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ABSTRACT 

The growing population of elderly individuals are increasing in correlation to the 

advancement in healthcare. Along with that, however, are the associated risks, such as 

incidents of falls. Several studies had shown that older adults experienced at least one fall 

every year, and it was the main cause of accidental death in older adults aged 65 or more. In 

Malaysia, many elderly are left alone during the day as their family members are out to work 

or school. Therefore, a fall detection system was designed to detect when a person 

experiences a fall or a loss of balance. The system utilizes Kinect sensors and algorithms to 

detect the movements and postures of an individual, aiming to analyze and identify patterns 

that indicate a fall event. Skeletons and joints such as heads, shoulder centre, hip centre, 

ankle left, and right are detected and extracted. The fall algorithm is implemented to obtain 

the y-coordinate values and threshold values. Several observed fall scenarios including fall 

to the left side, fall to the right side, fall to the front, fall to the back, and fall while sitting. 

The result of lower accuracy at short distances from the Kinect sensor can be attributed to 

its limited field of view and depth perception issues at close range, leading to incomplete or 

distorted skeleton tracking. Slightly longer distances provide a more optimal range for 

accurate skeleton tracking and fall detection, while accuracy increases at longer ranges due 

to increased detail in the captured data. The fall detection accuracy of 100% is obtained 

throughout the evaluation of all heights of Kinect sensor and lighting conditions.  
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ABSTRAK 

Jumlah populasi warga tua semakin meningkat seiring dengan kemajuan dalam bidang 

penjagaan kesihatan. Walau bagaimanapun, terdapat risiko yang berkaitan dengan 

peningkatan ini, seperti kejadian jatuh. Beberapa kajian menunjukkan bahawa orang dewasa 

tua mengalami sekurang-kurangnya satu kejadian jatuh setiap tahun, dan ia merupakan 

punca utama kematian akibat kemalangan bagi orang dewasa tua berumur 65 tahun atau 

lebih. Di Malaysia, ramai warga tua ditinggalkan sendirian sepanjang hari kerana ahli 

keluarga mereka pergi bekerja atau sekolah. Oleh itu, sistem pengesanan jatuh telah direka 

untuk mengesan apabila seseorang mengalami jatuh atau kehilangan keseimbangan. Sistem 

ini menggunakan pengesan Kinect dan algoritma untuk mengesan pergerakan dan posisi 

individu, dengan tujuan menganalisis dan mengenal pasti corak yang menunjukkan kejadian 

jatuh. Struktur dan sendi seperti kepala, pusat bahu, pusat pinggul, mata kaki kiri, dan kanan 

dikesan dan diekstrak. Algoritma jatuh diaplikasikan untuk mendapatkan nilai koordinat Y 

dan nilai ambang. Beberapa senario jatuh yang diperhatikan termasuk jatuh ke sebelah kiri, 

jatuh ke sebelah kanan, jatuh ke hadapan, jatuh ke belakang, dan jatuh semasa duduk. Hasil 

ketepatan yang lebih rendah pada jarak dekat dari penderia Kinect boleh dikaitkan dengan 

bidang pandangan yang terhad dan isu persepsi kedalaman pada jarak dekat, yang membawa 

kepada penjejakan rangka yang tidak lengkap atau herot. Jarak yang lebih jauh sedikit 

memberikan julat yang lebih optimum untuk pengesanan rangka yang tepat dan pengesanan 

jatuh, manakala ketepatan meningkat pada julat yang lebih panjang disebabkan oleh 

peningkatan butiran dalam data yang ditangkap. Ketepatan pengesanan jatuh sebanyak 100% 

diperoleh sepanjang penilaian semua ketinggian sensor Kinect dan keadaan pencahayaan. 
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INTRODUCTION 

1.1 Introduction 

This chapter aims to establish the framework and presents a brief concept of the 

project. It focuses on the overview of the project, describes the objectives, briefly the 

problem, the scope, and the results of the project. 

1.2 Background 

            Fall detection systems had become increasingly important in recent years due to the 

growing population of elderly individuals and the associated risks of falls [1].  Several 

studies had shown that elderly people experienced at least one fall every year, and falls was 

the main cause of accidental death in older adults aged 65 or more. Therefore, fall detection 

had attracted a lot of attention from researchers and industry professionals [2]. A huge 

number of materials, equipment, and fall detection methods had been proposed over the 

years. The equipment used were gyroscope, accelerometer, GPS module and Kinect sensor, 

while the fall detection methods, such as smartphone-based systems, vision-based systems, 

and wearable-sensor-based systems. Among these methods, vision-based systems had a 

great advantage because they did not require the elderly people to wear specific equipment. 

The Microsoft Kinect device was the system that had been used for fall detection due to its 

ability to track human body movements accurately.    

            Fall detection system was designed for use in indoor environments, particularly in 

homes and public hospitals. Existing fall detection systems often required wearable sensors, 
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which could be inconvenient for users. There were two main subsystems which are camera 

and the fall detector module. The camera captured depth information and color images, 

which were then processed by the fall detector module using available libraries for camera 

management and computer vision procedures. It had been shown that the system can detect 

falls with a reliability of 97.3% and an efficiency of 80.0% [3]. The algorithm was designed 

to provide an accurate solution to detect falls, which is especially important for elderly 

people living alone at home or those with motor disabilities.  

            The system could be designed to detect falls and provide immediate assistance by 

sending an SMS message notification and making an emergency call. The use of the Kinect 

sensor with robotics could bring new ways to build intelligent systems that could be used to 

monitor elderly people and raise an alarm in case of falling are detected [4]. 

            The vision-based fall detection system offered several advantages over traditional 

fall detection methods. The advantage was it provides non-intrusive monitoring, not 

requiring individuals to wear additional devices or sensors. The Kinect sensor could capture 

the required data from a distance, making it convenient and user-friendly. One of the 

advantages was the system operated in real-time, enabling swift response to potential fall 

incidents. This could significantly reduce the time between the occurrence of a fall and the 

provision of assistance, potentially minimizing the severity of injuries. Another advantage 

was the system could collect data over time, allowing for analysis and insights into an 

individual's movement patterns, which could be useful for long-term monitoring and 

proactive care.  
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1.3 Problem Statement 

            One of the main challenges in the fall detection system is the performance of the 

detection rate under real-life conditions. It has been shown that promising results in 

laboratory environments and the accuracy of fall detection systems could be affected by 

factors such as lighting conditions, flooring surfaces, and obstacles. Another challenge is 

usability and user acceptance. Fall detection systems must be easy to use and not interfere 

with daily activities so users can accept them. Power consumption is another issue that must 

be addressed in fall detection systems. Kinect-based fall detection systems require power to 

operate continuously. Real-time operations are also important for fall detection systems, as 

delays in detecting falls can lead to serious injuries [5]. 

           Another key challenge in fall detection is the imperfection of collected data, which 

could be caused by various factors, such as sensor noise, calibration errors, and 

environmental interference. Another challenge is sensor technologies' diversity or low 

reliability, which can lead to inconsistent results and false alarms. Furthermore, some 

challenges typical to other frameworks with data fusion requirements such as selecting 

appropriate sensors, designing effective algorithms for data fusion, and dealing with missing 

or incomplete data. In addition, there is no standard dataset available for evaluating fall 

detection systems, which makes it difficult to compare different approaches. It is significant 

to develop more sophisticated algorithms for data fusion and explore new sensor 

technologies [6]. 
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1.4 Objective 

            The project aims to achieve the following objectives: - 

i. To design a non-invasive, reliable, and accurate solution to detect falls among older 

adults. 

ii. To develop an algorithm that can accurately detect falls based on the data collected 

by the Kinect sensor, including skeletal tracking data and color data.  

iii. To analyze and evaluate real-time fall detection and alerts to caregivers or emergency 

services to reduce response time and improve outcomes.  

 

1.5 Scope and Limitations 

            The project focuses on Kinect-based fall detection system for the elderly. Kinect 

sensors can provide reliable depth sensing and tracking capabilities, allowing them to detect 

human body movements accurately. This makes it suitable for detecting falls and 

distinguishing them from other activities. In the same way, Kinect-based fall detection 

systems can provide real-time monitoring of individuals, enabling immediate response in 

case of a fall. Additionally, Kinect uses depth-sensing cameras to capture movement data, 

eliminating the need for wearable devices or physical contact. This non-intrusive setup 

makes it more comfortable and convenient for users. 

            On the other hand, Kinect has a specific field of view and range, which may limit its 

effectiveness in large rooms or areas where individuals are far away from the device. 

Multiple Kinect devices or careful placement may be required to cover larger spaces 

adequately. Kinect-based fall detection can sometimes produce false positives or negatives 

like any other automated system. Certain movements or actions, such as sudden movements 

or bending down, may trigger false alarms, while actual falls may occasionally go 
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undetected. Continuous refinement and testing are necessary to minimize such errors. 

Moreover, Kinect-based systems capture and analyze individuals' visual data, raising privacy 

concerns. Adequate measures should be taken to ensure data security, privacy, and 

compliance with applicable regulations. 
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LITERATURE REVIEW 

2.1 Introduction 

            Extensive research and investigation have been conducted to accomplish this project. 

Data and studies relevant to the project were collected from various sources including books, 

articles, journals, and websites. The information served as a valuable reference to ensure the 

feasibility of completing the project within the allocated time. The studies and information 

gathered focused on significant and relevant topics about the project. 

