INVESTIGATION OF POWER PRODUCED FROM TURBOCHARGER IN VEHICLE

NORAZLAN BIN AB. RAZAK

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

I admit that have read this report and to my opinion this report fulfill in terms of scope and quality from the bachelor of mechanical engineering (design and innovation)

Signature	:
Name of supervisor I	:
Date	:

Signature	:
Name of supervisor II	:
Date	:

C Universiti Teknikal Malaysia Melaka

INVESTIGATION OF POWER PRODUCE FROM TURBOCHARGER IN VEHICLE

NORAZLAN BIN AB. RAZAK

This report is submitted in partial fulfillment of the requirements for the Bachelor of Mechanical Engineering (Design & Innovation)

Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

April 2009

C Universiti Teknikal Malaysia Melaka

hereby declared that this project report has written by me and is my own effort and that no part has been plagiarized without citation

Signature:Name of writer:Date:

iv

DEDICATION

I would like to thanks to all who helped me a lot during the making of this report, especially my parents En. Ab. Razak Bin Saad and Pn. Saeniah Bt Ahmad who give full support and not to forget, En. Safarudin who not stopping giving me guidance and tought me to be independent

ACKNOWLEDGEMENT

First and foremost thanks to Allah S.W.T for giving me the courage, confidence and patience in order to complete this project. I would like to express my gratitude to my supervisor, Mr. Safarudin who guides me through completing this project. He gave me lot of ideas, advises and encouragement that helps me for completing this research.

Lot of thanks to all my friends who help me a lot in generating ideas and information that very useful in this research. Not to forget, my families for their support and blessing.

ABSTRACT

Nowadays, most of the vehicle around the world use Internal Combustion System engines. Internal Combustion System is an inefficient system for transportation because most of the energy that been burn from fuel are wasted to heat losses, mechanical losses and others. To recover the energy losses, a modified turbocharger system can be used to recycle the power by using alternator. The alternator will be moved by a modified turbine. The alternator will generate current to support car usage. The result after the system installed will be compared with the result after installing the turbine to see the suitability with the daily driven car. By understanding the systems, a recovery system can be designed to recover the energy losses from the engine and by generating current to recover the energy losses.

ABSTRAK

Sekarang, kebanyakan kenderaan sekitar dunia menggunakan enjin-enjin Sistem Pembakaran Dalaman. Sistem Pembakaran Dalaman adalah sebuah sistem yang tidak cekap untuk pengangkutan kerana kebanyakan tenaga yang digunakan daripada bahan api hilang dalam bentuk haba hasil dari pembakaran, geseran yang terhasil daripada pergerakan mekanikal, dan untuk menampung kegunaan aksesori. Untuk mengitar semula kehilangan tenaga tersebut, satu sistem pengecas turbo yang telah diubahsuai boleh digunakan. Altenator akan digerakkan dengan sistem turbin yang telah diubahsuai. Altenator tersebut akan digunakan untuk menghasilkan tenaga elektrik untuk menampung kegunaan kereta. Keputusan sebelum akan dibandingkan dengan keputusan selepas turbin dipasangkan untuk melihat kesesuaian dengan kereta yang dipandu oleh pengguna. Dengan memahami sistem pembakaran dalaman ini, satu sistem untuk menampung kembali tenaga yang telah hilang. Dengan menampung semula degan menggunakan kembali tenaga yang terhasil, dan dengan menghasilkan tenaga elektrik melalui altenator, kita dapat meningkatkan keberkesanan enjin, seterusnya kita sekaligus dapat menjimat minyak dan wang ringgit.

