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ABSTRACT 

Two-wheel self-balancing robots typically have one degree of freedom (1-DOF), 

limiting their real-world usability, particularly in navigating obstacles and uneven 

surfaces. A study confirmed this limitation, noting sluggish disturbance rejection and 

significant oscillations in tilt response. This project aims to design and develop a 

prototype of 2-DOF two-wheel self-balancing robot using a PID controller. The 

proposed system focuses on the design and control of a 2-DOF self-balancing robot 

using a PID controller. The ESP32 microcontroller reads data from the MPU6050 

sensor, and NEMA17 stepper motors drive the robot's movement. The ESP32 sends 

sensor data to Blynk, enabling remote PID control and system tuning without the need 

to modify the Arduino IDE code directly. Simultaneously, the ESP32 actively sends 

data to MATLAB for in-depth analysis of PID tuning. Results indicate overall robot 

performance with varied PID settings and disturbances. The closed-loop control 

system enhances the robot's real-time balance and trajectory control, effectively 

adapting to PID parameter changes and external disturbances. This project 

successfully implemented a PID controller and analysed the impact of PID tuning on 

the self-balancing robot's response. However, integrating a camera onto the robot 

could improve the robot’s usefulness for surveillance and monitoring purposes.
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ABSTRAK 

Robot penyeimbang dua roda biasanya mempunyai satu darjah kebebasan (1-

DOF), terhad dalam mengatasi halangan dan permukaan yang tidak rata. Satu kajian 

disahkan dengan mencatatkan penolakan gangguan yang lambat dan ayunan yang 

signifikan dalam respons kemiringan. Projek ini bertujuan untuk merekabentuk dan 

membangunkan prototaip robot penyeimbang dua roda dengan 2-DOF menggunakan 

pengawal PID. Sistem tertumpu pada reka bentuk dan kawalan robot penyeimbang 2-

DOF menggunakan pengawal PID. Mikropengawal ESP32 membaca data dari sensor 

MPU6050, dan motor langkah NEMA17 menggerakkan pergerakan robot. ESP32 

menghantar data sensor ke Blynk, membolehkan kawalan PID dari jauh tanpa 

mengubah kod Arduino IDE secara langsung. ESP32 menghantar data ke MATLAB 

untuk analisis mendalam penalaan PID. Hasilnya menunjukkan prestasi keseluruhan 

robot dengan tetapan PID yang bervariasi dan gangguan. Sistem kawalan gelung 

tertutup meningkatkan keseimbangan dan kawalan trajektori robot, menyesuaikan 

diri dengan efektif kepada perubahan parameter PID dan gangguan luaran. Projek 

ini berjaya melaksanakan pengawal PID dan menganalisis impak penalaan PID 

terhadap respons robot. Walau bagaimanapun, penggabungan kamera pada robot 

boleh meningkatkan kegunaan robot untuk tujuan pengawasan dan pemantauan. 
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CHAPTER 1  

INTRODUCTION 

1.1 Chapter Overview 

This chapter provides a roadmap of the project, laying out the problem statement, 

objectives, and the scope which converges on designing a 2-DOF self-balancing robot. 

Additionally, this chapter also includes the outline of each chapter in this thesis.  

1.2 Project Background 

A two-wheeled self-balancing robot is an important and notable type of mobile 

robot. It refers to a robot's capability to maintain its balance on two wheels without 

toppling over. Unlike many other control systems, the inverted pendulum system 

inherent in these robots is naturally unstable. As a result, it requires control 

mechanisms to achieve stability in this precarious state. Essentially, a two-wheeled 
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balancing robot functions as an inverted pendulum system that remains upright on its 

two wheels. 

Compared to other mobile robots, self-balancing robots offer several advantages, 

including their compact size, versatility, and affordability. These qualities contribute 

to their popularity in many events and settings. As a distinctive example of an inverted 

pendulum, the two-wheeled self-balancing robot exhibits characteristics of instability, 

complex and nonlinear dynamics, and multivariable behavior. The research in the field 

of two-wheeled balancing robots has gained significant momentum in recent years, 

primarily driven by the introduction of the Segway, which revolutionized personal 

transportation.  

This project focuses on the modelling of the robot, the design of a Proportional-

Integral-Derivative (PID) controller, and the implementation of this controller on the 

two-wheeled robot. The chosen controller for this project is the PID controller due to 

its practicality and ease of implementation. It only requires adjustment of three 

parameters, which can be determined using various techniques. Previous studies have 

demonstrated that properly tuned PID controllers yield favorable outcomes in terms 

of response time and accuracy. These parameters, namely Kp, Ki, and Kd, play a 

crucial role in achieving optimal performance. 

 

1.3 Problem Statement  

The two-wheel self-balancing robot is inherently unstable and without external 

control it would roll around the wheels rotation axis and eventually fall[1]. Most of 

the produced self-balancing robots have only one degree of freedom which also 

provides some difficulties for users in the real-world. A PID (Proportional-Integral-
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Derivative) control algorithm needs to be implemented to adjust the motor's speed 

based on the sensor data. 

One degree of freedom limits the robot's ability to perform complex tasks that 

require multi-axis motion or manipulation. It may be challenging to extend the 

capabilities of the robot beyond basic balance control to more sophisticated behaviors. 

[2]. In practical situations, the environment is often intricate and constantly changing. 

The ability of a 1-DOF self-balancing robot to navigate obstacles or uneven surfaces 

can be hindered due to its limited degrees of freedom. This limitation was confirmed 

in a study, where the disturbance rejection capability of the control system was 

sluggish, and the tilt response had significant oscillations [2]. As a result, it lacks the 

necessary flexibility for successful adaptation and efficient motion planning in such 

complex and dynamic environments.  

Thus, this project aims to develop a two-wheel self-balancing robot with 2-DOF 

that uses PID control algorithms in order to provide a stable and efficient method for 

controlling the robot’s balance in real-time. 

 

1.4 Objectives  

This research aims to create a two-wheel robot using the inverted pendulum 

concept and a PID controller. The specific objectives formulated to achieve this aim 

are as follows: 

i. To design a two-wheel self-balancing robot with two degrees of freedom 

(2-DOF). 

ii. To develop a prototype for the two-wheel self-balancing robot with a PID 

controller. 
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iii. To analyze the performance of the developed self-balancing robot through 

PID tuning for improved balance control.   

1.5 Scope of Project  

The scope of this thesis is focused on the design and control of a two-degree-of-

freedom (2-DOF) self-balancing robot using a PID controller. NodeMCU ESP32 is 

the microcontroller used to read the sensor data from MPU6050 sensor. The MPU 

6050 sensor is used to accurately measure motion and orientation, including 

acceleration and rotational movement. On the wheels of the robot, there are two 

stepper motors NEMA 17, that serve as the driving force for the robot's movement. Its 

precise control allows for accurate rotation of the wheels, enabling the robot to 

maintain balance. NodeMCU ESP32 Wi-Fi module is used for internet connectivity, 

PID tuning, and system tuning can be remotely controlled by using Blynk application.   

1.6 Chapter Outline  

The two-wheel self-balancing robot that uses IMU sensor was described as an 

intelligent way to reduce human efforts in their daily activities. All the details about 

this project were defined in every chapter as shown below.  

CHAPTER 1: This chapter will give a brief introduction to the project including 

the project background, problem statement, objectives, scope of project and the 

chapter outline for the whole project are clearly explained in this chapter.  

CHAPTER 2: This chapter will discuss about the articles or sources that are related 

to the project. This project is known by the sources and research that has been done 

before. Literature review provides a background of this project and also gives and 
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direction in this research. The details of the project’s background are briefly explained 

in this section.  

CHAPTER 3: This chapter focuses on the research methodology employed in this 

project, providing a comprehensive outline of the specific approach utilized. This 

chapter presents a selection of materials essential for hardware development. 

Additionally, it delves into the theory and practical application of the PID controller 

within the context of this project. 

CHAPTER 4: This chapter deals with the results and discussion. It will highlight 

the results obtained in design and development of the hardware. Besides, it also 

discusses the tuning method of PID in self-balancing robot. All of the obtained results 

are briefly explained in this section.  

CHAPTER 5: The final chapter will explain the conclusion and future 

recommendation of the project which also includes the project achievement, project 

problem and limitation, and future recommendation in order to improvise the project. 

1.7 Chapter Summary 

In conclusion, the following outline of this thesis will cover several different parts 

and aspects of this project. Then, Chapter 2, will cover the literature review or 

background studies of related past articles or journal. Next, Chapter 3 will cover the 

methodology of this project. All the methods and components used in this project will 

be discussed. Furthermore, in Chapter 4 will be discussing the results of this project 

including the analysis of the PID tuning method. Finally, the conclusion of this project 

including the future recommendations of this project will be discussed in the last 

chapter which is Chapter 5. 



 

 

 

CHAPTER 2  

LITERATURE REVIEW 

2.1 Chapter Overview 

This chapter reviews relevant literature to enhance understanding of the project, 

focusing on presenting theoretical background and summarizing key findings and 

contributions from previous research. 

2.2 Fundamental of Inverted Pendulum  

The inverted pendulum is a classic automation problem that has numerous 

theoretical approaches as well as a multitude of practical applications [3]. A typical 

design for a robot that performs the inverted pendulum task involves a tower-like 

structure supported by two wheels. The robot is capable of independently controlling 

its motors to maintain an upright position while moving in response to user commands.  
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Stabilizing an inverted pendulum is a fundamental challenge in control systems, 

involving key components like a DC motor, a cart, a pendulum, and a driving 

mechanism for the cart. According to the system dynamics the system has two degree 

of freedom the one is for cart movement and the other one is for Pendulums rotational 

motion [4].  Figure 2.1 shows the inverted pendulum parametric presentation.  

 

Figure 2.1: Inverted pendulum parametric presentation 

The list of parameters of the inverted pendulum system is depicted in Table 2.1 below.  

Table 2.1: Parameters of the inverted pendulum system    

Parameter Description Unit 
m Mass of the pendulum kg 
M Mass of the cart  kg 
F Force applied to the cart  kg.m/s² 
b Friction of the cart co-efficient Ns/m 
l Length of the pendulum m 
I Moment of inertia  kg-m² 
g Gravitational Force  9.8 m/s² 
x Cart position co-ordinate  - 
θ Vertical pendulum angle  In degree, º 

 

In order to obtain the system dynamics of the inverted pendulum, several 

assumptions are typically made. These assumptions help in enabling the analysis and 

design of control strategies for the inverted pendulum system.  
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i. Initial equilibrium state: The system starts from a balanced state with zero 

initial conditions, simplifying analysis to focus on deviations from 

equilibrium. 

ii. Small angular deviation: The pendulum is modeled with small angular 

displacements for linearity, allowing the use of linear control techniques as 

its dynamics remain linear within this range. 

iii. Step input: The system is tested with a step input, represented as a sudden 

change in the pendulum angle (θ), simplifying analysis by examining the 

response to a consistent, abrupt change in input. 

2.3 Types of controllers to balance two-wheel robot  

Several researchers have developed various types of controllers, each with its 

unique design approach and associated pros and cons.  

The authors in [5] states that balancing of the robot can be done with help of 

feedback and a correction element. The feedback element in the system is represented 

by the MPU6050 board, which communicates the current orientation of the robot to 

the Arduino. The objective of the study is to achieve the capability of the robot to 

maintain an upright position and balance effectively. As the result of the study, it has 

been concluded that PID algorithms can be used to stabilize an unsteady robot. To 

achieve balance in the robot, two control strategies are utilized which are MPU6050 

calibration and PID tuning. The calibration process involves obtaining six sets of 

offset values from the accelerometer and gyroscope by aligning the MPU6050 with 

the ground plane. PID tuning is then performed using a trial-and-error method to attain 

a stationary position for the robot.  



9 

 

Meanwhile, the study in [6] presents two control methods for a WIP-based self-

balancing robot: PID for vertical angle stabilization and LQR for motion trajectory, 

tested in MATLAB Simulink. They employed two techniques: PID control for vertical 

angle stabilisation and LQR control with state observer to follow a desired motion 

trajectory and stabilise the pendulum's vertical angle. In the project, just PID control 

for vertical angle stabilization is used where LQR control will be incorporated in the 

future. The final version of the WIP self-balancing robot was tested on carpet and 

stoneware surfaces with different friction levels. Results indicate that the robot, using 

only PID control for vertical angle stabilization, effectively maintains balance on these 

surfaces with a maximum error of 4°. 

In addition, linear controllers have gained popularity among researchers involved 

in the design of similar balancing robots, such as JOE: A mobile, inverted pendulum. 

The most widely used control systems are the Pole Placement controller and the Linear 

Quadratic Regulators (LQR), both of which are based on linear state space models. 

These controllers have been extensively implemented and studied due to their 

effectiveness in achieving desired balancing and control outcomes for such robotic 

systems. While the authors in [6] mentioned that PID controller based on output 

feedback may not achieve satisfactory control results for a high-order and multi-

variable system.  