            This part explored several thesis and publication journals from the Google Scholar 

website were explored. There were a few keywords to find the related information which 

were “fall detection”, “Kinect”, “elderly people”, “wearable sensor”, and “IoT application”. 

The literature review focused on the fall detection system integrated with the application and 

sensors to identify and alert individuals or caregivers when a person experiences a fall. 

Fourteen articles were chosen to focus on the development of fall detection system. 

 

2.2 Wearable-Sensor-Based Fall Detection System 

2.2.1 Quaternion Algorithm 

            The wearable device was placed on the patient's waist to analyze the human body's 

acceleration. The system monitored the human body's movements from normal daily 

activities by an effective quaternion algorithm and automatically sent requests for help to 

caregivers with the patient's location. The advantages of this system included timely and 

reliable surveillance to mitigate the adverse effects of falls, which was especially important 



16 

for elderly individuals who may experience a decline in physical fitness. However, the 

choice of threshold was essential to distinguish falling from heavily lying activity, and a 

sufficient sample number collected from subjects with different ages and gender was 

necessary to improve reliability and robustness [7]. 

 

 

Figure 2.1: Fall location [7]. 

 

2.2.2 IoT and Big Data 

            3D-axis accelerometer was used and embedded into a 6LowPAN device wearable to 

collect real-time data from the movements of older people. The sensor readings were 

processed and analyzed using a decision trees-based Big Data model running on a Smart IoT 

Gateway to detect falls [8]. If a fall was detected, an alert would activate, and notifications 

would send to the groups responsible for caring for older people. The advantages of this 

system included its ability to provide high efficiency in fall detection and its use of low-
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power wireless sensor networks, smart devices, big data, and cloud computing. It also 

automatically sends notifications to caregivers in case of falls. However, some disadvantages 

included the need for older people to always wear the device, which might be uncomfortable 

or inconvenient for them. There might also be privacy concerns regarding collecting and 

analyzing personal data. Moreover, there might be false alarms due to other movements that 

resemble falls. 

 

 

Figure 2.2: Fall detection system architecture [8]. 

 

2.2.3 Machine Learning Algorithm 

            The wearable device integrated with 3-axis accelerometer, 3-axis gyroscope, 3-axis 

magnetometer, and barometer sensor. These sensors worked together to obtain highly 

accurate information about the posture and altitude of the subject. The accelerometer, 

gyroscope, and magnetometer were implemented an AHRS (Attitude and Heading 

Reference System) that estimated the device's orientation and provided dynamic vertical 
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acceleration values. The barometer sensor measured pressure and temperature to calculate 

altitude, which was then fused with vertical displacement data from the AHRS and 

acceleration data using a complementary filter to obtain an accurate altitude estimation. 

            Machine learning techniques was used to detect accurately falls. The algorithm 

involved several stages which were data acquisition, feature extraction, selection, and 

classification. The sensor data was first acquired from the accelerometer, gyroscope, 

magnetometer, and barometer sensors and then preprocessed to remove noise and artifacts. 

Next, a set of features was extracted from the preprocessed data, including time-domain, 

frequency-domain, and statistical features. A feature selection algorithm was then used to 

select the most relevant features for fall detection. Finally, a machine learning classifier, a 

support vector machine (SVM), is trained on the selected features to classify falls and non-

falls. The proposed algorithm achieved a high accuracy rate of 98.3% in detecting falls, 

demonstrating its effectiveness in accurately detecting falls and minimizing false alarms [9]. 

 

 

Figure 2.3: AHRS and barometer sensor based fall detector system [9]. 
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2.3 Smartphone-Based Fall Detection System 

2.3.1 Threshold-Based Algorithm 

            Android devices were used with sensors and communication services and 

incorporated a threshold-based algorithm enhanced by a kNN classifier. Personalization 

implementation was proposed to improve accuracy. The system achieved high fall detection 

accuracy, with 97.53% sensitivity and 94.89% specificity, comparable to related works [10]. 

           The advantages of this system included its use of widely available technology 

(Android devices), its high accuracy in detecting falls, and its potential for personalization 

implementation. However, there were also some potential disadvantages to consider. For 

example, the system might not be as effective in detecting falls if the user was not carrying 

their smartphone at the time of the fall or cannot press an emergency button on their device. 

On the other hand, some users might hesitate to use a fall detection system that always 

required carrying their smartphone. 

 

Figure 2.4: Fall detection app [10].  
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2.3.2 Deep Learning Algorithm 

            SmartFall was developed using deep learning algorithms to analyze accelerometer 

data and detect falls. The system was designed to be user-friendly and non-intrusive, 

allowing seniors to wear the smartwatch and carry their smartphones as they went about their 

daily activities. SmartFall has several advantages over traditional fall detection systems, 

including its low cost, high accuracy, and ability to collect data on activities of daily living 

(ADLs). However, there were also some potential disadvantages to consider. For example, 

the battery life of the smartwatch and smartphone might be reduced when running SmartFall 

continuously alongside other apps. In addition, some seniors might be hesitant to wear a 

smartwatch or carry a smartphone around all day for fall detection purposes. In short, 

SmartFall represented a new development in the health IoT applications field to improve 

seniors' safety [11]. 

 

 

Figure 2.5: SmartFall user interface [11]. 
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2.3.3 Machine Learning Algorithm 

            The need for a fall detection and alert system was discussed to reduce the response 

time of emergency responders, improve personalized fall prevention strategies, and reduce 

the risk of secondary complications and functional decline associated with falls. Previous 

studies on fall detection had been conducted in lab settings or using simulated falls excluding 

real-world falls and their causes. The results of a prospective study investigated the 

performance of a smartphone-based fall detection and alert system that uses the smartphone's 

built-in accelerometer and gyroscope. A machine learning algorithm and an online 

component were used to send notifications in real-time to researchers or caregivers. 

Preliminary results showed that the system detected 73% of falls and had a specificity of 

over 99.9%, making it a promising approach for real-life fall detection [12]. The system's 

advantages were its portability, low cost, and the fact that users don't need to wear dedicated 

sensors. However, limitations included that the system was smartphone-dependent and 

required signal reception to detect and notify about falls, and battery life could be a 

restricting factor for data collection. 

 

Figure 2.6: Web portal data summary [12]. 
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2.4 Kinect-Based Fall Detection System 

2.4.1 Position Algorithm and Velocity Algorithm 

            Microsoft Kinect sensor was used to detect, and report falls among older adults. The 

system employed two algorithms for fall detection. The first algorithm analyzed a single 

frame to determine if a fall had occurred, while the second algorithm used time series data 

to differentiate between falls and slowly lying down on the floor. This distinction was crucial 

for accurate detection. In addition to detecting falls, the system offered various reporting 

options. Reports could be sent as emails or text messages, and they could include pictures 

taken during and after the fall. This visual documentation provided valuable information for 

further analysis and assessment. The system incorporated a voice recognition system that 

allows users to cancel erroneous alerts [13]. 

 

  

Figure 2.7: Joints of skeleton detection [13]. 
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2.4.2 Point Cloud 

            A Kinect camera was used to capture depth data of the individual in the living 

environment. The height change acceleration of the human point cloud was used to detect 

possible fall activity, which was transmitted in real-time to an Arduino microprocessor that 

notified the guardian. The system eliminated the need for wearable devices, had a low false-

positive rate, and operated 24/7 despite external illumination. The experimental results 

showed high accuracy in detecting falls, with an overall accuracy rate of 99%. The system 

contributed to reducing the number of false-positive detections. The system's advantages 

were precise detection, non-invasiveness, and easy implementation. The disadvantages were 

the need for an existing Kinect camera, system limitations on detecting falls in certain 

scenarios, and the possible risk of false negatives during quick fall events. In short, the 

system could enhance the safety and quality of life for elderly individuals living alone [14]. 

 

 

Figure 2.8: Point cloud system diagram [14]. 

 

2.4.3 Thresholding Algorithm 

            The platform utilized data from a Microsoft Kinect v2 sensor to monitor the 

movements of elderly individuals and detect falls in real time. The application could also 
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capture and store a wide range of image data, store positional information in CSV files for 

further offline processing, calculate the real-time acceleration of body joints, and calculate 

the angle between arbitrarily chosen joints for simple gesture detection. The modular 

platform allowed for the integration of other data sources to create a comprehensive 

monitoring system. The advantages of this platform included its real-time fall detection 

capabilities, ability to capture and store a wide range of image data, and modular design that 

allows for customization and integration with other data sources. However, some potential 

disadvantages included the need for a Microsoft Kinect v2 sensor, which might be costly or 

difficult to obtain, as well as potential privacy concerns related to collecting and storing 

personal data. In addition, the platform might require technical expertise to set up and 

maintain. Overall, this platform could provide peace of mind to families and caregivers of 

elderly individuals living alone [15] 

 

Figure 2.9: Environment testing model used in Kinect-based platform [15]. 

 

 

2.4.4 Deep Learning Technique on 3D Skeleton 

            This system combined traditional algorithms with neural networks. A skeleton 

information extraction algorithm was used to transform depth information into skeleton 
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information and extract important joints related to fall activity. The skeleton-based method 

is modified with seven highlight feature points. The deep neural network architecture is used 

to classify the extracted features and detect falls. The experimental results showed that the 

proposed system had higher accuracy than traditional algorithms and consumed less energy 

than pure neural network methods. The advantages of this system were its high accuracy, 

low energy consumption, and potential for use in homecare systems to protect older people 

from falls. However, the system requires more memory to store parameters than traditional 

algorithms, and it might not be suitable for real-time applications due to its computational 

complexity [16]. 

