
DESIGN AND CONTROL OF A TWO-WHEEL SELF-
BALANCING ROBOT

AZUHA SYUHADA BINTI NORMAN ZAIRI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND CONTROL OF A TWO-WHEEL SELF-
BALANCING ROBOT

AZUHA SYUHADA BINTI NORMAN ZAIRI

This report is submitted in partial fulfilment of the requirements
for the degree of Bachelor of Electronic Engineering with Honours

Faculty of Electronics and Computer Technology and
Engineering

Universiti Teknikal Malaysia Melaka

2024

Tajuk Projek : Design and Control of a Two-wheel Self-balancing Robot
Sesi Pengajian : 2023/2024

Saya AZUHA SYUHADA BINTI NORMAN ZAIRI mengaku membenarkan
laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat
kegunaan seperti berikut:

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan

pertukaran antara institusi pengajian tinggi.
4. Sila tandakan (✓):

SULIT*

(Mengandungi maklumat yang berdarjah
keselamatan atau kepentingan Malaysia
seperti yang termaktub di dalam AKTA
RAHSIA RASMI 1972)

TERHAD*
(Mengandungi maklumat terhad yang
telah ditentukan oleh organisasi/badan di
mana penyelidikan dijalankan.

TIDAK TERHAD

Disahkan oleh:

(TANDATANGAN PENULIS) (COP DAN TANDATANGAN PENYELIA)

Alamat Tetap: No. 38,Jln Wawasan
1, Tmn Wawasan,
43100 Hulu Langat,
Selangor

Tarikh : 12 Januari 2024 Tarikh : 12 Januari 2024

UNIVERSITI TEKNIKAL MALAYSIA MELAKA
FAKULTI TEKNOLOGI DAN KEJURUTERAAN ELEKTRONIK DAN

KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN
PROJEK SARJANA MUDA II

✓

DECLARATION

I declare that this report entitled “Design and Control of a Two-wheel Self-balancing

Robot” is the result of my own work except for quotes as cited in the references.

Signature : …………………………………

Author : Azuha Syuhada Binti Norman Zairi

Date : 12 Januari 2024

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient

in terms of scope and quality for the award of Bachelor of Electronic Engineering with

Honours.

Signature : …………………………………

Supervisor Name : Dr. Amat Amir Bin Basari

Date : 12 Januari 2024

DEDICATION

I dedicate this thesis to my parents, Norman Zairi bin Suleiman and Norma Binti Daud,

whose unwavering belief in my abilities and constant encouragement have been a

tremendous source of inspiration throughout my journey. Their support has played an

invaluable role in shaping both my academic and personal growth. I am profoundly

grateful for their unwavering support and the profound impact they have had on my

life. I would also like to express my heartfelt dedication to my friends whose

unwavering support and understanding have been a constant source of strength. Their

love, patience, and encouragement have been instrumental in keeping me motivated.

This thesis stands as a testament to their unwavering belief in me, and I am forever

grateful for their presence in my life. Furthermore, I would like to extend my

dedication to Dr. Amat Amir Bin Basari, whose guidance and expertise have played a

pivotal role in shaping my research and academic pursuits. Their dedication to my

intellectual growth, insightful feedback, and unwavering support have made this

journey possible. Lastly, I dedicate this thesis to all individuals who strive to make a

positive impact in their respective fields. May this work contribute, albeit in a small

way, to the broader body of knowledge and serve as inspiration for others to pursue

their passions with unwavering determination and enthusiasm.

i

ABSTRACT

Two-wheel self-balancing robots typically have one degree of freedom (1-DOF),

limiting their real-world usability, particularly in navigating obstacles and uneven

surfaces. A study confirmed this limitation, noting sluggish disturbance rejection and

significant oscillations in tilt response. This project aims to design and develop a

prototype of 2-DOF two-wheel self-balancing robot using a PID controller. The

proposed system focuses on the design and control of a 2-DOF self-balancing robot

using a PID controller. The ESP32 microcontroller reads data from the MPU6050

sensor, and NEMA17 stepper motors drive the robot's movement. The ESP32 sends

sensor data to Blynk, enabling remote PID control and system tuning without the need

to modify the Arduino IDE code directly. Simultaneously, the ESP32 actively sends

data to MATLAB for in-depth analysis of PID tuning. Results indicate overall robot

performance with varied PID settings and disturbances. The closed-loop control

system enhances the robot's real-time balance and trajectory control, effectively

adapting to PID parameter changes and external disturbances. This project

successfully implemented a PID controller and analysed the impact of PID tuning on

the self-balancing robot's response. However, integrating a camera onto the robot

could improve the robot’s usefulness for surveillance and monitoring purposes.

ii

ABSTRAK

Robot penyeimbang dua roda biasanya mempunyai satu darjah kebebasan (1-

DOF), terhad dalam mengatasi halangan dan permukaan yang tidak rata. Satu kajian

disahkan dengan mencatatkan penolakan gangguan yang lambat dan ayunan yang

signifikan dalam respons kemiringan. Projek ini bertujuan untuk merekabentuk dan

membangunkan prototaip robot penyeimbang dua roda dengan 2-DOF menggunakan

pengawal PID. Sistem tertumpu pada reka bentuk dan kawalan robot penyeimbang 2-

DOF menggunakan pengawal PID. Mikropengawal ESP32 membaca data dari sensor

MPU6050, dan motor langkah NEMA17 menggerakkan pergerakan robot. ESP32

menghantar data sensor ke Blynk, membolehkan kawalan PID dari jauh tanpa

mengubah kod Arduino IDE secara langsung. ESP32 menghantar data ke MATLAB

untuk analisis mendalam penalaan PID. Hasilnya menunjukkan prestasi keseluruhan

robot dengan tetapan PID yang bervariasi dan gangguan. Sistem kawalan gelung

tertutup meningkatkan keseimbangan dan kawalan trajektori robot, menyesuaikan

diri dengan efektif kepada perubahan parameter PID dan gangguan luaran. Projek

ini berjaya melaksanakan pengawal PID dan menganalisis impak penalaan PID

terhadap respons robot. Walau bagaimanapun, penggabungan kamera pada robot

boleh meningkatkan kegunaan robot untuk tujuan pengawasan dan pemantauan.

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude and appreciation for

those who has played an important role in assisting me through the completion of this

Final Year Project. I would like to thank the supreme power the Almighty God who is

obviously the one has always guided me to work on the right path of life. I believe

without His grace, this project could not become a reality. Next to Him are my beloved

parents, whom I greatly indebted for me brought up with love and encouragement to

this stage of life and special thanks for sponsoring me to buy the materials and

equipment in order to make this project a success. I am feeling oblige in taking the

opportunity to sincerely gratitude to my supervisor, Dr. Amat Amir Bin Basari who

helped me with the completion of this project. Last but not least, I would like to thank

my precious lecturers from Faculty of Electronic Engineering and Computer

Engineering and friends who have been always helping and encouraging me

throughout the process of doing this project. I have no valuable words to express my

thanks, but my heart is still full of the favours received from each of the person.

iv

TABLE OF CONTENTS

Declaration i

Approval i

Dedication i

Abstract i

Abstrak ii

Acknowledgements iii

Table of Contents iv

List of Figures ix

List of Tables xii

List of Symbols and Abbreviations xiii

List of Appendices xiv

CHAPTER 1 INTRODUCTION 1

1.1 Chapter Overview 1

1.2 Project Background 1

1.3 Problem Statement 2

1.4 Objectives 3

v

1.5 Scope of Project 4

1.6 Chapter Outline 4

1.7 Chapter Summary 5

CHAPTER 2 LITERATURE REVIEW 6

2.1 Chapter Overview 6

2.2 Fundamental of Inverted Pendulum 6

2.3 Types of controllers to balance two-wheel robot 8

2.4 Two-wheel self-balancing robot using PID controller 10

2.5 Internet of Things (IoT) 22

2.6 Gaps and Challenges 22

2.7 Chapter Summary 24

CHAPTER 3 METHODOLOGY 25

3.1 Chapter Overview 25

3.2 Flowcharts 25

3.3 Block Diagram 28

3.4 Main Components 31

3.4.1 MPU 6050 Sensor 32

3.4.2 NodeMCU ESP-32 Microcontroller 32

3.4.3 Stepper Motor NEMA 17 33

3.4.4 Stepper Motor Driver A4988 34

vi

3.4.5 A4988 Module Breakout Board 35

3.4.6 18650 Lithium Ion Battery 36

3.5 Software and Application Used 37

3.5.1 Arduino IDE 37

3.5.2 Blynk 37

3.5.3 MATLAB 38

3.6 Project Operation Development 38

3.6.1 Project Implementation Procedure 39

3.6.1.1 Hardware Preparation 39

3.6.1.2 Software Implementation 40

3.6.1.3 Hardware and Software Integration 43

3.7 Project Parameter of Analysis 44

3.7.1 Parameter of Analysis and Data Acquisition 44

3.8 Chapter Summary 45

CHAPTER 4 RESULTS AND DISCUSSION 46

4.1 Chapter Overview 46

4.2 Hardware Prototype Implementation 46

4.2.1 Hardware Design Overview 47

4.2.2 Wiring and Interconnections 49

4.3 Software Implementation 51

vii

4.3.1 Arduino IDE Platform 51

4.3.1.1 Motor Configuration 52

4.3.1.2 PID Configuration 53

4.3.1.3 Sensor Configuration 55

4.3.1.4 Blynk Configuration 55

4.3.2 Blynk Platform 56

4.3.3 MATLAB Platform 58

4.4 Analysis Result 59

4.4.1 Tuning Parameters and Comparison Discussion 59

4.4.1.1 Kp Comparison Analysis 60

4.4.1.2 Kd Comparison Analysis 66

4.4.1.3 Ki Comparison Analysis 70

4.4.2 Performance with Multiple Disturbance Evaluation 75

4.4.3 Prototype Performance Testing 77

4.5 Chapter Summary 79

CHAPTER 5 CONCLUSION AND FUTURE WORKS 80

5.1 Chapter Overview 80

5.2 Project Achievement 80

5.3 Project Problem and Limitation 81

5.4 Future Work and Recommendations 81

viii

5.5 Conclusion 82

5.6 Chapter Summary 82

REFERENCES 83

APPENDICES 88

ix

LIST OF FIGURES

Figure 2.1: Inverted pendulum parametric presentation 7

Figure 3.1: Flowchart of the project 26

Figure 3.2: Flowchart for PID tuning 27

Figure 3.3: Block Diagram of the project 29

Figure 3.4: Closed loop control system of the self-balancing robot 30

Figure 3.5: Model of the self-balancing robot 31

Figure 3.6: MPU 6050 sensor 32

Figure 3.7: NodeMCU ESP32 Microcontroller 33

Figure 3.8: Stepper Motor NEMA 17 34

Figure 3.9: A4988 Stepper motor driver 35

Figure 3.10: A4988 Module Breakout Board 36

Figure 3.11: 18650 Lithium Ion Battery 36

Figure 3.12: Arduino IDE Software 37

Figure 3.13: Blynk Application 38

Figure 3.14: MATLAB Software 38

Figure 3.15: Device Layout in Blynk Console 40

Figure 3.16: Template Layout in Blynk Console 41

Figure 3.17: Datastreams Layout in Blynk Console 42

x

Figure 3.18: New script in MATLAB 43

Figure 3.19: Block Diagram for Hardware and Software Integration. 43

Figure 4.1: Front and rear view of the prototype 48

Figure 4.2: Schematic Circuit of the system 49

Figure 4.3: Completed circuit connection of the system 50

Figure 4.4: Motor Pin Configuration 52

Figure 4.5: Initialization of ‘FastAccelStepperEngine’ and Motor Pointers 52

Figure 4.6: Initialization and Configuration in the setup() Function 53

Figure 4.7: Output Limit in PID Configuration 54

Figure 4.8: PID Controller Calculations and Adjustments 54

Figure 4.9: MPU6050 Configuration 55

Figure 4.10: Code that configures Blynk 56

Figure 4.11: ‘BLYNK_WRITE’ function in Blynk widget configuration settings 56

Figure 4.12: Blynk GUI Layout of self-balancing robot 58

Figure 4.13: Graph of Tilt Angle vs Time when Kp = 18 59

Figure 4.14: Behavioral Response when Kp = 4.5 61

Figure 4.15: Behavioral Response when Kp = 9.0 62

Figure 4.16: Behavioral Response when Kp = 13.5 62

Figure 4.17: Behavioral Response when Kp = 18.0 63

Figure 4.18: Behavioral Response when Kp = 22.5 64

Figure 4.19: Behavioral Response when Kd = 0.3 67

Figure 4.20: Behavioral Response when Kd = 0.6 68

Figure 4.21: Behavioral Response when Kd = 0.9 69

xi

Figure 4.22: Behavioral Response when Ki = 35 71

Figure 4.23: Behavioral Response when Ki = 70 72

Figure 4.24: Behavioral Response when Ki = 105 73

Figure 4.25: Overall Performance of the Robot with Multiple Disturbance 75

Figure 4.26: (a) Prototype testing on wooden surface, (b) Prototype testing on rubber
surface, (c) Prototype testing on rough surface 77

Figure 4.27: (a) Testing on uneven surface, (b) Testing on inclined surfaces 78

Figure 4.28: (a) Presence of disturbance, (b) Robot is subjected to a physical force, (c)
Robot is trying to recover the imbalance, (d) Robot back at its original state 79

xii

LIST OF TABLES

Table 2.1: Parameters of the inverted pendulum system 7

Table 2.2: Comparative Analysis of Reviewed and Proposed of Two-wheel Self-
balancing Robot using PID Controller 16

Table 2.3: Gaps and Challenges of Past Research and Proposed System 22

Table 4.1: Comparative Table of Robot Behavior under Varying Kp Values 65

Table 4.2: Comparative Table of Robot Behavior under Varying Kd Values 69

Table 4.3: Comparative Table of Robot Behavior under Varying Ki Values 74

Table 4.4: Parameters of the overall performance of the robot 76

xiii

LIST OF SYMBOLS AND ABBREVIATIONS

PID : Proportional-Integral-Derivative

DOF : Degree of Freedom

DC : Direct Current

GPIO : General Purpose Input/Output

SDA : Serial Data Line

SCL : Serial Clock Line

Kp : Proportional Gain

Ki : Proportional Integral

Kd : Proportional Derivative

IMU : Inertial Measurement Unit

ESP : Expressive Systems' Platform

MPU : Microprocessor Unit

NEMA : National Electrical Manufacturers Association

IoT : Internet of Things

PWM : Pulse Width Modulation

GUI : Graphical User Interface

IDE : Integrated Development Environment

xiv

LIST OF APPENDICES

Appendix A: Process of making the joints of the self-balancing robot

Appendix B: Coding in Arduino IDE

CHAPTER 1

INTRODUCTION

1.1 Chapter Overview

This chapter provides a roadmap of the project, laying out the problem statement,

objectives, and the scope which converges on designing a 2-DOF self-balancing robot.