In other research paper, the author [7] mentioned that fuzzy logic is able to enhance 

the robot’s ability, particularly when subjected to external forces. In the study, the PD 

and PID controllers are designed using the pole placement method, and their 

parameters are optimized using the Genetic algorithm. The PD controller exhibits 

vibrations and instability, leading to the robot's fall. By adding a pole and transforming 
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it into a PID controller, stability improves but external forces still cause the robot to 

fall. To enhance PID performance, the parameters are fine-tuned using Fuzzy logic. 

As a result, the Fuzzy-PID controller reduces vibrations, improves stability, and 

mitigates the impact of external forces. 

2.4 Two-wheel self-balancing robot using PID controller 

One of the fundamental challenges in designing two-wheel self-balancing robots is 

achieving stable balance and control. These robots typically employ a combination of 

sensors, actuators, and control algorithms to sense their orientation and make 

adjustments to keep themselves balanced. Based on the sensor readings, a control 

algorithm, Proportional-Integral-Derivative (PID) controller, then calculates the 

appropriate control signals to drive the motors and maintain balance.  

PID control is known for its past success, simplicity in the implementation and 

broad availability [8].  In recent studies, there has been a notable emphasis on 

augmenting the capabilities of self-balancing robots through the integration of 

additional degrees of freedom. The inclusion of a 2-DOF system enhances the robot's 

flexibility, maneuverability, and ability to navigate around obstacles.  

The author discusses the utilization of a two-stage proportional-integral-derivative 

(PID) controller in conjunction with a microcontroller, position sensor, and DC motor 

for the hardware system design [9]. The authors also present the symbolic 

representation of the state space dynamic model and highlight the use of MATLAB 

simulation, fuzzy algorithms, and sophisticated mathematical modeling strategies in 

previous studies.  Furthermore, this paper offers valuable observations on the 

performance evaluation of the self-balancing robot, demonstrating the effectiveness 

of a 2-DOF PID controller in reducing settling time and enhancing stability. The 
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applications of this research encompass educational experiments, robotics and control 

courses, and potential integration with Bluetooth or wireless modules for improved 

movement control and balance maintenance, indicating promising future scope in 

diverse fields such as product containment systems and flying machines. 

Next, the authors utilized MATLAB and Arduino IDE for the design and control 

of the robot, while the main electrical components included Arduino Uno 

microcontroller, IMU MPU-6050 sensor, 10 in-series 1.2V AA NiMH batteries, 

Pololu Dual G2 High-Power motor driver, and 2 Pololu 30:1 Metal Gearmotor motors 

[10]. They applied Lagrange equations for mathematical modeling and used two 

cascading PID loops for controlling speed and tilt angle. The experimental findings 

and the robot's actual performance are also included in the article. The robot 

demonstrated the ability to transport objects of different sizes and weights while 

maintaining balance and navigating tight spaces. It's shown to be versatile, with 

potential applications in surveillance, rescue, hazardous environment cleaning, 

military, and transportation.  

Furthermore, this paper focuses on the design, construction, and control of a two-

wheeled balancing robot using Linear-Quadratic Regulator (LQR) controller [5]. The 

robot consists of an MPU 6050, a microprocessor, a frame, two wheels driven by DC 

gear motors, and a battery. The MPU-6050 sensor detects the angle of tilt or inclination 

along the X, Y, and Z axes as well as the rotational velocity along the X, Y, and Z 

axes by combining a 3-axis accelerometer and a 3-axis gyroscope with Micro 

Electromechanical System (MEMS). Data from the accelerometer and gyroscope are 

combined using a complementary filter. The LQR controller is employed for 

stabilization and balance. Experimental results show the robot's ability to maintain 
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balance, illustrating the principle used in transportation like the Segway PT and 

garnering interest in control engineering research. 

Moreover, the next paper discusses the development of a Two Wheeled Robot 

(TWR) using a single stepper driver and PID control loop [11]. The TWR is designed 

[12]using an Arduino Nano microcontroller, Inertial Mass Unit (IMU) sensor, and 

stepper motors with stepper driver. The PID control loop is implemented to balance 

the robot's vertical position, and the PID coefficients are tuned for stability and 

responsiveness, with Kp adjusted for oscillations, Ki for reduction, and Kd for quick 

response. A complementary filter is used for smoother sensor measurements, and 

potential enhancements include a Kalman filter, PID with fuzzy logic, LQR controller, 

and wireless communication. The TWR is applicable in robotics, automation, and 

education, where precise control and balance are essential.  

Besides, the author [11] presents a comprehensive exploration of the design and 

analysis of a TWABR system, utilizing components such as the MPU6050, DRV8825 

motor driver, NEMA17 Bipolar stepper motor, and an ESP32 Microcontroller 

powered by an 11.1V Lithium Polymer battery. MATLAB is used for designing and 

simulating classic PID and optimal LQR controllers, focusing on control performance 

and stabilization. The TWABR's dynamic model is based on nonlinear differential 

equations and Lagrange dynamics, linearized for analysis in state space and frequency 

domain. The study underscores the LQR controller's superior performance and 

suggests exploring speed control and variable tilt angles. This work lays a foundation 

for low-cost TWABR systems in control theory education and further control strategy 

research. 
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Moreover, the author investigates the design and execution of a self-balancing 

robot with the use of an MPU6050 sensor, a 12V DC motor with encoders, and 

SolidWorks for design and Arduino Uno for control [12]. A key aspect was creating a 

state-space model for the DC motor, clarifying the relationship between input voltage, 

control torque, and deriving state space equations. Experimental results highlighted 

successful hardware-software integration, particularly in balance control with an 

inverted pendulum model. Real-time testing employed advanced PID and LQR 

controllers, with the PID effectively managing the robot's tilt. Future enhancements 

include improving trajectory tracking, stabilizing on uneven surfaces, and adding 

manual remote control via Bluetooth. This system outperforms current benchmarks in 

the field. 

Other than that, the author discusses the design and implementation of a two-wheel 

self-balancing inspection robot, leveraging advanced technologies such as Silan 

RPLIDAR A2 LiDAR and a particle filter [13]. The research's core is developing a 

self-balancing control algorithm and a kinematic model, underpinned by a double-

closed-loop PID strategy. SolidWorks and finite element statics are used for the robot's 

design, which features autonomous decision-making, environmental sensing, and 

control execution using the Gmapping SLAM algorithm for localization and map 

generation The study highlights the significance of particle number in Gmapping for 

map accuracy, supported by high-accuracy tests. Both in real-world experiments and 

in simulation settings like Gazebo, the self-balancing algorithm's robustness and anti-

jamming skills were thoroughly tested. The result of these efforts is an inspection robot 

based on laser SLAM that proves its capacity to perform inspection tasks effectively 

in test conditions, verifying the efficacy and rationale of the system.  
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Furthermore, the author in [14] explores the design and implementation of a two-

wheeled self-balancing robot (TWSBR), integrating key components such as the 

MPU6050 sensor, DC motors, a 12V battery, and a chassis made from plastic 

baseboard and metallic racks. The study validates the PD control theory using 

MATLAB's SIMULINK, demonstrating the robot's ability to maintain balance over 

time and respond effectively to disturbances, reaching saturation. Robotic toolbox 

simulations further confirm the working principle. Motion equations are deduced from 

this modeling, and a stability analysis is conducted based on the system's poles. The 

implementation of PD-PI navigational control and the use of a Kalman filter algorithm 

underscore the robot's stability. The robot's ability to avoid obstacles is maximized 

using ultrasonic waves for detection, and its communication with IoT devices is 

facilitated via Bluetooth technology. 

Next, the author [15], discusses the construction and operational capabilities of a 

self-balancing robot, a prime example of a cyber-physical system, utilizing 

components such as a NEMA17 stepper motor, A4988 stepper motor driver, HC-06 

Bluetooth module, LM2596 current limiter, MPU6050 sensor, and an Arduino Uno, 

all powered by a 5100 mAh lithium polymer battery. The robot successfully achieves 

balance and recovers from external disturbances, although it faces limitations in 

sustaining balance against larger forces due to its small form factor. The robot's control 

algorithm, intricately designed in the Arduino IDE and visualized through UML 

diagrams, employs a PID controller with finely tuned values (Kp 1150.0, Kd 157.5, 

Ki 0.12) to maintain its orientation, a process rigorously monitored through sensor 

data. Additionally, the robot's circuitry using Fritzing software, facilitates controlled 

movement in four directions which are forward, backward, left, and right maneuvered 

through a bespoke Android app via Bluetooth.  
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Last but not least, the author presented the development and control of three-level 

self-balancing robots highlighting the integration of components such as Arduino 

Nano, DC motors, L298N motor drivers, MPU6050 Sensor, 16x2 LCD display, push 

buttons, and lithium rechargeable batteries [16]. The robots, each featuring different 

chassis materials, employ a combination of PID control and Kalman filter for stability 

and movement control. The system modeling was achieved using the Lagrange 

equation, with the model subsequently converted into a transfer function for effective 

PID implementation. The PID controller was meticulously designed and tuned 

following the Ziegler Nichols method, while the Kalman filter was developed and 

integrated to enhance system performance. Both PID control and Kalman filter were 

rigorously tested through simulations and actual robot implementation, demonstrating 

the robots' ability to maintain balance for extended periods (up to one hour) and 

robustly reject disturbances. The paper also encompasses extensive simulations, 

hardware design, and experimental examinations to gather and analyze research data, 

ultimately resulting in a well-evaluated, stable, and efficient control system for self-

balancing robots. 

As a whole, the literature reviewed for this thesis highlights a key fact about 

robotics and control systems which every project is a special mosaic of invention, with 

each publication or contributing author offering their own technique and viewpoint. 

This reflects the PID controller's fundamental role in robotics and automation, 

adaptable to a wide range of applications, from basic self-balancing robots to complex, 

multi-level control systems. 

 

 



 

 

 

Table 2.2: Comparative Analysis of Reviewed and Proposed of Two-wheel Self-balancing Robot using PID Controller 

Title Software / 
Equipment used 

Results Method Used  Conclusion 

A Smart Approach 
to control a two-
Wheeled Self-
Balancing Robot 
using a PID 
Controller with 
Two Degree of 
Freedom (2022) 

 Arduino Uno  
 L298N motor 

driver 
 DC motor  
 GY521 Sensor 

 The settling time 
decreased to 0.0861 
seconds. 

 The 2-DOF controller 
was found to be more 
effective than the PID 
controller. 

 

 Inverted pendulum 
control theory.  

 Conventional 2-DOF 
proportional-integral-
derivative (PID) 
controllers. 

 Readings of 
acceleration, distance 
traveled, and inclination 
from sensors. 

 Presents a two-stage 
PID controller for 
controlling a two-
wheeled self-
balancing robot.  

 The PID controller is 
shown to be superior 
to traditional PID 
controllers. 
 

Design and 
Control of Two 
Wheeled Self 
Balancing Robot 
(TWSBR) (2022) 

 

 Arduino Uno  
 MPU 6050 

sensor 
 10 in-series 1.2V 

AA NiMH 
batteries 

 Pololu Dual G2 
High-Power 
motor driver 

 2 Pololu 30:1 
Metal 
Gearmotor 
motors 

 Design, model, and 
control of Two-
wheeled Self-
balancing Robot. 

 PID gains obtained in 
simulation were used 
in practical tests. 

 Desirable response 
was achieved in the 
practical test using 
one manipulated input 
(voltage). 

 

 Two PID control loops 
cascade for controlling 
outputs. 

 Tuning PID gains using 
MATLAB.  

 Maintaining balance 
while moving and 
carrying objects. 

 Traveling at different 
desired speeds specified 
by the user. 

 Two PID control 
loops cascade to 
control robot speed 
and tilt angle.  

 Robots can maintain 
balance while 
moving and carrying 
objects. 

 Robot can travel at 
different desired 
speeds specified by 
the user. 
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Controlling of 
Two Wheeled Self 
Balancing Robot 
using PID (2018) 

 DC gear motors 
 Battery 
 MPU 6050 

Sensor 
 Arduino Uno  

 Use of Linear-
Quadratic Regulator 
(LQR) controller for 
balancing. 

 Measurement of robot 
angle using MPU 
6050 and filtering of 
data.  

 Experimental results 
show the robot can 
maintain balance. 

 Linear Quadratic 
Regulator (LQR) 
controller 

 State feedback control 
system 

 Complementary filter 
 Encoder feedback 
 MPU 6050 for angle 

measurement 

 Self-balancing robot 
was successfully 
constructed.  

 The control method 
provided stable and 
reliable balance 
condition for motion 
control.  

 Robots can balance 
upright positions 
using only two 
wheels.  

Development of 
Two Wheeled 
Robot (TWR) by 
Single Stepper 
Driver using PID 
controller (2021) 

 Arduino Nano 
 DRV 8825 

stepper motor 
driver  

 7805 IC Voltage 
regulator  

 Li-Po Battery  
 MPU 6050  
 Stepper motor  
 CAD software 

(Autodesk 
Inventor 
Professional) 

 MATLAB 
software 

 Discusses the 
combination of 
accelerometer and 
gyroscope data.  

