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ABSTRACT 

This research project focuses on developing a phishing detection model to address the 

increasing threat of phishing attacks. The objective is to design and apply classification 

techniques to analyze phishing websites and improve accuracy. The study aims to provide 

users with effective tools to identify and protect themselves from phishing attempts, 

enhancing online security. The research utilizes a phishing dataset and applies techniques 

for model training and testing. Classification techniques are used to categorize websites as 

benign or phishing. The accuracy of these techniques is evaluated using metrics like 

confusion matrix, classification report, and accuracy score. The results demonstrate the 

effectiveness of the techniques in accurately detecting and classifying phishing websites. 

The developed model contributes to ongoing efforts in mitigating phishing attacks and 

protecting sensitive information by using a dual-model approach of each model having an 

accuracy of 74% for Logistic Regressiona and 64% for Gradient Boost Classifier 

respectively. In conclusion, this research shows that the classification techniques, when 

applied to the phishing dataset, yield promising results in identifying and classifying 

phishing websites. Overall, this project provides valuable insights into developing effective 

tools for combating phishing attacks and promoting online security. 
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ABSTRAK 

Projek penyelidikan ini memberi fokus kepada pembangunan model pengesanan phishing 

untuk mengatasi ancaman peningkatan serangan phishing. Objektif adalah untuk merancang 

dan menggunakan teknik klasifikasi untuk menganalisis laman web phishing dan 

meningkatkan ketepatan. Kajian ini bertujuan untuk menyediakan pengguna dengan alat 

yang efektif untuk mengenal pasti dan melindungi diri daripada percubaan phishing, 

meningkatkan keselamatan dalam talian. Penyelidikan ini menggunakan dataset phishing 

dan menggunakan teknik untuk latihan dan pengujian model. Teknik-teknik klasifikasi 

digunakan untuk mengkategorikan laman web sebagai phishing dan selamat. Ketepatan 

teknik-teknik ini dinilai menggunakan metrik seperti matriks confusion, laporan klasifikasi, 

dan skor ketepatan. Keputusan menunjukkan keberkesanan teknik-teknik ini dalam 

mengesan dan mengkategorikan laman web phishing dengan tepat. Model yang dibangunkan 

menyumbang kepada usaha berterusan dalam meredakan serangan phishing dan melindungi 

maklumat yang sensitif menggunakan pendekatan model dwi di mana setiap model 

mempunyai ketepatan sebanyak 74% untuk Logistic Regression dan 64% untuk Gradient 

Boost Classifier masing-masing. yang mempunya . Kesimpulannya, penyelidikan ini 

menunjukkan bahawa teknik-teknik klasifikasi, apabila digunakan pada dataset phishing, 

memberikan hasil yang menjanjikan dalam mengenal pasti dan mengkategorikan laman web 

phishing. Secara keseluruhan, projek ini memberikan pandangan berharga dalam 

membangunkan alat yang efektif untuk memerangi serangan phishing dan mempromosikan 

keselamatan dalam talian. 
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INTRODUCTION 

1.1 Background 

      Cybersecurity is essential in safeguarding individuals and organizations from 

online threats, with phishing attacks posing a significant risk worldwide. Machine learning 

models have emerged as a promising solution for detecting and preventing such attacks. 

By analyzing data and identifying patterns associated with phishing URLs, these models 

can differentiate between legitimate and malicious links (Jang-Jaccard & Nepal, 2014). 

This project focuses on developing a robust phishing URL detection system using state-of-

the-art machine learning algorithms. By accurately identifying and blocking malicious 

URLs in real-time, the system aims to protect users' sensitive information, prevent financial 

losses, and mitigate reputational damage caused by phishing scams. Integrating machine 

learning models into existing security systems enhances their effectiveness and provides 

an additional layer of defense against evolving phishing techniques. Ultimately, this project 

contributes to a safer online environment by leveraging artificial intelligence and data 

analysis to foster trust and protect sensitive information in the digital realm.      

1.2 Addressing Cybercrimes involving malicious URLs using Artificial 

Intelligence (AI) 

       Cybercrimes involving malicious URLs, such as phishing attacks, malware 

distribution, and other forms of online fraud, pose a significant threat to individuals, 

organizations, and society as a whole. Due to the constantly developing nature of cyber 
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threats, conventional ways of detecting and managing such risks  frequently fall short. To 

combat cybercrimes employing harmful URLs, Artificial Intelligence (AI) has emerged as 

a possible approach. AI-powered systems can quickly and accurately identify dangerous 

URLs by analyzing enormous volumes of data in real-time. Large datasets of well-known 

harmful URLs and other relevant data can be used to train machine learning algorithms to 

spot patterns and traits common to bad URLs. Then, these algorithms can be used in real-

time to scan and analyze URLs automatically, identifying those that are probably harmful 

for additional examination or blocking.  

      In conclusion, AI has demonstrated significant promise in combating harmful 

URL-related cybercrimes. It is an effective tool in the battle against cybercrime because of 

its capacity to analyze significant volumes of data in real-time, spot patterns, and adapt to 

emerging threats. To stay up with the changing threat landscape, organizations must be 

attentive and regularly upgrade their cybersecurity safeguards. 

1.3 Problem Statement 

     In today's interconnected world, ensuring robust cybersecurity measures is 

paramount. However, three critical problem statements pose significant challenges that 

demand immediate attention. These challenges include insufficient user awareness and 

education, rapidly evolving cyber threats, and inadequate collaboration and information 

sharing. Addressing these problems is crucial for a secure digital future. 

     Insufficient user awareness and education remain a primary challenge in 

cybersecurity. Many individuals are unaware of the tactics employed by cybercriminals, 

making them easy targets. Comprehensive educational initiatives are necessary to raise 

awareness about common threats and promote safe online practices. 
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     Rapidly evolving cyber threats present another challenge. Cybercriminals adapt 

techniques to exploit vulnerabilities, surpassing traditional security measures. Continuous 

research, proactive defense mechanisms, and adoption of advanced technologies like 

artificial intelligence are crucial for early detection and response. 

     Inadequate collaboration and information sharing hinder effective cybersecurity. 

Establishing frameworks for public-private partnerships and fostering international 

cooperation can enhance overall cybersecurity posture and enable swift responses to 

emerging threats. 

     In conclusion, integrating machine learning into cybersecurity provides a 

proactive solution to the challenges of user awareness, evolving threats, and 

collaboration. It enables early detection and mitigation of cyber attacks, enhancing 

overall defense capabilities and ensuring a more secure digital environment. 

  

1.4 Project Objective 

     The main aim of this project is to design and develop a website that can take URLs 

as input and predict whether it’s a good or bad URL using AI. Specifically, the objectives 

are as follows: 

 To design classification techniques for analyzing phishing. 

 To apply different classification techniques to phishing dataset. 

 To evaluate the accuracy of results using different methods. 

1.5 Scope of Project 

The scope of this project are as follows:   
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    Data collection: Collecting a comprehensive dataset of known malicious  

   URLs from public sources or using web scraping techniques. This dataset 

   will be used to train and validate the machine learning model. 

    Model development: Develop a deep learning based model using machine 

   learning to classify URLs as malicious or benign based on extracted     

   features. 

    Model training and evaluation: Training the model on the collected dataset 

   and evaluating it’s performance. 

    Web development: Building a user-friendly web application to demonstrate 

   the functionality of the model.The web application will allow users to input  

   an URL and receive an output indicating whether the URL is malicious or 

   benign. 

    Deployment: Deploying the trained model and the web application on a           

   local server 
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LITERATURE REVIEW 

2.1 Introduction 

     This chapter will include a literature study that includes a definition of phishing, 

machine learning and other topics, as well as a critical analysis of the current issue, a 

proposed solution, and a conclusion. The goal of the literature review is to  explain the 

subject, including definitions, classifications, and other elements. The purpose of this 

review of the literature is to give the researcher more knowledge based on the project work. 

The following section will go into greater detail on phishing, machine learning, 

classification strategies, parameter measurement and other topics. The proposed solution 

for the full project's issue will be presented at the conclusion of the literature review. The 

project outcome and output were submitted after gathering information from articles and 

the past, followed by a milestone.   

2.2 Phishing 

     This section will discuss phishing, including its definition, several classifications, 

and different sorts of attacks. For this project, URL phishing will be the primary attack type 

that we concentrate on. 

2.2.1 Definition 

     There are many definitions of “phishing” that have been put forth and studied by 

experts, researchers, and cybersecurity organizations. Even though the term “phishing’ lacks 

a set definition due to its ongoing evolution, it has been interpreted in a variety of ways 
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depending on its usage and context. The de facto definition of phishing attacks in general is 

the process of deceiving the recipient into taking the attacker’s desired action. As per some 

definitions websites are the  only media that can be used to some definitions. Phishing is 

described as “a fraudulent activity that involves the creation of a replica of an existing web 

page to trick an user into submitting personal, financial, or password data” in the study 

(Merwe et al., 2005, p. 1). By providing the user malicious links that direct them to a phoney 

website, phishing is an attempt to deceive a user into giving personal information, such as 

bank account and credit card data. Some people claim that emails are the only attack channel. 

Phishing, for instance, is described as "a fraudulent attempt, typically made through email 

to steal your personal information" by PishTank (2006). According to Kirda and Kruegel 

(2005), phishing is "a form of online identity theft that aims to steal sensitive information 

such as online banking passwords and credit card information from users." According to 

certain definitions, using combined social and technical abilities is important. In the case of 

phishing, the APWG describes it as "a criminal mechanism employing both social 

engineering and technical subterfuge to steal consumers' personal identity data and financial 

account credentials" (APWG, 2018, p.1). 

