

Faculty of Electronics and Computer Technology and

Engineering

KINECT-BASED FALL DETECTION SYSTEM FOR THE ELDERLY

KONG TIAN CHYUAN

Bachelor of Electronics Engineering Technology with Honours

2024

KINECT-BASED FALL DETECTION SYSTEM FOR THE ELDERLY

KONG TIAN CHYUAN

A project report submitted

in partial fulfillment of the requirements for the degree of

Bachelor of Electronics Engineering Technology with Honours

Faculty of Electronics and Computer Technology and Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2024

Tajuk Projek : Kinect-Based Fall Detection System For The Elderly

 Sesi Pengajian : 2023/2024

Saya KONG TIAN CHYUAN mengaku membenarkan laporan Projek Sarjana Muda

ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran

antara institusi pengajian tinggi.

4. Sila tandakan (✓):

SULIT*

(Mengandungi maklumat yang berdarjah

keselamatan atau kepentingan Malaysia

seperti yang termaktub di dalam AKTA

RAHSIA RASMI 1972)

TERHAD*

(Mengandungi maklumat terhad yang

telah ditentukan oleh organisasi/badan di

mana penyelidikan dijalankan.

 TIDAK TERHAD

Disahkan oleh:

(TANDATANGAN PENULIS) (COP DAN TANDATANGAN PENYELIA)

Alamat Tetap: 23 Kampung Baru

28400 Mentakab,

Pahang.

Tarikh : 05 Februari 2024 Tarikh : 05 Februari 2024

 *CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan
dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

EE

E

UNIVERSITI TEKNIKAL MALAYSIA MELAKA
FAKULTI TEKNOLOGI DAN KEJURUTERAAN ELEKTRONIK DAN

KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN

PROJEK SARJANA MUDA II

√

DECLARATION

I declare that this project report entitled “Kinect-Based Fall Detection System For The

Elderly” is the result of my own research except as cited in the references. The project report

has not been accepted for any degree and is not concurrently submitted in candidature of any

other degree.

Signature :

Student Name : KONG TIAN CHYUAN

Date : 05/02/2024

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report

is adequate in terms of scope and quality for the award of the degree of Bachelor of

Electronics Engineering Technology with Honours.

Signature :

Supervisor Name : PN. IZADORA BINTI MUSTAFFA

Date : 05/02/2024

Signature :

Co-Supervisor

Name (if any)

:

Date :

DEDICATION

To my beloved mother, Tan Mee Li, and father, Kong Woei Ming,

and

my dear friend, Soh Teck Wei

i

ABSTRACT

The growing population of elderly individuals are increasing in correlation to the

advancement in healthcare. Along with that, however, are the associated risks, such as

incidents of falls. Several studies had shown that older adults experienced at least one fall

every year, and it was the main cause of accidental death in older adults aged 65 or more. In

Malaysia, many elderly are left alone during the day as their family members are out to work

or school. Therefore, a fall detection system was designed to detect when a person

experiences a fall or a loss of balance. The system utilizes Kinect sensors and algorithms to

detect the movements and postures of an individual, aiming to analyze and identify patterns

that indicate a fall event. Skeletons and joints such as heads, shoulder centre, hip centre,

ankle left, and right are detected and extracted. The fall algorithm is implemented to obtain

the y-coordinate values and threshold values. Several observed fall scenarios including fall

to the left side, fall to the right side, fall to the front, fall to the back, and fall while sitting.

The result of lower accuracy at short distances from the Kinect sensor can be attributed to

its limited field of view and depth perception issues at close range, leading to incomplete or

distorted skeleton tracking. Slightly longer distances provide a more optimal range for

accurate skeleton tracking and fall detection, while accuracy increases at longer ranges due

to increased detail in the captured data. The fall detection accuracy of 100% is obtained

throughout the evaluation of all heights of Kinect sensor and lighting conditions.

ii

ABSTRAK

Jumlah populasi warga tua semakin meningkat seiring dengan kemajuan dalam bidang

penjagaan kesihatan. Walau bagaimanapun, terdapat risiko yang berkaitan dengan

peningkatan ini, seperti kejadian jatuh. Beberapa kajian menunjukkan bahawa orang dewasa

tua mengalami sekurang-kurangnya satu kejadian jatuh setiap tahun, dan ia merupakan

punca utama kematian akibat kemalangan bagi orang dewasa tua berumur 65 tahun atau

lebih. Di Malaysia, ramai warga tua ditinggalkan sendirian sepanjang hari kerana ahli

keluarga mereka pergi bekerja atau sekolah. Oleh itu, sistem pengesanan jatuh telah direka

untuk mengesan apabila seseorang mengalami jatuh atau kehilangan keseimbangan. Sistem

ini menggunakan pengesan Kinect dan algoritma untuk mengesan pergerakan dan posisi

individu, dengan tujuan menganalisis dan mengenal pasti corak yang menunjukkan kejadian

jatuh. Struktur dan sendi seperti kepala, pusat bahu, pusat pinggul, mata kaki kiri, dan kanan

dikesan dan diekstrak. Algoritma jatuh diaplikasikan untuk mendapatkan nilai koordinat Y

dan nilai ambang. Beberapa senario jatuh yang diperhatikan termasuk jatuh ke sebelah kiri,

jatuh ke sebelah kanan, jatuh ke hadapan, jatuh ke belakang, dan jatuh semasa duduk. Hasil

ketepatan yang lebih rendah pada jarak dekat dari penderia Kinect boleh dikaitkan dengan

bidang pandangan yang terhad dan isu persepsi kedalaman pada jarak dekat, yang membawa

kepada penjejakan rangka yang tidak lengkap atau herot. Jarak yang lebih jauh sedikit

memberikan julat yang lebih optimum untuk pengesanan rangka yang tepat dan pengesanan

jatuh, manakala ketepatan meningkat pada julat yang lebih panjang disebabkan oleh

peningkatan butiran dalam data yang ditangkap. Ketepatan pengesanan jatuh sebanyak 100%

diperoleh sepanjang penilaian semua ketinggian sensor Kinect dan keadaan pencahayaan.

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my supervisor, Pn. Izadora

Binti Mustaffa for the precious guidance, words of wisdom and patient throughout this final

year project.

I am also indebted to Universiti Teknikal Malaysia Melaka (UTeM) for the financial

support which enables me to accomplish the project. Not forgetting my fellow colleague,

Chan Pui Kit for the willingness of sharing his thoughts and ideas regarding the project.

My highest appreciation goes to my parents and family members for their love and

prayer during the period of my study. An honourable mention also goes to Dr. Haslinah

Binti Mohd Nasir for all the motivation and understanding.

Finally, I would like to thank all the staffs at the faculty, fellow colleagues and

classmates, the faculty members, as well as other individuals who are not listed here for

being co-operative and helpful.

iv

TABLE OF CONTENTS

PAGE

DECLARATION

APPROVAL

DEDICATIONS

ABSTRACT i

ABSTRAK ii

ACKNOWLEDGEMENTS iii

TABLE OF CONTENTS iv

LIST OF TABLES vii

LIST OF FIGURES viii

 INTRODUCTION 10

1.1 Introduction 10

1.2 Background 10

1.3 Problem Statement 12

1.4 Objective 13

1.5 Scope and Limitations 13

 LITERATURE REVIEW 15

2.1 Introduction 15

2.2 Wearable-Sensor-Based Fall Detection System 15

2.2.1 Quaternion Algorithm 15

2.2.2 IoT and Big Data 16

2.2.3 Machine Learning Algorithm 17

2.3 Smartphone-Based Fall Detection System 19

2.3.1 Threshold-Based Algorithm 19

2.3.2 Deep Learning Algorithm 20

2.3.3 Machine Learning Algorithm 21

v

2.4 Kinect-Based Fall Detection System 22

2.4.1 Position Algorithm and Velocity Algorithm 22

2.4.2 Point Cloud 23

2.4.3 Thresholding Algorithm 23

2.4.4 Deep Learning Technique on 3D Skeleton 24

2.4.5 Human Posture Recognition 25

2.4.6 Reinforcement Learning Algorithm 26

2.4.7 Background Subtraction Algorithm 27

2.4.8 Skeleton-Based and Thresholding Algorithm 28

2.4.9 Skeleton Detection Algorithm 29

2.5 Sensor Comparison from Previous Work Related to the Project 31

2.6 Journal Comparison from Previous Work Related to the Project 32

2.7 Summary 38

 METHODOLOGY 39

3.1 Introduction 39

3.2 Hardware 40

3.3 Software 41

3.3.1 Flowchart 43

3.3.2 Fall Algorithm 45

3.3.3 Gesture Recognition 46

3.4 Experimental Setup 46

3.5 Summary 49

 RESULTS AND DISCUSSIONS 50

4.1 Introduction 50

4.2 Result and Analysis 50

4.2.1 Fall Detection Accuracy of Different Distances 51

4.2.2 Fall Detection Accuracy of Different Heights 54

4.2.3 Fall Detection Accuracy of Different Lighting Conditions 58

4.2.4 “HELP” Gesture Detection 60

4.2.5 Validation of Non-Fall Detection Postures 61

4.2.6 Fall detection when there is more than one person 61

vi

4.3 Summary 62

 CONCLUSION 63

5.1 Conclusion 63

5.2 Recommendations for Future Study 64

REFERENCES 66

APPENDICES 69

vii

LIST OF TABLES

TABLE TITLE PAGE

Table 2.1: Sensor comparison. 31

Table 2.2: Journal comparison. 32

Table 4.1: Fall detection accuracy of different distances. 51

Table 4.2: Fall detection accuracy of different heights. 54

Table 4.3: Fall detection accuracy of different lighting conditions. 58

viii

LIST OF FIGURES

FIGURE TITLE PAGE

Figure 2.1: Fall location [7]. 16

Figure 2.2: Fall detection system architecture [8]. 17

Figure 2.3: AHRS and barometer sensor based fall detector system [9]. 18

Figure 2.4: Fall detection app [10]. 19

Figure 2.5: SmartFall user interface [11]. 20

Figure 2.6: Web portal data summary [12]. 21

Figure 2.7: Joints of skeleton detection [13]. 22

Figure 2.8: Point cloud system diagram [14]. 23

Figure 2.9: Environment testing model used in Kinect-based platform [15]. 24

Figure 2.10: 3D skeleton using deep learning system [16]. 25

Figure 2.11: Experimental setup [17]. 26

Figure 2.12: Reinforcement learning system [18]. 27

Figure 2.13: Methodology flowchart. 28

Figure 2.14: Fall detection model [20]. 29

Figure 2.15: Algorithm procedures. 30

Figure 3.1: Block diagram. 39

Figure 3.2: Xbox 360 Microsoft Kinect. 40

Figure 3.3: Sensor arrangement of Xbox 360 Microsoft Kinect 41

Figure 3.4: System flowchart. 44

Figure 3.5: Fall algorithm. 45

Figure 3.6: Experimental setup. 46

ix

Figure 3.7: (a) Vertical angle view (b) Horizontal angle view of Kinect sensor. 47

