

Faculty of Electronics and Computer Technology and

Engineering

DEVELOPMENT OF WIRELESS CONTROL FOR RETROFIT

WHEELCHAIR SYSTEM USING ARDUINO-BASED

MICROCONTROLLER WITH IOT

DONACIUS

Bachelor of Electronics Engineering Technology (Industrial Electronics) with

Honours

2024

DEVELOPMENT OF WIRELESS CONTROL FOR RETROFIT WHEELCHAIR

SYSTEM USING ARDUINO-BASED MICROCONTROLLER WITH IOT

DONACIUS

A project report submitted

in partial fulfillment of the requirements for the degree of

Bachelor of Electronics Engineering Technology (Industrial Electronics) with

Honours

Faculty of Electronics and Computer Technology and Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2024

 UNIVERSITI TEKNIKAL MALAYSIA MELAKA
FAKULTI TEKNOLOGI DAN KEJURUTERAAN ELEKTRONIK DAN KOMPUTER

 BORANG PENGESAHAN STATUS LAPORAN

 PROJEK SARJANA MUDA II

 Tajuk Projek : Development of Wireless Control for Retrofit Wheelchair using Arduino-

 Based Miicrocontroller with IOT

 Sesi Pengajian :1-2023/2024

 Saya DONACIUS mengaku membenarkan laporan Projek Sarjana

 Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan

pertukaran antara institusi pengajian tinggi.

4. Sila tandakan (✓):

(Mengandungi maklumat yang berdarjah

keselamatan atau kepentingan Malaysia

seperti yang termaktub di dalam AKTA

RAHSIA RASMI 1972)

(Mengandungi maklumat terhad yang telah

ditentukan oleh organisasi/badan di mana

penyelidikan dijalankan)

 TIDAK TERHAD

SULIT*

(TANDATANGAN PENULIS) (COP DAN TANDATANGAN PENYELIA)

Disahkan oleh:

Alamat Tetap: 1940, LORONG 4, TAMAN

TAWAU LAMA, BATUU 2 ½, JALAN

APAS 91000 TAWAU, SABAH

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan

dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

Tarikh:7 February 2024 Tarikh:

TERHAD*

01648
Cop KA 2024

01648
Pencil

01648
Typewritten Text
7 February 2024

01648
Typewritten Text
/

DECLARATION

I declare that this project report entitled “Development of Wireless Control for Retrofit

Wheelchair System Using Arduino-based microcontroller with IoT” is the result of my own

research except as cited in the references. The project report has not been accepted for any

degree and is not concurrently submitted in candidature of any other degree.

Signature :

Student Name : DONACIUS

Date : 7 February 2024

APPROVAL

I approve that this Bachelor Degree Project 2 (PSM2) report Development of Wireless

Control for Retrofit Wheelchair System Using Arduino-based microcontroller with IoT

is sufficient for submission.

Signature :

Supervisor Name : TS KHAIRUL AZHA BIN A AZIZ

Date :

01648
Pencil

01648
Typewritten Text
7 February 2024

i

DEDICATION

To my beloved parents,

Mother ESTER RUBEN, and father DONATIAN BIN JUNSUN

Thank you for your constant love and support.

ii

ABSTRACT

 A manual wheelchair is a standard wheelchair that can be self-propelled or pushed by others.

However, it may present difficulties in certain scenarios, particularly for individuals with

physical injuries or those living alone. The problem arises when users lose the ability to

move around independently. This project aims to develop Wireless Control for Reftrofit

Wheelchair System Using Arduino-base microcontroller with IoT. The android app are

develop using Mit App Inventor platfrom. The wheelchair is equipped with two motor driver

MD30C that control the DC motors attached to the wheels, which can be controlled via touch

or voice commands on the smartphone. Additionally, the system allows wireless control of

the household appliances and includes an IoT feature that enables users to remotely check

whether the lights are on or off. Bluetooth communication is utilized between the smartphone

and the arduino Uno . The smartphone interface offers two control options: voice commands

and touch input. The wheelchair can be moved forward, backward, left, right, or stopped,

and it features a proximity sensor to detect obstacles and automatically stop the wheelchair.

Additionally, the inclusion of an IoT function allows for real-time monitoring of household

appliances, enabling users to conveniently monitor and control their appliances remotely.

The ability to wirelessly control appliances brings numerous benefits in terms of

convenience and accessibility. In conclusion, this project empowers users with wireless

control over their wheelchairs, enabling them to navigate their surroundings more

effectively.

iii

ABSTRAK

Kerusi roda manual ialah kerusi roda standard yang boleh digerakkan sendiri atau ditolak

oleh orang lain. Walau bagaimanapun, ia mungkin menimbulkan kesukaran dalam senario

tertentu, terutamanya bagi individu yang mengalami kecederaan fizikal atau mereka yang

tinggal bersendirian. Masalah timbul apabila pengguna kehilangan keupayaan untuk

bergerak secara bebas. Projek ini bertujuan untuk membangunkan Kawalan Tanpa Wayar

untuk Sistem Kerusi Roda Reftrofit Menggunakan mikropengawal asas Arduino dengan IoT.

Apl android dibangunkan menggunakan platfrom Mit App Inventor. Kerusi roda ini

dilengkapi dengan dua pemandu motor MD30C yang mengawal motor DC yang dipasang

pada roda, yang boleh dikawal melalui sentuhan atau arahan suara pada telefon pintar. Selain

itu, sistem ini membenarkan kawalan wayarles ke atas perkakas rumah dan termasuk ciri IoT

yang membolehkan pengguna menyemak dari jauh sama ada lampu dihidupkan atau

dimatikan. Komunikasi Bluetooth digunakan antara telefon pintar dan arduino Uno. Antara

muka telefon pintar menawarkan dua pilihan kawalan: arahan suara dan input sentuh. Kerusi

roda boleh digerakkan ke hadapan, ke belakang, kiri, kanan atau berhenti, dan ia mempunyai

penderia jarak untuk mengesan halangan dan memberhentikan kerusi roda secara automatik.

Selain itu, kemasukan fungsi IoT membolehkan pemantauan masa nyata perkakas rumah,

membolehkan pengguna memantau dan mengawal peralatan mereka dari jauh dengan

mudah. Keupayaan untuk mengawal perkakas secara wayarles membawa banyak faedah dari

segi kemudahan dan kebolehcapaian. Kesimpulannya, projek ini memperkasakan pengguna

dengan kawalan wayarles ke atas kerusi roda mereka, membolehkan mereka menavigasi

persekitaran mereka dengan lebih berkesan.

iv

TABLE OF CONTENTS

PAGE

DECLARATION

APPROVAL

DEDICATIONS

ABSTRACT ii

ABSTRAK iii

TABLE OF CONTENTS iv

LIST OF TABLES vi

LIST OF FIGURES vii

 INTRODUCTION 10
1.1 Background 10

1.2 Problem statement 10
1.3 Project Objective 11
1.4 Scope of Project 11

 LITERATURE REVIEW 13

2.1 Overview 13
2.2 History of Wheelchair 13

2.3 Types of Wireless Communication 14
2.3.1 Infrared Communication 14

2.3.2 Wi-Fi 15

2.3.3 Bluetooth Technology 15

2.4 Study Related to Wireless Control Wheelchair 15
2.4.1 Arduino IDE 16
2.4.2 NodeMCU 17
2.4.3 MIT-APP Inventor 18
2.5 Previous Related Research Work 19

2.5.1 Wheelchair Control by Head Motion 19
2.5.2 Wheelchair Infrared Sensor Controlled Wheelchair for Physically Disabled People

 21
2.5.3 Eye Controlled Wheelchair Based On Arduino Circuit 24

2.5.4 Voice Controlled Intelligent Wheelchair 26
2.5.5 Wireless Smart Wheelchair 28
2.6 Previous Researcher Works Comparison 30
2.7 Summary 33

 METHODOLOGY 35

3.1 Introduction 35

v

3.2 Project Milestone 35
3.3 Milestone 1: Hardware development 37

3.3.1 System Design 37
3.3.2 Component Selection 41
3.3.2.1 Arduino Uno 41
3.3.2.2 NodeMCU 43
3.3.2.3 Relay 44

3.3.2.4 MD30C 30A DC Motor Driver 46
3.4 Milestone 2: Software development 47
3.4.1 Integrated Development Environment (IDE) 48
3.4.1.1 Arduino CC 48
3.4.2 Program development 49

3.4.2.1 AT-09 Bluetooth Module 49
3.4.2.2 HC-05 Bluetooth module Master and slave 52
3.4.2.3 Arduino coding for controlling motor 53

3.4.2.4 NodeMCU with master HC-05 56
3.4.2.5 NodeMCU with Slave HC-05 59
3.5 Milestone 3 :Prototype development 62

3.6 Milestone 4 : Final Product Development 62

 RESULTS AND DISCUSSIONS 64

4.1 Introduction 64
4.2 Software analysis 64
4.2.1 Graphical user interface (GUI) 64

4.2.2 D-pad Layout 67

4.2.3 Voice layout 69
4.2.3.1 Voice Command Analysis 71
4.2.4 Other icon layout 73

4.2.5 Slider icon 75
4.2.6 Arduino Cloud Dasboard 77

4.3 Hardware analysis 78
4.3.1 Movement of the motor 78
4.3.2 Battery Voltage Improvement 81

4.3.3 Improved Ultrasonic Sensor System Setup 83
4.4 Discussion 85

 CONCLUSION AND RECOMMENDATIONS 89

5.1 Conclusion 89

5.2 Project Potential 90

5.3 Future Works 90

REFERENCES 91

APPENDICES 94

vi

LIST OF TABLES

TABLE TITLE PAGE

Table 2.5.2-1. Different states of motor direction 24

Table 2.5.4-1 voice command and reaction 27

Table 2.6-1 Previous Researcher Comparison 30

Table 3.3.2.4-1. Motor driver MD30C 47

Table 3.4.2.3-1 Expected Output 53

Table 3.4.2.4-1 Arduino Pin 4 State and Character Send 58

Table 3.4.2.4-2 Arduino Pin 5 State and Character Send 58

Table 3.4.2.5-1 NodeMCU With Slave HC-05 Pin 4 State 60

Table 3.4.2.5-2 NodeMCU With Slave HC-05 Pin 5 State 61

Table 4.2.1-1 Mobile Apps Icon Description 66

Table 4.2.3-1 Expected Result From The Mobile Apps Control 71

Table 4.2.4-1 Expected Output For Light Control 74

Table 4.2.4-2 Expected Output For Fan Control 75

Table 4.2.6-1 Visual State Of The Power Outlet 77

Table 4.3.1-1 Button Command For The D-pad 79

vii

LIST OF FIGURES

FIGURE TITLE PAGE

Figure 2.2.1 Fafler in his 50s sitting in his vehicle 13

Figure 2.4.1.1 Arduino IDE 16

Figure 2.4.1.2 Arduino Uno 17

Figure 2.4.2.1 NodeMCU ESP8266 17

Figure 2.4.2.2 IOT Application 18

Figure 2.4.3.1 MIT App inventor IDE 19

Figure 2.5.1.1 Microcontroller system block diagram 20

Figure 2.5.1.2 Wheelchair state diagram and relative meaning of user commands. 20