 

 

Figure 2.10: 3D skeleton using deep learning system [16]. 

 

2.4.5 Human Posture Recognition  

            Microsoft Kinect V2 sensor technology was developed to create a natural human-

computer interaction method that enables people to communicate with computers easily and 

naturally. By processing depth information and using skeleton tracking technology, the 

optimized BP neural network was trained to recognize standing, sitting, and lying positions, 

with fall detection based on this. The research showed that a neural network could help to 
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achieve reliable and accurate results, even under real-world conditions. The system 

developed used non-wearable techniques through the Kinect V2 camera and skeleton tracker 

to recognize human body posture. Human motion recognition based on Kinect sensors has 

shown excellent value in the healthcare field, specifically in medical rehabilitation and 

remote care for older people. On the other hand, the output of skeleton tracking algorithms 

in real-world applications was not always stable and accurate, and the recognition result of 

lying posture was not satisfactory. However, the proposed system was based only on depth 

maps and did not use color information, which guaranteed the person's privacy and worked 

in poor light conditions [17]. 

 

Figure 2.11: Experimental setup [17]. 

 

2.4.6 Reinforcement Learning Algorithm 

            Microsoft Kinect Sensor was used to detect falls and an automatic fall notification 

system based on Reinforcement Learning to notify caregivers or emergency services. The 

proposed system aims to overcome the issues found in existing fall detection and notification 

systems, such as obtrusiveness, lack of accuracy and robustness, and inadequate feedback 

systems. The advantages of this system included its non-obtrusiveness, high accuracy and 
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robustness, and efficient notification system that avoids unnecessary disturbance to 

caregivers or emergency services. Moreover, the proposed system could be customized for 

different living environments. However, there were also some potential disadvantages to 

consider. Using a Microsoft Kinect Sensor might limit the range of detection compared to 

other sensors. Furthermore, the proposed system might require technical expertise to set up 

and maintain. Overall, the use of reinforcement learning for automatic fall notification might 

require significant computational resources [18]. 

 

Figure 2.12: Reinforcement learning system [18]. 

 

 

2.4.7 Background Subtraction Algorithm 

            The depth images were collected from a Microsoft Kinect sensor. A background 

subtraction algorithm was used to subtract the background and segment daily activities and 

falls to train the model. The model was trained using a decision tree, and ground truthing to 

ensure fall confidence. The results were then processed for analysis. 

            The advantages of this proposed technique included its non-invasive nature, low cost, 

and high accuracy in detecting falls. In addition, it could be easily installed in individual 
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homes without requiring additional infrastructure. However, there were some limitations to 

this technique as well. For example, it might not be able to detect falls outside of the sensor's 

range or if the person falls in a way not captured by the depth images Furthermore, it might 

not be suitable for detecting falls in crowded environments where multiple people are present 

[19]. 

 

 

 
 

 

Figure 2.13: Methodology flowchart. 

 

2.4.8 Skeleton-Based and Thresholding Algorithm 

            The Skeleton-based method was used to detect falls by calculating the distances of 

every joint with the floor plane. The algorithm stated that a fall event is detected if the 

distance of joints from the floor plane is less than 0.3 meters. In addition, the skeleton joint's 

average velocity and the algorithm's threshold value were used to determine fall status.  The 
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system's quantitative measurement identified ideal conditions for detecting falls, and the 

parameters were tested to detect human conditions for different postures.  

            The advantages of this system included its affordability, non-invasiveness, and 

ability to detect falls accurately. However, some disadvantages included its reliance on the 

visible floor plane and its inability to detect falls in certain situations, such as when a person 

is sitting or lying down. Moreover, the system might produce false alarms if there are sudden 

movements or objects obstructing the Kinect sensor's view. [20].  

 

 
 

 

Figure 2.14: Fall detection model [20]. 

 

 

2.4.9 Skeleton Detection Algorithm 

            Skeleton detection of the human figure was used as algorithm with the help of sensors 

in Kinect, which ran in real-time scenarios. The fall detection system could communicate 

the current scenario of the patient to family members and provide data logs for future 

analysis by doctors. The algorithm was unobtrusive, meaning it would not have any 
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environmental interaction with the target people, such as wearable devices or environment-

mounted sensors. The hardware specifications and fall detection algorithm, including 

skeleton diagram extraction, merging depth images and skeleton in global coordinates, and 

monitoring the motion state of the human body from RGB are detailed. The simulation 

results demonstrated the algorithm's real-time performance with a reasonable fall detection 

success rate. 

            Advantages of the proposed method included not requiring an individual to wear any 

wearable devices and it being faster and less intrusive. Disadvantages included limitations 

in relation to individuals with mental health conditions like Alzheimer's disease as falls from 

those with the condition are not due to accident but as result of the condition [21].  

 

Figure 2.15: Algorithm procedures. 
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2.5 Sensor Comparison from Previous Work Related to the Project 

Sensor selection is important to ensure the efficiency of fall detection. Each sensor plays a unique role in fall detection, contributing to the overall 

efficiency of the system. The choice of sensor depends on the specific requirements of the fall detection system. 

 

Table 2.1: Sensor comparison. 

 

No Year Sensor Purpose and Specifications   

1 2021 Xbox 360 Microsoft Kinect [21] • Tracks motion and gestures that comprises of camera and infrared sensors 

2 2021 Accelerometer [12] • Measure the acceleration and determine the changes in velocity and movement. 

3 2021 Gyroscope [12] • Measure the angular velocity and provides information of rotational movement. 

4 2016 Barometer sensor [9] • Measure changes in atmospheric pressure to estimate the changes in altitude. 

5 2016 Magnemometer [22] • Measure the Earth’s magnetic field to estimate the orientation of detector. 
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2.6 Journal Comparison from Previous Work Related to the Project 

Fall detection system has been significant advancements over the years. There is a growing trend towards integrating system into smartphones, 

machine learning, context-aware technique, and Internet of Things (IoT). 

 

Table 2.2: Journal comparison. 

No Year Title Software Hardware Finding 

1 2021 Kinect Sensor Based Human Fall 

Detection System Using Skeleton 

Detection Algorithm [21] 

• Kinect SDK • Kinect sensor • Human body recognition from depth image 

and extracted skeleton diagram 

• Observation on difference of coordinate with 

time 

2 2021 Smartphone-based Online System 

for Fall Detection with Alert 

Notifications and Contextual 

Information of Real-life Falls [12] 

• Purple Robot 

App 

• Accelerometer 

• Gyroscope 

• Integration of threshold-based algorithm and 

machine learning algorithm 

• Data is stored in cloud server and a web portal 

is developed for exploration 
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3 2020 A Fall Detection and Emergency 

Notification System for Elderly [18] 

• Kinect SDK • Kinect sensor • Differentiation between prone position, crawl 

position, and kneel position 

• Implementation of Q-Learning algorithm 

4 2020 An Elderly Fall Detection System 

using Depth Images [19] 

• Kinect SDK • Kinect sensor • Calculation of background subtraction and 

segmentation of depth image 

• Cross validation technique is used 

5 2020 An Analysis of Kinect-Based 

Human Fall Detection System [20] 

• Visual Studio 

IDE 

• Kinect SDK 

• Kinect sensor • Integration of velocity and distance of joint 

points to floor plane 

• Analysis of different light intensity and 

distance are carried out 

6 2019 Kinect-Based Platform for 

Movement Monitoring and Fall-

Detection of Elderly People [15] 

• Kinect SDK • Kinect sensor 

• Computer 

• Observation on acceleration of joints and angle 

between joints 

• Implementation of threshold-based algorithm 
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7 2019 Implementation of Fall Detection 

System Based on 3D Skeleton for 

Deep Learning Technique [16] 

• Kinect SDK • Kinect sensor • Implementation of NVIDIA Jetson TX2 

platform. Development of Neural Network 

with NTU RGB+D dataset on computation of 

fall detection 

8 2019 Human Posture Recognition and 

Fall Detection Using Kinect V2 

Camera [17] 

• Kinect SDK 

• NITE SDK 

• Kinect sensor • Integration of Neural Network with Kinect 

dataset to detect different poses  

9 2018 Smartfall: A Smartwatch-Based Fall 

Detection System using Deep 

Learning [11] 

• IoT application • Microsoft 

Band 2 

• Nexus 5X 

smartphone 

• Evaluation on deep learning algorithm and 

machine learning algorithm  

10 2018 Fall Detection System for Elderly 

People using IoT and Big Data [8] 

• Contiki OS • 3D-axis 

accelerometer 

• Rasberry Pi 

• Implementation of wireless Ipv6 (6LowPAN) 

technology and cloud services 
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11 2018 Design and Development of the Fall 

Detection System based on Point 

Cloud [14] 

• OpenNI SDK • Kinect sensor 

• Arduino 

microprocessor 

• Extraction of point cloud image and 

observation on height change acceleration of 

point cloud, height of point cloud, and 

recovery time 

12 2017 A Smartphone-Based Fall Detection 

System for the Elderly [10] 

• Android Studio 

IDE 

• Accelerometer • Incorporation of threshold-based algorithm 

and kNN classifier of machine learning 

algorithm 

13 2016 A Wearable Fall Detector for 

Elderly People Based on AHRS and 

Barometric Sensor [9] 

• MATLAB • Accelerometer 

• Gyroscope 

• Magnetometer 

• Barometer 

sensor 

• The accelerometer, gyroscope, and 

magnetometer implement an AHRS (Attitude 

and Heading Reference System) that estimates 

the orientation of the device and provides 

dynamic values of vertical acceleration.  