Figure 3.8: Kinect sensor location. 48

Figure 4.1: Real-time experimental setup. 50

Figure 4.2: Output window. 51

Figure 4.3: Fall detection accuracy of different distances. 52

Figure4.4: Fall scenarios at different distances from the Kinect sensor (a) 0.5m (b)

1.0m (c) 1.5m (d) 2.0m (e) 2.5m 53

Figure 4.5: Fall detection accuracy of different heights. 54

Figure4.6: Different fall scenarios at height of 1.0m. (a) fall to the left side (b) fall

to the right side (c) fall to the front (d) fall to the back (e) fall while

sitting 55

Figure 4.7: Different fall scenarios at height of 1.5m. (a) fall to the left side (b) fall

to the right side (c) fall to the front (d) fall to the back (e) fall while

sitting 56

Figure 4.8: Different fall scenarios at height of 2.0m. (a) fall to the left side (b) fall

to the right side (c) fall to the front (d) fall to the back (e) fall while

sitting 57

Figure 4.9: Fall detection accuracy of different lighting conditions. 59

Figure 4.10: Fall scenarios at different lighting conditions. (a) 65 lux (b) 40 lux (c)

15 lux (d) 10 lux (e) 0 lux 60

Figure 4.11: Gesture recognition. (a) Both hands (b) One hand 60

Figure 4.12: Testing scenarios. (a) standing (b) bending over (c) crawling (d)

kneeling 61

Figure 4.13: Fall scenarios when there are more than one person. 62

10

INTRODUCTION

1.1 Introduction

This chapter aims to establish the framework and presents a brief concept of the

project. It focuses on the overview of the project, describes the objectives, briefly the

problem, the scope, and the results of the project.

1.2 Background

 Fall detection systems had become increasingly important in recent years due to the

growing population of elderly individuals and the associated risks of falls [1]. Several

studies had shown that elderly people experienced at least one fall every year, and falls was

the main cause of accidental death in older adults aged 65 or more. Therefore, fall detection

had attracted a lot of attention from researchers and industry professionals [2]. A huge

number of materials, equipment, and fall detection methods had been proposed over the

years. The equipment used were gyroscope, accelerometer, GPS module and Kinect sensor,

while the fall detection methods, such as smartphone-based systems, vision-based systems,

and wearable-sensor-based systems. Among these methods, vision-based systems had a

great advantage because they did not require the elderly people to wear specific equipment.

The Microsoft Kinect device was the system that had been used for fall detection due to its

ability to track human body movements accurately.

 Fall detection system was designed for use in indoor environments, particularly in

homes and public hospitals. Existing fall detection systems often required wearable sensors,

11

which could be inconvenient for users. There were two main subsystems which are camera

and the fall detector module. The camera captured depth information and color images,

which were then processed by the fall detector module using available libraries for camera

management and computer vision procedures. It had been shown that the system can detect

falls with a reliability of 97.3% and an efficiency of 80.0% [3]. The algorithm was designed

to provide an accurate solution to detect falls, which is especially important for elderly

people living alone at home or those with motor disabilities.

 The system could be designed to detect falls and provide immediate assistance by

sending an SMS message notification and making an emergency call. The use of the Kinect

sensor with robotics could bring new ways to build intelligent systems that could be used to

monitor elderly people and raise an alarm in case of falling are detected [4].

 The vision-based fall detection system offered several advantages over traditional

fall detection methods. The advantage was it provides non-intrusive monitoring, not

requiring individuals to wear additional devices or sensors. The Kinect sensor could capture

the required data from a distance, making it convenient and user-friendly. One of the

advantages was the system operated in real-time, enabling swift response to potential fall

incidents. This could significantly reduce the time between the occurrence of a fall and the

provision of assistance, potentially minimizing the severity of injuries. Another advantage

was the system could collect data over time, allowing for analysis and insights into an

individual's movement patterns, which could be useful for long-term monitoring and

proactive care.

12

1.3 Problem Statement

 One of the main challenges in the fall detection system is the performance of the

detection rate under real-life conditions. It has been shown that promising results in

laboratory environments and the accuracy of fall detection systems could be affected by

factors such as lighting conditions, flooring surfaces, and obstacles. Another challenge is

usability and user acceptance. Fall detection systems must be easy to use and not interfere

with daily activities so users can accept them. Power consumption is another issue that must

be addressed in fall detection systems. Kinect-based fall detection systems require power to

operate continuously. Real-time operations are also important for fall detection systems, as

delays in detecting falls can lead to serious injuries [5].

 Another key challenge in fall detection is the imperfection of collected data, which

could be caused by various factors, such as sensor noise, calibration errors, and

environmental interference. Another challenge is sensor technologies' diversity or low

reliability, which can lead to inconsistent results and false alarms. Furthermore, some

challenges typical to other frameworks with data fusion requirements such as selecting

appropriate sensors, designing effective algorithms for data fusion, and dealing with missing

or incomplete data. In addition, there is no standard dataset available for evaluating fall

detection systems, which makes it difficult to compare different approaches. It is significant

to develop more sophisticated algorithms for data fusion and explore new sensor

technologies [6].

13

1.4 Objective

 The project aims to achieve the following objectives: -

i. To design a non-invasive, reliable, and accurate solution to detect falls among older

adults.

ii. To develop an algorithm that can accurately detect falls based on the data collected

by the Kinect sensor, including skeletal tracking data and color data.

iii. To analyze and evaluate real-time fall detection and alerts to caregivers or emergency

services to reduce response time and improve outcomes.

1.5 Scope and Limitations

 The project focuses on Kinect-based fall detection system for the elderly. Kinect

sensors can provide reliable depth sensing and tracking capabilities, allowing them to detect

human body movements accurately. This makes it suitable for detecting falls and

distinguishing them from other activities. In the same way, Kinect-based fall detection

systems can provide real-time monitoring of individuals, enabling immediate response in

case of a fall. Additionally, Kinect uses depth-sensing cameras to capture movement data,

eliminating the need for wearable devices or physical contact. This non-intrusive setup

makes it more comfortable and convenient for users.

 On the other hand, Kinect has a specific field of view and range, which may limit its

effectiveness in large rooms or areas where individuals are far away from the device.

Multiple Kinect devices or careful placement may be required to cover larger spaces

adequately. Kinect-based fall detection can sometimes produce false positives or negatives

like any other automated system. Certain movements or actions, such as sudden movements

or bending down, may trigger false alarms, while actual falls may occasionally go

14

undetected. Continuous refinement and testing are necessary to minimize such errors.

Moreover, Kinect-based systems capture and analyze individuals' visual data, raising privacy

concerns. Adequate measures should be taken to ensure data security, privacy, and

compliance with applicable regulations.

15

LITERATURE REVIEW

2.1 Introduction

 Extensive research and investigation have been conducted to accomplish this project.

Data and studies relevant to the project were collected from various sources including books,

articles, journals, and websites. The information served as a valuable reference to ensure the

feasibility of completing the project within the allocated time. The studies and information

gathered focused on significant and relevant topics about the project.

 This part explored several thesis and publication journals from the Google Scholar

website were explored. There were a few keywords to find the related information which

were “fall detection”, “Kinect”, “elderly people”, “wearable sensor”, and “IoT application”.

The literature review focused on the fall detection system integrated with the application and

sensors to identify and alert individuals or caregivers when a person experiences a fall.

Fourteen articles were chosen to focus on the development of fall detection system.

2.2 Wearable-Sensor-Based Fall Detection System

2.2.1 Quaternion Algorithm

 The wearable device was placed on the patient's waist to analyze the human body's

acceleration. The system monitored the human body's movements from normal daily

activities by an effective quaternion algorithm and automatically sent requests for help to

caregivers with the patient's location. The advantages of this system included timely and

reliable surveillance to mitigate the adverse effects of falls, which was especially important

16

for elderly individuals who may experience a decline in physical fitness. However, the

choice of threshold was essential to distinguish falling from heavily lying activity, and a

sufficient sample number collected from subjects with different ages and gender was

necessary to improve reliability and robustness [7].

Figure 2.1: Fall location [7].

2.2.2 IoT and Big Data

 3D-axis accelerometer was used and embedded into a 6LowPAN device wearable to

collect real-time data from the movements of older people. The sensor readings were

processed and analyzed using a decision trees-based Big Data model running on a Smart IoT

Gateway to detect falls [8]. If a fall was detected, an alert would activate, and notifications

would send to the groups responsible for caring for older people. The advantages of this

system included its ability to provide high efficiency in fall detection and its use of low-

17

power wireless sensor networks, smart devices, big data, and cloud computing. It also

automatically sends notifications to caregivers in case of falls. However, some disadvantages

included the need for older people to always wear the device, which might be uncomfortable

or inconvenient for them. There might also be privacy concerns regarding collecting and

analyzing personal data. Moreover, there might be false alarms due to other movements that

resemble falls.

Figure 2.2: Fall detection system architecture [8].

2.2.3 Machine Learning Algorithm

 The wearable device integrated with 3-axis accelerometer, 3-axis gyroscope, 3-axis

magnetometer, and barometer sensor. These sensors worked together to obtain highly

accurate information about the posture and altitude of the subject. The accelerometer,

gyroscope, and magnetometer were implemented an AHRS (Attitude and Heading

Reference System) that estimated the device's orientation and provided dynamic vertical

18

acceleration values. The barometer sensor measured pressure and temperature to calculate

altitude, which was then fused with vertical displacement data from the AHRS and

acceleration data using a complementary filter to obtain an accurate altitude estimation.

 Machine learning techniques was used to detect accurately falls. The algorithm

involved several stages which were data acquisition, feature extraction, selection, and

classification. The sensor data was first acquired from the accelerometer, gyroscope,

magnetometer, and barometer sensors and then preprocessed to remove noise and artifacts.