2.2.2 Impact of Phishing Attacks on Society 

     Phishing is one of the most organized crimes of the 21st century. Phishing attacks 

can have a negative effect on society in several ways, including  money losses, identity 

theft, harm to one's reputation, and emotional suffering. Intentionally targeting their 

employees, phishing efforts were discovered by more than 80% of worldwide firms. Over 

255 million phishing attacks were launched in 2022, according to the State of Phishing 2022 

report by messaging security provider SlashNext, a startling 61% increase from 2021. The 

analysis also made clear that some security measures are unable to counteract these dangers 
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because hackers frequently conduct attacks using commercial and personal messaging apps 

as well as well-known providers like Microsoft, Amazon Web providers, and Google. Based 

on IBM’s 2022 cost of Data Breach Report, phishing was the second most common cause of 

data breaches at 16% costing an average of $4.9 million. The industry that was found to be 

the most vulnerable to phishing attacks in Q1 of 2022 was the financial sector at 23.6% 

followed by the software-as-a- Service (SAAS) sector at 20.5% and nextly the e-commerce 

site at  14.6% of the overall sectors which were targeted at. However, the cost of a breach 

caused by a successful phishing attack was the highest in the healthcare sector. In terms of 

individuals, millennials and Gen-Z internet users were the most likely to fall victim to 

phishing attacks at 23% compared to 19% of Generation X internet users which is because 

the number of elders and time spent by them on the internet being significantly lower 

compared to the younger generation (AAG IT Services, 2023). In these cases, individuals 

are targeted to get access to their device or steal users personal information especially bank 

details by mimicking a legitimate websites such as banks or social media. 

 

2.2.3 Types of Phishing Attacks  

     This section will discuss about the common phishing types that are used by attackers 

to impersonate individuals or organizations to trick people into providing sensitive 

information. 

2.2.3.1 Spear Phishing 

     In spear phishing, a specific person within an organization is targeted in an effort to 

obtain their login information. Before attacking, the attacker usually first learns about the 

victim, including their name, title, and contact information. 
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2.2.3.2 Search Engine Phishing 

     Attackers utilize search engine optimization strategies to build phony websites that 

show up at the top of search results for well-known phrases, such as banks in an effort to 

deceive visitors into providing their personal data. 

2.2.3.3 Email Phishing 

     Attackers deceive users into clicking on links or downloading attachments that lead 

to phishing or malware-containing websites by sending fraudulent emails that look to be 

from a reliable source, such a bank or an e-commerce site. 

2.2.3.4 Smishing and Vishing 

     In smishing (SMS phishing) and vishing (voice phishing), mobile phones take the 

place of email. Attackers that engage in the practise of smishing send texts with deceptive 

material that resembles phishing emails. Vishing refers to phone calls in which the con artist 

speaks directly to the victim. 

2.2.3.5 Whaling 

     This type of spear phishing targets senior executives or those with access to important 

data or resources, including CFOs or CEOs. 

 

2.2.3.6 Social Media Phishing 

     Attackers use phony social media identities to pose as real people or businesses in 

order to deceive users into disclosing sensitive information or clicking on harmful links. 
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2.2.3.7 Watering Hole Phishing 

     In a watering hole phishing attack, a hacker determines a website that a particular 

user demographic frequently visits. Then, in an effort to break into the network, they use it 

to infect the users' computers. 

      

2.2.3.8 Malware-Based Phishing 

     Attackers can steal sensitive data like passwords or credit card details by infecting a 

user's device with malware. 

2.2.4 Phishing Techniques 

     In this section we will discuss about the phishing techniques which refer to the 

different methods that the attacker uses to carry out a phishing attack. 

2.2.4.1 Spoofing 

     Spoofing is a technique in which attackers can deceive victims into disclosing 

sensitive information by pretending to be a reputable source. Examples of spoofing 

techniques used in phishing attacks are: 

• Website Spoofing  

To fool victims into providing sensitive information, attackers establish fake    

websites that mimic real ones. 

• Caller ID Spoofing 

• To appear as though they are calling from a trusted soource, attackers employ a 

phoney caller ID. 

• Email Spoofing 
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• Attackers employ a bogus email address or change an email’s “From” field to 

make it seem as though it was sent by a reliable source. 

2.2.4.2 Link Manipulation 

     Attackers employ link manipulation to trick users into clicking on links that look 

legitimate but direct them to phishing sites or malicious software. In phishing attempts, link 

manipulation tactics like the following are typical examples: 

• Attackers employ URL shorteners to conceal a link's actual location. A link to a 

phishing website, for instance, could appear to be for a reputable website. 

• Attackers build URLs that look similar to authentic ones but have mistakes in 

them. For instance, a URL similar to www.facebok.com might be used to deceive 

consumers into thinking they are accessing the official www.facebook.com. 

• Homograph Attacks is when attackers build URLs that resemble genuine ones by 

using special characters or internationalized domain names (IDNs). For instance, 

a URL similar to "www.google.com" (notice the Latin "o" has been replaced with 

a Cyrillic "о") could be used to deceive users into believing they are accessing 

the genuine "www.google.com." 

 

2.2.4.3 Malware Injection 

     Software that is intended to harm or exploit a computer system is known as malware. 

Attackers can steal private data from a victim's device using malware, including login 

passwords or financial information. Malware used in phishing attempts includes, for 

instance: 

• Keyloggers are malicious programmes that keep track of a victim's keystrokes 

and can be used to steal login details and other private data. 
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• Trojans known as remote access tools (RATs) give an attacker access to a victim's 

device and sensitive data from a distance. 

• Ransomware encrypts a victim's files and demands payment in exchange for the 

decryption key. 

 

2.2.4.4 Mass Target 

     A mass target phishing assault is one in which the attacker sends a lot of phishing 

emails or messages to a big group of people in the hopes that at least some of the recipients 

will fall for the con. Since the attacker's intention is to target a large number of people, they 

frequently use generic language and may not tailor their message to each recipient in a mass 

target phishing attack.  

 

2.3 Machine Learning 

      In this section we will discuss the definition of machine learning, types of machine 

 learning and tools that we will be using in this project.  

2.3.1 Definition 

     A branch of artificial intelligence known as "machine learning" focuses on creating 

algorithms and statistical models that let computers learn from data without having to be 

explicitly programmed (Alpaydin, E., 2010). In this branch of artificial intelligence, data and 

algorithms are used to replicate human learning, allowing machines to improve over time, 

become more accurate when classifying objects or making predictions, or uncover data-

driven insights. In order to identify patterns and categorise data sets, it first uses a 

combination of data and algorithms. Then, it evaluates accuracy by using an error function. 
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Finally, it maximises the fit of the data points into the model ("What Is Machine Learning? 

| IBM"). The streamlined description of how machine learning operates is shown in Figure 

2.1 below. 

 

 

 

2.3.2 Types of Machine Learning 

      To teach a machine to learn and make predictions, detect patterns, or classify data, 

a lot of data must be presented to it. Supervised, unsupervised, and reinforcement learning 

are the three categories of machine learning. 

       

2.3.2.1 Supervised Learning 

     Giving machine learning algorithms known historical input and output data allows 

for supervised learning to take place. The algorithm modifies the model in each step after 

processing each input-output pair to produce an output as near to the intended result as 

possible. 

       "Supervised learning can be used to make predictions, recognize data, or     

       classify it." 

     For instance, information from tens of thousands of bank transactions could be fed 

into a model, with each transaction being classified as either real or fraudulent. The model 

will be able to identify trends that led to "fraudulent" or "not fraudulent" outputs and, with 

Figure 2.1: Machine Learning Work (“Types of Machine Learning | Simplilearn”) 
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time, it will develop the ability to forecast if a particular transaction is fraudulent. Historical 

data, computer simulations, or labelling human data can all be used to generate input and 

output data. In situations where unstructured data, such as pictures, videos, audio, or text, is 

present, specific characteristics or categorizations may be used as output information. Data 

can be anticipated, recognised, and categorised using supervised learning. The visual 

representation of how supervised learning functions is presented in Figure 2.2 below. 

 

 

 

 

 

 

2.3.2.2 Unsupervised Learning 

     Contrary to supervised learning, unsupervised learning does not use the same labelled 

training sets and data. The computer instead looks for less obvious patterns in the data. When 

it comes to recognising patterns and rendering conclusions based on data, this kind of 

machine learning is highly helpful. An illustration of it is shown in Figure 2.3 below. 

Unsupervised learning methods including Hidden Markov models, k-means clustering, and 

Gaussian mixture models are frequently used. 

     Let's take the supervised learning case where you didn't know which customers had 

loan defaults. Instead, you would provide the computer borrower data, and it would look for 

Figure 2.2: Machine Learning Work (“Types of Machine Learning | Simplilearn”) 
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trends among the borrowers before grouping them into various clusters.It is usual practise to 

use this kind of machine learning while creating prediction models.  

     Two further typical applications are clustering, which creates a model that groups 

objects together based on predetermined characteristics, and association, which identifies 

the rules that connect the clusters. 

 

 

 

 

 

 

 

 

2.3.2.3 Reinforcement Learning 

     Reinforcement learning is the machine learning technique that most closely matches 

human learning. The algorithm or agent being used learns by interacting with its 

surroundings and getting rewards, whether positive or negative. Common algorithms include 

deep adversarial networks, Q-learning, and temporal differences. 

     As same as the bank loan client example, use a reinforcement learning system can be 

used to look at customer data. If the system classifies them as high-risk and they default, the 

algorithm benefits. If they don't default, the program gives them a negative reward. Both 

instances, in the end, help machine learning by increasing its awareness of the problem and 

its surroundings. 

Figure 2.3: Machine Learning Work (“Types of Machine Learning | Simplilearn”) 
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2.3.3 Machine and Deep Learning Frameworks 

     In this section we will discuss about what tools or frameworks will be used in this 

project. There were various frameworks available for machine learning to make 

classifications or not. 

2.3.3.1 Pytorch 

    PyTorch is an open-source machine learning framework that is based on the Torch 

library. This framework is free and open-source, and it was developed by FAIR (Facebook's 

AI Research unit). It's a well-known machine learning framework that may be used for many 

different tasks, including computer vision and natural language processing. The Python 

interface of PyTorch is more interactive than the C++ interface (“PyTorch”). On top of 

PyTorch, other deep learning tools have been developed,  including PyTorch Lightning, 

Hugging Face's Transformers, Tesla Autopilot and  etc. 

Figure 2.4: Machine Learning Work (“Types of Machine Learning | Simplilearn”) 
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2.3.3.2 TensorFlow 

     TensorFlow is one of the most popular open-source libraries for developing deep 

learning and machine learning models. It was created by the Google Brain Team and 

provides a JS library. It is quite well-liked by machine learning aficionados, who utilise it to 

create various ML applications. For large-scale machine learning and deep learning projects 

in particular, it provides a potent library, tools, and resources for numerical computing. It 

makes it possible for ML developers and data scientists to quickly create and implement 

machine learning applications. TensorFlow offers a high-level Keras API for training and 

creating ML models, making it simple for users to get started with TensorFlow and machine 

learning (“TensorFlow”). 

