemporary 

research trends, enhancing the system's predictive capabilities and fortifying its 

technological underpinnings. 
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APPENDIX A 

CODING FOR THE SYSTEM 

 
from picamera2 import Picamera2 

from libcamera import controls 

import cv2 

import numpy as np 

import time 

import csv 

 

picam2 = Picamera2() 

config = picam2.create_preview_configuration() 

picam2.configure(config) 

picam2.set_controls({"AfMode":controls.AfModeEnum.Continuous}) 

picam2.start() 

 

regulated_line_position = None 

pixel_to_mm_ratio = 0.027 

start_time = time.time() 

interval = 1  

 

csv_filename = "offset_data.csv" 

with open(csv_filename, mode='w', newline='') as csv_file: 

    fieldnames = ['Timestamp', 'Distance_mm']  

    writer = csv.DictWriter(csv_file, fieldnames=fieldnames) 

    writer.writeheader() 

     

    while True: 

        im = picam2.capture_array() 

        gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) 

        edges = cv2.Canny(gray, 50, 150) 

     

        roi_y = 220 

        roi_height = im.shape[0] // 16 

        roi = edges[roi_y:roi_y + roi_height, :] 

        lines = cv2.HoughLinesP(roi, 1, np.pi / 180, threshold=100, minLineLength =100, 

maxLineGap=10) 
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        if lines is not None: 

            min_distance = float('inf') 

            for line in lines: 

                x1, y1, x2, y2 = line[0] 

                angle = np.arctan2(y2 - y1, x2 - x1) * 180 / np.pi 

 

                if 175 <= angle <= 185 or -5 <= angle <= 5 or 176 <= angle <= 186 or -6 <= angle <= 6: 

                    line_center = y2  

                    image_center = im.shape[1] / 2 

                    offset_pixels = line_center - image_center 

                    distance_mm = abs(offset_pixels) * pixel_to_mm_ratio 

 

                    if distance_mm < min_distance: 

                        min_distance = distance_mm 

                     

                        cv2.rectangle(im, (x1, roi_y + y1), (x2, roi_y + y2), (0, 255, 0), 2) 

 

            if min_distance != float('inf') and time.time() - start_time >= interval: 

                timestamp = time.strftime('%Y-%m-%d %H:%M:%S') 

                writer.writerow({'Timestamp': timestamp, 'Distance_mm': min_distance}) 

                print("Distance to regulated line (mm):", min_distance) 

                start_time = time.time() 

 

        cv2.line(im, (0, im.shape[0] // 2), (im.shape[1], im.shape[0] // 2), (255, 0, 0), 1) 

 

        cv2.imshow("Frame", im) 

    

        if cv2.waitKey(1) & 0xFF == ord('q'): 

            break 

 

cap.release() 

cv2.destroyAllWindows() 