Next, a set of features was extracted from the preprocessed data, including time-domain,

frequency-domain, and statistical features. A feature selection algorithm was then used to

select the most relevant features for fall detection. Finally, a machine learning classifier, a

support vector machine (SVM), is trained on the selected features to classify falls and non-

falls. The proposed algorithm achieved a high accuracy rate of 98.3% in detecting falls,

demonstrating its effectiveness in accurately detecting falls and minimizing false alarms [9].

Figure 2.3: AHRS and barometer sensor based fall detector system [9].

19

2.3 Smartphone-Based Fall Detection System

2.3.1 Threshold-Based Algorithm

 Android devices were used with sensors and communication services and

incorporated a threshold-based algorithm enhanced by a kNN classifier. Personalization

implementation was proposed to improve accuracy. The system achieved high fall detection

accuracy, with 97.53% sensitivity and 94.89% specificity, comparable to related works [10].

 The advantages of this system included its use of widely available technology

(Android devices), its high accuracy in detecting falls, and its potential for personalization

implementation. However, there were also some potential disadvantages to consider. For

example, the system might not be as effective in detecting falls if the user was not carrying

their smartphone at the time of the fall or cannot press an emergency button on their device.

On the other hand, some users might hesitate to use a fall detection system that always

required carrying their smartphone.

Figure 2.4: Fall detection app [10].

20

2.3.2 Deep Learning Algorithm

 SmartFall was developed using deep learning algorithms to analyze accelerometer

data and detect falls. The system was designed to be user-friendly and non-intrusive,

allowing seniors to wear the smartwatch and carry their smartphones as they went about their

daily activities. SmartFall has several advantages over traditional fall detection systems,

including its low cost, high accuracy, and ability to collect data on activities of daily living

(ADLs). However, there were also some potential disadvantages to consider. For example,

the battery life of the smartwatch and smartphone might be reduced when running SmartFall

continuously alongside other apps. In addition, some seniors might be hesitant to wear a

smartwatch or carry a smartphone around all day for fall detection purposes. In short,

SmartFall represented a new development in the health IoT applications field to improve

seniors' safety [11].

Figure 2.5: SmartFall user interface [11].

21

2.3.3 Machine Learning Algorithm

 The need for a fall detection and alert system was discussed to reduce the response

time of emergency responders, improve personalized fall prevention strategies, and reduce

the risk of secondary complications and functional decline associated with falls. Previous

studies on fall detection had been conducted in lab settings or using simulated falls excluding

real-world falls and their causes. The results of a prospective study investigated the

performance of a smartphone-based fall detection and alert system that uses the smartphone's

built-in accelerometer and gyroscope. A machine learning algorithm and an online

component were used to send notifications in real-time to researchers or caregivers.

Preliminary results showed that the system detected 73% of falls and had a specificity of

over 99.9%, making it a promising approach for real-life fall detection [12]. The system's

advantages were its portability, low cost, and the fact that users don't need to wear dedicated

sensors. However, limitations included that the system was smartphone-dependent and

required signal reception to detect and notify about falls, and battery life could be a

restricting factor for data collection.

Figure 2.6: Web portal data summary [12].

22

2.4 Kinect-Based Fall Detection System

2.4.1 Position Algorithm and Velocity Algorithm

 Microsoft Kinect sensor was used to detect, and report falls among older adults. The

system employed two algorithms for fall detection. The first algorithm analyzed a single

frame to determine if a fall had occurred, while the second algorithm used time series data

to differentiate between falls and slowly lying down on the floor. This distinction was crucial

for accurate detection. In addition to detecting falls, the system offered various reporting

options. Reports could be sent as emails or text messages, and they could include pictures

taken during and after the fall. This visual documentation provided valuable information for

further analysis and assessment. The system incorporated a voice recognition system that

allows users to cancel erroneous alerts [13].

Figure 2.7: Joints of skeleton detection [13].

23

2.4.2 Point Cloud

 A Kinect camera was used to capture depth data of the individual in the living

environment. The height change acceleration of the human point cloud was used to detect

possible fall activity, which was transmitted in real-time to an Arduino microprocessor that

notified the guardian. The system eliminated the need for wearable devices, had a low false-

positive rate, and operated 24/7 despite external illumination. The experimental results

showed high accuracy in detecting falls, with an overall accuracy rate of 99%. The system

contributed to reducing the number of false-positive detections. The system's advantages

were precise detection, non-invasiveness, and easy implementation. The disadvantages were

the need for an existing Kinect camera, system limitations on detecting falls in certain

scenarios, and the possible risk of false negatives during quick fall events. In short, the

system could enhance the safety and quality of life for elderly individuals living alone [14].

Figure 2.8: Point cloud system diagram [14].

2.4.3 Thresholding Algorithm

 The platform utilized data from a Microsoft Kinect v2 sensor to monitor the

movements of elderly individuals and detect falls in real time. The application could also

24

capture and store a wide range of image data, store positional information in CSV files for

further offline processing, calculate the real-time acceleration of body joints, and calculate

the angle between arbitrarily chosen joints for simple gesture detection. The modular

platform allowed for the integration of other data sources to create a comprehensive

monitoring system. The advantages of this platform included its real-time fall detection

capabilities, ability to capture and store a wide range of image data, and modular design that

allows for customization and integration with other data sources. However, some potential

disadvantages included the need for a Microsoft Kinect v2 sensor, which might be costly or

difficult to obtain, as well as potential privacy concerns related to collecting and storing

personal data. In addition, the platform might require technical expertise to set up and

maintain. Overall, this platform could provide peace of mind to families and caregivers of

elderly individuals living alone [15]

Figure 2.9: Environment testing model used in Kinect-based platform [15].

2.4.4 Deep Learning Technique on 3D Skeleton

 This system combined traditional algorithms with neural networks. A skeleton

information extraction algorithm was used to transform depth information into skeleton

25

information and extract important joints related to fall activity. The skeleton-based method

is modified with seven highlight feature points. The deep neural network architecture is used

to classify the extracted features and detect falls. The experimental results showed that the

proposed system had higher accuracy than traditional algorithms and consumed less energy

than pure neural network methods. The advantages of this system were its high accuracy,

low energy consumption, and potential for use in homecare systems to protect older people

from falls. However, the system requires more memory to store parameters than traditional

algorithms, and it might not be suitable for real-time applications due to its computational

complexity [16].

Figure 2.10: 3D skeleton using deep learning system [16].

2.4.5 Human Posture Recognition

 Microsoft Kinect V2 sensor technology was developed to create a natural human-

computer interaction method that enables people to communicate with computers easily and

naturally. By processing depth information and using skeleton tracking technology, the

optimized BP neural network was trained to recognize standing, sitting, and lying positions,

with fall detection based on this. The research showed that a neural network could help to

26

achieve reliable and accurate results, even under real-world conditions. The system

developed used non-wearable techniques through the Kinect V2 camera and skeleton tracker

to recognize human body posture. Human motion recognition based on Kinect sensors has

shown excellent value in the healthcare field, specifically in medical rehabilitation and

remote care for older people. On the other hand, the output of skeleton tracking algorithms

in real-world applications was not always stable and accurate, and the recognition result of

lying posture was not satisfactory. However, the proposed system was based only on depth

maps and did not use color information, which guaranteed the person's privacy and worked

in poor light conditions [17].

Figure 2.11: Experimental setup [17].

2.4.6 Reinforcement Learning Algorithm

 Microsoft Kinect Sensor was used to detect falls and an automatic fall notification

system based on Reinforcement Learning to notify caregivers or emergency services. The

proposed system aims to overcome the issues found in existing fall detection and notification

systems, such as obtrusiveness, lack of accuracy and robustness, and inadequate feedback

systems. The advantages of this system included its non-obtrusiveness, high accuracy and

27

robustness, and efficient notification system that avoids unnecessary disturbance to

caregivers or emergency services. Moreover, the proposed system could be customized for

different living environments. However, there were also some potential disadvantages to

consider. Using a Microsoft Kinect Sensor might limit the range of detection compared to

other sensors. Furthermore, the proposed system might require technical expertise to set up

and maintain. Overall, the use of reinforcement learning for automatic fall notification might

require significant computational resources [18].

Figure 2.12: Reinforcement learning system [18].

2.4.7 Background Subtraction Algorithm

 The depth images were collected from a Microsoft Kinect sensor. A background

subtraction algorithm was used to subtract the background and segment daily activities and

falls to train the model. The model was trained using a decision tree, and ground truthing to

ensure fall confidence. The results were then processed for analysis.

 The advantages of this proposed technique included its non-invasive nature, low cost,

and high accuracy in detecting falls. In addition, it could be easily installed in individual

28

homes without requiring additional infrastructure. However, there were some limitations to

this technique as well. For example, it might not be able to detect falls outside of the sensor's

range or if the person falls in a way not captured by the depth images Furthermore, it might

not be suitable for detecting falls in crowded environments where multiple people are present

[19].

Figure 2.13: Methodology flowchart.

2.4.8 Skeleton-Based and Thresholding Algorithm

 The Skeleton-based method was used to detect falls by calculating the distances of

every joint with the floor plane. The algorithm stated that a fall event is detected if the

distance of joints from the floor plane is less than 0.3 meters. In addition, the skeleton joint's

average velocity and the algorithm's threshold value were used to determine fall status. The

29

system's quantitative measurement identified ideal conditions for detecting falls, and the

parameters were tested to detect human conditions for different postures.

 The advantages of this system included its affordability, non-invasiveness, and

ability to detect falls accurately. However, some disadvantages included its reliance on the

visible floor plane and its inability to detect falls in certain situations, such as when a person

is sitting or lying down. Moreover, the system might produce false alarms if there are sudden

movements or objects obstructing the Kinect sensor's view. [20].

Figure 2.14: Fall detection model [20].

2.4.9 Skeleton Detection Algorithm

 Skeleton detection of the human figure was used as algorithm with the help of sensors

in Kinect, which ran in real-time scenarios. The fall detection system could communicate

the current scenario of the patient to family members and provide data logs for future

analysis by doctors. The algorithm was unobtrusive, meaning it would not have any

30

environmental interaction with the target people, such as wearable devices or environment-

mounted sensors. The hardware specifications and fall detection algorithm, including

skeleton diagram extraction, merging depth images and skeleton in global coordinates, and

monitoring the motion state of the human body from RGB are detailed. The simulation

results demonstrated the algorithm's real-time performance with a reasonable fall detection

success rate.

 Advantages of the proposed method included not requiring an individual to wear any

wearable devices and it being faster and less intrusive. Disadvantages included limitations

in relation to individuals with mental health conditions like Alzheimer's disease as falls from

those with the condition are not due to accident but as result of the condition [21].