 Use of a 
complementary filter 
to sift noise and drift.  

 Calculation of angles 
and their addition to 
former inclination.  

 Rotation direction of 
motor 2 based on 
voltage applied.  

 Provides a sequence 
of voltage applied on 
leads. 

 Trial and error method 
used to tune the PID 
parameters.  

 

 Two-wheeled robot 
was successfully 
developed. 

 Capable of balancing 
on its two wheels 
using PID controller. 

 Single stepper driver 
used to drive both 
stepper motors 
simultaneously. 

 Tuned PID 
coefficients (Kp, Ki, 
Kd) were found to 
improve the robot's 
performance. 
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Modeling and 
Control of a Two 
Wheeled Auto 
Balancing Robot: 
A didactic 
platform for 
control 
engineering 
education (2019)  

 MPU6050 
 DRV8825 motor 

driver  
 ESP32 

Microcontroller  
 NEMA17 

stepper motor  
 11.1V Lithium 

Polymer battery 
(Li-Po)  

 MATLAB 
software 

 Design and analysis 
of a Two Wheeled 
Automatic Balancing 
Robot (TWABR). 

 Analysis of 
TWABR's dynamic 
model through 
nonlinear differential 
equations. 

 Design and 
simulation of classic 
PID controller and 
optimal LQR 
controller. 

 Design and simulation 
of classic PID controller 

 Design and simulation 
of optimal LQR 
controller 

 Experimental 
comparison of the 
performance of the 
implemented 
controllers. 

 Two controllers 
implemented: PID and 
LQR. 

 Design and 
construction of a 
low-cost TWABR 
system for control 
theory education.  

 TWABR system 
modeled using 
Lagrange dynamics 
equations. 

 LQR controller 
showed better 
dynamic and static 
response.  

Research on Self-
balancing Two 
Wheels Mobile 
Robot Control 
System Analysis 
(2022) 

 SolidWorks 
software  

 12 V DC motors 
with encoders  

 MPU6050 
Sensor  

 Arduino Uno 

 

 Experimental results 
based on hardware 
implementation and 
overall system 
implementation were 
presented. 

 Outcomes of research 
were mentioned based 
on discussions on 
several analyses. 

 State-space model of the 
DC motor 

 Relationship between 
input voltage and control 
torque 

 Rearrangement of 
equations to obtain the 
state space equation. 

 Torque applied on the 
chassis from the motor 
and linear 
transformation. 

 Successfully 
achieved balance 
control for self-
balancing robot.  

 PID controller used 
for controlling single 
axis robot tilting 
angle. 

 Recommended 
further extension for 
stabilizing robot on 
sloped and rough 
surfaces.  
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Research on Two-
Round Self-
Balancing Robot 
SLAM Based on 
the Gmapping 
Algorithm (2023) 

 Silan RPLIDAR 
A2 LiDAR  

 Particle Filter 

 Design and analysis 
of a two-wheel self-
balancing inspection 
robot. 

 Establishment of a 
kinematics model and 
design of a self-
balancing control 
algorithm. 

 Use of the Gmapping 
SLAM algorithm for 
robot localization and 
map construction. 

 Importance of particle 
number selection for 
improving map 
accuracy. 

 

 SolidWorks for 
designing the 
mechanical structure of 
the robot. 

 Multi-closed-loop PID 
controller for designing 
the self-balancing 
control algorithm. 

 2D LiDAR-based 
Gmapping algorithm for 
robot localization and 
map construction. 

 Self-balancing test and 
anti-jamming test for 
verifying the algorithm's 
performance. 

 Actual test results 
showing high map 
accuracy. 

 Designs and 
implements a laser 
SLAM-based 
inspection robot. 

 The double-closed-
loop PID algorithm is 
used as the self-
balancing control 
algorithm. 

 The system's 
rationality is verified 
through simulation 
and actual testing. 

 The robot 
successfully 
completes the 
inspection task in the 
test environment. 

Robust 
Navigational 
Control of a Two-
Wheeled Self-
Balancing Robot 
in a Sensed 
Environment 
(2019) 

 MPU6050  
 DC Motors  
 12V Battery  
 Plastic 

Baseboard and 
metallic racks  

 Transparent 
plastic board 

 PD Control theory is 
verified using 
SIMULINK in 
MATLAB. 

 The robot can balance 
itself with two wheels 
over time. 

 The robot responds to 
disturbances and 
reaches saturation. 

 Mathematical modeling  
 Analysis of the 

relationship between 
forces and motors' 
voltage.  

 Motion equations 
deduced from modeling. 

 Stability analysis based 
on the poles of the 
system. 

 PD-PI navigational 
control successfully 
implemented. 

 Maximum obstacle 
avoidance achieved. 

 Integration with IoT 
devices established 
through Bluetooth 
technology. 
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Simple Two-
wheel Self-
Balancing Robot 
Implementation 
(2023) 

 NEMA17 
stepper motor  

 A4988 stepper 
motor driver  

 HC-06 
Bluetooth 
module  

 LM2596 Current 
limiter  

 MPU6050 
Sensor  

 Arduino Uno  
 5100 mAh Li-Po 

Battery  
 Arduino IDE   

 The robot was fully 
constructed and 
powered up 
successfully. 

 The robot was able to 
balance and recover 
from tilts caused by 
external forces and 
able to move in four 
different directions 
using the mobile app. 

 The small form factor 
of the robot caused it 
to eventually fall off 
when a large amount 
of force was applied. 

 The structure design of 
the robot is based on the 
concept of a reverse 
pendulum. 

 The robot's control 
algorithm uses sensor 
data to monitor its 
orientation. 

 The control loop of the 
robot uses a PID 
(proportional-integral-
derivative) controller. 

 UML diagrams were 
created to model the 
robot. 

 The reverse 
pendulum concept 
was used.  

 Robots can balance 
on two wheels and 
recover from external 
forces. 

 Control information 
sent through an 
android app via 
Bluetooth. 

 Robot can move in 
four basic directions: 
forward, backward, 
left, and right. 

Using a 
Combination of 
PID Control and 
Kalman Filter to 
Design of IoT-
based 
Telepresence Self-
balancing Robots 
during COVID-19 
Pandemic (2021) 

 Arduino Nano  
 DC Motors  
 L298N motor 

drivers  
 MPU6050 

Sensor  
 16x2 LCD 

display  
 Push Button  
 Lithium 

rechargeable 
battery  

 PID control and 
Kalman filter. 

 The robots used two 
DC motor drives and 
had different chassis 
materials. 

 PID control was 
tested using 
simulations and actual 
robot implementation. 

 

 Conversion of the model 
to a transfer function for 
PID implementation 

 PID controller design 
and Ziegler Nichols 
tuning 

 Design of the Kalman 
filter 

 Simulation and 
hardware design 

 

 A robust and stable 
disturbance rejection 
control was 
successfully 
designed. 

 The robot maintain 
balance for 
approximately one 
hour before re-
balancing. 
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Proposed System   MPU6050 
Sensor  

 ESP32 
Microcontroller  

 A4988 Stepper 
Motor Driver  

 NEMA17 
Stepper Motor  

 18650 Lithium-
ion Battery 
(12V) 

 2-DOF self-
balancing robot is 
produced.  

 Robot’s 
performance varied 
when PID 
parameters varied.  

 The PID tuning for 
the robot can be 
applied to all types of 
surfaces.  

 Robots are subject to 
external disturbance 
while balancing 
themselves. 

 Analysis of PID 
tuning parameters is 
applied through 
MATLAB from data 
obtained in serial 
(ESP32) 

 

 Trial and error method 
for PID tuning.  

 MATLAB software to 
analyze the real-time 
data from ESP32.  

 Schematic circuits are 
built in Fritzing 
software. 

 Blynk application is 
used to remotely tune 
the PID parameters.  

 Automatic Calibration 
through Arduino IDE 
library. 

 2-DOF self-
balancing robot 
obtained self-
control in balancing 
itself.  

 Performance for 
each PID tuning 
parameter is 
analyzed through 
pitch angle vs time 
plot in MATLAB. 

 A robust and stable 
disturbance 
rejection control is 
successfully 
designed. 



 

 

 

2.5 Internet of Things (IoT) 

According to Bansal et al. (2019)[17], the globe has a tremendous demand for IoT 

technologies due to the rapid advancement of technology. The current era witnesses 

the remarkable capabilities of the Internet of Things (IoT) in bridging the gap between 

the virtual realm and tangible reality. This transformative technology encompasses a 

network infrastructure that seamlessly connects various electronic sensors, devices, 

and objects, enabling them to establish meaningful correlations between their internal 

states and the external environment. Therefore, IoT has a lot to serve in various aspects 

of life and technology [18]. It holds immense potential in terms of technological 

advancements and its ability to significantly benefit humanity. 

2.6 Gaps and Challenges 

When delving into the extensive amount of literature on PID controllers and robotic 

systems, it is essential to identify and address the gaps and challenges that continue to 

affect current research. This subtopic aims to discover the gaps and the complexity in 

previous research, illuminating unexplored areas and possible roadblocks that may 

serve as inspiration for next innovations and advances in the field. Table 2.3 below 

shows the gaps and challenges from previous research and the proposed system.  

Table 2.3: Gaps and Challenges of Past Research and Proposed System 

Gaps and 
Challenges 

Past Research Proposed System 

Design  Most of the designs 
predominantly focus on 1-
DOF systems. 

 Offer limited scope in terms 
of movement and 
functionality.  

 Advances to a 2-DOF 
design, expanding the 
capabilities and 
potential application of 
the system.  

 Open new avenues for 
exploration and 
innovation in robotic 
system design.  
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PID 
parameters 

tuning 

 PID tuning involves 
adjustments within the 
coding environment and the 
use of MATLAB Simulink. 

 Limits the flexibility and 
real-time adaptability of the 
system. 

 Utilize Blynk 
application to tune PID 
parameters.  

 Allow for more 
dynamic and on-the-fly 
adjustments.  

 Offer a more user-
friendly and accessible 
way to optimize system 
performance in real-
world scenarios.  

Wheel 
speed and 

acceleration 

 LQR is tuned to improved 
handling of stepper motors. 

 LQR requires a precise 
mathematical model of the 
system, including its 
dynamics.  

 LQR controllers involve 
solving matrix equations, 
which are computationally 
intensive.  

 Optimize the 
performance of the 
stepper motor using 
Blynk application. 

 Allow for precise 
adjustments in real-
time, directly 
impacting and 
enhancing the robot's 
wheel speed and 
acceleration.  

 Allow for greater 
flexibility and 
customization in 
control system design. 

Blynk for 
control 

 Utilized Android apps and 
Bluetooth devices for 
control and communication 
purposes.  

 Lacked deeper integration 
with the broader Internet of 
Things (IoT) ecosystem 

 Blynk offers more 
sophisticated 
monitoring features 
including real-time 
data visualization, 
which can be critical 
for understanding the 
system's performance 
and behavior over time.  

 Allow for remote 
interactions with the 
robot from virtually 
any location. 

 

    Based on Table 2.3, it compares the approaches and advancements of past research 

with the proposed system in four key areas: design, PID parameter tuning, wheel speed 
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and acceleration, and control using Blynk. As for the design part, past research mainly 

focused on 1-DOF systems, limiting movement and functionality. The proposed 

system advances to a 2-DOF design, offering expanded capabilities and new 

possibilities in robotic system design. Then, traditional methods used coding 

environments or MATLAB Simulink, restricting real-time adaptability [19]. The 

proposed system uses the Blynk app for dynamic and user-friendly PID tuning, 

enhancing real-world performance.  

    Next, previous studies relied on LQR tuning, requiring complex models and high 

computational power [20]. The proposed system optimizes stepper motor performance 

using Blynk, allowing for precise, real-time adjustments and increased flexibility. 

Lastly, earlier approaches used Android apps and Bluetooth for basic control, lacking 

IoT integration. The proposed system employs Blynk for sophisticated monitoring, 

real-time data visualization, and remote interaction, significantly enhancing control 

and monitoring capabilities. 

2.7 Chapter Summary  

To sum up, multiple existing techniques that are related to the proposed technique 

are reviewed within this chapter. The reviews are done based on their system design 

and method as well as the strengths and weaknesses.  

 



 

 

 

CHAPTER 3  

METHODOLOGY  

3.1 Chapter Overview  

The methodology is composed of several related ideas, such as method and 

algorithm. It outlines the methods that have been used and, in general, defines how the 

research has been carried out. This chapter describes the project's implementation, 

including how the two-wheel self-balancing robot operates theoretically with PID 

controller and how to build the system from the ground up, starting with the software 

and ending with the hardware. 

3.2 Flowcharts 

The methodology employed in this project comprises two main components: 

mechanical design and software algorithm. In this chapter, the approach utilized to 

accomplish the desired objectives will be outlined. The project will be executed based 
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on a well-defined flowchart that delineates all the essential activities that need to be 

undertaken.  