Figure 2.5.1.3 The position of the accelerometer relative to the head 21

Figure 2.5.1.4 An example of threshold setting 21

Figure 2.5.2.1 Block diagram of an automated wheelchair working process. 22

Figure 2.5.2.2 Flowchart for controlling the movement of the wheelchair. 23

Figure 2.5.3.1. Block Diagram 25

Figure 2.5.3.2. System Design Diagram 25

Figure 2.5.3.3. System Flow graph 26

Figure 2.5.3.4. Image Processing Diagram 26

Figure 2.5.4.1. Control algorithm 28

Figure 2.5.5.1 Architecture of wheel Chair with Pulse playground sensor 29

Figure 3.2.1. Milestone Flowchart 36

Figure 3.3.1.1 Block Diagram 38

Figure 3.3.1.2. Flowchart for Touch Control 39

Figure 3.3.1.3. Flowchart for Voice Control 40

viii

Figure 3.3.2.1.1. Arduino Uno 41

Figure 3.3.2.1.2. Arduino Uno pinout 42

Figure 3.3.2.2.1. NodeMCU 43

Figure 3.3.2.2.2. NodeMCU pinout 44

Figure 3.3.2.3.1. Two Channel Relay 44

Figure 3.3.2.3.2. Relay pinout 45

Figure 3.3.2.4.1. MD30C DC Motor Driver 46

Figure 3.4.1.1.1. Arduino.cc Interface 48

Figure 3.4.2.1.1 Sample of AT command 49

Figure 3.4.2.1.2 Arduino Connection With Hc-05 50

Figure 3.4.2.1.3 Serial Monitor Output 50

Figure 3.4.2.3.1. Sample Of Arduino Code 53

Figure 3.4.2.3.2 Arduino Code For Setup 53

Figure 3.4.2.3.3 Arduino code For Character Received 54

Figure 3.4.2.3.4 Slider On Mobile Apps 54

Figure 3.4.2.3.5 Mit App Code Block For Slider 55

Figure 3.4.2.3.6 Arduino Code For PWM Value Received 55

Figure 3.4.2.4.1 NodeMCU Wiring Diagram 56

Figure 3.4.2.4.2 NodeMCU Code For Declaring Pin 57

Figure 3.4.2.4.3 NoceMCU Code For Controlling Power Outlet 57

Figure 3.4.2.5.1 NodeMCU With HC-05 Slave Wiring Diagram 59

Figure 3.4.2.5.2 NodeMCU Code For Received Character 60

Figure 3.6.1 Full Circuit Diagram For wheechair Control 62

Figure 3.6.2 Layout Of The Control Box 63

Figure 3.6.3 Wiring Diagram For Power Outlet Control 63

Figure 4.2.1.1 Main Layout When Apps Is Open 65

ix

Figure 4.2.1.2 Mit App Developer Layout 66

Figure 4.2.2.1 D-pad Control Layout 67

Figure 4.2.2.2 Sample Of Mit App Code Block For D-pad Button 68

Figure 4.2.2.3 Arduino Code For Received Character 68

Figure 4.2.3.1 Voice Layout On Mobile App 69

Figure 4.2.3.2 Sample Of Mit App Code Block For Voice Command 70

Figure 4.2.3.1.1 Graph For Voice Command Accuracy 72

Figure 4.2.4.1 Layout For Power Outlet Control 73

Figure 4.2.4.2 Sample Code Block Mit App For Power Outlet Control 74

Figure 4.2.5.1 Slider Icon On Mobile App 75

Figure 4.2.5.2 Sample Code Block Mit App For Slider 76

Figure 4.2.5.3 Sample Of Arduino Code For Received PWM Value 76

Figure 4.2.6.1 Arduino Cloud Dashboard 77

Figure 4.3.1.1 Direction Of Motor For Different Current Flow 79

Figure 4.3.1.2 Truth Table For The Motor Driver 80

Figure 4.3.2.1 Previous 12V Battery 81

Figure 4.3.2.2 New 24 Volt Battery 82

Figure 4.3.3.1 Back Sensor On The Wheelchair 84

Figure 4.3.3.2 Front Sensor On The Wheelchair 84

Figure 4.4.1 Completed System Wheelchair Backview 86

Figure 4.4.2 Completed System WheelChair Frontview 86

Figure 4.4.3 Completed Power Outlet Control Layout 87

Figure 4.4.4 Both Power are turn On 87

LIST OF APPENDICES

APPENDIX TITLE PAGE

appendix 1.Gantt Chart PSM 94

10

INTRODUCTION

1.1 Background

The wheelchair is the most commonly utilised piece of equipment for persons with lower

limb disabilities. In comparison to others who have both upper and lower limb limitations,

it allows them some movement and independence.The majority of wheelchairs on the market

are manual, with some offering a motorised alternative. Existing wheelchairs can be

modified to provide a more cost-effective option. The system includes a microprocessor,

wireless module, motor driver, and rechargeable battery, which all work together to improve

the wheelchair's functionality. The microcontroller controls the movement of the wheelchair

by processing signals received from the wireless module and converting them into motion

commands for the motor driver.This system enables users to control their wheelchairs

wirelessly through a smartphone or tablet application, eliminating the need for physical

switches and buttons.

1.2 Problem statement

In the current scenario, with the increasing number of elderly individuals, there is a growing

need for assistive technologies that enhance their mobility and independence. Many elderly

individuals live alone or in adult foster homes, and when they lose their ability to move

around independently, they face significant challenges. Traditional manually-operated

wheelchairs can be difficult to use, especially for individuals with physical injuries or

disabilities but good mental strength. Moreover, in situations where assistance is required,

patients have to rely on others to bring the wheelchair within their reach. Furthermore,

11

individuals dependent on wheelchairs for mobility encounter difficulties in manually

operating electrical outlets or lighting, leading to inconvenience and impracticality.

Therefore, there is a pressing need to develop a solution that addresses these challenges and

enables elderly individuals with limited mobility to navigate their surroundings more

effectively.

1.3 Project Objective

The objective of this study is as follows :

a) To develop a system that can control the movement of a wheelchair using

smartphone via Bluetooth .

b) To design an android control interface that incorporates both a D-pad and voice

commands.

c) To design android system that control the electrical appliances.

d) To provide real-time status of the electrical appliances power state.

1.4 Scope of Project

This project primarily focuses on enhancing the usability of wheelchairs within controlled

environments, such as private houses. The target audience for this project is elderly

individuals who have lost the ability to navigate their surroundings and live independently.

The wheelchair's control system is designed to cater to five essential movements: moving

forward, moving backward, moving to the left, moving to the right, and stopping The system

utilizes an Arduino Uno microcontroller, which serves as the central control unit for

managing these movements. The inclusion of a proximity sensor serves the purpose of

12

detecting obstacles and automatically halting the wheelchair's movement to ensure user

safety. Additionally, the project incorporates functionality to control specific power outlet

within the house, specifically the lights. The Internet of Things (IoT) aspect of the project

enables users to monitor the status of the lights, whether they are turned on or off.

13

LITERATURE REVIEW

2.1 Overview

In this chapter will focus more on background research and literature review for the whole

project. The major goal of this chapter is to discuss previous research and current project.

The philosophy and concept utilized to tackle the project’s challenge are discussed in this

project. The whole sources of material are journal, paper and case studies that are chosen for

their resemblance to the project aim.

2.2 History of Wheelchair

The first self-propelled wheelchair was invented in the 1655 by a clock-maker in

Nuremberd,Germany. Stephan Farller (1633-1689), built his own wheelchair to ease the

difficulty of walking.

Figure 2.2.1 Fafler in his 50s sitting in his vehicle

From then the development of various way to control a wheelchair has been develop. The

need of new method to control wheelchair arise as not every user or patient can used a

conventional wheelchair where it is self-propelled by user or pushed by a companion. In a

14

program for injured veterans returning from World war II ,Canadian inventor George Klien

invented the first electric-powered wheelchair.[9]

2.3 Types of Wireless Communication

Wireless communications refers to the transmission of voice and data without the need for

cables or wires. Instead of relying on physical connections, information is sent through

electromagnetic signals that are broadcasted from transmitting facilities to intermediate and

end-user devices.[6]

2.3.1 Infrared Communication

Infrared communication involves the use of IR radiation to transmit information within a

device or system.[6] IR refers to electromagnetic energy with a longer wavelength than red

light. It is commonly used for tasks like security control, TV remote control, and short-range

communication. In the electromagnetic spectrum, IR radiation falls between microwaves and

visible light, making it suitable for communication purposes.

To establish successful infrared communication, two essential components are needed: a

photo LED transmitter and a photo diode receptor. The LED transmitter emits IR signals as

non-visible light, which are then captured and detected by the photoreceptor. In this way,

information is transferred between the source and the target. Common examples of sources

and targets for infrared communication are mobile phones, TVs, security systems, laptops,

and other devices that support wireless communication.[6]

15

2.3.2 Wi-Fi

Wi-Fi is a wireless communication technology that is utilized by gadgets like computers and

smartphones. It makes it possible for various devices to connect wirelessly. In a Wi-Fi

arrangement, a router serves as the primary hub for communication. Wi-Fi networks can

only be accessed by users who are close to the router.

