
Faculty of Electronics and Computer Technology and Engineering

DEVELOPMENT OF LOW-COST IMAGE CLASSIFICATION
SYSTEM USING ESP32-CAM

MUHAMMADADNI BIN KAMARUDDIN

Bachelor of Electronics Engineering Technology (Industrial Electronics) with Honours

2024

DEVELOPMENTOFLOW-COST IMAGECLASSIFICATION SYSTEMUSING
ESP32-CAM

MUHAMMADADNI BIN KAMARUDDIN

A project report submitted
in partial fulfilment of the requirements for the degree of

Bachelor of Electronics Engineering Technology (Industrial Electronics) with Honours

Faculty of Electronics and Computer Technology and Engineering

UNIVERSITI TEKNIKALMALAYSIAMELAKA

2024

UNIVERSITI TEKNIKALMALAYSIAMELAKA
FAKULTI TEKNOLOGI DANKEJURUTERAANELEKTRONIK DANKOMPUTER

BORANGPENGESAHANSTATUS LAPORAN
PROJEK SARJANAMUDA II

Tajuk Projek : Development of Low-Cost Image Classification System using ESP32-
CAM

Sesi Pengajian : 2024

SayaMUHAMMAD ADNI BIN KAMARUDDINmengaku membenarkan laporan Projek
Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Laporan adalah hak milik Universiti Teknikal Malaysia Melaka.
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara

institusi pengajian tinggi.
4. Sila tandakan (/)

SULIT* (Mengandungi maklumat yang berdarjah keselamatan atau
kepentingan Malaysia sebagaimana yang termaktub dalam
AKTA RAHSIA RASMI 1972)

TERHAD* (Mengandungi maklumat terhad yang telah ditentukan oleh
organisasi/badan di mana penyelidikan dijalankan)

TIDAK
TERHAD

Disahkan oleh:

M.adni
......................................
(TANDATANGANPENULIS) (COPDAN TANDATANGAN PENYELIA)
Alamat Tetap:
Lot 2606, Kampung Hutan Nangka, 22000, Besut,
Terengganu

Tarikh: 14th February, 2024 Tarikh: 14th February, 2024

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan
dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

14 February, 2024

DECLARATION

I declare that this project report entitled “Development of Low-Cost Image Classification

System using ESP32-CAM” is the result of my own research except as cited in the references.

The project report has not been accepted for any degree and is not concurrently submitted in

candidature of any other degree.

M.adni
Signature : .

Student Name :

Date :

.M. .u.h.a.m.m. .a.d.A. .d.n.i.B. i.n.K. .a.m. a. r.u.d.d.i.n.
th

. .

Date 14 February, 2024:

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project re-

port is adequate in terms of scope and quality for the award of the degree of Bachelor of

Electronics Engineering Technology (Industrial Electronics) with Honours.

Signature : .

Supervisor Name :T.s.. .D.r...M. .o.h.d. S. .y.a.fi.q.B. .in. .M. .is.p.a.n.
th

. .

Signature : .

Co-Supervisor Name (if any) :N.O. .T.A. .P.P.L. I.C. A. .B.L. .E.

Date : .

DEDICATION

To my beloved father and mother.

i

ABSTRACT

Advances in Artificial Intelligent (AI) and the availability of large training datasets

have made image classification popular in various domains. The market for AI in enterprise

applications is growing rapidly, indicating the potential for further development in image

classification field. Nevertheless, the high cost in developing an image classification system

could hinders its widespread adoption and becomes more challenging to support Industrial

Revolution (IR) 4.0. Therefore, in this project, we proposed a low-cost image classifica-

tion system using ESP32-CAM which capable of performing real-time image classification

based on the trained model. The method involves training a deep learning model (i.e., micro

neural network) using a dataset of non-defective/defective integrated circuits (ICs) on Edge

Impulse platform. Subsequently, deploying the generated code of the successful trained

model on ESP32-CAM. The model is optimized to fit the limited resources (i.e., memory

and processing power) of the ESP32-CAM. By using the built-in camera in ESP32-CAM,

it can performs real-time image classification of non-defective/defective ICs. The proposed

system achieves 86.1% prediction accuracy by using 1571 image data set of defective and

non-defective ICs.

ii

ABSTRAK

Kemajuan dalam Artificial Intelligent (AI) dan tersedianya set data latihan yang besar

telah menjadikan klasifikasi imej popular dalam pelbagai bidang. Pasaran untuk AI dalam

aplikasi perusahaan berkembang pesat, menunjukkan potensi untuk pembangunan selanjut-

nya dalam bidang klasifikasi imej. Namun begitu, kos yang tinggi dalam membangunkan sis-

tem klasifikasi imej boleh menghalang penggunaannya yang meluas dan menjadi lebih men-

cabar untuk menyokong Revolusi Perindustrian (IR) 4.0. Oleh itu, dalam projek ini, kami

mencadangkan sistem klasifikasi imej kos rendah menggunakan ESP32-CAM yang mampu

melaksanakan pengelasan imej masa nyata berdasarkan model terlatih. Kaedah ini meli-

batkan latihan model pembelajaran mendalam (iaitu, rangkaian saraf mikro) menggunakan

set data litar bersepadu (IC) yang tidak rosak/rosak pada platform Edge Impulse. Selepas itu,

menggunakan kod model terlatih dijana yang berjaya pada ESP32-CAM. Model ini diopti-

mumkan agar sesuai dengan pengunaan sumber yang terhad (iaitu, memori dan kuasa pem-

prosesan) ESP32-CAM. Dengan menggunakan kamera terbina dalam dalam ESP32-CAM,

ia boleh melaksanakan pengelasan imej masa nyata bagi IC yang tidak rosak/rosak. Sistem

yang dicadangkan mencapai 86.1% ketepatan ramalan dengan menggunakan 1571 set data

imej bagi IC yang rosak dan tidak rosak.

iii

ACKNOWLEDGEMENT

I want to begin by extending my heartfelt gratitude to my supervisor, Ts. Dr. Mohd Syafiq

Bin Mispan, from the Faculty of Electrical and Electronic Engineering Technology at Uni-

versiti Teknikal Malaysia Melaka. His invaluable guidance, support, and encouragement

were instrumental in the successful completion of this thesis.

I attribute the successful completion of this thesis to the blessings and guidance of Allah.

I express gratitude to God for providing opportunities, overcoming challenges, and making

available the resources that facilitated the completion of this thesis. Finally, I extend recogni-

tion to everyone associated with this endeavor, including family members and friends, whose

significant roles provided motivation during challenging times when hope seemed scarce.

iv

TABLEOFCONTENTS

PAGE
DECLARATION

APPROVAL

DEDICATION

ABSTRACT i

ABSTRAK ii

ACKNOWLEDGMENTS iii

TABLE OF CONTENTS iv

LIST OF TABLES vi

LIST OF FIGURES vii

LIST OF ABBREVIATIONS viii

LIST OF APPENDICES ix

CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Problem Statement 3
1.3 Project Objectives 4
1.4 Scope of Work 4
1.5 Report Outline 5

CHAPTER 2 LITERATURE REVIEW 6
2.1 Image Processing and Classification 6

2.1.1 Architecture of Neural Network 7
2.1.2 Micro Neural Network 8

2.2 Known Techniques of Image Classification System 10
2.3 Summary 22

CHAPTER 3 METHODOLOGY 23
3.1 Description of Methodology 23

3.1.1 Dataset Training with Edge Impulse 24
3.1.2 Implementation of Image Classification System 26
3.1.3 Prediction Accuracy Evaluation 29

3.2 Gantt Chart 30
3.3 Summary 32

v

CHAPTER 4 RESULTS AND DISCUSSION 33
4.1 Edge Impulse Modelling 33

4.1.1 Datasets Compilation for Defect and Non-Defect ICs 33
4.1.2 Edge Impulse Image Classification 34

4.2 Hardware and Software Intergration 40
4.2.1 Fritzing Design 40
4.2.2 Circuit Assembly 42
4.2.3 Real-Time System Accuracy 45

4.3 Advantages and Disadvantages of the Proposed Solution 46
4.4 Summary 47

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 48
5.1 Conclusion 48
5.2 Future Works 49
5.3 Project Commercialization 50

REFERENCES 51

APPENDICES 54

vi

LISTOFTABLES

TABLE TITLE PAGE

Table 2.1 Summary of the previously proposed techniques. 20

Table 4.1 TFT pins to ESP32-CAM pins. 41
Table 4.2 USB-TTL pins to ESP32-CAM pins. 42
Table 4.3 Real-time performance of the trained model. 46

vii

LIST OF FIGURES

FIGURE TITLE PAGE

Figure 1.1 Market value of AI worlwide from 2021 to 2030. 2

Figure 2.1 Neural network architecture. 7
Figure 2.2 Micro neural network architecture. 9
Figure 2.3 Sample image processing of rice grains. 11
Figure 2.4 License plate image reconstruction results. 12
Figure 2.5 Fingerprint images processed by Gaussian low-pass filter method. 13
Figure 2.6 Simulation model. 14
Figure 2.7 Image conversion for leaf classification. 15
Figure 2.8 Canny edge detection applied to a crab image. 16
Figure 2.9 Left to right: damaged front bumper, rear bumper, and car wheel. 16
Figure 2.10 Image conversion using Hough transform. 17
Figure 2.11 Experimental setup for product label quality control using image

processing and classification techniques. 18
Figure 2.12 Experimental setup for edge inspection and defect detection in stain-

less steel production line. 19

Figure 3.1 Top level block diagram of low-cost image classification system. 24
Figure 3.2 Design steps to train the image classification using Edge Impluse. 25
Figure 3.3 Design steps to build the image classification system on ESP32-CAM. 27
Figure 3.4 ESP32-CAM and TFT display. 29
Figure 3.5 Timeline for PSM I. 31
Figure 3.6 Timeline for PSM II. 31

Figure 4.1 Example of defect and non-defect ICs. 34
Figure 4.2 Data acquisition. 35
Figure 4.3 Learning block. 35
Figure 4.4 Neural network settings. 36
Figure 4.5 Accuracy performance of the trained model. 38
Figure 4.6 Deployment of the trained model. 39
Figure 4.7 Circuit diagram. 40
Figure 4.8 Hardware setup of ESP32-CAM, TFT ST7735S and relay. 42
Figure 4.9 Hardware setup to test the functionality of built-in camera and TFT

component. 43
Figure 4.10 Library of the micro neural network from the Edge Impulse. 43
Figure 4.11 PCB design of the hardware setup. 44
Figure 4.12 A prototype of the low-cost image classification system using ESP32- CAM.