CHAPTER	CONTENT	PAGE
	ACKNOWLEDGEMENT	ii
	ABSTRACT	iii
	ABSTRAK	iv
	TABLE OF CONTENTS	V
	LIST OF FIGURES	ix
	LIST OF TABLES	xi

CHAPTER 1	INTRODUCTION	1
	1.1. Project Background	1
	1.2. Objective	2
	1.3. Scopes	2
	1.4. Problem Statement	3

CHAPTER 2 LITERATURE REVIEW

2.0. Literature Review	4
2.1. Introduction To Turbo	4
2.2.History Of Turbo	5
2.3 Turbochargers For Automotive	5
2.4 Turbo Basics	7
2.4.1. Turbo Component	9
2.5 Energy Losses	12
2.5.1. Thermodynamic Losses	15
C Universiti Teknikal Malaysia Melaka	16

2.6. Internal Combustion Engine	16
2.6.1. Four Stroke Engine	17
2.6.1.1. Intake Stroke	18
2.6.1.2. Compression Stroke	19
2.6.1.3. Power Stroke	20
2.6.1.4. Exhaust Stroke	22

2.7. 4A-GE Engine

2.7.1. First Generation	24
2.7.2. Second Generation	26
2.7.3. Third Generation	27
2.7.4. Fourth Generation	28
2.7.5. Fifth Generation	30
2.8. Turbocharger And Supercharger Mechanism	
2.8.1. Supercharger Mechanism	31
2.8.2. Turbocharger Mechanism	32
2.9. Dyno Test	
2.9.1. Torque And Power	34
2.10. Air Fuel-Ratio And Fuel Air-Ratio	35
2.11. Alternators	
2.11.1. Automotive Alternators	36

CHAPTER 3 METHODOLOGY

	3.0. Methodology	39
	3.1. Literature Review	42
	3.2. Introduction	42
	3.3. Initial Engine Analysys	41
	3.3.1. Dyno Test	42
	3.3.2. Temperature Measurement	46
	3.3.3 Pressure Measurement	47
	3.3.4. Output Power Measurement	47
	3.4. Turbine Installation	48
	3.5. Final Engine Analysis	50
	3.5.1. Alternator Analysis	51
	3.6. Data Analysis	52
	3.7. Full Report	52
CHAPTER 4	4.1. Dyno Test Result	53
	4.1.1 Before Installed Turbine	54
	4.2 Temperature Result	57
	4.2.1 Before Installed Turbine	57
	4.2.2 After Installed Turbine	58
	4.2.2.1 Without Alternator Load	61
	4.3 Pressure Result	62
	4.3.1 Before Installed Turbine	62
	4.3.2 After Installed Turbine	64
	4.3.3 Without Alternator Load	66
	4.4 Power Output Result	67
	4.4.1 After Installed Turbine	67
	4.5 Alternator Speed Result	69

CHAPTER 5	DISCUSSION	71
CHAPTER 6 CONCLUSION AND RECOMMENDATION		73
	REFERENCES	74
	APPENDIX	76

LIST OF FIGURES

NO	TITLE	PAGE
2.1.	Cross-section of a turbo	5
2.2.	Schweizer Maschinenfabrik Saurer	6
2.3.	First Turbodiesel Truck	6
2.4.	Early Turbocharger Car	6
2.5.	300SD Mercedes Benz	7
2.6.	Cross-section of a turbocharger	9
2.7.	Installed	11
2.8.	Side View	11
2.9.	Тор	11
2.10.	Housing	11
2.11.	Energy Losses Diagram	12
2.12.	Four Stroke Engine System	17
2.13.	Four Stroke Engine Part	17
2.14.	Intake Stroke Position	18
2.15.	Intake Stroke Position	19
2.16.	Compression Stroke Engine Position	20
2.17.	Power Stroke Engine Position	21
2.18.	Power Stroke Engine Position	21
2.19.	Power Stroke Engine Position	22
2.20.	Exhaust Stroke Position	23
2.21.	Exhaust Stroke Engine Position	23
2.22.	Toyota Sprinter Trueno	24