Figure 2.15: Algorithm procedures.

31

2.5 Sensor Comparison from Previous Work Related to the Project

Sensor selection is important to ensure the efficiency of fall detection. Each sensor plays a unique role in fall detection, contributing to the overall

efficiency of the system. The choice of sensor depends on the specific requirements of the fall detection system.

Table 2.1: Sensor comparison.

No Year Sensor Purpose and Specifications

1 2021 Xbox 360 Microsoft Kinect [21] • Tracks motion and gestures that comprises of camera and infrared sensors

2 2021 Accelerometer [12] • Measure the acceleration and determine the changes in velocity and movement.

3 2021 Gyroscope [12] • Measure the angular velocity and provides information of rotational movement.

4 2016 Barometer sensor [9] • Measure changes in atmospheric pressure to estimate the changes in altitude.

5 2016 Magnemometer [22] • Measure the Earth’s magnetic field to estimate the orientation of detector.

32

2.6 Journal Comparison from Previous Work Related to the Project

Fall detection system has been significant advancements over the years. There is a growing trend towards integrating system into smartphones,

machine learning, context-aware technique, and Internet of Things (IoT).

Table 2.2: Journal comparison.

No Year Title Software Hardware Finding

1 2021 Kinect Sensor Based Human Fall

Detection System Using Skeleton

Detection Algorithm [21]

• Kinect SDK • Kinect sensor • Human body recognition from depth image

and extracted skeleton diagram

• Observation on difference of coordinate with

time

2 2021 Smartphone-based Online System

for Fall Detection with Alert

Notifications and Contextual

Information of Real-life Falls [12]

• Purple Robot

App

• Accelerometer

• Gyroscope

• Integration of threshold-based algorithm and

machine learning algorithm

• Data is stored in cloud server and a web portal

is developed for exploration

33

3 2020 A Fall Detection and Emergency

Notification System for Elderly [18]

• Kinect SDK • Kinect sensor • Differentiation between prone position, crawl

position, and kneel position

• Implementation of Q-Learning algorithm

4 2020 An Elderly Fall Detection System

using Depth Images [19]

• Kinect SDK • Kinect sensor • Calculation of background subtraction and

segmentation of depth image

• Cross validation technique is used

5 2020 An Analysis of Kinect-Based

Human Fall Detection System [20]

• Visual Studio

IDE

• Kinect SDK

• Kinect sensor • Integration of velocity and distance of joint

points to floor plane

• Analysis of different light intensity and

distance are carried out

6 2019 Kinect-Based Platform for

Movement Monitoring and Fall-

Detection of Elderly People [15]

• Kinect SDK • Kinect sensor

• Computer

• Observation on acceleration of joints and angle

between joints

• Implementation of threshold-based algorithm

34

7 2019 Implementation of Fall Detection

System Based on 3D Skeleton for

Deep Learning Technique [16]

• Kinect SDK • Kinect sensor • Implementation of NVIDIA Jetson TX2

platform. Development of Neural Network

with NTU RGB+D dataset on computation of

fall detection

8 2019 Human Posture Recognition and

Fall Detection Using Kinect V2

Camera [17]

• Kinect SDK

• NITE SDK

• Kinect sensor • Integration of Neural Network with Kinect

dataset to detect different poses

9 2018 Smartfall: A Smartwatch-Based Fall

Detection System using Deep

Learning [11]

• IoT application • Microsoft

Band 2

• Nexus 5X

smartphone

• Evaluation on deep learning algorithm and

machine learning algorithm

10 2018 Fall Detection System for Elderly

People using IoT and Big Data [8]

• Contiki OS • 3D-axis

accelerometer

• Rasberry Pi

• Implementation of wireless Ipv6 (6LowPAN)

technology and cloud services

35

11 2018 Design and Development of the Fall

Detection System based on Point

Cloud [14]

• OpenNI SDK • Kinect sensor

• Arduino

microprocessor

• Extraction of point cloud image and

observation on height change acceleration of

point cloud, height of point cloud, and

recovery time

12 2017 A Smartphone-Based Fall Detection

System for the Elderly [10]

• Android Studio

IDE

• Accelerometer • Incorporation of threshold-based algorithm

and kNN classifier of machine learning

algorithm

13 2016 A Wearable Fall Detector for

Elderly People Based on AHRS and

Barometric Sensor [9]

• MATLAB • Accelerometer

• Gyroscope

• Magnetometer

• Barometer

sensor

• The accelerometer, gyroscope, and

magnetometer implement an AHRS (Attitude

and Heading Reference System) that estimates

the orientation of the device and provides

dynamic values of vertical acceleration.

• The barometer sensor measures pressure and

temperature to calculate altitude, which is then

fused with vertical displacement data from the

36

AHRS and acceleration data using a

complementary filter to obtain an accurate

altitude estimation.

14 2015 Development of a Wearable-Sensor-

Based Fall Detection System [7]

• Map in Web

browser

• Accelerometer

• SIM908

module

• MCU

MSP430F1611

• GPS antenna

• Threshold-based algorithm on acceleration and

rotational angle

• Quaternion algorithm is used to calculate the

rotational angle of accelerometer coordinate

15 2014 An Analysis on Human Fall

Detection using Skeleton from

Microsoft Kinect [2]

• Kinect SDK • Kinect sensor • Floor plane detection using V-disparity

method and Kinect-based plane detection

method

• Computation on distance of joints to floor

plane, velocity, and angle of each joint

• Implementation of SVM technique

37

16 2014 A Real-Time Fall Detection System

in Elderly Care Using Mobile Robot

and Kinect Sensor [4]

• Kinect SDK • Kinect sensor

• LEGO

Mindstorm

robot

• Laptop

• Nokia 6200

• Implementation of gesture recognition and

speech recognition system

• Development of person-following system in

LEGO Mindstorm

17 2014 Fall Detection in Indoor

Environment with Kinect Sensor [3]

• Kinect SDK • Kinect sensor • Implementation of Kalman filter to estimate

height and width-depth speed

18 2014 Fall Detection for Elderly Using

Anatomical-Plane-Based

Representation [1]

• Kinect SDK • Kinect sensor • Support Vector Machine (SVM) and constraint

Dynamic Time Warping (cDTW) as

classification layers of fall detection

19 2012 Development of Fall Detection with

Microsoft Kinect [13]

• Kinect SDK • Kinect sensor • Integration of position algorithm and velocity

algorithm

• Involvement of voice recognition system to

reduce false alert notification

38

2.7 Summary

 This chapter presented the fall detection methods categorised as smartphone-based,

wearable-sensor, and vision-based systems. Depth information and RGB data were captured

using an accelerometer, gyroscope, and Kinect sensor for further analysis. Deep learning,

machine learning and thresholding algorithms were used to develop fall detection systems.

39

METHODOLOGY

3.1 Introduction

 In this project, the depth map of the scene is created from depth data. This depth map

provides information about the distances of objects from the sensor. Therefore, the 3D

structure of the environment is perceived. Moreover, RGB image provides visual context

and enables Kinect sensor to recognize and track objects and people based on the appearance.

 On the other hand, data analysis and storage involve processing and organizing the

collected data from the Kinect sensor. Data analysis techniques such as computer vision

algorithms are applied to extract useful information from the raw data. The processed data

can be stored in a database or a file system for future reference or analysis. In addition, real-

time monitoring allows system to continuously capture and process data in real-time. Hence,

immediate feedback and interaction from the user. This enables real-time tracking of people

or objects, gesture recognition, and responsive feedback within the system. By analyzing the

depth data and tracking the movements of individuals, the Kinect sensor can also identify

specific patterns or poses associated with a fall event. Once a fall is detected, the system will

generate message or alarm notification to inform caregivers or emergency services.

Figure 3.1: Block diagram.

40

3.2 Hardware

• Kinect sensor

Kinect sensor is a depth-sensing camera device developed by Microsoft. It was

originally created as an accessory for the Xbox gaming console but has also found

applications in other fields, such as robotics, healthcare, and computer vision

research.

Figure 3.2: Xbox 360 Microsoft Kinect.

• Kinect sensor utilizes a combination of cameras and infrared sensors to capture depth

information and track human movement. It consists of some main components:

1. RGB Camera

The Kinect sensor includes a traditional RGB camera that captures color

images like a regular camera. This camera is useful for capturing visual

information and can be used for applications like gesture recognition or video

conferencing.

2. Depth Sensor

The Kinect sensor employs an infrared depth sensor that projects an infrared

pattern into the scene and measures the time it takes for the pattern to bounce

back. This allows the sensor to calculate the distance of objects from the

camera, generating a depth map of the environment.

41

3. Infrared Projector

The Kinect sensor emits an infrared light pattern that is invisible to the human

eye. This pattern combined with the depth sensor, allows the sensor to

accurately measure distances and create a detailed depth image.

4. Microphone Array

The Kinect sensor includes an array of microphones that capture audio from

the surrounding environment. This enables applications to incorporate voice

commands and perform speech recognition.

Figure 3.3: Sensor arrangement of Xbox 360 Microsoft Kinect

3.3 Software

• Microsoft Kinect SDK (Software Development Kit) is a software package provided

by Microsoft for developing applications that utilize the capabilities of the Kinect

42

sensor. The Kinect SDK enables developers to create applications that can track and

interpret human body movement, recognize faces and voices, and capture depth

information. There are several features of the Kinect SDK:

1. Skeletal Tracking

The SDK provides real-time tracking of human body movements, allowing

developers to track the position and orientation of individual joints and create

applications that respond to gestures and actions.

 2. Voice Recognition

The Kinect SDK includes speech recognition technology, enabling

developers to build applications that can understand and respond to voice

commands.

3. Gesture Recognition

The SDK includes built-in gesture recognition capabilities, allowing

developers to recognize predefined gestures such as swipes, waves, and

specific poses. This enables users to interact with applications through natural

hand and body movements.

• Microsoft Visual Studio is an integrated development environment (IDE) that

provides a comprehensive set of tools for building software applications. It is widely

used by developers to create a wide range of applications, including desktop, web,

mobile, cloud, and gaming applications. There are several features of Microsoft

Visual Studio:

1. Code Editor

Visual Studio offers a powerful and feature-rich code editor that supports

multiple programming languages such as C#, C++, Python, JavaScript, and

43

more. It provides features like syntax highlighting, code completion, context-

aware code suggestions, and refactoring tools to improve productivity and

code quality.