45

viii

LISTOF ABBREVIATIONS

AI - Artificial Intelligience

ANN - Artificial Neural Network

CNN - Convolutional Neural Network

FMCG - Fast Moving Consumer Good

IC - Intergrated Circuit

IoT - Internet of Things

IR - Industry Revolution

MIMO - Multiple-input-multiple-output

MLP - Multilayer Perceptron

MSE - Mean squared error

PCA - Principal Component Analysis

PCB - Printed Circuit Board

PSM - Projek Sarjana Muda

ROI - Region of Interest

SIFT - Scale-Invariant Feature Transform

SRCNN - Super-resolution Convolutional Neural Network

UART - Universal Asynchronous Receiver / Transmitter

USB - Universal Serial Bas

PCB - Printed Circuit Board

ix

LIST OF APPENDICES

APPENDIX TITLE PAGE

Appendix A Coding for Camera Test 54

Appendix B Coding for Graphic Test TFT ST7735S 56

Appendix C Coding for Real-Time Image Classification System 60

Appendix D Coding for Test Inferencing 67

1

CHAPTER 1

INTRODUCTION

This chapter describes about the project background, problem statement, objectives, and

scope of work in developing a low-cost image classification system.

1.1 Background

Image classification is the process of identifying specific objects in digital images or

video sequences. While humans can easily recognize objects in images despite variations in

size, scale, perspective, and obstruction, it remains a challenging task for computer vision

systems. However, recent advances in Artificial Intelligence (AI) which perform tasks that

resemble human cognitive function, along with the availability of large training datasets,

have made image classification a popular application in various domains, including enterprise

applications.

Figure 1.1 illustrates the global market for AI in enterprise applications, which valued

at USD 95,602.77 million in 2021, and it is projected to exceed USD 1,847,495.6 million by

2030. The significant growth in this market is indicative of the potential for further develop-

ment in image classification and other computer vision tasks. Image classification technology

has many practical applications in fields such as healthcare, agriculture, and manufacturing.

Unfortunately, the high cost of developing and implementing an image classification system

2

1.85

1.42

1.07

0.8

0.58

0.42
0.3

0.21
9.5 · 10−2 0.14

can make it prohibitive for smaller organizations or those with limited budgets. By creat-

ing a low-cost image classification solution, smaller organizations can access the benefits of

this technology without incurring significant expenses. This can help manufacturers improve

their operations, increase efficiency, and reduce costs in areas such as production and quality

control.

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Figure 1.1:Market value of AI worlwide from 2021 to 2030.

Recent developments in neural networks have made it possible for them to run on

platforms with lower computational power, such as microcontrollers. These networks can

analyze data and be trained to make accurate predictions for previously unseen data. There-

fore, the aim of developing a low-cost image classification system is to make this technology

M
ar
ke
ts
iz
e

3

more widely available and enable smaller organizations to benefit from its capabilities with-

out incurring significant expenses [1].

1.2 Problem Statement

With the rise of Industrial Revolution (IR) 4.0, there has been a widespread growth

of AI in various applications, including image classification systems. While AI has shown

significant improvements in the accuracy and speed of image classification, there are still

several challenges that need to be addressed to fully support the IR 4.0. Developing image

classification systems that can accurately recognize and classify objects in digital images or

videos despite variations in size, scale, perspective, and obstruction is a major challenge that

needs to be addressed while keeping costs in mind. While recent advances in AI and large

training datasets have made image classification a popular application in various domains

due to the benefits it offers such as improved efficiency, accuracy, and increased safety, chal-

lenges such as bias, variability in contexts, and scalability still need to be addressed for better

performance.

In the past, several techniques have been proposed to classify an image, but yet users

are still unable to classify each object accurately [2, 3, 4, 5, 6]. Additionally, image clas-

sification systems that are currently available in the market tend to be costly, making them

unaffordable for many [7] [8]. Therefore, in this project, we propose to develop a low-cost

image classification system that can classify each image with higher accuracy. Our aim is

4

to address the challenges in image classification system by developing a system that is cost-

effective and accurate, which can be used in various domains to improve efficiency, reduce

costs, and increase safety.

1.3 Project Objectives

The main aim of this project is to develop a low-cost image classification system.

Specifically, the objectives are as follows:

1. To train the suitable machine learning model for image classification using edge im-

pulse.

2. To build the trained model of an image classification system on ESP32-CAM.

3. To evaluate the prediction accuracy of the image classification system.

1.4 Scope ofWork

The project scope of developing low-cost image classification system is as follows:

1. A lightweight machine learning technique is used in microcontroller, e.g., micro neural

network architecture.

2. The image classification system is based on RGB images (i.e., input to machine learn-

ing algorithm).

3. Edge impulse is used to train the image classification model and generate the corre-

sponding Arduino codes.

5

1.5 Report Outline

Chapter 2 provides an overview of previously proposed techniques on low-cost im-

age classification system. The advantages and disadvantages of these techniques are also

discussed in this chapter.

Chapter 3 describes the methodology and design steps in developing a low-cost image

classification system. Each design step corresponds to each objective is represented by the

flow chart and it is discussed thoroughly in this chapter. Timeline for Projek Sarjana Muda

(PSM) I and future plan for PSM II are also discussed.

Chapter 4 discusses the performance evaluation of the proposed low-cost image clas-

sification system. Moreover, the analysis to improve the prediction accuracy of the proposed

system is also discussed in this chapter.

Chapter 5 concludes the project findings in this report. Suggestions for future work

directions and potential commercialization are also provided.

6

CHAPTER 2

LITERATUREREVIEW

This chapter provides a broad overview of the project related to the topic in this report. First,

the chapter introduces the relevant background knowledge of this project; image process-

ing, image classification, and neural network architecture. Subsequently in this chapter, the

previously proposed techniques for image classification system are critically discussed.

2.1 Image Processing and Classification

Image processing and image classification are closely related, each serving distinct

purposes but often interconnected in practice. Image processing involves manipulating and

analyzing digital images to enhance image quality, extract useful information, and interpret

information required from the image. Techniques such as noise reduction, image enhance-

ment, feature extraction, and segmentation are used. These techniques aim to pre-process

and transform images to make it suitable for subsequent analysis including image classifica-

tion. Meanwhile, image classification is a specific task within computer vision that involves

categorizing images into predefined classes or categories based on their visual content. It

focuses on training machine learning models to recognize and assign labels to images auto-

matically. The combination between image processing and image classification techniques

produce a lot of application such as object counting and object identification.

7

Image classification is a fundamental task that attempts to comprehend an entire im-

age as a whole. The goal is to classify the image by assigning it to a specific label. Typically,

image classification refers to images in which only one object appears and is analyzed. In

image classification, neural network architectures are designed to process image data by ex-

tracting hierarchical features.

2.1.1 Architecture of Neural Network

The architecture of neural network consists of an input, output, and hidden layer. The

architecture of neural network determines how information flows through the network, how

it is processed, and how predictions or how image classification are made. Neural networks

function by passing data through the layers of an artificial neuron. Figure 2.1 illustrates the

architecture of neural network. Neural network consists of three basic components which are

input layer, hidden layer, and output layer. These three layers process and transform input

data into meaningful predictions or outputs.

Figure 2.1: Neural network architecture.

8

The input layer is the entry point of the neural network. Each neuron in the input

layer corresponds to a specific feature or attribute of the input data. In image classification,

each input neuron may represent a pixel value or a particular visual feature. The input layer

simply passes the input data to the neurons in the next layer for further processing process.

Meanwhile, hidden layer performs computation and learn representations of the input

data. The number of hidden layers and the number of neurons in each layer vary depends on

the complexity of the problem and the dataset size. These hidden layers enable the neural

network to capture and figure out complex patterns and relationships present in the input data

through a series of mathematical transformations. The output layer is the final layer of the

neural network that produces the predictions. Each neuron in the output layer corresponds to

a specific class or variable.

2.1.2 Micro Neural Network

Micro neural network is a specialized type of neural network architecture designed to

operate efficiently on low resources devices. The micro neural network consists of multiple

micro layers, which serve as the building blocks of the network. Figure 2.2 illustrates the

micro neural network architecture. Each micro layer receives the output from the previous

layer as its input and performs computations on that input. The exact operations and design

choices within each micro layer are determined by the specific requirements and constraints

of the task. The first micro layer takes the initial input and processes it using operations

tailored for the task at hand. These operations could include linear transformations, non-

linear activation functions, pooling, or lightweight convolutional operations.

9

Figure 2.2:Micro neural network architecture.

The output of micro layer 1 then becomes the input for micro layer 2. Similar to

the previous layer, micro layer 2 performs specific computations to further transform the

data. It may introduce additional non-linearities, apply feature extraction techniques, or other

relevant operations based on the specific requirements of the task. The output of micro layer 2

serves as the input for micro layer 3, which continues the process of applying transformations

to the data. Micro layer 3 can incorporate more complex operations depending on the specific

task’s requirements.

The number of micro layers in the network can vary depending on the desired depth

and complexity of the model. Factors such as the complexity of the task, available com-

putational resources, and desired model performance influence the choice of the number of

layers. Finally, the output layer receives the transformed data from the last micro layer and

produces the final result or prediction. The structure of the output layer is task-dependent,

10

with different activation functions used for different tasks. For example, softmax activa-

tion may be employed for classification tasks to generate class probabilities, while a linear

activation function may be used for regression tasks to predict continuous values.

Thus, these devices such as microcontrollers, IoT devices, and mobile devices often

have low computational power and memory. Micro neural networks address these constraints

by employing various techniques such as network pruning, quantization, and knowledge dis-

tillation. These specific neural network aim to reduce the size and complexity of the network

while preserving its performance as highly accuracy as possible. By optimizing for resource

efficiency, micro neural networks enable the deployment of machine learning models di-

rectly on these devices, allowing for real-time and localized inference without depending

on external servers. This is particularly beneficial in applications where low latency, pri-

vacy, or off-line functionality is crucial. This micro neural network usually used in object

identification.