2.23.	4A-GE Engines	25
2.24.	1.6 L, 4A-GE Engines	26
2.25.	2nd Generations 4A-GE diagram	26
2.26.	3 rd Generation Of 4A-GE Engine	27
2.27.	4 th Generation Of 4A-GE Engine	28
2.28.	Twin-cam 20 Valve 4A-GE Engine	29
2.29.	5 th Generation Of 4A-GE Engine	31
2.30.	Supercharger used to increase inlet air	31
2.31.	Schematic showing of turbocharger for an SI engine.	32
2.32.	Power and torque curves of 1982 Datsun	33
2.33.	Chassis Dyno for Gen-2	34
2.34.	Alternator For Experiment	36
2.35.	Installed alternator	36
3.1.	Flow Chart	40
3.2.	Probe Inserted to exhaust manifold	47
3.3.	Installed Pressure Gauge	47
3.4.	Voltmeter	48
3.5.	System Estimation	48
3.6.	'Banana Manifold'	49
3.7.	Turbine	49
3.8.	Shaft	49
3.9.	Shaft and turbine	49
3.10.	Installed Turbine	49
3.11.	Installed Turbine	50
3.12.	Digital Handheld Tachometer	51
4.1.	Graph RPM Versus Torque	55
4.2.	Graph Torque Vs RPM	56
4.3.	Graph Temperature Vs Engine Speed	58
4.4.	Graph Temperature Vs Engine Speed	60
4.5.	Graph Temperature Vs Engine RPM	61

4.6.	Graph Pressure Vs engine speed for Non-Turbine	63
4.7.	Graph Pressure Vs Engine Speed After Installing Turbine	65
4.8.	Graph For Pressure Without Alternator Load	66
4.9.	Voltage Output Vs Engine Speed	68
4.10.	Graph Alternator Speed Vs Engine Speed	70

viii

LIST OF TABLES

NO	TITLE	PAGE
4.1.	Dyno Result Table	54
4.2.	Temperature Table Before Installing Turbine	57
4.3.	Temperature Table After Installing the turbine	59
4.4.	Table For Temperature without Alternator Load	61
4.5.	Pressure Table before Installing the Turbine	62
4.6.	Table for pressure after installing turbine	64
4.7.	Temperature Table For Without Alternator Load	66
4.8.	Power output Table	67
4.9.	Alternator Speed	69

LIST OF SYMBOLS

$$\begin{split} W_b &= brake \ work \ of \ one \ revolution \ (J) \\ V_d &= displacement \ volume \ (m^3) \\ N &= number \ of \ revolution \ per \ cycle \\ \dot{W} &= Power \ (W) \\ N &= Engine \ Speed \ (rev/s) \\ \tau &= Torque \ (N.m) \\ m_a &= mass \ of \ air \ (kg) \\ \dot{m}_a &= mass \ of \ air \ (kg) \\ \dot{m}_{af} &= mass \ flow \ rate \ of \ air \ (kg/s) \\ \dot{m}_f &= mass \ flow \ rate \ of \ fuel \ (kg/s) \end{split}$$

C Universiti Teknikal Malaysia Melaka

CHAPTER I

INTRODUCTION

1.0 Introduction

Turbocharger is an air compressor mechanism which is use to force and increase the combustion rate in an engine. Turbocharger is used to increase air capacity which enters the engine chamber to produce more power. Turbo are widely applied by the car manufacturer nowadays as the turbo technology is the cheapest way to produce more power for the vehicle such as trucks, lorries, and cars.

1.1 Project Background

Nowadays, most of daily use cars use the Internal Combustion Systems engine. As we know, internal combustion engine system is not so efficient systems because the just around 20-25 percent of the power produced are used to move the car. The other 75 percent of the energy produced are wasted by heat produced, mechanical system friction such as gear, power train, and car accessories. For countering this problems a lot of new systems are developed such as turbocharger systems to increase the efficiency of an engine. For this project, an additional system will be experimented in order to recover the loss of energy from the engine. This system will be using alternator to produce current to support the current alternator. This alternator will be powered by a turbine which is moved by the engine exhaust gas itself. This mean, that the wasted exhaust gas will be re-used to power the turbine.

1.2 Objectives

Objectives for this project is:

- a) To determine the power and torque produce by the turbine for turbochargers.
- b) To design a new system that recover energy losses from the engine.
- c) To design a new system to recycle the power produce to generate electricity for the car usage.
- d) To determine the car engine performance after applying the designed system were installed.