Figure 3.1 depicts the project's flowchart, which commences with a comprehensive 

literature review to gather information on topics relevant to the two-wheeled balancing 

robot. After thoroughly examining the available resources, the subsequent step 

involves modeling the inverted pendulum, as it forms the foundational concept for this 

project. 

 

Figure 3.1: Flowchart of the project 
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Figure 3.2 shows the flowchart for the PID tuning process. It begins by setting the 

initial values for the proportional, integral, and derivative gains (Kp, Ki, and Kd). The 

control algorithm is then implemented using these gains to regulate the robot's balance. 

Following that, the gains are adjusted based on the observed system response. This 

iterative process continues until the system achieves stability. Once stability is 

achieved, the system's performance is analyzed. 

 

Figure 3.2: Flowchart for PID tuning 
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The project aims to analyze the variables of rise time, settling time and overshoot, 

steady-state error reduction, and stability by systematically adjusting the proportional 

constant (Kp), integral constant (Ki), and derivative constant (Kd). Through 

experimental observations of the robot's behavior and data analysis, the relationship 

between these variables and the robot's performance can be examined. The response 

speed will be assessed by measuring the robot's reaction time to different reference 

inputs, while steady-state error reduction will be analyzed by observing the error 

signal for varying Ki values. Additionally, the stability of the robot's motion will be 

evaluated by gradually increasing Kd and monitoring any signs of instability. By 

conducting these analyses, valuable insights can be gained to optimize the robot's 

control system and enhance its overall performance. 

3.3 Block Diagram 

The effective integration of mechanical and software components relies heavily on 

the design of the hardware system. The circuitry for the self-balancing robot shown in 

Figure 3.3 encompasses key elements, including the MPU6050 sensor—an inertial 

measurement unit (IMU), the ESP32 microcontroller, stepper motor and the stepper 

motor driver. Additionally, MATLAB is used for analysis of data for PID tuning.  

NodeMCU ESP32 will act as the brain of the system which will connect the 

MPU6050, MATLAB, stepper motor driver and Blynk application as the IoT platform. 

The MPU6050 sensor is employed to gauge the robot's acceleration and angular rate, 

converting the analog output into digital data. The raw input from the IMU sensor is 

subjected to further processing to determine the inclination angle of the robot. This 

angle is then fed into the PID controller algorithm, which computes the optimal speed 

for the stepper motor to uphold the robot's balance. Besides, NodeMCU ESP32 will 
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connect to WIFI and send the data to IoT device server which is Blynk Apps to remotely 

tune the PID parameters. MATLAB is then used to analyze the response of the robot at 

different PID parameter values for analysis.   

 

Figure 3.3: Block Diagram of the project 

The closed loop control system of the self-balancing robot depicted in Figure 3.4 

consists of a PID controller within an ESP32 Microcontroller that processes the tilt 

angle error signal from a MPU 6050 sensor to generate control commands for a stepper 

motor. The PID controller adjusts the motor's movements using proportional, integral, 

and derivative gains to maintain the robot's balance. The stepper motor driver takes 

the control commands and translates them into electrical signals that drive the stepper 

motor. The motor responds to the electrical signals by rotating in a precise manner, 

which adjusts the position of the robot to maintain balance.  

Then, a disturbance block, representing external physical forces like pushes or 

pulls, is shown impacting the system's output, simulating real-world interactions. The 

closed-loop nature of the system means that any effect of the disturbance on the robot's 



30 

 

balance is continuously fed back into the control system, allowing it to dynamically 

adjust the motor commands to counteract the disturbance and stabilize the robot. 

 

Figure 3.4: Closed loop control system of the self-balancing robot 

Based on the closed loop control system shown in Figure 3.4, the PID controller 

can be mathematically written as:  

𝑢(𝑡) = 𝐾௉𝑒(𝑡) +  𝐾௜  ∫ 𝑒(𝑡)𝑑𝑡 + 𝐾ௗ  ௗ
ௗ௧

𝑒(𝑡)         (1) 

The controller's response, u(t), depends on three constants: Kp, Ki, and Kd, which 

represent the proportional, integral, and derivative controllers, respectively. The error 

signal, e(t), reflects the difference between the y-axis and the actual position of the 

robot. Kp adjusts the response speed by multiplying with the error, leading to changes 

in the robot's balance at different set-points. Ki minimizes steady-state error and 

enhances the robot's motion smoothness, but even a small adjustment can have a 

significant impact due to its integrating nature. Kd influences the robot's reaction time 

and should be carefully tuned to prevent instability when excessively increased.  
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3.4 Main Components  

This section introduces the components used in the project, outlining their roles and 

functions within the system. Each component is vital for the design's success and the 

system's effective operation. 

By carefully selecting and integrating these components, the aim is to create a 

robust and efficient solution. The model of the self-balancing robot is shown in Figure 

3.5. The components have been chosen based on specific criteria, including 

performance specifications, compatibility, availability, and cost-effectiveness. This 

ensures that they meet the project requirements and contribute to the successful 

implementation of the intended functionalities.  

   

Figure 3.5: Model of the self-balancing robot  

The 2-DOF self-balancing robot model is designed with the aid of TinkerCAD 

software as a virtual representation of a robot intended to keep its balance while 

moving. TinkerCAD is a computer-aided design (CAD) software that allows users to 

create 3D models using a simple drag-and-drop interface. It includes a chassis, two 

wheels, stepper motors, a sensor, and a control system.  
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3.4.1 MPU 6050 Sensor  

The MPU 6050 depicted in Figure 3.6 known as an inertial measurement unit 

(IMU), is a vital component in the functioning of a self-balancing robot. It integrates 

both a gyroscope and an accelerometer into a single device. This combination allows 

the MPU 6050 to measure both angular rate and linear acceleration, which are crucial 

for the precise control and balance of the robot. The built-in DMP module can convert 

the angular speed into three angles: pitch angle, roll angle and yaw angle, and can 

transmit data through I2C and expand temperature sensor or magnetic sensor [21].   

The SDA pin of the MPU6050 is connected to the SDA pin of the ESP32, which is 

often labeled as GPIO (General Purpose Input/Output) pin number 21. Similarly, the 

SCL pin of the MPU6050 is connected to the SCL pin of the ESP32, usually labeled 

as GPIO pin number 22. These connections enable the ESP32 to communicate with 

the MPU6050 sensor and retrieve the accelerometer and gyroscope data for further 

processing and control in the self-balancing robot system. 

 

Figure 3.6: MPU 6050 sensor 

3.4.2 NodeMCU ESP-32 Microcontroller  

The NodeMCU ESP32 serves as the main control unit of the self-balancing robot 

as shown in Figure 3.7. It handles the overall coordination, computation, and decision-

making processes. The NodeMCU ESP32 acts as the micro-controller, in which the 

RL model or PID mechanism is manually uploaded [22]. The NodeMCU ESP32 
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receives sensor data from the MPU-6050 sensor, performs calculations based on the 

PID algorithm, and generates appropriate control signals for the motors. 

 

Figure 3.7: NodeMCU ESP32 Microcontroller 

The MPU-6050 sensor, integral to the project, combines a gyroscope and 

accelerometer to measure the robot's tilt angle, angular velocity, and linear 

acceleration. It continuously tracks the robot's motion, relaying data to the ESP32 for 

processing. The NodeMCU ESP32, using I2C protocol, communicates with the MPU-

6050, issuing commands for measurements and receiving sensor data. This allows 

real-time monitoring of the robot's orientation and movement. 

Upon receiving raw data from the MPU-6050, the NodeMCU ESP32 processes it 

to determine crucial metrics like the robot's tilt angle, utilizing the gyroscope's angular 

velocity and the accelerometer's linear acceleration readings. This tilt angle is then fed 

into the ESP32's PID controller, which compares it with the desired tilt angle (set 

point) to generate control signals. These signals regulate motor speed and direction, 

crucial for maintaining the balance of the two-wheeled robot. 

3.4.3 Stepper Motor NEMA 17 

The NEMA 17 stepper motor, essential for robotics and automation, features in 

Figure 3.8. Adhering to NEMA standards with a flange size of 1.7 x 1.7 inches, its 

operation is based on electromagnetic induction, involving a rotor, stator, and coils 
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wrapped around the stator poles. By energizing these coils in sequence, the motor 

achieves precise control of position and speed through stepwise motion. Its holding 

torque is crucial for tasks requiring stability, particularly in a self-balancing robot, as 

it helps maintain equilibrium and resist external disturbances. 

 

Figure 3.8: Stepper Motor NEMA 17 

Stepper motors provide the highest precision wheel positioning: 200 steps per 

revolution; in addition, they can be controlled in the range from 1/2 step to 1/16 step, 

which makes it possible to turn the wheel to the desired angle with the highest accuracy 

[23]. Moreover, when connected to the ESP32, the microcontroller can send 

instructions to the motor based on sensor feedback and the PID controller's output, 

enhancing control and responsiveness in applications like robotics. 

3.4.4 Stepper Motor Driver A4988 

Figure 3.9 shows the A4988 stepper motor driver that controls motor movement 

and rotation by regulating current through motor windings and using pulse width 

modulation (PWM). It receives step and direction signals from a microcontroller like 

the ESP32, allowing for adjustable rotation and speed by varying the step pulses' 

duration and frequency. 
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Figure 3.9: A4988 Stepper motor driver  

The A4988 driver, enhancing motor control, features customizable current 

limitation, micro-stepping, thermal shutdown, and overcurrent protection, ensuring 

efficient and safe operation of stepper motors. It supports a logic control voltage of up 

to 5.5 V and a motor driving voltage of up to 35 V, capable of delivering up to 2 

Ampere per coil [25]. Its ability to manage and regulate current to motor windings 

allows for precise adjustment of torque and performance, tailored to specific 

application needs. Users can optimize current flow through motor coils by adjusting 

the reference voltage or using current limit resistors, thus ensuring optimal motor 

operation. 

3.4.5 A4988 Module Breakout Board 

Figure 3.10 illustrates a critical component in stepper motor control systems. It 

functions as a driver, facilitating precise control over the movement of stepper motors. 

Operating by interpreting electrical signals from a microcontroller, the A4988 

regulates the current sent to the stepper motor windings, ensuring accurate steps and 

smooth motion. This module employs a chopper drive technique to manage the current 

flow, minimizing power consumption and heat generation. Key features include 

adjustable micro-stepping for finer motor control, thermal protection, and overcurrent 

detection. Its role in converting digital signals into precise motor movements makes it 
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an indispensable component in various applications requiring precise and controlled 

motion.   

 

Figure 3.10: A4988 Module Breakout Board 

3.4.6 18650 Lithium Ion Battery  

Figure 3.11 displays the 18650 Lithium-ion battery, notable for its high energy 

density, which allows it to store a significant amount of energy relative to its size and 

weight. This rechargeable battery, measuring 18mm in diameter and 65mm in length, 

typically operates at around 3.7 volts, with voltage varying from about 4.2 volts when 

fully charged to 3.0 volts when depleted. 

 

Figure 3.11: 18650 Lithium Ion Battery 

For effective and safe use, it requires a compatible charger and circuitry to prevent 

overcharging or excessive discharge. Despite advanced battery management systems, 

overcharging can still occur due to battery pack inconsistencies, leading to accelerated 

deterioration, malfunction, and potentially dangerous situations like thermal runaway 

or explosions [26]. 
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3.5 Software and Application Used   

3.5.1 Arduino IDE  

Arduino IDE is a popular software tool used for programming microcontrollers, 

including Arduino boards as shown in Figure 3.12. It is a user-friendly platform for 

programming microcontrollers like Arduino boards and ESP32. It is widely used, 

open-source software compatible with multiple operating systems (Windows, Linux, 

Unix, Macintosh) and supports languages such as C and C++. It is ideal for various 

projects, from web to gaming applications which is also essential for writing and 

uploading code, particularly in embedded systems development. For this project, 

Arduino IDE is utilized on an ESP32 microcontroller to implement and execute the 

programming tasks. 

 

Figure 3.12: Arduino IDE Software 

3.5.2 Blynk  

Figure 3.13 illustrates Blynk Apps, an Internet of Things (IoT) platform equipped 

with iOS and Android applications that enable control of NodeMCU ESP32 devices 

over the internet using smartphones. Blynk is a platform for creating GUIs for IoT 

applications, available on the Google Play Store for Android and the App Store for 

iOS. Users can sign up and set up projects within the app. A key step is selecting the 

option to receive an Authenticate ID via email, which is essential for coding sensor 

data upload to the Blynk Application. 
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Figure 3.13: Blynk Application 

3.5.3 MATLAB  

Figure 3.14 shows the MATLAB software which is widely used numerical 

computing environment that serves as an essential tool for engineers, scientists, and 

researchers across various disciplines. MATLAB helps them solve all sorts of math 

problems, analyze data, and create algorithms. It's kind of like a digital toolbox full of 

tools for working with numbers and making sense of complicated information. 

Developed by MathWorks, MATLAB provides a versatile platform for mathematical 

modeling, data analysis, algorithm development, and visualization. It's a handy tool 

that makes complex tasks easier and faster for professionals in different fields.  