2.3.3.3 Scikit Learn 

     One of the best open-source frameworks for beginning machine learning is scikit-

learn. Because of its high-level wrappers, users may experiment with various methods and 

examine a variety of classification, clustering, and regression model. Simply by unpacking 

the code and following the dependencies, scikit-learn can also be a fantastic technique for 

the inquisitive mind to obtain more insight into the models (F. Pedregosa, G. Varoquaux, et 

al, 2011). The documentation for Scikit-learn is comprehensive and simple to read for both 

novices and experts. Scikit-learn is excellent for machine learning solutions with a 

constrained time and resource budget. It is solely machine learning-focused and has played 

a key role in popular brands' predictive solutions over the past few years. 

2.3.3.4 Microsoft Azure Machine Learning 

     Thanks to Azure Machine Learning, data scientists and developers can create, 

release, and maintain high-quality models more rapidly and with greater assurance. It 
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decreases time to value with market-leading machine learning operations (MLOps), open-

source interoperability, and integrated tools. For moral machine learning applications of 

artificial intelligence, this trustworthy platform was developed ("Azure Machine Learning - 

ML as a Service | Microsoft Azure"). 

2.3.3.5 Jupyter Notebook 

     The Jupyter Notebook is an incredibly powerful tool for interactively designing and 

presenting data science projects. A notebook integrates code and its output in a single 

document that includes narrative language, mathematical equations, and other rich media. 

For better readability, reproducibility, and sharing of your work, it's a single page where you 

can run code, view the results, add reasons, formulas, and charts. Although Jupyter 

Notebooks support a wide range of programming languages, this post will focus on Python 

because it is the most popular language. Among R users, R Studio is often a more preferred 

solution. 

2.4 Machine Learning Algorithm Selection 

     In this section we will discuss about the suitable types of algorithms that can be 

used in this project.  

      

2.4.1 Types of the Algorithms 

     Machine learning techniques have been extensively investigated and used in phishing 

URL detection. The numerous kinds of algorithms that are accessible are illustrated here. 
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2.4.1.1 Decision Tree Algorithm 

     It ranks among the most widely used machine learning algorithms. The decision tree 

approach is easy to understand and apply. Starting with the best splitter among the traits that 

can be classified, or the tree's root, is the first task of a decision tree. Before reaching the leaf 

node, the algorithm keeps expanding the tree. Each internal node in a decision tree 

representation represents an attribute, whereas each leaf node represents a class label. Target 

values or classes are forecast using this training model. To calculate these nodes, the decision 

tree method uses the Gini index and information gain approaches ("Support Vector 

Machines: A Simple Explanation - KDnuggets"). 

2.4.1.2 Random Forest Algorithm 

     The random forest method, one of the most effective machine learning algorithms, is 

based on the concept of the decision tree algorithm. There are many decision trees in the 

forest, which was built using the random forest method. A huge number of trees provide 

high detection accuracy. The process of creating a tree employs the bootstrap methodology. 

Using attributes and samples from the dataset that are randomly selected, a single tree is built 

using the bootstrap method. The random forest method will choose the best splitter from 

among the randomly chosen features for categorization, much as the decision tree approach. 

The method also uses information gain and the Gini index to do this. This process will 

continue until the random forest yields on trees. The objective value is predicted by each tree 

in the forest, and an algorithm then determines the votes for each target forecast. The aim 

with the most votes is considered in the random forest algorithm's final forecast ("How the 

Random Forest Algorithm Works in Machine Learning - Dataaspirant"). 
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2.4.1.3 Gradient Boost Classifier  

    In order to minimise a loss function, Gradient Boosting is a functional gradient 

algorithm that continually chooses a function that points in the direction of a weak hypothesis 

or negative gradient. A powerful prediction model is created by combining multiple weak 

learning models with a gradient boosting classifier. The theory behind this kind of hypothesis 

boosting is called Probability Approximately Correct Learning (PAC). This PAC learning 

approach looks into machine learning problems to determine their level of complexity; a 

comparable approach is used with hypothesis boosting. The algorithm weights the 

observations and instances in the training set, giving harder-to-classify examples greater 

weight. The system gradually adds more inexperienced students, pairing them with the 

hardest training cases. The majority vote method is used in AdaBoost to make predictions, 

and cases are categorised based on which class gets the most votes from weak learners. 

(GeeksforGeeks). 

2.4.1.4 XG Boost Classifier 

     One of the most famous machine learning calculations in the planet is XGBoost. 

Whatever the case, whether the vaticination work is retrogression or section. The results 

produced by XGBoost are unquestionably superior to those of other AI calculations. In truth, 

it has developed the "cutting edge" machine education calculation for managing organized 

information ever since it began. XGBoost is a grade-appropriate variety of supporting 

products that has been enhanced to be exceptionally persuasive, adaptable, and portable. It 

carries out calculations for machine education using the Grade Boosting edge. XGBoost 

offers similar tree assistance (also known as GBDT or GBM) to address a variety of 

information understanding challenges (Aldawood and Skinner) quickly and accurately. 
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2.4.1.5 Logistic Regression Classifier 

     Logistic Regression is a classification method employed in the field of machine 

learning. The dependent variable is modelled using a logistic function. The dependent 

variable is binary, meaning it can only have two alternative outcomes (e.g., whether the URL 

is phishing or not). Consequently, this method is employed when handling binary data. 

Logistic regression employs the sigmoid function to yield the likelihood of a specific label. 

The Sigmoid Function is a mathematical function utilized to transform expected values into 

probabilities. The function can transform any real value into a value that falls between the 

range of 0 and 1. The logistic regression must adhere to the constraint that its value lies 

within the range of 0 to 1. As it is restricted to a maximum value of 1, it creates a sigmoidal 

curve on a graph. Here is a simple method to recognize the Sigmoid function, also known as 

the logistic function Doe, J. (2023, March 5).  

2.5 Analysis 

     In this section we will discuss about the parameters that we will use to analyze the 

data and the dataset itself. Later, we will also discuss the metric we will be using to evaluate 

the performance of a model on a particular task. 

2.5.1 Parameters 

     Parameters are an important aspect of an analysis and in this project in order to 

explore the effectiveness of using the algorithms different adjustments of parameters are 

implemented. Table 2.1 below shows the parameters of the dataset that will be used in this 

project. This helps us to chategorize a given population or  some aspect of it. 
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Parameters 

Dataset Name 

Good/Benign Bad 

(Dataset I) ✓  ✓  

(Dataset II) ✓   

Table 2.1: Parameters in Dataset 

 

2.5.2 Datasets 

     The datasets I was obtained from Kaggle notebook which consisted of 549,346 

entries. Additionally, the datasets II was retrieved from  Mendeley Data which is split into 2 

sets of training and testing. The Training set has 2 million URLs for each phishing and clean 

data. The Test set has 1 Million phish URLs and 1 million clean URLs. Both the datasets in 

this project are only using 2 parametersq which is good and bad urls. However, in Dataset II 

the good and bad urls are stored separately in 2 different files.  

      

2.5.3 Metric 

     The experiment of both training and testing is repeated many times with both SVM 

and RF algorithms. The accuracy percentage of correct decisions among all testing 

samples: 

               𝑎𝑐𝑐 =  
𝑇𝑃 +  𝑇𝑁 

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 +𝐹𝑁  
×  100% 
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     TP-True Positive counts the number of harmful URLs that have been appropriately 

tagged; The number of harmful URLs incorrectly labelled as safe is known as FN- False 

Negative; The amount of accurately labelled safe URLs is known as TN-True Negative; 

According to Xuan et al., the number of safe URLs incorrectly labelled as harmful is 

known as FP (False Positive).  

Precision is the ratio of correctly classified harmful URLs (TP) to all malicious URLs 

classified by the classifier (TP+FP). 

 

𝑎𝑐𝑐 =  
𝑇𝑃 

𝑇𝑃 + 𝐹𝑃  
×  100% 

 

Recall: is the percentage of malicious URLs correctly labeled (TP) among allmalicious 

URLs of the testing data (TP+FN).                          

 

  𝑎𝑐𝑐 =  
𝑇𝑃 

𝑇𝑃 +𝐹𝑁  
×  100% 

 

 

F1-score: is the harmonic mean of precision and recall. High F1 value means the classifier 

is good. 

𝐹1 =  
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙  
×  100% 

 

FPR (False prediction rate) is calculated as: 

 

 

𝐹𝑅𝑃 =  
𝐹𝑃 

𝐹𝑃 + 𝑇𝑁  
×  100% 

 
Both two data subsets are utilized separately to assess the machine learning algorithm's 

training performance. These data subsets each have a distinct amount of data and a varied 
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distribution of data labels, which could affect how effectively training works. The Table 2.1 

shows the Confusion Matrix. 

 

 

 Classified Malicious URL Classified Safe URL 

Real Malicious URLs TP FN 

Real Safe URLs FP TN 

Table 2.2: Confusion Matrix 

 

2.6 Deployment of Model 

      There are several ways to deploy a machine learning model in a website. Given  

 below are some common approaches.  

 

2.6.1 FastAPi 

     For integrating machine learning models into a website, many people choose 

FastAPI. Python APIs can be built using the contemporary, high-performance web 

framework FastAPI. It is highly suited for deploying machine learning models because it is 

built for speed and effectiveness (“FastAPI”). 

2.6.2 Django 

     Python's Django web framework offers a complete collection of tools and 

functionality for developing web applications. Object-Relational Mapping (ORM) system, 

authentication, and an admin interface are all included. Django is appropriate for bigger, 

more complicated projects that need a thorough framework  (Django Project). 
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2.6.3 Node.js 

     You may create server-side JavaScript applications with Node.js, a well-liked 

JavaScript runtime environment. Express.js and Koa.js are two frameworks that can be 

used to build APIs to serve machine learning models. A non-blocking, event-driven 

architecture offered by Node.js can be helpful for handling high concurrency situations 

(“About | Node.js”). 

2.6.4 Ruby on Rails 

     Rails, sometimes known as Ruby on Rails, is a Ruby-based web application 

framework. It adheres to the maxim of convention preceding configuration, with an 

emphasis on efficiency and productivity. If you prefer working with Ruby, Rails offers a 

simple and user-friendly framework for creating APIs (“Ruby on Rails”). 

