DEVELOPMENT OF A PI SPEED CONTROLLER FOR DC MOTOR DRIVE USING RABBIT MICROPROCESSOR

LEONG CHEE MENG

MAY 2008

C Universiti Teknikal Malaysia Melaka

"I hereby declared that I have read through this report and found that it has comply the partial fulfilment for awarding the degree of Bachelor of Electrical Engineering (Power Electronic and Drive)"

Signature	
:	
Supervisor's Name	
:	
Date	
:	

DEVELOPMENT OF A PI SPEED CONTROLLER FOR DC MOTOR DRIVE USING RABBIT MICROPROCESSOR

LEONG CHEE MENG

This Report Is Submitted In Partial Fulfilment of Requirement for the Degree of Bachelor in Electrical Engineering (Power Electronic and Drive)

> Fakulti Kejuruteraan Elektrik Universiti Teknikal Malaysia Melaka

> > May 2008

"I hereby declared that this report is a result of my own work except for the excerpts that have been cited clearly in the references."

Signature	
:	
Name	
Date	
:	
 Date 	

To beloved father and mother

ACKNOWLEDGEMENT

First of all, I would like to express my gratitude to my supervisor, Professor Madya Dr Zulkifilie Bin Ibrahim for his guidance and precious information along the progress of this project in order to fulfil my research.

Professor Madya Dr Zulkifilie Bin Ibrahim has been supportive and kind in consulting and assisting me in a very professional manner throughout the execution of this project. I am exceptionally grateful to be able to gain enormous knowledge from Professor in different aspects.

Finally, I would like to thank my parents who have fully supported me along the way to finish this research project. Not forgotten to my friends and course mates who have assisted and given important advice to me in the effort to complete this research project.

ABSTRACT

The title of this project is 'Development of PI Speed Controller for DC Motor Drive Using Rabbit Microprocessor'. This project involves the tasks of designing, developing and system interfacing to realize a PI speed controller mainly for dc motor drive by using the Rabbit Microprocessor. This report traces the development process, from its design stages to construction, and finally the functional testing of the software implementation on the hardware prototype.

The overall PI speed controller developed is based on digital implementation with the application of an eight bit Rabbit Microprocessor. The designation of this project can greatly eliminates the present mechanical or electronic analogue based controller. In this project, it needs both hardware and software development in order to achieve the target of the project. The main hardware implementation in this project is Rabbit microprocessor. Rabbit microprocessor is chosen due to its several specifications and features which can be utilised with low voltage consumption

Hence the completion of this PI digital controller will be an effective and reliable control prototype in industrial world.

ABSTRAK

Projek ini bertajuk "Pembangunan pengawal kelajuan digital *PI* untuk aplikasi motor *DC* dengan menggunankan mikropemproses Rabbit." Projek ini merangkumi kerja merekabentuk, membangun dan membina untuk menghasilkan satu pengawal kelajuan PI khusus untuk diaplikasikan ke atas motor *DC*. Laporan ini mencatatkan kesemua proses perlaksanaan dari rekabentuk sehingga ke pembinaan dan seterusnya pengujian fungsi ke atas prototaip yang telah dihasilkan.

Secara keseluruhanya, pengawal kelajuan *PI* adalah berasaskan digital implimentasi oleh mikropemproses Rabbit. Ini dapat mengantikkan penggunaan system pengawal lama yang berasaskan mekanikal atau elektronik analog. Perlaksanan projek ini memerlukan pembangunan kedua-dua *hardware* dan *software* bagi menghasilkan satu system pengawal *PI*. Mikropemproses Rabbit dipilih sebagai perkakasan yang utama disebabkan ciri-ciri unikya.

Dengan itu, hasil perlaksanaan projek ini akan menyediakan satu pengawal kelajuan digital *PI* yang efektif untuk diaplikasikan di dunia industri.

CONTENTS

CHAPTER	TOF	PIC	PAGE
	DEC	ii	
	DEI	iii	
	ACH	KNOWLEDGEMENT	iv
	ABS	SRACT	v
	ABS	vi	
	CON	vii	
	LIST	Γ OF FIGURES	X
	LIST	Γ OF TABLES	xii
	LIS	Γ OF ABBREVIATIONS	xiii
	LIS	Γ OF APPENDICES	xiv
1	INT	RODUCTION	
	1.1	Background of Project	1
	1.2	Objectives	2
	1.3	Scopes	3
2	THE	EORY AND LITERATURE REVIEW	
	2.1	Embedded Microcontroller	4
	2.2	DC Motor Speed Control	5
		2.2.1 Digital Speed Controller for DC Motor	7
	2.3	Proportional-Integral (PI) Controller	7
		2.3.1 Propotional-Integral Control	8
		2.3.2 Digital PI controller	9
		2.3.3 PID Controller Tuning Method	9
		2.3.3.1 Manual Tuning	10
3	ME	THODOLOGY	
	3.1	Project Description	12
	3.2	Project Implementation	15