Because they provide the convenience of wireless communication, Wi-Fi networks are

popular for networking applications. But it's crucial to use passwords to secure these

networks. This guarantees the network's security and deters unauthorized access.[6]

2.3.3 Bluetooth Technology

A popular short-range technology for Wireless Personal Area Networks (WPAN) is

Bluetooth.[7] The primary purpose of Bluetooth technology is to enable wireless data

transfer between various electronic devices and a system. Hands-free earbuds, a mouse, and

a wireless keyboard are all connected to cell phones. Information can be transferred from

one device to another using a Bluetooth device. This technology serves several purposes and

is widely utilised in the wireless communication market. Despite the fact that development

platforms make the process easier, many tools do not work with the Bluetooth

specification.[7]

2.4 Study Related to Wireless Control Wheelchair

In this section, we will look on the components that are widely used by researchers. The

specification of components are referred on the datasheet of the component to avoid wrong

information.

16

2.4.1 Arduino IDE

Arduino is an open-source gadget based on simple hardware and software that may be used

to create electrical appliance projects. The Arduino IDE Software compiles the programming

code, converts it to binary, and transfers it to the circuit board through serial port connection,

as illustrated in Figure . Furthermore, the Arduino employed the C++ programming

language, which is relatively easy and makes learning to code simpler since it uses

conventional serial protocol communication, which connects to a computer through USB.

Figure 2.4.1.1 Arduino IDE

The Arduino software is easy to use for beginners since it makes working with

microcontrollers simpler. In addition, Arduino has the advantage of being a less expensive

programmable board than other microcontroller platforms. Because it is straightforward and

practical, it is a common initial choice. Users of the Arduino program can also attach shields,

which are pre-built circuit boards with additional capabilities that let them experiment with

more sensors, displays, and inputs. There are numerous Arduino boards available that can

be utilised for various tasks. The widely used Arduino family board and a suitable starting

point is the Arduino UNO, which is shown in Figure .[17]

17

Figure 2.4.1.2 Arduino Uno

2.4.2 NodeMCU

Figure 2.4.2.1 NodeMCU ESP8266

The module discussed in the paragraph is primarily based on the ESP8266 microchip, which

is a cost-effective Wi-Fi module that integrates a full TCP/IP stack and microcontroller

capabilities. It was developed by Espressif Systems. The ESP8266 NodeMcu is a versatile

device that combines certain features of the Arduino board with the ability to connect to the

internet.[18]

While Arduino modules and microcontrollers have been popular choices for automation

projects, they lack built-in Wi-Fi capabilities. To overcome this limitation and enable

internet connectivity, an external Wi-Fi protocol needs to be added to these devices.

The NodeMCU is a well-known development board that utilizes the ESP8266 Wi-Fi System-

on-Chip (SoC). The version mentioned in the paragraph is version 3, based on the ESP-12E

module. NodeMCU is an open-source firmware and development kit that facilitates

18

prototyping of IoT (Internet of Things) products using LUA scripting. It can also be

programmed using the Arduino IDE, providing flexibility for different programming

approaches.[14]

Figure 2.4.2.2 IOT Application

2.4.3 MIT-APP Inventor

MIT App Inventor is a web-based platform for building mobile apps for Android devices. It

uses a graphical drag-and-drop interface to allow users to design and build apps without

requiring any prior programming experience.

19

Figure 2.4.3.1 MIT App inventor IDE

2.5 Previous Related Research Work

Before moving forward with the development of wireless control for retrofit wheelchair

system employing microcontroller with IoT, past research or articles are revised. Reading

earlier research is mostly done to explore the theories and concepts that were utilized to

address the issues that would arise throughout the project's development. The linked sources

that have been chosen for this project are listed below.

2.5.1 Wheelchair Control by Head Motion

A. Pajkanović and B. Dokić presents a microcontroller-based system that enables head

movements to control a typical electric wheelchair. Both mechanical and electronic

components make up the system. A novel head motion identification technique is developed

using accelerometer data processing. The system's mechanical actuator manages the

wheelchair joystick. The technology is compatible with a variety of common electric

wheelchair models.

20

Figure 2.5.1.1 Microcontroller system block diagram

The system allows individuals to control a standard electric wheelchair using head motion.

The system prototype, comprising an accelerometer, a microcontroller, and a mechanical

actuator, is implemented and tested. The accelerometer collects data on head motion, which

is processed by a novel algorithm implemented on the microcontroller. The resulting output

is then connected to the mechanical actuator, enabling the positioning of the wheelchair

joystick based on the user's commands. The algorithm within the microcontroller translates

the sensor data into the appropriate joystick position. Furthermore, the mechanical actuator

is designed to be compatible with various types of standard electric wheelchairs.

Based on the force measurements provided by an accelerometer mounted to the head, head

motion recognition is performed. As previously indicated, the motion set simply consists of

four members, each of which represents a conceivable head lean. As a result, the algorithm

must make an educated guess as to which of the four directions the head is leaning. In other

words, reading the accelerometer data for just two axes in this case, x and y is adequate.[1]

Figure 2.5.1.2 Wheelchair state diagram and relative meaning of user commands.

21

Figure 2.5.1.3 The position of the accelerometer relative to the head

Figure 2.5.1.4 An example of threshold setting

2.5.2 Wheelchair Infrared Sensor Controlled Wheelchair for Physically Disabled

People

Nowshin, N., Rashid, M. M., Akhtar, T., & Akhtar, N. proposed an automated wheelchair

specifically designed for individuals with one side or partial body paralysis. The wheelchair

is controlled by the user's eyes using an infrared (IR) sensor. The system is implemented

using an Arduino Uno and Infrared Sensor to enable directional movement. A notable feature

of this design is the inclusion of an emergency contact system, utilizing a GSM module and

a compact solar-powered battery system. In summary, the proposed wheelchair design is

22

hands-free, operates on renewable energy, and incorporates an emergency system that sends

text messages to the user's emergency contacts in case of emergencies.

Nowshin, N., Rashid, M. M., Akhtar, T., & Akhtar, N. proposed model includes two push

buttons and an IR sensor as inputs, with an Arduino Uno serving as the main controller. The

movement of the wheelchair is controlled through a relay module. Button 1 is used to activate

the system for movement, and the wheelchair's wheels respond to the number of eye blinks

detected. In case of an emergency, Button 2 triggers the emergency message feature.

Pressing it once sends a message to a family member's mobile phone, while pressing it twice

sends a message to a physician, informing them about the user's health condition via a GSM

module. To ensure power supply for the model, a solar panel and a rechargeable battery are

used.[2]

Figure 2.5.2.1 Block diagram of an automated wheelchair working process.

23

Figure 2.5.2.2 Flowchart for controlling the movement of the wheelchair.

The IR sensor used in the system operates as a comparator using an Operational amplifier

(LM 358). It compares the analog voltages from a potentiometer and the voltage generated

by the photodiode. These voltages are applied to the terminals of the IC, which produces a

digital output on the output pin, indicated by a red LED. When the voltage (Vd) generated

by the photodiode is higher than the set voltage on the potentiometer, the output is HIGH,

and vice versa. This IR sensor is specifically utilized to detect variations per eye blink. When

the eye is closed, more IR light is reflected, whereas when the eye is open, less IR light is

reflected due to the darker pupil/iris compared to the eyelid. By employing this logic, the IR

sensor, fixed in a spectacle, can detect the number of times the eye is pressed.The Arduino

digital pins are connected to the IR sensor to receive inputs from the user, and the output

provided by the sensor is further processed. Based on the information in Table 1, the

movement of the wheelchair motors is determined.

24

Table 2.5.2-1. Different states of motor direction

Number of eye blink State of the movement

0 Stop

1 Forward

2 Reverse

3 Right

4 Left

2.5.3 Eye Controlled Wheelchair Based On Arduino Circuit

The concept presented by Reona Cerejo,Valentine Correi,and Neil Pereira in this paper is to

develop an Eye Controlled System that enables the movement of a patient's wheelchair based

on the movements of their eyeballs. For individuals with quadriplegia, who have limited

mobility and can only move their eyes and partially tilt their heads, detecting these

movements provides an opportunity for wheelchair control. Although there are various

interfaces and techniques available for powered wheelchairs, they tend to be expensive and

not affordable for economically disadvantaged individuals.

In this paper, a simpler and cost-effective method for developing a wheelchair is proposed.

The system involves a person sitting on an automated wheelchair with a camera mounted on

it. By looking in a specific direction and making eye movements, the person can control the

wheelchair's movement in that direction. The camera signals captured are then sent to a PC

and controlled by MATLAB. The control signals are then transmitted to an Arduino circuit

25

through a Serial Interface. The Arduino circuit utilizes these signals to control the

wheelchair's motors, enabling movement in the desired direction. [3]

Figure 2.5.3.1. Block Diagram

Figure 2.5.3.2. System Design Diagram

26

Figure 2.5.3.3. System Flow graph

Figure 2.5.3.4. Image Processing Diagram

2.5.4 Voice Controlled Intelligent Wheelchair

Masato Nishimori, Takeshi Saitoh, and Ryosuke Konishi proposed an improvement to the

previous researcher voice controlled wheelchair that uses voice command as the interface

that has basic modes which are running until next command is input, turning or rotation and

stopong. The voice command serves as the interface for the voice-controlled wheelchair

being developed in this study. The wheelchair can operate in three fundamental modes:

running until the next instruction is input, turning or rotating, and stopping. Voice commands

have been implemented to control the wheelchair. These commands are divided into two

categories: reaction commands and verification commands. There are a total of nine voice

commands, with five being basic reaction commands and four being short moving reaction

commands, which cause the wheelchair to move short distances. The specifics of each voice

command and their corresponding reactions are provided in Table 2. [4]

27

Table 2.5.4-1 voice command and reaction

No Command Reaction(mode)

2 Susume run forward

3 sagare run backward

4 migi turn right

5 Hidari Turn left

6 Sukoshi-susume Run forward about 30cm

7 Sukoshi-sagare Run backward about 30cm

8 Sukoshi-migi Rotate right about 30 degrees

9 Sukoshi-hidari Rotate left about 30 degrees

A OK/yes Acceptance command

B Torikeshi/no/cancel Rejection command

28

Figure 2.5.4.1. Control algorithm

2.5.5 Wireless Smart Wheelchair

Sirisha, P & Bethapudi, Prakash & Meghana, Ratna & Yamini, C & Lakshmi, E proposed

an approach that offers a low-cost, simple, and user-friendly solution for a voice-controlled

platform. This solution is fully customizable based on the user's spoken language and aims

to enhance the user's independent mobility. The research explores the utilization of

smartphones as the central control unit for a robot, which is an active research field with

numerous opportunities and potential advancements. Additionally, Bluetooth technology is

29

employed to enable wireless communication between the wheelchair and the mobile

platform, providing a convenient remote control solution.