2.7 Comparison of Previous Related Projects 

2.7.1 Project 1: (Ubing et al. , 2019) 

     It focuses on enhancing the accuracy of phishing website detection. The researchers 

employ a feature selection algorithm and integrate it with ensemble learning based on 

majority voting. They compare this approach to various classification models like Random 

Forest, Logistic Regression, and others. The study demonstrates that while current phishing 

detection technologies have an accuracy rate between 70% and 82.52%, their proposed 

model achieves up to 85% accuracy, outperforming existing methods. The model uses a 

combination of different learning models, demonstrating promising accuracy rates in 

experiments. 
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2.7.2 Project 2 : ( Basit et al. , 2020) 

     This journal article focuses on improving phishing attack detection. It introduces a 

novel ensemble model combining Artificial Neural Network (ANN), K-Nearest Neighbors 

(KNN), Decision Tree (C4.5), and Random Forest Classifier (RFC). This model aims to 

enhance accuracy in detecting website phishing attacks. The study demonstrates that the 

ensemble of KNN and RFC achieves a detection accuracy of 87.33%. The paper emphasizes 

the increasing importance of effective phishing detection methods in the context of rising 

cyber threats, particularly during the COVID-19 pandemic. 

2.7.3 Project 3 : (Vishva and Aju , 2021) 

     This journal presents a system for detecting phishing websites. It utilizes a novel 

approach that combines URL analysis and content analysis using TF-IDF values. The system 

employs machine learning classifiers including Logistic Regression, Random Forest, 

Support Vector Machine, Naive Bayes, and Stochastic Gradient Descent. The methodology 

achieves an accuracy of 80.68%. The study emphasizes the importance of advanced phishing 

detection in the context of growing cybersecurity threats. 

2.7.4 Project 4 : (Al-Sarem et al. , 2021 & Ghaleb Al-Mekhlafi et al. , 2022) 

     This journal discusses on an improved method for detecting phishing websites using 

an optimized stacking ensemble model. This model combines several machine learning 

algorithms, including Random Forests, AdaBoost, XGBoost, Bagging, GradientBoost, and 

LightGBM, and optimizes them using a genetic algorithm. The study tests this approach on 

multiple datasets, achieving high detection accuracy and demonstrating its effectiveness over 

traditional methods. The paper contributes significantly to cybersecurity by offering a robust 

solution to combat phishing attacks. 
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2.7.5 Project 5 : (Taha , 2021) 

     The journal proposes a novel phishing detection method. It combines multiple 

machine learning algorithms with a weighted soft voting mechanism, enhancing the 

accuracy of phishing website detection. The study uses a publicly available dataset from 

the UCI Machine Learning Repository and achieves a high accuracy rate of 83% and an 

Area Under the Curve (AUC) of 78.8%. The research underscores the efficacy of using an 

ensemble approach with weighted voting in cybersecurity applications. 

 

2.7.6 Summary 

No. Author 

reference 

Classifier Features Issues 

1 Ubing et 

al. (2019) 

The majority voting classifier 

consists of several classifiers, 

including Gaussian Naive 

Bayes, Support Vector 

Machine, k-Nearest 

Neighbours, Logistic 

Regression, Multilayer 

Perceptron Neural Network, 

Gradient Boosting, and 

Random Forest classifiers. 

The qualities of a URL 

include its lexical 

characteristics, content-

based attributes, and 

external factors such as 

DNS information and the 

reputation of the web page. 

• In majority voting, the 

individual probabilities 

assigned to each model 

are ignored. 

• The process of selecting 

features requires a 

thorough understanding of 

the domain, as the chosen 

features may not 

effectively utilise the 

dataset. 

• Content-based features 

need a higher amount of 

computational resources 

and are not secure when 

handling harmful content. 

• Additional processing 

overhead is required for 

external features such as 

DNS server-based 

features and web page 

reputation features.  
2 Basit et al. 

(2020) 

Ensemble model (combines 

two classifiers taking RFC as a 

base classifier with ANN, 

kNN and C4.5 algorithms) 

URL lexical features, 

content-based features, 

external features such as 

DNS information, 

reputation of the web page 

• The importance of the 

base classifiers is 

disregarded. 

 • Extracting features 

requires time, particularly 

for external data, and 

analysing content might 

lead to security concerns.  
3 Vishva and 

Aju (2021) 

URL analysis: Uses default 

feature set and three machine 

URL features and content 

features 

• Weightage of the base 

classifier is not taken into 
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learning classification 

algorithms were used such as 

linear regression, random 

forest and support vector 

machine for classification. 

Content analysis: vectorizing 

the text using TF-IDF, bag of 

words, n-grams and Naïve 

Bayes, linear regression, linear 

SVM, stochastic gradient 

descent and random forest 

classifiers are used for 

classification 

account, and classification 

is based on the best 

classifier from both URL 

analysis and content 

analysis. 

• Feature extraction takes 

time, especially for 

external data, and content 

analysis can cause 

security issues. 

  

4 Al-Sarem 

et al. 

(2021), 

Ghaleb Al-

Mekhlafi 

et al. 

(2022) 

The stacking ensemble 

approach utilises a 

combination of random 

forests, AdaBoost, XGBoost, 

Bagging, GradientBoost, and 

LightGBM models. The 

parameters of these models are 

optimised using genetic 

algorithms. The top three 

models have been chosen for 

classification. 

URL features and content 

features 

• Optimising parameters 

through the utilisation of 

genetic algorithms. 

• The weight of the base 

classifier is disregarded. 

• Feature extraction is a 

time-consuming process, 

particularly when dealing 

with external data.  

  

5 Taha 

(2021) 

k statistics-based weighted soft 

voting. (Weights were 

assigned to the individual 

classifiers using k statistics.) 

URL lexical features, 

content-based features, 

external features such as 

DNS information, 

reputation of the web page 

• Feature extraction takes 

time, especially for 

external data, and content 

analysis can cause 

security issues  
Table 2.3 : Comparison of Past Related Projects 

     

2.8 Summary 

      Overall, these projects will analyze phishing URLs using machine learning 

techniques. To identify and solve the problem, this chapter discusses the definition of 

phishing, categories, type of attack, definition machine learning, type of learning, tools that 

used definition techniques, classification technique,  parameter, dataset, metric, and 

comparison of previous related works. More research and related works on phishing URLs 

utilizing machine learning techniques will be discussed in the following chapter. 
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METHODOLOGY 

3.1 Introduction 

     In this chapter, it presents the method that has been conducted to develop the 

project, to achieve the objectives. There are three main parts in this chapter, which is known 

as the study design, project methodology and elaboration of the process flow. 

3.2 Project Workflow 

      In this section will discuss about the project methodology. Figure 3.1 shows the 

analysis methodology for phishing URL, which consists of 9 phases. During the first phase, 

the setup required to train and test the model is established in this case Jupyter Notebook 

was used. The second phase is to import the required libraries to execute blocks of codes 

that might require them such as for visualization and training the model. Thirdly, we will 

look for datasets to employ in this project and import them. The fourth phase will be to do 

feature engineering of extracting lexical features from raw URLs as these features will be 

used as the input features for training the machine learning model. The fifth phase is to do 

visualization for the features extracted to help get a better understanding of them to be used 

in this project. The sixth phase is to do data processing for cleaner data. The seventh phase 

is to split the dataset for testing and training. The eighth phase is to find the machine 

learning tool then to identify the optimum algorithm based on the  dataset. Finally, in the 

last phase, the model will be deployed to a local server. The steps in methodology are 

explained in detail in the section below.  
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Figure 3.1: Flowchart of Building the Machine Learning Model  
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3.2.1 Phase 1 : Setting up the Environment 

     Figure 3.1 shows about phase I methodology in this project which is setting up the 

environment. During the initial phase of this project, a machine learning tool is required to 

implement and execute various machine learning algorithms and techniques. It provides an 

environment and set of functionalities that enable users to train, test and deploy machine 

learning models efficiently.   

 

 

 

Figure 3.2: Find tool 

 

     After careful consideration and analysis, Jupyter Notebook was choosen as the 

machine learening framework. This is because Jupyter Notebook is a free web-based 

application that provides with an easy-to-use, interative data environment. It supports all 

programming language including Python and since it’s web based application it can be run 

on any environment  that has the minimum hardware requirements. As for this project, it will 

be run on a Windows 11 device with 12GB or RAM. In order to get started with it, Anaconda 
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was installed first . It is a distributor for the Python that comes with preloaded with all the 

most popular libraries and tools. It lets users run Jupyter Notebook right away without the 

hassle of managing countless installations or worrying about dependancies and OS-specific 

installation issues. Figure 3.3  shows the Jupyter Notebook in the Anaconda Navigator 

window.  

 

Figure 3.3: Anaconda Navigator Window 

 

     After selecting or creating the desired environment, Anaconda Navigator will launch 

Jupyter Notebook in your web browser. Jupyter Notebook provides an interactive computing 

environment where you can write and execute Python code,  create visualizations, and 

document your work using Markdown. Once Jupyter Notebook is opened, you can create a 

new notebook by clicking on the "New" button and selecting "Python 3" or any other 

available kernel that suits your project requirements. In the notebook interface, you can write 

and execute Python code cells  as in Figure 3.4. You can also add Markdown cells for 

documentation and explanations. Jupyter Notebook allows you to run individual code cells 

or the entire notebook. 
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Figure 3.4: Jupyter Notebook Environment 

 

3.2.2 Phase 2: Importing Libraries 

     The libraries utilized in the code snippet in Figure 3 serve crucial roles in machine 

learning and data analysis tasks. These libraries provide reusable code, efficient algorithms, 

extended functionality, community support, integration capabilities, and security. By 

leveraging these libraries, developers can streamline their workflows, enhance  their 

analyses, and build robust machine learning models with ease. More libraries can be added 

on while going through the rest of the process such as feature extractions and exploratory 

data analysis. 

 

Figure 3.5: Imported Libraries 
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3.2.3 Phase 3: Finding and Selecting Dataset to Import 

     Figure 3.6 shows the phase II methodology in this project which is finding the 

dataset. The phishing data consists of a phishing URL gathered from earlier  researches. 

Two number of  datasets were choosen based on the criteria required. As for finding the 

dataset. PhishTank, Kaggle and UCI Machine Learning Repository was used. This dataset 

will be later split into for both training and testing. However, some level of preprocessing 

data might be required. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Find phishing URLs dataset 

 

     After weighing in the factors such as quality , accurasy of labels and the adequate 

sample size, the datasets from (Malicious URLs dataset | PhishTank) was choosen. A 

comprehensive dataset containing verified phishing URLs was assembled by the members 

of the community. To expand the dataset with more benign URLs, dataset was retrieved from 

http://data.phishtank.com/data/online-valid.csv
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personal browster history that were verified to be safe sites such as goverment and large 

corporation sites. 