	3.2.1	Project	Flowchart	15		
	3.2.2	Project	Gantt Chart	16		
3.3	Hardv	Hardware Development				
	3.3.1	Rabbit Core Module 3100				
		3.3.1.1	Rabbit 3000 Microprocessor	19		
		3.3.1.2	Why Rabbit 8-bit Microprocessor?	22		
		3.3.1.3	Overview of On-Chip Peripherals	23		
			and Features			
			3.3.1.3.1 Parallel I/O	23		
			3.3.1.3.2 Pulse Width	24		
			Modulation Outputs			
	3.3.2	RCM30	000 Prototyping Board	25		
	3.3.3	DC Mot	or with Speed Sensor	27		
		3.3.3.1	Overview of DC Motor Speed	27		
			Control			
		3.3.3.2	DC Motor	29		
	3.3.4	H-bridg	e DC Motor Driver	30		
		3.3.4.1	Voltage Control by PWM Methods	30		
		3.3.4.2	Operation of H-bridge Circuit	30		
		3.3.4.3	Development of DC Motor Driver	32		
	3.3.5	Speed F	Seedback Circuit	36		
3.4	Softw	are Deve	lopment	38		
	3.4.1	Overvie	ew of Dynamic C Software	38		
		Develop	oment			
	3.4.2	Code B	uilding with Dynamic C	39		
	3.4.3	Softwar	e Development for Project	40		
		Implem	entation			
		3.4.3.1	Board Initialization	41		
		3.4.3.2	Ports Initialization	41		
		3.4.3.3	Write and Read From I/O Ports	43		
		3.4.3.4	PWM Generation	44		
		3.4.3.5	Realization of PI Algorithm	49		
		3.4.3.6	Development of the Overall	51		
			Structure for Speed Controller			
			Program			
	3.4.4	Memor	y Mapping for Rabbit Microprocessor	54		

3.5	Labor	atory and	l Measurement Equipments	57
	3.5.1	Laborat	cory Power Supply	57
	3.5.2	Oscillo	scope	58
3.6	Exper	imental S	Setup	60
	3.6.1	Hardwa	re Setup and Integration	60
		3.6.1.1	RCM3100 and its Prototyping Board	60
			Setup	
		3.6.1.2	DC Motor Driver Setup	63
		3.6.1.3	Speed Feedback Circuit Setup	64
	3.6.2	Hardwa	re Integration	65
LAI 4.1	Overv	iew	AND RESULTS ANALTSIS	68
4.1	Overv	iew		68
4.2	Exper	imental I	Procedures	69
4.3	Result	ts Analys	is	73
4.4	Result	ts Discus	sion	87
CON	NCLUS	ION		
5.1	Concl	usion and	d Future Recommendation	88
REF	EREN	CE		90
APP	ENDIX	KES		92

LIST OF FIGURES

NO TITLE

PAGE

2.1	Block diagram of automatic speed control system	6
3.1	Block diagram of PI speed controller system for DC motor	13
3.2	Flowchart of project implementation	15
3.3	Gantt chart of project implementation for PSM1	16
3.4	Gantt chart of project implementation for PSM2	17
3.5	Rabbit Core Module 3100	18
3.6	The Rabbit 3000 microprocessor	19
3.7	Rabbit 3000 block diagram	21
3.8	Cascaded output registers for parallel ports	23
3.9	Conceptual module of PWM channel	25
3.10	RCM3000 prototyping board	26
3.11	Graph motor speed Vs armature voltage	29
3.12	DC motor	30
3.13	Internal block diagram of L6205 DMOS Dual Full Bridge	34
	Driver	
3.14	Schematic diagram for the connection of dc motor driver	35
3.15	DC motor driver	36
3.16	Block diagram of speed feedback circuit	36
3.17	Schematic diagram of speed feedback circuit	37
3.18	Speed feedback circuit	38
3.19	Dynamic C code building process	40
3.20	Parallel port initialization block diagram	42
3.21	Port initialization	44
3.22	Flow to generate PWM signal	46
3.23	PWM signal generated with 20% duty cycle	47
3.24	PWM signal generated with 50% duty cycle	47
3.25	PWM signal generated with maximum duty cycle	48
3.26	Open drain mode and spread mode of PWM signal	48