1.3 Scope

Scope for this project are:

- a) Determine the power produce and torque by specimen engines.
- b) Conduct experiment to determine the power and torque.
- c) Analyze and research the mechanism of turbochargers.
- d) Re-construct the turbine so it can be used to generate current.
- e) Designed a system to produce current from the turbine.
- f) Testing whether the system can be used or not.

1.4 Problem Statement

Nowadays, there are a lot of vehicles that used turbo to increase the power produce by the engine. If we look again into the turbo mechanism, it used wasted exhaust gas to move the turbine to compress the air into the engine. The daily used car will generate up to 50 kPa of pressure in the combustion chamber. This high pressure will produce extremely high velocity exhaust gases which are used to move the turbine in order for the turbo to operate. Based on this situation, we want to investigate how much power and torque will the turbine generate with such high velocity for turbo turbine. From that, we can reuse the excessive power generated by the turbine to produce current.

3

BIL																	IQ	DISEDIAKAN	DISEMAK	TARIKH:
		MINGGU	3GU														Ю	OLEH:	OLEH:	23 Julai 2008
																	Ą	AZLAN	EN SAFA	
		-	5	ю	4	5 6	6 7	8	6	10	11	12	13	14	15	16		STATUS	CATATAN	
1	PEMILIHAN TAJUK																			
7	PENGESAHAN TAJUK				+		-		-		<u> </u>			<u> </u>						
б	JANGKA WAKTU PSM I																			
4	PENGENALAN PROJEK	1						-						<u> </u>						
S	KAJIAN ILMIAH																			
9	METODOLOGI																-			
~	STUDY ON TURBOCHARGERS																			
10	PENGHANTARAN LAPORAN						+								-		-			
11	PENYEMAKAN LAPORAN																			
12	PEMBETULAN LAPORAN							-	-						-		-			
13	SEMINAR 1														<u> </u>					

PSM 1 GANTT CHART

BIL																	DISEDIAKAN	DISEMAK TARIKH:	TARIKH:
									MIN	MINGGU							OLEH:	OLEH:	23 Julai
																	AZLAN	EN SAFA	2008
		1	7	б	4	S	9	7 8	8	10	11	l 12	13	14	. 15	5 16	STATUS	CATATAN	
1	JANGKA WAKTU PSM II																		
7	REKA BENTUK TERPERINCI																		
3	FABRIKASI																		
4	UJIAN									<u> </u>	-								
5	DATA ANALISIS										<u> </u>	-			<u> </u>				
9	LAPORAN LENGKAP					-													
L	PENGHANTARAN LAPORAN					-													
∞	PENYEMAKAN LAPORAN																		
6	PEMBETULAN LAPORAN																		
10	SEMINAR 2																		

PSM II GANTT CHART

CHAPTER II

LITERATURE REVIEW

2.0 Literature Review

This part explain about the literature review that have been done to guide the research in the future

2.1 Introduction To Turbo

A turbocharger, or turbo, is an air compressor used for forced-induction of an internal combustion engine. Like a supercharger, the purpose of a turbocharger is to increase the mass of air entering the engine to create more power. However, a turbocharger differs in that the compressor is powered by a turbine driven and turbo by the engine's own exhaust gases [1].

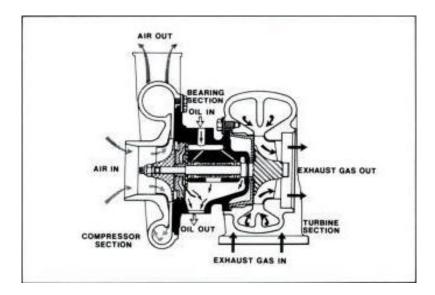


Figure 2.1: Cross-section of a turbo (Source: www.google.com)

2.2 History of Turbo

The turbocharger was invented by Swiss engineer Alfred Büchi. His patent for a turbo charger was applied for use in 1905. Diesel ships and locomotives with turbochargers began appearing in the 1920s.

2.3 Turbochargers For Automotive

The first Turbo-Diesel truck was produced by the "Schweizer Maschinenfabrik Saurer" (Swiss Machine Works Saurer) 1938.