Additionally, this chapter also includes the outline of each chapter in this thesis.

1.2 Project Background

A two-wheeled self-balancing robot is an important and notable type of mobile

robot. It refers to a robot's capability to maintain its balance on two wheels without

toppling over. Unlike many other control systems, the inverted pendulum system

inherent in these robots is naturally unstable. As a result, it requires control

mechanisms to achieve stability in this precarious state. Essentially, a two-wheeled

2

balancing robot functions as an inverted pendulum system that remains upright on its

two wheels.

Compared to other mobile robots, self-balancing robots offer several advantages,

including their compact size, versatility, and affordability. These qualities contribute

to their popularity in many events and settings. As a distinctive example of an inverted

pendulum, the two-wheeled self-balancing robot exhibits characteristics of instability,

complex and nonlinear dynamics, and multivariable behavior. The research in the field

of two-wheeled balancing robots has gained significant momentum in recent years,

primarily driven by the introduction of the Segway, which revolutionized personal

transportation.

This project focuses on the modelling of the robot, the design of a Proportional-

Integral-Derivative (PID) controller, and the implementation of this controller on the

two-wheeled robot. The chosen controller for this project is the PID controller due to

its practicality and ease of implementation. It only requires adjustment of three

parameters, which can be determined using various techniques. Previous studies have

demonstrated that properly tuned PID controllers yield favorable outcomes in terms

of response time and accuracy. These parameters, namely Kp, Ki, and Kd, play a

crucial role in achieving optimal performance.

1.3 Problem Statement

The two-wheel self-balancing robot is inherently unstable and without external

control it would roll around the wheels rotation axis and eventually fall[1]. Most of

the produced self-balancing robots have only one degree of freedom which also

provides some difficulties for users in the real-world. A PID (Proportional-Integral-

3

Derivative) control algorithm needs to be implemented to adjust the motor's speed

based on the sensor data.

One degree of freedom limits the robot's ability to perform complex tasks that

require multi-axis motion or manipulation. It may be challenging to extend the

capabilities of the robot beyond basic balance control to more sophisticated behaviors.

[2]. In practical situations, the environment is often intricate and constantly changing.

The ability of a 1-DOF self-balancing robot to navigate obstacles or uneven surfaces

can be hindered due to its limited degrees of freedom. This limitation was confirmed

in a study, where the disturbance rejection capability of the control system was

sluggish, and the tilt response had significant oscillations [2]. As a result, it lacks the

necessary flexibility for successful adaptation and efficient motion planning in such

complex and dynamic environments.

Thus, this project aims to develop a two-wheel self-balancing robot with 2-DOF

that uses PID control algorithms in order to provide a stable and efficient method for

controlling the robot’s balance in real-time.

1.4 Objectives

This research aims to create a two-wheel robot using the inverted pendulum

concept and a PID controller. The specific objectives formulated to achieve this aim

are as follows:

i. To design a two-wheel self-balancing robot with two degrees of freedom

(2-DOF).

ii. To develop a prototype for the two-wheel self-balancing robot with a PID

controller.

4

iii. To analyze the performance of the developed self-balancing robot through

PID tuning for improved balance control.

1.5 Scope of Project

The scope of this thesis is focused on the design and control of a two-degree-of-

freedom (2-DOF) self-balancing robot using a PID controller. NodeMCU ESP32 is

the microcontroller used to read the sensor data from MPU6050 sensor. The MPU

6050 sensor is used to accurately measure motion and orientation, including

acceleration and rotational movement. On the wheels of the robot, there are two

stepper motors NEMA 17, that serve as the driving force for the robot's movement. Its

precise control allows for accurate rotation of the wheels, enabling the robot to

maintain balance. NodeMCU ESP32 Wi-Fi module is used for internet connectivity,

PID tuning, and system tuning can be remotely controlled by using Blynk application.

1.6 Chapter Outline

The two-wheel self-balancing robot that uses IMU sensor was described as an

intelligent way to reduce human efforts in their daily activities. All the details about

this project were defined in every chapter as shown below.

CHAPTER 1: This chapter will give a brief introduction to the project including

the project background, problem statement, objectives, scope of project and the

chapter outline for the whole project are clearly explained in this chapter.

CHAPTER 2: This chapter will discuss about the articles or sources that are related

to the project. This project is known by the sources and research that has been done

before. Literature review provides a background of this project and also gives and

5

direction in this research. The details of the project’s background are briefly explained

in this section.

CHAPTER 3: This chapter focuses on the research methodology employed in this

project, providing a comprehensive outline of the specific approach utilized. This

chapter presents a selection of materials essential for hardware development.

Additionally, it delves into the theory and practical application of the PID controller

within the context of this project.

CHAPTER 4: This chapter deals with the results and discussion. It will highlight

the results obtained in design and development of the hardware. Besides, it also

discusses the tuning method of PID in self-balancing robot. All of the obtained results

are briefly explained in this section.

CHAPTER 5: The final chapter will explain the conclusion and future

recommendation of the project which also includes the project achievement, project

problem and limitation, and future recommendation in order to improvise the project.

1.7 Chapter Summary

In conclusion, the following outline of this thesis will cover several different parts

and aspects of this project. Then, Chapter 2, will cover the literature review or

background studies of related past articles or journal. Next, Chapter 3 will cover the

methodology of this project. All the methods and components used in this project will

be discussed. Furthermore, in Chapter 4 will be discussing the results of this project

including the analysis of the PID tuning method. Finally, the conclusion of this project

including the future recommendations of this project will be discussed in the last

chapter which is Chapter 5.

CHAPTER 2

LITERATURE REVIEW

2.1 Chapter Overview

This chapter reviews relevant literature to enhance understanding of the project,

focusing on presenting theoretical background and summarizing key findings and

contributions from previous research.

2.2 Fundamental of Inverted Pendulum

The inverted pendulum is a classic automation problem that has numerous

theoretical approaches as well as a multitude of practical applications [3]. A typical

design for a robot that performs the inverted pendulum task involves a tower-like

structure supported by two wheels. The robot is capable of independently controlling

its motors to maintain an upright position while moving in response to user commands.

7

Stabilizing an inverted pendulum is a fundamental challenge in control systems,

involving key components like a DC motor, a cart, a pendulum, and a driving

mechanism for the cart. According to the system dynamics the system has two degree

of freedom the one is for cart movement and the other one is for Pendulums rotational

motion [4]. Figure 2.1 shows the inverted pendulum parametric presentation.

Figure 2.1: Inverted pendulum parametric presentation

The list of parameters of the inverted pendulum system is depicted in Table 2.1 below.

Table 2.1: Parameters of the inverted pendulum system

Parameter Description Unit
m Mass of the pendulum kg
M Mass of the cart kg
F Force applied to the cart kg.m/s²
b Friction of the cart co-efficient Ns/m
l Length of the pendulum m
I Moment of inertia kg-m²
g Gravitational Force 9.8 m/s²
x Cart position co-ordinate -
θ Vertical pendulum angle In degree, º

In order to obtain the system dynamics of the inverted pendulum, several

assumptions are typically made. These assumptions help in enabling the analysis and

design of control strategies for the inverted pendulum system.

8

i. Initial equilibrium state: The system starts from a balanced state with zero

initial conditions, simplifying analysis to focus on deviations from

equilibrium.

ii. Small angular deviation: The pendulum is modeled with small angular

displacements for linearity, allowing the use of linear control techniques as

its dynamics remain linear within this range.

iii. Step input: The system is tested with a step input, represented as a sudden

change in the pendulum angle (θ), simplifying analysis by examining the

response to a consistent, abrupt change in input.

2.3 Types of controllers to balance two-wheel robot

Several researchers have developed various types of controllers, each with its

unique design approach and associated pros and cons.

The authors in [5] states that balancing of the robot can be done with help of

feedback and a correction element. The feedback element in the system is represented

by the MPU6050 board, which communicates the current orientation of the robot to

the Arduino. The objective of the study is to achieve the capability of the robot to

maintain an upright position and balance effectively. As the result of the study, it has

been concluded that PID algorithms can be used to stabilize an unsteady robot. To

achieve balance in the robot, two control strategies are utilized which are MPU6050

calibration and PID tuning. The calibration process involves obtaining six sets of

offset values from the accelerometer and gyroscope by aligning the MPU6050 with

the ground plane. PID tuning is then performed using a trial-and-error method to attain

a stationary position for the robot.

9

Meanwhile, the study in [6] presents two control methods for a WIP-based self-

balancing robot: PID for vertical angle stabilization and LQR for motion trajectory,

tested in MATLAB Simulink. They employed two techniques: PID control for vertical

angle stabilisation and LQR control with state observer to follow a desired motion

trajectory and stabilise the pendulum's vertical angle. In the project, just PID control

for vertical angle stabilization is used where LQR control will be incorporated in the

future. The final version of the WIP self-balancing robot was tested on carpet and

stoneware surfaces with different friction levels. Results indicate that the robot, using

only PID control for vertical angle stabilization, effectively maintains balance on these

surfaces with a maximum error of 4°.

In addition, linear controllers have gained popularity among researchers involved

in the design of similar balancing robots, such as JOE: A mobile, inverted pendulum.

The most widely used control systems are the Pole Placement controller and the Linear

Quadratic Regulators (LQR), both of which are based on linear state space models.

These controllers have been extensively implemented and studied due to their

effectiveness in achieving desired balancing and control outcomes for such robotic

systems. While the authors in [6] mentioned that PID controller based on output

feedback may not achieve satisfactory control results for a high-order and multi-

variable system.

In other research paper, the author [7] mentioned that fuzzy logic is able to enhance

the robot’s ability, particularly when subjected to external forces. In the study, the PD

and PID controllers are designed using the pole placement method, and their

parameters are optimized using the Genetic algorithm. The PD controller exhibits

vibrations and instability, leading to the robot's fall. By adding a pole and transforming

10

it into a PID controller, stability improves but external forces still cause the robot to

fall. To enhance PID performance, the parameters are fine-tuned using Fuzzy logic.

As a result, the Fuzzy-PID controller reduces vibrations, improves stability, and

mitigates the impact of external forces.

2.4 Two-wheel self-balancing robot using PID controller

One of the fundamental challenges in designing two-wheel self-balancing robots is

achieving stable balance and control. These robots typically employ a combination of

sensors, actuators, and control algorithms to sense their orientation and make

adjustments to keep themselves balanced. Based on the sensor readings, a control

algorithm, Proportional-Integral-Derivative (PID) controller, then calculates the

appropriate control signals to drive the motors and maintain balance.

PID control is known for its past success, simplicity in the implementation and

broad availability [8]. In recent studies, there has been a notable emphasis on

augmenting the capabilities of self-balancing robots through the integration of

additional degrees of freedom. The inclusion of a 2-DOF system enhances the robot's

flexibility, maneuverability, and ability to navigate around obstacles.

The author discusses the utilization of a two-stage proportional-integral-derivative

(PID) controller in conjunction with a microcontroller, position sensor, and DC motor

for the hardware system design [9]. The authors also present the symbolic

representation of the state space dynamic model and highlight the use of MATLAB

simulation, fuzzy algorithms, and sophisticated mathematical modeling strategies in

previous studies. Furthermore, this paper offers valuable observations on the

performance evaluation of the self-balancing robot, demonstrating the effectiveness

of a 2-DOF PID controller in reducing settling time and enhancing stability. The

11

applications of this research encompass educational experiments, robotics and control

courses, and potential integration with Bluetooth or wireless modules for improved

movement control and balance maintenance, indicating promising future scope in

diverse fields such as product containment systems and flying machines.

Next, the authors utilized MATLAB and Arduino IDE for the design and control

of the robot, while the main electrical components included Arduino Uno

microcontroller, IMU MPU-6050 sensor, 10 in-series 1.2V AA NiMH batteries,

Pololu Dual G2 High-Power motor driver, and 2 Pololu 30:1 Metal Gearmotor motors

[10]. They applied Lagrange equations for mathematical modeling and used two

cascading PID loops for controlling speed and tilt angle. The experimental findings

and the robot's actual performance are also included in the article. The robot

demonstrated the ability to transport objects of different sizes and weights while

maintaining balance and navigating tight spaces. It's shown to be versatile, with

potential applications in surveillance, rescue, hazardous environment cleaning,

military, and transportation.

Furthermore, this paper focuses on the design, construction, and control of a two-

wheeled balancing robot using Linear-Quadratic Regulator (LQR) controller [5]. The

robot consists of an MPU 6050, a microprocessor, a frame, two wheels driven by DC

gear motors, and a battery. The MPU-6050 sensor detects the angle of tilt or inclination

along the X, Y, and Z axes as well as the rotational velocity along the X, Y, and Z

axes by combining a 3-axis accelerometer and a 3-axis gyroscope with Micro

Electromechanical System (MEMS). Data from the accelerometer and gyroscope are

combined using a complementary filter. The LQR controller is employed for

stabilization and balance. Experimental results show the robot's ability to maintain

12

balance, illustrating the principle used in transportation like the Segway PT and

garnering interest in control engineering research.

Moreover, the next paper discusses the development of a Two Wheeled Robot

(TWR) using a single stepper driver and PID control loop [11]. The TWR is designed

[12]using an Arduino Nano microcontroller, Inertial Mass Unit (IMU) sensor, and

stepper motors with stepper driver. The PID control loop is implemented to balance

the robot's vertical position, and the PID coefficients are tuned for stability and

responsiveness, with Kp adjusted for oscillations, Ki for reduction, and Kd for quick

response. A complementary filter is used for smoother sensor measurements, and

potential enhancements include a Kalman filter, PID with fuzzy logic, LQR controller,

and wireless communication. The TWR is applicable in robotics, automation, and

education, where precise control and balance are essential.

Besides, the author [11] presents a comprehensive exploration of the design and

analysis of a TWABR system, utilizing components such as the MPU6050, DRV8825

motor driver, NEMA17 Bipolar stepper motor, and an ESP32 Microcontroller

powered by an 11.1V Lithium Polymer battery. MATLAB is used for designing and

simulating classic PID and optimal LQR controllers, focusing on control performance

and stabilization. The TWABR's dynamic model is based on nonlinear differential

equations and Lagrange dynamics, linearized for analysis in state space and frequency

domain. The study underscores the LQR controller's superior performance and

suggests exploring speed control and variable tilt angles. This work lays a foundation

for low-cost TWABR systems in control theory education and further control strategy

research.