    Loading and reading datasets are crucial steps in data analysis and machine learning. 

These steps involve retrieving data from external sources and converting it into a format that 

can be processed by Python code.. To load the dataset, the function of ‘read_csv()’ offered 

by the pandas is used to load the CSV file as in Figure 3.7. 

 

 

Figure 3.7: Code Snippet of Loading the Dataset 

 

    After loading the dataset, it is assigned to a variable, usually in the form of a pandas 

DataFrame. This tabular data structure enables easy manipulation and analysis of the data. 

The dataset can then be explored to understand its structure and contents. Functions and 

methods provided by the library allow users to view the shape of the dataset, check column 

names, examine sample data, and obtain basic statistics. 

3.2.4 Phase 4 : Feature Extracton 

After  importing the datasets, the following lexical features will be extracted from 

raw URLs in this step and utilised as input features to train the machine learning 

model. The ensuing  features are produced based on the Table 3.1. Each feature plays 

a crucial role in distinguishing between legitimate and malicious URLs. By 
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examining these features closely, machine learning models are able to identify 

patterns often seen in phishing sites. The objective is to develop a robust system 

capable of accurately detecting and flagging potential phishing URLs, enhancing 

cyber security and safeguarding users from online threats. This method, which 

considers various elements of a URL's structure and content, ensures a high level of 

precision and reliability in phishing detection, offering strong protection against the 

myriad of deceptions found on the internet. 

No Feature Description 

1 IpAddress Check if the IP address is used in the hostname of the website URL 

2 Abnormal URL Identity is frequently included in the URL of a trustworthy website. 

3 GoogleIndex Determine whether or not the URL has been indexed by Google Search 

Engine. 

4 CountNumDot Number of character '.' in URL 

5 Count-www Number of www in URL 

6 Count_@ There exists a character '@' in URL 

7 DoubleSlashInPath There exists a slash '//' in the link path 

8 UrlLength The length of URL 

9 NumDash Number of the dash character '-' 

10 NumSensitiveWords Number of sensitive words (i.e., “secure”, “account”, “webscr”, 

“login”, “ebayisapi”, “sign in”, “banking”, “confirm”) in website 

11 ShortURL Determine whether a URL has been shortened using a service, such as 

bit.ly, goo.gl, go2l.ink, etc. 

12 NoHttps Check if there exists a HTTPS in website URL 

13 CountHTTP Check number of HTTP in URL 

14 NumPercent Number of the character '%' 

15 Count(?) Check number of times (?) has been used in URL 

16 Count(-) Check number of times (-) has been used in URL 

17 Couunt(=) Check number of times (=) has been used in URL 

18 HostnameLength Length of hostname 

19 PathLength Length of the link path 

20 InitialDirectorySize Determine how long the URL's first directory should be 

21 TPD_Length Determine length of the TLD 

22 NumNumericChars Number of the numeric character 

Table 3.1: List of URL Features 

Given below is few explanations of how the feature extractions works. 

3.2.4.1 Search for Presence of IP Address 

     Initially, a search for patterns indicating the presence of an IP address in the URL is 

done as in Figure 3.8.  
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Figure 3.8: Code Snippet of Searching Presence of IP Address 

 

The provided code snippet contains a function called having_ip_address() that checks if a 

given URL contains an IP address. It uses the regular expression search function from the re 

module to search for specific IP address patterns, including IPv4 and IPv6 formats. If a match 

is found, indicating the presence of  an IP address, the function returns 1; otherwise, it 

returns 0.  

3.2.4.2 Check for Hostname within URL 

     Nextly, an attempt to extract the hostname from the URL and then to check if the 

hostname appears within the URL itself is done as per in Figure 3.9.  

 

Figure 3.9: Code Snippet of Checking for Hostname 
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The provided code snippet demonstrates a function called abnormal_url() that identifies 

URLs with abnormal structures where the URL itself contains its own hostname. It utilizes 

the urlparse() function from the urllib.parse module to extract the hostname from the given 

URL. The function takes a URL as input and uses urlparse(url).hostname to retrieve the 

hostname. It then converts the hostname to a string for further processing. Next, it applies a 

regular expression search using  re.search() to check if the hostname appears within the URL 

itself. If a match is found, indicating that the URL contains its own hostname, the function 

returns 1.  Otherwise, it returns 0. This function is applied to each URL in the DataFrame 

df['url'] using a lambda function. 

3.2.4.3 Search for URL in Google 

     As in Figure 3.10 , the provided code snippet installs the googlesearch-python 

library and imports the search function from it. The function google_index() takes a URL 

as input and performs a Google search using the search() function, searching for the given 

URL in the top 5 search results. If the URL is found in the search results, indicating that it 

is indexed by Google, the function returns 1. Otherwise, it returns 0. This function is then 

applied to each URL in the DataFrame df['url'] using a lambda function, and the results are 

stored in a new column called google_index in the DataFrame. 
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Figure 3.10: Code Snippet of Searching in Google 

 

3.2.4.4 Count numbe of dots(.) in URL 

     The provided code snippet in Figure 3.11 demonstrates a function called 

count_dot() that counts the occurrences of the dot character ('.') in a given URL. The 

function uses the count() method available for strings in Python to count the number of 

dots in the URL.The function takes a URL as input and applies url.count('.') to count the 

occurrences of the dot character. It then returns the count. This function is applied to each 

URL in the DataFrame df['url'] using a lambda function.The code also  includes an 

additional step where the count_dot() function is applied to each URL,  and the results are 

stored in a new column called count. in the DataFrame. 
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Figure 3.11: Count Number of dot in the URL 

 

     Similarly, the same method was used to count other lexical features by defining 

separate functions that extract and count specific features of interest. For example,  a function 

can be created to count the occurrence of a specific character, count the length of the URL, 

count the number of digits, count the number of  special characters, or count the occurrence 

of certain keywords. By defining and applying these functions to the URLs in the DataFrame, 

various lexical features can be extracted and quantified that may be informative for the 

analysis or machine learning model. 

 

3.2.5 Phase 5: Data Visualization 

    Data visualization in the context of feature extraction, as exemplified by the seaborn 

(sns) box plot. This is done to understand the data distribution because it help on 

understanding how these features vary across different groups. This can reveal patterns or 

anomalies that might not be apparent from raw data. By visualizing the distribution of 

features across different classes, one can assess how well a feature might distinguish between 

those classes. This helps in understanding the relevance of each feature for the classification 

task. It is a vital step in the data science workflow as it aids in understanding, preprocessing, 

and utilizing data effectively for building robust machine learning models. 
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3.2.6 Phase 6: Data Proprocessing 

Data processing, also referred to as data preprocessing or data preparation,  is a critical step 

that follows exploratory data analysis (EDA) in the overall data analysis workflow. It 

involves transforming raw data into a format suitable for machine learning algorithms or 

further analysis. Data processing plays a pivotal role in enhancing the quality, usability, and 

effectiveness of the data for modeling and analysis purposes. Feature engineering is another 

integral part of data processing. It involves creating new features or transforming existing 

ones to capture relevant information and improve model performance. Below are the two 

vital preprocessing methods that have been completed. 

 

I) Target Encoding ( Figure 3.12) 

     Target encoding is a common preprocessing step in machine learning 

especially for classification tasks. It enables the conversion of categorical labels into 

a numerical format, allowing machine learning algorithms to  process the data 

effectively. The numerical codes assigned to each category are typically in ascending 

order, representing different classes or categories of the target variable. This 

encoding process facilitates the training and evaluation of classification models, as 

they generally require numeric inputs for predictions and analysis. 

 

 

 

 

 

     Figure 3.12: Target Encoding 
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     The code snippet provided demonstrates the process of encoding 

categorical labels into numerical representations using the LabelEncoder class 

from the scikit-learn library. This step is commonly known as target encoding, 

where the target variable (in this case, "type") is encoded into numerical codes to 

be understood by machine learning algorithms. 

               First, the LabelEncoder object is instantiated as "lb_make". Then,   

        the  "fit_transform" method of the LabelEncoder object is applied to the "type" 

        column of the DataFrame, denoted as "df['type']". This step fits the encoder to 

        the unique categories in the "type" column and transforms those categories into 

        corresponding numerical codes. The resulting numerical codes are assigned to 

        a new column called "type_code" in the DataFrame.The "value_counts()"    

        method is then used to count the occurrences of each numerical code in the   

        "type_code" column. This provides insights into the distribution of the encoded 

        labels, showing how many instances belong to each category. 

 

II) Creation of Feature and Target (Figure 3.13) 

      This part of the code creates the predictor variables (features) and the 

target variable, setting the stage for model training and evaluation. 
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         Figure 3.13: Creation of Feature and Target 

 

      In the provided code snippet, the predictor variables and the target 

variable are created as part of the data preprocessing stage. The predictor 

variables, denoted as "X," are selected from the DataFrame "df" using double 

square brackets.These variables are features that will be used to predict the target 

variable. In this case, the selected predictor variables include features such as 

'use_of_ip',  'long_url', 'Domain_Date', 'Disable_Click', 'Https_Domain', and 

various other features. These features are extracted from the DataFrame and 

stored in the "X" variable. 

      On the other hand, the target variable, denoted as "y," is extracted  from 

the DataFrame "df" using single square brackets. In this case, the target variable 

is 'type_code,' which represents the encoded numerical labels for the target 

variable 'type.' The target variable is stored in the "y" variable. 

      By separating the predictor variables (features) and the target variable, 

the data is prepared for further analysis and modeling. The predictor variables are 

 used as input to train the machine learning model, while the target variable serves 

as the ground truth or the variable to be predicted. 
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     This separation allows for easy manipulation and processing of the data, 

as well as the ability to apply various machine learning algorithms to predict the 

target variable based on the given features. 

 

3.2.7 Phase 7: Splitting Dataset for Training and Testing 

The dataset is split into two parts which is a training set and a test set as like in 

Figure 3.14. This is to make sure the machine learning model generalizes the 

unseen data. The ‘X_train’ and ‘y_train’ represents the training data and labels. 

In addition, the ‘X_test’ and ‘y_test’ represent the testing data and labels. The 

dataset is split into a ratio of 80 to 20 for training and testing respectively. 