• The barometer sensor measures pressure and 

temperature to calculate altitude, which is then 

fused with vertical displacement data from the 
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AHRS and acceleration data using a 

complementary filter to obtain an accurate 

altitude estimation. 

14 2015 Development of a Wearable-Sensor-

Based Fall Detection System [7] 

 

• Map in Web 

browser 

• Accelerometer 

• SIM908 

module 

• MCU 

MSP430F1611 

• GPS antenna 

• Threshold-based algorithm on acceleration and 

rotational angle  

• Quaternion algorithm is used to calculate the 

rotational angle of accelerometer coordinate 

 

 

15 2014 An Analysis on Human Fall 

Detection using Skeleton from 

Microsoft Kinect [2] 

 

• Kinect SDK • Kinect sensor • Floor plane detection using V-disparity 

method and Kinect-based plane detection 

method 

• Computation on distance of joints to floor 

plane, velocity, and angle of each joint 

• Implementation of SVM technique 
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16 2014 A Real-Time Fall Detection System 

in Elderly Care Using Mobile Robot 

and Kinect Sensor [4] 

• Kinect SDK • Kinect sensor 

• LEGO 

Mindstorm 

robot 

• Laptop 

• Nokia 6200 

• Implementation of gesture recognition and 

speech recognition system 

• Development of person-following system in 

LEGO Mindstorm 

17 2014 Fall Detection in Indoor 

Environment with Kinect Sensor [3] 

• Kinect SDK • Kinect sensor • Implementation of Kalman filter to estimate 

height and width-depth speed 

18 2014 Fall Detection for Elderly Using 

Anatomical-Plane-Based 

Representation [1] 

• Kinect SDK • Kinect sensor • Support Vector Machine (SVM) and constraint 

Dynamic Time Warping (cDTW) as 

classification layers of fall detection 

19 2012 Development of Fall Detection with 

Microsoft Kinect [13] 

• Kinect SDK • Kinect sensor • Integration of position algorithm and velocity 

algorithm 

• Involvement of voice recognition system to 

reduce false alert notification 
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2.7 Summary  

            This chapter presented the fall detection methods categorised as smartphone-based, 

wearable-sensor, and vision-based systems. Depth information and RGB data were captured 

using an accelerometer, gyroscope, and Kinect sensor for further analysis. Deep learning, 

machine learning and thresholding algorithms were used to develop fall detection systems. 
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METHODOLOGY 

3.1 Introduction 

           In this project, the depth map of the scene is created from depth data. This depth map 

provides information about the distances of objects from the sensor. Therefore, the 3D 

structure of the environment is perceived. Moreover, RGB image provides visual context 

and enables Kinect sensor to recognize and track objects and people based on the appearance.  

           On the other hand, data analysis and storage involve processing and organizing the 

collected data from the Kinect sensor. Data analysis techniques such as computer vision 

algorithms are applied to extract useful information from the raw data. The processed data 

can be stored in a database or a file system for future reference or analysis. In addition, real-

time monitoring allows system to continuously capture and process data in real-time. Hence, 

immediate feedback and interaction from the user. This enables real-time tracking of people 

or objects, gesture recognition, and responsive feedback within the system. By analyzing the 

depth data and tracking the movements of individuals, the Kinect sensor can also identify 

specific patterns or poses associated with a fall event. Once a fall is detected, the system will 

generate message or alarm notification to inform caregivers or emergency services.  

 

Figure 3.1: Block diagram. 
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3.2 Hardware 

• Kinect sensor 

Kinect sensor is a depth-sensing camera device developed by Microsoft. It was 

originally created as an accessory for the Xbox gaming console but has also found 

applications in other fields, such as robotics, healthcare, and computer vision 

research.  

 

Figure 3.2: Xbox 360 Microsoft Kinect. 

 

 

• Kinect sensor utilizes a combination of cameras and infrared sensors to capture depth 

information and track human movement. It consists of some main components: 

1.       RGB Camera 

The Kinect sensor includes a traditional RGB camera that captures color 

images like a regular camera. This camera is useful for capturing visual 

information and can be used for applications like gesture recognition or video 

conferencing. 

 

2.       Depth Sensor 

The Kinect sensor employs an infrared depth sensor that projects an infrared 

pattern into the scene and measures the time it takes for the pattern to bounce 

back. This allows the sensor to calculate the distance of objects from the 

camera, generating a depth map of the environment. 
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3.       Infrared Projector 

The Kinect sensor emits an infrared light pattern that is invisible to the human 

eye. This pattern combined with the depth sensor, allows the sensor to 

accurately measure distances and create a detailed depth image. 

 

4.       Microphone Array 

The Kinect sensor includes an array of microphones that capture audio from 

the surrounding environment. This enables applications to incorporate voice 

commands and perform speech recognition. 

 

 

Figure 3.3: Sensor arrangement of Xbox 360 Microsoft Kinect 

 

3.3 Software 

• Microsoft Kinect SDK (Software Development Kit) is a software package provided 

by Microsoft for developing applications that utilize the capabilities of the Kinect 
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sensor. The Kinect SDK enables developers to create applications that can track and 

interpret human body movement, recognize faces and voices, and capture depth 

information. There are several features of the Kinect SDK: 

1.       Skeletal Tracking 

The SDK provides real-time tracking of human body movements, allowing 

developers to track the position and orientation of individual joints and create 

applications that respond to gestures and actions. 

            2.         Voice Recognition 

The Kinect SDK includes speech recognition technology, enabling 

developers to build applications that can understand and respond to voice 

commands. 

3.         Gesture Recognition 

The SDK includes built-in gesture recognition capabilities, allowing 

developers to recognize predefined gestures such as swipes, waves, and 

specific poses. This enables users to interact with applications through natural 

hand and body movements. 

 

• Microsoft Visual Studio is an integrated development environment (IDE) that 

provides a comprehensive set of tools for building software applications. It is widely 

used by developers to create a wide range of applications, including desktop, web, 

mobile, cloud, and gaming applications. There are several features of Microsoft 

Visual Studio: 

1.       Code Editor 

Visual Studio offers a powerful and feature-rich code editor that supports 

multiple programming languages such as C#, C++, Python, JavaScript, and 
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more. It provides features like syntax highlighting, code completion, context-

aware code suggestions, and refactoring tools to improve productivity and 

code quality. 

2.       Debugging 

Visual Studio includes advanced debugging capabilities that help developers 

identify and fix issues in their code. It offers features like breakpoints, step-

through debugging, watch windows, and real-time code execution analysis, 

making it easier to locate and resolve bugs. 

3.       Mobile Development 

Visual Studio supports mobile application development for platforms like 

Android, iOS, and Windows. It provides tools like Xamarin for cross-

platform development, iOS and Android emulators, and integration with 

mobile-specific services like push notifications and app distribution. 

3.3.1 Flowchart 

            Figure 3.4 shows the system flowchart. Firstly, depth and RGB data are acquired 

from the Kinect sensor. Skeletons are detected and joints such as heads, shoulder centre, hip 

centre, left ankle, and right ankle are extracted. Initial head-to-ankle distance is observed. If 

the initial head-to-ankle distance is zero, y-coordinates value from head to ankle is 

calculated. The calculated value is then multiplied with height threshold factor to obtain 

distance threshold value. If the initial head-to-ankle distance is not zero, current head-to-

ankle distance is calculated. Absolute difference between initial and current head-to-ankle 

distance is calculated and compared with distance threshold value. Another position 

threshold value is compared with y-coordinates value of each joints. “Fall is detected” is 

displayed when absolute difference between initial and current head-to-ankle distance is 
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greater than distance threshold value, and y-coordinates values of each joints are lower than 

position threshold. Instead, “Fall is not detected” is displayed. In addition, if the y-

coordinates value of one hand or both hand is greater than y-coordinates value of head, “Help 

Command Detected!! Check for help” is displayed. 

 

Figure 3.4: System flowchart. 



45 

3.3.2 Fall Algorithm 

            In the pseodocode, initial head-to-ankle distance is determined. If the initial head-to-

ankle distance is zero, y-coordinates value from head to ankle is calculated. It means that 

this is the first frame where the person is detected. The calculated value is then multiplied 

with height threshold factor value of 0.7 to obtain distance threshold value.  

            If the initial head-to-ankle distance is not zero, current head-to-ankle distance is 

calculated. It means that the person has been detected in previous frames, so the initial head-

to-ankle distance and the distance threshold have already been calculated. Absolute 

difference between initial and current head-to-ankle distance is calculated and compared 

with distance threshold value. Another position threshold value of 0.3 is compared with y-

coordinates value of each joints.  

