
 

 

MACHINE LEARNING-BASED SOLAR IRRADIANCE 
FORECASTING MODEL USING GPS 

 

 

 

 

 

TANG SIN YEE 

 

 

 

 

 
 
 
 
 

UNIVERSITI TEKNIKAL MALAYSIA MELAKA  
  
 



 

 

MACHINE LEARNING-BASED SOLAR IRRADIANCE 

FORECASTING MODEL USING GPS 

 

 

 

 

TANG SIN YEE 

 

 

This report is submitted in partial fulfilment of the requirements 

for the degree of Bachelor of Electronic Engineering with Honours 

 

 

  

  

 

 

 

 

  

Faculty  of Electronics and Computer 

Technology and Engineering

 Universiti Teknikal Malaysia Melaka

          2024



 

 

 

 

 

 

Tajuk Projek :   Machine Learning-based solar irradiance forecasting 

model using GPS 

Sesi Pengajian        :  2023/2024 

Saya  TANG SIN YEE  mengaku membenarkan laporan Projek Sarjana Muda ini 

disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut: 

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka. 

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja. 

3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan 

pertukaran antara institusi pengajian tinggi. 

4. Sila tandakan (✓): 

 

SULIT* 

(Mengandungi maklumat yang berdarjah 

keselamatan atau kepentingan Malaysia 

seperti yang termaktub di dalam AKTA 

RAHSIA RASMI 1972) 

 
TERHAD* 

(Mengandungi maklumat terhad yang 

telah ditentukan oleh organisasi/badan di 

mana penyelidikan dijalankan. 

 TIDAK TERHAD  

 Disahkan oleh: 

 

  

Alamat Tetap: KetekKampung

Semerak,Buluh

16700 Pasir Puteh, 

Kelantan. 

 

Tarikh :    

 

 *CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan 
dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD. 

 
 

 
 

 

Tarikh  :  12 Januari 2024

UNIVERSITI TEKNIKAL MALAYSIA MELAKA
FAKULTI TEKNOLOGI DAN KEJURUTERAAN ELEKTRONIK DAN 

KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN

PROJEK SARJANA MUDA II

12 Januari 2024

(           TANG SIN YEE          ) (               TS. DR. HO YIH HWA                 )

00480
FTKEK



 

 

DECLARATION 

I declare that this report entitled “Machine Learning-based solar irradiance forecasting 

model using GPS” is the result of my own work except for quotes as cited in the 

references.  

 

 

 

Signature : ………………………………… 

Author :   

Date :  

 

 

 

 

 

   

   
 

           

TANG  SIN  YEE
…………………………………

…  1…  2…  JA…  N…  UA…  R…  Y…  20…  24…………



 

 

 

APPROVAL 

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient 

in terms of scope and quality for the award of Bachelor of Electronic Engineering with 

Honours.   

 

 

Signature   : ………………………………… 

Supervisor Name  :   

Date   :  

 

…………………………………

…………………………………

TS. DR. HO YIH HWA 

12 JANUARY 2024 



 

 

 

DEDICATION 

I dedicate this project report to my loving parents, whose unwavering support and 

encouragement have been instrumental in my academic journey. Your belief in my 

abilities and sacrifices you made have inspired me to strive for excellence. I would 

also like to express my deepest appreciation to my supervisor, Dr. Ho Yih Hwa, for 

his invaluable guidance, expertise, and continuous encouragement throughout this 

PSM project. Your insights and feedback have shaped my understanding and 

improved the quality of this work. Finally, I would like to thank my senior and friends 

for their constant encouragement and support. This project report is a tribute to 

everyone who has contributed, in various capacities, to my academic and personal 

development. Your support, whether significant or modest, has greatly influenced my 

journey. Thank you. 

 

 

 



i 

 

ABSTRACT 

Integration of large-scale solar energy into an existing or future energy supply 

framework is becoming essential for the near future global energy supplies. This 

integration requires accurate forecasting of solar system output power, which is 

essential for the efficient functioning of the power grid and optimal utilization of 

energy fluxes within the solar system. In fact, this output power forecasting relies on 

solar irradiance forecasting. Accurate solar irradiance forecasting is essential for 

efficient integration of solar energy into the grid, as it enables grid operators and solar 

power plant operators to plan and manage energy production and consumption. Thus, 

this project proposed a Machine Learning-based solar irradiance forecasting model 

using GPS. Specifically, the model processed two types of input data, namely water 

vapor data (IWV) and total electron content (TEC) data obtained from RINEX GPS 

data. An Artificial Neural Network (ANN) machine learning algorithm has been used 

to process the input data and predict solar irradiance. Subsequently, the predicted 

results were displayed and validated using MATLAB GUI software. At the end of this 

project, the Bayesian Regularization algorithm with 10-training-layer size was 

identified as the best model among several algorithms that were tested, with a mean 

square error (MSE) of 20882.4233 and a correlation coefficient (R) of 0.86138. 



ii 

 

ABSTRAK 

Integrasi tenaga solar berskala besar ke dalam rangkaian bekalan tenaga sedia 

ada atau masa depan menjadi penting bagi bekalan tenaga global pada masa 

hadapan. Integrasi ini memerlukan ramalan tenaga sistem solar yang tepat, dimana 

ia penting bagi fungsi berkesan grid tenaga dan penggunaan optimum aliran tenaga 

dalam sistem solar. Ramalan radiasi solar yang tepat adalah penting bagi integrasi 

tenaga solar ke dalam grid, kerana ia membolehkan pengendali grid dan pengendali 

loji tenaga solar mengurus pengeluaran dan penggunaan tenaga. Oleh itu, projek ini 

mencadangkan model ramalan radiasi solar berdasarkan Pembelajaran Mesin 

menggunakan GPS. Secara khususnya, model ini akan memproses dua jenis data 

input, iaitu data wap air (IWV) dan data jumlah kandungan elektron (TEC) yang 

diperolehi daripada data GPS RINEX. Algoritma Pembelajaran Mesin Rangkaian 

Neural Tiruan (ANN) telah digunakan untuk memproses data input dan meramalkan 

radiasi solar. Kemudian, hasil ramalan dipaparkan dan disahkan menggunakan 

perisian MATLAB GUI. Pada akhir projek ini, algoritma “Bayesian Regularization” 

dengan saiz lapisan latihan 10 adalah model terbaik di antara beberapa algoritma 

yang telah diuji dengan ralat min kuasa dua, MSE sebanyak 20882.4233 dan pekali 

korelasi, R sebanyak 0.86138. 



iii 

 

ACKNOWLEDGEMENTS 

I would like to express my sincere gratitude to many individuals who have helped 

me most throughout my final year project. First, I would like to thank my supervisor, 

Dr. Ho Yih Hwa, for his enthusiasm, patience, insightful comments, and advice that 

have helped me all the time throughout finishing my project. Without his guidance 

and help, this final year project would not have been possible.  

I also wish to express my sincere thanks to all lecturers of Faculty of Electronic and 

Computer for their knowledge and expertise that they shared during my academic 

journey. Their teachings and mentorship have been instrumental in shaping my 

understanding of the subject matter. I am grateful to my friends for their collaboration 

and support during various stages of this project. Their input and discussions were 

invaluable in shaping my ideas and refining my work.  

Lastly, I wish to thank my parents for their personal support. Their encouragement 

is my source of strength. This project would not have been possible without the 

collective support and contributions of all those mentioned above. I am truly grateful 

for their involvement, and I am indebted to their guidance and assistance.  



iv 

 

TABLE OF CONTENTS 

Declaration i 

Approval i 

Dedication i 

Abstract i 

Abstrak ii 

Acknowledgements iii 

Table of Contents iv 

List of Figures vii 

List of Tables x 

List of Symbols and Abbreviations xi 

List of Appendices xii 

CHAPTER 1 INTRODUCTION 1 

1.1 Background of project 1 

1.2 Problem Statement 3 

1.3 Objectives 3 

1.4 Scope of Work 4 



v 

 

1.5 Importance of Study 4 

1.6 Chapter Outline 5 

CHAPTER 2 BACKGROUND STUDY 7 

2.1 History of Solar Irradiance Forecasting 8 

2.2 Machine Learning Algorithms 8 

2.3 Evaluation of model accuracy 16 

2.4 Single machine learning method 21 

2.5 Total Electron Content 23 

2.6 Integrated Water Vapor 26 

2.7 Backpropagation Algorithm 28 

CHAPTER 3 METHODOLOGY 30 

3.1 Data Collection 32 

3.2 Data Preprocessing 33 

3.2.1 Total Electron Content (TEC) data preprocessing 33 

3.2.2 Integrated Water Vapor (IWV) data preprocessing 40 

3.2.3 Data Repository 49 

3.3 Training and Testing suitable Machine Learning Model using Preprocessed 

Dataset 50 

3.3.1 Input Preprocessed Dataset 51 

3.3.2 Training the Preprocessed Dataset 52 

3.3.3 Testing the Model 54 



vi 

 

3.3.4 Validating the Model 55 

CHAPTER 4 RESULTS AND DISCUSSION 56 

4.1 Training Model 57 

4.2 Testing Model Plot 61 

4.3 Comparison between Measurement and Predicted Solar Irradiance 63 

4.4 Discussion on problems and solutions 65 

CHAPTER 5 CONCLUSION AND FUTURE WORKS 66 

5.1 Conclusion 66 

5.2 Future Work 68 

REFERENCES 70 

APPENDICES 79 

  



vii 

 

LIST OF FIGURES 

  

Figure 2.1: SVM parameters. ..................................................................................... 10 

Figure 2.2: Artificial Neural Networks (ANNs). ....................................................... 11 

Figure 2.3: Random Forest algorithm. ....................................................................... 12 

Figure 2.4: Time series comparison. .......................................................................... 16 

Figure 2.5: Scatter plot. .............................................................................................. 17 

Figure 2.6: ROC curve. .............................................................................................. 17 

Figure 2.7: ANN, machine learning and SVM method in 5 main research of solar 

energy prediction. ...................................................................................................... 22 

Figure 2.8: Ionospheric Single layer Model [36]. ...................................................... 26 

Figure 3.1: Project methodology flowchart. .............................................................. 31 

Figure 3.2: Files in GPS_Gopi_v3.03 application folder [38]. .................................. 34 

Figure 3.3: GPS_TEC.exe user interface. .................................................................. 34 

Figure 3.4: RINEX 2.1 file format. ............................................................................ 35 

Figure 3.5: The batch processing and file selection options for the program. ........... 36 

Figure 3.6: Setting of batch processing and file selection options for the program. . 37 

Figure 3.7: Task processing completed. .................................................................... 37 

Figure 3.8: Mean TEC output written to “TEC_output” folder. ................................ 38 



viii 

 

Figure 3.9: Running checkstdfile.py in command prompt. ....................................... 39 

Figure 3.10: Run mean_TEC.py in CMD to merge all TEC into “ouput.csv” file. ... 39 

Figure 3.11: RTKLAUNCH and launcher icons in RTKLIB. ................................... 40 

Figure 3.12: Main window of RTKPOST. ................................................................. 41 

Figure 3.13: RTKPOST Setting 1. ............................................................................. 42 

Figure 3.14: RTKPOST Setting 2. ............................................................................. 42 

Figure 3.15: RTKPOST Output setting...................................................................... 43 

Figure 3.16: RTKPOST Stats setting. ........................................................................ 43 

Figure 3.17: RTKPOST Positions setting. ................................................................. 44 

Figure 3.18: RTKPOST Files setting. ........................................................................ 44 

Figure 3.19: RTKPOST Misc setting. ........................................................................ 45 

Figure 3.20: The completed pre-processing process in RTKPOST. .......................... 45 

Figure 3.21: Example of output from RTKPOST pre-processing. ............................ 46 

Figure 3.22: Format of solution status file output of RTKPOST. ............................. 46 

Figure 3.23: checkztd.py is executed in command prompt. ....................................... 47 

Figure 3.24: extract_ztd_sec.py is executed in command prompt. ............................ 48 

Figure 3.25: extract_ztd_min.py is executed in command prompt. ........................... 48 

Figure 3.26: Dataset folder in excel file. .................................................................... 49 

Figure 3.27: Input_new dataset in MATLAB workspace. ......................................... 51 

Figure 3.28: Target_new dataset in MATLAB workspace. ....................................... 51 

Figure 3.29: Neural Network start (nnstart) interface. ............................................... 52 

Figure 3.30: Three Neural Network Fitting training algorithm. ................................ 53 

Figure 3.31: Training process is completed. .............................................................. 53 



ix 

 

Figure 3.32: Testing solar irradiance model. ............................................................. 54 

Figure 4.1: Training State Plot. .................................................................................. 59 

Figure 4.2: Mean Square Error (MSE) Plot. .............................................................. 59 

Figure 4.3: Error Histogram Plot. .............................................................................. 60 

Figure 4.4: Regression Plot. ....................................................................................... 60 

Figure 4.5: The model summary. ............................................................................... 61 

Figure 4.6: Additional testing Error Histogram Plot. ................................................ 62 

Figure 4.7: Regression Plot for additional test 1 month data (February). .................. 62 

Figure 4.8: Comparison between measurement and predicted solar irradiance plot for 

1 day data. .................................................................................................................. 64 

Figure 4.9: Comparison between measurement and predicted solar irradiance plot for 

one month data (February). ........................................................................................ 64 

  



x 

 

LIST OF TABLES 

Table 2.1: The use of machine learning algorithm method for solar irradiance 

forecasting in the past study. ...................................................................................... 14 

Table 3.1: Dataset folder information. ....................................................................... 50 

Table 4.1: MSE and R results when training on different Algorithm and Layer size.