13

Moreover, the author investigates the design and execution of a self-balancing

robot with the use of an MPU6050 sensor, a 12V DC motor with encoders, and

SolidWorks for design and Arduino Uno for control [12]. A key aspect was creating a

state-space model for the DC motor, clarifying the relationship between input voltage,

control torque, and deriving state space equations. Experimental results highlighted

successful hardware-software integration, particularly in balance control with an

inverted pendulum model. Real-time testing employed advanced PID and LQR

controllers, with the PID effectively managing the robot's tilt. Future enhancements

include improving trajectory tracking, stabilizing on uneven surfaces, and adding

manual remote control via Bluetooth. This system outperforms current benchmarks in

the field.

Other than that, the author discusses the design and implementation of a two-wheel

self-balancing inspection robot, leveraging advanced technologies such as Silan

RPLIDAR A2 LiDAR and a particle filter [13]. The research's core is developing a

self-balancing control algorithm and a kinematic model, underpinned by a double-

closed-loop PID strategy. SolidWorks and finite element statics are used for the robot's

design, which features autonomous decision-making, environmental sensing, and

control execution using the Gmapping SLAM algorithm for localization and map

generation The study highlights the significance of particle number in Gmapping for

map accuracy, supported by high-accuracy tests. Both in real-world experiments and

in simulation settings like Gazebo, the self-balancing algorithm's robustness and anti-

jamming skills were thoroughly tested. The result of these efforts is an inspection robot

based on laser SLAM that proves its capacity to perform inspection tasks effectively

in test conditions, verifying the efficacy and rationale of the system.

14

Furthermore, the author in [14] explores the design and implementation of a two-

wheeled self-balancing robot (TWSBR), integrating key components such as the

MPU6050 sensor, DC motors, a 12V battery, and a chassis made from plastic

baseboard and metallic racks. The study validates the PD control theory using

MATLAB's SIMULINK, demonstrating the robot's ability to maintain balance over

time and respond effectively to disturbances, reaching saturation. Robotic toolbox

simulations further confirm the working principle. Motion equations are deduced from

this modeling, and a stability analysis is conducted based on the system's poles. The

implementation of PD-PI navigational control and the use of a Kalman filter algorithm

underscore the robot's stability. The robot's ability to avoid obstacles is maximized

using ultrasonic waves for detection, and its communication with IoT devices is

facilitated via Bluetooth technology.

Next, the author [15], discusses the construction and operational capabilities of a

self-balancing robot, a prime example of a cyber-physical system, utilizing

components such as a NEMA17 stepper motor, A4988 stepper motor driver, HC-06

Bluetooth module, LM2596 current limiter, MPU6050 sensor, and an Arduino Uno,

all powered by a 5100 mAh lithium polymer battery. The robot successfully achieves

balance and recovers from external disturbances, although it faces limitations in

sustaining balance against larger forces due to its small form factor. The robot's control

algorithm, intricately designed in the Arduino IDE and visualized through UML

diagrams, employs a PID controller with finely tuned values (Kp 1150.0, Kd 157.5,

Ki 0.12) to maintain its orientation, a process rigorously monitored through sensor

data. Additionally, the robot's circuitry using Fritzing software, facilitates controlled

movement in four directions which are forward, backward, left, and right maneuvered

through a bespoke Android app via Bluetooth.

15

Last but not least, the author presented the development and control of three-level

self-balancing robots highlighting the integration of components such as Arduino

Nano, DC motors, L298N motor drivers, MPU6050 Sensor, 16x2 LCD display, push

buttons, and lithium rechargeable batteries [16]. The robots, each featuring different

chassis materials, employ a combination of PID control and Kalman filter for stability

and movement control. The system modeling was achieved using the Lagrange

equation, with the model subsequently converted into a transfer function for effective

PID implementation. The PID controller was meticulously designed and tuned

following the Ziegler Nichols method, while the Kalman filter was developed and

integrated to enhance system performance. Both PID control and Kalman filter were

rigorously tested through simulations and actual robot implementation, demonstrating

the robots' ability to maintain balance for extended periods (up to one hour) and

robustly reject disturbances. The paper also encompasses extensive simulations,

hardware design, and experimental examinations to gather and analyze research data,

ultimately resulting in a well-evaluated, stable, and efficient control system for self-

balancing robots.

As a whole, the literature reviewed for this thesis highlights a key fact about

robotics and control systems which every project is a special mosaic of invention, with

each publication or contributing author offering their own technique and viewpoint.

This reflects the PID controller's fundamental role in robotics and automation,

adaptable to a wide range of applications, from basic self-balancing robots to complex,

multi-level control systems.

Table 2.2: Comparative Analysis of Reviewed and Proposed of Two-wheel Self-balancing Robot using PID Controller

Title Software /
Equipment used

Results Method Used Conclusion

A Smart Approach
to control a two-
Wheeled Self-
Balancing Robot
using a PID
Controller with
Two Degree of
Freedom (2022)

 Arduino Uno
 L298N motor

driver
 DC motor
 GY521 Sensor

 The settling time
decreased to 0.0861
seconds.

 The 2-DOF controller
was found to be more
effective than the PID
controller.

 Inverted pendulum
control theory.

 Conventional 2-DOF
proportional-integral-
derivative (PID)
controllers.

 Readings of
acceleration, distance
traveled, and inclination
from sensors.

 Presents a two-stage
PID controller for
controlling a two-
wheeled self-
balancing robot.

 The PID controller is
shown to be superior
to traditional PID
controllers.

Design and
Control of Two
Wheeled Self
Balancing Robot
(TWSBR) (2022)

 Arduino Uno
 MPU 6050

sensor
 10 in-series 1.2V

AA NiMH
batteries

 Pololu Dual G2
High-Power
motor driver

 2 Pololu 30:1
Metal
Gearmotor
motors

 Design, model, and
control of Two-
wheeled Self-
balancing Robot.

 PID gains obtained in
simulation were used
in practical tests.

 Desirable response
was achieved in the
practical test using
one manipulated input
(voltage).

 Two PID control loops
cascade for controlling
outputs.

 Tuning PID gains using
MATLAB.

 Maintaining balance
while moving and
carrying objects.

 Traveling at different
desired speeds specified
by the user.

 Two PID control
loops cascade to
control robot speed
and tilt angle.

 Robots can maintain
balance while
moving and carrying
objects.

 Robot can travel at
different desired
speeds specified by
the user.

17

Controlling of
Two Wheeled Self
Balancing Robot
using PID (2018)

 DC gear motors
 Battery
 MPU 6050

Sensor
 Arduino Uno

 Use of Linear-
Quadratic Regulator
(LQR) controller for
balancing.

 Measurement of robot
angle using MPU
6050 and filtering of
data.

 Experimental results
show the robot can
maintain balance.

 Linear Quadratic
Regulator (LQR)
controller

 State feedback control
system

 Complementary filter
 Encoder feedback
 MPU 6050 for angle

measurement

 Self-balancing robot
was successfully
constructed.

 The control method
provided stable and
reliable balance
condition for motion
control.

 Robots can balance
upright positions
using only two
wheels.

Development of
Two Wheeled
Robot (TWR) by
Single Stepper
Driver using PID
controller (2021)

 Arduino Nano
 DRV 8825

stepper motor
driver

 7805 IC Voltage
regulator

 Li-Po Battery
 MPU 6050
 Stepper motor
 CAD software

(Autodesk
Inventor
Professional)

 MATLAB
software

 Discusses the
combination of
accelerometer and
gyroscope data.

 Use of a
complementary filter
to sift noise and drift.

 Calculation of angles
and their addition to
former inclination.

 Rotation direction of
motor 2 based on
voltage applied.

 Provides a sequence
of voltage applied on
leads.

 Trial and error method
used to tune the PID
parameters.

 Two-wheeled robot
was successfully
developed.

 Capable of balancing
on its two wheels
using PID controller.

 Single stepper driver
used to drive both
stepper motors
simultaneously.

 Tuned PID
coefficients (Kp, Ki,
Kd) were found to
improve the robot's
performance.

18

Modeling and
Control of a Two
Wheeled Auto
Balancing Robot:
A didactic
platform for
control
engineering
education (2019)

 MPU6050
 DRV8825 motor

driver
 ESP32

Microcontroller
 NEMA17

stepper motor
 11.1V Lithium

Polymer battery
(Li-Po)

 MATLAB
software

 Design and analysis
of a Two Wheeled
Automatic Balancing
Robot (TWABR).

 Analysis of
TWABR's dynamic
model through
nonlinear differential
equations.

 Design and
simulation of classic
PID controller and
optimal LQR
controller.

 Design and simulation
of classic PID controller

 Design and simulation
of optimal LQR
controller

 Experimental
comparison of the
performance of the
implemented
controllers.

 Two controllers
implemented: PID and
LQR.

 Design and
construction of a
low-cost TWABR
system for control
theory education.

 TWABR system
modeled using
Lagrange dynamics
equations.

 LQR controller
showed better
dynamic and static
response.

Research on Self-
balancing Two
Wheels Mobile
Robot Control
System Analysis
(2022)

 SolidWorks
software

 12 V DC motors
with encoders

 MPU6050
Sensor

 Arduino Uno

 Experimental results
based on hardware
implementation and
overall system
implementation were
presented.

 Outcomes of research
were mentioned based
on discussions on
several analyses.

 State-space model of the
DC motor

 Relationship between
input voltage and control
torque

 Rearrangement of
equations to obtain the
state space equation.

 Torque applied on the
chassis from the motor
and linear
transformation.

 Successfully
achieved balance
control for self-
balancing robot.

 PID controller used
for controlling single
axis robot tilting
angle.

 Recommended
further extension for
stabilizing robot on
sloped and rough
surfaces.

19

Research on Two-
Round Self-
Balancing Robot
SLAM Based on
the Gmapping
Algorithm (2023)

 Silan RPLIDAR
A2 LiDAR

 Particle Filter

 Design and analysis
of a two-wheel self-
balancing inspection
robot.

 Establishment of a
kinematics model and
design of a self-
balancing control
algorithm.

 Use of the Gmapping
SLAM algorithm for
robot localization and
map construction.

 Importance of particle
number selection for
improving map
accuracy.

 SolidWorks for
designing the
mechanical structure of
the robot.

 Multi-closed-loop PID
controller for designing
the self-balancing
control algorithm.

 2D LiDAR-based
Gmapping algorithm for
robot localization and
map construction.

 Self-balancing test and
anti-jamming test for
verifying the algorithm's
performance.

 Actual test results
showing high map
accuracy.

 Designs and
implements a laser
SLAM-based
inspection robot.

 The double-closed-
loop PID algorithm is
used as the self-
balancing control
algorithm.

 The system's
rationality is verified
through simulation
and actual testing.

 The robot
successfully
completes the
inspection task in the
test environment.

Robust
Navigational
Control of a Two-
Wheeled Self-
Balancing Robot
in a Sensed
Environment
(2019)

 MPU6050
 DC Motors
 12V Battery
 Plastic

Baseboard and
metallic racks

 Transparent
plastic board

 PD Control theory is
verified using
SIMULINK in
MATLAB.

 The robot can balance
itself with two wheels
over time.

 The robot responds to
disturbances and
reaches saturation.

 Mathematical modeling
 Analysis of the

relationship between
forces and motors'
voltage.

 Motion equations
deduced from modeling.

 Stability analysis based
on the poles of the
system.

 PD-PI navigational
control successfully
implemented.

 Maximum obstacle
avoidance achieved.

 Integration with IoT
devices established
through Bluetooth
technology.

20

Simple Two-
wheel Self-
Balancing Robot
Implementation
(2023)

 NEMA17
stepper motor

 A4988 stepper
motor driver

 HC-06
Bluetooth
module

 LM2596 Current
limiter

 MPU6050
Sensor

 Arduino Uno
 5100 mAh Li-Po

Battery
 Arduino IDE

 The robot was fully
constructed and
powered up
successfully.

 The robot was able to
balance and recover
from tilts caused by
external forces and
able to move in four
different directions
using the mobile app.

 The small form factor
of the robot caused it
to eventually fall off
when a large amount
of force was applied.

 The structure design of
the robot is based on the
concept of a reverse
pendulum.

 The robot's control
algorithm uses sensor
data to monitor its
orientation.

 The control loop of the
robot uses a PID
(proportional-integral-
derivative) controller.

 UML diagrams were
created to model the
robot.

 The reverse
pendulum concept
was used.

 Robots can balance
on two wheels and
recover from external
forces.

 Control information
sent through an
android app via
Bluetooth.

 Robot can move in
four basic directions:
forward, backward,
left, and right.

Using a
Combination of
PID Control and
Kalman Filter to
Design of IoT-
based
Telepresence Self-
balancing Robots
during COVID-19
Pandemic (2021)

 Arduino Nano
 DC Motors
 L298N motor

drivers
 MPU6050

Sensor
 16x2 LCD

display
 Push Button
 Lithium

rechargeable
battery

 PID control and
Kalman filter.

 The robots used two
DC motor drives and
had different chassis
materials.

 PID control was
tested using
simulations and actual
robot implementation.

 Conversion of the model
to a transfer function for
PID implementation

 PID controller design
and Ziegler Nichols
tuning

 Design of the Kalman
filter

 Simulation and
hardware design

 A robust and stable
disturbance rejection
control was
successfully
designed.

 The robot maintain
balance for
approximately one
hour before re-
balancing.

21

Proposed System  MPU6050
Sensor

 ESP32
Microcontroller

 A4988 Stepper
Motor Driver

 NEMA17
Stepper Motor

 18650 Lithium-
ion Battery
(12V)

 2-DOF self-
balancing robot is
produced.

 Robot’s
performance varied
when PID
parameters varied.

 The PID tuning for
the robot can be
applied to all types of
surfaces.

 Robots are subject to
external disturbance
while balancing
themselves.

 Analysis of PID
tuning parameters is
applied through
MATLAB from data
obtained in serial
(ESP32)

 Trial and error method
for PID tuning.

 MATLAB software to
analyze the real-time
data from ESP32.

 Schematic circuits are
built in Fritzing
software.

 Blynk application is
used to remotely tune
the PID parameters.

 Automatic Calibration
through Arduino IDE
library.

 2-DOF self-
balancing robot
obtained self-
control in balancing
itself.

 Performance for
each PID tuning
parameter is
analyzed through
pitch angle vs time
plot in MATLAB.

 A robust and stable
disturbance
rejection control is
successfully
designed.