3.27	Source code of PI algorithm	49
3.28	Flowchart to develop PI algorithm	50
3.29	User defined parameters in the software	52
3.30	Flowchart for the overall structure of speed controller program	53
3.31	State diagram for the overall structure of speed controller	54
	program	
3.32	Addressing memory component	55
3.33	Actual Memory Mapping For PI Speed Controller Program	56
3.34	Power Supply	57
3.35	Oscilloscope and probe	59
3.36	Block diagram of hardware interfacing	66
3.37	Hardware interfacing	67

LIST OF TABLES

NO	TITLE	PAGE
2.1	Criteria for Choosing PI tuning method	10
2.2	Effect of the PID parmeters	10
3.1	Truth table of L6205 DMOS Dual Bridge Driver	33
3.2	Components used in building motor driver	35
3.3	Components used in building speed feedback circuit	37
3.4	Specification of oscilloscope	59
3.5	Specification of oscilloscope probe	59
3.6	The pin configuration of RCM3100	63
3.7	The pin configuration of DC motor driver	64
3.8	The pin configuration of speed feedback circuit	65
4.1	Speed behaviours for different Kp and Ki parameters	80
4.2	Speed behaviours for different step reference setpoints	83

LIST OF ABBREVIATIONS

PI	- Proportional-Integral
PID	- Proportional-Integral-Derivative
DC	- Direct Current
PWM	- Pulse Width Modulated
PC	- Personal Computer
CPU	- Centre Processing Unit
HID	- Human Interface Devices
I/O	- Input and Output
RAM	- Random Access Memory
GUI	- Graphical User Interface
ROM	- Read Only Memory
MCU	-Micro Controlling Unit
RCM	- Rabbit Core Module
PLC	- Programmable Logic Controller
MOSFET	- Metal Oxide Semiconductor Field Effect Transistor

LIST OF APPENDICES

NO TITLE

PAGE

А	Source code of speed controller for step reference	92
В	Source code of speed controller for ramp reference	93
С	Overall memory mapping of program	94
D	Datasheet of Rabbit Core Module 3100	95
E	Datasheet of L6205 DMOS Dual Full Bridge Driver	96
F	Datasheet of ADC0802	97

CHAPTER 1

INTRODUCTION

1.1 Background of Project

The use of PI (Proportional-Integral) controller technique has become common in industrial application despite continual advances in control theory. It is widely used as control loop feedback mechanism for various closed loop systems. The PI controller attempts to eliminate the error between the measured process variable and the desired value set point by computing and providing corrective action to adjust the input signal accordingly. Thus the system can gain stability and independent to external disturbances. In this project, the PI controller is used to control a DC motor which is part of actuation system.

The reasons of the popularity of PI controller in industries are due to the simplicity of its structure and can be used to control most of the control processes in industrial plant. The conventional PI controllers mainly constructed based on the mechanical or electronic analog devices. However both types of these controllers are no longer suitable in industrial world. The mechanical type PI controller (pneumatic controller) often requires costly maintenance because mechanical wear will leads to control degradation. While electronic analog based controller that constructed using analog components faces constraints of accurate control, environmental disturbances and difficulties in manual tuning.

Hence this project focuses on the development of a digital PI speed controller for a DC motor drive using 8 bit Rabbit Microprocessor. Digital controller implementation has the advantages as they are relatively cheap, highly reliable and reasonably flexible with respect to the implementation of the PI speed controller algorithm. The developed controller system will enable the control of motor speed via software implementation on the Rabbit microprocessor.

1.2 Objectives

The title of this project is 'Development of a PI Speed Controller for DC Motor Drive Using Rabbit Microprocessor'. The aim of this project is to develop an embedded PI speed controller system with Rabbit Core Module 3100 microprocessor as the main controller of the closed-loop system.

The main objectives are:

- To develop a digital Proportional-Integral (PI) speed controller system using Rabbit Microprocessor.
- To develop a closed-loop variable speed control for DC motor drive that consists of Rabbit microprocessor, DC motor, motor driver, and other supporting components.
- To develop an embedded speed control prototype that is suitable for industrial application.

The project execution can be categorized into scopes of:

- Develop a closed-loop system for DC motor by implementing PI control method through Rabbit Microprocessor.
- Design and construct a DC motor power drive for variable speed application.
- Develop PI speed controller algorithm on Rabbit Microprocessor.
- Interface and implement DC motor drive with PI speed control algorithm and test the functionality of the prototype under various environments and tasks.