The project also incorporates the use of ultrasonic sensors to detect obstacles within a range

of 4 meters. When an obstacle is detected, the system is notified and the wheelchair comes

to a stop until further commands are given. The proposed system utilizes an Arduino Uno

microcontroller and a Bluetooth module, which are controlled through an Android

application. This enables individuals with disabilities to have control over their wheelchair

according to their specific needs, even when caregivers are unable to actively monitor them.

Figure 2.5.5.1 Architecture of wheel Chair with Pulse playground sensor

The provided figure depicts the model of a wireless smart wheelchair designed to be highly

efficient .This wheelchair requires minimal effort from the user to initiate movement. The

built-in accelerometer in a mobile device plays a significant role in controlling the

wheelchair's movements in all four directions. By capturing the user's movements through

the mobile device, commands are sent to the wheelchair, allowing it to move accordingly. A

slight movement by the user triggers the desired direction in the wheelchair.

30

This wheelchair operates through a simple Bluetooth pairing. Tilting the mobile device to

the left causes the wheelchair to turn left, tilting it to the right makes the chair turn right,

tilting it forward moves the wheelchair in the forward direction, and tilting it backward

moves the wheelchair backward. When there is no change in the mobile device's position

and it remains at rest, the wheelchair will also come to a stop. [5]

2.6 Previous Researcher Works Comparison

Table 2.6-1 Previous Researcher Comparison

No Author Year Title Method IOT

Capability

Remote

control of the

wheelchair

1 Aleksa

ndar

Pajkan

ović

, and

Brank

o

Dokić

2013 WHEELCHAIR

CONTROL BY

HEAD

MOTION

Atmega 19,

accelerome

ter,

Mechanical

actuator,

Servo

motor

Not stated No. Sensor

used to control

wheelchair

move is wired

to control box.

2 Nadia

Nowsh

in(&)

,Md

Moont

2019 INFRARED

SENSOR

CONTROLLE

D

WHEELCHAIR

Arduino

Uno, IR

sensor (to

detect eye

Used GSM

Module to

send

emergency

No .Sensor

used to control

the wheelchair

movement is

31

asir

Rashid

,

Tasnee

ma

Akhtar

, and

Nafisa

Akhtar

FOR

PHYSICALLY

DISABLED

PEOPLE

blink),GS

M Module

assistance

message

wired to

control box.

3 Reona

Cerejo

,Valent

ine

Correi,

and

Neil

Pereira

2015 EYE

CONTROLLE

D

WHEELCHAIR

BASED ON

ARDUINO

CIRCUIT

Arduino

Uno,

Camera (to

detect eye

movement)

, Matlab

(image

processing

unit)

Not stated No .Sensor

used to control

the wheelchair

movement is

wired to

control box.

4 Masat

o

Nishi

mori,

Takesh

i

Saitoh

2007 VOICE

CONTROLLE

D

INTELLIGENT

WHEELCHAIR

PIC,

Microphon

e,

Laptop

(control

system)

Not stated No .Sensor

used to control

the wheelchair

movement is

wired to

control box.

32

and

Ryosu

ke

Konish

i

5 P

Sirisha

,Dr

Prakas

h

Bethap

udi,

Ratna

Megha

na M,

CH

Yamin

i, and

E

Navee

naLaks

hmi

2020 WIRELESS

SMART

WHEELCHAIR

Arduino

UNO,

NodeMCU,

Mobile

Device

(index

finger

sensor)

Uses Node

MCU to

monitor the

user

heartbeat

through

Blynk app

Using android

app from

smartphone.

6 Ibrahi

m Bin

2015 WIRELESS

ANDROID-

BASED

IOIO ,RF

receiver,

Motor

Not Stated Using Android

App to control

the

33

Abu

Bakar

WHEELCHAIR

CONTROL

AND SYSTEM

Driver and

motor

Wheelchair

movement.

2.7 Summary

The information relevant to this project learned about the techniques employed by the prior

researchers based on their ideas and works, as well as their research. In order to demonstrate

this, a comparison of the methods used and their benefits and drawbacks is done by the

approaches used by earlier scholars, both in terms of parallels and differences. To give a

comprehensive picture of how each component works, the ideas underlying these

components are also described. The summary consist on what the method use to control the

wheelchair, type of microcontroller and input sensor.

According to the provided table, four different methods were employed by researchers in the

study. The first researcher utilized head motion, the second and third researchers employed

eye motion and movement, the fourth researcher used voice control, and the last researcher

utilized finger motion. The microcontrollers primarily used were Arduino, with some

researchers using a PIC-type microcontroller. The choice of sensor depended on the specific

method used. In the case of head motion, an accelerometer sensor was employed to detect

the user's direction, which then controlled a mechanical actuator connected to the wheelchair

joystick. The second and third researchers used different approaches for eye motion. The

second researcher used an IR sensor to detect the motion caused by blinking, with each

consecutive blink representing a different instruction for the microcontroller. The third

34

researcher used a camera to detect the user's eye direction for wheelchair control. The fourth

researcher utilized voice commands and a microphone to detect the user's instructions for

wheelchair movement. The last researcher employed a smartphone as an input device, where

the user would use their index finger to set the wheelchair's direction based on a virtual

joystick in a mobile app.

In conclusion, based on the methods and modules used by previous researchers, it can be

inferred that several features will be implemented in the development of the Wireless Control

for Retrofit Wheelchair System using Microcontroller with IoT. The chosen methods for the

project will be voice command and mobile applications, and the Arduino Uno

microcontroller will be used as the processing unit for the project.

35

METHODOLOGY

3.1 Introduction

The project flow was covered in great detail in this chapter. A portion of this chapter

discussed the methods used to carry out this project throughout time. The goal of this chapter

is to describe in detail and validate how the project was executed. The design, development,

and usage in the development of Wireless Control for Retrofit Wheelchair system using

Arduino-based microcontroller with IoT. These techniques were effectively carried out,

producing a suitable mechanism and part for a wireless control for wheelchair.

3.2 Project Milestone

Project milestones play a crucial role in project management as they mark significant points

or achievements throughout the project's lifecycle. These milestones serve as essential

markers, providing a clear indication of progress, key deliverables, and important events

within a project. Understanding project milestones is vital for effective project planning,

execution, and control. They serve as strategic checkpoints that help break down the project

into manageable phases and provide an overview of the project's timeline.

36

Figure 3.2.1. Milestone Flowchart

37

3.3 Milestone 1: Hardware development

The first milestone was established on the basis of the aim within the methodology, which

is to build a system by selecting appropriate and practical components and arranging them

in an appropriate circuit architecture. Figure below show flowchart for this first milestone in

the project.

3.3.1 System Design

The system consist of several small component parts, each of which requires specific

connection for it to properly function. The component include a ESP8266, smartphone,

relay, motor driver , lamp and the Arduino as the microcontroller. Firstly, connection

between smartphone and the ESP8266 must be establish via Bluetooth. Once the connection

is done there are two method to control the motor that is by using a touch pad and voice

command.

38

Figure 3.3.1.1 Block Diagram

39

Figure 3.3.1.2. Flowchart for Touch Control

40

Figure 3.3.1.3. Flowchart for Voice Control

41

3.3.2 Component Selection

The project is comprised of a small number of component parts, each of which requires a

specific connection in order to function properly. These include a ESP32, relay module

,MD30C Motor Driver that is controlled by a microcontroller. After the process of studying

the related literature, a decision regarding the selection of components is made. According

to the findings of the literature analysis conducted on Chapter 2, the components that were

chosen are as follows: a microcontroller Arduino Uno as the main processing unit and a ESP

32 as the communication between smartphone and the Arduino Uno .For the purpose of

developing the prototype, these components are practical, suited for the task at hand, and

simple to implement.

3.3.2.1 Arduino Uno

Figure 3.3.2.1.1. Arduino Uno

Arduino is an open-source platform widely used for constructing and programming

electronics. It enables communication and data exchange with various devices, including the

ability to command specific electronic devices over the internet. The Arduino platform

utilizes a hardware component called Arduino Uno, which is a circuit board, and a software

42

program written in a simplified version of the C++ programming language, to program the

board.

Arduino can be used to read information from various input devices such as sensors,

antennas, and potentiometers (trimmers), allowing for data acquisition. Additionally, it can

send information to output devices such as LEDs, speakers, LCD screens, and DC motors,

facilitating control and interaction with these devices.

Figure 3.3.2.1.2. Arduino Uno pinout

43

3.3.2.2 NodeMCU

Figure 3.3.2.2.1. NodeMCU

The module discussed in the paragraph is primarily based on the ESP8266 microchip, which

is a cost-effective Wi-Fi module that integrates a full TCP/IP stack and microcontroller

capabilities. It was developed by Espressif Systems. The ESP8266 NodeMcu is a versatile

device that combines certain features of the Arduino board with the ability to connect to the

internet.