            Fall event is considered when absolute difference between initial and current head-

to-ankle distance is greater than distance threshold value, and y-coordinates values of each 

joints are lower than position threshold. Instead, safe event is considered. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Fall algorithm. 
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3.3.3 Gesture Recognition 

The system can only detect falls within the Kinect’s field of view, therefore gesture  

recognition is developed to improve fall detection accuracy. The gesture is programmed to 

detect the action of one hand or both hands being raised above the head. The Kinect sensor 

continually analyses the movements of the person in the field of view. When a person raises 

one hand or both hands above the head, the system will interpret it as a potential fall event. 

Upon detecting the gesture, the system triggers the notification to check for fall event. 

3.4 Experimental Setup 

            Proprietary connecter of Xbox 360 Microsoft Kinect is plugged into corresponding 

port on the USB adapter. End of USB adapter is plugged into laptop. Microsoft Kinect is 

then connected to power supply and tested with Kinect developer toolkit. Figure 3.6 shows 

that the Kinect sensor is positioned above and is facing towards the person. The measurement 

from the person to the Kinect sensor represents the horizontal distance between the Kinect 

sensor and the person. The vertical measurement pointing downwards from the Kinect sensor 

indicates the height at which the Kinect sensor is placed above the ground. 

 

Figure 3.6: Experimental setup. 
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            Figure 3.7 (a) shows the vertical field of view of Kinect sensor where the sensor can 

perceive objects within a 43-degree vertical range in front of it. Figure 3.7 (b) shows the 

angle at which the Kinect sensor can detect motion across the horizontal plane. The sensor 

must be placed in such a way that the area where motion is to be detected falls within this 

57-degree field. 

 

 

 
(a) 

 

 

 
 

(b) 

 

Figure 3.7: (a) Vertical angle view (b) Horizontal angle view of Kinect sensor. 
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             Figure 3.8 shows the floor plan of a house with markings indicating the placement 

and field of view of a Kinect sensor. The Kinect sensor is placed in two potential locations 

within the house, as indicated by the blue circles. The blue triangles indicate the extent of 

the area covered by the sensor's camera.  

 

             

 
 

Figure 3.8: Kinect sensor location. 
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3.5 Summary 

            This chapter presented the use of Microsoft Kinect SDK, Microsoft Visual Studio, 

and Xbox 360 Microsoft Kinect. This chapter also presented the algorithm and flowchart of 

fall detection system.  
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RESULTS AND DISCUSSIONS 

4.1 Introduction 

            This chapter focuses on the results and analysis on the implementation of the coding 

and application of fall detection. The simulation results are evaluated and validated to 

determine the possible fall event. 

4.2 Result and Analysis 

            Fall detection is simulated and evaluated throught different scenarios. Fall detection 

accuracy is analysed from the aspects of distances, heights and lighting conditions. 

 

Figure 4.1: Real-time experimental setup. 
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Figure 4.2: Output window.  

 

4.2.1 Fall Detection Accuracy of Different Distances  

            Fall detection accuracy of different distances is observed and analysed. Distance of 

0.5m, 1.0m, 1.5m, 2.0m and 2.5m are evaluated. At extremely close range of 0.5 meters, the 

fall detection accuracy is the lowest, which is 20%. The Kinect sensor struggles with accurate 

skeleton tracking. The limited field of view and potential depth perception distortions at such 

a close distance result in incomplete or inaccurate data, leading to the lowest fall detection 

accuracy. 

Table 4.1: Fall detection accuracy of different distances. 

Distance of 

Kinect Sensor 

(m) 

No. of 

simulated falls 

scenarios 

No. of detected 

falls scenarios 

No. of 

undetected falls 

scenarios 

Accuracy (%) 

0.5 5 1 4 20 

1.0 5 4 1 80 

Screenshot button Tilt button 

Live status 

Real-time 

y-coordinates 

Tilt angle 

Real-time video and 

skeleton streaming 
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1.5 5 5 0 100 

2.0 5 5 0 100 

2.5 5 5 0 100 

 

 

 
Figure 4.3: Fall detection accuracy of different distances.  

 

            Moving slightly further to 1.0 meters, the fall detection accuracy increases to 80%. 

The sensor has a better field of view at this distance, allowing for more effective and 

complete skeleton tracking. Thus, the accuracy of fall detection is higher compared to 0.5 

meters. At a more optimal range of 1.5 meters, the Kinect sensor provides a comprehensive 

view of the body and captures detailed movements and postures accurately. The sensor 

achieves a good balance at 1.5 meters, leading to fall detection accuracy of 100%. 

            As the distance increases further to 2.0 meters and 2.5 meters, the resolution and 

detail in the captured data increase. The increased distance leads to finer details necessary 

for accurate fall detection. 

            In short, the result of lower accuracy at 0.5 meters with the Kinect sensor can be 

attributed to its limited field of view and depth perception issues at close range, leading to 

incomplete or distorted skeleton tracking. Slightly longer distances provide a more optimal 
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range for accurate skeleton tracking and fall detection, while accuracy increaces at longer 

ranges due to increased detail in the captured data. If the distance increases further to the 

limit of the effective range of Kinect sensor, the accuracy of fall detection should be 

decreased due to the sensor captures less detail, making it more challenging to distinguish 

falls from other movements accurately. 

 

(a) 

 

(b)  

(c) (d) 

 

 

 

 

 

 

(e)  

 

Figure 4.4: Fall scenarios at different distances from the Kinect sensor  

(a) 0.5m (b) 1.0m (c) 1.5m (d) 2.0m (e) 2.5m 
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4.2.2 Fall Detection Accuracy of Different Heights 

            Fall detection accuracy of different heights is observed and analysed. Several 

observed fall scenarios including fall to the left side, fall to the right side, fall to the front, 

fall to the back, and fall while sitting. Throughout the evaluation of all heights of Kinect 

sensor, the fall detection accuracy achieves 100% in all fall scenarios. The system identifies 

every fall scenario and accurately classifies without false positives or negatives. The real-

world application of the system is taken into consideration, although the results obtain 100% 

detection accuracy. Factors such as furniture placement and background clutter may affect 

the performance and accuracy of the system. 

Table 4.2: Fall detection accuracy of different heights. 

Height of 

Kinect Sensor 

(m) 

No. of 

simulated falls 

scenarios 

No. of detected 

falls scenarios 

No. of 

undetected falls 

scenarios 

Accuracy (%) 

1.0 5 5 0 100 

1.5 5 5 0 100 

2.0 5 5 0 100 

 

 

 
Figure 4.5: Fall detection accuracy of different heights. 
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(a) 

 

 

(b)  

(c) (d) 

 

 

 

 

 

 

(e)  

 

Figure 4.6: Different fall scenarios at height of 1.0m. (a) fall to the left side (b) fall to the 

right side (c) fall to the front (d) fall to the back (e) fall while sitting 
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(a) 

 

(b)  

(c)  

 

(d)  

 

 

 

 

 

 

 

 

 

 (e)  

 

 

Figure 4.7: Different fall scenarios at height of 1.5m.  (a) fall to the left side (b) fall to the 

right side (c) fall to the front (d) fall to the back (e) fall while sitting 
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(a) 

 

 

(b)  

 

(c) (d) 

 

 

 

 

 

 

 

 

 

 

(e)  

 

 

Figure 4.8: Different fall scenarios at height of 2.0m. (a) fall to the left side (b) fall to the 

right side (c) fall to the front (d) fall to the back (e) fall while sitting 
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4.2.3 Fall Detection Accuracy of Different Lighting Conditions 

            The effectiveness of the Kinect sensor to detect fall incident was also conducted in 

different lighting conditions. The fall detection accuracy of 100% is obtained throughout the 

evaluation of all lighting conditions.  

            Although, this experiment was not necessary, as the sensor used to detect motion is 

an infrared sensor for depth-sensing which allows it to work in various lighting conditions,  

including in complete darkness.  

            Nevertheless, the experiment is deemed necessary to fortified what is already been 

known. This eliminates any questions in regards to the affect of lighting, i.e. rapid changes 

in lighting conditions, such as sudden transitions from light to dark or vice versa. These 

changes can temporarily disrupt the sensor to track movements accurately. Moreover, strong  

backlighting, where the primary light source is behind the person being tracked, can lead to  

silhouette distortion and reduced accuracy of sensor. 

 

Table 4.3: Fall detection accuracy of different lighting conditions. 

Lighting 

condition (lux) 

No. of 

simulated falls 

scenarios 

No. of detected 

falls scenarios 

No. of 

undetected falls 

scenarios 

Accuracy (%) 

65 5 5 0 100 

40 5 5 0 100 

15 5 5 0 100 

10 5 5 0 100 

0 5 5 0 100 
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Figure 4.9: Fall detection accuracy of different lighting conditions. 
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(c) 
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(e)  

 

Figure 4.10: Fall scenarios at different lighting conditions. 

 (a) 65 lux  (b) 40 lux  (c) 15 lux  (d) 10 lux  (e) 0 lux 

 

4.2.4 “HELP” Gesture Detection 

The system includes “HELP” gesture detection. “Help Command Detected!! Check  

for fall” is displayed when one hand or both hands is raised above head. Gesture recognition 

is introduced to reduce the false negatives of fall detection. 

 

 

(a) 

 

(b)  

(c) (d) 

 

Figure 4.11: Gesture recognition. (a) Both hands  (b) One hand 
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4.2.5 Validation of Non-Fall Detection Postures 

            Scenarios of standing, kneeling, and crawling were also tested to check for false-

positive alarms. An upright standing posture is classified as “Safe” event and “Fall is not 

detected”. A true-positive fall event is detected in the kneeling and crawling postures. 