 .................................................................................................................................... 57 

 

  



xi 

 

LIST OF SYMBOLS AND ABBREVIATIONS 

ANN : Artificial Neural Network 

TEC : Total Electron Content 

IWV : Integrated Water Vapor  

GPS : Global Positioning System 

AI : Artificial Intelligence 

GBM : Gradient Boosting Machines 

PCA : Principal Component Analysis 

SVM : Support Vector Machines 

SRM : Structural Risk Minimization 

ROC : Receiver Operating Characteristic 

MAPE : Mean Absolute Percentage Error 

RMSE : Root-Mean-Square Error 

MSE : Mean Square Error 

GNSS : Global Navigation Satellite System 

ZTD : Zenith Total Delay 

ZHD : Zenith Hydrostatic Delay 

RINEX : Receiver Independent Exchange Format 

 

  



xii 

 

LIST OF APPENDICES 

Appendix A: rename_obs 79 

Appendix B: rename_nav 81 

Appendix C: checkstdfile.py 82 

Appendix D: mean_TEC.py 83 

Appendix E: checkztd.py 84 

Appendix F: extract_ztd_sec.py 85 

Appendix G: extract_ztd_min.py 86 

Appendix H: mergedztd.py 87 

Appendix I: BR10model.m 88 

  

 

 

 



 

 

 

CHAPTER 1  

INTRODUCTION 

1.1 Background of project 

The demand for renewable energy sources, particularly solar power, has been 

steadily increasing as the world strives to reduce reliance on fossil fuels and decrease 

dependency on fossil resources. Solar irradiance, the amount of solar radiation 

reaching the Earth's surface, plays a crucial role in determining the potential energy 

generation from solar panels. Accurate forecasting of solar irradiance is vital for 

optimizing large-scale solar energy production and integration into the electrical grid. 

Traditional solar irradiance forecasting methods rely on weather data and physical 

models, which have limitations in accurately capturing the complex dynamics of solar 

radiation. In recent years, machine learning approaches have emerged as promising 

tools to improve the precision of solar irradiance predictions. By analyzing historical 



2 

 

weather patterns and other relevant data, machine learning algorithms can identify 

complex patterns and relationships that traditional models might miss. 

One key aspect that can significantly enhance the accuracy of solar irradiance 

forecasting is the integration of Global Positioning System (GPS) data. GPS provides 

precise information about the position and movement of cloud cover, which directly 

affects solar irradiance levels. By incorporating GPS data into the machine learning-

based forecasting model, we can capture the spatial and temporal variability of clouds 

more effectively. The primary objective of this research project was to develop a 

machine learning-based solar irradiance forecasting model that leverages GPS data. 

By training the model on historical solar irradiance and GPS datasets, this study aimed 

to improve reliability of solar irradiance predictions. This would enable solar energy 

operators to make informed decisions regarding energy production, storage, and grid 

integration.  

  

 

   

  

    

 

In this project,  there is no hardware  used. Firstly, an  integrated water vapor (IWV)

and Total Electron Content (TEC)  served as  input to the system.  Six months of GPS

data from the FTKEK station were utilized for IWV and TEC derivation, while six

months of solar irradiance data from the FTKEK weather station were employed for

the modeling.  Then,  Artificial Neural Networks (ANN) machine learning algorithm

was  trained  to process the input data.  The ANN  is considered the most used method

in  global  radiation  forecasting  [1].  Then,  the  solar  irradiance  model  was  evaluated.

Finally,  the  measurement  and  predicted  solar  irradiance  values  were  visualized  in

MATLAB GUI software.



3 

 

1.2 Problem Statement 

Solar irradiance forecasting plays a critical role in the planning and integration of 

renewable energy sources into the electricity grid. It also helps energy managers and 

utilities forecast and plan their energy supply and demand more accurately. However, 

these lead to the development of high-accuracy solar irradiance forecasting model [2]. 

This is more challenging as solar activity is unpredictable and not steady. Therefore, 

it is crucial to be able to accurately estimate solar radiation, especially in cases of high 

energy integration [3]. The selection of appropriate input data from GPS data, 

developing, and evaluating suitable machine learning algorithms is very important to 

obtain the desired results for solar irradiance forecasting. This is because choosing the 

right data and preparing them properly enables the trained model to predict the results 

accurately. Solar irradiance forecasting using GPS data is more accurate than 

traditional forecasting without using GPS. Thus, this project aims to develop a 

machine learning-based solar irradiance forecasting model that has GPS data as input. 

 

1.3 Objectives 

1. To analyze atmospheric integrated water vapor (IWV) and ionospheric 

Total Electron Content (TEC) from GPS data. 

2. To train machine learning model using preprocessed dataset. 

3. To forecast solar irradiance with IWV and TEC calculated from GPS using 

ANN. 

 

 



4 

 

1.4  

 

 

 

 

 

 

 

1.5 Importance of Study 

One of the importance of study is to enhance solar energy forecasting. By 

accurately predicting solar irradiance levels, solar power plants can adjust their 

operations, such as adjusting the tilt angles and orientations of solar panels, managing 

energy storage systems, and scheduling maintenance activities. This can result in 

higher solar energy yields and reduced dependence on other energy sources, 

contributing to sustainability by increasing the utilization of renewable energy and 

reducing greenhouse gas emissions.  

Furthermore, solar power plants with accurate solar irradiance forecasts can reduce 

energy waste by optimizing energy production, avoiding overproduction in low 

irradiance periods, and reducing production in high irradiance periods. This minimizes 

energy waste and maximizes solar energy utilization, aligning with environmental 

friendliness by reducing unnecessary energy consumption.  

Lastly, this project can reduce environmental impact. Solar energy is considered 

environmentally friendly as it is a clean and renewable source of energy. By using 

machine learning-based solar irradiance forecasting models, solar power plants can 

Scope of Work

1. Six  months  of  GPS  data  from  FTKEK  station  will  be  used  for  IWV  and

TEC derivation.

2. Six months of solar irradiance data from  FTKEK weather station will be

used for the modeling.

3. ANN will be used to predict solar irradiance by using water vapor and TEC

as inputs.



5 

 

optimize their operations and reduce the need for backup power from fossil fuel-based 

sources, resulting in lower carbon emissions and reducing environmental impact. This 

contributes to sustainability by mitigating climate change and promoting 

environmentally friendly practices. 

 

1.6 Chapter Outline  

The problems and importance of Machine Learning-based Solar Irradiance 

Forecasting model using GPS have been described. All the details regarding this 

project have been outlined within each chapter of this report, as depicted below. 

Chapter 1: In this section, a brief introduction to the project was provided. 

Additionally, explanations about the development of the machine learning-based solar 

irradiance system were presented to provide insight into the system. The chapter 

encompasses a thorough explanation of the problem statement, objectives, scopes, the 

significance of the study, and the project outline for the entire project. 

Chapter 2: In this chapter, the previous work related to this project is discussed. A lot 

of research has been done to study the fundamental knowledge that is related to this 

project. The research is about previous work related to suitable machine learning 

algorithms, atmospheric integrated water vapor (IWV) calculation from GPS data, 

ionospheric Total Electron Content (TEC) calculation from GPS data etc.  

Chapter 3: This chapter discusses the steps involved in completing the project. 

Several steps were applied in designing the machine learning-based solar irradiance 

forecasting model. This part provided a project flowchart, detailed methodology about 



6 

 

how the project was done, training and testing the model, generating model coding, 

and plotting model precision.  

Chapter 4: The results obtained from the final project are presented in this section. 

Following that, the section discusses the problems encountered during the completion 

of this project and outlines the solutions employed. The outcomes of the project are 

also addressed in this section, relying on the completed solar irradiance model.  

Chapter 5: This chapter described the conclusion and recommendations for the 

machine learning-based solar irradiance forecasting model. The section included a 

project summary, project findings, and further recommendations to improve the 

project. 

 



 

 

 

CHAPTER 2  

BACKGROUND STUDY 

This chapter will discuss research and articles related to the project. Numerous 

sources and studies have been conducted previously, providing details about this 

project that can be understood briefly. The theoretical background, literature review 

of previous work, and summaries of the preceding research will be covered in this 

chapter. 

 

 

 



8 

 

2.1 History of Solar Irradiance Forecasting 

Solar irradiance forecasting refers to the prediction of solar irradiance levels at a 

specific future location and time. Solar radiation is the radiant energy emitted from the 

sun. Solar irradiance is the amount of solar radiation received on a surface per unit 

area, typically measured in watts per square meter (W/m²). Solar irradiance forecasting 

plays a crucial role in various applications related to solar energy, such as solar power 

plant operations, grid integration, energy management, and solar resource assessment. 

There are various methods for solar irradiance forecasting, which are physical, 

statistical, and machine learning models. Physical models are based on physical 

principles, such as the laws of thermodynamics and radiation transfer, and require 

input data such as humidity, cloud cover and temperature. Statistical models use 

historical data to identify patterns and make predictions, while machine learning 

models use algorithms to learn from historical data and make predictions based on that 

learning. In this project machine learning methods are used for solar irradiance 

forecasting.  

 

2.2 Machine Learning Algorithms 

Machine learning is a subfield of artificial intelligence (AI) that focuses on the 

development of algorithms and models that enable computers to learn and make 

predictions or forecasts without being explicitly programmed [4]. It involves the 

construction and study of systems that can learn from and adapt to data, improving 

their performance over time [5]. At its core, machine learning algorithms analyze and 

interpret patterns and relationships within datasets to generate insights, predictions, or 

decisions. These algorithms are designed to learn from experience and data by 



9 

 

automatically identifying patterns, making statistical inferences, and adjusting their 

behavior accordingly.  

 

Furthermore, one notable characteristic of machine learning models is their ability 

to find relationships between inputs and outputs, even in cases where the 

representation may seem impossible. This makes them useful in a wide range of 

applications such as pattern recognition, classification, spam filtering, data mining, 

and forecasting. In the domain of global horizontal irradiance forecasting, machine 

learning models can be employed in three different ways. Additionally, in this domain, 

classification and data mining tasks are particularly interesting as machine learning 

models can handle large datasets and assist with preprocessing and data preparation, 

followed by forecasting using the trained models which includes discriminant analysis 

and principal component analysis (PCA), Naive Bayes classification and Bayesian 

networks, and data mining approach [1]. For the training model, there are many 

machines learning algorithms that can be used such as Support Vector Machines 

(SVM), Artificial Neural Networks (ANN), Random Forests, and Gradient Boosting 

Machines (GBM). 

 

• Support Vector Machines (SVM) 

Support Vector Machines (SVM) is a machine learning algorithm that follows the 

theory of inductive structural risk minimization (SRM). It aims to minimize both 

training errors and the trust level by considering a broader range of generalization 

errors compared to conventional neural networks [6]. SVM's solution is often efficient 

and avoids the problem of getting stuck in local minima. It relies on supportive vectors, 

a subset of training points, to find solutions. In addition, SVM are supervised learning 



10 

 

models equipped with learning algorithms. It analyzes data and is widely used for non-

linear problem resolution, regression, and classification in various fields [4]. The 

parameters of SVM are depicted in Figure 2.1 [6]. 

 

Figure 2.1: SVM parameters. 

 

• Artificial Neural Networks (ANN) 

Artificial Neural Networks (ANNs) are computational models inspired by the 

structure and functioning of the human brain [7]. They are a subset of machine learning 

algorithms that are designed to recognize complex patterns and relationships in data. 

ANNs consist of interconnected nodes, called artificial neurons or "nodes," that mimic 

the behavior of biological neurons. The basic building block of an artificial neuron is 

the perceptron, which takes multiple inputs, applies weights to each input, sums them 

up, and applies an activation function to produce an output. The activation function 

determines whether the neuron should "fire" or not, based on the weighted sum of 

inputs. Artificial Neural Networks have two learning types as unsupervised and 

supervised. In supervised learning, the Neural Network undergoes training based on 

patterns observed between input and output data. Throughout this process, the 

Network adjusts its weights iteratively to generate accurate results, halting when it 



11 

 

achieves the optimal output. Conversely, in unsupervised learning, only raw data is 

available without accompanying information or labels. 

ANNs are typically organized in layers, including an input layer, hidden layers, and 

an output layer. Figure 2.2 below shows the integration between layers in the Artificial 

Neural Networks model. The input layer will receive the input data, and then process 

through the hidden layers. Each hidden layer consists of multiple interconnected 

neurons that perform computations and pass the results to the next layer. The output 

layer produces the result of the network's computation. During the training phase, 

ANNs learn to perform specific tasks by changing the weights and biases associated 

with the relationship between neurons. This adjustment is achieved through a process 

called backpropagation, whereby the network gradually enhances performance by 

comparing its output to the expected output and updating the weights accordingly. 

In recent years, ANNs have been effectively implemented to various fields, such as 

image and speech recognition, natural language processing, financial forecasting, 

solar irradiance forecasting and many others. They can learn and generalize from large 

amounts of data, enabling them to make predictions and forecasts based on patterns 

and relationships in the input data [7].  

 

Figure 2.2: Artificial Neural Networks (ANNs). 



12 

 

• Random Forests 

The Random Forest algorithm, a well-recognized method in machine learning, 

belongs to the ensemble learning category. Leo Breiman introduced Random Forests, 

drawing inspiration from earlier research conducted by Amit and Geman. [8] [9]. It is 

designed to tackle both classification and regression tasks [8] by combining the 

predictions of multiple decision trees to obtain a single output. In classification tasks, 

the random forest outputs the class that is most frequently chosen by the individual 

trees. In regression tasks, the collective average prediction made by the individual 

trees is provided as the output. Figure 2.3 below explains the working of the Random 

Forest algorithm. 

 

Figure 2.3: Random Forest algorithm. 

 

 



13 

 

The Random Forest algorithm works as follows: 

Data sampling: Given a training dataset, Random Forest performs random 

sampling with replacement (known as bootstrapping) to create multiple subsets of the 

original data [6]. 

Building decision trees: For every subset of data, a decision tree is constructed.  

Decision trees consist of binary tree structures that iteratively divide the dataset 

according to various features and their respective values. Each decision tree is built 

independently, considering a random subset of features at each split, which helps 

introduce randomness and reduce overfitting. 