While Arduino modules and microcontrollers have been popular choices for automation

projects, they lack built-in Wi-Fi capabilities. To overcome this limitation and enable

internet connectivity, an external Wi-Fi protocol needs to be added to these devices.

The NodeMCU is a well-known development board that utilizes the ESP8266 Wi-Fi System-

on-Chip (SoC). The version mentioned in the paragraph is version 3, based on the ESP-12E

module. NodeMCU is an open-source firmware and development kit that facilitates

prototyping of IoT (Internet of Things) products using LUA scripting. It can also be

programmed using the Arduino IDE, providing flexibility for different programming

approaches.

44

Figure 3.3.2.2.2. NodeMCU pinout

3.3.2.3 Relay

Figure 3.3.2.3.1. Two Channel Relay

45

A 2-channel relay module is an electronic component that allows you to control two separate

circuits using a single module. It consists of two relays, each capable of switching high

voltage or high current loads on and off.

The relay module typically has input pins that can be connected to a microcontroller,

Arduino board, or any other digital output device. These input pins control the activation and

deactivation of the relays. When the input signal is received, the relay switches its contacts,

either connecting or disconnecting the load circuit.

Each channel of the relay module usually has three output pins: a normally open (NO) pin,

a normally closed (NC) pin, and a common (COM) pin. The NO and COM pins are

connected when the relay is activated, while the NC and COM pins are connected when the

relay is inactive.

Figure 3.3.2.3.2. Relay pinout

46

3.3.2.4 MD30C 30A DC Motor Driver

Figure 3.3.2.4.1. MD30C DC Motor Driver

Motor driver is an electronic device or circuit that controls the speed, direction, and operation

of an electric motor. Motor drivers are commonly used in robotics, automation systems, and

other applications where precise control of motor movement is required.

Features:

● Bi-directional control for 1 brushed DC motor.

● Motor Voltage: 5V - 25V30V.

● Maximum Current: 80A peak (1 second), 30A continuously.

● Reverse polarity protection.

● 3.3V and 5V logic level input.

● Fully NMOS H-Bridge for better efficiency and no heatsink is required.

● Speed control PWM frequency up to 20KHz (Actual output frequency is same as

input frequency when external PWM is selected).

47

● Onboard PWM generator with switches and potentiometer for standalone operation.

● Support both locked-antiphase and sign-magnitude for external PWM operation.

Table 3.3.2.4-1. Motor driver MD30C

3.4 Milestone 2: Software development

Within this part, milestone 2 is structured by making reference to the second aim within the

methodology, which begins with the development of a fundamental program that is

compatible with the circuit that was established in the previous milestone. Following the

conclusion of the fundamental test, a comprehensive software program together with the

circuit configuration is built, and the flowchart for the second milestone of the project is

shown below.

48

3.4.1 Integrated Development Environment (IDE)

Integrated Development Environment is referred to as IDE. It is a piece of software that

offers many capabilities and tools to help with software development. To speed up the

development process, an IDE often comes with a source code editor, a compiler or

interpreter, debugging tools, and other utilities.

3.4.1.1 Arduino CC

The software is a set of instructions that informs the hardware of what to do and how to do

it. The Arduino IDE (Integrated Development Environment) is divided into three main parts:

Figure 3.4.1.1.1. Arduino.cc Interface

49

3.4.2 Program development

3.4.2.1 AT-09 Bluetooth Module

The At-09 bluetooth module is configured to the desire setting and preferences. In order to

change the setting of the Bluetooth module, the Bluetooth Module needs to be connected to

Arduino board in order to enter the AT mode.

Figure 3.4.2.1.1 Sample of AT command

The VCC of the Bluetooth Module is connected to 5V of the Arduino. Ground pin of the

Bluetooth module to the ground on the Arduino board. It is important to connect the RX and

TX pin of the Bluetooth module vise versa with the Arduino RX and TX pin.

50

Figure 3.4.2.1.2 Arduino Connection With Hc-05

Next the code is the uploaded to the Arduino board.

Figure 3.4.2.1.3 Serial Monitor Output

51

The command that need to be executed in the serial monitor is:

• AT

• AT+NAME

• AT+BAUD

This is use to get the Bluetooth module information. “AT” is used to check whether the

Bluetooth module is in good condition. As shown above the serial monitor show “ OK”.

“AT+NAME” is use to get the Bluetooth module name and the “AT+BAUD” is use to get

the baud rate of the Bluetooth module.

• AT+NAMEWHEELCHAIR

In this case the only changes done is changing the Bluetooth module name .The default name

is “BT-05” , after entering the “AT+NAMEWHEELCHAIR” ,the Bluetooth module name

is now “WHEELCHAIR”. The baud rate use is “9600”.

52

3.4.2.2 HC-05 Bluetooth module Master and slave

This setting is done to the HC-05 Bluetooth Module to allow the communication between

the two nodeMCU board.

For the slave configuration the AT command used is:

• AT+ROLE=0(To set it as slave)

• AT+UART=38400,0,0 (To fix the baud rate at 38400)

• AT+ADDR(To get the address of this HC-05, the address will be used during master

configuration.)

To set the Bluetooth module to Master mode, the AT command used is :

• AT+ROLE=1(To set it as master)

• AT+UART=38400,0,0 (To fix the baud rate at 38400)

• AT+BIND=xxxx,xx,xxxxx(Input the address of the slave Bluetooth module)

53

3.4.2.3 Arduino coding for controlling motor

The pin of the PWM and Direction of the motor driver is declare.

Figure 3.4.2.3.1. Sample Of Arduino Code

The pin is the need to setup either as ouput pin or input pin.

Figure 3.4.2.3.2 Arduino Code For Setup

The “moveBasedOnCommand” is use to executed the Char receive from the bluetooth

module. The Table 3.4.2.3 1 Expected Output below show the coressponding char that it

will receive .

Table 3.4.2.3-1 Expected Output

CHARACTHER RECEIVE OUTPUT

F moveForward

B moveBackward

R turnRight

L turnLeft

Y(voice char) MoveForward

H(voice char) moveBackward

U(voice char) turnRight

T(voice char) turnLeft

S Stop

54

Figure 3.4.2.3.3 Arduino code For Character Received

The PWM of is determine by the slider position on the mobile apps.

Figure 3.4.2.3.4 Slider On Mobile Apps

55

Figure 3.4.2.3.5 Mit App Code Block For Slider

The max value set on the slider properties is set at 150 and the min value is 20.When the

“OK” button is click the value of the slider is send to the Arduino via Bluetooth .For example,

the value send is “P90”.

Figure 3.4.2.3.6 Arduino Code For PWM Value Received

56

The value that is received from the mobile apps it then convert to real value of the PWM.

For example the value received is “P90”. The conditional statement checks if a variable ‘t’

is equal to the character ‘P’. The ‘parseInt()’ function to read the integer value . The

‘parseInt()’ used to read and parse an integer from a stream of characters. For example , the

received stream characters is ‘P90’, the function basically to extract an integer from the

stream and the integer value ‘90’ is assign to the ‘receivedPWM’.

3.4.2.4 NodeMCU with master HC-05

Figure 3.4.2.4.1 NodeMCU Wiring Diagram

The NodeMCU that is connected with the master HC-05 is used to communicate with

another NodeMCU that are connected with the slave HC-05. The NodeMCU that are

connected with the slave HC-05 is used to turn on and off electrical appliance.

57

Figure 3.4.2.4.2 NodeMCU Code For Declaring Pin

The pin 4 and 5 is declare as ‘inputPin1’ and ‘inputPin2’ .This pin is used to detect ‘HIGH’

or ‘LOW’ from the Arduino pin.

Figure 3.4.2.4.3 NoceMCU Code For Controlling Power Outlet

This code block is checking the state of ‘inputValue1’, If inputValue1 is ‘HIGH’ it sends

the character 'H' over the Bluetooth serial connection using ‘BTSerial.write() ‘ to the

nodeMCU that is connected with the slave HC-05. If inputValue1 is ‘LOW’ it sends the

58

character 'L' over the Bluetooth serial connection using ‘BTSerial.write() ‘ to the nodeMCU

that is connected with the slave HC-05.

Table 3.4.2.4-1 Arduino Pin 4 State and Character Send

Pin 4 State Character Send

HIGH H

LOW L

Table 3.4.2.4-2 Arduino Pin 5 State and Character Send

Pin 5 State Character Send

HIGH A

LOW B

59

3.4.2.5 NodeMCU with Slave HC-05

Figure 3.4.2.5.1 NodeMCU With HC-05 Slave Wiring Diagram

The second NodeMCU, connected to a slave HC-05 Bluetooth module, acts as a remote

control for turning electrical appliances on and off. It communicates wirelessly with another

NodeMCU connected to a master HC-05 Bluetooth module. When the second NodeMCU

receives signals from the master, it interprets them as commands to control the appliances.

60

Figure 3.4.2.5.2 NodeMCU Code For Received Character

The ‘handleBluetoothCommands’ function in this Arduino code is designed to process

incoming commands received over a Bluetooth connection. It first checks if there are any

available characters in the Bluetooth serial buffer using ‘BTSerial.available()’. If there is

data, it reads a character from the buffer using ‘BTSerial.read()’ and stores it in the variable

received. The function then proceeds to interpret the received character to control the state

of connected devices.

Table 3.4.2.5-1 NodeMCU With Slave HC-05 Pin 4 State

Character Received Pin 4 State

H HIGH

L LOW

61

Table 3.4.2.5-2 NodeMCU With Slave HC-05 Pin 5 State

Character Received Pin 5 State

A HIGH

B LOW

If the received character is 'H', it turns on an LED connected to the ledPin, sets a

corresponding Boolean variable lED to true, and prints a message indicating that the LED is

turning ON. Conversely, if the received character is 'L', it turns off the LED, sets lED to

false, and prints a message indicating that the LED is turning OFF.

Similarly, if the received character is 'A', it turns on a fan connected to the fanPin, sets a

Boolean variable fAN to true, and prints a message indicating that the fan is turning ON. If

the character is 'B', it turns off the fan, sets fAN to false, and prints a message indicating that

the fan is turning OFF.