 

Figure 3.14: MATLAB Software 

3.6 Project Operation Development 

This proposed system combines hardware implementation and software 

implementation. The hardware of the system uses PID controller as the controller 

which needs to be tuned and calibrated in order to get the accurate reading of the 

sensor.  
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3.6.1 Project Implementation Procedure  

This subtopic will include a brief explanation of this project procedure. It involves 

Hardware Preparation, which will focus on constructing and configuring hardware 

components; Software Implementation, which will explain the installation and 

procedure to use the software, and Hardware and Software Implementation, which 

will discuss the integration of both hardware and software for this system. 

3.6.1.1 Hardware Preparation  

The project is organized into three distinct stages. The initial stage focuses on 

hardware preparation, encompassing the setup of hardware components, the 

configuration of the Integrated Development Environment (IDE), and the 

establishment of necessary hardware connections. This stage also includes the 

programming of the hardware components to ensure they operate correctly. The 

subsection below will elaborate on the specific detail of each stage:  

1. Install Arduino IDE with ESP32 add-ons and all necessary libraries. 

2. Define PID parameters and terms in the code. 

3. Verify code for errors. 

4. Upload code to ESP32. 

5. Connect hardware to correct pins. 

6. Verify connections for accuracy. 

7. Connect ESP32 to Wi-Fi/hotspot. 

8. Monitor MPU6050 sensor pitch angle in Serial Monitor. 

9. Calibrate if offset exists. 

10. Set current limit for NEMA17 motor in a4988 driver. 

11. Analyze self-balancing robot's performance. 
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3.6.1.2 Software Implementation 

There are multiple software platforms that have been used in this project which are 

Blynk as the IoT platform, Arduino IDE as the hardware setup and MATLAB software 

as the tuning parameters analysis implementation. Thus, the process involved will be 

discussed in this subtopic. The full codes for every software used are presented in the 

appendix. 

3.6.1.2.1 Blynk  

Blynk application is a very powerful IoT platform which allows users to easily 

create mobile applications to control and monitor hardware projects [24]. The Blynk 

Console is a central hub for managing devices, templates, datastreams, and application 

settings. First and foremost, users need to add and configure the IoT devices used in 

the Blynk Console. After logging in, navigate to the "Devices" section and click on 

"New Device" as shown in Figure 3.15. To choose the hardware type, authentication 

method, and connection type, which is Wi-Fi, simply follow the prompts.  

 

Figure 3.15: Device Layout in Blynk Console  
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Users will obtain authentication credentials, such as an Auth Token, when the 

device is connected. These credentials are needed to link the hardware to the Blynk 

platform. Next, Blynk offers a variety of templates as depicted in Figure 3.16 that 

simplify the process of creating an application interface for any IoT project. Select a 

template from the "Templates" section that fits the specifications of the project. 

 

Figure 3.16: Template Layout in Blynk Console 

Pre-configured widgets such as graphs, sliders, buttons, and displays are part of 

templates. The selected template automatically configures the device's interface within 

the Blynk mobile app, simplifying the setup process. 

Furthermore, when the device and template are configured, the next step is to set 

up “Datastreams” to easily communicate between the hardware and the Blynk app. 

For linking virtual pins to certain hardware pins on the device, navigate to the 

"Datastreams" section and create them. This can be seen in Figure 3.17. Transmitting 

data is accomplished using these virtual pins. Then, set up each virtual pin according 

to the system’s specifications by selecting the direction (input or output) and data type. 
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Figure 3.17: Datastreams Layout in Blynk Console  

Finally, users can go to the "Applications" section to customize the appearance and 

behavior of the mobile app. By adding and modifying widgets, the user may specify 

the user interface's design, theme, and functionality. In order to connect the app to the 

hardware, link these widgets to the virtual pins that are already generated. After saving 

the application's settings, the device is ready to launch the project. Thus, the Blynk 

mobile app may now be used to access and operate the system.  

3.6.1.2.2 MATLAB  

As for the MATLAB software, the process of analysis begins by installing 

MATLAB on the computer or laptop. The installation instructions are provided by 

MATLAB to ease the user to do the installation procedure. The next step involves 

launching the software. After opening MATLAB, users can initiate the process 

analysis by creating a new Script, as illustrated in Figure 3.18. Once the MATLAB 

environment is set up, real-time data integration from the ESP32 begins. This entails 

establishing a communication link between the ESP32 microcontroller and MATLAB. 
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Figure 3.18: New script in MATLAB 

MATLAB offers different communication interfaces, including Serial 

Communication and Wi-Fi, depending on the ESP32's connectivity options. For Serial 

Communication, MATLAB's 'serial' functions can be utilized, specifying parameters 

like baud rate. Furthermore, MATLAB offers tools for data visualization and analysis, 

allowing users to create plots, graphs, and dashboards to interpret and monitor real-

time data from the ESP32 and it can be updated dynamically as new data is received, 

providing a comprehensive and interactive view of the system's performance. 

3.6.1.3 Hardware and Software Integration  

The primary focus of this subtopic is to establish a connection between the 

previously developed hardware and software. Figure 3.19 shows the block diagram 

for hardware and software integration. 

 

Figure 3.19: Block Diagram for Hardware and Software Integration. 
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The integration process starts with the ESP32 microcontroller sending sensor data 

to the Blynk platform. Blynk then manages PID tuning and system tuning data, which 

is relayed back to the ESP32 for effective control and optimization. Blynk acts as a 

central control hub, dynamically adjusting PID tuning and system parameters based 

on real-time sensor feedback to maintain system responsiveness. Simultaneously, the 

ESP32 continuously transmits data to MATLAB for in-depth analysis. This two-way 

communication establishes a comprehensive feedback loop, allowing MATLAB to 

process real-time hardware data and offer insights for ongoing system refinement. 

Overall, the completion of this proposed system requires multidirectional 

communication link between the hardware and the IoT platform.    

3.7 Project Parameter of Analysis 

This project develops a two-wheel self-balancing robot to study PID controller 

tuning parameters, crucial for the robot's balance. Key aspects include analyzing 

parameters affecting rise time, settling time, overshoot, and steady-state error, as well 

as the robot's stability and performance under disturbances. The upcoming sub-chapter 

will detail the methods for analyzing these parameters. 

3.7.1 Parameter of Analysis and Data Acquisition 

The two parameters that are analyzed in this project are the tuning parameters that 

affect rise time, settling time and overshoot and steady state error as well as stability 

and performance of the self-balancing robot when involved with multiple 

disturbances. To clarify this method of analysis, the real-time sensor data is 

transmitted to ESP32 which then relays serial data to MATLAB. In return, MATLAB 

reads this serial data to derive PID parameters (Kp, Ki, and Kd) and pitch angle as 

input and output. 
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Once MATLAB receives the serial data, it generates an input (pitch angle) vs. time 

graph, enabling the evaluation of rise time, settling time, overshoot, and steady-state 

error for various PID gain settings. From the graphs, the parameters need to be 

calculated manually. Firstly, overshoot (%) needs to be calculated to evaluate a 

system's transient performance, providing insight into how much the system's output 

exceeds the desired value before settling. The overshoot data often used to optimize 

control parameters, ensuring a balance between response speed and stability. The 

overshoot (%) can be mathematically written as:  

𝑂𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 (%) = ௉௘௔௞ ௏௔௟௨௘ି஽௘௦௜௥௘ௗ ௏௔௟௨௘
஽௘௦௜௥௘ௗ ௏௔௟௨௘

 𝑥 100       (2)         

   Next, rise time is a measure of the time it takes for a system to reach a certain 

percentage of its final value. In context of self-balancing robot, rise time is calculated 

by finding the difference of time from pitch angle before it recovers to pitch angle 

after it recover from imbalance. The difference is then measured in seconds. This is 

because the library used for sensor calibration did not have a fixed offset during 

calibration process. Therefore, the new offsets post-calibration considers a stable pitch 

angle, while the stable time refers to how long it takes for a self-balancing robot to 

regain equilibrium after an imbalance. 

3.8 Chapter Summary  

Overall, the methodology for this project encompasses the selection of components, 

detailed explanations of the project and system flowcharts, and thorough descriptions 

of hardware connections to the IoT server (Blynk) and MATLAB. Additionally, the 

analysis parameters, focusing on the PID tuning method, are extensively covered.  

  



 

 

 

CHAPTER 4  

RESULTS AND DISCUSSION 

4.1 Chapter Overview  

This chapter focuses on establishing the proposed system discussed earlier, 

highlighting key features, hardware and software implementation, and their 

integration. Additionally, critical aspects of the code for functionality will be explored. 

The chapter concludes with an analysis of the PID tuning's impact on the self-

balancing robot. 

4.2 Hardware Prototype Implementation 

This section explores how the project will be implemented, starting with a thorough 

explanation of the hardware design. It navigates through the selection and 

specifications of components, emphasizing the rationale behind each choice. Next, the 

wiring layout and interconnections, revealing the electrical pathways through detailed 
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schematics. The calibration and testing procedures section is an important part that 

covers the methodical steps taken to confirm the prototype works. These sections 

cover how the hardware prototype is set up, connected, and tested in the project, 

providing a full understanding of its architecture and functionality. 

4.2.1 Hardware Design Overview  

This section delves into the physical aspects of the project, explaining how the 

hardware prototype is designed and built, including the system's overall structure and 

component choices. This section helps to understand why certain design decisions 

were made for the hardware prototype, laying the foundation for upcoming 

discussions. To develop a system, having a prototype is essential as it allows for the 

systematic progression through the various stages of the development process. A 

carefully planned prototype helps prevent future problems, streamlining development 

and reducing challenges in the final product stages. 

In this project, the body and chassis of the robot are crafted from MDF board and 

soft PVC foam. Suspension is achieved by inserting springs between the two joints of 

each leg or joint of the robot. To enhance stability, 130x60mm hollow rubber wheels 

were selected, introducing an additional dampening factor. Subsequently, all wheels, 

joints, and chassis components are assembled to create the self-balancing robot. The 

circuit is then transferred to the prototype for performance testing. The wiring is 

arranged within the robot's chassis to prevent potential short-circuits. The final 

prototype, inclusive of the circuit, is depicted in Figure 4.1 (a) and (b).  
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Figure 4.1: Front and rear view of the prototype 

The process of building the prototype begins with creating the joint for the two-

wheel self-balancing robot started with precise measurements of the required size. 

MDF board was selected for this purpose as it gives a strong base to withstand any 

pressure given to the robot. The dimensions were marked before cutting the pieces 

using a wood cutter as shown in Appendix A.   

Next, the process continues with the smoothing process using sandpaper to achieve 

a clean and polished finish. Following this preparation, the joint pieces were securely 

attached to the stepper motors as shown in Appendix A, which serve as the robot's 

legs, and then connected to the wheels. This joint assembly plays a crucial role in the 

robot's structure, enabling it to maintain balance and mobility while carrying out its 

functions effectively. 

Furthermore, the chassis was designed with careful consideration of the weight 

distribution of the robot, which plays a critical role in ensuring its balance. 

(a) (b) 
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Subsequently, the chassis components were connected to the robot's joints, leading to 

the development of a functional prototype as shown in Figure 4.1 (a) and (b).  

Moreover, the circuit connections are situated within the robot's chassis to facilitate 

optimal placement of the sensor at the center of gravity. This strategic positioning of 

the sensor is essential for accurate balance and stability control of the robot. This is to 

ensure it can effectively respond to its environment and maintain equilibrium during 

operation. The circuit connections of the prototype will further be discussed in the next 

sub-topic.  

4.2.2 Wiring and Interconnections  

Figure 4.2 shows the schematic circuit of a two-wheel self-balancing robot. 

Schematic diagram is a representation of the elements of a system which uses graphic 

symbols rather than realistic pictures. 

 

Figure 4.2: Schematic Circuit of the system 

The schematic circuit facilitates tracing the circuit and its functions without regard 

to the actual physical size, shape or location of the component devices or parts. The 

connection of the circuit can be clearly seen in the schematic diagram shown above 

which is made by using Fritzing software.  
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In this project, the functionality of the product is crucial for its success. Therefore, 

a circuit that exhibits no errors is being contemplated to ensure the project operates 

successfully. The circuit depicted above is utilized for the two-wheel self-balancing 

robot, which functions to control the movement of the wheels through stepper motors 

based on the readings obtained from the MPU6050 sensor. The NEMA17 stepper 

motor operates by energizing coils in its stationary stator, creating magnetic fields that 

attract its permanent magnet rotor and induce controlled rotational movement in 

discrete steps. Figure 4.3 illustrates the completed circuit connections. Before placing 

the finalized circuit on the prototype, a thorough rechecking of the connections is 

conducted to prevent any potential issues related to loosen wiring. 