Voting and prediction: After the decision trees are built, predictions are made by 

combining the results of each individual tree. In the case of classification tasks, the 

most common predicted class across all trees is chosen as the final prediction [10]. In 

regression tasks, the predicted values from all trees are averaged to derive the final 

output. 

The advantage of Random Forest is its ability to reduce variance and handle high-

dimensional datasets. By using multiple decision trees, it can capture complex 

relationships and provide robust predictions. Additionally, Random Forest can 

estimate the importance of each input feature, which can be useful for feature 

selection. Random Forest also possesses some other advantages, including reducing 

the overfitting of datasets. The combination of random sampling and feature selection 

in each decision tree helps mitigate overfitting, making Random Forest less prone to 

errors caused by noise or outliers in the data. Random Forest also can handle missing 

values in the dataset by utilizing the available features to make predictions. Lastly, 



14 

 

this algorithm can efficiently handle large datasets and manage both categorical and 

numerical data without the need for substantial preprocessing. 

• Gradient Boosting Machines (GBM) 

Gradient Boosting Machine (GBM) is a powerful machine learning algorithm that 

combines weak models in a sequential manner to create a strong predictive model [11]. 

It uses gradient descent to minimize errors and iteratively improves the ensemble by 

correcting the mistakes made by previous models. GBM is widely used for regression 

and classification tasks and is known for its ability to handle complex relationships 

and noisy data. There are many machine learning algorithms used to forecast solar 

irradiance and assess the accuracy of the model, as shown in Table 2.1 below.  

Table 2.1: The use of machine learning algorithm method for solar irradiance 

forecasting in the past study. 

References 

/Year 

Evaluation 

criteria 

Input parameters  Output 

parameters 

Data 

Scale 

Accuracy/

Results 

[12] 

2018 

SVM, 

ANN, 

Minimum and maximum 

temperature, altitude, 

longitude, and latitude 

Daily global 

solar 

irradiance 

1966–

2015 

MAE, 

RMSE, 

R2, and 

MSE 

[13] 

2018 

SVM-R Sunshine ratio Daily global 

solar radiation 

2005–

2007 

RMSE, 

rRMSE, 

and R2 

[14] 

2019 

WNN and 

ANN 

cloud-cover(cc), relative 

humidity (H), temperature 

(T), day (D) and hour (h) 

hourly Global 

Solar 

Radiation 

2007-

2010 

nRMSE,  
𝑅2 

[15] 

2019 

SP, ANN, 

and RF 

Historical dataset Solar radiation 

(Diffuse 

horizontal, 

beam normal, 

and global 

horizontal) 

3 years 

of 

hourly 

data 

RMSE, 

MAE,nR

MSE, and 

nMAE 

[16] 

2019 

 

ANN ASHRAE Clear-Sky model 

and the local weather 

information 

Daily solar 

irradiance 

2019 MAE 

[17] 

2019 

SVR, ANN, 

and DT 

Hourly solar radiation Hourly solar 

radiation 

2012 to 

2016 

R2 and 

RMSE 

[18] 

2020 

SVR, ANN, 

random 

forest 

Temperature, Humidity, 

sunshine duration and 

measured solar irradiance 

Hourly basis 

solar 

irradiance 

2017-

2018 

nRMSE, 

MAE 



15 

 

[19] 

2020 

ANN, and 

RNN 

Soil, and air temperature 

sunshine duration, relative 

humidity, cloudiness, and 

extraterrestrial solar 

radiation 

Daily global 

solar radiation 

January 

14, 

2019, to 

January 

21, 

2019 

RMSE, 

NMBE 

CV(RMS

E), and R2 

[20] 

2020 

ANN Relative humidity, 

precipitation, minimum 

and maximum temperature, 

altitude, longitude, months, 

latitude, sunshine duration, 

and wind speed 

Global, direct, 

and diffuse 

solar radiation 

 

 

2011–

2016 

R2, 

MAPE, 

and 

RMSE 

[21] 

2020 

 

ANN air temperature, wind 

speed, precipitation, 

humidity, surface pressure, 

insolation clearness index, 

and earth skin temperature 

Daily solar 

irradiance 

2000-

2015 

MSE & R 

[22] 

2021 

SVM, 

ANN, 

KNN, DL 

daily minimum and 

maximum ambient 

temperature, cloud cover, 

daily extraterrestrial solar 

radiation, day length and 

solar radiation 

daily global 

solar radiation 

2018-

2019 
𝑅2, 

RMSE, 

rRMSE, 

MBE, 

MABE, t-

stat & 

MAPE 

[23] 

2022 

Multiple 

regression 

& ANN 

Temp, RH, WS, Pressure, 

Time 

June 2020 March 

to May 

2020 

R, RMSE 

[24] 

2022 

ANFIS, 

ANN 

time, temperature, relative 

humidity, wind speed, and 

wind direction 

Hourly solar 

irradiance 

2019 

and 

2020 

mean 

absolute 

square 

error 

(MAPE), 

root mean 

square 

error 

(RMSE) 

[25] 

2022 

ANN, CNN, 

RNN, SVR, 

PR RF 

Wind speed, sun height, 

and ambient temperature 

Global and 

diffuse solar 

radiation 

2005–

2016 

R, MAE, 

RMSE, 

and 

NMBE 

[26] 

2022 

Gradient 

Boost & 

bootstrap 

aggregation 

hourly cloud cover, solar 

zenith angle, surface 

albedo and the global 

horizontal irradiance 

Day ahead 

irradiance 

2014 MSE, 

RMSE, 

MAPE, 

MAE 

[27] 

2022 

ANN daily temperature, 

humidity, pressure, wind 

speed, sunset time, and 

sunrise time 

Daily solar 

irradiance 

2017 R 

[28] 

2023 

SVM, 

ANN, 

KNN, 

LSTM, 

Random 

Forest, 

gradiend 

boosting 

DNI, Temperature, Wind 

speed, relative humidity, 

surface albedo, solar zenith 

angle 

Daily solar 

irradiance 

2017-

2019 
𝑅2 

 



16 

 

2.3 Evaluation of model accuracy 

Evaluation is an important process that assesses the quality of the machine learning 

model, and it plays a significant role in various stages of model development. For 

example, it is important to evaluate the forecasting model during training, to measure 

the model's improvements after model modifications, and to compare different 

models. However, comparing model performance can be challenging due to factors 

like forecasted time horizons, time scale variations in predicted data, and variations in 

meteorological conditions across different sites. There are several graphical methods 

available to estimate how well the performance of the model, including: 

1. Time series comparison: This tool allows for a visual assessment of the 

forecast quality by comparing predicted irradiance with measured irradiance 

over time. For example, Figure 2.4 demonstrates high accuracy in clear-sky 

situations and lower accuracy in partly cloudy situations. 

 

Figure 2.4: Time series comparison. 

 

2. Scatter plots: These plots depict the relationship between predicted and 

measured irradiance, revealing systematic biases and deviations based on 



17 

 

irradiance conditions. They provide insights into the range of deviations 

associated with the forecasts. An example of a scatter plot is depicted as in 

Figure 2.5. 

 

Figure 2.5: Scatter plot. 

 

3. Receiver Operating Characteristic (ROC) curves: ROC curves assess the 

percentages between true positives and false positives. Figure 2.6 shows an 

example of the ROC curve. 

      

Figure 2.6: ROC curve. 

 



18 

 

Comparing forecasting methods becomes challenging due to the lack of accepted 

standard evaluation measures. However, Sperati et al. [29] conducted a benchmarking 

exercise within the framework of the European Actions Weather Intelligence for 

Renewable Energies (WIRE) to evaluate the performance of advanced models for 

short-term renewable energy forecasting. This study exemplifies the utilization of 

reliability parameters to assess forecasting accuracy. The authors emphasized the need 

for further research involving a broader range of test cases, data, and models to obtain 

a comprehensive understanding of different scenarios. They proposed considering test 

cases across various locations in Europe, the US, and other relevant countries to 

encompass diverse meteorological conditions. This paper effectively highlights the 

complexities involved in comparing the performance of forecasting methods. 

There were different performance matrices used to evaluate the effectiveness of the 

prediction models, including mean absolute percentage error (MAPE), root-mean-

square error (RMSE), R-squared (𝑅2), mean absolute error (MAE), and mean square 

error (MSE). Mean Absolute Percentage Error (MAPE) measures the proportion of 

the mean absolute value of prediction errors to the mean absolute value of the actual 

data. A lower MAPE value indicates better performance of the model. 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑝𝑖−𝑞𝑖

𝑝𝑖
| × 100𝑛

𝑖=1    (2.1) 

where 𝑦𝑖 is the prediction, 𝑥𝑖 is the actual value, 𝑁 is the number of samples. 

      RMSE (Root Mean Square Error) is a widely used metric that quantifies the 

differences between predicted and observed values in a model. It is computed by 

taking the square root of the sum of squared differences between predicted and 

observed values within a specific sample. The root mean square error (RMSE) is 



19 

 

particularly sensitive to significant forecast errors, making it suitable for situations 

where small errors are acceptable while larger errors incur significantly higher costs. 

This characteristic is especially valuable in utility applications. Therefore, RMSE is 

often considered the most important and commonly used reliability factor. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑖−�̅�𝑖)2𝑁

𝑖=1

𝑁
   (2.2) 

Where 𝑥𝑖  is the actual value, �̅�𝑖is the predicted values, and 𝑁 is the number of data 

points. 

      The MAE (Mean Absolute Error) measures the average magnitude of 

forecasting errors without considering their direction. The mean absolute error (MAE) 

is suitable for situations characterized by linear cost functions. In other words, it is 

applicable when the costs associated with a poor forecast are directly proportional to 

the magnitude of the forecast error. 

𝑀𝐴𝐸 =
∑ |𝑦𝑖−𝑥𝑖|𝑁

𝑖=1

𝑁
   (2.3) 

The Mean Squared Error (MSE) stands as one of the fundamental and widely used 

loss functions. Computing the MSE involves subtracting your model's predictions 

from the ground truth, squaring it, and averaging it out across the whole dataset. 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − �̂�𝑖)2𝑁

𝑖=1    (2.4) 

Where N is the number of samples being tested against. 



20 

 

𝑹𝟐 (Coefficient of Determination) is a statistical metric that indicates the percentages 

of variance for a dependent variable within a regression model that can be explained 

by one or more independent variables. This relationship is expressed through the 

following equation. 

𝑅2 = 1 −
∑(𝑦𝑎𝑐𝑡𝑢𝑎𝑙−𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

2

∑(𝑦𝑎𝑐𝑡𝑢𝑎𝑙−�̅�)2
   (2.5) 

Where: 

 𝑦𝑎𝑐𝑡𝑢𝑎𝑙= actual value of dependent variable 

𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑= predicted value of the dependent variable from the model 

�̅�= mean of the actual value of the dependent variable 

∑  = summation (sum of all values) 

 

R (Correlation Coefficient) measures the strength and direction of the linear 

relationship between two variables. It ranges from -1 to 1, where 1 signifies a perfect 

positive linear relationship, -1 indicates a perfect negative linear relationship, and 0 

represents no linear relationship between the variables. 

𝑅 =
𝑛 ∑(𝑥𝑦)−∑ 𝑥 ∑ 𝑦

√(𝑛 ∑ 𝑥2−(∑ 𝑥)2)(𝑛 ∑ 𝑦2−(∑ 𝑦)2)
   (2.6) 

Where: 

𝑛 = number of data points 



21 

 

𝑥 = values of the independent variable 

𝑦 = values of the dependent variable 

∑  = summation (sum of all values) 

𝑥𝑦 = product of the independent variable and dependent variable values 

 

2.4 Single machine learning method 

Over the past few years, several researchers have conducted a comparative analysis 

of different machine learning algorithms. [30,31,32]. However, all these studies reveal 

that the ANN algorithm did not achieve most accurate prediction outcomes, yet it 

offered valuable insights for enhancing algorithm performance. The application of 

machine learning has gained prominence in developing solar radiation models and has 

become a popular research area. In the paper by [33], machine learning proved to be 

an effective investigative tool in several fields, including imagine recognition and 

natural language processing.  

The paper [1] presents a graph that shows the number of ANN, machine learning 

and SVM term that have been used in the 5 main research of solar energy prediction. 

The graph is shown in Figure 2.7 below. As shown, the ANN is the method that was 

most frequently used to forecast radiation globally.   



22 

 

 

Figure 2.7: ANN, machine learning and SVM method in 5 main research of 

solar energy prediction. 

 

Artificial Neural Networks (ANNs) are often used for solar irradiance prediction 

with GPS data due to several advantages they offer over other machine learning 

algorithms. One of the reasons why ANNs are commonly chosen is due to their non-

linearity. Solar irradiance prediction involves complex relationships between various 

input variables, such as geographical coordinates, time of day, and weather conditions. 

ANNs excel at capturing non-linear patterns and relationships, allowing them to model 

the intricate interactions between these factors accurately. After that, ANNs are highly 

flexible and can handle different types of input data. In the case of solar irradiance 

forecasting, ANNs could accommodate the multidimensional nature of GPS data, 

incorporating both spatial and temporal information. ANNs could be scaled up to 

handle large and complex datasets. Solar irradiance prediction often involves dealing 

with a significant volume of data due to the temporal and spatial dimensions involved.  

Furthermore, ANNs could be trained on large datasets efficiently using parallel 

processing or distributed computing, allowing them to handle the computational 

0

50

100

150

200

250

2000 2002 2004 2006 2008 2010 2012 2014

P
u
b
lic
at
io
n
s/
Y
e
ar

Year

ANN

Machine
Learning

SVM



23 

 

demands of solar irradiance prediction. While other machine learning algorithms, such 

as decision trees, support vector machines, or random forests, may also be applicable 

to solar irradiance prediction, ANNs are favored due to their ability to handle the 

complexity and non-linear nature of the problem, as well as their flexibility and 

scalability.  