2.2 Known Techniques of Image Classification System

Several techniques have been proposed in the past for image classification system. In

a recent study, Sriratana et al., [9] proposed application of web-cam for inspection of rice

grain quality by using image processing technique. The system start with converting image

into rgb to reduce the resolution used. The system introduces concept of a bounding box,

which is a rectangular boundary used to enclose specific areas or the entire image. This

method assists in estimating various parameters such as the center of the area, major and

minor axis lengths, and image coordinates. The process involves identifying pixel groups

11

using the flood fill method to enhance the distinction between objects and the background.

A total of 24 samples and 18 experimental designs are employed. The study concludes that

inspecting rice grains arranged in a non-overlapping manner yields lower errors, averaging

around 0.47%. Figure 2.3 illustrates the sample image that has been converted to RGB.

However, this method provide limited effectiveness for certain rice grain characteristics such

as surface texture.

Figure 2.3: Sample image processing of rice grains.

Meanwhile, Yang et al., [10] proposed a license plate image super-resolution based

on two convolutional neural network architectures: GoogLeNet and multi-scale super-resolution

convolutional neural network (SRCNN). GoogLeNet utilizes the inception architecture to ex-

tract diverse features by convolving images with filters of different sizes. SRCNN focuses on

super-resolution and uses three different filter sizes simultaneously for license plate images.

The models are evaluated using mean squared error (MSE) as a loss function, comparing

reconstructed images with ground truth images. Figure 2.4 illustrates the license plate image

reconstruction results. The system successfullay recognize the license plate with improving

a 91.7%. However, the high computational requirements can pose challenges for real-life

applications, due to high cost.

12

Figure 2.4: License plate image reconstruction results.

A similar study has been proposed by Ke Han et al., [11] using artificial neural net-

work (ANN) for processing fingerprint image noise. This method use ANN to detect and

classify the fingerprint. Using Gaussian low-past filtering to remove image noise to increase

the method accuracy. However, fingerprint images can vary significantly in quality such as

13

image resolution, noise, smudging, or partial capture. Figure 2.5 illustrates fingerprint im-

age after converting to Gaussian low-past filter. ANN can be sensitive to such variations, and

their performance might degrade when applied to low-quality or distorted fingerprint images.

Figure 2.5: Fingerprint images processed by Gaussian low-pass filter method.

Elsewhere, Dubey et al., [12] proposed uncertainty analysis of deep neural network

for classification of vulnerable road users using micro-doppler. Micro-doppler refers to the

analysis of doppler radar signals to extract information about small-scale movements which

is particularly useful in identifying and tracking vulnerable road users such as pedestrians

and cyclists. The researchers created a simulation environment in Matlab for a MIMO radar

system as a preliminary step. This environment allowed them to adjust various parameters

that affect the performance of target classification. One important parameter is the velocity

14

resolution, which depends on the number of chirps and their duration. Figure 4.9 illustrates

the reflection points. By modifying these parameters, the researchers could control the ve-

locity resolution for better identification of micro-Doppler signatures. The method able to

analysis with 99.81% of accuracy.

(a) Reflection points for a pedestrian. (b) Reflection points from rotating

wheels.

Figure 2.6: Simulation model.

In a study, Geetha et al., [13] proposed an advanced plant leaf classification method

described in the given information combines image enhancement and canny edge detection.

Figure 2.7 depicts the image conversion for leaf classification using canny edge detection.

The approach includes initial image preprocessing and boundary enhancement using a 3x3

spatial mask. Geometric features are then extracted and processed through principal com-

ponent analysis (PCA) to optimize the feature extraction process. For more accurate edge

detection, the technique utilizes multilevel wavelet decomposition and a multilayer percep-

tron (MLP) specifically designed for grayscale image edge detection. Additionally, leaf vein

pixels are extracted using histogram-based vein estimation and the Sobel operation. An en-

hanced version of the Canny edge detection algorithm is employed to detect real edges while

15

minimizing false noisy edges, particularly in Asphalt concrete applications. In terms of plant

recognition, the method combines thresholding and ANN classification. This involves uti-

lizing histogram-based vein region detection and segmentation through an ANN classifier.

Furthermore, for plant disease identification, Canny edge detection combined with color his-

tograms is employed. Leaf features are then extracted and classified for various plant species.

(a) Gray scale conversion. (b) Canny edge detection.

Figure 2.7: Image conversion for leaf classification.

Prathusha et al., [14] proposed an enhanced image edge detection methods for crab

species identification by using canny edge detection. However, canny edge detection method

typically detects edges in a single direction. This means that it may struggle to detect edges

that are not aligned with the dominant orientations of the gradient. Consequently, edges

that are not in the preferred direction may be missed or only partially detected. This system

still manage to achieve reasonable accuracy. Figure 2.8 illustrates image when converting to

canny edge detection

16

Figure 2.8: Canny edge detection applied to a crab image.

In another study, Chua et al., [15] proposed damage identification of selected car parts

using image classification and deep learning technique. From these results, the performance

of the model is enough to be used on prediction. Prediction accuracy for rear bumper is 60%,

car wheel is 90%, and front bumper is 80%. The model yields 100% for precision, recall,

and F1-score metrics in all classes. The 60% accuracy for rear bumper is mainly due to the

images of rear bumper and front bumper looking similar. Figure 2.9 illustrates example of

damaged car parts.

Figure 2.9: Left to right: damaged front bumper, rear bumper, and car wheel.

Meanwhile, an image processing application to detect faulty bottle packaging is pro-

posed in [16]. In the pre-processing phase, the images captured from a top view are first

17

converted from the original RGB format to gray scale. This conversion reduces the dimen-

sionality of the images and simplifies subsequent processing steps. The gray scale images

are then subjected to further pre-processing such as smoothing by using a Gaussian filter.

This filter helps to reduce noise and enhance the overall quality of the images. Additionally,

the images undergo circle detection using the Hough transform algorithm. The Hough trans-

form is a technique used to detect shapes such as circles in an image by converting the shape

detection problem into a parameter space. By applying the Hough transform specifically for

circle detection, the algorithm can identify circular patterns within the pre-processed gray

scale images. Figure 2.10 depicts the result of the image conversion using Hough transform.

However, variations in lighting can significantly impact the accuracy and reliability of the

image processing and circle detection steps.

(a) Image converted to gray scale (b)Hough transform image.

form.

Figure 2.10: Image conversion using Hough transform.

In a study, an image processing for product label quality control on fast moving con-

sumer good (FMCG) products is proposed in [17] by using NI smart camera 1744. The

image captured by the camera is processed via Lab View platform to classify each image.

18

Figure 2.11 illustrates the setup of the proposed method. The weakness of this method is low

speed detection of each packet resulted an increase in the production time. The classification

accuracy for this method is 95.45%.

Figure 2.11: Experimental setup for product label quality control using image processing
and classification techniques.

In another study, real-time image processing for edge inspection and defect detection

in stainless steel production line is proposed by Spinola et al., [18]. The proposed algorithm

focuses on detecting the edge of a coil by analyzing a narrow region surrounding it. The

process involves several steps to accurately determine the position of the coil edge in the

image. Figure 2.12 illustrates the experimental setup for the proposed method. Firstly, a

region of interest (ROI) is selected which is centred around the coil edge. To enhance the

reliability of the subsequent edge detection algorithm, the ROI is binarized to effectively

separating the roll pixels from the steel pixels. To strike a balance between computational

efficiency and desired accuracy, the ROI is divided into multiple windows along the edge.

However this method very sensitive to vibration, hence make it unsuitable for factory usage.

19

Figure 2.12: Experimental setup for edge inspection and defect detection in stainless steel
production line.

Elsewhere, Zhu et al., [19] proposed an automatic remote sensing image registration

based on SIFT descriptor and image classification. This study discussed that by collecting

all possible object samples or spectra within a specific research or application area from im-

ages or spectral instruments, a sample database can be created for classification purposes.

However, it is important to consider the relationship between samples and image pixel val-

ues, taking into account remote sensors and atmospheric conditions. Due to limitations in

experimental conditions, this study opted for manual sample collection.

All the above studies show the limitation of the proposed techniques in image classifi-

cation system. Therefore, in our project, the aim is to develop a low-cost image classification

system using ESP32-CAM. All the studies which have been thoroughly discussed above are

summarized in Table 2.1.

Table 2.1: Summary of the previously proposed techniques.

Authors Proposed Technique Advantages Disadvantages

Sriratana et al., [9]
Application of webcam for inspection of
rice grain quality by using image process-
ing technique

• Capture accurate photo

• High accuracy output

• Computational complexity

• Struggle to handle extreme scaling factors

Yang et al., [10]
License plate recognition using image
super-resolution based on convolutional
neural network

• Capture complex patterns

• Generate high-resolution outputs

• Computational complexity

• Struggle to handle extreme scaling factors

Ke Han et al., [11] ANN for processing fingerprint image
noise

• Capture complex patterns

• High image restoration

• Computationally intensive

• Longer processing times

Dubey et al., [12]
Uncertainty analysis of deep neural net-
work for classification of vulnerable road
users using micro-doppler

• Straightforward and computationally effi-
cient method for estimating uncertainty

• Generate high-resolution output

• High computational overhead

• Longer processing times

Geetha et al., [13] Plant leaf disease classification and detec-
tion system using machine learning

• Achieve high levels of accuracy

• Efficient for real-time operation

• Inadequate or biased datasets can lead to
inaccurate predictions

• Need for continuous training and updates

Prathusha et al., [14] Enhanced image edge detection methods
for crab species identification

• Accurate boundary detection

• High computational efficiency

• Inadequate or biased datasets can lead to
inaccurate predictions

• Need for continuous training and updates

Chua et al., [15]
Damage identification of selected car parts
using image classification and deep learn-
ing

• Very efficient

• High computational efficiency

• Limited domain coverage

• Need for continuous training and updates

20

Continued from previous page . . .