2. Debugging

Visual Studio includes advanced debugging capabilities that help developers

identify and fix issues in their code. It offers features like breakpoints, step-

through debugging, watch windows, and real-time code execution analysis,

making it easier to locate and resolve bugs.

3. Mobile Development

Visual Studio supports mobile application development for platforms like

Android, iOS, and Windows. It provides tools like Xamarin for cross-

platform development, iOS and Android emulators, and integration with

mobile-specific services like push notifications and app distribution.

3.3.1 Flowchart

 Figure 3.4 shows the system flowchart. Firstly, depth and RGB data are acquired

from the Kinect sensor. Skeletons are detected and joints such as heads, shoulder centre, hip

centre, left ankle, and right ankle are extracted. Initial head-to-ankle distance is observed. If

the initial head-to-ankle distance is zero, y-coordinates value from head to ankle is

calculated. The calculated value is then multiplied with height threshold factor to obtain

distance threshold value. If the initial head-to-ankle distance is not zero, current head-to-

ankle distance is calculated. Absolute difference between initial and current head-to-ankle

distance is calculated and compared with distance threshold value. Another position

threshold value is compared with y-coordinates value of each joints. “Fall is detected” is

displayed when absolute difference between initial and current head-to-ankle distance is

44

greater than distance threshold value, and y-coordinates values of each joints are lower than

position threshold. Instead, “Fall is not detected” is displayed. In addition, if the y-

coordinates value of one hand or both hand is greater than y-coordinates value of head, “Help

Command Detected!! Check for help” is displayed.

Figure 3.4: System flowchart.

45

3.3.2 Fall Algorithm

 In the pseodocode, initial head-to-ankle distance is determined. If the initial head-to-

ankle distance is zero, y-coordinates value from head to ankle is calculated. It means that

this is the first frame where the person is detected. The calculated value is then multiplied

with height threshold factor value of 0.7 to obtain distance threshold value.

 If the initial head-to-ankle distance is not zero, current head-to-ankle distance is

calculated. It means that the person has been detected in previous frames, so the initial head-

to-ankle distance and the distance threshold have already been calculated. Absolute

difference between initial and current head-to-ankle distance is calculated and compared

with distance threshold value. Another position threshold value of 0.3 is compared with y-

coordinates value of each joints.

 Fall event is considered when absolute difference between initial and current head-

to-ankle distance is greater than distance threshold value, and y-coordinates values of each

joints are lower than position threshold. Instead, safe event is considered.

Figure 3.5: Fall algorithm.

46

3.3.3 Gesture Recognition

The system can only detect falls within the Kinect’s field of view, therefore gesture

recognition is developed to improve fall detection accuracy. The gesture is programmed to

detect the action of one hand or both hands being raised above the head. The Kinect sensor

continually analyses the movements of the person in the field of view. When a person raises

one hand or both hands above the head, the system will interpret it as a potential fall event.

Upon detecting the gesture, the system triggers the notification to check for fall event.

3.4 Experimental Setup

 Proprietary connecter of Xbox 360 Microsoft Kinect is plugged into corresponding

port on the USB adapter. End of USB adapter is plugged into laptop. Microsoft Kinect is

then connected to power supply and tested with Kinect developer toolkit. Figure 3.6 shows

that the Kinect sensor is positioned above and is facing towards the person. The measurement

from the person to the Kinect sensor represents the horizontal distance between the Kinect

sensor and the person. The vertical measurement pointing downwards from the Kinect sensor

indicates the height at which the Kinect sensor is placed above the ground.

Figure 3.6: Experimental setup.

47

 Figure 3.7 (a) shows the vertical field of view of Kinect sensor where the sensor can

perceive objects within a 43-degree vertical range in front of it. Figure 3.7 (b) shows the

angle at which the Kinect sensor can detect motion across the horizontal plane. The sensor

must be placed in such a way that the area where motion is to be detected falls within this

57-degree field.

(a)

(b)

Figure 3.7: (a) Vertical angle view (b) Horizontal angle view of Kinect sensor.

48

 Figure 3.8 shows the floor plan of a house with markings indicating the placement

and field of view of a Kinect sensor. The Kinect sensor is placed in two potential locations

within the house, as indicated by the blue circles. The blue triangles indicate the extent of

the area covered by the sensor's camera.

Figure 3.8: Kinect sensor location.

49

3.5 Summary

 This chapter presented the use of Microsoft Kinect SDK, Microsoft Visual Studio,

and Xbox 360 Microsoft Kinect. This chapter also presented the algorithm and flowchart of

fall detection system.

50

RESULTS AND DISCUSSIONS

4.1 Introduction

 This chapter focuses on the results and analysis on the implementation of the coding

and application of fall detection. The simulation results are evaluated and validated to

determine the possible fall event.

4.2 Result and Analysis

 Fall detection is simulated and evaluated throught different scenarios. Fall detection

accuracy is analysed from the aspects of distances, heights and lighting conditions.

Figure 4.1: Real-time experimental setup.

51

Figure 4.2: Output window.

4.2.1 Fall Detection Accuracy of Different Distances

 Fall detection accuracy of different distances is observed and analysed. Distance of

0.5m, 1.0m, 1.5m, 2.0m and 2.5m are evaluated. At extremely close range of 0.5 meters, the

fall detection accuracy is the lowest, which is 20%. The Kinect sensor struggles with accurate

skeleton tracking. The limited field of view and potential depth perception distortions at such

a close distance result in incomplete or inaccurate data, leading to the lowest fall detection

accuracy.

Table 4.1: Fall detection accuracy of different distances.

Distance of

Kinect Sensor

(m)

No. of

simulated falls

scenarios

No. of detected

falls scenarios

No. of

undetected falls

scenarios

Accuracy (%)

0.5 5 1 4 20

1.0 5 4 1 80

Screenshot button Tilt button

Live status

Real-time

y-coordinates

Tilt angle

Real-time video and

skeleton streaming

52

1.5 5 5 0 100

2.0 5 5 0 100

2.5 5 5 0 100

Figure 4.3: Fall detection accuracy of different distances.

 Moving slightly further to 1.0 meters, the fall detection accuracy increases to 80%.

The sensor has a better field of view at this distance, allowing for more effective and

complete skeleton tracking. Thus, the accuracy of fall detection is higher compared to 0.5

meters. At a more optimal range of 1.5 meters, the Kinect sensor provides a comprehensive

view of the body and captures detailed movements and postures accurately. The sensor

achieves a good balance at 1.5 meters, leading to fall detection accuracy of 100%.

 As the distance increases further to 2.0 meters and 2.5 meters, the resolution and

detail in the captured data increase. The increased distance leads to finer details necessary

for accurate fall detection.

 In short, the result of lower accuracy at 0.5 meters with the Kinect sensor can be

attributed to its limited field of view and depth perception issues at close range, leading to

incomplete or distorted skeleton tracking. Slightly longer distances provide a more optimal

0

20

40

60

80

100

120

0.5 1 1.5 2 2.5

A
cc

u
ra

cy
 (

%
)

Distance of Kinect Sensor from User (m)

53

range for accurate skeleton tracking and fall detection, while accuracy increaces at longer

ranges due to increased detail in the captured data. If the distance increases further to the

limit of the effective range of Kinect sensor, the accuracy of fall detection should be

decreased due to the sensor captures less detail, making it more challenging to distinguish

falls from other movements accurately.

(a)

(b)

(c) (d)

(e)

Figure 4.4: Fall scenarios at different distances from the Kinect sensor

(a) 0.5m (b) 1.0m (c) 1.5m (d) 2.0m (e) 2.5m

54

4.2.2 Fall Detection Accuracy of Different Heights

 Fall detection accuracy of different heights is observed and analysed. Several

observed fall scenarios including fall to the left side, fall to the right side, fall to the front,

fall to the back, and fall while sitting. Throughout the evaluation of all heights of Kinect

sensor, the fall detection accuracy achieves 100% in all fall scenarios. The system identifies

every fall scenario and accurately classifies without false positives or negatives. The real-

world application of the system is taken into consideration, although the results obtain 100%

detection accuracy. Factors such as furniture placement and background clutter may affect

the performance and accuracy of the system.

Table 4.2: Fall detection accuracy of different heights.

Height of

Kinect Sensor

(m)

No. of

simulated falls

scenarios

No. of detected

falls scenarios

No. of

undetected falls

scenarios

Accuracy (%)

1.0 5 5 0 100

1.5 5 5 0 100

2.0 5 5 0 100

Figure 4.5: Fall detection accuracy of different heights.

0

20

40

60

80

100

120

1 1.5 2

A
cc

u
ra

cy
 (

%
)

Height of Kinect Sensor (m)

55

(a)

(b)

(c) (d)

(e)

Figure 4.6: Different fall scenarios at height of 1.0m. (a) fall to the left side (b) fall to the

right side (c) fall to the front (d) fall to the back (e) fall while sitting

56

(a)

(b)

(c)

(d)

 (e)

Figure 4.7: Different fall scenarios at height of 1.5m. (a) fall to the left side (b) fall to the

right side (c) fall to the front (d) fall to the back (e) fall while sitting

57

(a)

(b)

(c) (d)

(e)

Figure 4.8: Different fall scenarios at height of 2.0m. (a) fall to the left side (b) fall to the

right side (c) fall to the front (d) fall to the back (e) fall while sitting

58

4.2.3 Fall Detection Accuracy of Different Lighting Conditions

 The effectiveness of the Kinect sensor to detect fall incident was also conducted in

different lighting conditions. The fall detection accuracy of 100% is obtained throughout the

evaluation of all lighting conditions.

 Although, this experiment was not necessary, as the sensor used to detect motion is

an infrared sensor for depth-sensing which allows it to work in various lighting conditions,

including in complete darkness.

 Nevertheless, the experiment is deemed necessary to fortified what is already been

known. This eliminates any questions in regards to the affect of lighting, i.e. rapid changes

in lighting conditions, such as sudden transitions from light to dark or vice versa. These

changes can temporarily disrupt the sensor to track movements accurately. Moreover, strong

backlighting, where the primary light source is behind the person being tracked, can lead to

silhouette distortion and reduced accuracy of sensor.

Table 4.3: Fall detection accuracy of different lighting conditions.

Lighting

condition (lux)

No. of

simulated falls

scenarios

No. of detected

falls scenarios

No. of

undetected falls

scenarios

Accuracy (%)

65 5 5 0 100

40 5 5 0 100

15 5 5 0 100

10 5 5 0 100

0 5 5 0 100

59

Figure 4.9: Fall detection accuracy of different lighting conditions.