2.5 Internet of Things (IoT)

According to Bansal et al. (2019)[17], the globe has a tremendous demand for IoT

technologies due to the rapid advancement of technology. The current era witnesses

the remarkable capabilities of the Internet of Things (IoT) in bridging the gap between

the virtual realm and tangible reality. This transformative technology encompasses a

network infrastructure that seamlessly connects various electronic sensors, devices,

and objects, enabling them to establish meaningful correlations between their internal

states and the external environment. Therefore, IoT has a lot to serve in various aspects

of life and technology [18]. It holds immense potential in terms of technological

advancements and its ability to significantly benefit humanity.

2.6 Gaps and Challenges

When delving into the extensive amount of literature on PID controllers and robotic

systems, it is essential to identify and address the gaps and challenges that continue to

affect current research. This subtopic aims to discover the gaps and the complexity in

previous research, illuminating unexplored areas and possible roadblocks that may

serve as inspiration for next innovations and advances in the field. Table 2.3 below

shows the gaps and challenges from previous research and the proposed system.

Table 2.3: Gaps and Challenges of Past Research and Proposed System

Gaps and
Challenges

Past Research Proposed System

Design  Most of the designs
predominantly focus on 1-
DOF systems.

 Offer limited scope in terms
of movement and
functionality.

 Advances to a 2-DOF
design, expanding the
capabilities and
potential application of
the system.

 Open new avenues for
exploration and
innovation in robotic
system design.

23

PID
parameters

tuning

 PID tuning involves
adjustments within the
coding environment and the
use of MATLAB Simulink.

 Limits the flexibility and
real-time adaptability of the
system.

 Utilize Blynk
application to tune PID
parameters.

 Allow for more
dynamic and on-the-fly
adjustments.

 Offer a more user-
friendly and accessible
way to optimize system
performance in real-
world scenarios.

Wheel
speed and

acceleration

 LQR is tuned to improved
handling of stepper motors.

 LQR requires a precise
mathematical model of the
system, including its
dynamics.

 LQR controllers involve
solving matrix equations,
which are computationally
intensive.

 Optimize the
performance of the
stepper motor using
Blynk application.

 Allow for precise
adjustments in real-
time, directly
impacting and
enhancing the robot's
wheel speed and
acceleration.

 Allow for greater
flexibility and
customization in
control system design.

Blynk for
control

 Utilized Android apps and
Bluetooth devices for
control and communication
purposes.

 Lacked deeper integration
with the broader Internet of
Things (IoT) ecosystem

 Blynk offers more
sophisticated
monitoring features
including real-time
data visualization,
which can be critical
for understanding the
system's performance
and behavior over time.

 Allow for remote
interactions with the
robot from virtually
any location.

 Based on Table 2.3, it compares the approaches and advancements of past research

with the proposed system in four key areas: design, PID parameter tuning, wheel speed

24

and acceleration, and control using Blynk. As for the design part, past research mainly

focused on 1-DOF systems, limiting movement and functionality. The proposed

system advances to a 2-DOF design, offering expanded capabilities and new

possibilities in robotic system design. Then, traditional methods used coding

environments or MATLAB Simulink, restricting real-time adaptability [19]. The

proposed system uses the Blynk app for dynamic and user-friendly PID tuning,

enhancing real-world performance.

 Next, previous studies relied on LQR tuning, requiring complex models and high

computational power [20]. The proposed system optimizes stepper motor performance

using Blynk, allowing for precise, real-time adjustments and increased flexibility.

Lastly, earlier approaches used Android apps and Bluetooth for basic control, lacking

IoT integration. The proposed system employs Blynk for sophisticated monitoring,

real-time data visualization, and remote interaction, significantly enhancing control

and monitoring capabilities.

2.7 Chapter Summary

To sum up, multiple existing techniques that are related to the proposed technique

are reviewed within this chapter. The reviews are done based on their system design

and method as well as the strengths and weaknesses.

CHAPTER 3

METHODOLOGY

3.1 Chapter Overview

The methodology is composed of several related ideas, such as method and

algorithm. It outlines the methods that have been used and, in general, defines how the

research has been carried out. This chapter describes the project's implementation,

including how the two-wheel self-balancing robot operates theoretically with PID

controller and how to build the system from the ground up, starting with the software

and ending with the hardware.

3.2 Flowcharts

The methodology employed in this project comprises two main components:

mechanical design and software algorithm. In this chapter, the approach utilized to

accomplish the desired objectives will be outlined. The project will be executed based

26

on a well-defined flowchart that delineates all the essential activities that need to be

undertaken.

Figure 3.1 depicts the project's flowchart, which commences with a comprehensive

literature review to gather information on topics relevant to the two-wheeled balancing

robot. After thoroughly examining the available resources, the subsequent step

involves modeling the inverted pendulum, as it forms the foundational concept for this

project.

Figure 3.1: Flowchart of the project

27

Figure 3.2 shows the flowchart for the PID tuning process. It begins by setting the

initial values for the proportional, integral, and derivative gains (Kp, Ki, and Kd). The

control algorithm is then implemented using these gains to regulate the robot's balance.

Following that, the gains are adjusted based on the observed system response. This

iterative process continues until the system achieves stability. Once stability is

achieved, the system's performance is analyzed.

Figure 3.2: Flowchart for PID tuning

28

The project aims to analyze the variables of rise time, settling time and overshoot,

steady-state error reduction, and stability by systematically adjusting the proportional

constant (Kp), integral constant (Ki), and derivative constant (Kd). Through

experimental observations of the robot's behavior and data analysis, the relationship

between these variables and the robot's performance can be examined. The response

speed will be assessed by measuring the robot's reaction time to different reference

inputs, while steady-state error reduction will be analyzed by observing the error

signal for varying Ki values. Additionally, the stability of the robot's motion will be

evaluated by gradually increasing Kd and monitoring any signs of instability. By

conducting these analyses, valuable insights can be gained to optimize the robot's

control system and enhance its overall performance.

3.3 Block Diagram

The effective integration of mechanical and software components relies heavily on

the design of the hardware system. The circuitry for the self-balancing robot shown in

Figure 3.3 encompasses key elements, including the MPU6050 sensor—an inertial

measurement unit (IMU), the ESP32 microcontroller, stepper motor and the stepper

motor driver. Additionally, MATLAB is used for analysis of data for PID tuning.

NodeMCU ESP32 will act as the brain of the system which will connect the

MPU6050, MATLAB, stepper motor driver and Blynk application as the IoT platform.

The MPU6050 sensor is employed to gauge the robot's acceleration and angular rate,

converting the analog output into digital data. The raw input from the IMU sensor is

subjected to further processing to determine the inclination angle of the robot. This

angle is then fed into the PID controller algorithm, which computes the optimal speed

for the stepper motor to uphold the robot's balance. Besides, NodeMCU ESP32 will

29

connect to WIFI and send the data to IoT device server which is Blynk Apps to remotely

tune the PID parameters. MATLAB is then used to analyze the response of the robot at

different PID parameter values for analysis.

Figure 3.3: Block Diagram of the project

The closed loop control system of the self-balancing robot depicted in Figure 3.4

consists of a PID controller within an ESP32 Microcontroller that processes the tilt

angle error signal from a MPU 6050 sensor to generate control commands for a stepper

motor. The PID controller adjusts the motor's movements using proportional, integral,

and derivative gains to maintain the robot's balance. The stepper motor driver takes

the control commands and translates them into electrical signals that drive the stepper

motor. The motor responds to the electrical signals by rotating in a precise manner,

which adjusts the position of the robot to maintain balance.

Then, a disturbance block, representing external physical forces like pushes or

pulls, is shown impacting the system's output, simulating real-world interactions. The

closed-loop nature of the system means that any effect of the disturbance on the robot's

30

balance is continuously fed back into the control system, allowing it to dynamically

adjust the motor commands to counteract the disturbance and stabilize the robot.

Figure 3.4: Closed loop control system of the self-balancing robot

Based on the closed loop control system shown in Figure 3.4, the PID controller

can be mathematically written as:

𝑢(𝑡) = 𝐾௉𝑒(𝑡) + 𝐾௜ ∫ 𝑒(𝑡)𝑑𝑡 + 𝐾ௗ ௗ
ௗ௧

𝑒(𝑡) (1)

The controller's response, u(t), depends on three constants: Kp, Ki, and Kd, which

represent the proportional, integral, and derivative controllers, respectively. The error

signal, e(t), reflects the difference between the y-axis and the actual position of the

robot. Kp adjusts the response speed by multiplying with the error, leading to changes

in the robot's balance at different set-points. Ki minimizes steady-state error and

enhances the robot's motion smoothness, but even a small adjustment can have a

significant impact due to its integrating nature. Kd influences the robot's reaction time

and should be carefully tuned to prevent instability when excessively increased.

31

3.4 Main Components

This section introduces the components used in the project, outlining their roles and

functions within the system. Each component is vital for the design's success and the

system's effective operation.

By carefully selecting and integrating these components, the aim is to create a

robust and efficient solution. The model of the self-balancing robot is shown in Figure

3.5. The components have been chosen based on specific criteria, including

performance specifications, compatibility, availability, and cost-effectiveness. This

ensures that they meet the project requirements and contribute to the successful

implementation of the intended functionalities.

Figure 3.5: Model of the self-balancing robot

The 2-DOF self-balancing robot model is designed with the aid of TinkerCAD

software as a virtual representation of a robot intended to keep its balance while

moving. TinkerCAD is a computer-aided design (CAD) software that allows users to

create 3D models using a simple drag-and-drop interface. It includes a chassis, two

wheels, stepper motors, a sensor, and a control system.

32

3.4.1 MPU 6050 Sensor

The MPU 6050 depicted in Figure 3.6 known as an inertial measurement unit

(IMU), is a vital component in the functioning of a self-balancing robot. It integrates

both a gyroscope and an accelerometer into a single device. This combination allows

the MPU 6050 to measure both angular rate and linear acceleration, which are crucial

for the precise control and balance of the robot. The built-in DMP module can convert

the angular speed into three angles: pitch angle, roll angle and yaw angle, and can

transmit data through I2C and expand temperature sensor or magnetic sensor [21].

The SDA pin of the MPU6050 is connected to the SDA pin of the ESP32, which is

often labeled as GPIO (General Purpose Input/Output) pin number 21. Similarly, the

SCL pin of the MPU6050 is connected to the SCL pin of the ESP32, usually labeled

as GPIO pin number 22. These connections enable the ESP32 to communicate with

the MPU6050 sensor and retrieve the accelerometer and gyroscope data for further

processing and control in the self-balancing robot system.

Figure 3.6: MPU 6050 sensor

3.4.2 NodeMCU ESP-32 Microcontroller

The NodeMCU ESP32 serves as the main control unit of the self-balancing robot

as shown in Figure 3.7. It handles the overall coordination, computation, and decision-

making processes. The NodeMCU ESP32 acts as the micro-controller, in which the

RL model or PID mechanism is manually uploaded [22]. The NodeMCU ESP32

33

receives sensor data from the MPU-6050 sensor, performs calculations based on the

PID algorithm, and generates appropriate control signals for the motors.

Figure 3.7: NodeMCU ESP32 Microcontroller

The MPU-6050 sensor, integral to the project, combines a gyroscope and

accelerometer to measure the robot's tilt angle, angular velocity, and linear

acceleration. It continuously tracks the robot's motion, relaying data to the ESP32 for

processing. The NodeMCU ESP32, using I2C protocol, communicates with the MPU-

6050, issuing commands for measurements and receiving sensor data. This allows

real-time monitoring of the robot's orientation and movement.

Upon receiving raw data from the MPU-6050, the NodeMCU ESP32 processes it

to determine crucial metrics like the robot's tilt angle, utilizing the gyroscope's angular

velocity and the accelerometer's linear acceleration readings. This tilt angle is then fed

into the ESP32's PID controller, which compares it with the desired tilt angle (set

point) to generate control signals. These signals regulate motor speed and direction,

crucial for maintaining the balance of the two-wheeled robot.

3.4.3 Stepper Motor NEMA 17

The NEMA 17 stepper motor, essential for robotics and automation, features in

Figure 3.8. Adhering to NEMA standards with a flange size of 1.7 x 1.7 inches, its

operation is based on electromagnetic induction, involving a rotor, stator, and coils

34

wrapped around the stator poles. By energizing these coils in sequence, the motor

achieves precise control of position and speed through stepwise motion. Its holding

torque is crucial for tasks requiring stability, particularly in a self-balancing robot, as

it helps maintain equilibrium and resist external disturbances.

Figure 3.8: Stepper Motor NEMA 17

Stepper motors provide the highest precision wheel positioning: 200 steps per

revolution; in addition, they can be controlled in the range from 1/2 step to 1/16 step,

which makes it possible to turn the wheel to the desired angle with the highest accuracy

[23]. Moreover, when connected to the ESP32, the microcontroller can send

instructions to the motor based on sensor feedback and the PID controller's output,

enhancing control and responsiveness in applications like robotics.

3.4.4 Stepper Motor Driver A4988

Figure 3.9 shows the A4988 stepper motor driver that controls motor movement

and rotation by regulating current through motor windings and using pulse width

modulation (PWM). It receives step and direction signals from a microcontroller like

the ESP32, allowing for adjustable rotation and speed by varying the step pulses'

duration and frequency.

35

Figure 3.9: A4988 Stepper motor driver

The A4988 driver, enhancing motor control, features customizable current

limitation, micro-stepping, thermal shutdown, and overcurrent protection, ensuring

efficient and safe operation of stepper motors. It supports a logic control voltage of up

to 5.5 V and a motor driving voltage of up to 35 V, capable of delivering up to 2

Ampere per coil [25]. Its ability to manage and regulate current to motor windings

allows for precise adjustment of torque and performance, tailored to specific

application needs. Users can optimize current flow through motor coils by adjusting

the reference voltage or using current limit resistors, thus ensuring optimal motor

operation.

3.4.5 A4988 Module Breakout Board

Figure 3.10 illustrates a critical component in stepper motor control systems. It

functions as a driver, facilitating precise control over the movement of stepper motors.

Operating by interpreting electrical signals from a microcontroller, the A4988

regulates the current sent to the stepper motor windings, ensuring accurate steps and

smooth motion. This module employs a chopper drive technique to manage the current

flow, minimizing power consumption and heat generation. Key features include

adjustable micro-stepping for finer motor control, thermal protection, and overcurrent

detection. Its role in converting digital signals into precise motor movements makes it

36

an indispensable component in various applications requiring precise and controlled

motion.

Figure 3.10: A4988 Module Breakout Board

3.4.6 18650 Lithium Ion Battery

Figure 3.11 displays the 18650 Lithium-ion battery, notable for its high energy

density, which allows it to store a significant amount of energy relative to its size and

weight. This rechargeable battery, measuring 18mm in diameter and 65mm in length,

typically operates at around 3.7 volts, with voltage varying from about 4.2 volts when

fully charged to 3.0 volts when depleted.