62

3.5 Milestone 3 :Prototype development

The third milestone is established so that the after the hardware and software testing the

component can be tested on a mini robot to allow further improvement to the system. By

doing this method it can save time and resource before assembling the component to a

wheelchair. Lastly is the design of the housing prototype for all the component. Repeated

work on this particular aspect of the project is required in order to guarantee the highest

quality end result possible for the design.

3.6 Milestone 4 : Final Product Development

Figure 3.6.1 Full Circuit Diagram For wheechair Control

63

Figure 3.6.2 Layout Of The Control Box

Figure 3.6.3 Wiring Diagram For Power Outlet Control

64

RESULTS AND DISCUSSIONS

4.1 Introduction

In this chapter, the outcomes and analysis of the Development of Wireless Control for

Retrofit Wheelchair System Using Arduino-based microcontroller with IoT are presented,

and the chapter also examines all of the data that is necessary to establish the effectiveness

of the project. The analysis are divided into two part , software analysis and hardware

analysis.

4.2 Software analysis

This subchapter contains the related graphical user interface ,Iot implementation , related

coding for Arduino and nodeMCU

4.2.1 Graphical user interface (GUI)

A graphical user interface (GUI) is type of user interface that allow users to interact with a

computer or other electronic device using graphical elements, such as icons ,button, or image

rather than the text-based commands.

65

Figure 4.2.1.1 Main Layout When Apps Is Open

The following is the layout of the system's mobile app: When users activate the app, they

are met with a simple and straightforward home screen. The primary navigation is clearly

displayed, making it simple for users to reach crucial functionality. The layout has a user-

friendly interface with a simple design to improve clarity and simplicity of usage.

66

Table 4.2.1-1 Mobile Apps Icon Description

Icon Description

CONNECT To connect to the selected Bluetooth

device

SCAN To scan available Bluetooth Device

DISCONNECT To disconnect with the current Bluetooth

device

D-PAD To show the D-pad layout

VOICE To show the voice layout

OTHER To show the layout for controlling power

outlet

SLIDER To set the desire speed or pwm value

Figure 4.2.1.2 Mit App Developer Layout

67

4.2.2 D-pad Layout

D-pad or directional pad design is used for the layout design. The circular directional button

represent the direction of the wheelchair movement.

Figure 4.2.2.1 D-pad Control Layout

68

Figure 4.2.2.2 Sample Of Mit App Code Block For D-pad Button

Figure 4.2.2.3 Arduino Code For Received Character

69

4.2.3 Voice layout

The voice layout uses speech to text recognition to determine the corresponding commands

or inputs. The spoken words are transcribed into text . As user speak , the system process the

audio input, converts it into written text , and then analyzes the text to identify the intended

command.

Figure 4.2.3.1 Voice Layout On Mobile App

70

Figure 4.2.3.2 Sample Of Mit App Code Block For Voice Command

71

Table 4.2.3-1 Expected Result From The Mobile Apps Control

Voice command Character send to Arduino

Go forward Y

Go backward H

Turn left T

Turn right U

Light on Z

Light off X

Fan on J

Fan off K

Stop S

4.2.3.1 Voice Command Analysis

Here presents the results of the voice command analysis experiment, aimed at evaluating the

accuracy of voice commands. Four individuals were included in the study, each instructed

to verbally express commands such as ‘go forward’ , ‘stop’ , ‘light on’ and ‘light off’. Each

command were taken for five time. The experiment was designed to evaluate the system’s

proficiency in recognizing and executing spoken instruction from different individuals.

Participant Voice Command Correct input Wrong input

A Go forward 5 0

B 5 0

72

C 4 1

D 5 0

A Stop 5 0

B 3 2

C 5 0

D 4 1

A Light On 5 0

B 4 1

C 3 2

D 4 1

A Light Off 5 0

B 3 2

C 5 0

D 4 1

Figure 4.2.3.1.1 Graph For Voice Command Accuracy

0
1
2
3
4
5
6

Voice Command Accuracy

CORRECT WRONG

73

4.2.4 Other icon layout

This show the layout for controlling the electrical outlet.

Figure 4.2.4.1 Layout For Power Outlet Control

74

Figure 4.2.4.2 Sample Code Block Mit App For Power Outlet Control

Table 4.2.4-1 Expected Output For Light Control

Icon for light Character send to arduino

Z

X

75

Table 4.2.4-2 Expected Output For Fan Control

Icon for fan Character send to arduino

J

K

4.2.5 Slider icon

The slider allow the user to set the desire speed or the PWM value.

Figure 4.2.5.1 Slider Icon On Mobile App

76

Figure 4.2.5.2 Sample Code Block Mit App For Slider

Figure 4.2.5.3 Sample Of Arduino Code For Received PWM Value

77

4.2.6 Arduino Cloud Dasboard

The dashboard of the Arduino cloud are used as the IOT functionality .

Figure 4.2.6.1 Arduino Cloud Dashboard

Table 4.2.6-1 Visual State Of The Power Outlet

On state Off state

78

4.3 Hardware analysis

In this part , the analysis includes are the motor movement, truth table of the motor driver ,

battery voltage and ultrasonic analysis.

4.3.1 Movement of the motor

Based on the d-pad layout and the button that users press determine the direction of the

wheelchair moving. The rotation of the motor will determine the direction whether moving

forward , backward ,left or right. In order for the wheelchair to move forward, the motor

orientation need to be vise versa. For example , the left motor need to turn anticlockwise and

the right motor need to turn clockwise to achieve the forward movement.

79

Table 4.3.1-1 Button Command For The D-pad

BUTTON

COMMAND

LEFT MOTOR

ROTATION

RIGHT MOTOR

ROTATION

CONDITION OF

WHEELCHAIR

ANTICLOCKWISE CLOCKWISE MOVE FORWARD

CLOCKWISE ANTICLOCKWISE MOVE

BACKWARD

ANTICLOCKWISE ANTICLOCWISE TURN RIGHT

CLOCKWISE CLOCKWISE TURN LEFT

Figure 4.3.1.1 Direction Of Motor For Different Current Flow

80

BUTTON

COMMAND

LEFT WHEEL RIGHT WHEEL CONDITION

OF

WHEELCHAIR

 PWM PIN DIR PIN PWM PIN DIR PIN

1 0 1 0 MOVE

FORWARD

1 1 1 0 MOVE

BACKWARD

1 1 1 1 TURN RIGHT

1 0 1 1 TURN LEFT

Figure 4.3.1.2 Truth Table For The Motor Driver

81

4.3.2 Battery Voltage Improvement

For the battery voltage used for this system it uses a 24 volt battery where as the previous

version uses a 12 volt battery . The significant changes for this setup is that it require a lower

Pulse Width Modulation (PWM) to control the wheelchair’s movement. The shift to a 24-

volt battery means that a lower Pulse Width Modulation (PWM) signal is sufficient to

achieve the desired motor control.

The lower PWM requirement is likely a result of the increased voltage, which delivers more

power to the motors. As a higher voltage typically leads to greater motor torque and speed,

a reduced PWM signal can effectively manage the motor control, providing a smoother and

more controlled movement for the wheelchair.

Figure 4.3.2.1 Previous 12V Battery

82

Figure 4.3.2.2 New 24 Volt Battery

The experiment that has been conducted is by using the 12 volt battery and the 24 volt battery

to drive the motor of the wheelchair. For the 12 volt battery it require a 50 PWM value just

to move the wheelchair on its own. Where as the 24 volt battery only require 30 PWM value

just to move the wheelchair on its own. Individuals with varying weights to test the

wheelchair system performance has been conducted.In the context of the wheelchair system

using a 24-volt battery setup, the relationship between user weight and the associated Pulse

Width Modulation (PWM) values for movement becomes apparent. Here's a breakdown:

• Person A, weighing 60 Kg, finds that a PWM value of 50 is sufficient to set

the wheelchair in motion.

• For Person B, with a weight of 80 Kg, a slightly higher PWM value of 70 is

needed to initiate wheelchair movement.

• Person C, weighing 90 Kg, requires the highest PWM value of 90 for the 24-

volt setup to effectively move the wheelchair.

83

This data suggests a proportional relationship between user weight and the necessary PWM

values, showcasing the system's adaptability to different loads. The incremental increase in

PWM values aligns with the expected need for higher power output to accommodate heavier

individuals and ensure optimal wheelchair performance.

The description of the movement refers to the acceptable operational conditions under which

the wheelchair moves smoothly without encountering any issues. This implies a state where

the wheelchair responds to the control inputs, demonstrating a reliable and predictable

behavior without unexpected deviations or disturbances.

4.3.3 Improved Ultrasonic Sensor System Setup

The previous system relied on a single ultrasonic sensor for the obstacle detection. The

current configuration , offers an improvement by combining four ultrasonic sensors. The

positioning of the ultrasonic sensor provides wider coverage. The increased number of the

ultrasonic sensors from one to four represents an upgraded obstacle detection system .

84

Figure 4.3.3.1 Back Sensor On The Wheelchair

Figure 4.3.3.2 Front Sensor On The Wheelchair

85

4.4 Discussion

This project focuses on developing a wheelchair control system using an Android phone,

with MIT App Inventor serving as the major communication platform between the phone

and the wheelchair. A slider function also allows users to change the motor speed or the

Pulse Width Modulation (PWM) value. The D-pad interface allows for four-way mobility,

while the voice control capability allows users to command the wheelchair orally.

Previously, the HC-05 Bluetooth module served as the primary link between the mobile app

and the Arduino board, utilizing traditional Bluetooth technology. The AT-09 Bluetooth

module, which runs on Bluetooth Low Energy (BLE), allows for decreased voltage

utilization and a longer range in the improved system.

The wheelchair system has been improved in several ways, including the inclusion of four

more ultrasonic sensors over the previous iteration, which used only one. This enhancement

improves the obstacle detection system, resulting in a more complete knowledge of the

wheelchair's surroundings. These developments add up to a more adaptable, efficient, and

user-friendly wheelchair control system.