(a)

(b)

(c)

(d)

0

20

40

60

80

100

120

65 40 15 10 0

A
cc

u
ra

cy
 (

%
)

Lighting Condition (lux)

60

(e)

Figure 4.10: Fall scenarios at different lighting conditions.

 (a) 65 lux (b) 40 lux (c) 15 lux (d) 10 lux (e) 0 lux

4.2.4 “HELP” Gesture Detection

The system includes “HELP” gesture detection. “Help Command Detected!! Check

for fall” is displayed when one hand or both hands is raised above head. Gesture recognition

is introduced to reduce the false negatives of fall detection.

(a)

(b)

(c) (d)

Figure 4.11: Gesture recognition. (a) Both hands (b) One hand

61

4.2.5 Validation of Non-Fall Detection Postures

 Scenarios of standing, kneeling, and crawling were also tested to check for false-

positive alarms. An upright standing posture is classified as “Safe” event and “Fall is not

detected”. A true-positive fall event is detected in the kneeling and crawling postures.

(a)

(b)

(c)

(d)

Figure 4.12: Testing scenarios. (a) standing (b) bending over (c) crawling (d) kneeling

4.2.6 Fall Detection when There Is More Than One Person

 This validates the fall detection when there are more than one person within the field

of view. In figure 4.11(a), when one person is in a fall posture while the another person is

still standing, y-coordinates of joints of falling person is shown and “Fall is detected” is

displayed. Kinect sensor can track up to two individuals simultaneously in the field of view.

The accuracy of skeleton tracking starts to degrade when there is more than two person. The

62

system have difficulty to distinguish between the movements of multiple individuals in

crowded or complex scenes.

Figure 4.13: Fall scenarios when there are more than one person.

4.3 Summary

 This chapter presented the result and analysis of differenet fall scenarios in the

aspects of distance, height and lighting condition. This chapter also presented the use of

gesture recognition in the detection system.

63

CONCLUSION

5.1 Conclusion

 In conclusion, using a Kinect sensor, a fall detection system is an innovative and

effective approach to detect and monitor falls in various situations. The Kinect sensor's depth

sensing and skeletal tracking are used to analyze and determine fall events accurately. In

addition, the system can capture and analyze real-time human movement data. The Kinect

Developer Toolkit v1.8 provides a comprehensive set of tools and libraries to seamlessly

access and utilize the Kinect sensor's features within Visual Studio 2019.

 The system extracts the position of joints such as the head, shoulders, hips, and ankles

by analysing the skeleton data. The system computes the change in height of the tracked

joints by calculating the head-to-ankle distance. If the initial head-to-ankle distance is zero,

y-coordinates value from head to ankle is calculated. It means that this is the first frame

where the person is detected. The calculated value is then multiplied with height threshold

factor value of 0.7 to obtain distance threshold value.

 If the initial head-to-ankle distance is not zero, current head-to-ankle distance is

calculated. It means that the person has been detected in previous frames, so the initial head-

to-ankle distance and the distance threshold have already been calculated. Absolute

difference between initial and current head-to-ankle distance is calculated and compared

with distance threshold value. Another position threshold value of 0.3 is compared with y-

coordinates value of each joints.

 Fall event is considered when absolute difference between initial and current head-

to-ankle distance is greater than distance threshold value, and y-coordinates values of each

64

joints are lower than position threshold. Instead, safe event is considered. “Help Command

Detected!! Check for fall” is displayed when one hand or both hands is raised above head.

 Although Visual Studio 2019 and Kinect Developer Toolkit v1.8 are older versions

of the development tools, they can still provide a solid foundation to implement a functional

fall detection system. Kinect-based fall detection system offers a non-intrusive method of

monitoring individuals, without the need of wearing any devices. This can be beneficial for

seniors who might forget or be unwilling to wear monitoring devices. Moreover, fall

detection system can be developed in Visual Studio 2019 to support advanced programming

capabilities and facilitate the integration of Kinect SDK, and hence enabling developers to

create more efficient and reliable applications.

 Lastly, there are challenges of the fall detection system such as the limited field of

view of the Kinect sensor and the potential for false positives and negatives. The

effectiveness of fall detection system can be influenced by environmental factors like space

layout. With advancements in AI and machine learning, the accuracy and efficiency of fall

detection system can be significantly improved.

5.2 Recommendations for Future Study

The fall detection system has the potential to enhance the safety of older people in

various environments. There are several recommendations to enhance the efficiency and

adaptability of the system. Firstly, investigation of advanced algorithms for more accurate

gesture and fall recognition. Machine learning and deep learning techniques can be

incorporated to significantly improve the system to differentiate between normal activities

and falls, hence reducing false positives and negatives.

 Furthermore, integration of Kinect system with Internet of Things (IoT) devices for

a more comprehensive monitoring approach. For example, connection of fall detection

65

system with smart home system to automate alerts and responses, such as locking doors,

turning off appliances, or adjusting the lighting during a fall event.

 Moreover, combination of Kinect with wearable devices or environmental sensors to

enhance sensor capabilities. It could provide a more holistic solution to fall detection and

activity monitoring. In addition, study of data privacy and security concerns when the system

is connected to the internet or other devices.

 Other than that, development of user-friendly interfaces for users and caregivers.

Research can be conducted into the design of interfaces that are intuitive and easy to use for

people. With that, engagement in cross-disciplinary research involving healthcare

professionals, engineers, and user experience designers to ensure that the system is medically

relevant.

 On the other hand, one of the recommendations is conduct of extensive clinical trials

and real-world testing to validate the effectiveness, reliability, and practicality of the system

in various environments such as homes, hospitals, and eldercare facilities. Additionally,

examination of the potential for integrating Kinect-based system with telehealth services.

This could facilitate remote monitoring and consultation to be more accessible.

 Moreover, integration of the Kinect system to be personalized for individual users.

This includes adjusting sensitivity, customizing alerts and the system to recognize specific

health conditions or mobility issues. Lastly, investigation of accessibility and affordability

in different regions including low-income countries to enhance the global applicability and

impact.

 In short, future studies can significantly contribute to the development of more

advanced, reliable, and user-friendly Kinect-based fall detection system, improving the

quality of life and safety for older people at risk of falls.

66

REFERENCES

[1] R. Alazrai, A. Zmily, and Y. Mowafi, ‘Fall Detection for Elderly Using Anatomical-

Plane-Based Representation’, 36th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society, 2014.

[2] T. T. H. Tran and J. Morel, ‘An Analysis on Human Fall Detection Using

Skeleton from Microsoft Kinect’, IEEE Fifth International Conference on

Communications and Electronics (ICCE), Oct. 2014.

[3] V. Bevilacqua, N. Nuzzolese, and D. Barone, ‘Fall Detection in Indoor

Environment with Kinect sensor’, IEEE International Symposium on Innovations in

Intelligent Systems and Applications (INISTA) Proceedings, 2014.

[4] Z. A. Mundher and J. F. Zhong, ‘A Real-Time Fall Detection System in Elderly Care

Using Mobile Robot and Kinect Sensor’, International Journal of Materials,

Mechanics and Manufacturing, vol. 2, no. 2, pp. 133–138, May 2014.

[5] R. Igual, C. Medrano, and I. Plaza, ‘Challenges, Issues and Trends in Fall Detection

Systems’, BioMedical Engineering Online, Jul. 06, 2013.

[6] G. Koshmak, A. Loutfi, and M. Linden, ‘Challenges and Issues in Multisensor Fusion

Approach for Fall Detection’, Journal of Sensors, vol. 2016. Hindawi Publishing

Corporation, 2016.

[7] F. Wu, H. Zhao, Y. Zhao, and H. Zhong, ‘Development of a Wearable-Sensor-Based

Fall Detection System’, International Journal of Telemedicine and Applications,

2015.

[8] D. Yacchirema, J. S. D. Puga, C. Palau, and M. Esteve, ‘Fall Detection System for

Elderly People using IoT and Big Data’, 9th International Conference on Ambient

Systems, Networks and Technologies, pp. 603–610, 2018.

[9] P. Pierleoni et al., ‘A Wearable Fall Detector for Elderly People Based on AHRS and

Barometric Sensor’, IEEE Sensors Journal, vol. 16, no. 17, pp. 6733–6744, Sep.

2016.

[10] P. Tsinganos and A. Skodras, ‘A Smartphone-Based Fall Detection System for

the Elderly’, 10th International Symposium on Image and Signal Processing and

Analysis Proceedings, IEEE, 2017.

67

[11] T. R. Mauldin, M. E. Canby, V. Metsis, A. H. H. Ngu, and C. C. Rivera, ‘Smartfall:

A Smartwatch-Based Fall Detection System using Deep Learning’, Sensors

(Switzerland), vol. 18, no. 10, Oct. 2018.

[12] Y. Harari, N. Shawen, C. K. Mummidisetty, M. V. Albert, K. P. Kording, and A.

Jayaraman, ‘A Smartphone-Based Online System for Fall Detection with Alert

Notifications and Contextual Information of Real-Life Falls’, Journal of

Neuroengineering and Rehabilitation, vol. 18, no. 1, Dec. 2021.

[13] C. Kawatsu, J. X. Li, and C. J. Chung, ‘Development of a Fall Detection System with

Microsoft Kinect’, Robot Intelligence Technology and Applications, Springer Verlag,

pp. 623–630, 2012.

[14] Y. F. Peng, J. J. Peng, J. P. Li, P. T. Yan, and B. Hu, ‘Design and Development of the

Fall Detection System based on Point Cloud’, Procedia Computer Science, pp. 271–

275, 2019.

[15] J. Barabas, T. Bednar, and M. Vychlopen, ‘Kinect-Based Platform for Movement

Monitoring and Fall-Detection of Elderly People’, 12th International Conference on

Measurement, Smolenice, Slovakia, pp. 199–202, 2019.

[16] T. H. Tsai and C. W. Hsu, ‘Implementation of Fall Detection System Based on 3D

Skeleton for Deep Learning Technique’, IEEE Access, vol. 7, pp. 153049–153059,

2019.

[17] Y. Xu, J. Chen, Q. Yang, and Q. Guo, ‘Human Posture Recognition and Fall Detection

Using Kinect V2 Camera’, in Chinese Control Conference (CCC), 2019.