2.5 Total Electron Content 

Total Electron Content (TEC) refers to the total number of free electrons present in 

a column of the Earth's ionosphere, typically measured along the path of radio signals 

transmitted from satellites to receivers on the ground [34]. The satellites of the GPS 

system, which orbit the Earth at approximately 20,200 km above its surface, emit 

signals that travel through the ionosphere spanning a range of around 60 to 1500 km 

above the Earth [35]. The oblique total electron content measurements can be obtained 

by observing the advance or delay of GPS signals on channels L1 (1575.42 MHz) and 

L2 (1227.6 MHz) [36]. The existence of electrons influences radio waves. The more 

electrons in the path of the radio wave, the more the radio signal will be affected. TEC 

quantifies the density of electrons in the ionosphere, representing the cumulative effect 

of the electron concentrations across the ionospheric layer. It is commonly expressed 

in electrons per square meter, 1 TEC unit (1 TECU = 10^16 electrons/m²) [37]. 

Vertical TEC values in Earth’s ionosphere can range from a few to several hundred 

TECU.  

However, the TEC was influenced by factors such as local time, latitude, longitude, 

season, solar cycle and activity, geomagnetic conditions, and troposphere conditions. 

The ionosphere influences radio wave propagation. As a radio wave travels through 

the ionosphere's electrons, its velocity varies. The radio wave's frequency and the TEC 



24 

 

between the transmitter and the receiver determine how much delay a radio wave 

experiences when travelling through the ionosphere. The ionosphere allows radio 

waves to travel through it at certain frequencies. At other frequencies, the waves are 

reflected by the ionosphere. In addition, the precision of satellite navigation systems, 

like GPS/GNSS, is greatly impacted by variations in the course and velocity of radio 

waves in the ionosphere. TEC data is crucial in various fields, particularly in satellite 

communications and global navigation systems (such as GPS), as variations in TEC 

can affect the propagation of radio signals, leading to inaccuracies in signal reception 

and navigation. Studying TEC variations aids in understanding ionospheric 

disturbances and space weather phenomena, contributing to improved modeling and 

prediction of ionospheric behavior [34].  

TEC can be divided into two parts. Which is Slant TEC (sTEC) and Vertical TEC 

(vTEC). As previously stated, Total Electron Content (TEC) can be derived by 

calculating the ionospheric delay between the L1 and L2 signals, as represented by 

Equation 2.7 [36]: 

𝑇𝐸𝐶 = [9.483 × (𝑃𝑅𝐿2 − 𝑃𝑅𝐿1 − ∆)] + 𝐶𝐴𝐿   (2.7) 

Where: 

𝑃𝑅𝐿2= L2 pseudo-range in meters 

𝑃𝑅𝐿1=L1 pseudo-range in meters 

∆ = Input bias between the C/A and P code chip transitions in meters 

CAL = TEC result due to internal receiver L1/L2 delay and the offset 



25 

 

TEC stated in equation 2.7 (Slant TEC) is a measure of the total electron content of 

the ionosphere along the ray path from the satellite to the receiver and is measured at 

different elevation angles, represented in figure 2.8 [36]. Although sTEC is measured 

at differing elevation angles, usually the vTEC is modeled. The representation of 

Vertical Total Electron Content (vTEC) at elevation angle of 90° is depicted in Figure 

2.8 and as per equation 2.8 below.  

𝑣𝑇𝐸𝐶 = 𝑠𝑇𝐸𝐶(𝑐𝑜𝑠𝜒′)   (2.8) 

With 

𝑐𝑜𝑠𝜒′ = √1 − 𝑠𝑖𝑛2𝜒′   (2.9) 

𝑠𝑖𝑛𝜒′ =
𝑅𝐸

𝑅𝐸+ℎ𝑚
𝑠𝑖𝑛𝜒   (2.10) 

Where: 

𝜒 and 𝜒′ = Zenith angles at the receiver site and at the ionospheric pierce point, IPP 

𝑅𝐸 = Mean earth radius 

ℎ𝑚 = Height of maximum electron density (450km) 



26 

 

       

Figure 2.8: Ionospheric Single layer Model [36]. 

 

Based on the conducted research, Dr. Gopi Krishna Seemala developed a software 

application utilizing the formula to compute sTEC, vTEC and mean TEC [38]. Mean 

TEC or average Total Electron Content, often derived from multiple vertical Total 

Electron Content (vTEC). 

2.6 Integrated Water Vapor 

Integrated water vapor (IWV) is the total amount of precipitable water in an 

atmospheric column between the Earth’s surface and the top of the atmosphere [39]. 

It is in units of kilogram per square meter (𝑘𝑔/𝑚2). The zenith total delay (ZTD) can 

be derived from GPS data processing and can be converted into integrated water vapor 

(IWV) [40].  

𝐼𝑊𝑉 =
106

𝑅𝑣∙[𝑘′
2+𝑘3/𝑇𝑚]

∙ (𝑍𝑇𝐷 − 𝑍𝐻𝐷)   (2.11) 

Where: 



27 

 

𝑅𝑣 = gas constant for water vapor 

𝑘′
2 and 𝑘3 = atmospheric refractivity constants [40] 

𝑇𝑚= weighted mean temperature 

𝑇𝑚 =
∫

𝑒

𝑇
𝑑𝜌

𝐻𝑡𝑜𝑝
𝐻𝑠

∫
𝑒

𝑇2𝑑𝜌

 

𝐻𝑠
𝑡𝑜𝑝

   (2.12) 

Where e and T are water vapor pressure and temperature profiles of the geopotential 

heights of the GPS station (𝐻𝑠) to the top level of reanalysis (𝐻𝑡𝑜𝑝), respectively. 

As the GPS signals travel from the GPS satellites to the ground receivers, they 

experience a delay caused by the atmosphere. The total delay referred to as Zenith 

Total Delay (ZTD), is presented as an apparent additional distance rather than a time-

based delay. Within this delay, a portion known as Zenith Hydrostatic Delay (ZHD) 

is attributed to dry gases like oxygen and nitrogen. The remaining part of the delay, 

known as the Zenith Wet Delay (ZWD), is due to water vapor. Equation 2.13 

illustrates how the ZWD can be computed using the difference between ZTD and 

ZHD.  

𝑍𝑊𝐷 = 𝑍𝑇𝐷 − 𝑍𝐻𝐷   (2.13) 

Where zenith hydrostatic delay (ZHD) can be calculated from the local pressure, with 

the ZHD formula represented by equation 2.14 below [41]: 

𝑍𝐻𝐷 = 2.2768
𝜌𝑠

1−2.66×10−3∙cos(2𝜑𝑠)−2.8×10−7𝐻𝑠
   (2.14) 

Where 𝜌𝑠 is the pressure at the GPS station with a latitude of 𝜑𝑠 and a height of 𝐻𝑠. 



28 

 

This delay can be mathematically represented to acquire zenith total delay (ZTD), 

which demonstrates a close proportionality to integrated water vapor (IWV). 

Therefore, the ZTD can be computed using relationships of temperature (Temp_out) 

and Bar (Pressure) in artificial neural network (ANN) processing in MATLAB. This 

is because ZTD is influenced by variations in temperature and pressure, and changes 

in these atmospheric parameters affect the refractive index of air. As temperature and 

pressure change, the density and refractivity of the atmosphere change accordingly. 

This alteration in refractivity leads to variations in the speed of propagation of 

electromagnetic waves, such as those used in GPS signals, causing delays in their 

travel through the atmosphere, thus affecting ZTD. A unique feature of ANN is that it 

can establish empirical relationships between independent and dependent variables 

and extract subtle information and complex knowledge from representative data sets. 

ANN networks can establish relationships between independent and dependent 

variables without presumptions regarding any specific mathematical depiction of the 

underlying phenomena. This is the reason ZTD is used in determining IWV by using 

ANN. 

2.7 Backpropagation Algorithm 

Artificial Neural Networks (ANNs) employ multiple algorithms extensively 

utilized across various domains to tackle different problems, including classification, 

prediction, and machine learning tasks. One of these algorithms is backpropagation. 

Backpropagation keeps adjusting the weight values that are calculated from input-

output mappings and reduces the error between the correct output value and the target 

value. It iteratively computes the values of weight using the gradient descent algorithm 

[42]. There are three backpropagation algorithms in MATLAB neural network fitting 

which: 



29 

 

1. Levenberg-Marquardt Algorithm 

The Levenberg-Marquardt Algorithm is a widely used computational method for 

solving nonlinear optimization problems. It operates with loss functions represented 

as a sum of squared errors and computes the Jacobian matrix and gradient vector [43]. 

Utilizing these, it approximates the Hessian matrix and adjusts weights and biases 

iteratively to minimize errors. It exhibits characteristics of gradient descent and the 

Newton method based on a damping scalar parameter [44]. 

2. Bayesian Regularization 

Bayesian Regularization transforms nonlinear regression into a statistical problem, 

enhancing neural network training's robustness. It updates weights and biases similarly 

to the Levenberg-Marquardt approach, aiming to minimize a combination of weights 

and squared errors. Training stops based on time, performance achievement, or 

reaching the maximum epochs [44]. 

3. Scaled Conjugate Gradient 

Scaled Conjugate Gradient (SCG) optimizes training by employing conjugate 

directions, avoiding time-consuming line searches [45]. It computes training 

directions without needing Hessian matrix inversion, accelerating convergence 

compared to gradient descent. SCG resets training directions to the negative gradient 

and updates neural network weights based on conjugate parameters. The method 

characteristics is in between Newton's method and gradient descent for efficient 

training [44].  

 



 

 

 

CHAPTER 3  

METHODOLOGY  

In this chapter, we will discuss every process or step that was taken to control and 

deliver a project throughout the implementation process until the project was 

completed. From software installation to how to forecast solar irradiance. Besides, the 

function and meaning of the data pre-processing were also explained in detail in this 

part. This was explained part by part of the process for a better understanding. 

Furthermore, the machine learning model training was explained in more detail, such 

as steps, functions, advantages, and disadvantages of the process used to perform the 

model successfully. Lastly, the method in analyzing the model was also shown, 

including calculating model accuracy and calculating model error. 

 

 



31 

 

Flowchart 

 

Figure 3.1: Project methodology flowchart. 

The flowchart above shows steps required to complete the machine learning-based 

solar irradiance forecasting model using GPS project. The first step is to do research 



32 

 

and study any information related to machine learning solar irradiance forecasting. 

The information obtained is gained from thesis, books, and websites. After conducting 

a background study, the project starts with software installation. The second step is 

collecting solar irradiance data and GPS data. After that, data pre-processing data was 

initiated to extract two relevant features from the collected data which are the 

integrated water vapor (IWV) and total electron content (TEC). If the data is not 

synchronous, data preprocessing needs to be redone for training and forecasting the 

output. For the training model, ANN algorithm is used to train solar irradiance 

forecasting. Then, by making IWV and TEC as the model input, the machine learning 

will produce an output which is a solar radiation forecast.  

  

 

 

   

  

 

     

  

  

 

  

 

 

3.1  Data Collection

Two  datasets  needed  for  this  project  are  GPS  data  and  solar  irradiance  data.

Existing GPS data sources are used by accessing  publicly available GPS datasets from

faculty.  In  this  project,  12  months  of  historical  GPS  data  from  FTKEK  station  is

collected  and stored in a folder named “UTeM GPS Data 2022”.  The location is at (N

2.314100,  E  102.318353)  with  the  area  of  the  GPS  equal  to  8860740.037𝑘𝑚2.  The

data taken is in 2022  and there are  362 days of data with  3  files  in it.  Those 3  data files

are  in  Receiver Independent Exchange Format (RINEX)  file format.  Which is an open-

source standard for raw satellite navigation system data.  *n  file  is  a navigation file, *g

is a GLONASS navigation file and *m is a meteorological data file.  RINEX files are

ASCII based files  that can be open with any text editor.



33 

 

 

 

  

3.2 Data Preprocessing 

3.2.1 Total Electron Content (TEC) data preprocessing 

Total electron content is obtained from GPS-TEC application software developed 

by Dr Gopi Seemala. The application is a useful program that can be used to extract 

GPS-TEC data from the RINEX 2.1 and 3.02 observation files. GPS RINEX files used 

in this project is RINEX 2.11. Firstly, download the latest version of GPS TEC 

analysis (GPS_Gopi_v3.03 analysis application) from Dr Gopi Seemala blogspot 

(https://seemala.blogspot.com/)[38]. This application does not require any installation 

into program files or registry, just must unzip to use it. Figure 3.2 shows the list of 

files contained in the GPS_Gopi_v3.03 application folder.  

Besides, the solar irradiance data is retrieved from weather stations that record solar

radiation data alongside other meteorological parameters.  The weather data and solar

irradiance are obtained from FTKEK weather station located in Melaka, Malaysia (N

2.314100, E 102.318353)).  The file name for the dataset is “Year 2022”.  There are 38

columns  of  data  in  the  Year  2022  file.  Which  includes  Date,  Time,  Temp  Out,  Hi

Temp, Low Temp, Out Hum, Dew Pt., Wind  speed, Wind Dir, Wind run, Hi Speed,

Hi  Dir,  Wind  Chill,  Heat  Index,  THW  Index,  THSW  Index,  Bar,  Rain,  Rain  Rate,

Solar Rad., Solar Energy, Hi Solar Rad., UV Index, UV Dose, Hi UV, Heat D-D, Cool

D-D, In Temp, In Hum, In Dew, In Heat, In EMC, In Air Density, ET, Wind Samp,

Wind Tx, ISS Recept, and Arc. Int. But there  are only  3 columns of data used in this

project,  which is Temp out, Bar/pressure, and Solar Rad.

https://seemala.blogspot.com/


34 

 

 

Figure 3.2: Files in GPS_Gopi_v3.03 application folder [38]. 

 

Next, install visual studio redistributable, VC_redist.x86 (32-bit version). This 

application file is already in the GPS_Gopi_v3.03 folder that was downloaded in the 

first step. After that, open the GPS_TEC.exe application. The user interface of the 

application is as shown in Figure 3.3 below. 

 

Figure 3.3: GPS_TEC.exe user interface. 