86

Figure 4.4.1 Completed System Wheelchair Backview

Figure 4.4.2 Completed System WheelChair Frontview

In addition to the mentioned enhancements, this project introduces further improvements,

expanding the functionality and monitoring capabilities of the wheelchair control system.

Users now have the ability to control a power outlet remotely, toggling it ON or OFF directly

from the Android phone interface, or through voice commands. The inclusion of remote

monitoring allows users to manage the power outlet through cloud services. Leveraging the

87

Arduino Cloud, users can not only monitor the current state of the power outlet but also

remotely toggle it ON or OFF.

Figure 4.4.3 Completed Power Outlet Control Layout

Figure 4.4.4 Both Power are turn On

Furthermore, the Arduino Cloud provides a centralized dashboard for users to observe the

wheelchair's voltage status. This monitoring capability extends to both the power outlet and

88

wheelchair through the cloud interface. The system is designed with two separate NodeMCU

modules, one integrated into the wheelchair for sending data to the cloud, and the other

housed in the power outlet control box. A notable upgrade is the shift in the battery voltage

used to power the wheelchair's motors. The system now utilizes a 24-volt battery, doubling

the power compared to the previous 12-volt configuration. This upgrade enhances the overall

performance of the wheelchair, providing more power for efficient and effective movement.

In conclusion, the objectives of this project have been successfully realized through effective

software and hardware implementations. The wheelchair exhibits seamless movement in

response to user commands solely through the use of an Android phone. The speed control

functionality, achieved through Pulse Width Modulation (PWM) signals, provides users with

precise control over the wheelchair's velocity. Moreover, the project introduces wireless

control for electrical appliances. For instance, a lamp can be effortlessly switched ON by a

simple click of the switch button on the Android phone interface. Pressing the OFF button

allow the power outlet to be turned off. This wireless control feature enhances user

convenience, showcasing the project's effectiveness in achieving its intended goals

89

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In conclusion, the study's objectives were met with success. The created Android system

enables wheelchair control via smartphone via Bluetooth connectivity provided by MIT App

Inventor software. The user-friendly control interfaces, such as the D-pad and Voice

Command, allow users to effortlessly operate the wheelchair in various directions. The use

of Pulse Width Modulation (PWM) signal control allows the wheelchair's speed to be

adjusted.Furthermore, the Android operating system expands its ability to remotely manage

domestic items like as lighting and fans. This control is made possible via a coupled

Bluetooth device, which increases user convenience. The Android interface also provides

real-time information on the power condition of electrical equipment. These successes are

in line with the original goals, proving the effective creation of an integrated system that

addresses mobility issues while also providing increased control and monitoring of domestic

appliances. To deliver real-time updates on the power state of electrical appliances, the

Internet of Things (IoT) framework has been seamlessly integrated into the system. The

chosen platform for this integration is the Arduino Cloud. This incorporation allows for

continuous monitoring and reporting of the power states of electrical appliances in real-time.

This project's concepts and innovations have the potential to inspire future research

endeavours and give significant insights for young engineers building solutions that fulfil

commercial requirements and public interests.

90

5.2 Project Potential

The potential of this project it can enhance the daily live of the wheelchair users and the

elderly. The wireless control system can be integrated into existing wheelchairs and enhance

its potential for other type of system configuration. This project can be commercialize at

healthcare institute .The target audience are those that are with lower limb disability and

elderly people.

5.3 Future Works

Several areas for potential enhancements exist to improve accuracy, functionality, and

accessibility for the project. Some recommendations for future research and development

include:

 Use a better braking system to stop the wheelchair

 Add current sensor and voltage sensor to the wheelchair system

 Use more advance algorithm for the obstacle detection system

 Use different type of sensor for the obstacle detection system

 Use better mobile apps developer platform

 Improve the mechanical drive system of the wheelchair

91

REFERENCES

[1] A. Pajkanović [1]A. Pajkanović and B. Dokić, “Wheelchair Control by Head Motion |

SJEE,” Wheelchair Control by Head Motion | SJEE, Feb. 15, 2013.

[2] Nowshin, N., Rashid, M. M., Akhtar, T., & Akhtar, N. (2018). Infrared Sensor Controlled

Wheelchair for Physically Disabled People.

[3] Cerejo, R., Correia., V., & Pereira, N. (2015). EYE CONTROLLED WHEELCHAIR

BASED ON ARDUINO CIRCUIT.

[4] Masato Nishimori, Takeshi Saitoh, and Ryosuke Konishi, “Voice controlled intelligent

wheelchair,” SICE Annual Conference 2007, Sep. 2007, Published.

[5] Sirisha, P & Bethapudi, Prakash & Meghana, Ratna & Yamini, C & Lakshmi, E. (2020).

WIRELESS SMART WHEELCHAIR.

[6] M. Islam and S. Jin, “An Overview Research on Wireless Communication Network,”

Advances in Wireless Communications and Networks, vol. 5, no. 1, p. 19, 2019.

[7] Ms. Indumathy. T, 2015, An Overview of Bluetooth-Wireless Technology,

INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH & TECHNOLOGY

(IJERT) RACMS – 2015 (Volume 3 – Issue 33)

[8] History of the Wheelchair. (2019, January 24). HISTORY.PHYSIO.

[9] Woods, B., & Watson, N. (2003). A Short History of Powered Wheelchairs. Assistive

Technology, 15(2), 164–180.

[10] Amin, M. S., Rizvi, S. T. H., Malik, S., Faheem, Z. B., & Liaqat, A. (2021). Smart

Wheelchair- An Implementation of Voice and Android Controlled System. 2021

92

International Conference on Digital Futures and Transformative Technologies

(ICoDT2).

[11] Borges, B., Chandra, A., Kalantri, R., Gupta, S., Dsilva, G., & Rajguru, S. (2018).

Android Controlled Wheelchair. 2018 First International Conference on Secure Cyber

Computing and Communication (ICSCCC).

[12] Shawon, S. I., Bhuiyan, M. M. H., & Plateau, T. P. (2018). An Innovative Construction

of Wheelchair for Handicapped Persons. International Journal of Science and Qualitative

Analysis, 4(1), 13.

[13] N. Aktar, I. Jaharr and B. Lala, "Voice Recognition based intelligent Wheelchair and

GPS Tracking System," 2019 International Conference on Electrical, Computer and

Communication Engineering (ECCE), Cox'sBazar, Bangladesh, 2019.

[14] Bhavsar, M., Roy, K., Kelly, J. et al. Anomaly-based intrusion detection system for IoT

application. Discov Internet Things 3, 5 (2023)

[15] Viran, Shane. (2022). VOICE CONTROLLED LIGHTING SYSTEM.

[16] Abdullahi Badamasi, Yusuf. (2014). The working principle of an Arduino. 1-4.

[17] Bento, Antonio. (2018). IoT: NodeMCU 12e X Arduino Uno, Results of an

experimental and comparative survey. 6. 45-56.

[18] Al Dahoud, Ali & Fezari, Mohamed. (2018). NodeMCU V3 For Fast IoT Application

Development.

[19] Doshi, Aayush & Rai, Yashraj & Vakharia, Deep. (2021). Iot based Home Automation.

International Journal for Research in Applied Science and Engineering Technology. 9.

[20] Ch, Rajendra Prasad. (2019). Internet of Things Based Home Monitoring and Device

Control Using Esp32. International Journal of Recent Technology and Engineering. 8.

58-62.

93

[21] Kumar, P.K., Rao, G.J., Suguna, A.B., & Srihari, P.V. (2019). Voice Controlled Home

Automation. International Journal of Scientific Research in Science, Engineering and

Technology.

[22] Kumar, S., & Solanki, S.S. (2016). Voice and touch control home automation. 2016 3rd

International Conference on Recent Advances in Information Technology (RAIT), 495-498.

[23] Hardik, S. (2014). Interfacing of AT Command based HC-05 Serial Bluetooth Module.

[24] Fenriana, I., Dwi Putra, D.S., Dermawan, B., & Kurnia, Y. (2022). Smart Home

Prototype with HC–05 Bluetooth and RFID Modules, Based on Microcontroller. bit-Tech.

[25] A. Maier, A. Sharp and Y. Vagapov, "Comparative analysis and practical

implementation of the ESP32 microcontroller module for the internet of things," 2017

Internet Technologies and Applications (ITA), Wrexham, UK, 2017, pp. 143-148, doi:

10.1109/ITECHA.2017.8101926.

94

APPENDICES

appendix 1.Gantt Chart PSM

95

#include <SoftwareSerial.h>

#include <NewPing.h>

SoftwareSerial bluetooth(10, 11); // RX, TX

char t = 'S'; // Default state is stop

unsigned long commandStartTime = 0; // Variable to store the start time of a voice-

activated command

const unsigned long commandDuration = 8000; // Duration for the voice-activated

command in milliseconds (8 seconds)

bool obstacleDetected = false; // Flag to indicate if an obstacle is detected

int pwmA = 9;

int dirA = 8;

int pwmB = 3;

int dirB = 4;

int bluetoothStatePin = 13;

int receivedPWMValue = 0; // Variable to store the received PWM value

// Define Front Ultrasonic Sensors

NewPing frontSensorA(12, 2); // trigger, echo for Front Sensor A

NewPing frontSensorB(7, 5); // trigger, echo for Front Sensor B

// Define Back Ultrasonic Sensors

NewPing backSensorA(14, 15); // A0, A1 as digital pins for Back Sensor A

NewPing backSensorB(16, 17); // A2, A3 as digital pins for Back Sensor B

const int controlPin_1 = 6; // Pin for additional control light

const int controlPin_2 = 18; // Pin for additional control fan A4 as digital pin

char defaultControlState_1 = 'X'; // Default state for the additional control pin

char defaultControlState_2 = 'K'; // Default state for the additional control pin

void setup() {

 pinMode(pwmA, OUTPUT);

 pinMode(pwmB, OUTPUT);

 pinMode(dirA, OUTPUT);

 pinMode(dirB, OUTPUT);

 pinMode(bluetoothStatePin, INPUT);

 pinMode(controlPin_1, OUTPUT);

 pinMode(controlPin_2, OUTPUT);