Figure 3.11: 18650 Lithium Ion Battery

For effective and safe use, it requires a compatible charger and circuitry to prevent

overcharging or excessive discharge. Despite advanced battery management systems,

overcharging can still occur due to battery pack inconsistencies, leading to accelerated

deterioration, malfunction, and potentially dangerous situations like thermal runaway

or explosions [26].

37

3.5 Software and Application Used

3.5.1 Arduino IDE

Arduino IDE is a popular software tool used for programming microcontrollers,

including Arduino boards as shown in Figure 3.12. It is a user-friendly platform for

programming microcontrollers like Arduino boards and ESP32. It is widely used,

open-source software compatible with multiple operating systems (Windows, Linux,

Unix, Macintosh) and supports languages such as C and C++. It is ideal for various

projects, from web to gaming applications which is also essential for writing and

uploading code, particularly in embedded systems development. For this project,

Arduino IDE is utilized on an ESP32 microcontroller to implement and execute the

programming tasks.

Figure 3.12: Arduino IDE Software

3.5.2 Blynk

Figure 3.13 illustrates Blynk Apps, an Internet of Things (IoT) platform equipped

with iOS and Android applications that enable control of NodeMCU ESP32 devices

over the internet using smartphones. Blynk is a platform for creating GUIs for IoT

applications, available on the Google Play Store for Android and the App Store for

iOS. Users can sign up and set up projects within the app. A key step is selecting the

option to receive an Authenticate ID via email, which is essential for coding sensor

data upload to the Blynk Application.

38

Figure 3.13: Blynk Application

3.5.3 MATLAB

Figure 3.14 shows the MATLAB software which is widely used numerical

computing environment that serves as an essential tool for engineers, scientists, and

researchers across various disciplines. MATLAB helps them solve all sorts of math

problems, analyze data, and create algorithms. It's kind of like a digital toolbox full of

tools for working with numbers and making sense of complicated information.

Developed by MathWorks, MATLAB provides a versatile platform for mathematical

modeling, data analysis, algorithm development, and visualization. It's a handy tool

that makes complex tasks easier and faster for professionals in different fields.

Figure 3.14: MATLAB Software

3.6 Project Operation Development

This proposed system combines hardware implementation and software

implementation. The hardware of the system uses PID controller as the controller

which needs to be tuned and calibrated in order to get the accurate reading of the

sensor.

39

3.6.1 Project Implementation Procedure

This subtopic will include a brief explanation of this project procedure. It involves

Hardware Preparation, which will focus on constructing and configuring hardware

components; Software Implementation, which will explain the installation and

procedure to use the software, and Hardware and Software Implementation, which

will discuss the integration of both hardware and software for this system.

3.6.1.1 Hardware Preparation

The project is organized into three distinct stages. The initial stage focuses on

hardware preparation, encompassing the setup of hardware components, the

configuration of the Integrated Development Environment (IDE), and the

establishment of necessary hardware connections. This stage also includes the

programming of the hardware components to ensure they operate correctly. The

subsection below will elaborate on the specific detail of each stage:

1. Install Arduino IDE with ESP32 add-ons and all necessary libraries.

2. Define PID parameters and terms in the code.

3. Verify code for errors.

4. Upload code to ESP32.

5. Connect hardware to correct pins.

6. Verify connections for accuracy.

7. Connect ESP32 to Wi-Fi/hotspot.

8. Monitor MPU6050 sensor pitch angle in Serial Monitor.

9. Calibrate if offset exists.

10. Set current limit for NEMA17 motor in a4988 driver.

11. Analyze self-balancing robot's performance.

40

3.6.1.2 Software Implementation

There are multiple software platforms that have been used in this project which are

Blynk as the IoT platform, Arduino IDE as the hardware setup and MATLAB software

as the tuning parameters analysis implementation. Thus, the process involved will be

discussed in this subtopic. The full codes for every software used are presented in the

appendix.

3.6.1.2.1 Blynk

Blynk application is a very powerful IoT platform which allows users to easily

create mobile applications to control and monitor hardware projects [24]. The Blynk

Console is a central hub for managing devices, templates, datastreams, and application

settings. First and foremost, users need to add and configure the IoT devices used in

the Blynk Console. After logging in, navigate to the "Devices" section and click on

"New Device" as shown in Figure 3.15. To choose the hardware type, authentication

method, and connection type, which is Wi-Fi, simply follow the prompts.

Figure 3.15: Device Layout in Blynk Console

41

Users will obtain authentication credentials, such as an Auth Token, when the

device is connected. These credentials are needed to link the hardware to the Blynk

platform. Next, Blynk offers a variety of templates as depicted in Figure 3.16 that

simplify the process of creating an application interface for any IoT project. Select a

template from the "Templates" section that fits the specifications of the project.

Figure 3.16: Template Layout in Blynk Console

Pre-configured widgets such as graphs, sliders, buttons, and displays are part of

templates. The selected template automatically configures the device's interface within

the Blynk mobile app, simplifying the setup process.

Furthermore, when the device and template are configured, the next step is to set

up “Datastreams” to easily communicate between the hardware and the Blynk app.

For linking virtual pins to certain hardware pins on the device, navigate to the

"Datastreams" section and create them. This can be seen in Figure 3.17. Transmitting

data is accomplished using these virtual pins. Then, set up each virtual pin according

to the system’s specifications by selecting the direction (input or output) and data type.

42

Figure 3.17: Datastreams Layout in Blynk Console

Finally, users can go to the "Applications" section to customize the appearance and

behavior of the mobile app. By adding and modifying widgets, the user may specify

the user interface's design, theme, and functionality. In order to connect the app to the

hardware, link these widgets to the virtual pins that are already generated. After saving

the application's settings, the device is ready to launch the project. Thus, the Blynk

mobile app may now be used to access and operate the system.

3.6.1.2.2 MATLAB

As for the MATLAB software, the process of analysis begins by installing

MATLAB on the computer or laptop. The installation instructions are provided by

MATLAB to ease the user to do the installation procedure. The next step involves

launching the software. After opening MATLAB, users can initiate the process

analysis by creating a new Script, as illustrated in Figure 3.18. Once the MATLAB

environment is set up, real-time data integration from the ESP32 begins. This entails

establishing a communication link between the ESP32 microcontroller and MATLAB.

43

Figure 3.18: New script in MATLAB

MATLAB offers different communication interfaces, including Serial

Communication and Wi-Fi, depending on the ESP32's connectivity options. For Serial

Communication, MATLAB's 'serial' functions can be utilized, specifying parameters

like baud rate. Furthermore, MATLAB offers tools for data visualization and analysis,

allowing users to create plots, graphs, and dashboards to interpret and monitor real-

time data from the ESP32 and it can be updated dynamically as new data is received,

providing a comprehensive and interactive view of the system's performance.

3.6.1.3 Hardware and Software Integration

The primary focus of this subtopic is to establish a connection between the

previously developed hardware and software. Figure 3.19 shows the block diagram

for hardware and software integration.

Figure 3.19: Block Diagram for Hardware and Software Integration.

44

The integration process starts with the ESP32 microcontroller sending sensor data

to the Blynk platform. Blynk then manages PID tuning and system tuning data, which

is relayed back to the ESP32 for effective control and optimization. Blynk acts as a

central control hub, dynamically adjusting PID tuning and system parameters based

on real-time sensor feedback to maintain system responsiveness. Simultaneously, the

ESP32 continuously transmits data to MATLAB for in-depth analysis. This two-way

communication establishes a comprehensive feedback loop, allowing MATLAB to

process real-time hardware data and offer insights for ongoing system refinement.

Overall, the completion of this proposed system requires multidirectional

communication link between the hardware and the IoT platform.

3.7 Project Parameter of Analysis

This project develops a two-wheel self-balancing robot to study PID controller

tuning parameters, crucial for the robot's balance. Key aspects include analyzing

parameters affecting rise time, settling time, overshoot, and steady-state error, as well

as the robot's stability and performance under disturbances. The upcoming sub-chapter

will detail the methods for analyzing these parameters.

3.7.1 Parameter of Analysis and Data Acquisition

The two parameters that are analyzed in this project are the tuning parameters that

affect rise time, settling time and overshoot and steady state error as well as stability

and performance of the self-balancing robot when involved with multiple

disturbances. To clarify this method of analysis, the real-time sensor data is

transmitted to ESP32 which then relays serial data to MATLAB. In return, MATLAB

reads this serial data to derive PID parameters (Kp, Ki, and Kd) and pitch angle as

input and output.

45

Once MATLAB receives the serial data, it generates an input (pitch angle) vs. time

graph, enabling the evaluation of rise time, settling time, overshoot, and steady-state

error for various PID gain settings. From the graphs, the parameters need to be

calculated manually. Firstly, overshoot (%) needs to be calculated to evaluate a

system's transient performance, providing insight into how much the system's output

exceeds the desired value before settling. The overshoot data often used to optimize

control parameters, ensuring a balance between response speed and stability. The

overshoot (%) can be mathematically written as:

𝑂𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 (%) = ௉௘௔௞ ௏௔௟௨௘ି஽௘௦௜௥௘ௗ ௏௔௟௨௘
஽௘௦௜௥௘ௗ ௏௔௟௨௘

 𝑥 100 (2)

 Next, rise time is a measure of the time it takes for a system to reach a certain

percentage of its final value. In context of self-balancing robot, rise time is calculated

by finding the difference of time from pitch angle before it recovers to pitch angle

after it recover from imbalance. The difference is then measured in seconds. This is

because the library used for sensor calibration did not have a fixed offset during

calibration process. Therefore, the new offsets post-calibration considers a stable pitch

angle, while the stable time refers to how long it takes for a self-balancing robot to

regain equilibrium after an imbalance.

3.8 Chapter Summary

Overall, the methodology for this project encompasses the selection of components,

detailed explanations of the project and system flowcharts, and thorough descriptions

of hardware connections to the IoT server (Blynk) and MATLAB. Additionally, the

analysis parameters, focusing on the PID tuning method, are extensively covered.

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Chapter Overview

This chapter focuses on establishing the proposed system discussed earlier,

highlighting key features, hardware and software implementation, and their

integration. Additionally, critical aspects of the code for functionality will be explored.

The chapter concludes with an analysis of the PID tuning's impact on the self-

balancing robot.

4.2 Hardware Prototype Implementation

This section explores how the project will be implemented, starting with a thorough

explanation of the hardware design. It navigates through the selection and

specifications of components, emphasizing the rationale behind each choice. Next, the

wiring layout and interconnections, revealing the electrical pathways through detailed

47

schematics. The calibration and testing procedures section is an important part that

covers the methodical steps taken to confirm the prototype works. These sections

cover how the hardware prototype is set up, connected, and tested in the project,

providing a full understanding of its architecture and functionality.

4.2.1 Hardware Design Overview

This section delves into the physical aspects of the project, explaining how the

hardware prototype is designed and built, including the system's overall structure and

component choices. This section helps to understand why certain design decisions

were made for the hardware prototype, laying the foundation for upcoming

discussions. To develop a system, having a prototype is essential as it allows for the

systematic progression through the various stages of the development process. A

carefully planned prototype helps prevent future problems, streamlining development

and reducing challenges in the final product stages.

In this project, the body and chassis of the robot are crafted from MDF board and

soft PVC foam. Suspension is achieved by inserting springs between the two joints of

each leg or joint of the robot. To enhance stability, 130x60mm hollow rubber wheels

were selected, introducing an additional dampening factor. Subsequently, all wheels,

joints, and chassis components are assembled to create the self-balancing robot. The

circuit is then transferred to the prototype for performance testing. The wiring is

arranged within the robot's chassis to prevent potential short-circuits. The final

prototype, inclusive of the circuit, is depicted in Figure 4.1 (a) and (b).

48

Figure 4.1: Front and rear view of the prototype

The process of building the prototype begins with creating the joint for the two-

wheel self-balancing robot started with precise measurements of the required size.

MDF board was selected for this purpose as it gives a strong base to withstand any

pressure given to the robot. The dimensions were marked before cutting the pieces

using a wood cutter as shown in Appendix A.

Next, the process continues with the smoothing process using sandpaper to achieve

a clean and polished finish. Following this preparation, the joint pieces were securely

attached to the stepper motors as shown in Appendix A, which serve as the robot's

legs, and then connected to the wheels. This joint assembly plays a crucial role in the

robot's structure, enabling it to maintain balance and mobility while carrying out its

functions effectively.

Furthermore, the chassis was designed with careful consideration of the weight

distribution of the robot, which plays a critical role in ensuring its balance.

(a) (b)

49

Subsequently, the chassis components were connected to the robot's joints, leading to

the development of a functional prototype as shown in Figure 4.1 (a) and (b).

Moreover, the circuit connections are situated within the robot's chassis to facilitate

optimal placement of the sensor at the center of gravity. This strategic positioning of

the sensor is essential for accurate balance and stability control of the robot. This is to

ensure it can effectively respond to its environment and maintain equilibrium during

operation. The circuit connections of the prototype will further be discussed in the next

sub-topic.

4.2.2 Wiring and Interconnections

Figure 4.2 shows the schematic circuit of a two-wheel self-balancing robot.

Schematic diagram is a representation of the elements of a system which uses graphic

symbols rather than realistic pictures.

Figure 4.2: Schematic Circuit of the system

The schematic circuit facilitates tracing the circuit and its functions without regard

to the actual physical size, shape or location of the component devices or parts. The

connection of the circuit can be clearly seen in the schematic diagram shown above

which is made by using Fritzing software.

50

In this project, the functionality of the product is crucial for its success. Therefore,

a circuit that exhibits no errors is being contemplated to ensure the project operates

successfully. The circuit depicted above is utilized for the two-wheel self-balancing

robot, which functions to control the movement of the wheels through stepper motors

based on the readings obtained from the MPU6050 sensor. The NEMA17 stepper

motor operates by energizing coils in its stationary stator, creating magnetic fields that

attract its permanent magnet rotor and induce controlled rotational movement in

discrete steps. Figure 4.3 illustrates the completed circuit connections. Before placing

the finalized circuit on the prototype, a thorough rechecking of the connections is

conducted to prevent any potential issues related to loosen wiring.