35 

 

 

    

 

 

 

 

   

 

  

 

 

Figure 3.4: RINEX 2.1 file format. 

 

While the differential code bias (DCB) files provided by the IGS code website 

(ftp://ftp.unibe.ch/aiub/CODE/) is for satellite biases. It contains two files which is 

Then, the RINEX input file is entered into the GPS TEC  analysis application.  The

RINEX  file  version  for  this  project  is  RINEX  2.1.  The  input  file  or  file  required  is

RINEX  navigation  file  and  RINEX  observation  file  for  the  observation  date  and

differential code bias (DCBs) files. The RINEX navigation file  from FTKEK station

is  to  calculate  the  elevation  and  azimuth  angles  of  the  satellites  for  vertical  TEC

calculation.  While  differential code bias (DCBs) files  are  the systematic errors, inter-

delay,  or  biases,  between  two  GNSS  code  observations  at  the  same  or  different

frequencies.  Nevertheless,  for  GNSS  applications  like  determining  total  electron

content  (TEC)  based  on  receiver  observations  [46,47,48],  it  is  imperative  to  have

knowledge  of  Differential  Code  Biases  (DCBs).  Neglecting  DCBs  can  introduce

errors of several meters in TEC estimations and may even lead to negative ionospheric

delay values  [49].  Furthermore, the RINEX 2.1 file format should be one of the three

formats in Figure 3.4 below.  Since  the file in UTeM GPS dataset filename  is not in

these formats. Therefore,  a python coding in Appendix A and  Appendix B  is used to

change  the  file  name  according  to  the  format  STAT_YYMMDD.YY<x>.  For

example,  Trim202201010000C.22O  for 1 January 2022  observation  file  is changed

to  Trim_220101.22O.

ftp://ftp.unibe.ch/aiub/CODE/


36 

 

P1C1yymm.DCB.Z and P1P1yymm.DCB.Z files. Then place 12months of RINEX 

navigation, RINEX observation and DCB files in 1 folder named “TEC_input” and 

start batch processing option. To start the batch processing, right click on screen and 

add input file. Figure 3.5 show the screenshot that pop up after giving the input file of 

the program. 

 

Figure 3.5: The batch processing and file selection options for the program. 

 

From Figure 3.5 above, setting batch processing options to “This Year-this option 

will process the files of the entire year of the single station (of input file) or all the 

stations if “Is all stations” option is checked.”, set output file path options to 

“TargetDir Different” since want to set the target location to “TEC_output” folder. 

After that, set the output file options to “STD file” because this option will write the 

diurnal average TEC ascii file in the destination directory. The complete batch 

processing and file selection options for the program are as per Figure 3.6 below. 

Then, “Start Process” is clicked to start the batch processing. By pressing this button, 

the program will now start processing the given input(s) and the selected output files 

will be written to the output directory. The graph and task completion notes will be 



37 

 

displayed according to Figure 3.7 once the processing is completed. The output of the 

dataset is in .Std file are written to the “TEC_output” directory as per Figure 3.8 below. 

For example, “Trim001-2022-01-01.Std” is for 1 January 2022 file name. 

 

Figure 3.6: Setting of batch processing and file selection options for the 

program. 

 

 

Figure 3.7: Task processing completed. 

 



38 

 

 

Figure 3.8: Mean TEC output written to “TEC_output” folder. 

After complete preprocessing, the STD file that we obtained is in 4 columns. This 

ascii output file is in 4 columns separated by a tab, which is created in the same folder 

as data with same file name except the extension changes to ".std". The meaning of 

each column is: 

• Column 1: Universal Time (time in UT (it is in decimals, means hrs + 

minutes/60 + Secs/3600, to convert back take integer as hours and multiply the 

fraction part with 60 & 3600 to get minutes & seconds respectively). 

• Column 2:  mean (2 sigma iterated) TEC, "-" (minus sign or hyphen) indicates 

no data.  

• Column 3:  standard deviation of TEC (at second iteration), "-" indicates no 

data.  

• Column 4:  Latitude of the station 



39 

 

Then, a python coding checkstdfile.py as in Appendix C is used to check there are 

how many rows of data in each .Std file. The code is run in command prompt as per 

Figure 3.9 below. The results show that there is total 357 file, 356 file got 1440 mean 

TEC data and 1 file (25 November 2022) got 911 mean TEC data. 1440 data means 

that there are a total of 1440 minutes data per day. 

 

Figure 3.9: Running checkstdfile.py in command prompt. 

 

To make data processing easier, use python code mean_TEC.py as per Appendix D 

to take all second column data (mean TEC data) and put in 1 column data in excel file 

named “output.csv”. The coding is run in command prompt (CMD) as per Figure 3.10 

below. 

 

Figure 3.10: Run mean_TEC.py in CMD to merge all TEC into “ouput.csv” 

file. 



40 

 

3.2.2 Integrated Water Vapor (IWV) data preprocessing 

Based on the research conducted, it is not possible to directly derive Integrated 

Water Vapor (IWV) from preprocessed GPS data. However, through GPS data 

processing, it is feasible to determine zenith total delay (ZTD), which can then be used 

to calculate IWV. zenith total delay (ZTD) is obtained from the RTKLIB software. 

RTKLIB is an open-source program package for GNSS positioning. It enables 

standard and precise positioning algorithms accommodating GPS, GLONASS, 

Galileo, QZSS, BeiDou, and SBAS. Various positioning modes are supported, both 

for real-time and post-processing GNSS data: Single, DGPS/DGNSS, Kinematic, 

Static, Moving-Baseline, Fixed, PPP-Kinematic, PPP-Static, and PPP-Fixed. It also 

supports many standard formats and protocols for GNSS and provides an array of 

library functions and APIs dedicated to GNSS data processing. Firstly, download the 

latest version of the RTKLIB_2.4.2 package from (https://www.rtklib.com/rtklib.htm) 

and install it according to the RTKLIB manual in this link 

(http://www.rtklib.com/prog/manual_2.4.2.pdf).  This software does not require any 

installation into program files or registry, just must unzip to use it. Figure 3.2 shows 

the list of files contained in the RTKLIB_2.4.2 software folder. 

 

Figure 3.11: RTKLAUNCH and launcher icons in RTKLIB. 

 

https://www.rtklib.com/rtklib.htm
http://www.rtklib.com/prog/manual_2.4.2.pdf


41 

 

The application used to preprocess data related to Integrated Vapor (IWV) is a post-

processing analysis tool called RTKPOST. RTKPOST processes standard RINEX 

observation data (versions 2.10, 2.11, 2.12, 3.00, 3.01, 3.02-draft) and navigation 

message files from GPS, GLONASS, Galileo, QZSS, BeiDou, and SBAS. The second 

step is to open the RTKPOST software. Figure 3.12 is the main window of RTKPOST. 

 

Figure 3.12: Main window of RTKPOST. 

 

Click “options” button to set the processing options. For setting 1, choose 

Positioning Mode as PPP Static, Ionosphere correction as Broadcast, troposphere 

Correction as Estimate ZTD and Satellite Ephemeris/Clock as Broadcast. Setting 1 is 

set as per Figure 3.12 below. 



42 

 

 

Figure 3.13: RTKPOST Setting 1. 

 

For Setting 2, set the processing as per Figure 3.14 below. 

 

Figure 3.14: RTKPOST Setting 2. 

 



43 

 

For Output setting, set the processing as per Figure 3.15 below. 

 

Figure 3.15: RTKPOST Output setting. 

 

For Stats setting, set the processing as per Figure 3.16 below. 

 

Figure 3.16: RTKPOST Stats setting. 



44 

 

For Positions, Files, and Misc setting, set the processing as default as per Figure 

3.17, 3.18 and 3.19 below. 

 

Figure 3.17: RTKPOST Positions setting. 

 

 

Figure 3.18: RTKPOST Files setting. 



45 

 

 

Figure 3.19: RTKPOST Misc setting. 

After finishing setting the process, click OK to save the setting. The third step is 

input the RINEX observation data file in the text field (RINEX OBS: Rover) and the 

RINEX navigation data file in the text field (RINEX OBS: Base Station), then choose 

the desired output directory and click “Execute” button to start preprocess the data. 

The processing status is shown in the status message field lower center in the main 

window. When ̋ doneʺ message is shown, the analysis is completed as shown in Figure 

3.20.  

 

Figure 3.20: The completed pre-processing process in RTKPOST. 



46 

 

The dataset needs to be preprocessed day by day. If there is 1 year dataset, the 

preprocessing needs to be done 365 times. Although the manual suggests that data can 

be processed in batches, attempting to do so does not work as expected. Instead, the 

data can only be processed daily, not in the intended batches as described in the 

manual. The output of the zenith total delay (ZTD) for 1 January 2022 from 

RTKPOST is as per Figure 3.21 below. For example, “Trim_220101.pos.stat” is the 

file name for 1 January 2022 ZTD file. 

 

Figure 3.21: Example of output from RTKPOST pre-processing. 

 

From the output obtained, manual book is referred to find the ZTD data. Page 107 

of RTKLIB ver. 2.4.2 Manual Book shows that ZTD is in sixth column in $TROP, 

week,tow,stat,rcv,ztd,ztdf as per description in Figure 3.22 below. 

 

Figure 3.22: Format of solution status file output of RTKPOST. 



47 

 

Before further processing the data, GPS week no. and time of week in second 

(week/tow) is checked to make sure that the output data obtained is correct. The next 

step is to check how many Zenith Total Delay (ZTD) values in each “. stat” file that 

obtained from RTKPOST. To perform this task, a Python code named checkztd.py is 

executed in the command prompt to assess the quantity of ZTD values within each 

.Std file as per Figure 3.23 below. The details of coding of checkztd.py coding are 

presented in Appendix E. 

 

Figure 3.23: checkztd.py is executed in command prompt. 

According to the output of the checkztd.py code, there are 2880 records of zenith 

total delay (ZTD) data in each .stat file, except for specific dates: 25 November 2022 

which has 1822 data, 29 November 2022 which has 2778 data, 5 December 2022 

which has 2879 data and 16 December 2022 which has 2881 data. To make the process 

easier, the data is then extracted to a single .csv folder using extract_ztd_sec.py as per 

Appendix F. This extract_ztd_sec.py coding will take only zenith total delay value per 

day and save in excel .csv file with the same name as input file. The process is done 

in command prompt as presented in Figure 3.24.  



48 

 

 

Figure 3.24: extract_ztd_sec.py is executed in command prompt. 

In ZTD result, 2880 units of data represent the quantity in seconds per day. To 

match the total electron content of 1440 units per day, measured in minutes per day, 

the 2880 units of data must undergo processing to synchronize and align with this 

measurement. Therefore, the next step is to change 2880 units of data (ZTD seconds) 

to 1440 units (ZTD minute) by using extract_ztd_min.py. The detail of the 

extract_ztd_min.py script can be found in Appendix G, and it is run using the 

command prompt as depicted in figure 3.25. 

 

Figure 3.25: extract_ztd_min.py is executed in command prompt. 

The last step for zenith total delay processing is to merge all data into one single 

.csv file. Python code mergedztd.py as in Appendix H is used to merge all data into 

one excel file named “merged_ztd_data.csv”.  



49 

 

3.2.3 Data Repository 

To effectively train the appropriate dataset, it is necessary to consolidate all data 

into a designated folder, ensuring uniformity in the dataset size and synchronous 

timestamps across all included data. A dedicated data repository was established to 

centralize the datasets utilized in both the training and testing phases of the analysis. 

This repository served as a comprehensive collection point for all relevant datasets. In 

this project, the project data directory structure was organized into 7 columns and 

saved in an excel file. The 7 columns included Date, Time, TEC, ZTD, Bar, Temp_out, 

and Solar Rad. Figure 3.26 shows the dataset file in an excel format. Date and time 

are displayed to show the 6-month dataset used in this project. TEC, ZTD, Bar 

(Pressure), and Temp_out are dataset input while Solar Rad. is dataset output. Each 

column housed the specific datasets essential for different aspects of the research, 

ensuring a systematic arrangement and easy accessibility. The datasets within the 

repository were carefully curated and formatted to maintain consistency and facilitate 

seamless data handling during the experimentation phase.  

 

Figure 3.26: Dataset folder in excel file. 



50 

 

In addition, for the 6 months dataset, the optimal or most comprehensive six-month 

dataset is chosen from the processed one-year dataset. This comprehensive six-months 

dataset comprises data from February, March, April, August, September, and October. 

Each input and output dataset contains an equal amount of data, and the specifics of 

these six datasets are detailed in the table below. 

Table 3.1: Dataset folder information. 

No. Month Day in each 

month in 

2022 

Day in the 

dataset 

Days/Dates that 

are not in the 

dataset 

Total 

dataset for 

each month 

1. February 28 days 27 days 17 February 2022 38880 

2. March 31 days 31 days - 44640 

3. April 30 days 29 days 4 April 2022 41760 

4. August 31 days 30 days 15 August 2022 43200 

5. September 30 days 30 days - 43200 

6. October 31 days 31 days - 44640 

 Total: 256320 

 

3.3 Training and Testing suitable Machine Learning Model using 

Preprocessed Dataset  

This part will be discussing how to train and test the preprocessed dataset with suitable 

machine learning model. The process is done in MATLAB GUI toolbox or commonly 

called MATLAB deep learning toolbox. How to input the dataset into MATLAB deep 

learning toolbox, dataset partitioning, model selection and configuration, model 

training, model testing and validation will be discussed in detail in this part. 



51 

 

3.3.1 Input Preprocessed Dataset 

Firstly, installing MATLAB software. The MATLAB software version used in this 

project is MATLAB R2022b. After that, two files are created in MATLAB workspace 

which is Input_new file and Target_new file. Paste the input dataset into Input_new 

file as per Figure 3.27 below, the data has 4 columns and 256320 rows. After that, 

paste the dataset output into Target_new file as per Figure 3.28 below. The output is 

the solar radiation dataset, only in one column.  