 

(a) 

 

 

(b)  

 

(c) 

 

(d) 

 

Figure 4.12: Testing scenarios. (a) standing  (b) bending over  (c) crawling  (d) kneeling   

 

 

4.2.6 Fall Detection when There Is More Than One Person 

            This validates the fall detection when there are more than one person within the field 

of view. In figure 4.11(a), when one person is in a fall posture while the another person is 

still standing, y-coordinates of joints of falling person is shown and “Fall is detected” is 

displayed. Kinect sensor can track up to two individuals simultaneously in the field of view. 

The accuracy of skeleton tracking starts to degrade when there is more than two person. The 
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system have difficulty to distinguish between the movements of multiple individuals in 

crowded or complex scenes.  

 

 

  

  

 

Figure 4.13: Fall scenarios when there are more than one person. 

 

4.3 Summary 

            This chapter presented the result and analysis of differenet fall scenarios in the 

aspects of distance, height and lighting condition. This chapter also presented the use of 

gesture recognition in the detection system. 
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CONCLUSION  

5.1 Conclusion 

            In conclusion, using a Kinect sensor, a fall detection system is an innovative and 

effective approach to detect and monitor falls in various situations. The Kinect sensor's depth 

sensing and skeletal tracking are used to analyze and determine fall events accurately. In 

addition, the system can capture and analyze real-time human movement data. The Kinect 

Developer Toolkit v1.8 provides a comprehensive set of tools and libraries to seamlessly 

access and utilize the Kinect sensor's features within Visual Studio 2019. 

            The system extracts the position of joints such as the head, shoulders, hips, and ankles 

by analysing the skeleton data. The system computes the change in height of the tracked 

joints by calculating the head-to-ankle distance. If the initial head-to-ankle distance is zero, 

y-coordinates value from head to ankle is calculated. It means that this is the first frame 

where the person is detected. The calculated value is then multiplied with height threshold 

factor value of 0.7 to obtain distance threshold value.  

            If the initial head-to-ankle distance is not zero, current head-to-ankle distance is 

calculated. It means that the person has been detected in previous frames, so the initial head-

to-ankle distance and the distance threshold have already been calculated. Absolute 

difference between initial and current head-to-ankle distance is calculated and compared 

with distance threshold value. Another position threshold value of 0.3 is compared with y-

coordinates value of each joints.  

            Fall event is considered when absolute difference between initial and current head-

to-ankle distance is greater than distance threshold value, and y-coordinates values of each 
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joints are lower than position threshold. Instead, safe event is considered. “Help Command 

Detected!! Check for fall” is displayed when one hand or both hands is raised above head. 

             Although Visual Studio 2019 and Kinect Developer Toolkit v1.8 are older versions 

of the development tools, they can still provide a solid foundation to implement a functional 

fall detection system. Kinect-based fall detection system offers a non-intrusive method of 

monitoring individuals, without the need of wearing any devices. This can be beneficial for 

seniors who might forget or be unwilling to wear monitoring devices. Moreover, fall 

detection system can be developed in Visual Studio 2019 to support advanced programming 

capabilities and facilitate the integration of Kinect SDK, and hence enabling developers to 

create more efficient and reliable applications.  

            Lastly, there are challenges of the fall detection system such as the limited field of 

view of the Kinect sensor and the potential for false positives and negatives. The 

effectiveness of fall detection system can be influenced by environmental factors like space 

layout. With advancements in AI and machine learning, the accuracy and efficiency of fall 

detection system can be significantly improved. 

5.2 Recommendations for Future Study 

The fall detection system has the potential to enhance the safety of older people in  

various environments. There are several recommendations to enhance the efficiency and 

adaptability of the system. Firstly, investigation of advanced algorithms for more accurate 

gesture and fall recognition. Machine learning and deep learning techniques can be 

incorporated to significantly improve the system to differentiate between normal activities 

and falls, hence reducing false positives and negatives. 

            Furthermore, integration of Kinect system with Internet of Things (IoT) devices for 

a more comprehensive monitoring approach. For example, connection of fall detection 
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system with smart home system to automate alerts and responses, such as locking doors, 

turning off appliances, or adjusting the lighting during a fall event. 

            Moreover, combination of Kinect with wearable devices or environmental sensors to 

enhance sensor capabilities. It could provide a more holistic solution to fall detection and 

activity monitoring. In addition, study of data privacy and security concerns when the system 

is connected to the internet or other devices.  

            Other than that, development of user-friendly interfaces for users and caregivers. 

Research can be conducted into the design of interfaces that are intuitive and easy to use for 

people. With that, engagement in cross-disciplinary research involving healthcare 

professionals, engineers, and user experience designers to ensure that the system is medically 

relevant. 

            On the other hand, one of the recommendations is conduct of extensive clinical trials 

and real-world testing to validate the effectiveness, reliability, and practicality of the system 

in various environments such as homes, hospitals, and eldercare facilities. Additionally, 

examination of the potential for integrating Kinect-based system with telehealth services. 

This could facilitate remote monitoring and consultation to be more accessible. 

            Moreover, integration of the Kinect system to be personalized for individual users. 

This includes adjusting sensitivity, customizing alerts and the system to recognize specific 

health conditions or mobility issues. Lastly, investigation of accessibility and affordability 

in different regions including low-income countries to enhance the global applicability and 

impact. 

            In short, future studies can significantly contribute to the development of more 

advanced, reliable, and user-friendly Kinect-based fall detection system, improving the 

quality of life and safety for older people at risk of falls. 
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APPENDICES 

Project Flowchart 
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Gantt Chart FYP 1 
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Gantt Chart FYP 2 
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C# Coding of WPF Application 

 
using System; 
using System.Globalization; 
using System.Windows; 
using System.Windows.Media; 
using System.Windows.Media.Imaging; 
using Microsoft.Kinect; 
using System.IO; 
 
namespace FallDetection 
{ 
    public partial class MainWindow : 
Window 
    { 
        private KinectSensor 
kinectSensor; 
        private const float RenderWidth = 
640.0f; 
        private const float RenderHeight 
= 480.0f; 
        private const double 
JointThickness = 3; 
        private const double 
BodyCenterThickness = 10; 
        private const double 
ClipBoundsThickness = 10; 
        private readonly Brush 
centerPointBrush = Brushes.Blue; 
        private readonly Brush 
trackedJointBrush = new 
SolidColorBrush(Color.FromArgb(255, 68, 
192, 68)); 
        private readonly Brush 
inferredJointBrush = Brushes.Yellow; 
        private readonly Pen 
trackedBonePen = new Pen(Brushes.Green, 
6); 
        private readonly Pen 
inferredBonePen = new Pen(Brushes.Gray, 
1); 
        private DrawingGroup 
drawingGroup; 
        private DrawingImage imageSource; 
 
        private WriteableBitmap 
colorBitmap; 
 
        private double 
initialHeadToAnkleDistance = 0; 
        private const double 
positionThreshold = 0.3; 
 
        public MainWindow() 
        { 
            InitializeComponent(); 
        } 
 
        private void Window_Loaded(object 
sender, RoutedEventArgs e) 
        { 

this.imageSource = new 
DrawingImage(this.drawingGroup); 
            SkeletonImage.Source = 
this.imageSource; 
 
            if 
(KinectSensor.KinectSensors.Count > 0) 
            { 
                kinectSensor = 
KinectSensor.KinectSensors[0]; 
 
                if (kinectSensor != 
null) 
                { 
                    
kinectSensor.Start(); 
 
                    // Enable color 
stream 
                    
kinectSensor.ColorStream.Enable(); 
 
                    // Allocate space 
for the color pixel data 
                    colorBitmap = new 
WriteableBitmap(kinectSensor.ColorStre
am.FrameWidth, 
kinectSensor.ColorStream.FrameHeight, 
96.0, 96.0, PixelFormats.Bgr32, null); 
 
                    // Set the image 
source of the ColorImage control to the 
colorBitmap 
                    ColorImage.Source = 
colorBitmap; 
 
                    
kinectSensor.ColorFrameReady += 
KinectSensor_ColorFrameReady; 
 
                    // Enable skeleton 
stream 
                    
kinectSensor.SkeletonStream.Enable(); 
 
                    
kinectSensor.SkeletonFrameReady += 
KinectSensor_SkeletonFrameReady; 
                    
 
                    
StatusTextBlock.Text = "Kinect sensor 
connected"; 
                } 
                else 
                { 
                    
StatusTextBlock.Text = "No Kinect 
sensor found"; 
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            this.drawingGroup = new 
DrawingGroup(); 
             
 
            } 
            else 
            { 
                StatusTextBlock.Text = 
"No Kinect sensor found"; 
            } 
        } 
 
private void Window_Closing(object 
sender, 
System.ComponentModel.CancelEventArgs e) 
        { 
 
            if (kinectSensor != null) 
            { 
                kinectSensor.Stop(); 
                kinectSensor = null; 
            } 
        } 
 
        private void 
KinectSensor_ColorFrameReady(object 
sender, ColorImageFrameReadyEventArgs e) 
        { 
            using (ColorImageFrame 
colorFrame = e.OpenColorImageFrame()) 
            { 
                if (colorFrame != null) 
                { 
                    byte[] colorData = 
new byte[colorFrame.PixelDataLength]; 
                    
colorFrame.CopyPixelDataTo(colorData); 
 
                    
colorBitmap.WritePixels(new Int32Rect(0, 
0, colorFrame.Width, colorFrame.Height), 
colorData, colorFrame.Width * 
colorFrame.BytesPerPixel, 0); 
                } 
            } 
        } 
 
private void 
KinectSensor_SkeletonFrameReady(object 
sender, SkeletonFrameReadyEventArgs e) 
        { 
 