 

Figure 4.3: Completed circuit connection of the system 

A 12V power source is applied to the circuit through the VCC pin on the ESP32 

and the VMOT pin on both A4988 stepper motor drivers. The MPU6050 sensor is 

connected to the ESP32, with the SCL (Serial Clock) pin connected to D22 and the 

A4988 module 
breakout board 

MPU6050 

ESP32 expansion 
board 

Left and right 
stepper motor 

Power Supply 18650 Li-Ion 
Battery 
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SDA (Serial Data) pin connected to D21. These connections enable the ESP32 to 

establish communication with the MPU6050 sensor, allowing for the bidirectional 

exchange of data. This capability enables the microcontroller to read sensor data, 

including acceleration and gyroscopic information, and exert control over the sensor's 

configuration.  

In this project, two A4988 stepper motor drivers are mounted on breakout boards, 

simplifying integration with features like voltage regulation and easy-to-use headers. 

Similarly, an ESP32 expansion board is employed, offering enhanced versatility and 

user-friendliness compared to the standalone ESP32. The built-in power regulation, 

convenient headers, and expanded GPIO options are very efficient to be used.  

4.3 Software Implementation  

In this project, various software platforms have been utilized, including the Arduino 

IDE for hardware setup, Blynk as the IoT platform, and MATLAB for tuning 

parameter analysis. In this subtopic, the key features and functionality of certain codes 

will be discussed. The complete code for each of the software platforms can be found 

in the appendix. 

4.3.1 Arduino IDE Platform  

The Arduino IDE platform is very crucial to set up the hardware that has been 

developed. It helps users to write and upload code in C++ language to control Arduino 

microcontrollers, enabling users to create and control various electronic projects. The 

sub-topic below will discuss some of the important codes based on different 

configurations.  
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4.3.1.1 Motor Configuration 

The motor configuration in the Arduino IDE is to set up and control the two stepper 

motors responsible for the movement of the self-balancing robot. From Figure 4.4 

below, it shows one of the codes of the motor configuration that can be observed.  

 

Figure 4.4: Motor Pin Configuration  

The section of the code assigns specific GPIO pins on the ESP32 microcontroller 

to control the left and right stepper motors. The ‘leftStepPin’ and ‘rightStepPin’ 

represent the pins responsible for sending step signals to the motors, ‘leftDirPin’ and 

‘rightDirPin’ control the motor direction, and ‘enablePin’ enables or disables the 

motors as needed during operation.  

Next, the code in Figure 4.5 initializes the ‘FastAccelStepperEngine’, which is a 

library used for controlling stepper motors with smooth acceleration and deceleration. 

It connects the defined pins for the left and right stepper motors to the engine. Two 

pointers, "leftMotor" and "rightMotor," are initialized as NULL, indicating that they 

will later point to instances of the ‘FastAccelStepper’ class to control the left and right 

motors respectively. 

 

Figure 4.5: Initialization of ‘FastAccelStepperEngine’ and Motor Pointers 
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In the ‘setup()’ function which can be seen in Figure 4.6 and Appendix B, it begins 

by configuring the serial communication for debugging via ‘Serial.begin(9600)’. 

Then, it sets up the connection to the Blynk IoT platform, WiFi via ‘Blynk.begin(auth, 

ssid, pass)’, and initializes the I2C communication with the MPU6050 gyroscope and 

accelerometer sensor using ‘Wire.begin()’ and ‘mpu6050.begin()’. Gyroscope offsets 

are calculated for calibration with ‘mpu6050.calcGyroOffsets(true)’. 

 

Figure 4.6: Initialization and Configuration in the setup() Function 

Then, in the 'setup()' function, the 'FastAccelStepper' engine initializes for stepper 

motor control. Motors are connected to their pins, and parameters like direction, 

enablement, and speed are set. The PID controller for balance and stability is also 

configured. The value "2000" denotes the stepper motors' speed in steps per second, 

with a higher Hz indicating faster motor movement. 

4.3.1.2 PID Configuration 

PID configuration is crucial for the self-balancing robot's control, maintaining 

balance by adjusting motor speeds according to sensor inputs and setpoints. It begins 

with specific code lines in the 'setup()' function, setting output limits of "-255" and 

"255" as depicted in Figure 4.7. These limits define the maximum speed range for 

motor rotation in both clockwise and counterclockwise directions. Next, the following 

line sets the PID's sampling time. In this code, it is set to 1 millisecond (1 ms), meaning 

that the PID controller calculates motor speed adjustments every 1 ms, ensuring rapid 

response to changes in the robot's orientation. Then, the PID controller is set to 
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automatic mode which means it continuously calculates and adjusts the motor speeds 

to maintain the robot's balance automatically. In automatic mode, the PID controller 

operates in real-time, making it well-suited for applications like self-balancing robots. 

 

Figure 4.7: Output Limit in PID Configuration 

In the 'loop()' function, the PID controller calculations and adjustments are 

executed, as shown in Figure 4.8 Here, 'Input' is the angle from the MPU6050 sensor, 

adjusted by 'Inputoffset', representing the robot's current angle for PID feedback. Next, 

‘myPID.SetTunings(Kp, Ki, Kd)’ updates the PID controller's tuning parameters 

(proportional, integral, and derivative gains) based on the values received from the 

Blynk app (V9, V10, V11). In addition, ‘myPID.Compute()’ calculates the PID control 

output (‘Output’) based on the difference between the current angle (‘Input’) and the 

desired setpoint (‘Setpoint’). The PID controller adjusts ‘Output’ to control the motor 

speeds, ultimately maintaining the robot's balance. 

 

Figure 4.8: PID Controller Calculations and Adjustments 

Thus, the PID configuration in this code is responsible for fine-tuning the robot's 

motor control to achieve and maintain balance. It continuously adjusts motor speeds 

based on sensor feedback and tuning parameters to ensure that the robot remains 

upright and stable during operation. 
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4.3.1.3 Sensor Configuration  

As for the sensor configuration, it is primarily located within the ‘setup()’ function 

as illustrated in Figure 4.9. The ‘Wire.begin()’ line initializes the I2C communication, 

which is essential for communicating with the MPU6050 sensor and 

‘mpu6050.begin()’ means that the sensor is ready to provide data. Then, the next 

following line calculates and sets gyro offsets for calibration. The ‘true’ argument 

indicates that gyro offsets should be calculated and saved. Calibration ensures that the 

sensor provides accurate data, which is crucial for self-balancing operation. 

 

Figure 4.9: MPU6050 Configuration 

Therefore, this sensor configuration is very crucial as it needs to be properly set up 

and calibrated to provide accurate gyroscopic data which is used in the self-balancing 

control algorithm.  

4.3.1.4 Blynk Configuration  

Blynk app is used to communicate between the software and hardware. Figure 4.10 

shows the Blynk configuration that is in the ‘setup()’ function as well. 

‘Serial.begin(9600)’ line initializes the serial communication for debugging purposes, 

allowing users to send and receive data between the ESP32 and the computer at a baud 

rate of 9600. The subsequent line in the code initiates the connection to Blynk, using 

the provided 'auth' token, Wi-Fi 'ssid', and 'pass' (password). Blynk, an IoT platform, 

enables remote control and monitoring of devices through its cloud platform. 



56 

 

 

Figure 4.10: Code that configures Blynk 

In addition, this configuration includes Blynk widget configuration settings that 

involve writing to specific virtual pins. For instance, in Figure 4.11, when a value is 

changed on virtual pin V9 through the Blynk app, it triggers the ‘BLYNK_WRITE’ 

function, which updates the Kp (proportional gain) variable with the new value 

received from the app. These settings are used to update parameters such as PID tuning 

constants and other control variables from the Blynk app. These parts of the code are 

within the ‘BLYNK_WRITE’ functions for various virtual pins such as V9, V10, V11, 

and others.  

 

Figure 4.11: ‘BLYNK_WRITE’ function in Blynk widget configuration 
settings 

4.3.2 Blynk Platform 

This project utilizes the Blynk app for tuning PID control and stepper motor 

parameters. Users can adjust parameters using 'virtual sliders' in the app, avoiding 

code changes in the Arduino IDE. PID tuning maintains stability by altering motor 

output. Kp affects response strength to errors, with higher values for more aggressive 

corrections. Ki addresses accumulated past errors, aiding in steady-state error 

elimination by adjusting the control signal over time. 
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Moreover, Kd looks at the rate of change of error. It helps dampen oscillations and 

overshoot by anticipating how quickly the error is changing. Figure 4.12 shows the 

Blynk GUI Layout which contains the widget used for the tuning purpose.  Apart from 

PID tuning, Blynk also allows users to fine-tune various parameters related to the 

stepper motors, which directly influence the robot's motion and balance. There are six 

parameters which are involved in system tuning or stepper motor tuning. Firstly, the 

scale factor adjusts the overall speed of the motors. Users can control how quickly the 

robot responds to balance corrections by increasing or decreasing this factor.  

Next, scale factor plus can be adjusted to control the speed of the motor. This is 

because it provides extra control over the robot’s movement. Besides, scale factor 

(reverse) and scale factor (forward) enable users to independently control motor 

speeds when moving in reverse and forward directions. As for acceleration, it 

determines how quickly the motors change speed. Higher acceleration values result in 

faster changes, while lower values provide smoother and more gradual acceleration. 

Lastly, the dead zone parameter is a critical parameter that defines a range within 

which the robot remains stationary. It helps prevent unnecessary movement and 

ensures the robot remains stable when the error (tilt) is within this range.  
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Figure 4.12: Blynk GUI Layout of self-balancing robot 

Thus, users can easily adjust these settings to optimize the self-balancing robot’s 

performance in order to ensure it responds accurately to changes or disturbances in its 

orientation and motion.  

4.3.3 MATLAB Platform  

As mentioned earlier, MATLAB software is used for analysis purposes. MATLAB 

can communicate with the ESP32 using the Serial Communication Toolbox or by 

using functions like serial to configure the serial port settings. In this project, 

MATLAB is used to produce pitch angle data vs time. Figure 4.13 shows the graph 

plotted when Kp = 18 after running the code in Editor.  
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Figure 4.13: Graph of Tilt Angle vs Time when Kp = 18  

From the code generated in MATLAB, the plot of input vs time for all the tuning 

parameters can be analyzed. The rise time, settling time, overshoot and steady state 

error analysis are performed by analysing the tilt angle (pitch) vs time plot. The 

analysis for the tuning parameters will be analyzed and discussed in-depth in the next 

sub-topics.  

4.4 Analysis Result  

This sub-topic analyzes key parameters, starting with the impact of varying Kp 

values on rise time. Rise time is the duration for a process variable to reach its setpoint 

within a tolerance band after control input. A shorter rise time in a PID controller 

means a quicker response to system changes or disturbances. Increasing the Kp value 

can shorten rise time, resulting in a more aggressive system response. 

4.4.1 Tuning Parameters and Comparison Discussion 

This sub-topic focuses on three crucial parameters for optimizing control systems, 

examining their impact on system performance through graphs and tables. It includes 
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evaluations of the system's response to disturbances, aiming to enhance stability and 

disturbance management. 

4.4.1.1 Kp Comparison Analysis  

This sub-topic will cover a detailed Kp comparison analysis, including graphical 

interpretations using MATLAB plots and a comparative table contrasting different 

parameter values. It also involves performance testing of the robot under various 

disturbances.  

4.4.1.1.1 Graphical Interpretation  

The Kp analysis in the project involved evaluating five different Kp value ranges 

to find the ideal balance between stability and achieving the fastest rise time in the 

control system. A quicker rise time allows the system to respond rapidly to 

disturbances, but it must be done cautiously to avoid making the robot shaky or 

unstable. Overly aggressive tuning of Kp values leads to instability and oscillations in 

the control system of the robot.  

For Kp value set to Kp = 4.5, three graphs are depicted in Figure 4.14 as part of the 

analysis process. To determine the robot's rise time at Kp = 4.5, the tilt angle (pitch) 

vs. Time graph is examined. Ki and Kd for all the Kp values are initially set to 0. This 

analysis reveals that the robot attempts to recover from imbalance, transitioning from 

a tilt angle of -23.95° to 2.95° with a rise time of 0.194 seconds. However, the robot 

experiences a fall due to its slow response, as evident in the Output vs. Time graph. 

Nevertheless, the robot achieves stability in less than 1 second, precisely at 0.928 

seconds, before applying any disturbances.  
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Figure 4.14: Behavioral Response when Kp = 4.5  

Next, when the Kp value is configured to Kp = 9.0 as shown in Figure 4.15, the 

robot’s rise time is determined by examining the tilt angle (pitch) vs. Time graph. This 

examination reveals that the robot endeavors to recover from an imbalance, 

transitioning from a tilt angle of 5.73° to -7.58° within a rise time of 0.21 seconds. 

Nonetheless, the robot experiences a fall due to its sluggish response, which is 

apparent in the Output vs. Time graph. However, the robot attains stability at 1.127 

seconds, without any disturbances being applied. 