Figure 4.3: Completed circuit connection of the system

A 12V power source is applied to the circuit through the VCC pin on the ESP32

and the VMOT pin on both A4988 stepper motor drivers. The MPU6050 sensor is

connected to the ESP32, with the SCL (Serial Clock) pin connected to D22 and the

A4988 module
breakout board

MPU6050

ESP32 expansion
board

Left and right
stepper motor

Power Supply 18650 Li-Ion
Battery

51

SDA (Serial Data) pin connected to D21. These connections enable the ESP32 to

establish communication with the MPU6050 sensor, allowing for the bidirectional

exchange of data. This capability enables the microcontroller to read sensor data,

including acceleration and gyroscopic information, and exert control over the sensor's

configuration.

In this project, two A4988 stepper motor drivers are mounted on breakout boards,

simplifying integration with features like voltage regulation and easy-to-use headers.

Similarly, an ESP32 expansion board is employed, offering enhanced versatility and

user-friendliness compared to the standalone ESP32. The built-in power regulation,

convenient headers, and expanded GPIO options are very efficient to be used.

4.3 Software Implementation

In this project, various software platforms have been utilized, including the Arduino

IDE for hardware setup, Blynk as the IoT platform, and MATLAB for tuning

parameter analysis. In this subtopic, the key features and functionality of certain codes

will be discussed. The complete code for each of the software platforms can be found

in the appendix.

4.3.1 Arduino IDE Platform

The Arduino IDE platform is very crucial to set up the hardware that has been

developed. It helps users to write and upload code in C++ language to control Arduino

microcontrollers, enabling users to create and control various electronic projects. The

sub-topic below will discuss some of the important codes based on different

configurations.

52

4.3.1.1 Motor Configuration

The motor configuration in the Arduino IDE is to set up and control the two stepper

motors responsible for the movement of the self-balancing robot. From Figure 4.4

below, it shows one of the codes of the motor configuration that can be observed.

Figure 4.4: Motor Pin Configuration

The section of the code assigns specific GPIO pins on the ESP32 microcontroller

to control the left and right stepper motors. The ‘leftStepPin’ and ‘rightStepPin’

represent the pins responsible for sending step signals to the motors, ‘leftDirPin’ and

‘rightDirPin’ control the motor direction, and ‘enablePin’ enables or disables the

motors as needed during operation.

Next, the code in Figure 4.5 initializes the ‘FastAccelStepperEngine’, which is a

library used for controlling stepper motors with smooth acceleration and deceleration.

It connects the defined pins for the left and right stepper motors to the engine. Two

pointers, "leftMotor" and "rightMotor," are initialized as NULL, indicating that they

will later point to instances of the ‘FastAccelStepper’ class to control the left and right

motors respectively.

Figure 4.5: Initialization of ‘FastAccelStepperEngine’ and Motor Pointers

53

In the ‘setup()’ function which can be seen in Figure 4.6 and Appendix B, it begins

by configuring the serial communication for debugging via ‘Serial.begin(9600)’.

Then, it sets up the connection to the Blynk IoT platform, WiFi via ‘Blynk.begin(auth,

ssid, pass)’, and initializes the I2C communication with the MPU6050 gyroscope and

accelerometer sensor using ‘Wire.begin()’ and ‘mpu6050.begin()’. Gyroscope offsets

are calculated for calibration with ‘mpu6050.calcGyroOffsets(true)’.

Figure 4.6: Initialization and Configuration in the setup() Function

Then, in the 'setup()' function, the 'FastAccelStepper' engine initializes for stepper

motor control. Motors are connected to their pins, and parameters like direction,

enablement, and speed are set. The PID controller for balance and stability is also

configured. The value "2000" denotes the stepper motors' speed in steps per second,

with a higher Hz indicating faster motor movement.

4.3.1.2 PID Configuration

PID configuration is crucial for the self-balancing robot's control, maintaining

balance by adjusting motor speeds according to sensor inputs and setpoints. It begins

with specific code lines in the 'setup()' function, setting output limits of "-255" and

"255" as depicted in Figure 4.7. These limits define the maximum speed range for

motor rotation in both clockwise and counterclockwise directions. Next, the following

line sets the PID's sampling time. In this code, it is set to 1 millisecond (1 ms), meaning

that the PID controller calculates motor speed adjustments every 1 ms, ensuring rapid

response to changes in the robot's orientation. Then, the PID controller is set to

54

automatic mode which means it continuously calculates and adjusts the motor speeds

to maintain the robot's balance automatically. In automatic mode, the PID controller

operates in real-time, making it well-suited for applications like self-balancing robots.

Figure 4.7: Output Limit in PID Configuration

In the 'loop()' function, the PID controller calculations and adjustments are

executed, as shown in Figure 4.8 Here, 'Input' is the angle from the MPU6050 sensor,

adjusted by 'Inputoffset', representing the robot's current angle for PID feedback. Next,

‘myPID.SetTunings(Kp, Ki, Kd)’ updates the PID controller's tuning parameters

(proportional, integral, and derivative gains) based on the values received from the

Blynk app (V9, V10, V11). In addition, ‘myPID.Compute()’ calculates the PID control

output (‘Output’) based on the difference between the current angle (‘Input’) and the

desired setpoint (‘Setpoint’). The PID controller adjusts ‘Output’ to control the motor

speeds, ultimately maintaining the robot's balance.

Figure 4.8: PID Controller Calculations and Adjustments

Thus, the PID configuration in this code is responsible for fine-tuning the robot's

motor control to achieve and maintain balance. It continuously adjusts motor speeds

based on sensor feedback and tuning parameters to ensure that the robot remains

upright and stable during operation.

55

4.3.1.3 Sensor Configuration

As for the sensor configuration, it is primarily located within the ‘setup()’ function

as illustrated in Figure 4.9. The ‘Wire.begin()’ line initializes the I2C communication,

which is essential for communicating with the MPU6050 sensor and

‘mpu6050.begin()’ means that the sensor is ready to provide data. Then, the next

following line calculates and sets gyro offsets for calibration. The ‘true’ argument

indicates that gyro offsets should be calculated and saved. Calibration ensures that the

sensor provides accurate data, which is crucial for self-balancing operation.

Figure 4.9: MPU6050 Configuration

Therefore, this sensor configuration is very crucial as it needs to be properly set up

and calibrated to provide accurate gyroscopic data which is used in the self-balancing

control algorithm.

4.3.1.4 Blynk Configuration

Blynk app is used to communicate between the software and hardware. Figure 4.10

shows the Blynk configuration that is in the ‘setup()’ function as well.

‘Serial.begin(9600)’ line initializes the serial communication for debugging purposes,

allowing users to send and receive data between the ESP32 and the computer at a baud

rate of 9600. The subsequent line in the code initiates the connection to Blynk, using

the provided 'auth' token, Wi-Fi 'ssid', and 'pass' (password). Blynk, an IoT platform,

enables remote control and monitoring of devices through its cloud platform.

56

Figure 4.10: Code that configures Blynk

In addition, this configuration includes Blynk widget configuration settings that

involve writing to specific virtual pins. For instance, in Figure 4.11, when a value is

changed on virtual pin V9 through the Blynk app, it triggers the ‘BLYNK_WRITE’

function, which updates the Kp (proportional gain) variable with the new value

received from the app. These settings are used to update parameters such as PID tuning

constants and other control variables from the Blynk app. These parts of the code are

within the ‘BLYNK_WRITE’ functions for various virtual pins such as V9, V10, V11,

and others.

Figure 4.11: ‘BLYNK_WRITE’ function in Blynk widget configuration
settings

4.3.2 Blynk Platform

This project utilizes the Blynk app for tuning PID control and stepper motor

parameters. Users can adjust parameters using 'virtual sliders' in the app, avoiding

code changes in the Arduino IDE. PID tuning maintains stability by altering motor

output. Kp affects response strength to errors, with higher values for more aggressive

corrections. Ki addresses accumulated past errors, aiding in steady-state error

elimination by adjusting the control signal over time.

57

Moreover, Kd looks at the rate of change of error. It helps dampen oscillations and

overshoot by anticipating how quickly the error is changing. Figure 4.12 shows the

Blynk GUI Layout which contains the widget used for the tuning purpose. Apart from

PID tuning, Blynk also allows users to fine-tune various parameters related to the

stepper motors, which directly influence the robot's motion and balance. There are six

parameters which are involved in system tuning or stepper motor tuning. Firstly, the

scale factor adjusts the overall speed of the motors. Users can control how quickly the

robot responds to balance corrections by increasing or decreasing this factor.

Next, scale factor plus can be adjusted to control the speed of the motor. This is

because it provides extra control over the robot’s movement. Besides, scale factor

(reverse) and scale factor (forward) enable users to independently control motor

speeds when moving in reverse and forward directions. As for acceleration, it

determines how quickly the motors change speed. Higher acceleration values result in

faster changes, while lower values provide smoother and more gradual acceleration.

Lastly, the dead zone parameter is a critical parameter that defines a range within

which the robot remains stationary. It helps prevent unnecessary movement and

ensures the robot remains stable when the error (tilt) is within this range.

58

Figure 4.12: Blynk GUI Layout of self-balancing robot

Thus, users can easily adjust these settings to optimize the self-balancing robot’s

performance in order to ensure it responds accurately to changes or disturbances in its

orientation and motion.

4.3.3 MATLAB Platform

As mentioned earlier, MATLAB software is used for analysis purposes. MATLAB

can communicate with the ESP32 using the Serial Communication Toolbox or by

using functions like serial to configure the serial port settings. In this project,

MATLAB is used to produce pitch angle data vs time. Figure 4.13 shows the graph

plotted when Kp = 18 after running the code in Editor.

59

Figure 4.13: Graph of Tilt Angle vs Time when Kp = 18

From the code generated in MATLAB, the plot of input vs time for all the tuning

parameters can be analyzed. The rise time, settling time, overshoot and steady state

error analysis are performed by analysing the tilt angle (pitch) vs time plot. The

analysis for the tuning parameters will be analyzed and discussed in-depth in the next

sub-topics.

4.4 Analysis Result

This sub-topic analyzes key parameters, starting with the impact of varying Kp

values on rise time. Rise time is the duration for a process variable to reach its setpoint

within a tolerance band after control input. A shorter rise time in a PID controller

means a quicker response to system changes or disturbances. Increasing the Kp value

can shorten rise time, resulting in a more aggressive system response.

4.4.1 Tuning Parameters and Comparison Discussion

This sub-topic focuses on three crucial parameters for optimizing control systems,

examining their impact on system performance through graphs and tables. It includes

60

evaluations of the system's response to disturbances, aiming to enhance stability and

disturbance management.

4.4.1.1 Kp Comparison Analysis

This sub-topic will cover a detailed Kp comparison analysis, including graphical

interpretations using MATLAB plots and a comparative table contrasting different

parameter values. It also involves performance testing of the robot under various

disturbances.

4.4.1.1.1 Graphical Interpretation

The Kp analysis in the project involved evaluating five different Kp value ranges

to find the ideal balance between stability and achieving the fastest rise time in the

control system. A quicker rise time allows the system to respond rapidly to

disturbances, but it must be done cautiously to avoid making the robot shaky or

unstable. Overly aggressive tuning of Kp values leads to instability and oscillations in

the control system of the robot.

For Kp value set to Kp = 4.5, three graphs are depicted in Figure 4.14 as part of the

analysis process. To determine the robot's rise time at Kp = 4.5, the tilt angle (pitch)

vs. Time graph is examined. Ki and Kd for all the Kp values are initially set to 0. This

analysis reveals that the robot attempts to recover from imbalance, transitioning from

a tilt angle of -23.95° to 2.95° with a rise time of 0.194 seconds. However, the robot

experiences a fall due to its slow response, as evident in the Output vs. Time graph.

Nevertheless, the robot achieves stability in less than 1 second, precisely at 0.928

seconds, before applying any disturbances.

61

Figure 4.14: Behavioral Response when Kp = 4.5

Next, when the Kp value is configured to Kp = 9.0 as shown in Figure 4.15, the

robot’s rise time is determined by examining the tilt angle (pitch) vs. Time graph. This

examination reveals that the robot endeavors to recover from an imbalance,

transitioning from a tilt angle of 5.73° to -7.58° within a rise time of 0.21 seconds.

Nonetheless, the robot experiences a fall due to its sluggish response, which is

apparent in the Output vs. Time graph. However, the robot attains stability at 1.127

seconds, without any disturbances being applied.

Furthermore, the Kp value is set to Kp = 13.5 which is slightly below the optimal

Kp. Figure 4.16 shows the behavioral response of the robot when Kp = 13.5. This

analysis reveals that the robot strives to recover from an imbalance, shifting from a tilt

angle of -7.54° to 1.13° with a rise time of 0.1 seconds. Despite this, the robot

experiences a fall due to its delayed response. Nevertheless, the robot reaches stability

after 2.25 seconds which is slightly slower than Kp = 9.0, even without any external

disturbances.

62

Figure 4.15: Behavioral Response when Kp = 9.0

Figure 4.16: Behavioral Response when Kp = 13.5

Besides, the next value of Kp is set to Kp = 18.0 as demonstrated in Figure 4.17, to

examine the robot's behavior under these conditions. This analysis unveils that the

robot endeavors to regain stability after an imbalance, transitioning from a tilt angle

of 3.65° to -2.01° within a rise time of 0.097 seconds, significantly shorter than the

63

previous rise times. On the other hand, the robot takes more time to experience a

decline due to its balanced response. Thus, the robot achieves stability after 10.17

seconds which is the longest compared to previous stable time. In this test analysis, if

the stability duration exceeds 10 seconds, the robot is subjected to disturbances to

assess its stability.

Figure 4.17: Behavioral Response when Kp = 18.0

Moreover, with the Kp value set to Kp = 22.5, the robot's behavioral response is

depicted in Figure 4.18. This analysis uncovers that the robot diligently works to

regain balance, moving from a tilt angle of -5.88° to 0.98° with a rise time of 0.097

seconds. It takes the robot approximately 1.627 seconds (without disturbance) to

undergo a decline due to its jittery response. Nonetheless, the robot attains stability

after this duration of 1.627 seconds.

64

Figure 4.18: Behavioral Response when Kp = 22.5

In conclusion, varying the Kp values has a significant impact on the robot's

behavior during its balancing process. This analysis has shown that different Kp values

result in distinct rise times and stable times. The choice of Kp value plays a crucial

role in determining how quickly the robot can regain balance and maintain stability.

4.4.1.1.2 Comparative Table

Referring to the previously shown real-time data of the robot's behavioral response

under varying Kp values, a comparative table is generated to facilitate the comparison

and selection of the best performance based on the conducted analysis. Table 4.1

shows a comparative table of robot behavior under varying Kp values. (Assume Ki =

0 and Kd = 0). In Table 4.1, the Kp values are tested, and the corresponding results

show a clear trade-off between rise time and stable time. When analyzing the table, it

becomes evident why Kp = 18.0 is considered to have the best performance, especially

in terms of its rise time and stable time.