 

Figure 3.27: Input_new dataset in MATLAB workspace. 

 

Figure 3.28: Target_new dataset in MATLAB workspace. 



52 

 

3.3.2 Training the Preprocessed Dataset  

The training process starts with opening the MATLAB deep learning toolbox by 

writing “nnstart” in MATLAB Command Window. Next, the interface as in Figure 

3.29 will pop up and ‘fitting’ button is clicked. 

 

Figure 3.29: Neural Network start (nnstart) interface. 

Furthermore, import datasets from workspace and select data for training the 

network. Predictor is the input data while responses is the target or output data. The 

next step is dataset partitioning. The preprocessed dataset was divided into three 

distinct subsets: a training set, a testing set, and a validation set. The dataset was 

divided such that 70% of the data formed the training set for model training. The 

remaining 30% was further split into a testing set of 15% and a validation set of 15% 

to evaluate the model's performance. The layer size can be modified to achieve optimal 

performance for the model. For model training, a backpropagation algorithm is used. 

There are three algorithms that can be chosen which are to train with Levenberg-

Marquardt, Bayesian Regularization, and Scaled Conjugate Gradient as per Figure 

3.30.  



53 

 

 

Figure 3.30: Three Neural Network Fitting training algorithm. 

 

After choosing a suitable algorithm for training, click the train button to start 

training. Figure 3.31 shows the training process is completed. Upon completion of the 

training process, the training state, performance, error histogram and regression plot 

can be obtained from the PLOTS section of the neural network fitting.  

 

Figure 3.31: Training process is completed. 

 



54 

 

3.3.3 Testing the Model 

Next is to test the solar irradiance model that has been trained. “Test” button is 

clicked and interface “Test Network on Workspace Data” as in Figure 3.32 pops out. 

Daily, monthly, or yearly data can be input to the predictors and responses section and 

test the model. For this project, monthly data of February has been tested for solar 

irradiance model evaluation. First, insert a February data input into MATLAB with 

the name “Feb_input.mat” and insert February solar irradiance data as output with 

name “Feb_target.mat”. Click observations in columns or rows to make sure that the 

number of data observations and features is correct before conducting the testing 

process. The regression and error histogram of the tested dataset can be obtained from 

the test section. 

 

Figure 3.32: Testing solar irradiance model. 

 



55 

 

  

 

 

 

 

3.3.4  Validating the Model

Then,  click “Generate Code” in EXPORT section to produce the coding of the  solar

irradiance  model.  The  coding  for  the  model  is  saved  as  "BR10model.m"  and  is

presented  in  detail  within  Appendix  I.  The  code  for  the  solar  irradiance  model  is

utilized for model validation. This validation involves utilizing the dataset obtained

after  running  the  code  to  generate  a  graph  in  MATLAB.  The  graph  showcases  a

comparison  between  measured  solar  irradiance  and  predicted  solar  irradiance.

Measurement  solar  irradiance  is  taken  from  FTKEK  weather  data  solar  radiation.

While the predicted solar irradiance is obtained from the  MATLAB workspace.



 

 

 

CHAPTER 4  

RESULTS AND DISCUSSION 

This chapter included the completed report on its theoretical scope and the best 

neural network model for this project. The analysis results, mean square error (MSE), 

and the Correlation Coefficient (R) were also recorded during the implementation of 

the project. The results for the training and testing of the machine learning model were 

shown in this part. Outputs of the model one by one were shown in this part, including 

details of each result.  

 

 

 

 



57 

 

4.1 Training Model  

In this project, six months of dataset (February, March, April, August, September, 

October) were used for training the models to forecast solar irradiance for February 

2022. Training a model with different algorithms and layer size resulted in different 

output, yielding different mean square error (MSE) and correlation coefficient (R). 

The preprocessed dataset underwent training employing three backpropagation 

algorithms, each utilizing different layer sizes: 5, 8, and 10, as illustrated in Table 4.1. 

During training, the MSE was used as a measure of how well the neural network 

learned the patterns within the training data. It means that the lower the mean square 

error of the model, the better the model training. While the correlation coefficient (R) 

could be used as a measure of how well the predicted values from the neural network 

model align with the actual target values. The correlation coefficient, ranging from -1 

to 1, indicates the degree of closeness between variables. A higher value of R 

approaching 1 signifies a stronger association between the variables, implying a better 

model performance. Therefore, from Table 4.1 below, it is shown that Bayesian 

Regularization algorithm model with 10 hidden layer size is the best model among a 

few algorithms that were tested.  

Table 4.1: MSE and R results when training on different Algorithm and Layer 

size. 

Algorithm Layer Size Mean Square Error 

(MSE) 

Correlation 

Coefficient (R) 

Levenberg-Marquardt 5 22635.0758 0.85149 

8 21671.6315 0.85816 

10 20894.1821 0.86083 

Bayesian Regularization 5 21740.4728 0.85549 



58 

 

8 20899.5107 0.86136 

10 20882.4233 0.86138 

Scaled Conjugate Gradient 5 22413.4795 0.84889 

8 25279.5041 0.83225 

10 24324.8056 0.83575 

 

Figure 4.1 is the neural network training state, which refers to the condition or status 

of the neural network during the training process. Gradient represents slope of tangent 

of graph of function. It indicates the direction where the function experiences a notable 

increase in its rate. 'mu' serves as a governing factor in our modeled back-propagation 

neural network, directly influencing the convergence of errors. Validation checks are 

employed to halt the neural network's learning process. The count of validation checks 

corresponds to the count of consecutive iterations of the neural network. In Figure 4.2, 

a dotted line shows the best training performance plot (MSE plot) is 20882.4233 at 

epoch 144. It is the average of squares of errors or deviation. The histogram in Figure 

4.3 illustrates the error plot of the model training. The distribution exhibits a 

symmetric shape with a significant concentration of data points centered around zero 

error. Both the mean and median values are close to zero, implying a central tendency 

of the data at this point. This suggests that a substantial proportion of the dataset 

records errors near zero, potentially indicating accurate predictions or measurements 

for a particular phenomenon. Figure 4.4 shows the regression plot of the training 

model. The plot displays the relationships between the measurement solar 

irradiance(T) and the predicted solar irradiance (Y). A strong positive correlation 

regression line is observed. However, as the plot extends to the right side, a deviation 

occurs where the regression line falls below the linear regression line Y=T. 



59 

 

 

Figure 4.1: Training State Plot. 

 

 

Figure 4.2: Mean Square Error (MSE) Plot. 



60 

 

 

Figure 4.3: Error Histogram Plot. 

 

 

Figure 4.4: Regression Plot. 

 



61 

 

4.2 Testing Model Plot 

After the training process, one month of data in February was tested. Figure 4.5 

displays the model summary. It provides a comprehensive overview and essential 

information about the trained neural network model, including input data, training 

algorithm, training results, and additional test results. Predictors are the input data, 

responses are output/solar irradiance data. Figure 4.6 is the February error histogram 

plot symmetric shape with a significant concentration of data points centred around 

zero error. While Figure 4.7 shows the regression plot of the additional testing. A 

moderate to weak positive correlation regression line was observed. When the plot 

extends to the right side, the regression line falls below the linear regression line Y=T.  

 

Figure 4.5: The model summary. 



62 

 

 

Figure 4.6: Additional testing Error Histogram Plot. 

 

 

Figure 4.7: Regression Plot for additional test 1 month data (February). 



63 

 

  

   

 

 

  

  

 

 

  

  

4.3  Comparison between Measurement and Predicted Solar Irradiance

To assess the performance of the solar irradiance forecasting model, a dataset from

a single day  (February 1, 2022) and the entire month of February  were  employed to

visualize  both  the  measured  and  predicted  solar  irradiance.  Figure  4.8  shows

comparison between measurement and predicted solar irradiance plot for 1 day data.

Figure  4.9  shows  comparison  between  measurement  and  predicted  solar  irradiance

plot  for  one  month  data  (February).  The  measurement  dataset  comprises  solar

irradiance  data  sourced  from  FTKEK  solar  radiation  records.  Conversely,  the

predicted  solar  irradiance  dataset  originates  from  the  output  data  generated  by

MATLAB software.  This comparison shows that both the measurement and predicted

data have almost the same graph  shape,  stating that the data output from the model is

almost the same as the actual solar irradiance data.  Moreover,  error histogram below

the waveform plot  shows the data difference between measurement and predicted solar

irradiance.  The  histogram  illustrates  a  symmetric  shape  with  a  substantial

concentration  of  data  points  centred  around  zero,  indicating  a  favourable  outcome,

indicating  a  close  alignment  between  the  measured  and  predicted  values  for  solar

irradiance.  Lastly,  the graph plotted in  MATLAB  GUI shows satisfactory results for

this  project.



64 

 

 

Figure 4.8: Comparison between measurement and predicted solar 

irradiance plot for 1 day data. 

 

 

Figure 4.9: Comparison between measurement and predicted solar 

irradiance plot for one month data (February). 

 



65 

 

  

 

 

  

 

 

4.4  Discussion on problems and solutions

There  were a few issues that arose in the process of completing this project. At the

beginning of the project, there were errors in renaming the GPS files to find the TEC.

To address this, various Python coding edits were made and tested numerous times in

the  command  prompt  until  achieving  success  in  renaming  the  files.  The

troubleshooting process consumed significant time due to the iterative nature of testing

different approaches to identify the suitable solution.  When extracting TEC from GPS

Gopi Seemala software also needed to be tested many times until a correct result was

obtained. The large amount of data led  to data processing requiring coding and taking

a longer time.  In addition,  while handling ZTD data, it  was  essential to note that the

processing could not  be executed in a batch mode; rather, it necessitated  a day-by-day

approach.  For  instance,  in  this  study  encompassing  the  2022  dataset  spanning  362

days, the processing protocol mandates the data to be individually processed 362 times

to derive the specific ZTD value for each day.  Moreover, another issue that occurred

was the incomplete GPS data and FTKEK weather data. During the data processing

phase, it  was  crucial to  verify the sufficiency of  data for each day and identify any

dates where the data might be inadequate or insufficient. To overcome this problem,

the data from Excel  was inputted into a table, and a month-by-month assessment  was

conducted to identify dates with insufficient data. Hence, the appropriate six-month

data could  be determined.



 

 

 

CHAPTER 5  

CONCLUSION AND FUTURE WORKS 

5.1 Conclusion 

In conclusion, a machine leaning-based solar irradiance forecasting model using 

GPS has been developed in this study. Throughout this study, the set objectives were 

effectively achieved. Firstly, the study successfully attained the goal of computing 

Atmospheric Integrated Water Vapor (IWV) and Ionospheric Total Electron Content 

(TEC) using GPS datasets. This analysis facilitated a comprehensive understanding of 

crucial meteorological and ionospheric parameters vital for solar irradiance prediction. 

Secondly, employing a meticulously preprocessed dataset, a machine learning model 

was aptly trained. This process involved careful data preparation and selection, 

ensuring the model's optimal learning from the input variables derived from GPS data. 

Finally, the ultimate objective of forecasting solar irradiance utilizing the derived IWV 

and TEC in conjunction with an Artificial Neural Network (ANN) was accomplished. 



67 

 

It is evident that the ANN machine learning model is able to forecast solar irradiance 

with an acceptable degree of accuracy and reliability. The ANN machine learning 

model with Bayesian Regularization algorithm and ten neurons provided the highest 

accuracy with an R of 0.86138 and MSE of 20882.4233. 

The development of this study stands as a significant advancement in solar energy 

prediction. The significance of this model lies in its ability to aid solar energy 

planning, facilitate grid integration, and optimize energy resource allocation, thereby 

contributing to the creation of more efficient and sustainable energy systems. By 

leveraging machine learning techniques and GPS-derived data for solar irradiance 

forecasting, this model provides accurate predictions crucial for planning solar energy 

operations. These forecasts allow stakeholders to anticipate fluctuations in solar 

energy availability, enabling informed decisions on energy storage, distribution, and 

grid management. Additionally, the model aids in effectively integrating solar energy 

into existing power grids by providing reliable forecasts, ensuring a smooth transition 

between different energy sources, and enhancing grid stability. Moreover, its capacity 

to accurately allocate energy resources based on predicted solar irradiance levels 

results in optimized energy utilization, reducing costs and enhancing overall system 

efficiency. As a result, this model serves as a vital tool in fostering the development 

of sustainable energy systems that rely more effectively on renewable energy sources 

while minimizing environmental impact. 

However, the results of the study recorded in Chapter 4 could be improved. Within 

solar irradiance and weather station dataset, the presence of missing values denoted 

by '–' signifies instances where data was absent or unavailable at specific times or 

days. Moreover, notable gaps in the data exist, leading to the loss of 1-2 hours' worth 



68 

 

of data on certain days. These inconsistencies and missing segments pose significant 

challenges in accurately capturing the complete temporal dynamics of solar irradiance 

and weather conditions. Lastly, there were many problems that occurred along with 

the process of developing this project. Thus, the problems encountered can ultimately 

be solved. The ways and steps in problem solving were described in chapter 4. 

 

5.2 Future Work 

Some suggestions for future research work and development to further improve the 

system are recommended in this section: 

a) Addressing the critical aspect of data quality of input data and preprocessing in 

GPS-derived data 

The accuracy of solar irradiance predictions hinges significantly upon the quality 

and preparation of input data. Enhancing data preprocessing techniques involves 

meticulous procedures to filter out noise, correct anomalies, and handle missing or 

incomplete data points within the GPS datasets. By refining data preprocessing 

methodologies and ensuring data accuracy, the reliability and precision of the solar 

irradiance forecasting model can be substantially improved.  

b) Scaling and Geographic Expansion 

This involves scaling and geographic expansion to enhance solar irradiance 

forecasting applicability on a global level. This encompasses adapting the model to 

various geographic regions and diverse environmental conditions, ensuring its 

effectiveness in predicting solar irradiance worldwide. By incorporating data from 



69 

 

different locations and environmental variables, such as topography and weather 

patterns, the model can be optimized to provide accurate forecasts across a broader 

range of geographical areas. Expanding its scope globally would contribute 

significantly to the advancement of solar energy utilization by enabling more precise 

and reliable solar irradiance predictions across diverse regions. 