Furthermore, the Kp value is set to Kp = 13.5 which is slightly below the optimal 

Kp. Figure 4.16 shows the behavioral response of the robot when Kp = 13.5. This 

analysis reveals that the robot strives to recover from an imbalance, shifting from a tilt 

angle of -7.54° to 1.13° with a rise time of 0.1 seconds. Despite this, the robot 

experiences a fall due to its delayed response. Nevertheless, the robot reaches stability 

after 2.25 seconds which is slightly slower than Kp = 9.0, even without any external 

disturbances.  
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Figure 4.15: Behavioral Response when Kp = 9.0 

 

Figure 4.16: Behavioral Response when Kp = 13.5 

Besides, the next value of Kp is set to Kp = 18.0 as demonstrated in Figure 4.17, to 

examine the robot's behavior under these conditions. This analysis unveils that the 

robot endeavors to regain stability after an imbalance, transitioning from a tilt angle 

of 3.65° to -2.01° within a rise time of 0.097 seconds, significantly shorter than the 



63 

 

previous rise times. On the other hand, the robot takes more time to experience a 

decline due to its balanced response. Thus, the robot achieves stability after 10.17 

seconds which is the longest compared to previous stable time. In this test analysis, if 

the stability duration exceeds 10 seconds, the robot is subjected to disturbances to 

assess its stability.  

 

Figure 4.17: Behavioral Response when Kp = 18.0 

Moreover, with the Kp value set to Kp = 22.5, the robot's behavioral response is 

depicted in Figure 4.18. This analysis uncovers that the robot diligently works to 

regain balance, moving from a tilt angle of -5.88° to 0.98° with a rise time of 0.097 

seconds. It takes the robot approximately 1.627 seconds (without disturbance) to 

undergo a decline due to its jittery response. Nonetheless, the robot attains stability 

after this duration of 1.627 seconds. 
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Figure 4.18: Behavioral Response when Kp = 22.5 

In conclusion, varying the Kp values has a significant impact on the robot's 

behavior during its balancing process. This analysis has shown that different Kp values 

result in distinct rise times and stable times. The choice of Kp value plays a crucial 

role in determining how quickly the robot can regain balance and maintain stability.  

4.4.1.1.2 Comparative Table 

Referring to the previously shown real-time data of the robot's behavioral response 

under varying Kp values, a comparative table is generated to facilitate the comparison 

and selection of the best performance based on the conducted analysis. Table 4.1 

shows a comparative table of robot behavior under varying Kp values. (Assume Ki = 

0 and Kd = 0).  In Table 4.1, the Kp values are tested, and the corresponding results 

show a clear trade-off between rise time and stable time. When analyzing the table, it 

becomes evident why Kp = 18.0 is considered to have the best performance, especially 

in terms of its rise time and stable time. 
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Table 4.1: Comparative Table of Robot Behavior under Varying Kp Values 

Kp value Stable Tilt Angle (°) Rise Time (s) Stable Time (s) 

4.5 -0.54 0.194  

(-23.95° to 2.95°) 

0.928  

(without disturbance) 
9.0 -0.44 0.210 

(-10.32° to 4.6°) 

1.127  

(without disturbance) 
13.5 0.86 0.100 

(-7.54° to 1.13°) 

2.250  

(without disturbance) 
18.0 -2.19 0.097 

(3.65° to -2.01°) 

10.51  

(with disturbance) 
22.5 -0.65 0.097 

(-5.88° to 0.98°) 

1.627  

(without disturbance) 
 

Kp = 18.0 has one of the shortest rise times among the tested values, at just 0.097 

seconds. A shorter rise time means that the robot responds rapidly to deviations from 

the desired tilt angle. Despite its rapid response, Kp = 18.0 also manages to achieve 

stability within 10.17 seconds, even in the presence of disturbances. A longer stable 

time indicates that the robot can sustain its equilibrium without showing any signs of 

oscillation. 

In conclusion, Kp = 18.0 stands out which has the best performance in Table 4.1 

due to its remarkable combination of a short rise time of 0.097 seconds and a 

prolonged stable time of 10.17 seconds, showcasing its ability to respond rapidly while 

maintaining long-term stability, even in the presence of disturbances. This 

combination of fast response and long-lasting stability shows that it works very well 

in the control system. 
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4.4.1.2 Kd Comparison Analysis 

This sub-topic will involve an extensive analysis of Kd to facilitate comparison. 

This analysis consists of two key elements: graphical interpretation, entailing the 

creation of graphs utilizing MATLAB, and the formulation of a comparative table 

designed to systematically differentiate various parameter values for the purpose of 

comparison. 

4.4.1.2.1 Graphical Interpretation  

In this section, a visual analysis of the effects of different Kd values on the robot's 

behavior are discussed. Plotted graphs generated using MATLAB provide insights 

into how variations in Kd influence the robot's performance, shedding light on its 

response to disturbances and stability. 

Overshoot is closely related to the damping ratio of the system. High overshoot 

values may indicate underdamped or oscillatory behavior, which can be an indication 

of instability. Besides, calculating settling time is crucial for assessing how quickly a 

dynamic system stabilizes around its desired state after a disturbance. Settling time 

quantifies the system's responsiveness and efficiency in reaching a steady-state 

condition, aiding in the evaluation and optimization of control mechanisms. 

Figure 4.19 illustrates the Pitch angle vs. Time response with Kd set to 0.3 in the 

self-balancing system. The overshoot, calculated as 2425%, is derived from the 

formula in (2) where the peak value is the maximum pitch angle reached during the 

response (5.58º). The desired angle is -0.24º as labelled in the graph. The red-dotted 

line in Figure 4.23 signifies the steady-state error, representing the deviation between 

the desired and actual pitch angles after the response has settled. To determine the 

settling time, it is calculated by the time difference between the disturbance occurrence 
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(5.738s) and the point at which the system reached steady state (6.454s). The obtained 

settling time is 0.716 seconds. The Kd vs Time graph proves that Kd value is fixed to 

Kd = 0.3.  

 

Figure 4.19: Behavioral Response when Kd = 0.3 

Moreover, in Figure 4.20, the response of the self-balancing system to Pitch angle 

vs. Time with Kd set to 0.6 is presented. Calculating the overshoot, which stands at 

314%, involves employing the formula in equation (2) with the peak value 

representing the maximum pitch angle (4.56º) attained during the system's response. 

For settling time determination, the time difference between the disturbance 

occurrence and the point where the system achieves stability, yielding a settling time 

of 1.641 seconds is computed. The time where the system’s response is 38.078 seconds 

whereas the desired value is 39.719 seconds.   
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Figure 4.20: Behavioral Response when Kd = 0.6 

In addition, as for Kd = 0.9, as shown in Figure 4.21, The calculated overshoot, 

now at an impressive 10881%, is determined using the formula mentioned in equation 

(2), where the peak value corresponds to the highest pitch angle achieved during the 

system's response. 0.36º is the desired value while 39.53º is the peak value as shown 

in the graph. The system with Kd = 0.9 has no settling time. This means that the system 

keeps responding to disturbances without eventually stabilizing or reaching a steady 

state. It indicates a continuous and ongoing reaction to changes without a defined point 

of rest. 
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Figure 4.21: Behavioral Response when Kd = 0.9 

Thus, altering the Kd values has an influence on the robot's behavior throughout its 

balancing procedure. This examination illustrates that different Kd values lead to 

varied overshoots and settling times. The selection of the Kd value is pivotal in 

shaping how rapidly the robot can recover its balance and sustain stability. 

4.4.1.2.2 Comparative Table 

Referring to the previously displayed real-time data showcasing the robot's 

behavioral response under varying Kd values, a comparative table, identified as Table 

4.2, has been generated to simplify the comparison and facilitate the selection of the 

best performance based on the conducted analysis. (Assume Kp = 18 and Ki = 0). 

Table 4.2: Comparative Table of Robot Behavior under Varying Kd Values 

Kd Overshoot (%) Settling Time (s) 

0.3 2425 0.716 
0.6 314 1.641 
0.9 10881 None 
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   Therefore, by referring to the analysis from the previous sub-topic, it is evident that 

Kd = 0.6 exhibits the best performance among the three values. In Figure 4.20, where 

Kd = 0.6, the calculated overshoot is 314%. Comparatively, in Figure 4.19 (Kd = 0.3), 

the overshoot is 2425%, and in Figure 4.21 (Kd = 0.9), the overshoot is an impressive 

10881%. Lower overshoot values are generally desirable as they indicate less 

oscillation and a smoother response. In this context, Kd = 0.6 demonstrates a more 

controlled and stable response compared to both Kd = 0.3 and Kd = 0.9. 

   Additionally, settling time is another critical parameter for evaluating system 

performance. In Figure 4.24 (Kd = 0.6), the settling time is 1.641 seconds. In Figure 

4.19 (Kd = 0.3), the settling time is 0.716 seconds, and for Kd = 0.9 (Figure 4.21), 

there is no settling time determined, indicating continuous response without 

stabilization. Ideally, a shorter settling time is desirable as it signifies a quicker 

recovery to a steady-state condition. However, a system with no settling time, as in 

Kd = 0.9, indicates continuous oscillation without achieving stability. 

   To sum up, Kd = 0.6 emerges as the optimal choice as it demonstrates a controlled 

response with a relatively low overshoot and a reasonable settling time, offering a 

balanced and stable performance for the self-balancing robot.  

4.4.1.3 Ki Comparison Analysis 

This sub-topic will encompass a thorough examination of Ki to facilitate 

comparison. The analysis will comprise two essential components: the graphical 

interpretation, involving the generation of graphs using MATLAB, and the 

development of a comparative table designed to systematically distinguish different 

parameter values for the purpose of Ki comparison. 
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4.4.1.3.1 Graphical Interpretation  

This section examines the impact of different Ki values on robot behavior using 

MATLAB-generated graphs. Figure 4.22 shows the behavioral response of robot 

when Ki = 35. The input (pitch angle) vs Time graph shows a time series data of some 

oscillations in pitch angle. The setpoint vs Time graph displays a constant setpoint 

value over the same time period. This indicates that the setpoint does not change. From 

the observations made, when Ki = 35, there has no overshoot and settling time since 

the robot does not recover from the imbalances.  

Then, the average steady state is calculated by taking all the points from the jittery 

state of the robot which resulting in 1.67º value. The steady state error is calculated by 

finding the differences between the average steady state and the setpoint. In this case, 

the average steady state is similar to the steady state error as the setpoint value is 0.  

 

Figure 4.22: Behavioral Response when Ki = 35 
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As for Ki = 70, there is overshoot and settling time measured as the robot strives to 

regain balances resulting in 1092% overshoot and 2.041 seconds setting time. The 

input (pitch angle) vs. time graph presented in Figure 4.23 further elucidates the 

system's resilience, showcasing that the robot manages to maintain stability despite 

the presence of disturbances. From the graph, a steady state towards the end indicates 

that the self-balancing robot has effectively stabilized and reached a point where its 

pitch angle remains relatively constant over time. The average steady state when Ki = 

70 is calculated to 1.92º.  

 

Figure 4.23: Behavioral Response when Ki = 70 

Next, Figure 4.24 illustrates the behavioral response when Ki is set to Ki = 105. 

The graph has an overshoot of 14516% which is quite high and there has no settling 

time recorded. Since the value of Ki is set too aggressively, it can lead to overshooting 

and difficulties in reaching a stable state. The instability of the robot can be seen as 

there has been an absence of settling time. This is because, if the control parameters 

are not properly tuned, the response may not converge to a steady state, leading to 
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continuous oscillations. Since the system may be constantly adjusting and readjusting, 

preventing it from settling completely, there are continuous disturbances on the system 

where it might not fully reach a stable state. Thus, the calculated value of the average 

steady state is -1.33º.  

 

Figure 4.24: Behavioral Response when Ki = 105 

To conclude, modifying the Ki values significantly affects the self-balancing 

robot's performance during its stabilization process. Thus, careful selection of Ki 

values is crucial for achieving optimal and reliable performance in the system. 

4.4.1.3.2 Comparative Table 

Table 4.3 shows a comparative table which simplifies the comparison and assists 

in choosing the most favorable performance based on the analysis conducted with 

various Ki values.  (Assume Kp = 18, Kd = 0.6 and Setpoint = 0). 
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Table 4.3: Comparative Table of Robot Behavior under Varying Ki Values 

Ki Overshoot 
(%) 

Settling Time 
(s) 

Average 
Steady-state (º) 

Steady State 
Error 

35 Not Recover Not Recover 1.670 1.670 

70 1092 2.246 1.920 1.920 

105 14516 Not Recover -1.330 1.330 

 

From Table 4.3, it appears that Ki = 70 exhibits a relatively balanced and effective 

performance compared to Ki = 35 and Ki = 105. At Ki = 70, there is an overshoot of 

1092% and a settling time of 2.041 seconds. This indicates that the system responds 

to disturbances with a notable overshoot but eventually settles within a reasonable 

time frame. In addition, the input (pitch angle) vs. time graph in Figure 4.23 

demonstrates the system's resilience, showcasing that the robot manages to maintain 

stability despite disturbances. This resilience is indicative of a well-balanced control 

system. 