 Serial.begin(9600);

 bluetooth.begin(9600);

}

void loop() {

 unsigned int frontDistanceA = frontSensorA.ping_cm();

96

 unsigned int frontDistanceB = frontSensorB.ping_cm();

 unsigned int backDistanceA = backSensorA.ping_cm();

 unsigned int backDistanceB = backSensorB.ping_cm();

 if ((frontDistanceA >= 15 && frontDistanceA <= 25) ||

 (frontDistanceB >= 15 && frontDistanceB <= 25) ||

 (backDistanceA >= 15 && backDistanceA <= 25) ||

 (backDistanceB >= 15 && backDistanceB <= 25)) {

 // Obstacle detected, stop the motors and set the obstacle flag

 stopMotors();

 obstacleDetected = true;

 // Clear the Bluetooth buffer to discard any commands received during obstacle

detection

 while (bluetooth.available()) {

 bluetooth.read();

 }

 } else {

 obstacleDetected = false;

 if (digitalRead(bluetoothStatePin) == LOW) {

 if (t != 'S') {

 stopMotors();

 t = 'S';

 }

 Serial.println("Bluetooth connection lost.");

 delay(500); // Introduce a delay to avoid rapid loop execution

 } else {

 if (!obstacleDetected && bluetooth.available()) {

 t = bluetooth.read();

 Serial.println(t);

 commandStartTime = millis();

 if (t == 'P') {

 receivedPWMValue = bluetooth.parseInt();

 Serial.print("Received PWM value: ");

 Serial.println(receivedPWMValue);

 } else {

 processCommands();

 }

 }

 }

 if (t != 'S' && millis() - commandStartTime >= commandDuration) {

 stopMotors();

 t = 'S';

 }

 if (!obstacleDetected && t != 'P') {

 processCommands();

97

 }

 }

 delay(50); // Introduce a small delay in the loop

}

void processCommands() {

 if (t == 'F' || t == 'B' || t == 'R' || t == 'L' || t == 'Y' || t == 'H' || t == 'U' || t == 'T' || t == 'S') {

 moveBasedOnCommand();

 } else if (t == 'Z') {

 setControlState_1('M');

 } else if (t == 'X') {

 setControlState_1('N');

 } else if (t == 'J'){

 setControlState_2('C');

 } else if (t == 'K'){

 setControlState_2('V');

 }

}

void moveBasedOnCommand() {

 if (t == 'F') {

 moveForward();

 } else if (t == 'B') {

 moveBackward();

 } else if (t == 'R') {

 turnRight();

 } else if (t == 'L') {

 turnLeft();

 } else if (t == 'Y') {

 moveForward();

 } else if (t == 'H') {

 moveBackward();

 } else if (t == 'U') {

 turnRight();

 } else if (t == 'T') {

 turnLeft();

 } else if (t == 'S') {

 stopMotors();

 }

}

void stopMotors() {

 analogWrite(pwmA, 0);

 analogWrite(pwmB, 0);

}

void moveForward() {

 analogWrite(pwmA, receivedPWMValue);

 analogWrite(pwmB, receivedPWMValue);

98

 digitalWrite(dirA, LOW);

 digitalWrite(dirB, LOW);

}

void moveBackward() {

 analogWrite(pwmA, receivedPWMValue);

 analogWrite(pwmB, receivedPWMValue);

 digitalWrite(dirA, HIGH);

 digitalWrite(dirB, HIGH);

}

void turnRight() {

 analogWrite(pwmA, receivedPWMValue);

 analogWrite(pwmB, receivedPWMValue);

 digitalWrite(dirA, HIGH);

 digitalWrite(dirB, LOW);

}

void turnLeft() {

 analogWrite(pwmA, receivedPWMValue);

 analogWrite(pwmB, receivedPWMValue);

 digitalWrite(dirA, LOW);

 digitalWrite(dirB, HIGH);

}

void setControlState_1(char state) {

 if (state == 'M') {

 digitalWrite(controlPin_1, HIGH);

 } else {

 digitalWrite(controlPin_1, LOW);

 }

}

void setControlState_2(char state) {

 if (state == 'C') {

 digitalWrite(controlPin_2, HIGH);

 } else {

 digitalWrite(controlPin_2, LOW);

 }

}

99

#include <SoftwareSerial.h>

#include "thingProperties.h"

SoftwareSerial BTSerial(14, 12); // Connect GPIO14 (D5) to TX of HC-05, GPIO12 (D6)

to RX of HC-05

int inputPin1 = 5;

int inputPin2 = 4;

int lastValue1 = LOW; // Variable to store the last read value of inputPin1

int lastValue2 = LOW; // Variable to store the last read value of inputPin2

void setup() {

 pinMode(inputPin1, INPUT);

 pinMode(inputPin2, INPUT);

 Serial.begin(9600);

 BTSerial.begin(38400);

 // Defined in thingProperties.h

 initProperties();

 // Connect to Arduino IoT Cloud

 ArduinoCloud.begin(ArduinoIoTPreferredConnection);

 // This delay gives the chance to wait for a Serial Monitor without blocking if none is

found

 delay(1500);

 /*

 The following function allows you to obtain more information

 related to the state of network and IoT Cloud connection and errors

 the higher number the more granular information you’ll get.

 The default is 0 (only errors).

 Maximum is 4

 */

 setDebugMessageLevel(2);

 ArduinoCloud.printDebugInfo();

}

void loop() {

 // Read pin values

 int inputValue1 = digitalRead(inputPin1);

 int inputValue2 = digitalRead(inputPin2);

 Serial.print("Input Value 1: ");

 Serial.println(inputValue1);

 Serial.print("Input Value 2: ");

 Serial.println(inputValue2);

 // Check and update IoT Cloud variables only when there is a change in pin values

100

 if (inputValue1 != lastValue1) {

 lastValue1 = inputValue1;

 lED = inputValue1;

 ArduinoCloud.update();

 if (inputValue1 == HIGH) {

 BTSerial.write('H'); // Send 'H' for High for the first pin

 Serial.println("Sent: H for Pin 1");

 } else {

 BTSerial.write('L'); // Send 'L' for Low for the first pin

 Serial.println("Sent: L for Pin 1");

 }

 }

 if (inputValue2 != lastValue2) {

 lastValue2 = inputValue2;

 fAN = inputValue2;

 ArduinoCloud.update();

 if (inputValue2 == HIGH) {

 BTSerial.write('A'); // Send 'A' for High for the second pin

 Serial.println("Sent: A for Pin 2");

 } else {

 BTSerial.write('B'); // Send 'B' for Low for the second pin

 Serial.println("Sent: B for Pin 2");

 }

 }

 delay(500); // Adjust delay as needed

}

/*

 Since LED is READ_WRITE variable, onLEDChange() is

 executed every time a new value is received from IoT Cloud.

*/

void onLEDChange() {

 // Set the last input pin value based on the received cloud value

 lastValue1 = lED;

}

/*

 Since FAN is READ_WRITE variable, onFANChange() is

 executed every time a new value is received from IoT Cloud.

*/

void onFANChange() {

 // Set the last input pin value based on the received cloud value

 lastValue2 = fAN;

}

101

 /*

 Sketch generated by the Arduino IoT Cloud Thing "Untitled"

 https://create.arduino.cc/cloud/things/c0dd2df2-421a-4e86-8113-23a181e1ad60

 Arduino IoT Cloud Variables description

 The following variables are automatically generated and updated when changes are made

to the Thing

 bool fAN;

 bool lED;

 Variables which are marked as READ/WRITE in the Cloud Thing will also have

functions

 which are called when their values are changed from the Dashboard.

 These functions are generated with the Thing and added at the end of this sketch.

*/

#include "thingProperties.h"

#include <SoftwareSerial.h>

SoftwareSerial BTSerial(14, 12); // Connect GPIO14 (D5) to TX of HC-05, GPIO12 (D6)

to RX of HC-05

int ledPin = 5; // Pin for the LED

int fanPin = 4; // Pin for the fan

void setup() {

 pinMode(ledPin, OUTPUT);

 pinMode(fanPin, OUTPUT);

 // Initialize serial and wait for port to open:

 Serial.begin(9600);

 // This delay gives the chance to wait for a Serial Monitor without blocking if none is

found

 delay(1500);

 // Defined in thingProperties.h

 initProperties();

 // Connect to Arduino IoT Cloud

 ArduinoCloud.begin(ArduinoIoTPreferredConnection);

 /*

 The following function allows you to obtain more information

 related to the state of network and IoT Cloud connection and errors

 the higher number the more granular information you’ll get.

 The default is 0 (only errors).

 */

 setDebugMessageLevel(2);

102

 ArduinoCloud.printDebugInfo();

 BTSerial.begin(38400);

}

void loop() {

 ArduinoCloud.update();

 handleBluetoothCommands();

}

void handleBluetoothCommands() {

 // Check for incoming Bluetooth commands

 if (BTSerial.available()) {

 char received = BTSerial.read();

 Serial.print("Received: ");

 Serial.println(received);

 // Process Bluetooth commands and update IoT Cloud properties

 if (received == 'H') {

 digitalWrite(ledPin, HIGH);

 lED = true;

 Serial.println("Turning LED ON");

 } else if (received == 'L') {

 digitalWrite(ledPin, LOW);

 lED = false;

 Serial.println("Turning LED OFF");

 } else if (received == 'A') {

 digitalWrite(fanPin, HIGH);

 fAN = true;

 Serial.println("Turning FAN ON");

 } else if (received == 'B') {

 digitalWrite(fanPin, LOW);

 fAN = false;

 Serial.println("Turning FAN OFF");

 }

 // Synchronize IoT Cloud properties after processing Bluetooth comman

 }

}

/*

103

 Since LED is READ_WRITE variable, onLEDChange() is

 executed every time a new value is received from IoT Cloud.

*/

void onLEDChange() {

 // Act upon LED change

 digitalWrite(ledPin, lED ? HIGH : LOW);

}

void onFANChange() {

 // Act upon FAN change

 digitalWrite(fanPin, fAN ? HIGH : LOW);

}

104