[18] T. Kalinga, C. Sirithunge, A. G. Buddhika, P. Jayasekara, and I. Perera, ‘A Fall

Detection and Emergency Notification System for Elderly’, 6th International

Conference on Control, Automation and Robotics, Institute of Electrical and

Electronics Engineers Inc., pp. 706–712, Apr. 2020.

[19] M. Bundele, H. Sharma, M. Gupta, and P. S. Sisodia, ‘An Elderly Fall Detection

System using Depth Images’, 5th IEEE International Conference on Recent Advances

and Innovations in Engineering, Institute of Electrical and Electronics Engineers Inc.,

Dec. 2020.

[20] N. A. Saidin and S. A. A. Shukor, ‘An Analysis of Kinect-Based Human Fall

Detection System’, IEEE 8th Conference on Systems, Process and Control, Institute

of Electrical and Electronics Engineers Inc., pp. 220–224, Dec. 2020.

68

[21] M. Praveen Kumar, M. Sudhakaranr, and Dr. R. Seyezhai, ‘Kinect Sensor Based

Human Fall Detection System Using Skeleton Detection Algorithm’, International

Conference on Engineering Innovations and Solutions, 2021.

[22] T. J. Shi, X. M. Sun, Z. H. Xia, L. Y. Chen, and J. X. Liu, ‘Fall Detection Algorithm

Based on Triaxial Accelerometer and Magnetometer’, May 2016.

69

APPENDICES

Project Flowchart

70

Gantt Chart FYP 1

71

Gantt Chart FYP 2

72

C# Coding of WPF Application

using System;
using System.Globalization;
using System.Windows;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using Microsoft.Kinect;
using System.IO;

namespace FallDetection
{
 public partial class MainWindow :
Window
 {
 private KinectSensor
kinectSensor;
 private const float RenderWidth =
640.0f;
 private const float RenderHeight
= 480.0f;
 private const double
JointThickness = 3;
 private const double
BodyCenterThickness = 10;
 private const double
ClipBoundsThickness = 10;
 private readonly Brush
centerPointBrush = Brushes.Blue;
 private readonly Brush
trackedJointBrush = new
SolidColorBrush(Color.FromArgb(255, 68,
192, 68));
 private readonly Brush
inferredJointBrush = Brushes.Yellow;
 private readonly Pen
trackedBonePen = new Pen(Brushes.Green,
6);
 private readonly Pen
inferredBonePen = new Pen(Brushes.Gray,
1);
 private DrawingGroup
drawingGroup;
 private DrawingImage imageSource;

 private WriteableBitmap
colorBitmap;

 private double
initialHeadToAnkleDistance = 0;
 private const double
positionThreshold = 0.3;

 public MainWindow()
 {
 InitializeComponent();
 }

 private void Window_Loaded(object
sender, RoutedEventArgs e)
 {

this.imageSource = new
DrawingImage(this.drawingGroup);
 SkeletonImage.Source =
this.imageSource;

 if
(KinectSensor.KinectSensors.Count > 0)
 {
 kinectSensor =
KinectSensor.KinectSensors[0];

 if (kinectSensor !=
null)
 {

kinectSensor.Start();

 // Enable color
stream

kinectSensor.ColorStream.Enable();

 // Allocate space
for the color pixel data
 colorBitmap = new
WriteableBitmap(kinectSensor.ColorStre
am.FrameWidth,
kinectSensor.ColorStream.FrameHeight,
96.0, 96.0, PixelFormats.Bgr32, null);

 // Set the image
source of the ColorImage control to the
colorBitmap
 ColorImage.Source =
colorBitmap;

kinectSensor.ColorFrameReady +=
KinectSensor_ColorFrameReady;

 // Enable skeleton
stream

kinectSensor.SkeletonStream.Enable();

kinectSensor.SkeletonFrameReady +=
KinectSensor_SkeletonFrameReady;

StatusTextBlock.Text = "Kinect sensor
connected";
 }
 else
 {

StatusTextBlock.Text = "No Kinect
sensor found";

73

 this.drawingGroup = new
DrawingGroup();

 }
 else
 {
 StatusTextBlock.Text =
"No Kinect sensor found";
 }
 }

private void Window_Closing(object
sender,
System.ComponentModel.CancelEventArgs e)
 {

 if (kinectSensor != null)
 {
 kinectSensor.Stop();
 kinectSensor = null;
 }
 }

 private void
KinectSensor_ColorFrameReady(object
sender, ColorImageFrameReadyEventArgs e)
 {
 using (ColorImageFrame
colorFrame = e.OpenColorImageFrame())
 {
 if (colorFrame != null)
 {
 byte[] colorData =
new byte[colorFrame.PixelDataLength];

colorFrame.CopyPixelDataTo(colorData);

colorBitmap.WritePixels(new Int32Rect(0,
0, colorFrame.Width, colorFrame.Height),
colorData, colorFrame.Width *
colorFrame.BytesPerPixel, 0);
 }
 }
 }

private void
KinectSensor_SkeletonFrameReady(object
sender, SkeletonFrameReadyEventArgs e)
 {

 Skeleton[] skeletons = new
Skeleton[0];

 using (SkeletonFrame
skeletonFrame = e.OpenSkeletonFrame())
 {
 if (skeletonFrame !=
null)
 {

 }

skeletonFrame.CopySkeletonDataTo(skele
tons);

 foreach (Skeleton
skeleton in skeletons)
 {

if (skeleton.TrackingState ==
SkeletonTrackingState.Tracked)
 {

 double
headY =
skeleton.Joints[JointType.Head].Positi
on.Y;
 double
shouldercenterY =
skeleton.Joints[JointType.ShoulderCent
er].Position.Y;
 double
hipcenterY =
skeleton.Joints[JointType.HipCenter].P
osition.Y;
 double
ankleleftY =
skeleton.Joints[JointType.AnkleLeft].P
osition.Y;
 double
anklerightY =
skeleton.Joints[JointType.AnkleRight].
Position.Y;

UpdateJointPositionsUI(headY,
shouldercenterY, hipcenterY,
ankleleftY, anklerightY);

 if
(IsPersonFallingDown(skeleton))
 {

FallEvent();
 }
 else
 {

SafeEvent();
 }

 if
(IsHandRaisedAboveHead(skeleton))
 {

NotifyFallEvent();
 }
 }
 }
 }

74

using (DrawingContext dc =
this.drawingGroup.Open())
 {

dc.DrawRectangle(Brushes.Transparent,
null, new Rect(0.0, 0.0, RenderWidth,
RenderHeight));

 if (skeletons.Length !=
0)
 {
 foreach (Skeleton
skel in skeletons)
 {

RenderClippedEdges(skel, dc);

 if
(skel.TrackingState ==
SkeletonTrackingState.Tracked)
 {

this.DrawBonesAndJoints(skel, dc);
 }
 else if
(skel.TrackingState ==
SkeletonTrackingState.PositionOnly)
 {

dc.DrawEllipse(

this.centerPointBrush,
 null,

this.SkeletonPointToScreen(skel.Position)
,

BodyCenterThickness,

BodyCenterThickness);

}
 }
 }

 this.drawingGroup.ClipGeometry =
new RectangleGeometry(new Rect(0.0, 0.0,
RenderWidth, RenderHeight));

 }
 }
private bool IsPersonFallingDown(Skeleton
skeleton)
 {

 double yHead =
skeleton.Joints[JointType.Head].Position.
Y;
 double yShoulderCenter =
skeleton.Joints[JointType.ShoulderCenter]
.Position.Y;

double yHipCenter =
skeleton.Joints[JointType.HipCenter].P
osition.Y;
 double yAnkleLeft =
skeleton.Joints[JointType.AnkleLeft].P
osition.Y;
 double yAnkleRight =
skeleton.Joints[JointType.AnkleRight].
Position.Y;

 double
HeightThresholdFactor = 0.8;

 double distanceThreshold =
0;

 if
(initialHeadToAnkleDistance == 0)
 {

initialHeadToAnkleDistance = yHead -
yAnkleRight;
 distanceThreshold =
initialHeadToAnkleDistance *
HeightThresholdFactor;
 }

 double
currentHeadToAnkleDistance = yHead -
yAnkleRight;

 if
(Math.Abs(initialHeadToAnkleDistance -
currentHeadToAnkleDistance) >
distanceThreshold &&
 yHead <
positionThreshold &&
 yShoulderCenter <
positionThreshold &&
 yHipCenter <
positionThreshold &&
 yAnkleLeft <
positionThreshold &&
 yAnkleRight <
positionThreshold)
 {
 return true; // Fall
detected
 }

 return false; // Safe
 }

 private void
UpdateJointPositionsUI(double headY,
double shouldercenterY, double
hipcenterY, double ankleleftY, double
anklerightY)
 {

75

HeadYText.Text = $"Head Y: {headY:F2}";
 ShoulderCenterYText.Text =
$"ShoulderCenter Y:
{shouldercenterY:F2}";
 HipCenterYText.Text =
$"HipCenter Y: {hipcenterY:F2}";
 AnkleLeftYText.Text =
$"AnkleLeft Y: {ankleleftY:F2}";
 AnkleRightYText.Text =
$"AnkleRight Y: {anklerightY:F2}";
 }

 private bool
IsHandRaisedAboveHead(Skeleton skeleton)
 {
 Joint head =
skeleton.Joints[JointType.Head];
 Joint handLeft =
skeleton.Joints[JointType.HandLeft];
 Joint handRight =
skeleton.Joints[JointType.HandRight];

 // Check if either hand is
raised above the head
 return
(handLeft.TrackingState ==
JointTrackingState.Tracked &&
handLeft.Position.Y > head.Position.Y) ||

(handRight.TrackingState ==
JointTrackingState.Tracked &&
handRight.Position.Y > head.Position.Y);
 }

private void SafeEvent()
 {
 StatusTextBlock.Text = "Fall
is not detected.";
 }

 private void FallEvent()
 {
 StatusTextBlock.Text = "Fall
is detected.";
 }

 private void NotifyFallEvent()
 {
 StatusTextBlock.Text = "Help
Command Detected!! \fChecking for fall";
 }

private void DrawBonesAndJoints(Skeleton
skeleton, DrawingContext drawingContext)
 {