 

 

 

 

 

 

 

 

Figure 3.14 : Splitting the Dataset 

 

3.2.8 Phase 8 : Finding and Selecting the Machine Learning Algorithm 

    In this phase  we find the types machine learning models suitable for this project. Based 

on the dataset, it uses a classification problem  it has input URL classified as safe and unsafe. 

Hence, it is a supervised machine learning model. The model that are considered based on 

the previous analysis and their success rate to train the datasets in this notebooks are as given 

above in Figure 3.8.  
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3.2.8.1 Decision Tree Classifier 

     The interpretability, feature importance analysis, and ability to handle nonlinear 

relationships make decision trees a powerful algorithm for building a machine learning 

model to determine good or phishing sites. 

3.2.8.2 Random Forest Classifier 

     Random Forest's robustness and accuracy, feature selection capabilities, and ability 

to handle imbalanced data make it a powerful algorithm for building a machine learning 

model to determine good or phishing sites. 

3.2.8.3 XG Boost Classifier 

     XGBoost's high predictive performance, ability to handle imbalanced data, and 

feature importance analysis and regularization capabilities make it an excellent  algorithm 

for building a machine learning model to determine good or phishing  sites. 

3.2.8.4 Gradient Boost Classifier 

     Gradient Boosting Classifier excels in URL safety prediction due to its capability of 

handling complex, web-related datasets. This model iteratively builds an ensemble of 

decision trees, each addressing previous errors, efficiently capturing the patterns in URL 

data. Its robustness against imbalanced datasets, where unsafe URLs are rarer, is a significant 

advantage.  
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3.2.8.5 Logistic Regression 

     Logistic Regression is inherently suited for binary outcomes, like classifying URLs 

as safe or unsafe. It predicts the probability that a given URL belongs to one of these two 

categories. The model provides coefficients for each feature, indicating how each predictor 

influences the odds of a URL being safe or unsafe. If the relationship between the features 

of URLs and their safety status is linear or approximately linear, Logistic Regression can 

model these relationships effectively. 

     Figure 3.15 depicts the documentation of the results of the analysis. The outcome 

will be documented after comparing the accuracy of all five models and determining the best 

two algorithms based on their accuracy rate. The accuracy of the models is documented in 

confusion matrix and precision. The best two models will later be dumped into a pickle file. 

 

 

Figure 3.15: Documenting the result 

 

3.2.9 Phase VII: Deployment of Model  

     Figure 3.16 shows the deployment process of the machine learning model to provide 

interface for the users to input any web address of a site to test whether it is a phishing or 

legitimate site. Firstly, both the trained models in pickle files are imported into Flask 

initialization file named ‘app.py’. The ‘FeatureExtraction’ class is responsible for processing 

a given URL by user and extracting various features that are relevant. These extracted 

features are used by the best two models for prediction. This web framework, Flask was 
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chosen to integrate the model to run on a local server because it comes with a built-in 

development server. After running the application, any devices in the same network as the 

host address would have access to use this web application. Also, a HTML template using 

Bootstrap for styling and better compatibility with mobile devices and JavaScript was used 

for displaying the model predictions. 

 

Figure 3.16: Deployment of Model 

3.3 Summary  

     This chapter discusses methodology, project methodology, and project scheduling. 

Finding the tool and dataset, selecting the tool and data, installing the tool, information 

gathering, information analysis, and documenting the results are all part of the project 

methodology. This project will take advantage of it. Aside from that, it demonstrates how 

the project is being prepared and how long it takes to prepare for one chapter. 
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RESULTS AND DISCUSSIONS 

4.1 Introduction 

     In this chapter, the results obtained from the experiments conducted on the phishing 

website prediction using machine learning models are presented. The purpose of this 

chapter is to analyze and interpret the performance of the trained models and discuss the 

implications of the findings. The experiments were designed to evaluate the effectiveness 

and accuracy of the selected machine learning algorithms in identifying phishing websites. 

4.2 Analysis of Workflow 

Analysis helps in understanding complex data and information, leading to better decision-

making. By analyzing information, trends, patterns, and insights can be identifies that are 

not apparent at first glance. 

4.2.1 Analysis of Dataset 

For the dataset, choice was made to go with a smaller dataset as in Figure 4.1 that was 

verified personally isntead of using a huge dataset because in deployment the model trained 

with huge dataset performed poorly although during training and testing it performed well. 

This could have been due to several reasons. 
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Figure 4.1: Type of Dataset 

 

 

I) Data quality 

It could have been because the larger dataset includes mislabeled instances, 

duplicates, or irrelevant features which can directly affect the model’s 

performance.  

In order to overcome this issue, the solution was to come up with a new dataset 

consisting of only verified URL whether they’re safe or unsafe. To achieve this, 

the list of unsafe URL were retrieved from PhishTank site where community 

members had verified on unsafe URL and only those had been verified were 

selected. As for safe URL, the list was retrieved from own past experience in sites 

which you have trust such as government sites, large social media platforms, 

trusted services from Google and Microsoft, widely known news media and 

official banking sites. 

 

 

II) Overfitting on huge data 

This essentially means the model had learned to perform very well on training 

data, including outliers rather than capturing the true underlying patters the 

generalize to new, unseen data. This could be due to the use of non-representative 

of broader real-world scenarios data where the data will be applied. To resolve 

this, a dataset consisting of only couple hundreds of URL was created. 
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4.2.2 Exploratory Data Analysis 

     Exploratory Data Analysis (EDA) is a crucial step in any data analysis or modeling 

process. It serves as a foundation for understanding the dataset, revealing  patterns, 

relationships, and insights hidden within the data. In the context of phishing detection, EDA 

plays a vital role in preparing the data for further analysis and modeling. The EDA process 

begins with gaining an overview of the dataset. By examining the structure, size, and basic 

statistics of the data, data scientists can understand its composition and identify any initial 

data quality issues. 

      There have been usage of countplot and boxplot to help visualize the distribution 

and variability of the extracted features among different types of URLs, aiding in identifying 

potential patterns or outliers withing the dataset. Below given is few examples of the 

visualization and it’s elaboration. 

 

I) Distribution of Usage of IP Address (Figure 4.2) 

         The code snippet provided  demonstrates the visualization of the 

distribution of the variable "use_of_ip" in the dataset using a countplot. The 

countplot is created using the seaborn library, which offers enhanced  visualization 

capabilities. The countplot is constructed by specifying the target variable ("type") 

on the y-axis and the variable of interest ("use_of_ip") on the x-axis. Additionally, 

the "hue" parameter is set to "use_of_ip" to differentiate the count of each category 

within the "use_of_ip" variable. 

       By using a countplot, we can observe the distribution of the "use_of_ip" 

variable across different types of URLs. The countplot represents the frequency of 

each category, allowing us to understand the prevalence of URLs with or without IP 

addresses in different types of URLs. The hue encoding further provides a visual 
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distinction between the categories, facilitating the comparison of the counts within 

each category. 

 

 

 

 

 

 

 

 

 

 

     Figure 4.2: Data Visualization of IP Address Usage 

 

II) Distribution of Count of Dot [.] (Figure 4.3) 

     In our analysis of the URL length distribution within the dataset, three 

distinct categories were identified based on character count. The first category, 

labeled as -1, encompasses URLs that exceed 75 characters. This group 

demonstrates a moderate frequency, with an occurrence ranging between 40 and 

60 instances. This indicates a notable presence of longer URLs within the dataset. 

The second category, denoted as 0, includes URLs with a length varying from 54 

to 75 characters. This category exhibits a lower frequency, with the count ranging 

between 20 and 40. This suggests that URLs of a moderate length are 

comparatively less common in the dataset. 

    The third and final category, marked as 1, represents URLs that are shorter 

than 54 characters. This group displays a significantly higher prevalence, with 

occurrences exceeding 100. This finding suggests that shorter URLs are 

predominantly more common in the dataset. 

     The observed data distribution indicates a tendency toward shorter URLs 

within the dataset. URLs of moderate length are the least frequent, while there is 
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a substantial yet lesser occurrence of very long URLs. Understanding this 

distribution is crucial, as it can offer insights into user behavior regarding URL 

sharing and usage. Additionally, this distribution might reflect optimization 

practices for search engine optimization (SEO), where shorter URLs are preferred. 

Further analysis, taking into consideration the origin of the URLs and the specific 

objectives of the dataset, would provide a more comprehensive understanding of 

these trends. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Data Visualization of Long URL 

 

4.2.3 Model Training and Testing   

For all five models, ‘GridSearchCV’ method  from ‘scikit-learn’ library was used 

to optimize the settings for classification by testing for all combinations of 

parameters. It is done through cross-validation, which involves splitting the training 

data into several parts, training the model on some parts and validating it on others. 

This method helps in evaluating the model's performance more robustly. The 

parameters cv, n_jobs, verbose, and scoring='accuracy' control various aspects of this 
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process, like the number of folds for cross-validation, the use of all processors for 

faster computation, logging verbosity, and the performance metric. 

 

After executing grid_search.fit(X_train, y_train), the grid search trains the model 

using different parameter combinations on the training data (X_train, y_train) and 

identifies the best performing parameters (grid_search.best_params_). The model 

that performed the best is then retrieved (grid_search.best_estimator). Finally, this 

optimized model is used to make predictions on both the training data and the test 

data (X_test), allowing  to evaluate how well the model has learned from the training 

data and how it generalizes to new, unseen data. This entire process ensures that the 

model is tuned to provide the best possible predictions for your specific dataset. All 

five models used this parameters to train the model however each model was fine 

tuned to come out with the best outcome. 

 

I) Logistic Regression 

 

 

     The Logistic Regression model in this study, tailored for classifying URLs as 'safe' 

or 'unsafe', shines as a top performer among the five models tested. Using 30 carefully 

selected features, its effectiveness is clearly shown through impressive performance 

metrics and insights from the confusion matrix. 

     Looking at Figure 4.4, the model boasts a notable precision of 0.65 for Class 0, 

which includes 'safe' URLs. This means it correctly identifies 65% of 'safe' URLs, 

showcasing a high accuracy level. Even more impressive is the model's recall rate for 

'safe' URLs at 0.83, indicating its strong capability in correctly spotting actual safe URLs, 

a significant feat in URL classification. 
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     For Class 1, representing 'unsafe' URLs, the model shows a higher precision of 

0.84, emphasizing its reliability and effectiveness in pinpointing unsafe URLs, crucial in 

cybersecurity. The recall rate for 'unsafe' URLs is 0.67, further proving the model's 

robustness by accurately identifying 67% of actual unsafe URLs. 