65

Table 4.1: Comparative Table of Robot Behavior under Varying Kp Values

Kp value Stable Tilt Angle (°) Rise Time (s) Stable Time (s)

4.5 -0.54 0.194

(-23.95° to 2.95°)

0.928

(without disturbance)
9.0 -0.44 0.210

(-10.32° to 4.6°)

1.127

(without disturbance)
13.5 0.86 0.100

(-7.54° to 1.13°)

2.250

(without disturbance)
18.0 -2.19 0.097

(3.65° to -2.01°)

10.51

(with disturbance)
22.5 -0.65 0.097

(-5.88° to 0.98°)

1.627

(without disturbance)

Kp = 18.0 has one of the shortest rise times among the tested values, at just 0.097

seconds. A shorter rise time means that the robot responds rapidly to deviations from

the desired tilt angle. Despite its rapid response, Kp = 18.0 also manages to achieve

stability within 10.17 seconds, even in the presence of disturbances. A longer stable

time indicates that the robot can sustain its equilibrium without showing any signs of

oscillation.

In conclusion, Kp = 18.0 stands out which has the best performance in Table 4.1

due to its remarkable combination of a short rise time of 0.097 seconds and a

prolonged stable time of 10.17 seconds, showcasing its ability to respond rapidly while

maintaining long-term stability, even in the presence of disturbances. This

combination of fast response and long-lasting stability shows that it works very well

in the control system.

66

4.4.1.2 Kd Comparison Analysis

This sub-topic will involve an extensive analysis of Kd to facilitate comparison.

This analysis consists of two key elements: graphical interpretation, entailing the

creation of graphs utilizing MATLAB, and the formulation of a comparative table

designed to systematically differentiate various parameter values for the purpose of

comparison.

4.4.1.2.1 Graphical Interpretation

In this section, a visual analysis of the effects of different Kd values on the robot's

behavior are discussed. Plotted graphs generated using MATLAB provide insights

into how variations in Kd influence the robot's performance, shedding light on its

response to disturbances and stability.

Overshoot is closely related to the damping ratio of the system. High overshoot

values may indicate underdamped or oscillatory behavior, which can be an indication

of instability. Besides, calculating settling time is crucial for assessing how quickly a

dynamic system stabilizes around its desired state after a disturbance. Settling time

quantifies the system's responsiveness and efficiency in reaching a steady-state

condition, aiding in the evaluation and optimization of control mechanisms.

Figure 4.19 illustrates the Pitch angle vs. Time response with Kd set to 0.3 in the

self-balancing system. The overshoot, calculated as 2425%, is derived from the

formula in (2) where the peak value is the maximum pitch angle reached during the

response (5.58º). The desired angle is -0.24º as labelled in the graph. The red-dotted

line in Figure 4.23 signifies the steady-state error, representing the deviation between

the desired and actual pitch angles after the response has settled. To determine the

settling time, it is calculated by the time difference between the disturbance occurrence

67

(5.738s) and the point at which the system reached steady state (6.454s). The obtained

settling time is 0.716 seconds. The Kd vs Time graph proves that Kd value is fixed to

Kd = 0.3.

Figure 4.19: Behavioral Response when Kd = 0.3

Moreover, in Figure 4.20, the response of the self-balancing system to Pitch angle

vs. Time with Kd set to 0.6 is presented. Calculating the overshoot, which stands at

314%, involves employing the formula in equation (2) with the peak value

representing the maximum pitch angle (4.56º) attained during the system's response.

For settling time determination, the time difference between the disturbance

occurrence and the point where the system achieves stability, yielding a settling time

of 1.641 seconds is computed. The time where the system’s response is 38.078 seconds

whereas the desired value is 39.719 seconds.

68

Figure 4.20: Behavioral Response when Kd = 0.6

In addition, as for Kd = 0.9, as shown in Figure 4.21, The calculated overshoot,

now at an impressive 10881%, is determined using the formula mentioned in equation

(2), where the peak value corresponds to the highest pitch angle achieved during the

system's response. 0.36º is the desired value while 39.53º is the peak value as shown

in the graph. The system with Kd = 0.9 has no settling time. This means that the system

keeps responding to disturbances without eventually stabilizing or reaching a steady

state. It indicates a continuous and ongoing reaction to changes without a defined point

of rest.

69

Figure 4.21: Behavioral Response when Kd = 0.9

Thus, altering the Kd values has an influence on the robot's behavior throughout its

balancing procedure. This examination illustrates that different Kd values lead to

varied overshoots and settling times. The selection of the Kd value is pivotal in

shaping how rapidly the robot can recover its balance and sustain stability.

4.4.1.2.2 Comparative Table

Referring to the previously displayed real-time data showcasing the robot's

behavioral response under varying Kd values, a comparative table, identified as Table

4.2, has been generated to simplify the comparison and facilitate the selection of the

best performance based on the conducted analysis. (Assume Kp = 18 and Ki = 0).

Table 4.2: Comparative Table of Robot Behavior under Varying Kd Values

Kd Overshoot (%) Settling Time (s)

0.3 2425 0.716
0.6 314 1.641
0.9 10881 None

70

 Therefore, by referring to the analysis from the previous sub-topic, it is evident that

Kd = 0.6 exhibits the best performance among the three values. In Figure 4.20, where

Kd = 0.6, the calculated overshoot is 314%. Comparatively, in Figure 4.19 (Kd = 0.3),

the overshoot is 2425%, and in Figure 4.21 (Kd = 0.9), the overshoot is an impressive

10881%. Lower overshoot values are generally desirable as they indicate less

oscillation and a smoother response. In this context, Kd = 0.6 demonstrates a more

controlled and stable response compared to both Kd = 0.3 and Kd = 0.9.

 Additionally, settling time is another critical parameter for evaluating system

performance. In Figure 4.24 (Kd = 0.6), the settling time is 1.641 seconds. In Figure

4.19 (Kd = 0.3), the settling time is 0.716 seconds, and for Kd = 0.9 (Figure 4.21),

there is no settling time determined, indicating continuous response without

stabilization. Ideally, a shorter settling time is desirable as it signifies a quicker

recovery to a steady-state condition. However, a system with no settling time, as in

Kd = 0.9, indicates continuous oscillation without achieving stability.

 To sum up, Kd = 0.6 emerges as the optimal choice as it demonstrates a controlled

response with a relatively low overshoot and a reasonable settling time, offering a

balanced and stable performance for the self-balancing robot.

4.4.1.3 Ki Comparison Analysis

This sub-topic will encompass a thorough examination of Ki to facilitate

comparison. The analysis will comprise two essential components: the graphical

interpretation, involving the generation of graphs using MATLAB, and the

development of a comparative table designed to systematically distinguish different

parameter values for the purpose of Ki comparison.

71

4.4.1.3.1 Graphical Interpretation

This section examines the impact of different Ki values on robot behavior using

MATLAB-generated graphs. Figure 4.22 shows the behavioral response of robot

when Ki = 35. The input (pitch angle) vs Time graph shows a time series data of some

oscillations in pitch angle. The setpoint vs Time graph displays a constant setpoint

value over the same time period. This indicates that the setpoint does not change. From

the observations made, when Ki = 35, there has no overshoot and settling time since

the robot does not recover from the imbalances.

Then, the average steady state is calculated by taking all the points from the jittery

state of the robot which resulting in 1.67º value. The steady state error is calculated by

finding the differences between the average steady state and the setpoint. In this case,

the average steady state is similar to the steady state error as the setpoint value is 0.

Figure 4.22: Behavioral Response when Ki = 35

72

As for Ki = 70, there is overshoot and settling time measured as the robot strives to

regain balances resulting in 1092% overshoot and 2.041 seconds setting time. The

input (pitch angle) vs. time graph presented in Figure 4.23 further elucidates the

system's resilience, showcasing that the robot manages to maintain stability despite

the presence of disturbances. From the graph, a steady state towards the end indicates

that the self-balancing robot has effectively stabilized and reached a point where its

pitch angle remains relatively constant over time. The average steady state when Ki =

70 is calculated to 1.92º.

Figure 4.23: Behavioral Response when Ki = 70

Next, Figure 4.24 illustrates the behavioral response when Ki is set to Ki = 105.

The graph has an overshoot of 14516% which is quite high and there has no settling

time recorded. Since the value of Ki is set too aggressively, it can lead to overshooting

and difficulties in reaching a stable state. The instability of the robot can be seen as

there has been an absence of settling time. This is because, if the control parameters

are not properly tuned, the response may not converge to a steady state, leading to

73

continuous oscillations. Since the system may be constantly adjusting and readjusting,

preventing it from settling completely, there are continuous disturbances on the system

where it might not fully reach a stable state. Thus, the calculated value of the average

steady state is -1.33º.

Figure 4.24: Behavioral Response when Ki = 105

To conclude, modifying the Ki values significantly affects the self-balancing

robot's performance during its stabilization process. Thus, careful selection of Ki

values is crucial for achieving optimal and reliable performance in the system.

4.4.1.3.2 Comparative Table

Table 4.3 shows a comparative table which simplifies the comparison and assists

in choosing the most favorable performance based on the analysis conducted with

various Ki values. (Assume Kp = 18, Kd = 0.6 and Setpoint = 0).

74

Table 4.3: Comparative Table of Robot Behavior under Varying Ki Values

Ki Overshoot
(%)

Settling Time
(s)

Average
Steady-state (º)

Steady State
Error

35 Not Recover Not Recover 1.670 1.670

70 1092 2.246 1.920 1.920

105 14516 Not Recover -1.330 1.330

From Table 4.3, it appears that Ki = 70 exhibits a relatively balanced and effective

performance compared to Ki = 35 and Ki = 105. At Ki = 70, there is an overshoot of

1092% and a settling time of 2.041 seconds. This indicates that the system responds

to disturbances with a notable overshoot but eventually settles within a reasonable

time frame. In addition, the input (pitch angle) vs. time graph in Figure 4.23

demonstrates the system's resilience, showcasing that the robot manages to maintain

stability despite disturbances. This resilience is indicative of a well-balanced control

system.

Furthermore, the presence of a steady state towards the end of the response, coupled

with an average steady state of 1.92º, suggests that the system stabilizes effectively.

The steadiness in the pitch angle over time indicates a controlled and stable behavior.

The combination of overshoot, settling time, and the absence of continuous

disturbances at Ki = 70 suggests a balanced response. It neither overshoots excessively

nor exhibits prolonged settling times, indicating a well-tuned and stable control

system.

To sum up, Ki = 70 appears to offer a good trade-off between overshoot, settling

time, and system stability. It strikes a balance in responsiveness without introducing

excessive oscillations or settling difficulties. The careful selection of Ki values is

75

indeed crucial, and in this case, Ki = 70 demonstrates a performance that aligns well

with achieving optimal and reliable self-balancing in the robot.

4.4.2 Performance with Multiple Disturbance Evaluation

As for this section, the self-balancing robot is tested with multiple disturbances to

evaluate the performance of the control system under varying conditions. The

introduction of diverse disturbances provides insights into the system's ability to

respond dynamically and maintain balance in the face of external influences. Figure

4.25 illustrates the tilt angle (pitch) vs time of the self-balancing robot. The robot was

tested for its performance when multiple disturbances were applied to it. Even though

several disturbances were applied, the robot still managed to stay upright, indicating

that it has good stability and balance control.

Figure 4.25: Overall Performance of the Robot with Multiple Disturbance

From the graph, it can be seen that the values of pitch angle are mostly near to 0º.

This indicates that the self-balancing robot consistently maintains an upright position

76

and balanced orientation. In the context of a self-balancing robot, the pitch angle

represents the deviation from the vertical, with 0º corresponding to the perfectly

upright position. The stability of the robot is achieved through the control system's

ability to detect and respond to disturbances, continually adjusting the motor inputs to

counteract any deviations from the desired orientation.

The effectiveness of the PID controller, with tuned gains (Kp = 18, Ki = 70, Kd =

0.6), contributes to the system's stability. The proportional, integral, and derivative

components work together to respond appropriately to changes in the pitch angle,

allowing the robot to correct for disturbances swiftly and accurately. As a result, the

pitch angle remains close to 0º, indicating that the self-balancing robot maintains

stability by actively counteracting external forces and disturbances, providing a robust

and reliable performance.

Table 4.4 shows the parameters that are calculated based on the data in Figure 4.25.

To assess a robot's performance and stability, key parameters include a shorter rise

time for fast response, lower overshoot for controlled reaction, shorter settling time

for quick stabilization, smaller average steady-state value for consistent positioning,

and lower steady-state error for precise maintenance of the desired position. These

factors collectively determine the robot's efficiency and control effectiveness.

Table 4.4: Parameters of the overall performance of the robot

Kp Ki Kd Rise

Time

(s)

Overshoot

(%)

Settling

Time (s)

Average

Steady State

Steady

State

Error

18 70 0.6 0.391 225.9 1.932 24.96 24.96

77

4.4.3 Prototype Performance Testing

This section details testing the prototype to verify it meets performance criteria,

mainly balancing and withstanding disturbances. Tests were conducted on various

surfaces, as shown in Figures 4.26 (a), (b) and (c), representing wooden, rubber, and

rough surfaces, respectively. Despite these differences, the robot consistently

maintained balance without tipping over, demonstrating that it can effectively balance

itself on diverse surfaces with the same tuning parameters.

Figure 4.26: (a) Prototype testing on wooden surface, (b) Prototype testing on
rubber surface, (c) Prototype testing on rough surface

(a) (b)

(c)

78

After conducting numerous tests, it was observed that the robot demonstrated

remarkable stability across various types of surfaces including flat terrain, uneven

surfaces and inclines as shown in Figure 4.27 (a) and (b).

Figure 4.27: (a) Testing on uneven surface, (b) Testing on inclined surfaces

The prototype performance testing also incorporates disturbance scenarios to verify

the robot's effectiveness in real-world conditions with external factors. This thorough

testing identifies potential design and algorithm weaknesses, enhancing the robot's

performance and reliability in dynamic environments. Figure 4.28 (a) shows the

presence of disturbance during the prototype performance testing to simulate real-

world conditions. Then, the robot is subjected to a physical force simulating

disturbance as shown in Figure 4.28 (b).

Then, the PID controller responds to the imbalance as shown in Figure 4.28 (c).

The PID controller adjusts the robot's actuators to counteract the external force and

bring the system back to a stable state. After the disturbance, and with the corrective

actions taken by the PID controller, the robot ideally returns to its original state which

maintains stability and balance as illustrated in Figure 4.28 (d).