// Render Torso
 DrawBone(skeleton,
drawingContext, JointType.Head,
JointType.ShoulderCenter);
 DrawBone(skeleton,
drawingContext,
JointType.ShoulderCenter,
JointType.Spine);
 DrawBone(skeleton,
drawingContext, JointType.Spine,
JointType.HipCenter);
 DrawBone(skeleton,
drawingContext,
JointType.ShoulderCenter,
JointType.ShoulderLeft);
 DrawBone(skeleton,
drawingContext,
JointType.ShoulderCenter,
JointType.ShoulderRight);
 DrawBone(skeleton,
drawingContext, JointType.HipCenter,
JointType.HipLeft);
 DrawBone(skeleton,
drawingContext, JointType.HipCenter,
JointType.HipRight);

 // Left Arm
 DrawBone(skeleton,
drawingContext,
JointType.ShoulderLeft,
JointType.ElbowLeft);
 DrawBone(skeleton,
drawingContext, JointType.ElbowLeft,
JointType.WristLeft);
 DrawBone(skeleton,
drawingContext, JointType.WristLeft,
JointType.HandLeft);

 // Right Arm
 DrawBone(skeleton,
drawingContext,
JointType.ShoulderRight,
JointType.ElbowRight);
 DrawBone(skeleton,
drawingContext, JointType.ElbowRight,
JointType.WristRight);
 DrawBone(skeleton,
drawingContext, JointType.WristRight,
JointType.HandRight);

 // Left Leg
 DrawBone(skeleton,
drawingContext, JointType.HipLeft,
JointType.KneeLeft);
 DrawBone(skeleton,
drawingContext, JointType.KneeLeft,
JointType.AnkleLeft);
 DrawBone(skeleton,
drawingContext, JointType.AnkleLeft,
JointType.FootLeft);

76

// Right Leg
 DrawBone(skeleton,
drawingContext, JointType.HipRight,
JointType.KneeRight);
 DrawBone(skeleton,
drawingContext, JointType.KneeRight,
JointType.AnkleRight);
 DrawBone(skeleton,
drawingContext, JointType.AnkleRight,
JointType.FootRight);

foreach (Joint joint in skeleton.Joints)
 {
 if (joint.TrackingState
== JointTrackingState.Tracked)
 {
 Brush drawBrush =
null;

 if
(joint.TrackingState ==
JointTrackingState.Tracked)
 {
 drawBrush =
trackedJointBrush;
 }
 else if
(joint.TrackingState ==
JointTrackingState.Inferred)
 {
 drawBrush =
inferredJointBrush;
 }
 if (drawBrush !=
null)
 {

drawingContext.DrawEllipse(drawBrush,
null,
SkeletonPointToScreen(joint.Position),
JointThickness, JointThickness);
 }
 }
 }
 }

private Point
SkeletonPointToScreen(SkeletonPoint
skelpoint)
 {

 DepthImagePoint depthPoint =
kinectSensor.CoordinateMapper.MapSkeleton
PointToDepthPoint(skelpoint,
DepthImageFormat.Resolution640x480Fps30);
 return new
Point(depthPoint.X, depthPoint.Y);
 }

private void DrawBone(Skeleton
skeleton, DrawingContext
drawingContext, JointType jointType0,
JointType jointType1)
 {
 Joint joint0 =
skeleton.Joints[jointType0];
 Joint joint1 =
skeleton.Joints[jointType1];

 // If can't find either of
these joints, exit
 if (joint0.TrackingState
== JointTrackingState.NotTracked ||
 joint1.TrackingState
== JointTrackingState.NotTracked)
 {
 return;
 }

 // Assume all drawn bones
are inferred unless BOTH joints are
tracked
 if (joint0.TrackingState
== JointTrackingState.Inferred &&
 joint1.TrackingState
== JointTrackingState.Inferred)
 {
 return;
 }

 Pen drawPen =
this.inferredBonePen;
 if (joint0.TrackingState
== JointTrackingState.Tracked &&
joint1.TrackingState ==
JointTrackingState.Tracked)
 {
 drawPen =
trackedBonePen;
 }

drawingContext.DrawLine(drawPen,
SkeletonPointToScreen(joint0.Position)
,
SkeletonPointToScreen(joint1.Position)
);
 }

private static void
RenderClippedEdges(Skeleton skeleton,
DrawingContext drawingContext,
WriteableBitmap colorBitmap)
 {
 double actualRenderWidth =
colorBitmap.PixelWidth;

77

if
(skeleton.ClippedEdges.HasFlag(FrameEdges
.Bottom))
 {
drawingContext.DrawRectangle(
 Brushes. Red,
 null,
 new Rect(0,
RenderHeight - ClipBoundsThickness,
actualRenderWidth, ClipBoundsThickness));
 }

 if
(skeleton.ClippedEdges.HasFlag(FrameEdges
.Top))
 {

drawingContext.DrawRectangle(
 Brushes.Red,
 null,
 new Rect(0, 0,
actualRenderWidth, ClipBoundsThickness));
 }

 if
(skeleton.ClippedEdges.HasFlag(FrameEdges
.Left))
 {

drawingContext.DrawRectangle(
 Brushes.Red,
 null,
 new Rect(0, 0,
ClipBoundsThickness, RenderHeight));
 }

 if
(skeleton.ClippedEdges.HasFlag(FrameEdges
.Right))
 {

drawingContext.DrawRectangle(
 Brushes.Red,
 null,
 new
Rect(actualRenderWidth -
ClipBoundsThickness, 0,
ClipBoundsThickness, RenderHeight));
 }
 }

private void Button_Click(object sender,
RoutedEventArgs e)
 {
 RenderTargetBitmap
renderTargetBitmap = new
RenderTargetBitmap((int)this.ActualWidth,
(int)this.ActualHeight, 96d, 96d,
PixelFormats.Pbgra32);

renderTargetBitmap.Render(this);

BitmapEncoder encoder = new
PngBitmapEncoder();

encoder.Frames.Add(BitmapFrame.Create(
renderTargetBitmap));

 string time =
DateTime.Now.ToString("hh'-'mm'-'ss",
CultureInfo.CurrentUICulture.DateTimeF
ormat);
 string myPhotos =
Environment.GetFolderPath(Environment.
SpecialFolder.MyPictures);
 string path =
Path.Combine(myPhotos,
"KinectWindowSnapshot-" + time +
".png");

 try
 {

Directory.CreateDirectory(Path.GetDire
ctoryName(path));
 using (FileStream fs =
new FileStream(path, FileMode.Create))
 {
 encoder.Save(fs);
 }
 StatusTextBlock.Text =
"Screenshot saved.";
 }
 catch (IOException)
 {
 StatusTextBlock.Text =
"Error saving screenshot.";
 }
 }

 private void
ApplyTiltButton_Click(object sender,
RoutedEventArgs e)
 {
 int selectedAngle =
(int)TiltAngleSlider.Value;

AdjustKinectTiltAngle(selectedAngle);
 }

 private void
AdjustKinectTiltAngle(int angle)
 {
 if (kinectSensor != null
&& kinectSensor.IsRunning)
 {
 angle = Math.Max(-27,
Math.Min(27, angle));

 try

78

 {

kinectSensor.ElevationAngle = angle;
 StatusTextBlock.Text
= $"Tilt angle set to {angle} degrees.";
 }
 catch
(InvalidOperationException ex)
 {
 StatusTextBlock.Text
= "Error adjusting tilt angle.";
 }
 }
 }
 }
}

79

XAML Coding

<Window x:Class="FallDetection.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Fall Detection App" Height="600" Width="1000"
 Loaded="Window_Loaded" Closing="Window_Closing" >

 <Grid>
 <Grid>

 <Image x:Name="ColorImage" HorizontalAlignment="Stretch"
VerticalAlignment="Stretch" Margin="113,10,285.2,52" />

 <Image x:Name="SkeletonImage" HorizontalAlignment="Stretch"
VerticalAlignment="Stretch" Margin="112,10,285.2,52" />

 <TextBlock x:Name="StatusTextBlock" HorizontalAlignment="Left"
Margin="734,255,0,0" TextWrapping="Wrap" Text="Status" VerticalAlignment="Top"
FontSize="24" FontWeight="Bold" RenderTransformOrigin="1.12,-0.242" />

 <TextBlock x:Name="HeadYText" HorizontalAlignment="Left" TextWrapping="Wrap"
VerticalAlignment="Top" Text="Head" Margin="734,41,0,0" FontSize="16"
RenderTransformOrigin="0.6,-0.612"/>

 <TextBlock x:Name="ShoulderCenterYText" HorizontalAlignment="Left"
Margin="734,76,0,0" TextWrapping="Wrap" VerticalAlignment="Top" Text="Shoulder"
FontSize="16" RenderTransformOrigin="-0.165,-1.862"/>

 <TextBlock x:Name="HipCenterYText" HorizontalAlignment="Left"
Margin="734,113,0,0" TextWrapping="Wrap" VerticalAlignment="Top" Text="Hip"
FontSize="16" RenderTransformOrigin="0.522,-1.712"/>

 <TextBlock x:Name="AnkleLeftYText" HorizontalAlignment="Left"
TextWrapping="Wrap" VerticalAlignment="Top" Text="AnkleLeft" Margin="734,148,0,0"
FontSize="16" RenderTransformOrigin="0.502,-0.677"/>

 <TextBlock x:Name="AnkleRightYText" HorizontalAlignment="Left"
Margin="734,184,0,0" TextWrapping="Wrap" Text="AnkleRight" VerticalAlignment="Top"
FontSize="16" RenderTransformOrigin="-0.139,0.727"/>

 <Button x:Name="ScreenshotBtn" Content="Screenshot"
HorizontalAlignment="Left" Margin="845,457,0,0" VerticalAlignment="Top" Width="85"
Click="Button_Click" Height="26" FontSize="14" RenderTransformOrigin="1.308,-0.321"/>

 <Slider x:Name="TiltAngleSlider" Minimum="-27" Maximum="27"
TickFrequency="1" SmallChange="1" LargeChange="5" Value="0" Margin="734,375,54.6,160.4"
/>

 <TextBlock x:Name="TiltAngleValueText" Text="{Binding
ElementName=TiltAngleSlider, Path=Value, StringFormat='Tilt Angle: {0:F0}°'}"
HorizontalAlignment="Left" Margin="798,410,0,0" TextWrapping="Wrap"
VerticalAlignment="Top" FontSize="14" RenderTransformOrigin="0.367,0.476"/>

 <Button x:Name="ApplyTiltButton" Content="Apply Tilt"
HorizontalAlignment="Left" Click="ApplyTiltButton_Click" VerticalAlignment="Top"
Margin="734,457,0,0" Height="26" Width="85" FontSize="14" RenderTransformOrigin="3.968,-
3.336"/>

 </Grid>
 </Grid>
</Window>