 

 

 



70 

 

REFERENCES 

[1] C. Voyant et al., “Machine learning methods for solar radiation forecasting: A 

review,” Renewable Energy, vol. 105, pp. 569–582, May 2017, doi: 

https://doi.org/10.1016/j.renene.2016.12.095. 

[2] E. Lorenz, J. Remund, S.C. Müller, W. Traunmüller, G. Steinmaurer, D. Pozo, 

J.A. Ruiz-Arias, V.L. Fanego, L. Ramirez, M.G. Romeo, others, Benchmarking 

of different approaches to forecast solar irradiance, in: 24th Eur. Photovolt. Sol. 

Energy Conf. Hambg. Ger., 2009: p. 25. 

http://task3.ieashc.org/data/sites/1/publications/24th_EU_PVSEC_5BV.2.50_l

orenz_final.pdf (accessed March 4, 2015).  

[3] B. Espinar, J.-L. Aznarte, R. Girard, A.M. Moussa, G. Kariniotakis, 

Photovoltaic Forecasting: A state of the art, in: OTTI - Ostbayerisches 

Technologie-Transfer-Institut, 2010: p. Pages 250-255-ISBN 978-3-941785-

15-1. https://hal-mines-paristech.archives-ouvertes.fr/hal-00771465/document 

(accessed March 4, 2015) 

[4] Mahesh, B. (2020) Machine Learning Algorithms—A Review. International 

Journal of Science and Research, 9, 381-386. x1 



71 

 

[5] T. Oladipupo, “Machine learning overview,” New Advances in Machine 

Learning, 2010. doi:10.5772/9374. 

[6] U. Hemavathi, A. C. Medona, V. Dhilip Kumar, and R. Raja Sekar, “Review 

for the solar radiation forecasting methods based on machine learning 

approaches,” Journal of Physics: Conference Series, vol. 1964, no. 4, p. 042065, 

2021. doi:10.1088/1742-6596/1964/4/042065. 

[7] Shiruru, Kuldeep. (2016). An Introduction to Artificial Neural Network. 

International Journal of Advance Research and Innovative Ideas in Education. 

1. 27-30. 

[8] Breiman, L.: Random Forests. Machine Learning 45 (1) pp. 5–32 (2001) 

[9] Amit, Y., Geman, D.: Shape quantization and recognition with randomized 

trees. NeuralComputation 9(7) pp. 1545-1588 (1997). 

[10] A. Cutler, D. R. Cutler, and J. R. Stevens, “Random forests,” Ensemble 

Machine Learning, pp. 157–175, 2012. doi:10.1007/978-1-4419-9326-7_5. 

[11] A. Natekin and A. Knoll, “Gradient Boosting Machines, a tutorial,” Frontiers 

in Neurorobotics, vol. 7, 2013. doi:10.3389/fnbot.2013.00021. 

[12] J. Fan, X. Wang, L. Wu, H. Zhou, F. Zhang, X. Yu, et al., Comparison of 

Support Vector Machine and Extreme Gradient Boosting for predicting daily 

global solar radiation using temperature and precipitation in humid subtropical 

climates: a case study in China, Energy Convers. Manag. 164 (2018) 102–111. 

[13] M. Guermoui, A. Rabehi, K. Gairaa, S. Benkaciali, Support vector regression 



72 

 

methodology for estimating global solar radiation in Algeria, Eur. Phys. J. Plus 

133(1) (2018) 1–9. 

[14] B. M. Alluhaidah, H. H. Hamed Aly and M. E. El-Hawary, "Performance 

Testing of Different Configurations of Hybrid Proposed Models for Solar 

Radiation Prediction Using WNN and ANN," 2019 IEEE Canadian Conference 

of Electrical and Computer Engineering (CCECE), Edmonton, AB, Canada, 

2019, pp. 1-4, doi: 10.1109/CCECE.2019.8861522. 

[15] L. Benali, G. Notton, A. Fouilloy, C. Voyant, R. Dizene, Solar radiation 

forecasting using artificial neural network and random forest methods: 

application to normal beam, horizontal diffuse and global components, Renew. 

Energy 132 (2019) 871–884. 

[16] M. Fadhil, A. Prastiantono, A. Rahardjo, F. H. Jufri and F. Husnayain, "Solar 

Irradiance Estimation at Certain Location Using Artificial Neural Network and 

ASHRAE Clear-Sky Model," 2019 IEEE International Conference on 

Innovative Research and Development (ICIRD), Jakarta, Indonesia, 2019, pp. 

1-5, doi: 10.1109/ICIRD47319.2019.9074735. 

[17] K. Basaran, A. Ozçift, ¨ D. Kılınç, A new approach for prediction of solar 

radiation with using ensemble learning algorithm, Arabian J. Sci. Eng.(Springer 

Science & Business Media BV) 44 (8) (2019). 

[18] C. N. Obiora, A. Ali and A. N. Hassan, "Predicting Hourly Solar Irradiance 

Using Machine Learning Methods," 2020 11th International Renewable Energy 

Congress (IREC), Hammamet, Tunisia, 2020, pp. 1-6, doi: 

10.1109/IREC48820.2020.9310444. 



73 

 

[19] Z. Pang, F. Niu, Z. O’Neill, Solar radiation prediction using recurrent neural 

network and artificial neural network: a case study with comparisons, Renew. 

Energy 156 (2020) 279–289. 

[20] A. Kurniawan, E. Shintaku, Estimation of the monthly global, direct, and 

diffuse solar radiation in Japan using artificial neural network, Int. J. Mach. 

Learn. Comput. 10 (1) (2020) 253–258. 

[21] M. Burhan Uddin Shahin, A. Sarkar, T. Sabrina and S. Roy, "Forecasting Solar 

Irradiance Using Machine Learning," 2020 2nd International Conference on 

Sustainable Technologies for Industry 4.0 (STI), Dhaka, Bangladesh, 2020, pp. 

1-6, doi: 10.1109/STI50764.2020.9350400. 

[22] Ümit Ağbulut, Ali Etem Gürel, Yunus Biçen, Prediction of daily global solar 

radiation using different machine learning algorithms: Evaluation and 

comparison,Renewable and Sustainable Energy Reviews,Volume 135, 2021, 

110114, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2020.110114. 

[23] Ho, Yih Hwa and Yew, Poh Leng (2022) Solar irradiance forecasting for 

Malaysia using multiple regression and artificial neural network. Defence S &T 

Technical Bulletin, 15 (1). pp. 83-90. ISSN 1985-6571. 

[24] N. Mdluli, G. Sharma, K. Akindeji, K. Narayanan and S. Sharma, 

"Development of Short Term Solar Radiation Forecasting Using AI 

Techniques," 2022 30th Southern African Universities Power Engineering 

Conference (SAUPEC), Durban, South Africa, 2022, pp. 1-6, doi: 

10.1109/SAUPEC55179.2022.9730779. 



74 

 

[25] O. Bamisile, A. Oluwasanmi, C. Ejiyi, N. Yimen, S. Obiora, Q. Huang, 

Comparison of machine learning and deep learning algorithms for hourly 

global/diffuse solar radiation predictions, Int. J. Energy Res. 46 (8) (2022) 

10052–10073. 

[26] S. Tiwari, R. Sabzehgar and M. Rasouli, "Short Term Solar Irradiance Forecast 

Using Numerical Weather Prediction (NWP) with Gradient Boost Regression," 

2018 9th IEEE International Symposium on Power Electronics for Distributed 

Generation Systems (PEDG), Charlotte, NC, USA, 2018, pp. 1-8, doi: 

10.1109/PEDG.2018.8447751. 

[27] P. K. Ray, A. Bharatee, P. S. Puhan and S. Sahoo, "Solar Irradiance Forecasting 

Using an Artificial Intelligence Model," 2022 International Conference on 

Intelligent Controller and Computing for Smart Power (ICICCSP), Hyderabad, 

India, 2022, pp. 1-5, doi: 10.1109/ICICCSP53532.2022.9862494. 

[28] M. Karunanithi, A. A. Sajed Braitea, A. A. Rizvi and T. A. Khan, "Forecasting 

Solar Irradiance Using Machine Learning Methods," 2023 IEEE 64th 

International Scientific Conference on Information Technology and 

Management Science of Riga Technical University (ITMS), Riga, Latvia, 2023, 

pp. 1-4, doi: 10.1109/ITMS59786.2023.10317687.  

[29] S. Sperati, S. Alessandrini, P. Pinson, and G. Kariniotakis, “The ‘weather 

intelligence for renewable energies’ benchmarking exercise on short-term 

forecasting of wind and solar power generation,” Energies, vol. 8, no. 9, pp. 

9594–9619, 2015. doi:10.3390/en8099594. 

[30] Meenal, R., and Selvakumar, A. I. (2018). Assessment of SVM, empirical and 



75 

 

ANN based solar radiation prediction models with most influencing input 

parameters. Renew. Energy 121, 324–343. doi: 10.1016/j.renene.2017.12.005 

[31] Pang, Z., Niu, F., and O’Neill, Z. (2020). Solar radiation prediction using 

recurrent neural network and artificial neural network: a case study with 

comparisons. Renew. Energy 156, 279–289. doi: 

10.1016/j.renene.2020.04.042. 

[32] Shamshirband, S., Mosavi, A., Rabczuk, T., Nabipour, N., and Chau, K. W. 

(2020). Prediction of significant wave height; comparison between nested grid 

numerical model, and machine learning models of artificial neural networks, 

extreme learning and support vector machines. Eng. Appl. Comput. Fluid 

Mech. 14, 805–817. doi: 10.1080/19942060.2020.1773932. 

[33] Angra, S., and Ahuja, S. (2017). “Machine learning and its applications: a 

review,” in Proceedings of the 2017 International Conference On Big Data 

Analytics and Computational Intelligence, ICBDACI 2017, (Piscataway, NJ: 

IEEE), 57–60. doi: 10.1109/ICBDACI.2017.8070809. 

[34] E. D. Lopez Izurieta, E. Toapanta Guamanarca, and H. Barbier, “Ionospheric 

Total Electron Content (TEC) above Ecuador,” Journal of Physics: Conference 

Series, vol. 2238, no. 1, p. 012010, 2022. doi:10.1088/1742-

6596/2238/1/012010  

[35] N. Yaacob, M. Abdullah, and M. Ismail, ‘GPS Total Electron Content (TEC) 

Prediction at Ionosphere Layer over the Equatorial Region’, Trends in 

Telecommunications Technologies. InTech, Mar. 01, 2010. doi: 10.5772/8474. 



76 

 

[36] Abdullah, “TEC and Scintillation Study of Equatorial Ionosphere: A month 

campaign over Sipitang and Parit Raja stations, Malaysia,” American Journal 

of Engineering and Applied Sciences, vol. 2, no. 1, pp. 44–49, 2009. 

doi:10.3844/ajeas.2009.44.49  

[37] Bhattarai, Niraj & Chapagain, N. & Adhikari, Binod.,"Total Electron Content 

and Electron Density Profile Observations during Geomagnetic Storms using 

COSMIC Satellite Data",Study of Total Electron Content-TEC and electron 

density profile during geomagnetic storms,Discovery The International journal. 

1979-1996(2018).   

[38] G. Seemala, “GPS-Tec Analysis Software,” Academia.edu, 

https://www.academia.edu/23913567/GPS_TEC_analysis_software (accessed 

Jan. 9, 2024). 

[39] E. K. Makama and H. S. Lim, “Variability and trend in integrated water vapour 

from era-interim and IGRA2 observations over Peninsular Malaysia,” 

Atmosphere, vol. 11, no. 9, p. 1012, 2020. doi:10.3390/atmos11091012  

[40] P. Yuan et al., “Characterisations of Europe’s integrated water vapour and 

assessments of atmospheric reanalyses using more than 2 decades of ground-

based GPS,” Atmospheric Chemistry and Physics, vol. 23, no. 6, pp. 3517–

3541, 2023. doi:10.5194/acp-23-3517-2023  

[41] J. Morland and C. Mätzler, “Spatial interpolation of GPS integrated water 

vapour measurements made in the Swiss alps,” Meteorological Applications, 

vol. 14, no. 1, pp. 15–26, 2007. doi:10.1002/met.2  



77 

 

[42] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by 

back-propagating errors, nature, vol. 323, no. 6088, p. 533, 1986. 

[43] Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic 

optimization. arXiv preprint arXiv:1412.6980 (2014). 

[44] A. A. Bataineh and D. Kaur, "A Comparative Study of Different Curve Fitting 

Algorithms in Artificial Neural Network using Housing Dataset," NAECON 

2018 - IEEE National Aerospace and Electronics Conference, Dayton, OH, 

USA, 2018, pp. 174-178, doi: 10.1109/NAECON.2018.8556738.  

[45] M. F. Mller, A scaled conjugate gradient algorithm for fast supervised learning, 

Neural networks, vol. 6, no. 4, pp. 525533, 1993. 

[46] Jin R., Jin S., Feng G. M_DCB: Matlab code for estimating GNSS satellite and 

receiver differential code biases. GPS Solut. 2012;16:541–548. doi: 

10.1007/s10291-012-0279-3. 

[47] Li H., Xiao J., Zhu W. Investigation and Validation of the Time-Varying 

Characteristic for the GPS Differential Code Bias. Remote Sens. 2019;11:428. 

doi: 10.3390/rs11040428. 

[48] Conte J.F., Azpilicueta F., Brunini C. Accuracy assessment of the GPS-TEC 

calibration constants by means of a simulation technique. J. Geod. 2011;85:707. 

doi: 10.1007/s00190-011-0477-8. 

[49] Sardon E., Rius A., Zarraoa N. Estimation of the transmitter and receiver 

differential biases and the ionospheric total electron content from Global 

Positioning System observations. Radio Sci. 1994;29:577–586. doi: 



78 

 

10.1029/94RS00449. 