Authors Proposed Technique Advantages Disadvantages

Mane et al., [20]
Identification and classification of indus-
trial elements using artificial intelligence
and image processing techniques

• High efficiency

• Capture complex patterns

• Computationally intensive

• Longer processing times

Sanver et al., [16] An image processing application to detect
faulty bottle packaging

• Straightforward and computationally effi-
cient

• Generate high-resolution output

• Required high processing times

• High computational overhead

Sarkar et al., [17] Image processing based product label qual-
ity control on FMCG products

• High processing times

• Efficient for real-time operation

• Limited data predictions

• Need for continuous training and updates

Spinola et al., [18]
Real-time image processing for edge in-
spection and defect detection in stainless
steel production lines

• Accurate boundary detection

• High computational efficiency

• Sensitive to vibration

• Limited resources

Zhu et al., [19]
Automatic remote sensing image registra-
tion based on SIFT descriptor and image
classification

• High efficiency

• Capture complex patterns

• Computationally intensive

• Longer processing times

21

22

2.3 Summary

In this chapter, the relevant topics to the project such as image classificaitona and

micro neural network architecture are briefly discussed. Further, the previously proposed

techniques for image classification system are discussed. Based on the observations, the lim-

itations of the existing techniques are longer processing time and computationally intensive.

Due to this limitation, hence the low-cost image classification system is required to enable

the widespread adoption of AI application.

23

CHAPTER 3

METHODOLOGY

This chapter describes the methodology and design steps to develop a low-cost image clas-

sification system.

3.1 Description of Methodology

The project aims to classify images into their respective groups. In this study, the

classification of defective and non-defective intergrated circuits (ICs) is used as a case study.

Scratches on IC are considered as defective IC. Scratches are typically the result of me-

chanical contact between the ICs and another object. This contact can occur when a robotic

handling system misaligns or improperly handles the ICs. During the processing of ICs,

various machines and robots are involved in the fabrication and handling processes. These

robots are responsible for tasks such as picking up and transferring ICs to different stages

of processing. However, if misalignment occur, or if the handling is not executed precisely,

the component may come into contact with a surface or object that causes scratches [21].

Figure 3.1 illustrates the top-level block diagram of the low-cost image classification system

using ESP32-CAM. To design the proposed system as depicted in Figure 3.1, this project is

divided into three main parts which are training the dataset with suitable machine learning al-

gorithm in Edge Impulse, deploying the code generated by Edge Impulse in microcontroller,

24

Deploy

Dataset Devices

DEVICE-AWARE
OPTIMIZATIONS

ESP32-CAM
Non-defective IC

Defective IC
TFT ST7735S

Active Learning

and prediction accuracy evaluation. The above three main parts are elaborated in the next

sections.

Figure 3.1: Top level block diagram of low-cost image classification system.

3.1.1 Dataset Training with Edge Impulse

The first step in designing the low-cost image classification system is to train the

dataset by using Edge Impulse. Figure 3.2 depicts the design steps to train the image classi-

fication using Edge Impulse. The dataset for defect ICs need to be generated, which can be

realized by using Microsoft Bing. Subsequently, an analysis of this dataset is conducted to

25

Analyzing the
dataset

Train data using micro
neural network in Edge

Impulse

No

Testing; prediction
accuracy as
expected?

Yes

obtain valuable information about its composition and overall quality. Any potential imbal-

ances or biases within the dataset were identified and appropriately handled. In our study, the

Edge Impulse application is used to build and train the image classification system. The gen-

erated dataset is uploaded in Edge Impulse and micro neural network is selected considering

the limitation of the target hardware (i.e., ESP32-CAM). Using the training tools provided

by Edge Impulse, the model is optimized to improve both accuracy and efficiency.

Figure 3.2: Design steps to train the image classification using Edge Impluse.

Start

Generate or collect
dataset

2

Generate Arduino code
using Edge Impulse

26

Once the image classification model is successfully trained, subsequently the model’s

prediction capability is tested using a separate set of images. Performance metrics such as

accuracy, precision are calculated to assess the model’s effectiveness. If the desired criteria

is not met, further iterations are carried out to further enhance and refine the model. Adjust-

ments to the architecture, hyperparameters, or dataset size are made to improve the accuracy

and generalization. In this study, the prediction accuracy is targeted at 90%. After complet-

ing the adjustments for the architecture, the Arduino code is generated using Edge Impulse,

specifically designed for the ESP32-CAM. Subsequently, the generated code is deployed

onto ESP32-CAM, allowing for real-time image classification.

3.1.2 Implementation of Image Classification System

Next step in this project is to implement an image classification system using ESP32-

CAM, TFT ST7735S, and relay. The design steps to build this system on ESP32-CAM are

illustrated in Figure 3.3. First, the connection of ESP32-CAM, TFT ST7735S, and relay

are investigated and the circuit diagram is drawn using Fritzing. Subsequently, all these

hardware are assembled based on the Fritzing design. To ensure the connection and func-

tionality of the built-in camera and TFT display are working correctly, a program to capture

image and display the image on TFT are created as in Appendix 1 and B, respectively. Once

the functionality has been validated, the generated code from Edge Impulse is deployed in

ESP32-CAM. The real-time image classification is performed to test and validate the func-

tionality of the deployed model.

27

No

Able to display image?

Yes
Deploy the program
generated by Edge

Impulse; capturing and
classifying image.

No

Able to capture image?

Yes

Build a program to
capture image using

ESP32-CAM

Build a program to
display image on TFT

ST7735S

No

Testing;
Image can be classified

successfully?

Yes

3

2

Hardware integration:
ESP32-CAM, TFT
ST7735S and relay

Figure 3.3: Design steps to build the image classification system on ESP32-CAM.

28

Initially, this project involves assembling the ESP32-CAM with the TFT ST7735S

using a relay. Once the hardware setup is complete, the next step is to develop a program for

the ESP32-CAM. The ESP32-CAM shown in Figure 3.4a. This program enables the system

to capture images and perform classification on them. After implementing the image capture

and classification functionality, the subsequent step is to create a program that can display the

classification results on the TFT ST7735S screen. Once this program is successfully built,

the individual programs for image capture, classification, and display can be combined to

form a comprehensive image classification system.

Figure 3.4 depicts the ESP32-CAM and TFT ST7735S display. The TFT ST7735S

display was chosen for its compact size, low power consumption, and compatibility with the

ESP32-CAM. As shown in Figure 3.4b, the TFT ST7735S has a small form factor, which

makes it suitable for integration into the image classification system. Additionally, its low

power requirements ensure that it doesn’t put excessive strain on the overall power supply of

the system. Furthermore, the TFT ST7735S display is compatible with the communication

interface of the ESP32-CAM. This compatibility allows for smooth data transfer between the

ESP32-CAM and the display, enabling real-time display of the classification results.

29

(a) ESP32-CAM. (b) TFT ST7735S.

Figure 3.4: ESP32-CAM and TFT display.

3.1.3 Prediction Accuracy Evaluation

Approximately 30 iterations of capturing the non-defective and defective IC images

(i.e., physical ICs) in real-time is conducted to test the performance of the proposed system.

The captured images are analysed by the program and the prediction is made using the trained

model that has been deployed in ESP32-CAM. To determine the classification accuracy, the

prediction made by the program is compared against the correct labelling of the images.

30

The accuracy of the deployed model in ESP32-CAM is then compared against the

accuracy achieved during the model’s training phase in Edge Impulse. If the deployed model

demonstrates higher or approximately similar accuracy than the trained model, it indicates

positive results. A higher accuracy suggests that the program is function effectively and

capable of accurately classifying between non-defective and defective ICs.

3.2 Gantt Chart

Figure 3.5 depicts the timeline for PSM I. PSM I focuses on literature review, defining

the objective, problem statement, scope of project, methodology, and preliminary analysis.

In PSM II, the focus is to develop a fully functional system that can perform a real-time

image classification to identify defective and non-defective ICs. Figure 3.6 depicts the time

line in PSM II to achieve the above target.

31

Study the previous techniques on low-cost image classification system

Study the architecture of micro neural network for image classification

Study the ESP32-CAM and TFT LCD data sheet

Define background, objective, problem, problem statement, and scope of project (Chapter 1)

Define methodology and design steps (Chapter 3)

Hardware purchase (i.e., preliminary result)

Literature review (Chapter 2)

Preliminary result - Build the image classification algorithm using ESP32-CAM and TFT LCD

First draft submission (Completed Chapter 1, 2, and 3)

Second draft submission (Completed Chapter 4, and 5)

Final correction of report

Submit report via e-psm (<30% turnitin)

BDP Presentation (28 June 2023)

Figure 3.5: Timeline for PSM I.

Hardware purchase (i.e., remaining required hardware)

Evaluation and improvement of image classification system.

Functionality verification of the whole system - on breadboard

PCB design, fabrication, assemble , and soldering

Functionality verification of the whole system - on PCB

Correction of Abstract, Chapter 1, Chapter 2, Chapter 3

Report writing (Chapter 4 and Chapter 5)

Submit report via e-psm (<30% turnitin)

BDP Presentation (17 Jan 2024)

Figure 3.6: Timeline for PSM II.

Week

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Week

1 2 3 4 5 6 7 8 9 10 11 12 13 14

32

3.3 Summary

In this chapter, the method and design steps to build the low-cost image classification

system have been described. Edge Impulse is used to enabling the development and deploy-

ment of machine learning model on ESP32-CAM. Dataset for defective and non-defective

ICs need to be generated. Scratches on IC surface are considered as defect product in our

study. Micro-neural network is considered as the algorithm to build the image classification

model as it is lightweight and suitable for ESP32-CAM.

33

CHAPTER 4

RESULTSANDDISCUSSION

This chapter presents the results and analysis on the development of low-cost image classifi-

cation system using ESP32-CAM.

4.1 Edge Impulse Modelling

4.1.1 Datasets Compilation for Defect and Non-Defect ICs

The data set involved deliberately scratching 8 different physical ICs using blade and

3 of non-defect ICs to create data set totaling of 1,571 images. The data set consists of

1031 images of defect ICs and 540 images of non-defect ICs. Initially, each of the data set

was captured using the ESP32-CAM built-in camera. However, the poor quality of ESP32-

CAM built-in camera resulting in lower accuracy of the classification system. To solve the

issue, the data set were captured using high pixel smartphone’s camera to ensure better image

quality.

Figure 4.1 illustrates a representative sample image, showcasing both defect and non-

defect ICs. The defect ICs that were purposely scratch were used as reference, to simulate the

exterior defect that happened during the production process. The generated machine learning

model in Edge Impulse is used to differentiate between the defect and non-defect ICs based

on the irregularities on the physical structure of the ICs.

34

(a) Non-defect IC. (b) Defect IC.

Figure 4.1: Example of defect and non-defect ICs.