            Skeleton[] skeletons = new 
Skeleton[0]; 
 
            using (SkeletonFrame 
skeletonFrame = e.OpenSkeletonFrame()) 
            { 
                if (skeletonFrame != 
null) 
                { 
 

                } 
             
skeletonFrame.CopySkeletonDataTo(skele
tons); 
 
                    foreach (Skeleton 
skeleton in skeletons) 
                    { 
                         
if (skeleton.TrackingState == 
SkeletonTrackingState.Tracked) 
                        { 
 
                            double 
headY = 
skeleton.Joints[JointType.Head].Positi
on.Y; 
                            double 
shouldercenterY = 
skeleton.Joints[JointType.ShoulderCent
er].Position.Y; 
                            double 
hipcenterY = 
skeleton.Joints[JointType.HipCenter].P
osition.Y; 
                            double 
ankleleftY = 
skeleton.Joints[JointType.AnkleLeft].P
osition.Y; 
                            double 
anklerightY = 
skeleton.Joints[JointType.AnkleRight].
Position.Y; 
 
                            
UpdateJointPositionsUI(headY, 
shouldercenterY, hipcenterY, 
ankleleftY, anklerightY); 
 
                            if 
(IsPersonFallingDown(skeleton)) 
                            { 
                                
FallEvent(); 
                            } 
                            else 
                            { 
                                
SafeEvent(); 
                            } 
 
                            if 
(IsHandRaisedAboveHead(skeleton)) 
                            { 
                                
NotifyFallEvent(); 
                            } 
                        } 
                    } 
                } 
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using (DrawingContext dc = 
this.drawingGroup.Open()) 
            { 
                
dc.DrawRectangle(Brushes.Transparent, 
null, new Rect(0.0, 0.0, RenderWidth, 
RenderHeight)); 
 
                if (skeletons.Length != 
0) 
                { 
                    foreach (Skeleton 
skel in skeletons) 
                    { 
                        
RenderClippedEdges(skel, dc); 
 
                        if 
(skel.TrackingState == 
SkeletonTrackingState.Tracked) 
                        { 
                            
this.DrawBonesAndJoints(skel, dc); 
                        } 
                        else if 
(skel.TrackingState == 
SkeletonTrackingState.PositionOnly) 
                        { 
                            
dc.DrawEllipse( 
                            
this.centerPointBrush, 
                            null, 
                            
this.SkeletonPointToScreen(skel.Position)
, 
                            
BodyCenterThickness, 
                            
BodyCenterThickness); 
                                              
}   
                } 
            } 
 
         this.drawingGroup.ClipGeometry = 
new RectangleGeometry(new Rect(0.0, 0.0, 
RenderWidth, RenderHeight)); 
 
            } 
        } 
private bool IsPersonFallingDown(Skeleton 
skeleton) 
        { 
 
            double yHead = 
skeleton.Joints[JointType.Head].Position.
Y; 
            double yShoulderCenter = 
skeleton.Joints[JointType.ShoulderCenter]
.Position.Y; 
 

double yHipCenter = 
skeleton.Joints[JointType.HipCenter].P
osition.Y; 
            double yAnkleLeft = 
skeleton.Joints[JointType.AnkleLeft].P
osition.Y; 
            double yAnkleRight = 
skeleton.Joints[JointType.AnkleRight].
Position.Y; 
 
 
            double 
HeightThresholdFactor = 0.8; 
 
            double distanceThreshold = 
0; 
 
            if 
(initialHeadToAnkleDistance == 0) 
            { 
                
initialHeadToAnkleDistance = yHead - 
yAnkleRight; 
                distanceThreshold = 
initialHeadToAnkleDistance * 
HeightThresholdFactor; 
            } 
 
 
            double 
currentHeadToAnkleDistance = yHead - 
yAnkleRight; 
 
 
            if 
(Math.Abs(initialHeadToAnkleDistance - 
currentHeadToAnkleDistance) > 
distanceThreshold && 
                    yHead < 
positionThreshold && 
                    yShoulderCenter < 
positionThreshold && 
                    yHipCenter < 
positionThreshold && 
                    yAnkleLeft < 
positionThreshold && 
                    yAnkleRight < 
positionThreshold) 
            { 
                return true; // Fall 
detected 
            } 
 
            return false; // Safe 
        } 
 
  private void 
UpdateJointPositionsUI(double headY, 
double shouldercenterY, double 
hipcenterY, double ankleleftY, double 
anklerightY) 
        { 
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HeadYText.Text = $"Head Y: {headY:F2}"; 
            ShoulderCenterYText.Text = 
$"ShoulderCenter Y: 
{shouldercenterY:F2}"; 
            HipCenterYText.Text = 
$"HipCenter Y: {hipcenterY:F2}"; 
            AnkleLeftYText.Text = 
$"AnkleLeft Y: {ankleleftY:F2}"; 
            AnkleRightYText.Text = 
$"AnkleRight Y: {anklerightY:F2}"; 
        } 
 
 
 
        private bool 
IsHandRaisedAboveHead(Skeleton skeleton) 
        { 
            Joint head = 
skeleton.Joints[JointType.Head]; 
            Joint handLeft = 
skeleton.Joints[JointType.HandLeft]; 
            Joint handRight = 
skeleton.Joints[JointType.HandRight]; 
 
            // Check if either hand is 
raised above the head 
            return 
(handLeft.TrackingState == 
JointTrackingState.Tracked && 
handLeft.Position.Y > head.Position.Y) || 
                   
(handRight.TrackingState == 
JointTrackingState.Tracked && 
handRight.Position.Y > head.Position.Y); 
        } 
 
private void SafeEvent() 
        { 
            StatusTextBlock.Text = "Fall 
is not detected."; 
        } 
 
 
        private void FallEvent() 
        { 
            StatusTextBlock.Text = "Fall 
is detected."; 
        } 
 
 
        private void NotifyFallEvent() 
        { 
            StatusTextBlock.Text = "Help 
Command Detected!! \fChecking for fall"; 
        } 
 
private void DrawBonesAndJoints(Skeleton 
skeleton, DrawingContext drawingContext) 
        { 
 
 
 

// Render Torso 
            DrawBone(skeleton, 
drawingContext, JointType.Head, 
JointType.ShoulderCenter); 
            DrawBone(skeleton, 
drawingContext, 
JointType.ShoulderCenter, 
JointType.Spine); 
            DrawBone(skeleton, 
drawingContext, JointType.Spine, 
JointType.HipCenter); 
            DrawBone(skeleton, 
drawingContext, 
JointType.ShoulderCenter, 
JointType.ShoulderLeft); 
            DrawBone(skeleton, 
drawingContext, 
JointType.ShoulderCenter, 
JointType.ShoulderRight); 
            DrawBone(skeleton, 
drawingContext, JointType.HipCenter, 
JointType.HipLeft); 
            DrawBone(skeleton, 
drawingContext, JointType.HipCenter, 
JointType.HipRight); 
 
            // Left Arm 
            DrawBone(skeleton, 
drawingContext, 
JointType.ShoulderLeft, 
JointType.ElbowLeft); 
            DrawBone(skeleton, 
drawingContext, JointType.ElbowLeft, 
JointType.WristLeft); 
            DrawBone(skeleton, 
drawingContext, JointType.WristLeft, 
JointType.HandLeft); 
 
            // Right Arm 
            DrawBone(skeleton, 
drawingContext, 
JointType.ShoulderRight, 
JointType.ElbowRight); 
            DrawBone(skeleton, 
drawingContext, JointType.ElbowRight, 
JointType.WristRight); 
            DrawBone(skeleton, 
drawingContext, JointType.WristRight, 
JointType.HandRight); 
 
            // Left Leg 
            DrawBone(skeleton, 
drawingContext, JointType.HipLeft, 
JointType.KneeLeft); 
            DrawBone(skeleton, 
drawingContext, JointType.KneeLeft, 
JointType.AnkleLeft); 
            DrawBone(skeleton, 
drawingContext, JointType.AnkleLeft, 
JointType.FootLeft); 
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// Right Leg 
            DrawBone(skeleton, 
drawingContext, JointType.HipRight, 
JointType.KneeRight); 
            DrawBone(skeleton, 
drawingContext, JointType.KneeRight, 
JointType.AnkleRight); 
            DrawBone(skeleton, 
drawingContext, JointType.AnkleRight, 
JointType.FootRight); 
 
foreach (Joint joint in skeleton.Joints) 
            { 
                if (joint.TrackingState 
== JointTrackingState.Tracked) 
                { 
                    Brush drawBrush = 
null; 
 
                    if 
(joint.TrackingState == 
JointTrackingState.Tracked) 
                    { 
                        drawBrush = 
trackedJointBrush; 
                    } 
                    else if 
(joint.TrackingState == 
JointTrackingState.Inferred) 
                    { 
                        drawBrush = 
inferredJointBrush; 
                    } 
                    if (drawBrush != 
null) 
                    { 
                        
drawingContext.DrawEllipse(drawBrush, 
null, 
SkeletonPointToScreen(joint.Position), 
JointThickness, JointThickness); 
                    } 
                } 
            } 
        } 
 
private Point 
SkeletonPointToScreen(SkeletonPoint 
skelpoint) 
        { 
 
            DepthImagePoint depthPoint = 
kinectSensor.CoordinateMapper.MapSkeleton
PointToDepthPoint(skelpoint, 
DepthImageFormat.Resolution640x480Fps30); 
            return new 
Point(depthPoint.X, depthPoint.Y); 
        } 
 