Furthermore, the presence of a steady state towards the end of the response, coupled 

with an average steady state of 1.92º, suggests that the system stabilizes effectively. 

The steadiness in the pitch angle over time indicates a controlled and stable behavior. 

The combination of overshoot, settling time, and the absence of continuous 

disturbances at Ki = 70 suggests a balanced response. It neither overshoots excessively 

nor exhibits prolonged settling times, indicating a well-tuned and stable control 

system. 

To sum up, Ki = 70 appears to offer a good trade-off between overshoot, settling 

time, and system stability. It strikes a balance in responsiveness without introducing 

excessive oscillations or settling difficulties. The careful selection of Ki values is 



75 

 

indeed crucial, and in this case, Ki = 70 demonstrates a performance that aligns well 

with achieving optimal and reliable self-balancing in the robot. 

4.4.2 Performance with Multiple Disturbance Evaluation 

As for this section, the self-balancing robot is tested with multiple disturbances to 

evaluate the performance of the control system under varying conditions. The 

introduction of diverse disturbances provides insights into the system's ability to 

respond dynamically and maintain balance in the face of external influences. Figure 

4.25 illustrates the tilt angle (pitch) vs time of the self-balancing robot. The robot was 

tested for its performance when multiple disturbances were applied to it. Even though 

several disturbances were applied, the robot still managed to stay upright, indicating 

that it has good stability and balance control.  

 

Figure 4.25: Overall Performance of the Robot with Multiple Disturbance 

From the graph, it can be seen that the values of pitch angle are mostly near to 0º. 

This indicates that the self-balancing robot consistently maintains an upright position 
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and balanced orientation. In the context of a self-balancing robot, the pitch angle 

represents the deviation from the vertical, with 0º corresponding to the perfectly 

upright position. The stability of the robot is achieved through the control system's 

ability to detect and respond to disturbances, continually adjusting the motor inputs to 

counteract any deviations from the desired orientation.  

The effectiveness of the PID controller, with tuned gains (Kp = 18, Ki = 70, Kd = 

0.6), contributes to the system's stability. The proportional, integral, and derivative 

components work together to respond appropriately to changes in the pitch angle, 

allowing the robot to correct for disturbances swiftly and accurately. As a result, the 

pitch angle remains close to 0º, indicating that the self-balancing robot maintains 

stability by actively counteracting external forces and disturbances, providing a robust 

and reliable performance.  

Table 4.4 shows the parameters that are calculated based on the data in Figure 4.25. 

To assess a robot's performance and stability, key parameters include a shorter rise 

time for fast response, lower overshoot for controlled reaction, shorter settling time 

for quick stabilization, smaller average steady-state value for consistent positioning, 

and lower steady-state error for precise maintenance of the desired position. These 

factors collectively determine the robot's efficiency and control effectiveness. 

Table 4.4: Parameters of the overall performance of the robot 

Kp Ki Kd Rise 

Time 

(s) 

Overshoot 

(%) 

Settling 

Time (s) 

Average 

Steady State 

Steady 

State 

Error 

18 70 0.6 0.391 225.9 1.932 24.96 24.96 
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4.4.3 Prototype Performance Testing  

This section details testing the prototype to verify it meets performance criteria, 

mainly balancing and withstanding disturbances. Tests were conducted on various 

surfaces, as shown in Figures 4.26 (a), (b) and (c), representing wooden, rubber, and 

rough surfaces, respectively. Despite these differences, the robot consistently 

maintained balance without tipping over, demonstrating that it can effectively balance 

itself on diverse surfaces with the same tuning parameters. 

   

 

 

Figure 4.26: (a) Prototype testing on wooden surface, (b) Prototype testing on 
rubber surface, (c) Prototype testing on rough surface 

(a) (b) 

(c) 
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After conducting numerous tests, it was observed that the robot demonstrated 

remarkable stability across various types of surfaces including flat terrain, uneven 

surfaces and inclines as shown in Figure 4.27 (a) and (b).  

   

Figure 4.27: (a) Testing on uneven surface, (b) Testing on inclined surfaces 

The prototype performance testing also incorporates disturbance scenarios to verify 

the robot's effectiveness in real-world conditions with external factors. This thorough 

testing identifies potential design and algorithm weaknesses, enhancing the robot's 

performance and reliability in dynamic environments. Figure 4.28 (a) shows the 

presence of disturbance during the prototype performance testing to simulate real-

world conditions. Then, the robot is subjected to a physical force simulating 

disturbance as shown in Figure 4.28 (b).  

Then, the PID controller responds to the imbalance as shown in Figure 4.28 (c). 

The PID controller adjusts the robot's actuators to counteract the external force and 

bring the system back to a stable state. After the disturbance, and with the corrective 

actions taken by the PID controller, the robot ideally returns to its original state which 

maintains stability and balance as illustrated in Figure 4.28 (d).  

(a) (b) 
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Figure 4.28: (a) Presence of disturbance, (b) Robot is subjected to a physical 
force, (c) Robot is trying to recover the imbalance, (d) Robot back at its original 

state  

Therefore, this outcome demonstrates the effectiveness of the control algorithm and 

the tuning parameters in quickly and accurately responding to disturbances. 

4.5 Chapter Summary 

    Thus, this chapter covers the implementation of the proposed system, detailing the 

software and hardware setup, features, interfaces, and concludes with analytical results 

and performance analysis for PID parameter tuning. 

 

(a) (b) 

(c) (d) 



 

 

 

CHAPTER 5  

CONCLUSION AND FUTURE WORKS 

5.1 Chapter Overview  

This chapter explains the project’s contributions to society with a conclusion which 

includes the objectives of the project. The problems which occur during conducting 

the project with its limitations will also be explained in order to recommend solutions 

which can enhance the system’s performance in the future. 

5.2 Project Achievement  

This development of a two-wheel self-balancing robot using PID controller was 

created for the Final Year Project as a proof of concept (POC) of this system 

implementation for research in PID controller. This project begins with the 

development of hardware which uses ESP32 as the microcontroller, MPU6050 as the 
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sensor and NEMA17 stepper motor as well as a4988 stepper motor driver. This is to 

investigate the tuning parameters of PID gains affect the performance of the robot.  

In addition, Blynk application is used as an IoT platform that could control the PID 

gains in order to tune the parameters to achieve the best performance. Furthermore, 

MATLAB software is used to produce the analysis of the tuning parameters which 

produce the Rise Time, Settling Time and Overshoot as well as Steady State Error. 

The range of PID gains varied and its performance was recorded.  

5.3 Project Problem and Limitation 

During the development and implementation phase of this project, several issues 

and limitations were encountered. Firstly, the chosen MPU6050 sensor is sensitive to 

external vibrations, leading to potential noise in sensor readings. Proper placement of 

the sensor at the center of gravity (CoG) is crucial for stable robot performance. The 

center of gravity is the point where the entire weight of the robot can be considered to 

act, and it plays a crucial role in maintaining balance.   

Secondly, the 12V lithium-ion battery initially used to power the hardware fell short 

in terms of battery life. It required frequent recharging, taking about 2-3 hours for a 

full charge before reuse. An alternative, a 12V DC rechargeable polymer lithium-ion 

battery, offered longer-lasting power but added weight (approximately 0.35kg), 

impacting the robot's weight distribution. 

5.4 Future Work and Recommendations 

This study is suggested for inclusion in the Control Principle and Systems course 

at FTKEK. While the existing syllabus covers the PID controller, it currently lacks 

information on the crucial PID tuning method. Besides, here are further 
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recommendations to enhance the self-balancing robot, particularly in its control 

aspects: 

i. Suggest a novel control method allowing remote management of the robot's 

movements using Blynk. This may include adding control interfaces that 

users could customize via the Blynk app, enabling them to change things 

like direction, speed, and even preset moves. 

ii. Integrate a camera onto the robot, enabling users to monitor its motions and 

whereabouts. By adding this, the robot's capabilities may be increased, and 

users will be able to see a live video stream via the Blynk app. This 

capability improves the robot's usefulness for surveillance to enabling users 

to see their surroundings. 

5.5 Conclusion  

In a nutshell, it can be concluded that this final year project took around two 

semesters worth of time to complete, starting from the proposal of the system, 

development, and documentation. After evaluation, it can be concluded that the 

prototype for this project is considered successful. Although there are some limitations 

in this system, several suggestions are provided for the system quality enhancement. 

All the objectives are achieved using the required hardware and software mentioned 

in Chapter 3. There are several improvements that can be made for this project to 

provide a more efficient way for the users to use the system. 

5.6 Chapter Summary  

Thus, this chapter summarizes the whole project which includes the achievements, 

problem and limitations, future works and commercialization relevancy of this project. 

All the objectives are achieved using the methodology mentioned in Chapter 3.  
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APPENDICES 

 

APPENDIX A: Process of making the joints of the self-balancing robot  

   

 

 



89 

 

APPENDIX B: Coding in Arduino IDE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

// Blynk and WiFi settings  
#define BLYNK_TEMPLATE_ID "TMPL6_NeSrwZR"  
#define BLYNK_TEMPLATE_NAME "Self Balancing Robot"  
#define BLYNK_AUTH_TOKEN "YL3I1G5pwTiagFxBlMnTKt4rdY0kmbwl"  
#define BLYNK_PRINT Serial  
#include <WiFi.h>  
#include <Wire.h>  
#include <MPU6050_tockn.h>  
#include <BlynkSimpleEsp32.h>  
#include <PID_v1.h>  
#include <FastAccelStepper.h>  
MPU6050 mpu6050(Wire);  
double Setpoint = 0; //Setpoint for balancing  
double Input, Output;  
double Kp, Ki, Kd, SF, SFREV, SFP, SFFOR, acceleration, deadZone, 
Inputoffset;  
PID myPID(&Input, &Output, &Setpoint, Kp, Ki, Kd, DIRECT);  
// Motor control pins  
int leftStepPin = 32;  
int leftDirPin = 33;  
int rightStepPin = 14;  
int rightDirPin = 12;  
int enablePin = 19;  
// FastAccelStepper Engine  
FastAccelStepperEngine engine = FastAccelStepperEngine();  
FastAccelStepper *leftMotor = NULL;  
FastAccelStepper *rightMotor = NULL;  
double alpha;  
float filteredPitch = 0;  
unsigned long lastUpdateTime = 0; 
BLYNK_WRITE(V9) {  
Kp = param.asDouble();  
}  
BLYNK_WRITE(V10) {  
Ki = param.asDouble();  
}  
BLYNK_WRITE(V11) {  
Kd = param.asDouble();  
}  
BLYNK_WRITE(V12) {  
SF = param.asDouble();  
}  
BLYNK_WRITE(V13) {  
Inputoffset = param.asDouble();  
}  
BLYNK_WRITE(V14) {  
SFP = param.asDouble();  
}  
BLYNK_WRITE(V15) {  

SFREV = param.asDouble(); 
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}  
BLYNK_WRITE(V16) {  
SFFOR = param.asDouble();  
}  
BLYNK_WRITE(V17) {  
acceleration = param.asDouble();  
}  
BLYNK_WRITE(V18) {  
deadZone = param.asDouble();  
}  
void setup() {  
Serial.begin(9600);  
Blynk.begin(auth, ssid, pass);  
Wire.begin();  
mpu6050.begin();  
mpu6050.calcGyroOffsets(true);  
engine.init();  
leftMotor = engine.stepperConnectToPin(leftStepPin);  
rightMotor = engine.stepperConnectToPin(rightStepPin);  
if (leftMotor) {  
leftMotor->setDirectionPin(leftDirPin);  
leftMotor->setEnablePin(enablePin);  
leftMotor->setAutoEnable(true);  
leftMotor->setSpeedInHz(2000); // Speed in Hz  
}  
if (rightMotor) {  
rightMotor->setDirectionPin(rightDirPin);  
rightMotor->setEnablePin(enablePin);  
rightMotor->setAutoEnable(true);  
rightMotor->setSpeedInHz(2000); // Speed in Hz  
} 
myPID.SetOutputLimits(-255, 255);  
myPID.SetSampleTime(1);  
myPID.SetMode(AUTOMATIC);  
}  
void loop() {  
Blynk.run();  
mpu6050.update();  
Input = mpu6050.getAngleY() - Inputoffset;  
myPID.SetTunings(Kp, Ki, Kd);  
myPID.Compute();  
float motorSpeed = abs(Output * SF) + SFP; // Scale factor for speed  
float motorSpeedFor = motorSpeed + SFFOR; // Scale factor for speed  
float motorSpeedRev = motorSpeed + SFREV; // Scale factor for speed  
if (leftMotor && rightMotor) {  
leftMotor->setAcceleration(acceleration * 16);  
rightMotor->setAcceleration(acceleration * 16);  
if (Output > deadZone) {  
// Output positive: left motor counterclockwise, right motor 
clockwise  
leftMotor->setSpeedInHz(motorSpeedFor); // Scale Output  
rightMotor->setSpeedInHz(motorSpeedFor); // Scale Output   
leftMotor->move(3 * 16);  
rightMotor->move(3 * 16);  
 