     The balanced F1-scores, ranging from 0.73 to 0.74 for both classes, reflect a well-

maintained balance between precision and recall, essential for practical use to ensure 

both accuracy and reliability. The overall model accuracy is an impressive 73.8%, 

showcasing consistent predictive performance. 

     In the confusion matrix, the model's practical efficacy is evident. It accurately 

classified 'safe' URLs 15 times and 'unsafe' URLs 16 times. Despite some 

misclassifications, these are relatively minor, especially given the challenge of 

differentiating safe from unsafe URLs. This slight limitation doesn't detract from the 

model's overall outstanding performance.The model tends to err on the side of caution 

in predicting a URL as unsafe, a strategic decision in line with security-centric best 

practices. This approach reflects the model's sophisticated design, aiming to minimize 

false negatives in a field where errors can be costly. In summary, this Logistic Regression 

model emerges as an exceptional performer, striking a commendable balance in 

predictive capabilities. 
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Figure 4.4 : Logistic Regression 

 

 

 

II) Gradient Boost Classifier 

 

     The model shown in Figure 4.5 displays a commendable performance, particularly 

in the challenging and high-stakes realm of URL classification for security purposes. 

With an overall accuracy of 64.3%, it shows a dependable ability to distinguish between 

'safe' and 'unsafe' URLs, a task that is complex due to the subtle and constantly changing 

nature of online threats. 

     In the 'safe' category (Class 0), the model achieves a precision of 0.57. While this 

indicates potential areas for improvement, it's noteworthy that it correctly identifies over 

half of the URLs marked as safe. The recall rate of 0.72 means that 72% of actual safe 

URLs are successfully identified, a substantial achievement in a security context. This 
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high recall is critical, as it reflects the model's proficiency in recognizing a large majority 

of safe interactions, which is vital for maintaining user trust and confidence. 

     Turning to the 'dangerous' category (Class 1), the model shows a higher precision 

of 0.74, accurately identifying 74% of unsafe URLs. This level of precision is essential 

in a security tool to reduce false alarms, which could erode user trust and operational 

efficiency. The recall rate of 0.58, though moderate, suggests that the model is still 

effective in detecting a majority of dangerous URLs, thereby enhancing user safety. 

     The F1-scores, at 0.63 and 0.65 for both classes, indicate a balanced trade-off 

between recall and precision. This balance is crucial in security applications where 

accurately identifying true threats and minimizing false positives are equally important. 

Analyzing the confusion matrix reveals the model's practicality, showing its capacity to 

accurately categorize a significant number of both safe and dangerous URLs. Although 

there are some misclassifications, these are relatively minor considering the task's 

complexity. The model's tendency towards more false negatives is an area for attention, 

as reducing these would further improve its ability to identify potential threats. In 

conclusion, as the second-best performing model in this evaluation, it demonstrates a 

promising combination of precision and recall.  
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Figure 4.5 : GBC Model 

 

 

 

III) Decision Tree Classifier 

 

     The model has an overall accuracy of 59.5% according to the categorization report 

on Figure 4.6, indicating a reasonable degree of predictive power. But this accuracy 

might not be strong enough when it comes to classifying URLs for security reasons, since 

wrongly categorised URLs could be dangerous. 

Analysing the performance indicators: 

• Class 0 ('class_1') has a precision of 0.52 meaning that the model is just over half 

correct when it predicts a URL to be in this class. At 0.78, the recall is greater, 

indicating that although there are more false positives, the model is reasonably 

effective at identifying the genuine 'class_1' instances. 

• With a precision of 0.73, Class 1 (also known as "class_2") exhibits greater 

dependability in the model's predictions. The recall of 0.46, on the other hand, 

indicates that the model is unable to correctly identify over half of the real 



 

58 

instances of 'class_2'. This is a serious problem, particularly if 'class_2' stands for 

unsafe URLs. 

     'Class_1' and 'class_2' have F1-scores of 0.62 and 0.56, respectively, which are 

not very high. This indicates that the model is having difficulty striking a good balance 

between precision and recall. 

The model's predictions are shown visually in the confusion matrix: 

• Thirteen instances of 'class_2' were wrongly predicted as 'class_1', whereas 

fourteen instances of 'class_1' were correctly predicted. 

• When it came to 'class_2', the model predicted 11 cases accurately; but, in 4 cases, 

it predicted 'class_1' wrongly as 'class_2'. 

     The significant percentage of false negatives (unsafe URLs being categorised as 

safe) suggests that the model may have a tendency to misclassify instances of 'class_2' 

as 'class_1'. This is a serious problem because it implies that the model cannot 

consistently identify URLs that may be dangerous, which is probably the more important 

factor between the two for this kind of categorization task. 

     In summary, even though the Decision Tree model can accurately categorise a 

respectable number of URLs, there is clearly much space for improvement given the 

degree of accuracy, precision, and recall attained. It's important to focus on lowering the 

quantity of incorrect negative predictions in the 'class_2' forecasts.  
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Figure 4.6 : Decision Tree 

 

 

IV) XGBoost Classifier 

 

    The categorization report in Figure 4.7 reveals an overall accuracy of 57.143%, 

meaning that slightly more than half of the time, the model accurately predicts a URL's 

safety. The details are as follows: 

• The precision for the'safe' class is 0.50, indicating that only 50% of the predicted 

safe URLs are in fact safe. With a recall of just 0.33, the model only correctly 

predicts 33% of the real secure URLs. Similar to this, the'safe' class performed 

poorly, as seen by the low F1-score of 0.40. 

• With a precision of 0.60—that is, 60% of URLs predicted as malicious are 

properly identified—the 'bad' class performs better. With a recall of 0.75, which 

is higher, the model may be able to identify 75% of the malicious URLs. The 'bad' 

class's F1-score is 0.67, which shows potential for improvement but also 

represents a better balanced performance when compared to the'safe' class. 

Within the matrix of confusion: 

• Correctly, the model has detected 18 "bad" and 6 "safe" URLs. 
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• However, it has mistakenly classified 12 'safe' URLs as 'bad' and 6 'bad' URLs as 

'safe'. 

    The confusion matrix reveals a serious problem with false positives (type I error) 

in the prediction of "safe" URLs, which could lead to over-caution and possibly cause 

trouble by marking safe URLs as possibly hazardous. Furthermore, dangerous URLs may 

pass past the filter due to false negatives (type II errors), in which "bad" URLs are 

categorised as "safe." 

    The model's efficiency in differentiating between'safe' and 'bad' URLs, especially 

in light of the comparatively poor recall for the'safe' class and the overall accuracy. 

Enhancements could involve accumulating additional training data, or adding new 

discriminative features to assist the model more precisely distinguish between "safe" and 

"bad" URLs. The final objective would be to improve recall and precision for both classes, 

with a focus on lowering false negatives to make sure potentially harmful URLs are not 

overlooked. 
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Figure 4.7 : XGBoost Classifier 

 

 

V) Random Forest  

 

    Starting with the classification report in Figure 4.8, the model achieves an overall 

accuracy of 59.524%. This means that it correctly predicts the class of a URL about 60% 

of the time, which is not particularly high for a classification task that could be critical 

for cybersecurity purposes. 

Delving into the details: 

• The precision for the 'safe' class is 0.52, indicating that when the model predicts 

a URL as safe, it is correct just over half the time. However, the recall is relatively 

higher at 0.78, meaning that the model is capable of identifying 78% of the actual 

safe URLs in the dataset. The F1-score, a measure that combines precision and 

recall, is 0.62, suggesting a moderate balance between these two metrics for the 

'safe' class. 

• For the 'bad' class, the precision is somewhat better at 0.73, suggesting that the 

model is more reliable when it predicts a URL to be bad. Nevertheless, the recall 
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for this class is low at 0.46, indicating that the model fails to detect more than 

half of the actual bad URLs. The F1-score for the 'bad' class reflects this 

imbalance at 0.56. 

The confusion matrix visualizes the distribution of predictions: 

• It shows that the model correctly identified 14 safe URLs and 11 bad URLs. 

• It also reveals that the model misclassified 13 bad URLs as safe and 4 safe URLs 

as bad. 

     This confusion matrix reveals a critical issue with the model: it tends to 

misclassify bad URLs as safe (false negatives) more often than safe URLs as bad (false 

positives). In the context of URL classification, this is a significant concern because it 

means the model might not be reliable in flagging potentially dangerous URLs, which 

could have serious security implications. 

   The Random Forest the model might improve with a more balanced training dataset 

or a richer set of features that could help discriminate between safe and bad URLs more 

effectively. Given the security risks associated with misclassifying bad URLs as safe, it's 

crucial to focus on reducing the number of false negatives, even if it might result in a 

slight increase in false positives, as the latter is generally a less severe error in the context 

of cybersecurity. 
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Figure 4.8 : Random Forest 

 

 

 

VI) Comparision of Result 

 

     In summary, the best model for this specific task would be Logistic Regression 

and followed by Gradient Boost Classifier if we were to rank these models only based 

on accuracy. But it's crucial to remember that there are other metrics to take into account 

when assessing a model's performance, particularly in classification tasks where the cost 

of false positives and false negatives can vary greatly. It's also important to consider the 

particular use case, memory, F1 score, and precision.  
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Figure 4.9 : Comparision of Model Accuracy 

4.2.4 Deploying Model 

To have establish an user friendly interface for the user and also to test the model with real-

world scenarios or unseen data, the model has to be deployed. For this, Flask Pyton was used 

as it offers a simple solution and it can be run on localhost as per Figure 4.10. Below in 

Figure 4.11 is the interface for the user to input the link of the site they wish to test and the 

Figure 4.12 is it being run on a mobile browser. 

 

Figure 4.10 : Running on Local Host 
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Figure 4.11: Web Application on PC Browser 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: Web Application on Mobile Browser 

4.3 Comparison of Results Between Past Projects 

Project Algorithm 

Variant 

Accuracy(%) Precision(%) Recall(%) F-Measure(%) 

This 

Project 

Logistic 

Regression 

73.8 75 75 74 
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GBC 64.3 65 65 64 

Decision Tree 59.5 63 62 59 

XGBoost 57.143 55 54 53 

Random 

Forest 

59.524 63 62 59 

Nagaraj, 

K., et al. 

(2018). 