 

 

 

  



79 

 

APPENDICES 

Appendix A 

import os 

import zipfile 

 

# Directory where the zipped folders are located 

zipped_folders_directory = 'C:/Users/ACER/Desktop/rename/UTeM GPS Data 

2022'  # Replace with the actual path to your zipped folders 

 

# Directory where you want to save the renamed files 

output_directory = 'C:/Users/ACER/Desktop/rename/obs_edited'  # 

Replace with the desired output directory 

 

# Loop through each zipped folder 

for root, _, files in os.walk(zipped_folders_directory): 

    for filename in files: 

        if filename.endswith(".zip"): 

            zip_file_path = os.path.join(root, filename) 

            try: 

                with zipfile.ZipFile(zip_file_path, 'r') as zip_ref: 

                    for inner_filename in zip_ref.namelist(): 

                        if inner_filename.endswith(".22O"):  # Change 

".22O" to your actual file extension 

                            # Extract the relevant parts of the 

filename 

                            year_part = inner_filename[6:8]  # Adjust 

indices based on your actual filenames 

                            extension = inner_filename[-3:]   # Adjust 

indices based on your actual filenames 

 

                            # Construct the new filename 

                            new_filename = 

f"Trim_{year_part}{inner_filename[8:12]}.{extension}" 

 

                            # Extract the file to a temporary 

directory 



80 

 

                            with zip_ref.open(inner_filename) as 

source_file: 

                                temp_path = 

os.path.join(output_directory, new_filename) 

                                with open(temp_path, 'wb') as 

destination_file: 

                                    destination_file.write(source_file

.read()) 

 

                                print(f"Renamed file: {inner_filename} 

to {new_filename}") 

            except zipfile.BadZipFile: 

                print(f"Skipping invalid zip file: {zip_file_path}") 

 

print("Files with '.22O' extension within valid zip archives renamed 

successfully.") 

 

 

 

 

 

 

 

 

 

 

 

 



81 

 

Appendix B 

import os 

import zipfile 

# Directory where the zipped folders are located 

zipped_folders_directory = 'C:/Users/ACER/Desktop/rename/UTeM GPS Data 

2022'  # Replace with the actual path to your zipped folders 

# Directory where you want to save the renamed files 

output_directory = 'C:/Users/ACER/Desktop/rename/nav_edited'  # 

Replace with the desired output directory 

 

# Loop through each zipped folder 

for root, _, files in os.walk(zipped_folders_directory): 

    for filename in files: 

        if filename.endswith(".zip"): 

            zip_file_path = os.path.join(root, filename) 

            try: 

                with zipfile.ZipFile(zip_file_path, 'r') as zip_ref: 

                    for inner_filename in zip_ref.namelist(): 

                        if inner_filename.endswith(".22N"):  # Change 

".22N" to your actual file extension 

                            # Extract the relevant parts of the 

filename 

                            year_part = inner_filename[6:8]  # Adjust 

indices based on your actual filenames 

                            extension = inner_filename[-3:]   # Adjust 

indices based on your actual filenames 

                            # Construct the new filename 

                            new_filename = 

f"Trim_{year_part}{inner_filename[8:12]}.{extension}" 

                            # Extract the file to a temporary 

directory 

                            with zip_ref.open(inner_filename) as 

source_file: 

                                temp_path = 

os.path.join(output_directory, new_filename) 

                                with open(temp_path, 'wb') as 

destination_file: 

                                    destination_file.write(source_file

.read()) 

 

                                print(f"Renamed file: {inner_filename} 

to {new_filename}") 

            except zipfile.BadZipFile: 

                print(f"Skipping invalid zip file: {zip_file_path}") 

 

print("Files with '.22N' extension within valid zip archives renamed 

successfully.") 



82 

 

Appendix C 

import pandas as pd 

import os 

 

# Function to extract second column data from .Std files and count 

rows 

def extract_and_count_rows(file_path): 

    data = pd.read_csv(file_path, delim_whitespace=True, header=None) 

    second_column = data.iloc[:, 1]  # Extracting the second column 

    row_count = len(second_column)  # Counting the number of rows 

    return row_count 

 

# Path to the folder containing .Std files 

folder_path = 'C:/Users/ACER/Desktop/GPS TEC/TEC_output' 

 

# List all files in the folder 

file_list = os.listdir(folder_path) 

 

# Filter only .Std files 

std_files = [file for file in file_list if file.endswith('.Std')] 

 

# Loop through each .Std file, extract second column data, and count 

rows 

for file in std_files: 

    file_path = os.path.join(folder_path, file) 

    row_count = extract_and_count_rows(file_path) 

    print(f"File: {file}, Rows in Second Column: {row_count}") 

 

 

 

 

 

 

 



83 

 

Appendix D 

import pandas as pd 

import os 

 

# Function to extract second column data from .Std files 

def extract_second_column(file_path): 

    data = pd.read_csv(file_path, delim_whitespace=True, header=None) 

    second_column = data.iloc[:, 1]  # Extracting the second column 

    return second_column 

 

# Path to the folder containing .Std files 

folder_path = 'C:/Users/ACER/Desktop/GPS TEC/TEC_output' 

 

# List all files in the folder 

file_list = os.listdir(folder_path) 

 

# Filter only .Std files 

std_files = [file for file in file_list if file.endswith('.Std')] 

 

# Create an empty DataFrame to store the second column data 

all_data = pd.DataFrame() 

 

# Loop through each .Std file, extract second column data, and append 

to the DataFrame 

for file in std_files: 

    file_path = os.path.join(folder_path, file) 

    second_column_data = extract_second_column(file_path) 

    all_data = pd.concat([all_data, second_column_data], axis=0, 

ignore_index=True) 

 

# Specify the directory where you want to save the output .csv file 

output_directory = 'C:/Users/ACER/Desktop/GPS TEC' 

 

# Create the directory if it doesn't exist 

os.makedirs(output_directory, exist_ok=True) 

 

# Define the path to save the output .csv file 

output_csv_path = os.path.join(output_directory, 'output.csv') 

 

# Write the extracted data into a single .csv file in the specified 

directory 

all_data.to_csv(output_csv_path, index=False, 

header=['Second_Column_Data']) 

 

 

 

 



84 

 

Appendix E 

 

 

import os 

import csv 

import glob 

 

def count_sixth_column(file_path): 

    with open(file_path, 'r') as file: 

        lines = file.readlines() 

        count = 0 

        for line in lines: 

            if line.startswith("$TROP"): 

                columns = line.strip().split(',') 

                if len(columns) >= 6: 

                    count += 1 

    return count 

 

if __name__ == "__main__": 

    folder_path = 'C:/Users/ACER/Desktop/rename/ZTD_stat/*.stat'  # 

Change this to your folder path 

    stat_files = glob.glob(folder_path) 

 

    for file in stat_files: 

        count = count_sixth_column(file) 

        print(f"File: {file} - Sixth column count in $TROP rows: 

{count}") 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



85 

 

Appendix F 

 

 

import os 

import csv 

import glob 

 

def extract_sixth_column(file_path): 

    with open(file_path, 'r') as file: 

        lines = file.readlines() 

        extracted_data = [] 

        for line in lines: 

            if line.startswith("$TROP"): 

                columns = line.strip().split(',') 

                if len(columns) >= 6: 

                    sixth_column = columns[5] 

                    extracted_data.append([sixth_column]) 

    return extracted_data 

 

def save_to_csv(data, file_path, output_folder): 

    file_name = os.path.basename(file_path) 

    csv_file_path = os.path.join(output_folder, 

file_name.replace('.stat', '_extracted.csv')) 

    with open(csv_file_path, 'w', newline='') as csvfile: 

        writer = csv.writer(csvfile) 

        writer.writerows(data) 

 

if __name__ == "__main__": 

    input_folder_path = 

'C:/Users/ACER/Desktop/rename/in_ztdsec/*.stat'  # Change this to your 

input folder path 

    output_folder_path = 'C:/Users/ACER/Desktop/rename/out_ztdsec'  # 

Change this to your output folder path 

 

    if not os.path.exists(output_folder_path): 

        os.makedirs(output_folder_path) 

 

    stat_files = glob.glob(input_folder_path) 

 

    for file in stat_files: 

        extracted_data = extract_sixth_column(file) 

        if extracted_data: 

            save_to_csv(extracted_data, file, output_folder_path) 

 

 

 

 

 



86 

 

Appendix G 

 

 

import os 

import pandas as pd 

 

# Define the folder path where your CSV files are located 

input_folder_path = 'C:/Users/ACER/Desktop/rename/out_ztdsec' 

 

# Define the folder path where you want to save the new CSV files 

output_folder_path = 'C:/Users/ACER/Desktop/rename/out_ztdmin' 

 

# Create the output folder if it doesn't exist 

os.makedirs(output_folder_path, exist_ok=True) 

 

# List all files in the input folder 

files = os.listdir(input_folder_path) 

 

# Filter only CSV files 

csv_files = [file for file in files if file.endswith('.csv')] 

 

# Process each CSV file 

for file in csv_files: 

    file_path = os.path.join(input_folder_path, file) 

     

    # Read the CSV file into a pandas DataFrame, skip the first row as 

it doesn't contain headers 

    df = pd.read_csv(file_path, header=None) 

     

    # Extract only the data from even rows (2, 4, 6, etc.) 

    even_rows_data = df.iloc[1::2]  # Extracts rows starting from 

index 1, skipping one row 

     

    # Get the file name (without extension) 

    file_name, file_extension = os.path.splitext(file) 

     

    # Define the output file path in the output folder 

    output_file_path = os.path.join(output_folder_path, 

f"{file_name}_even_rows.csv") 

     

    # Write the even rows' data to a new CSV file in the output folder 

    even_rows_data.to_csv(output_file_path, index=False, header=False) 

 

 

 



87 

 

Appendix H 

import os 

import pandas as pd 

 

# Directory containing your CSV files 

directory = 'C:/Users/ACER/Desktop/rename/out_ztdmin' 

 

# List all CSV files in the directory 

csv_files = [file for file in os.listdir(directory) if 

file.endswith('.csv')] 

 

# Initialize an empty list to store data 

data = [] 

 

# Read each CSV file and append its content to the 'data' list 

for file in csv_files: 

    file_path = os.path.join(directory, file) 

    df = pd.read_csv(file_path, header=None)  # Assuming no header in 

each CSV 

    data.append(df) 

 

# Concatenate all data into a single DataFrame 

merged_data = pd.concat(data, axis=0, ignore_index=True) 

 

# Write the merged data to a new CSV file 

merged_data.to_csv('merged_ztd_data.csv', index=False, 

header=False)  # Change 'merged_data.csv' to your desired output file 

name 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



88 

 

Appendix I 

 

 
% Solve an Input-Output Fitting problem with a Neural Network 
% Script generated by Neural Fitting app 
% Created 06-Jan-2024 01:01:49 
% 
% This script assumes these variables are defined: 
% 
%   Input_new - input data. 
%   Target_new - target data. 
 
x = Input_new'; 
t = Target_new'; 
 
% Choose a Training Function 
% For a list of all training functions type: help nntrain 
% 'trainlm' is usually fastest. 
% 'trainbr' takes longer but may be better for challenging problems. 
% 'trainscg' uses less memory. Suitable in low memory situations. 
trainFcn = 'trainbr';  % Bayesian Regularization backpropagation. 
 
% Create a Fitting Network 
hiddenLayerSize = 10; 
net = fitnet(hiddenLayerSize,trainFcn); 
 
% Choose Input and Output Pre/Post-Processing Functions 
% For a list of all processing functions type: help nnprocess 
net.input.processFcns = {'removeconstantrows','mapminmax'}; 
net.output.processFcns = {'removeconstantrows','mapminmax'}; 
 
% Setup Division of Data for Training, Validation, Testing 
% For a list of all data division functions type: help nndivision 
net.divideFcn = 'dividerand';  % Divide data randomly 
net.divideMode = 'sample';  % Divide up every sample 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 
 
% Choose a Performance Function 
% For a list of all performance functions type: help nnperformance 
net.performFcn = 'mse';  % Mean Squared Error 
 
% Choose Plot Functions 
% For a list of all plot functions type: help nnplot 
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 
    'plotregression', 'plotfit'}; 
 
% Train the Network 
[net,tr] = train(net,x,t); 
 
% Test the Network 
y = net(x); 
e = gsubtract(t,y); 
performance = perform(net,t,y) 
 
% Recalculate Training, Validation and Test Performance 
trainTargets = t .* tr.trainMask{1}; 



89 

 

valTargets = t .* tr.valMask{1}; 
testTargets = t .* tr.testMask{1}; 
trainPerformance = perform(net,trainTargets,y) 
valPerformance = perform(net,valTargets,y) 
testPerformance = perform(net,testTargets,y) 
 
% View the Network 
view(net) 
 
% Plots 
% Uncomment these lines to enable various plots. 
%figure, plotperform(tr) 
%figure, plottrainstate(tr) 
%figure, ploterrhist(e) 
%figure, plotregression(t,y) 
%figure, plotfit(net,x,t) 
 
% Deployment 
% Change the (false) values to (true) to enable the following code blocks. 
% See the help for each generation function for more information. 
if (false) 
    % Generate MATLAB function for neural network for application 
    % deployment in MATLAB scripts or with MATLAB Compiler and Builder 
    % tools, or simply to examine the calculations your trained neural 
    % network performs. 
    genFunction(net,'myNeuralNetworkFunction'); 
    y = myNeuralNetworkFunction(x); 
end 
if (false) 
    % Generate a matrix-only MATLAB function for neural network code 
    % generation with MATLAB Coder tools. 
    genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes'); 
    y = myNeuralNetworkFunction(x); 
end 
if (false) 
    % Generate a Simulink diagram for simulation or deployment with. 
    % Simulink Coder tools. 
    gensim(net); 
end 
 

 

 