(a) (b)

79

Figure 4.28: (a) Presence of disturbance, (b) Robot is subjected to a physical
force, (c) Robot is trying to recover the imbalance, (d) Robot back at its original

state

Therefore, this outcome demonstrates the effectiveness of the control algorithm and

the tuning parameters in quickly and accurately responding to disturbances.

4.5 Chapter Summary

 Thus, this chapter covers the implementation of the proposed system, detailing the

software and hardware setup, features, interfaces, and concludes with analytical results

and performance analysis for PID parameter tuning.

(a) (b)

(c) (d)

CHAPTER 5

CONCLUSION AND FUTURE WORKS

5.1 Chapter Overview

This chapter explains the project’s contributions to society with a conclusion which

includes the objectives of the project. The problems which occur during conducting

the project with its limitations will also be explained in order to recommend solutions

which can enhance the system’s performance in the future.

5.2 Project Achievement

This development of a two-wheel self-balancing robot using PID controller was

created for the Final Year Project as a proof of concept (POC) of this system

implementation for research in PID controller. This project begins with the

development of hardware which uses ESP32 as the microcontroller, MPU6050 as the

81

sensor and NEMA17 stepper motor as well as a4988 stepper motor driver. This is to

investigate the tuning parameters of PID gains affect the performance of the robot.

In addition, Blynk application is used as an IoT platform that could control the PID

gains in order to tune the parameters to achieve the best performance. Furthermore,

MATLAB software is used to produce the analysis of the tuning parameters which

produce the Rise Time, Settling Time and Overshoot as well as Steady State Error.

The range of PID gains varied and its performance was recorded.

5.3 Project Problem and Limitation

During the development and implementation phase of this project, several issues

and limitations were encountered. Firstly, the chosen MPU6050 sensor is sensitive to

external vibrations, leading to potential noise in sensor readings. Proper placement of

the sensor at the center of gravity (CoG) is crucial for stable robot performance. The

center of gravity is the point where the entire weight of the robot can be considered to

act, and it plays a crucial role in maintaining balance.

Secondly, the 12V lithium-ion battery initially used to power the hardware fell short

in terms of battery life. It required frequent recharging, taking about 2-3 hours for a

full charge before reuse. An alternative, a 12V DC rechargeable polymer lithium-ion

battery, offered longer-lasting power but added weight (approximately 0.35kg),

impacting the robot's weight distribution.

5.4 Future Work and Recommendations

This study is suggested for inclusion in the Control Principle and Systems course

at FTKEK. While the existing syllabus covers the PID controller, it currently lacks

information on the crucial PID tuning method. Besides, here are further

82

recommendations to enhance the self-balancing robot, particularly in its control

aspects:

i. Suggest a novel control method allowing remote management of the robot's

movements using Blynk. This may include adding control interfaces that

users could customize via the Blynk app, enabling them to change things

like direction, speed, and even preset moves.

ii. Integrate a camera onto the robot, enabling users to monitor its motions and

whereabouts. By adding this, the robot's capabilities may be increased, and

users will be able to see a live video stream via the Blynk app. This

capability improves the robot's usefulness for surveillance to enabling users

to see their surroundings.

5.5 Conclusion

In a nutshell, it can be concluded that this final year project took around two

semesters worth of time to complete, starting from the proposal of the system,

development, and documentation. After evaluation, it can be concluded that the

prototype for this project is considered successful. Although there are some limitations

in this system, several suggestions are provided for the system quality enhancement.

All the objectives are achieved using the required hardware and software mentioned

in Chapter 3. There are several improvements that can be made for this project to

provide a more efficient way for the users to use the system.

5.6 Chapter Summary

Thus, this chapter summarizes the whole project which includes the achievements,

problem and limitations, future works and commercialization relevancy of this project.

All the objectives are achieved using the methodology mentioned in Chapter 3.

83

REFERENCES

[1] B. K. Bhawmick, “DESIGN AND IMPLEMENTATION OF A SELF-

BALANCING ROBOT Review study on different dental implant materials and

their characterization based on their behavior in different condition of oral

saliva View project DESIGN AND IMPLEMENTATION OF A SELF-

BALANCING ROBOT View project.” [Online]. Available:

https://www.researchgate.net/publication/323258475

[2] O. A. Choudhry, M. Wasim, A. Ali, M. A. Choudhry, and J. Iqbal, “Modelling

and robust controller design for an underactuated self-balancing robot with

uncertain parameter estimation,” PLoS One, vol. 18, no. 8 August, Aug. 2023,

doi: 10.1371/journal.pone.0285495.

[3] I. Mateșică, M. Nicolae, L. Bărbulescu, and A.-M. Mărgerușeanu, “Self-

balancing robot implementing the inverted pendulum concept.”

[4] B. Subudhi and S. Ghosh, “Adaptive Iterative Learning Control of a Single-

Link Flexible Manipulator Based on an Identified Adaptive NARX Model

Master of Technology in Control and Automation.”

84

[5] E. P. Kunnel, D. Johny, A. Jacob, and E. Paul, “International Journal of

Advanced Research in Electrical, Electronics and Instrumentation Engineering

Controlling of Two Wheeled Self Balancing Robot using PID,” 2018, doi:

10.15662/IJAREEIE.2018.0703046.

[6] Y. Gong, X. Wu, and H. Ma, “Research on Control Strategy of Two-Wheeled

Self-Balancing Robot,” in Proceedings - 2015 International Conference on

Computer Science and Mechanical Automation, CSMA 2015, 2016. doi:

10.1109/CSMA.2015.63.

[7] R. Sadeghian and M. T. Masoule, “An experimental study on the PID and

Fuzzy-PID controllers on a designed two-wheeled self-balancing autonomous

robot,” in 2016 4th International Conference on Control, Instrumentation, and

Automation, ICCIA 2016, 2016. doi: 10.1109/ICCIAutom.2016.7483180.

[8] M. A. Johnson et al., PID control: New identification and design methods.

2005. doi: 10.1007/1-84628-148-2.

[9] S. M. Peash et al., “A Smart Approach to Control a Two-Wheeled Self

Balancing Robot Using a PID Controller with Two Degree of Freedom.”

[Online]. Available: https://www.researchgate.net/publication/367510694

[10] O. M. Mohamed Gad, S. Z. M. Saleh, M. A. Bulbul, and S. Khadraoui, “Design

and Control of Two Wheeled Self Balancing Robot (TWSBR),” in 2022

Advances in Science and Engineering Technology International Conferences,

ASET 2022, Institute of Electrical and Electronics Engineers Inc., 2022. doi:

10.1109/ASET53988.2022.9735004.

85

[11] V. A. Maheshbhai, D. Kumar, and R. Sinha, “Development of Two Wheeled

Robot (TWR) by Single Stepper Driver using PID controller.”

[12] H. M. Tun, M. S. Nwe, Z. M. Naing, M. M. Latt, D. Pradhan, and P. K. Sahu,

“Research on Self-balancing Two Wheels Mobile Robot Control System

Analysis,” Electrical Science & Engineering, vol. 4, no. 1, p. 7, Apr. 2022, doi:

10.30564/ese.v4i1.4398.

[13] J. Zhao, J. Li, and J. Zhou, “Research on Two-Round Self-Balancing Robot

SLAM Based on the Gmapping Algorithm,” Sensors, vol. 23, no. 5, Mar. 2023,

doi: 10.3390/s23052489.

[14] C. Iwendi, M. A. Alqarni, J. H. Anajemba, A. S. Alfakeeh, Z. Zhang, and A. K.

Bashir, “Robust Navigational Control of a Two-Wheeled Self-Balancing Robot

in a Sensed Environment,” IEEE Access, vol. 7, pp. 82337–82348, 2019, doi:

10.1109/ACCESS.2019.2923916.

[15] S. Erfan Arefin, “Simple Two-wheel Self-Balancing Robot Implementation.”

[16] I. Iswanto, A. Ma’arif, N. Maharani Raharja, T. K. Hariadi, and M. A. Shomad,

“Using a Combination of PID Control and Kalman Filter to Design of IoT-

based Telepresence Self-balancing Robots during COVID-19 Pandemic,”

Emerging Science Journal, vol. 4, no. Special issue, pp. 241–261, 2020, doi:

10.28991/esj-2021-SP1-016.

[17] S. K. Vishwakarma, P. Upadhyaya, B. Kumari, and A. K. Mishra, “Smart

Energy Efficient Home Automation System Using IoT,” in Proceedings - 2019

86

4th International Conference on Internet of Things: Smart Innovation and

Usages, IoT-SIU 2019, 2019. doi: 10.1109/IoT-SIU.2019.8777607.

[18] S. Kumar, P. Tiwari, and M. Zymbler, “Internet of Things is a revolutionary

approach for future technology enhancement: a review,” J Big Data, vol. 6, no.

1, 2019, doi: 10.1186/s40537-019-0268-2.

[19] A. J. Moshayedi et al., “Simulation and Validation of Optimized PID Controller

in AGV (Automated Guided Vehicles) Model Using PSO and BAS

Algorithms,” Comput Intell Neurosci, vol. 2022, p. 7799654, 2022, doi:

10.1155/2022/7799654.

[20] L.-F. Bărbulescu, C. and E. Universitatea din Craiova. Faculty of Automation,

Institute of Electrical and Electronics Engineers, and IEEE Control Systems

Society, 2020 24th International Conference on System Theory, Control and

Computing (ICSTCC) : proceedings : October 8-10, 2020, Sinaia, Romania.

[21] P. Xie, W. Wu, and Y. Zhang, “Design of human-computer interaction gesture

operation based on STM32 and MPU6050,” in 2022 IEEE 4th International

Conference on Power, Intelligent Computing and Systems, ICPICS 2022, 2022.

doi: 10.1109/ICPICS55264.2022.9873595.

[22] G. S. Krishna, D. Sumith, and G. Akshay, “Epersist: A Two-Wheeled Self

Balancing Robot Using PID Controller And Deep Reinforcement Learning,” in

International Conference on Control, Automation and Systems, 2022. doi:

10.23919/ICCAS55662.2022.10003940.

87

[23] B. Sergey, “Ultrasonic navigation to control the movement of a mobile robot,”

in Moscow Workshop on Electronic and Networking Technologies, MWENT

2020 - Proceedings, 2020. doi: 10.1109/MWENT47943.2020.9067482.

[24] S. D. Yusuf, S.-L. D. Comfort, I. Umar, and A. Z. Loko, “Simulation and

Construction of a Solar Powered Smart Irrigation System Using Internet of

Things (IoT), Blynk Mobile App,” Asian Journal of Agricultural and

Horticultural Research, pp. 136–147, Oct. 2022, doi:

10.9734/ajahr/2022/v9i4202.

88

APPENDICES

APPENDIX A: Process of making the joints of the self-balancing robot

89

APPENDIX B: Coding in Arduino IDE

// Blynk and WiFi settings
#define BLYNK_TEMPLATE_ID "TMPL6_NeSrwZR"
#define BLYNK_TEMPLATE_NAME "Self Balancing Robot"
#define BLYNK_AUTH_TOKEN "YL3I1G5pwTiagFxBlMnTKt4rdY0kmbwl"
#define BLYNK_PRINT Serial
#include <WiFi.h>
#include <Wire.h>
#include <MPU6050_tockn.h>
#include <BlynkSimpleEsp32.h>
#include <PID_v1.h>
#include <FastAccelStepper.h>
MPU6050 mpu6050(Wire);
double Setpoint = 0; //Setpoint for balancing
double Input, Output;
double Kp, Ki, Kd, SF, SFREV, SFP, SFFOR, acceleration, deadZone,
Inputoffset;
PID myPID(&Input, &Output, &Setpoint, Kp, Ki, Kd, DIRECT);
// Motor control pins
int leftStepPin = 32;
int leftDirPin = 33;
int rightStepPin = 14;
int rightDirPin = 12;
int enablePin = 19;
// FastAccelStepper Engine
FastAccelStepperEngine engine = FastAccelStepperEngine();
FastAccelStepper *leftMotor = NULL;
FastAccelStepper *rightMotor = NULL;
double alpha;
float filteredPitch = 0;
unsigned long lastUpdateTime = 0;
BLYNK_WRITE(V9) {
Kp = param.asDouble();
}
BLYNK_WRITE(V10) {
Ki = param.asDouble();
}
BLYNK_WRITE(V11) {
Kd = param.asDouble();
}
BLYNK_WRITE(V12) {
SF = param.asDouble();
}
BLYNK_WRITE(V13) {
Inputoffset = param.asDouble();
}
BLYNK_WRITE(V14) {
SFP = param.asDouble();
}
BLYNK_WRITE(V15) {

SFREV = param.asDouble();

90

}
BLYNK_WRITE(V16) {
SFFOR = param.asDouble();
}
BLYNK_WRITE(V17) {
acceleration = param.asDouble();
}
BLYNK_WRITE(V18) {
deadZone = param.asDouble();
}
void setup() {
Serial.begin(9600);
Blynk.begin(auth, ssid, pass);
Wire.begin();
mpu6050.begin();
mpu6050.calcGyroOffsets(true);
engine.init();
leftMotor = engine.stepperConnectToPin(leftStepPin);
rightMotor = engine.stepperConnectToPin(rightStepPin);
if (leftMotor) {
leftMotor->setDirectionPin(leftDirPin);
leftMotor->setEnablePin(enablePin);
leftMotor->setAutoEnable(true);
leftMotor->setSpeedInHz(2000); // Speed in Hz
}
if (rightMotor) {
rightMotor->setDirectionPin(rightDirPin);
rightMotor->setEnablePin(enablePin);
rightMotor->setAutoEnable(true);
rightMotor->setSpeedInHz(2000); // Speed in Hz
}
myPID.SetOutputLimits(-255, 255);
myPID.SetSampleTime(1);
myPID.SetMode(AUTOMATIC);
}
void loop() {
Blynk.run();
mpu6050.update();
Input = mpu6050.getAngleY() - Inputoffset;
myPID.SetTunings(Kp, Ki, Kd);
myPID.Compute();
float motorSpeed = abs(Output * SF) + SFP; // Scale factor for speed
float motorSpeedFor = motorSpeed + SFFOR; // Scale factor for speed
float motorSpeedRev = motorSpeed + SFREV; // Scale factor for speed
if (leftMotor && rightMotor) {
leftMotor->setAcceleration(acceleration * 16);
rightMotor->setAcceleration(acceleration * 16);
if (Output > deadZone) {
// Output positive: left motor counterclockwise, right motor
clockwise
leftMotor->setSpeedInHz(motorSpeedFor); // Scale Output
rightMotor->setSpeedInHz(motorSpeedFor); // Scale Output
leftMotor->move(3 * 16);
rightMotor->move(3 * 16);