 
 
 

 
private void DrawBone(Skeleton 
skeleton, DrawingContext 
drawingContext, JointType jointType0, 
JointType jointType1) 
        { 
            Joint joint0 = 
skeleton.Joints[jointType0]; 
            Joint joint1 = 
skeleton.Joints[jointType1]; 
 
            // If can't find either of 
these joints, exit 
            if (joint0.TrackingState 
== JointTrackingState.NotTracked || 
                joint1.TrackingState 
== JointTrackingState.NotTracked) 
            { 
                return; 
            } 
 
            // Assume all drawn bones 
are inferred unless BOTH joints are 
tracked 
            if (joint0.TrackingState 
== JointTrackingState.Inferred && 
                joint1.TrackingState 
== JointTrackingState.Inferred) 
            { 
                return; 
            } 
 
            Pen drawPen = 
this.inferredBonePen; 
            if (joint0.TrackingState 
== JointTrackingState.Tracked && 
joint1.TrackingState == 
JointTrackingState.Tracked) 
            { 
                drawPen = 
trackedBonePen; 
            } 
 
            
drawingContext.DrawLine(drawPen, 
SkeletonPointToScreen(joint0.Position)
, 
SkeletonPointToScreen(joint1.Position)
); 
        } 
 
private static void 
RenderClippedEdges(Skeleton skeleton, 
DrawingContext drawingContext, 
WriteableBitmap colorBitmap) 
        { 
            double actualRenderWidth = 
colorBitmap.PixelWidth; 
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if 
(skeleton.ClippedEdges.HasFlag(FrameEdges
.Bottom)) 
            { 
drawingContext.DrawRectangle( 
                    Brushes. Red, 
                    null, 
                    new Rect(0, 
RenderHeight - ClipBoundsThickness, 
actualRenderWidth, ClipBoundsThickness)); 
            } 
 
            if 
(skeleton.ClippedEdges.HasFlag(FrameEdges
.Top)) 
            { 
                
drawingContext.DrawRectangle( 
                    Brushes.Red, 
                    null, 
                    new Rect(0, 0, 
actualRenderWidth, ClipBoundsThickness)); 
            } 
 
            if 
(skeleton.ClippedEdges.HasFlag(FrameEdges
.Left)) 
            { 
                
drawingContext.DrawRectangle( 
                    Brushes.Red, 
                    null, 
                    new Rect(0, 0, 
ClipBoundsThickness, RenderHeight)); 
            } 
 
            if 
(skeleton.ClippedEdges.HasFlag(FrameEdges
.Right)) 
            { 
                
drawingContext.DrawRectangle( 
                    Brushes.Red, 
                    null, 
                    new 
Rect(actualRenderWidth - 
ClipBoundsThickness, 0, 
ClipBoundsThickness, RenderHeight)); 
            } 
        } 
 
private void Button_Click(object sender, 
RoutedEventArgs e) 
        { 
            RenderTargetBitmap 
renderTargetBitmap = new 
RenderTargetBitmap((int)this.ActualWidth, 
(int)this.ActualHeight, 96d, 96d, 
PixelFormats.Pbgra32); 
            
renderTargetBitmap.Render(this); 

 
BitmapEncoder encoder = new 
PngBitmapEncoder(); 
            
encoder.Frames.Add(BitmapFrame.Create(
renderTargetBitmap)); 
 
            string time = 
DateTime.Now.ToString("hh'-'mm'-'ss", 
CultureInfo.CurrentUICulture.DateTimeF
ormat); 
            string myPhotos = 
Environment.GetFolderPath(Environment.
SpecialFolder.MyPictures); 
            string path = 
Path.Combine(myPhotos, 
"KinectWindowSnapshot-" + time + 
".png"); 
 
            try 
            { 
                
Directory.CreateDirectory(Path.GetDire
ctoryName(path)); 
                using (FileStream fs = 
new FileStream(path, FileMode.Create)) 
                { 
                    encoder.Save(fs); 
                } 
                StatusTextBlock.Text = 
"Screenshot saved."; 
            } 
            catch (IOException) 
            { 
                StatusTextBlock.Text = 
"Error saving screenshot."; 
            } 
        } 
 
 
 
        private void 
ApplyTiltButton_Click(object sender, 
RoutedEventArgs e) 
        { 
            int selectedAngle = 
(int)TiltAngleSlider.Value; 
            
AdjustKinectTiltAngle(selectedAngle); 
        } 
 
 
        private void 
AdjustKinectTiltAngle(int angle) 
        { 
            if (kinectSensor != null 
&& kinectSensor.IsRunning) 
            { 
                angle = Math.Max(-27, 
Math.Min(27, angle)); 
 
                try 
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                { 
                    
kinectSensor.ElevationAngle = angle; 
                    StatusTextBlock.Text 
= $"Tilt angle set to {angle} degrees."; 
                } 
                catch 
(InvalidOperationException ex) 
                { 
                    StatusTextBlock.Text 
= "Error adjusting tilt angle."; 
                } 
            } 
        } 
    } 
} 
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XAML Coding 

 
<Window x:Class="FallDetection.MainWindow" 
        xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
        xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
        Title="Fall Detection App" Height="600" Width="1000" 
        Loaded="Window_Loaded" Closing="Window_Closing" > 
 
 
    <Grid> 
        <Grid> 
 
            <Image x:Name="ColorImage" HorizontalAlignment="Stretch" 
VerticalAlignment="Stretch" Margin="113,10,285.2,52" /> 
 
            <Image x:Name="SkeletonImage" HorizontalAlignment="Stretch" 
VerticalAlignment="Stretch" Margin="112,10,285.2,52" /> 
 
            <TextBlock x:Name="StatusTextBlock" HorizontalAlignment="Left" 
Margin="734,255,0,0" TextWrapping="Wrap" Text="Status" VerticalAlignment="Top" 
FontSize="24" FontWeight="Bold" RenderTransformOrigin="1.12,-0.242" /> 
 
            <TextBlock x:Name="HeadYText" HorizontalAlignment="Left" TextWrapping="Wrap" 
VerticalAlignment="Top" Text="Head" Margin="734,41,0,0" FontSize="16" 
RenderTransformOrigin="0.6,-0.612"/> 
 
            <TextBlock x:Name="ShoulderCenterYText" HorizontalAlignment="Left" 
Margin="734,76,0,0" TextWrapping="Wrap" VerticalAlignment="Top" Text="Shoulder" 
FontSize="16" RenderTransformOrigin="-0.165,-1.862"/> 
 
            <TextBlock x:Name="HipCenterYText" HorizontalAlignment="Left" 
Margin="734,113,0,0" TextWrapping="Wrap"  VerticalAlignment="Top" Text="Hip" 
FontSize="16" RenderTransformOrigin="0.522,-1.712"/> 
 
            <TextBlock x:Name="AnkleLeftYText" HorizontalAlignment="Left" 
TextWrapping="Wrap" VerticalAlignment="Top" Text="AnkleLeft" Margin="734,148,0,0" 
FontSize="16" RenderTransformOrigin="0.502,-0.677"/> 
 
            <TextBlock x:Name="AnkleRightYText" HorizontalAlignment="Left" 
Margin="734,184,0,0" TextWrapping="Wrap" Text="AnkleRight" VerticalAlignment="Top" 
FontSize="16" RenderTransformOrigin="-0.139,0.727"/> 
 
            <Button x:Name="ScreenshotBtn" Content="Screenshot" 
HorizontalAlignment="Left" Margin="845,457,0,0" VerticalAlignment="Top" Width="85" 
Click="Button_Click" Height="26" FontSize="14" RenderTransformOrigin="1.308,-0.321"/> 
 
            <Slider x:Name="TiltAngleSlider" Minimum="-27" Maximum="27" 
TickFrequency="1" SmallChange="1" LargeChange="5" Value="0"  Margin="734,375,54.6,160.4" 
/> 
 
            <TextBlock x:Name="TiltAngleValueText" Text="{Binding 
ElementName=TiltAngleSlider, Path=Value, StringFormat='Tilt Angle: {0:F0}°'}" 
HorizontalAlignment="Left" Margin="798,410,0,0" TextWrapping="Wrap" 
VerticalAlignment="Top" FontSize="14" RenderTransformOrigin="0.367,0.476"/> 
 
            <Button x:Name="ApplyTiltButton" Content="Apply Tilt" 
HorizontalAlignment="Left" Click="ApplyTiltButton_Click" VerticalAlignment="Top" 
Margin="734,457,0,0" Height="26" Width="85" FontSize="14" RenderTransformOrigin="3.968,-
3.336"/> 
 
        </Grid> 
    </Grid> 
</Window> 

 