4.1.2 Edge Impulse Image Classification

1571 images of the ICs were uploaded into Edge Impulse in order to create a micro

neural network to differentiate the defect and non-defect ICs. The uploaded images were

labelled per data, consist two different classes of defect and non-defect ICs. The data set

was automatically divided into 80% for training and 20% for testing by the Edge Impulse.

A 1260 images comprising 818 data set of defect ICs and 442 data set of non-defect ICs

were used to train the micro neural network. Data set for train the micro neural network

representating 80% of the overall data set. Afterwards, 20% of the remaining data set were

used to test the system accuracy. The testing data set comprises 206 samples of defective ICs

and 108 samples of non-defective ICs, resulting in a total of 314 datasets used for verified

the system accuracy. Figure 4.2 illustrates the configuration employed in data collection and

provides an example of labeled data based on distinct classes.

35

Figure 4.2: Data acquisition.

Figure 4.3 illustrates the learning block within Edge Impulse, consist of essential

stages of the machine learning process. These stages include data collection, data prepro-

cessing, feature extraction, model training, and model evaluation. Each learning block con-

centrates on a specific facet of the workflow, providing the flexibility to tailor and refine the

machine learning models according to the system needs.

Figure 4.3: Learning block.

To optimize accuracy within transfer learning blocks, images of defect and non-defect

ICs underwent resizing to a resolution of 96x96 pixels. Following this, the images were

36

converted to the RGB format, which proves beneficial for tasks involving color analysis

and the detailed capture of color information—especially pertinent in the realm of image

classification. Additionally, the transfer learning process facilitated the extraction of crucial

features from RGB images, allowing for classification based on predefined defect and non-

defect classes.

Figure 4.4: Neural network settings.

Figure 4.4 depicts the micro neural network settings in which consists of the config-

urable options and parameters that establish the architecture and functionality of the neural

network model employed in the machine learning tasks. Deploying a micro neural network

37

on the ESP32-CAM for image classification is a judicious choice rooted in several key con-

siderations. The micro neural network, tailored for efficiency and responsiveness, aligns

seamlessly with the ESP32-CAM’s limitations, optimizing both processing power and mem-

ory usage. This decision reflects an overarching commitment to performance, real-time pro-

cessing capabilities, and energy efficiency, making it an ideal choice for image recognition

tasks on the ESP32-CAM.

At the core of this approach is the deliberate decision to limit training cycles to 30.

Recognizing the importance of model convergence and computational efficiency, this choice

mitigates overfitting risks while accounting for practical constraints like computational re-

sources and time limitations. It represents a strategic compromise, ensuring a time-efficient

training process without sacrificing the model’s capacity to capture meaningful patterns in

the data.

Moreover, the deliberate use of a 0.01 learning rate in neural network training acts

as a further measure against overfitting. This lower learning rate facilitates cautious weight

adjustments, preventing the model from becoming excessively specialized to the training

data. While demanding more epochs for convergence, this measured approach underlines a

commitment to learning robust features, contributing to a well-generalized model effective

across diverse inputs and minimizing the potential risks of overfitting. The overall settings

give ESP32-Cam the potential to enhance the capabilities for image classification.

38

Figure 4.5: Accuracy performance of the trained model.

The training results, illustrated in Figure 4.5, encompasses the information and out-

comes obtained throughout the machine learning model’s training phase. The machine learn-

ing model that had done the training then tested with 314 set of data, which splitted earlier

on the process. This provides valuable insights into the model’s performance and advance-

ments as it assimilates knowledge from the supplied datasets. The trained model achieved

86.1% prediction accuracy with an inference time of 2532 ms. These outcomes signify a

39

satisfactory level of accuracy, particularly for a cost-effective image classification system.

Figure 4.6: Deployment of the trained model.

Subsequently, the machine learning model were deployed into the ESP32-CAM. The

setting configuration used are depicted in Figure 4.6, which the machine learning will de-

ployed into an arduino library. The arduino library were chosen due to it’s compatibility

with the ESP32-CAM. The Quantized(int8) compiler were chosen as the model optimiza-

tion. This compiler will provide better accuracy and increase on-device performance.

40

4.2 Hardware and Software Intergration

4.2.1 Fritzing Design

Figure 4.7 illustrates the entire system, which is powered by a power module capa-

ble of providing both 5V and 3.3V outputs. The ESP32-CAM receives power from the 5V

output, while the TFT display is powered by the 3.3V output. Table 4.1 illustrates the con-

nection between ESP32-CAM and TFT ST7735S. The script displayed a 120x120 image on

the TFT. The push button connected to GPIO 4 is shared with the flash led.

Figure 4.7: Circuit diagram.

41

TFT pins ESP32-CAM

SCK (SCL) GPIO 14

MOSI (SDA) GPIO 13

RESET (RST) GPIO 12

DC GPIO 2

CS GPIO 15

BL (back light) 3.3V

Table 4.1: TFT pins to ESP32-CAM pins.

Table 4.2 illustrates the connection between USB-TTL pins to the ESP32-CAM. The

USB-TTL is used to provide connection between universal serial bus (USB) and serial uni-

versal asynchronous receiver/transmitter (UART) interfaces. One important step when up-

loading the code is to disconnect the power supply to the ESP32-CAM to ensure a stable and

safe environment for the upload. In addition, GPIO 0 needs to be connected to ground in

order to activate flash mode. This mode prepares the device to receive and process the code

being uploaded. By connecting GPIO 0 to GND, an electrical connection is established that

triggers the device to enter the flash mode. Once GPIO 0 is securely connected to GND, the

power supply to the device can be reconnected. This allows the device to power up while

remaining in the flash mode, ready to receive the incoming code. The above steps ensure that

the device is in the appropriate mode for code uploading, facilitating a smooth and successful

upload process.

42

USB-TTL pin ESP32-CAM

Tx GPIO 3 (UOR)

Rx GPIO 1 (UOT

GND GND

Table 4.2: USB-TTL pins to ESP32-CAM pins.

4.2.2 Circuit Assembly

The circuit diagram as discussed in Section 4.2.1 is assembled using the real compo-

nents. Figure 4.8 depicts the hardware assembly setup that can be used to perform a real-time

image classification.

Figure 4.8: Hardware setup of ESP32-CAM, TFT ST7735S and relay.

Figure 4.9a illustrates the setup for testing camera on the ESP32-CAM. By using

coding in Appendix 1, the testing involves observing the images captured by the camera

and evaluating its performance, quality, and characteristics. The testing process is crucial

to understand the connectivity and ensure that the built-in camera on ESP32-CAM function

43

as expected. Figure 4.9b illustrates the setup for testing the TFT ST7735S by using coding

in Appendix B. Inspecting the TFT ST7735S display serves the purpose of evaluating its

functionality, verifying proper operation, and assessing the visual output it provides. This

process involves examining the display’s performance, image quality, and characteristics to

ensure it meets the requirements of the project.

(a) Hardware setup to test the built-in

camera on ESP32-CAM.

(b) Hardware setup to test the TFT

ST7735S.

Figure 4.9: Hardware setup to test the functionality of built-in camera and TFT component.

The library “test inferencing.h” shown in the Figure 4.10 were downloaded from

the Edge Impulse. Content of the library shown in Appendix D, were the parameters used

to classify the ICs. Afterwards, the library that precisely tailored to classify the ICs were

intergrated into coding in Appendix C. The coding consists of capture, classify and display

of the images.

Figure 4.10: Library of the micro neural network from the Edge Impulse.

44

The connection each of the hardware were then made into printed circuit board (PCB)

to provide better design of the finishing product. Figure 4.11 shown the completed design of

the PCB setup. The PCB design allows for a compact and organized layout of the electronic

components, make it much smaller and reducing the overall size of the classification system

hardware design. In case of a malfunction or need for repair, the PCB will make it more

easier to troubleshoot and figure the cause of the issues.

Figure 4.11: PCB design of the hardware setup.

The ESP32-CAM, TFT ST7735S and push button then being soldered to the PCB,

produced a completed hardware setup which shown in Figure 4.12. Initially, the system

capture image of the ICs using the built-in camera of the ESP32-CAM. The images then

were classified based on the library that generated from the Edge Impulse. Afterwards, the

images were displayed on the TFT ST7735S. The TFT display shown the captured images,

percentages of each classes and display the result from the classification. Each of the process

were precisely tailored accordance to the development of the low-cost image classification

system.

45

Figure 4.12: A prototype of the low-cost image classification system using ESP32-CAM.

4.2.3 Real-Time System Accuracy

Embarking the real-time image classification system, accuracy of the micro neural

network is a crucial factor which contribute the biggest factor in the system. Table 4.5 depicts

the result achieved in classifying the defect and non-defect ICs. The system accuracy was

tested using 6 physical ICs, comprising 3 defect and 3 non-defect ICs. The used of 6 physical

ICs was due to the limited availability of such components.

A 30 samples of defect ICs were tested resulting into 26 correct classification. The

accuracy for the defect ICs were 86.67%, which higher accuracy compared to training perfor-

mance on the Edge Impulse. However, the accuracy for the samples of non-defect ICs were

46

lower compared to the accuracy of defects ICs. The non-defect ICs only achieved 76.67%.

Despite the lower accuracy, it’s still gave a satisfactory level due to low quality of the built-in

camera of ESP32-CAM. The system only manage to correctly classified 23 out of 30 sample

of the non-defect ICs. The overall performance of the system achieved 81.67% of accuracy,

which meet the desired performance.

Samples Number of data set Correct Classification Percentage(%)

Defect 30 26 86.67

Non-defective 30 23 76.67

Table 4.3: Real-time performance of the trained model.

The surrounding area emerged as a key factor influencing the accurate classification

of the ICs. During system testing, it was observed that brightness played a crucial role. The

captured images exhibited varying brightness and contrast, leading to poor image quality.

The ESP32-CAM struggled to classify images, particularly when dealing with blurry images.

In essence, the orchestrated sequence of image capture, classification and display

images serves as a testament to the system’s comprehensive functionality. This process un-

derscores the system’s adeptness in effectively classifying ICs based on their defect status,

positioning it as a formidable tool in the realm of image analysis and classification.

4.3 Advantages and Disadvantages of the Proposed Solution

The ESP32-CAM stands out as a cost-effective and compact solution for image cap-

ture and real-time processing. The device can perform computations in real-time, enabling

47

quick and responsive processing of captured images. This real-time processing capability

is particularly beneficial for capturing and classifying image, where immediate feedback or

analysis are crucial to ensures smooth operation in production lines.

Despite the cost-effective and small design, it’s important to note that the ESP32-

CAM have limitations in processing power and memory, which could impact the complexity

and size of the image processing tasks it can handle. However, when appropriately optimized

and tailored to the project’s requirements, the ESP32-CAM’s cost-effectiveness, small form

factor, and real-time processing capabilities make it a compelling choice for a wide range of

capturing and classifying the images.

4.4 Summary

This chapter discussed the data set collection, training on edge impulse and real-time

assessment to identify the capability capturing image. The data set consists of defect and non-

defect ICs was used to train on the Edge Impulse and ensuring the functionality of capturing

image using ESP32-CAM. All the established configuration also has been provided, ensuring

the system works at its optimal performance. The learning results show that the defect and

non-defect ICs can be classified successfully with 86.1% prediction accuracy. The real-time

image classification system able to successfully classified the defect ICs and non-defect ICs

with accuracy of 86.67% and 76.67%, respectively. Moreover, the hardware setup to enable

a real-time image classification is also discussed.

48

CHAPTER 5

CONCLUSIONANDRECOMMENDATIONS

5.1 Conclusion

In this project, a low-cost image classification system using the ESP32-CAM has

been developed. The project has been divided into three main objectives, the accomplishment

for each objective is described and concluded in this chapter.

The first objective is achieved by training and building the image classification model

that able to classify defective and non-defective ICs using suitable machine learning in Edge

Impulse. The model were trained using 818 sample images of defective ICs and 442 samples

images of non-defective ICs. The image classification model that has been build using Edge

Impulse was successfully classified the defect and non-defective ICs with accuracy of 86.1%.

The second objective of the project is achieved by intergrating the trained model in

Edge Impulse on ESP32-CAM. The ESP32-CAM and TFT display were intregrated and the

functionality was tested using coding in Appendix 1 and B. The coding which fully integrated

ESP32-CAM, TFT display and files of micro neural network from Edge Impulse shown in

Appendix C.

The third objective is achieved by evaluating the live time prediction accuracy of the

image classification system. The entire system which classify a defect and non-defective

ICs has been tested using 30 samples of defect and non-defective ICs. Accuracy of 86.67%

49

has been achieved, which the real-time image classification is slightly lower than the trained

model.

5.2 FutureWorks

In the future, our purpose system can be improved as per below:

1. Consider ulitizing more advanced or specialized hardware components that of-

fer improved performance, such as replacing ESP32-CAM camera with higher-resolution

cameras.

2. Expanding the system’s capability to classify images into more specific classes

refers to increasing the number and specificity of the categories or classes that the image

classification system can identify. When the system is initially trained, it may be limited to

recognizing a certain set of classes. For example, it might be trained to distinguish between

scratch surface on IC. However, by diversifying the classification classes, the system can

be enhanced to identify a broader range of objects or concepts. For instance, instead of

just distinguishing between scratch surface, the system can be trained to recognize different

deffects which occurs onto the IC, such as scratch surface due to latching process and etc.

3. Integrate the image classification system with IoT. For example, the system could

trigger specific actions or responses based on the classification results, such as controlling

other smart devices or sending notifications to a mobile application.

50

5.3 Project Commercialization

The proposed system is suitable to be used in IC manufacturing companies to detect

the defective ICs. However, there are remaining things to do in order to make a low-cost

image classification system using ESP32-CAM more practical and suitable to be commer-

cialized. One of the ways is to make the proposed system compatible with the machineries

in the IC manufacturing line. The IC manufacturing line typically consists of various stages,

including wafer fabrication, wafer testing, assembly, packaging, and final testing. Each stage

involves specialized equipment and processes to transform silicon wafers into functional ICs.

For example, during the final testing stage, the proposed system can capture and analyze the

image of the IC products to check for any visual defects or abnormalities, such as cracks,

scratches, or misalignment. It can helps to identify faulty IC for rejection, preventing the

shipment of defective products. However, the proposed system is not limited to be used in

the final testing stage only. It can be used in any critical stage in IC manufacturing for the

defect to be detected at the early stage. This improves product quality, reduces warranty

claims, and ultimately increases the company’s revenues.

51

REFERENCES

[1] B. Thormundsson, “Artificial intelligence (AI) market size worldwide in 2021 with a

forecast until 2030,” 2021.

[2] Y.-l. Zhang, Z.-j. Guo, and Y.-p. Li, “Research on ship classification based on image

processing and fuzzy neural network theory,” in International Symposium on System

and Software Reliability, 2021, pp. 152–154.

[3] E. Kakkava, N. Borhani, Y. Pu, C. Moser, and D. Psaltis, “Image classification and

reconstruction through multimode fibers by deep neural networks,” in Conference on

Lasers and Electro-Optics Pacific Rim, 2018, pp. 1–2.

[4] J. Xiao and B. Li, “Design of motion recognition system for semiconductor device clas-

sification and recognition,” in International Conference on Intelligent Transportation,

Big Data & Smart City, 2020, pp. 745–748.

[5] Y. Nan and W. Xi, “Classification of press plate image based on attention mechanism,”

in International Conference on Safety Produce Informatization, 2019, pp. 129–132.

[6] J. Zhuang, G. Mao, Y. Wang, X. Chen, Y. Wang, and Z. Wei, “Classification of wafer

backside images via fasterrcnn-based neural network,” in China Semiconductor Tech-

nology International Conference, 2022, pp. 1–4.

[7] Unicsoft, “How to calculate image recognition app development price,” 2022.

[8] J. McAssey, “What is the cost of artificial intelligence solutions? part 1 of 3. Visual

APIs,” 2017.

52

[9] W. Sriratana, N. Narknam, R. Apichitanon, and N. Tammarugwattana, “Application of

webcam for inspection of rice grain quality by using image processing technique,” in

International Conference on Control, Automation and Systems, 2020, pp. 1134–1139.

[10] Y. Yang, P. Bi, and Y. Liu, “License plate image super-resolution based on convolutional

neural network,” in International Conference on Image, Vision and Computing, 2018,

pp. 723–727.

[11] K. Han, “Artificial neural network for processing fingerprint image noise,” in Inter-

national Summer Virtual Conference on Software Engineering, Artificial Intelligence,

Networking and Parallel/Distributed Computing, 2022, pp. 9–14.

[12] A. Dubey, J. Fuchs, T. Reissland, R. Weigel, and F. Lurz, “Uncertainty analysis of

deep neural network for classification of vulnerable road users using micro-doppler,” in

Topical Conference on Wireless Sensors and Sensor Networks, 2020, pp. 23–26.

[13] G. Geetha, S. Samundeswari, G. Saranya, K. Meenakshi, andM. Nithya, “Plant leaf dis-

ease classification and detection system using machine learning,” in Journal of Physics:

Conference Series, vol. 1712, no. 1, 2020, p. 012012.

[14] P. Prathusha, S. Jyothi, and D. Mamatha, “Enhanced image edge detection methods for

crab species identification,” in International Conference on Soft-computing and Net-

work Security, 2018, pp. 1–7.

[15] A. C. Chua, C. R. B. Mercado, J. P. R. Pin, A. K. T. Tan, J. B. L. Tinhay, E. P. Dadios,

and R. K. C. Billones, “Damage identification of selected car parts using image classifi-

cation and deep learning,” in International Conference on Humanoid, Nanotechnology,

53

Information Technology, Communication and Control, Environment, and Management,

2021, pp. 1–5.

[16] U. Sanver, E. Yavuz, and C. Eyupoglu, “An image processing application to detect

faulty bottle packaging,” inConference of Russian Young Researchers in Electrical and

Electronic Engineering, 2017, pp. 986–989.

[17] A. Sarkar, S. Chakraborty, and B. Roy, “Image processing based product label quality

control on fmcg products,” in International Conference on Energy, Power and Environ-

ment: Towards Sustainable Growth, 2015, pp. 1–5.

[18] C. G. Spinola, J. Canero, G. Moreno-Aranda, J. M. Bonelo, and M. Martin-Vazquez,

“Real-time image processing for edge inspection and defect detection in stainless steel

production lines,” in International Conference on Imaging Systems and Techniques,

2011, pp. 170–175.

[19] Z. Zhu, J. Luo, and Z. Shen, “Automatic remote sensing image registration based on sift

descriptor and image classification,” in International Conference on Geoinformatics,

2010, pp. 1–5.

[20] T. Mane, G. Raut, A. Pethe, I. Patil, K. Mundada, and A. Iyer, “Identification and clas-

sification of industrial elements using artificial intelligence and image processing tech-

niques,” in International Conference on Emerging Smart Computing and Informatics,

2021, pp. 165–169.

[21] T. N. Michael McIntyre, “Method and system for recognizing scratch patterns on semi-

conductor wafers,” 1999.

54

APPENDICES

Appendix A: Coding for Camera Test

1 #include "esp_camera.h"

2 #include <WiFi.h>

3 #define CAMERA_MODEL_AI_THINKER

4 #include "camera_pins.h"

5

6 const char* ssid = " **********";

7 const char* password = "**********";

8

9 void startCameraServer ();

10 void setupLedFlash(int pin);

11

12 void setup () {

13 Serial.begin (115200);

14 Serial.setDebugOutput (true);

15 Serial.println ();

16

17 camera_config_t config;

18 // ... (camera configuration parameters)

19

20 esp_err_t err = esp_camera_init (& config);

21 if (err != ESP_OK) {

22 Serial.printf("Camera init failed with error 0x%x", err);

23 return ;

24 }

25

26 sensor_t* s = esp_camera_sensor_get ();

27 if (s->id.PID == OV3660_PID) {

28 s->set_vflip(s, 1);

55

29 s-> set_brightness(s, 1);

30 s-> set_saturation(s, -2);

31 }

32

33 if (config.pixel_format == PIXFORMAT_JPEG) {

34 s-> set_framesize(s, FRAMESIZE_QVGA);

35 }

36

37 #if defined(LED_GPIO_NUM)

38 setupLedFlash(LED_GPIO_NUM);

39 #endif

40

41 WiFi.begin(ssid , password);

42 WiFi.setSleep(false);

43

44 while (WiFi.status () != WL_CONNECTED) {

45 delay (500);

46 Serial.print(".");

47 }

48 Serial.println("");

49 Serial.println("WiFi connected");

50

51 startCameraServer ();

52

53 Serial.print("Camera Ready! Use ’http ://");

54 Serial.print(WiFi.localIP ());

55 Serial.println("’ to connect ");

56 }

57

58 void loop() {

59 delay (10000);

60 }

56

Appendix B: Coding for Graphic Test TFT ST7735S

1 #include <Adafruit_GFX.h>

2 #include <Adafruit_ST7735.h>

3 #include <Adafruit_ST7789.h>

4 #include <SPI.h>

5

6 // Pin Definitions

7 #if defined(ARDUINO_FEATHER_ESP32)

8 #define TFT_CS 15

9 #define TFT_RST 12

10 #define TFT_DC 2

11 #elif defined(ESP8266)

12 #define TFT_CS 4

13 #define TFT_RST 16

14 #define TFT_DC 5

15 #else

16 #define TFT_CS 10

17 #define TFT_RST 9

18 #define TFT_DC 8

19 #endif

20

21 Adafruit_ST7735 tft = Adafruit_ST7735(TFT_CS , TFT_DC , TFT_RST);

22

23 float p = 3.1415926;

24

25 // Function Declarations

26 void setup ();

27 void loop ();

28 void testlines(uint16_t color);

29 void testdrawtext (char *text , uint16_t color);

30 void testfastlines(uint16_t color1 , uint16_t color2);

31 void testdrawrects(uint16_t color);

32 void testfillrects(uint16_t color1 , uint16_t color2);

57

33 void testfillcircles(uint8_t radius , uint16_t color);

34 void testdrawcircles(uint8_t radius , uint16_t color);

35 void testtriangles ();

36 void testroundrects ();

37 void tftPrintTest ();

38 void mediabuttons ();

39

40 void setup () {

41 Serial.begin (9600);

42 tft.initR (INITR_BLACKTAB);

43

44 displayInitializationTests ();

45 basicShapeTests ();

46 textTests ();

47

48 Serial.println(" Initialization complete");

49 }

50

51 void loop() {

52 tft.invertDisplay (true);

53 delay (500);

54 tft.invertDisplay (false);

55 delay (500);

56 }

57

58 void displayInitializationTests () {

59 uint16_t time = millis ();

60 tft.fillScreen(ST77XX_BLACK);

61 time = millis () - time;

62 delay (500);

63 }

64

65 void basicShapeTests () {

58

66 tft.fillScreen(ST77XX_BLACK);

67 testlines(ST77XX_YELLOW);

68 delay (500);

69

70 tft.fillScreen(ST77XX_BLACK);

71 testfastlines(ST77XX_RED , ST77XX_BLUE);

72 delay (500);

73

74 tft.fillScreen(ST77XX_BLACK);

75 testdrawrects(ST77XX_GREEN);

76 delay (500);

77

78 tft.fillScreen(ST77XX_BLACK);

79 testfillrects(ST77XX_YELLOW , ST77XX_MAGENTA);

80 delay (500);

81

82 tft.fillScreen(ST77XX_BLACK);

83 testfillcircles (10, ST77XX_BLUE);

84 testdrawcircles (10, ST77XX_WHITE);

85 delay (500);

86

87 tft.fillScreen(ST77XX_BLACK);

88 testroundrects ();

89 delay (500);

90

91 tft.fillScreen(ST77XX_BLACK);

92 testtriangles ();

93 delay (500);

94 }

95

96 vo id textTests () {

97 tft.fillScreen(ST77XX_BLACK);

98 tftPrintTest ();

59

99 delay (4000);

100

101 tft. setCursor (0 , 0);

102 tft.fillScreen(ST77XX_BLACK);

103 tft.setTextColor (ST77XX_WHITE);

104 tft.setTextSize (0);

105 tft.println("Hello World!");

106 tft.setTextSize (1);

107 tft.setTextColor (ST77XX_GREEN);

108 tft.print (p, 6);

109 tft.println(" Want pi?");

110 tft.println(" ");

111 tft.print (8675309 , HEX); // print 8,675 ,309 out in HEX!

112 tft.println(" Print HEX!");

113 tft.println(" ");

114 tft.setTextColor (ST77XX_WHITE);

115 tft.println("Sketch has been");

116 tft.println(" running for: ");

117 tft.setTextColor (ST77XX_MAGENTA);

118 tft.print (millis () / 1000);

119 tft.setTextColor (ST77XX_WHITE);

120 tft.print (" seconds.");

121 }

122

123 void testlines(uint16_t color) {

124 // Drawing lines to test display

125 }

126

127 void testdrawtext (char *text , uint16_t color) {

128 // Drawing text to test display

129 }

60

Appendix C: Coding for Real-Time Image Classification System

1 #include <test_inferencing.h>

2 #define CAMERA_MODEL_AI_THINKER

3

4 #include " img_converters.h"

5 #include "image_util.h"

6 #include "esp_camera.h"

7 #include "camera_pins.h"

8

9 #include <Adafruit_GFX.h> // Core graphics library

10 #include <Adafruit_ST7735.h> // Hardware - specific library for ST7735

11

12 #define TFT_SCLK 14 // SCL

13 #define TFT_MOSI 13 // SDA

14 #define TFT_RST 12 // RES (RESET)

15 #define TFT_DC 2 // Data Command control pin

16 #define TFT_CS 15 // Chip select control pin

17 // BL (back light) and VCC -> 3V3

18

19 #define BTN 4 // button (shared with flash led)

20

21 dl_matrix3du_t *resized_matrix = NULL;

22 ei_impulse_result_t result = {0};

23

24 Adafruit_ST7735 tft = Adafruit_ST7735(TFT_CS , TFT_DC , TFT_MOSI , TFT_SCLK , TFT_RST);

25

26 // setup

27 void setup () {

28 Serial.begin (115200);

29

30 // button

31 pinMode(4, INPUT);

32

61

33 // TFT display init

34 tft.initR (INITR_GREENTAB);

35 tft.setRotation (0);

36 tft.fillScreen(ST77XX_BLACK);

37

38 // cam config

39 camera_config_t config;

40 config. ledc_channel = LEDC_CHANNEL_0;

41 config.ledc_timer = LEDC_TIMER_0;

42 config.pin_d0 = Y2_GPIO_NUM ;

43 config.pin_d1 = Y3_GPIO_NUM ;

44 config.pin_d2 = Y4_GPIO_NUM ;

45 config.pin_d3 = Y5_GPIO_NUM ;

46 config.pin_d4 = Y6_GPIO_NUM ;

47 config.pin_d5 = Y7_GPIO_NUM ;

48 config.pin_d6 = Y8_GPIO_NUM ;

49 config.pin_d7 = Y9_GPIO_NUM ;

50 config.pin_xclk = XCLK_GPIO_NUM;

51 config.pin_pclk = PCLK_GPIO_NUM;

52 config.pin_vsync = VSYNC_GPIO_NUM;

53 config.pin_href = HREF_GPIO_NUM;

54 config. pin_sscb_sda = SIOD_GPIO_NUM ;

55 config. pin_sscb_scl = SIOC_GPIO_NUM ;

56 config.pin_pwdn = PWDN_GPIO_NUM ;

57 config.pin_reset = RESET_GPIO_NUM ;

58 config. xclk_freq_hz = 20000000;

59 config. pixel_format = PIXFORMAT_JPEG;

60 config.frame_size = FRAMESIZE_240X240;

61 config. jpeg_quality = 10;

62 config.fb_count = 1;

63

64 // camera init

65 esp_err_t err = esp_camera_init (& config);

62

66 if (err != ESP_OK) {

67 Serial.printf("Camera init failed with error 0x%x", err);

68 return ;

69 }

70

71 sensor_t * s = esp_camera_sensor_get ();

72 if (s->id.PID == OV3660_PID) {

73 s->set_vflip(s, 1); // flip it back

74 s->set_brightness(s, 1); // up the brightness just a bit

75 s->set_saturation(s, 0); // lower the saturation

76 }

77

78 Serial.println("Camera Ready !...(standby , press button to start)");

79 tft_drawtext (4, 4, " Standby ", 1, ST77XX_BLUE);

80 }

81

82 // main loop

83 vo id loop() {

84

85 // wait until the button is pressed

86 while (! digitalRead(BTN));

87 delay (100);

88

89 // capture a image and classify it

90 String result = classify ();

91

92 // display result

93 Serial.printf("Result : %s\n", result);

94 tft_drawtext (4, 120 - 16, result , 2, ST77XX_GREEN);

95 }

96

97 // classify labels

98 St ring classify () {

63

99

100 // run image capture once to force clear buffer

101 // otherwise the captured image below would only show up next time you pressed the button !

102 capture_quick ();

103

104 // capture image from camera

105 if (! capture ()) return "Error";

106 tft_drawtext (4, 4, " Classifying ...", 1, ST77XX_CYAN);

107

108 Serial.println("Getting image ...");

109 signal_t signal;

110 signal.total_length = EI_CLASSIFIER_INPUT_WIDTH * EI_CLASSIFIER_INPUT_WIDTH ;

111 signal.get_data = & raw_feature_get_data;

112

113 Serial.println("Run classifier ...");

114 // Feed signal to the classifier

115 EI_IMPULSE_ERROR res = run_classifier (&signal , &result , false /* debug */);

116 // --- Free memory ---

117 dl_matrix3du_free(resized_matrix);

118

119 // --- Returned error variable "res " while data object .array in " result " ---

120 ei_printf(" run_classifier returned: %d\n", res);

121 if (res != 0) return "Error";

122

123 // --- print the predictions ---

124 ei_printf(" Predictions (DSP: %d ms., Classification: %d ms., Anomaly: %d ms.): \n",

125 result .timing.dsp , result.timing.classification , result .timing.anomaly);

126 int index;

127 float score = 0.0;

128 for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {

129 // record the most possible label

130 if (result. classification[ix]. value > score) {

131 score = result.classification[ix]. value;

64

136 }

137

138 #if EI_CLASSIFIER_HAS_ANOMALY == 1

139 ei_printf(" anomaly score: %f\r\n", result .anomaly);

140 #endif

141

142 // --- return the most possible label ---

143 return String(result.classification[index].label);

144 }

145

146 // quick capture (to clear buffer)

147 void capture_quick () {

148 camera_fb_t *fb = NULL;

149 fb = esp_camera_fb_get ();

150 if (! fb) return ;

151 esp_camera_fb_return(fb);

152 }

153

154 // capture image from cam

155 bool capture () {

156

157 Serial.println("Capture image ...");

158 esp_err_t res = ESP_OK ;

159 camera_fb_t *fb = NULL;

160 fb = esp_camera_fb_get ();

161 if (!fb) {

162 Serial.println(" Camera capture failed");

163 return false;

164 }

132 index = ix;

133 }

134 ei_printf(" %s: \t%f\r\n", result .classification[ix].label , result .classification[ix]. value);

135 tft_drawtext (4, 12 + 8 * ix , String(result .classification[ix]. label) + " " + String(result .classi

65

165

166 // --- Convert frame to RGB888 ---

167 Serial.println("Converting to RGB888 ...");

168 // Allocate rgb888_matrix buffer

169 dl_matrix3du_t *rgb888_matrix = dl_matrix3du_alloc (1, fb ->width , fb->height , 3);

170 fmt2rgb888(fb->buf , fb->len , fb ->format , rgb888_matrix ->item);

171

172 // --- Resize the RGB888 frame to 96x96 in this example ---

173 Serial.println("Resizing the frame buffer ...");

174 resized_matrix = dl_matrix3du_alloc (1, EI_CLASSIFIER_INPUT_WIDTH , EI_CLASSIFIER_INPUT_HEIGHT , 3);

191 int raw_feature_get_data(size_t offset , size_t out_len , float *signal_ptr) {

192

193 size_t pixel_ix = offset * 3;

194 size_t bytes_left = out_len;

195 size_t out_ptr_ix = 0;

196

197 // read byte for byte

175 image_resize_linear (resized_matrix ->item , rgb888_matrix ->item , EI_CLASSIFIER_INPUT_WIDTH , EI_CLASSI

176

177 // --- Convert frame to RGB565 and display on the TFT ---

178 Serial.println("Converting to RGB565 and display on TFT ...");

179 uint8_t *rgb565 = (uint8_t *) malloc (240 * 240 * 3);

180 jpg2rgb565(fb->buf , fb ->len , rgb565 , JPG_SCALE_2X); // scale to half size

181 tft.drawRGBBitmap(0, 0, (uint16_t *)rgb565 , 120, 120);

182

183 // --- Free memory ---

184 rgb565 = NULL;

185 dl_matrix3du_free(rgb888_matrix);

186 esp_camera_fb_return(fb);

187

188 return true ;

189 }

190

66

198 while (bytes_left != 0) {

199 // grab the values and convert to r/g/b

200 uint8_t r, g, b;

201 r = resized_matrix ->item[pixel_ix];

202 g = resized_matrix ->item[pixel_ix + 1];

203 b = resized_matrix ->item[pixel_ix + 2];

204

205 // then convert to out_ptr format

206 float pixel_f = (r << 16) + (g << 8) + b;

207 signal_ptr [out_ptr_ix] = pixel_f;

208

209 // and go to the next pixel

210 out_ptr_ix ++;

211 pixel_ix += 3;

212 bytes_left --;

213 }

214

215 return 0;

216 }

217

218 // draw test on TFT

219 void tft_drawtext (int16_t x, int16_t y, String text , uint8_t font_size , uint16_t color) {

220 tft.setCursor (x, y);

221 tft.setTextSize(font_size); // font size 1 = 6x8, 2 = 12x16 , 3 = 18x24

222 tft.setTextColor (color);

223 tft.setTextWrap(true);

224 tft.print (strcpy(new char [text .length() + 1], text.c_str ()));

225 }

67

Appendix D: Coding for Test Inferencing

1

2 #ifndef _EI_CLASSIFIER_MODEL_VARIABLES_H_

3 #define _EI_CLASSIFIER_MODEL_VARIABLES_H_

4

5 #include <stdint.h>

6 #include " model_metadata.h"

7

8 #include "tflite -model/tflite_learn_5_compiled.h"

9 #include "edge -impulse -sdk/classifier/ei_model_types .h"

10 #include "edge -impulse -sdk/classifier/inferencing_engines/engines.h"

11

12 const char* ei_classifier_inferencing_categories [] = { "defect ", "non defect " };

13

14 uint8_t ei_dsp_config_3_axes [] = { 0 };

15 const uint32_t ei_dsp_config_3_axes_size = 1;

16 ei_dsp_config_image_t ei_dsp_config_3 = {

17 3, // uint32_t blockId

18 1, // int implementationVersion

19 1, // int length of axes

20 "RGB" // select channels

21 };

22

23 const size_t ei_dsp_blocks_size = 1;

24 ei_model_dsp_t ei_dsp_blocks[ei_dsp_blocks_size] = {

25 { // DSP block 3

26 27648 ,

27 &extract_image_features ,

28 (void *)& ei_dsp_config_3 ,

29 ei_dsp_config_3_axes ,

30 ei_dsp_config_3_axes_size

31 }

32 };

68

41

54

55 const size_t ei_learning_blocks_size = 1;

56 const ei_learning_block_t ei_learning_blocks[ei_learning_blocks_size] = {

57 {

58 &run_nn_inference ,

59 (void *)& ei_learning_block_config_5 ,

60 EI_CLASSIFIER_IMAGE_SCALING_NONE ,

61 },

62 };

63

64 const ei_model_performance_calibration_t ei_calibration = {

65 1, /* integer version number */

33 cons t ei_config_tflite_eon_graph_t ei_config_tflite_graph_5 = {

34 .implementation_version = 1,

35 .model_init = &tflite_learn_5_init ,

36 .model_invoke = & tflite_learn_5_invoke ,

37 .model_reset = & tflite_learn_5_reset ,

38 .model_input = & tflite_learn_5_input ,

39

40 };

.model_output = &tflite_learn_5_output ,

42 cons t ei_learning_block_config_tflite_graph_t ei_learning_block_config_5 = {

43 .implementation_version = 1,

44 .block_id = 5,

45 .object_detection = 0,

46 .object_detection_last_layer = EI_CLASSIFIER_LAST_LAYER_UNKNOWN ,

47 . output_data_tensor = 0,

48 .output_labels_tensor = 1,

49 . output_score_tensor = 2,

50 .quantized = 1,

51 .compiled = 1,

52 .graph_config = (void *)& ei_config_tflite_graph_5

53 };

69

66 false , /* has configured performance calibration */

67 (int32_t)(EI_CLASSIFIER_RAW_SAMPLE_COUNT / ((EI_CLASSIFIER_FREQUENCY > 0) ? EI_CLASSIFIER_FREQUEN

68 0.8f, /* Default threshold */

69 (int32_t)(EI_CLASSIFIER_RAW_SAMPLE_COUNT / ((EI_CLASSIFIER_FREQUENCY > 0) ? EI_CLASSIFIER_FREQUEN

70 0 /* Don ’t use flags */

71 };

72

73 const ei_impulse_t impulse_321138_3 = {

74 .project_id = 321138,

75 .project_owner = "Muhammad adni",

76 .project_name = "test",

77 .deploy_version = 3,

78

79 .nn_input_frame_size = 27648,

80 .raw_sample_count = 9216,

81 .raw_samples_per_frame = 1,

82 .dsp_input_frame_size = 9216 * 1,

83 .input_width = 96,

84 .input_height = 96,

85 .input_frames = 1,

86 .interval_ms = 1,

87 . frequency = 0,

88 .dsp_blocks_size = ei_dsp_blocks_size ,

89 .dsp_blocks = ei_dsp_blocks ,

90

91 .object_detection = 0,

92 .object_detection_count = 0,

93 .object_detection_threshold = 0,

94 .object_detection_last_layer = EI_CLASSIFIER_LAST_LAYER_UNKNOWN ,

95 .fomo_output_size = 0,

96

97 .tflite_output_features_count = 2,

98 .learning_blocks_size = ei_learning_blocks_size ,

70

99 .learning_blocks = ei_learning_blocks ,

100

101 .inferencing_engine = EI_CLASSIFIER_TFLITE ,

102

103 .sensor = EI_CLASSIFIER_SENSOR_CAMERA ,

104 .fusion_string = " image",

105 .slice_size = (9216/4) ,

106 .slices_per_model_window = 4,

107

108 .has_anomaly = 0,

109 .label_count = 2,

110 .calibration = ei_calibration ,

111 .categories = ei_classifier_inferencing_categories

112 };

113

114 cons t ei_impulse_t ei_default_impulse = impulse_321138_3 ;

115

116 # end if // _EI_CLASSIFIER_MODEL_METADATA_H_

	MUHAMMAD ADNI BIN KAMARUDDIN
	2024
	MUHAMMAD ADNI BIN KAMARUDDIN
	in partial fulfilment of the requirements for the
	Faculty of Electronics and Computer Technology and
	2024
	DECLARATION
	APPROVAL
	DEDICATION
	ABSTRACT
	ABSTRAK

	ACKNOWLEDGEMENT
	TABLE OF CONTENTS
	DECLARATION APPROVAL DEDICATION
	LIST OF TABLES
	FIGURETITLEPAGE
	LIST OF APPENDICES
	INTRODUCTION
	1.1Background
	1.2Problem Statement
	1.3Project Objectives
	1.4Scope of Work
	1.5Report Outline
	CHAPTER 2
	2.1Image Processing and Classification
	2.1.1Architecture of Neural Network
	2.1.2Micro Neural Network
	2.2Known Techniques of Image Classification System
	2.3Summary
	CHAPTER 3
	3.1Description of Methodology
	3.1.1Dataset Training with Edge Impulse
	3.1.2Implementation of Image Classification System
	3.1.3Prediction Accuracy Evaluation
	3.2Gantt Chart
	3.3Summary
	CHAPTER 4
	4.1Edge Impulse Modelling
	4.1.1Datasets Compilation for Defect and Non-Defect ICs
	4.1.2Edge Impulse Image Classification
	4.2Hardware and Software Intergration
	4.2.1Fritzing Design
	4.2.2Circuit Assembly
	4.2.3Real-Time System Accuracy
	4.3Advantages and Disadvantages of the Proposed Solut
	4.4Summary
	CHAPTER 5
	5.1Conclusion
	5.2Future Works
	5.3Project Commercialization
	REFERENCES
	APPENDICES
	Appendix B: Coding for Graphic Test TFT ST7735S
	Appendix C: Coding for Real-Time Image Classificat
	Appendix D: Coding for Test Inferencing