LR 56.78 68.09 65.90 66.97 

DT CART 66.54 70.46 69.79 70.12 

C4.5 67.97 73.65 72.33 72.97 

SVM 

Polynomial 

70.01 74.82 73.36 73.56 

BP 66.01 69.93 68.84 69.38 

Table 4.1 : Comparison of Current Project with Past Project 

 

 

     Overall, the Logistic Regression model from this project has been the most efficient. 

The project's success is highlighted by the model's robust performance metrics, which 

demonstrate the effective execution of a machine learning task. The project's models exhibit 

a high level of resilience, particularly when accounting for the complexities and potential 

variability present in real-world data. This demonstrates the project's methodology, data 

management, and feature selection procedure, affirming its effectiveness and the high quality 

of its results. 

     However, the model accuracy based on training and testing does not amplify its 

effectiveness in real-world scenarios and the model from this project has proven to be more 

accurate when tested against unseen data compared to the earlier method which used a larger 

dataset and without hyperparameter tuning of model that was used which had achieved a 

higher accuracy of 96% but performed poorly against unseen data which indicated that it 

was a case of overfitting.  

     This project also had solved several issues that were faced by the previous projects 

as per in Table 2.3. Firstly, by utilizing a diverse set of 32 features, which included URL 

lexical attributes and content-based characteristics the project successfully streamlined the 

feature extraction process, thereby reducing the overall time required for this critical step. In 
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this project, a different path was taken compared to the usual bagging methods. A boosting 

technique was employed, allowing for more precise adjustments in the importance of each 

classifier. Typically, bagging can lead to some parts being overly emphasized and others 

underrepresented. A significant amount of time was dedicated to fine-tuning the parameters, 

ensuring optimal performance from the models. This thorough approach paid off, leading to 

the selection of the two most effective models from a variety of classifiers. This highlights 

the strategic and efficient application of machine learning techniques in the project. 

4.4 Summary 

     The data preprocessing phase is an essential step in building a phishing detection 

model. It involves several key processes, each contributing to the  refinement and 

optimization of the dataset for analysis and modeling purposes.  Initially, the dataset is 

loaded and read using the pandas library. This allows for easy manipulation and exploration 

of the data. Exploratory data analysis (EDA) is performed to gain insights into the dataset's 

structure, distribution, and relationships. 

     Afterwards, feature engineering techniques are applied to extract relevant lexical 

features from the URL data. Following feature engineering, exploratory data analysis is 

conducted to gain further understanding of the dataset.  Visualizations, such as count 

plots and box plots, are used to examine the  distribution and relationships between 

variables. These visualizations provide insights into the presence of certain patterns or 

anomalies within the dataset. 

     Data processing process of label encoding the target variable, converting the 

categorical labels into numerical representations using the LabelEncoder class. This 

facilitates the use of machine learning algorithms that require numeric inputs. Lastly, the 
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predictor variables (features) and the target variable are separated into X and y, 

respectively, forming the basis for model training and valuation. 

     Next, the dataset is split into predictor variables (features) and the target variable. 

Predictor variables are selected based on their relevance to the problem at hand, while the 

target variable represents the type of the URL (safe and unsafe). Nextly, we train the model 

using five different algorithms to get the best algorithm for the model. 

     In deployment, the best two models were chosen which were Logistic Regression 

and Gradient Boost Classifier which were tuned to be effective in real-world scenarios that 

users could face and can use their mobile or desktop browser to verify a sites legitamacy. 

     Overall, these processes, including data loading, feature engineering, exploratory 

data analysis, data processing, and target encoding, are crucial for preparing the dataset for 

building an effective phishing detection model. They ensure data quality, feature 

extraction, and appropriate representation for machine learning algorithms, ultimately 

leading to accurate predictions and insights. 
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CONCLUSION AND RECOMMENDATIONS  

5.1 Introduction 

The overall project implementation is concluded, and future recommendations are 

suggested in this chapter. 

5.2 Project Summarization 

     The goal of this project is to develop a phishing detection system using machine 

learning algorithms and deploy it as a web application. The dataset, consisting of URLs 

labeled safe and phishing, will be used for training and testing the models. 

     The project begins with data preprocessing steps, including loading and reading the 

dataset, exploratory data analysis, feature engineering to extract lexical features from the 

URLs, and data processing to handle missing values, outliers, and feature scaling. Five 

different classifiers, namely random forest, decision tree, and XG Boost, Logistic 

Regression and Gradient Boost Classifier will be trained on the dataset to detect phishing 

sites. These classifiers have been chosen for their ability to handle complex classification 

tasks. 

     Once the models are trained and evaluated, the two best-performing model was 

selected for deployment. The chosen model was integrated into a web application using 

FastAPI, a Python web framework, allowing users to input URLs and receive predictions 

on whether they are phishing sites or not. 

     By combining machine learning algorithms and web development, this  project 

aims to create a reliable and user-friendly phishing detection system. The deployed web 
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application will provide a practical tool for users to identify potentially malicious URLs 

and enhance their online security. 

 

5.3 Project Contribution 

     Phishing attacks have become a widespread and significant cybersecurity threat, 

affecting individuals, businesses, and even governments worldwide. This project makes 

valuable contributions to address societal and global issues related to cybersecurity and 

online safety. 

     The development of a phishing detection system and its deployment as a web 

application enhances online security by accurately identifying and blocking phishing sites. 

By distinguishing between legitimate and malicious URLs, the project empowers users to 

make informed decisions and protect their sensitive information, reducing the risk of falling 

victim to phishing attacks. 

     Additionally, the project plays a crucial role in mitigating financial losses caused 

by phishing attacks. By promptly detecting and blocking phishing sites, its afeguards 

individuals and businesses from economic harm, preserving financial resources and 

stability. 

     Moreover, the project preserves personal privacy by identifying and preventing 

phishing attempts that aim to obtain sensitive information. By reducing the risk of identity 

theft and privacy breaches, it enhances individuals' confidence in their online interactions. 

     Furthermore, the project contributes to the advancement of cybersecurity research 

and development by implementing advanced techniques such as random forest, decision 

tree, and XG Boost classifiers. This improves the effectiveness of phishing detection 

methodologies and fosters the evolution of robust cybersecurity solutions. 
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     In conclusion, the development and deployment of a phishing detection system as 

a web application contribute to societal and global issues related to cybersecurity and 

online safety. By enhancing online security, mitigating financial losses, and preserving 

personal privacy, this project actively works towards creating a safer digital landscape for 

individuals, businesses, and societies worldwide. 

 

5.4 Project Limitation 

     Every project has its limitations, and it's important to acknowledge them in order to 

understand the potential challenges and areas for improvement. In the case of the phishing 

detection model and web application described here, there are several limitations to 

consider. 

     Firstly, the model may generate false positives, mistakenly classifying legitimate 

websites as phishing sites. This can lead to user inconvenience and may impact user trust 

in the system. 

     Secondly, phishing techniques are constantly evolving, and the model may not be 

equipped to detect new or sophisticated tactics. As attackers develop novel approaches, the 

model's effectiveness may decrease if it is not regularly updated and trained on the latest 

phishing strategies. 

     Thirdly, the performance of the model heavily relies on the quality and  diversity 

of the dataset used for training. If the dataset is limited or not representative of the wide 

range of phishing characteristics, the model's accuracy may be compromised. 

     To address these limitations, continuous monitoring, feedback, better 

hyperparameter tuning and updates to the model are crucial. Regular evaluation and 

improvement of the dataset, as well as keeping abreast of emerging phishing techniques, 
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can help enhance the model's performance and ensure its effectiveness in real-world 

scenarios. 

 

5.5 Future Recommendations 

     In order to enhance user protection against phishing attacks, education and 

awareness remain crucial. Internet users should be educated about security tips provided 

by experts and trained not to blindly follow links to websites where they are prompted to 

enter sensitive information. It is important for users to check the URL before accessing a 

website. 

     In the future, the system can be upgraded to automatically detect web pages and 

ensure compatibility with web browsers by being implemented as an API. Additional 

characteristics can be incorporated to distinguish between fake and legitimate web pages. 

Furthermore, the project can be extended to include a web browser extension as a feature, 

providing real-time phishing detection and warnings to users while they browse the 

internet. 

     Several areas of improvement can be explored, such as broadening the dataset by 

including a wider range of phishing URL patterns, particulary those reflecting the latest 

phishing trends. In addition, adjusting model parameters is a delicate balance between 

model complexity and learning capacity without overfitting. Improved fine-tuning might 

include a broader grid search across the model's hyperparameters, adopting advanced 

optimization methods like Bayesian optimization, or exploring new machine learning 

algorithms for potentially better results. More effective inference rules and strategies can 

be designed to identify suspicious web pages and improve the overall performance of the 

system. 
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     Additionally, developing a robust malware detection method and retaining accuracy 

for future phishing emails is an ongoing challenge. Combining dynamic and static features 

can be considered important for achieving high accuracy in phishing detection. 

     Overall, these future recommendations aim to enhance user awareness, expand the 

system's capabilities, and incorporate advanced techniques to improve the accuracy and 

effectiveness of phishing detection. 

5.6 Conclusion 

     In conclusion, this project successfully achieved its three main objectives, which 

were to design classification techniques for analyzing phishing, apply these techniques to 

a phishing dataset, and evaluate the accuracy results using different methods. 

     Firstly, a comprehensive set of classification techniques was designed to identify 

and analyze phishing websites. These techniques incorporated lexical features, such as the 

presence of IP addresses, abnormal URL structures, and Google index, to accurately 

classify websites as benign or phishing. 

     Secondly, the developed classification techniques were applied to a  phishing 

dataset. Through data preprocessing, feature engineering, and exploratory data analysis, 

the dataset was prepared for training and testing the models. The predictor variables were 

carefully selected, considering their relevance in detecting phishing characteristics. 

     In addition, the accuracy results of the classification techniques were evaluated 

using different methods. Various metrics, such as confusion matrix, classification report, 

and accuracy score, were employed to assess the  performance of the models. This 

evaluation provided valuable insights into the strengths and limitations of the classification 

techniques. Lastly, the model was deployment to be used for unseen URL and new patterns 

of URL. 
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     Overall, this project successfully addressed the objectives of designing, applying, 

and evaluating classification techniques for phishing detection. The developed models and 

techniques contribute to the ongoing efforts in combating phishing attacks and protecting 

users from online threats. Further improvements and optimizations can be made in the 

future to enhance the accuracy and effectiveness of the classification techniques, thereby 

strengthening the overall security of online platforms and safeguarding users' sensitive 

information. 
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