C Universiti Teknikal Malaysia Melaka

CHAPTER 2

THEORY AND LITERATURE REVIEW

2.1 Embedded Microcontroller

Embedded microcontroller is a devise that perform embedded control. The main differentiating feature of an embedded controller is that all system operation is not controlled by external PC. In fact the CPU running the system is actually built into the I/O system itself. While a typical, slaved data acquisition system is hosted by some type of general purpose Personal Computer complete with mouse, monitor and other human interface devices (HID), an Embedded Controller's processor is usually dedicated to controlling the I/O system and often does not provide any direct human interface.

Differences between an embedded controller and a standard PC are easily observed. However, the differences in software are equally noticeable. While most PCs operating systems for your desktop and laptop computer are large (in terms of RAM and hard drive space needed), operating systems developed for embedded systems are likely to be smaller and have been developed without all of the built-in GUIs as well as much of office equipment peripheral support. Embedded controllers are often the heart of an industrial control system or a process control application. They may also be at the center of a portable data acquisition system or remote controller that allows an application to keep running even if its umbilical link to the outside world is cut. [1] In this project, Rabbit Microprocessor is used as main embedded controller for the variable speed drive of a DC motor.

2.2 DC Motor Speed Control

Speed control of dc motor could be achieved using mechanical or electrical techniques. In the past, speed controls of dc drives are mostly mechanical requiring large size hardware to implement. Advances in the area of power electronics have brought a total revolution in the speed control of dc drives.

DC drives are widely used in applications requiring adjustable speed; good speed regulation and frequent starting, braking and reversing. Some important applications are rolling mills, paper mills mine winders, hoists, machine tools, traction, printing presses, textile mills, excavators and cranes. Fractional horsepower dc drives are widely employed – as servo means for positioning and tracking.

Adjustable speed drives may be operated over a wide range by controlling armature or field excitation. Speed below rated is controlled by armature voltage control and above rated using field excitation variation, development of various solid states switching devices in the form of diodes, transistor and thyristor along with various analogue or digital chips used in firing or controlling circuits, have made dc drives more accessible for control in innumerable areas of applications.

The solid-state power electronic switching devices can be broadly grouped into:

- Those supplied from ac source. Thyristor bridge rectifiers (converters)
- Those employing dc supply namely choppers and inverter.
 [3]

The use of power electronics for the control of electric machines offers not only better performance caused by precise control and fast response, but also maintenance, and ease of implementation. In parallel with the advance in power electronic there have been great advances in microcontroller-based control systems due to the microcontroller flexibility and versatility. This is because all the control algorithms are implemented in the software. **[2]**

Figure 2.1: Block diagram of automatic speed control system

2.2.1 Digital Speed Controller for DC Motor

The speed control of DC motor is very crucial, especially in applications where precision and protection are of essence. [4] The use of stand-alone micro controller for the speed control of DC motor is past gaining ground. Nicolai and Castagect have shown in their paper how a microcontroller can be used for speed control. The operation of the system can be summarized as: the drive forms a rectified voltage. It consists of chopper driven by a PWM signal generated from a micro controller unit (MCU). The motor voltage control is achieved by measuring the rectified mains voltage with the analog to-digital converter present on the micro controller and adjusting the PWM signal duty cycle accordingly. [4]

Another system that uses a microprocessor is reported in the work of Khoel and Hadidi a brief description of the system is as follows: The microprocessor computes the actual speed of the motor by sensing the terminal voltage and the current, it then compares the actual speed of the motor with the reference speed and generates a suitable signal control signal which is fed into the triggering unit. This unit drives a H-bridge Power MOSFET amplifier, which in turn supplies a PWM voltage to the DC motor. **[5]**

2.3 Proportional-Integral (PI) Controller

A proportional-integral controller (PI controller) is a generic control loop feedback mechanism widely used in industrial control systems. Its popularity stems from the fact that the control engineer essentially only has to determine the best settings for the Proportional, Integral, and Derivative action terms needed to achieve a desired closed-loop performance. [6]

2.3.1 Propotional-Integral Control

The proportional term makes a change to the output that is proportional to the current error value. The proportional response can be adjusted by multiplying the error by a constant Kp, called the proportional gain.

$$P_{\text{out}} = K_p e(t)$$

Where

- * Pout: Proportional output
- * Kp: Proportional Gain, a tuning parameter
- * e: Error = SP PV
- * t: Time or instantaneous time

Higher Kp value increases the response time and reduces steady-state error of a system. The contribution from the integral term is proportional to both the magnitude of the error and the duration of the error. Summing the instantaneous error over time (integrating the error) gives the accumulated offset that should have been corrected previously. The accumulated error is then multiplied by the integral gain and added to the controller output. The magnitude of the contribution of the integral term to the overall control action is determined by the integral gain, Ki. The integral term is given by [7]: