

Faculty of Electronic and Computer Technology and

Engineering

DESIGN AND DEVELOPMENT OF PHISHING SITES DETECTOR

USING MACHINE LEARNING

RUGENRAJ A/L SELVARAJU

Bachelor of Computer Engineering Technology (Computer Systems) with Honours

2024

DESIGN AND DEVELOPMENT OF PHISHING SITES DETECTOR USING

MACHINE LEARNING

RUGENRAJ A/L SELVARAJU

A project report submitted

in partial fulfillment of the requirements for the degree of

Bachelor of Computer Engineering Technology (Computer Systems) with Honours

Faculty of Electronic and Computer Technology and Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2024

Tajuk Projek : Design and Development of Phishing Sites Detector

Using Machine Learning

Sesi Pengajian : 2023/2024

Saya RUGENRAJ A/L SELVARAJU mengaku membenarkan laporan Projek

Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan

seperti berikut:

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan

pertukaran antara institusi pengajian tinggi.

4. Sila tandakan ():

SULIT*

(Mengandungi maklumat yang berdarjah

keselamatan atau kepentingan Malaysia

seperti yang termaktub di dalam AKTA

RAHSIA RASMI 1972)

TERHAD*

(Mengandungi maklumat terhad yang

telah ditentukan oleh organisasi/badan di

mana penyelidikan dijalankan.

 TIDAK TERHAD

 Disahkan oleh:

(TANDATANGAN PENULIS) (COP DAN TANDATANGAN PENYELIA)

Alamat Tetap: 11, Kampung Haji

Ismail, 35600

Sungkai, Perak.

Tarikh : 14 APRIL 2024 Tarikh : 15 APRIL 2024

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan

dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

FAKULTI TEKNOLOGI DAN KEJURUTERAAN ELEKTRONIK DAN

KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN

PROJEK SARJANA MUDA II

Rev

DECLARATION

I declare that this project report entitled “Design and Development of Phishing Sites Detector

Using Machine Learning” is the result of my own research except as cited in the references.

The project report has not been accepted for any degree and is not concurrently submitted

in candidature of any other degree.

Signature :

Student Name : RUGENRAJ A/L SELVARAJU

Date : 14/02/2024

Mobile User

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report

is adequate in terms of scope and quality for the award of the degree of Bachelor of

Computer Engineering Technology (Computer Systems) with Honours.

Signature

Supervisor Name

Date
15/2/2024

DEDICATION

To my beloved mother, Mrs.Sumathi, and father, Mr.Selvaraju,

and

To dearest grandmother, Mrs.Vembu and

My my late grandfather, Mr.Thangaraju

i

ABSTRACT

This research project focuses on developing a phishing detection model to address the

increasing threat of phishing attacks. The objective is to design and apply classification

techniques to analyze phishing websites and improve accuracy. The study aims to provide

users with effective tools to identify and protect themselves from phishing attempts,

enhancing online security. The research utilizes a phishing dataset and applies techniques

for model training and testing. Classification techniques are used to categorize websites as

benign or phishing. The accuracy of these techniques is evaluated using metrics like

confusion matrix, classification report, and accuracy score. The results demonstrate the

effectiveness of the techniques in accurately detecting and classifying phishing websites.

The developed model contributes to ongoing efforts in mitigating phishing attacks and

protecting sensitive information by using a dual-model approach of each model having an

accuracy of 74% for Logistic Regressiona and 64% for Gradient Boost Classifier

respectively. In conclusion, this research shows that the classification techniques, when

applied to the phishing dataset, yield promising results in identifying and classifying

phishing websites. Overall, this project provides valuable insights into developing effective

tools for combating phishing attacks and promoting online security.

ii

ABSTRAK

Projek penyelidikan ini memberi fokus kepada pembangunan model pengesanan phishing

untuk mengatasi ancaman peningkatan serangan phishing. Objektif adalah untuk merancang

dan menggunakan teknik klasifikasi untuk menganalisis laman web phishing dan

meningkatkan ketepatan. Kajian ini bertujuan untuk menyediakan pengguna dengan alat

yang efektif untuk mengenal pasti dan melindungi diri daripada percubaan phishing,

meningkatkan keselamatan dalam talian. Penyelidikan ini menggunakan dataset phishing

dan menggunakan teknik untuk latihan dan pengujian model. Teknik-teknik klasifikasi

digunakan untuk mengkategorikan laman web sebagai phishing dan selamat. Ketepatan

teknik-teknik ini dinilai menggunakan metrik seperti matriks confusion, laporan klasifikasi,

dan skor ketepatan. Keputusan menunjukkan keberkesanan teknik-teknik ini dalam

mengesan dan mengkategorikan laman web phishing dengan tepat. Model yang dibangunkan

menyumbang kepada usaha berterusan dalam meredakan serangan phishing dan melindungi

maklumat yang sensitif menggunakan pendekatan model dwi di mana setiap model

mempunyai ketepatan sebanyak 74% untuk Logistic Regression dan 64% untuk Gradient

Boost Classifier masing-masing. yang mempunya . Kesimpulannya, penyelidikan ini

menunjukkan bahawa teknik-teknik klasifikasi, apabila digunakan pada dataset phishing,

memberikan hasil yang menjanjikan dalam mengenal pasti dan mengkategorikan laman web

phishing. Secara keseluruhan, projek ini memberikan pandangan berharga dalam

membangunkan alat yang efektif untuk memerangi serangan phishing dan mempromosikan

keselamatan dalam talian.

iii

ACKNOWLEDGEMENTS

 First and foremost, I extend my deepest gratitude to my supervisor, Noor Mohd Ariff

Bin Brahin, for his invaluable guidance, profound wisdom, and unwavering patience

throughout this project. His insights and mentorship have been fundamental to my success.

 I am equally grateful to my parents for their endless support and love. Their belief in

my abilities and constant encouragement have been a pillar of strength during my studies.

I also wish to express my appreciation to my colleagues for their willingness to share

thoughts and ideas about the project. The collaborative spirit and insightful contributions

within our team have been greatly beneficial.

 My highest appreciation also goes to my extended family and friends for their love,

prayers, and moral support during my studies. Their understanding and encouragement have

been a constant source of motivation.

 Finally, I would like to acknowledge all the faculty members and classmates for their

cooperation and assistance. A heartfelt thanks to everyone who has contributed to this project

in any way, big or small, directly or indirectly. Your collective efforts have been instrumental

in my academic journey.

iv

TABLE OF CONTENTS

PAGE

ABSTRACT i

ABSTRAK ii

ACKNOWLEDGEMENTS iii

TABLE OF CONTENTS iv

LIST OF TABLES vii

LIST OF FIGURES viii

 INTRODUCTION 1
1.1 Background 1

1.2 Addressing Cybercrimes involving malicious URLs using Artificial Intelligence

(AI) 1
1.3 Problem Statement 2
1.4 Project Objective 3

1.5 Scope of Project 3

 LITERATURE REVIEW 5
2.1 Introduction 5

2.2 Phishing 5
2.2.1 Definition 5

2.2.2 Impact of Phishing Attacks on Society 6
2.2.3 Types of Phishing Attacks 7

2.2.3.1 Spear Phishing 7

2.2.3.2 Search Engine Phishing 8

2.2.3.3 Email Phishing 8
2.2.3.4 Smishing and Vishing 8

2.2.3.5 Whaling 8
2.2.3.6 Social Media Phishing 8

2.2.3.7 Watering Hole Phishing 9
2.2.3.8 Malware-Based Phishing 9

2.2.4 Phishing Techniques 9

2.2.4.1 Spoofing 9
2.2.4.2 Link Manipulation 10
2.2.4.3 Malware Injection 10
2.2.4.4 Mass Target 11

2.3 Machine Learning 11

2.3.1 Definition 11
2.3.2 Types of Machine Learning 12

2.3.2.1 Supervised Learning 12
2.3.2.2 Unsupervised Learning 13
2.3.2.3 Reinforcement Learning 14

2.3.3 Machine and Deep Learning Frameworks 15
2.3.3.1 Pytorch 15

v

2.3.3.2 TensorFlow 16
2.3.3.3 Scikit Learn 16

2.3.3.4 Microsoft Azure Machine Learning 16
2.3.3.5 Jupyter Notebook 17

2.4 Machine Learning Algorithm Selection 17
2.4.1 Types of the Algorithms 17

2.4.1.1 Decision Tree Algorithm 18

2.4.1.2 Random Forest Algorithm 18
2.4.1.3 Gradient Boost Classifier 19
2.4.1.4 XG Boost Classifier 19
2.4.1.5 Logistic Regression Classifier 20

2.5 Analysis 20
2.5.1 Parameters 20
2.5.2 Datasets 21

2.5.3 Metric 21
2.6 Deployment of Model 23

2.6.1 FastAPi 23
2.6.2 Django 23

2.6.3 Node.js 24
2.6.4 Ruby on Rails 24

2.7 Comparison of Previous Related Projects 24
2.7.1 Project 1: (Ubing et al. , 2019) 24
2.7.2 Project 2 : (Basit et al. , 2020) 25

2.7.3 Project 3 : (Vishva and Aju , 2021) 25

2.7.4 Project 4 : (Al-Sarem et al. , 2021 & Ghaleb Al-Mekhlafi et al. , 2022)

 25
2.7.5 Project 5 : (Taha , 2021) 26

2.7.6 Summary 26
2.8 Summary 27

 METHODOLOGY 29
3.1 Introduction 29

3.2 Project Workflow 29
3.2.1 Phase 1 : Setting up the Environment 31

3.2.2 Phase 2: Importing Libraries 33
3.2.3 Phase 3: Finding and Selecting Dataset to Import 34

3.2.4 Phase 4 : Feature Extracton 35
3.2.4.1 Search for Presence of IP Address 36
3.2.4.2 Check for Hostname within URL 37
3.2.4.3 Search for URL in Google 38
3.2.4.4 Count numbe of dots(.) in URL 39

3.2.5 Phase 5: Data Visualization 40
3.2.6 Phase 6: Data Proprocessing 41
3.2.7 Phase 7: Splitting Dataset for Training and Testing 44
3.2.8 Phase 8 : Finding and Selecting the Machine Learning Algorithm 44

3.2.8.1 Decision Tree Classifier 45

3.2.8.2 Random Forest Classifier 45
3.2.8.3 XG Boost Classifier 45

3.2.8.4 Gradient Boost Classifier 45
3.2.8.5 Logistic Regression 46

vi

3.2.9 Phase VII: Deployment of Model 46
3.3 Summary 47

 RESULTS AND DISCUSSIONS 48

4.1 Introduction 48
4.2 Analysis of Workflow 48

4.2.1 Analysis of Dataset 48
4.2.2 Exploratory Data Analysis 50
4.2.3 Model Training and Testing 52

4.2.4 Deploying Model 64
4.3 Comparison of Results Between Past Projects 65
4.4 Summary 67

 CONCLUSION AND RECOMMENDATIONS 69
5.1 Introduction 69

5.2 Project Summarization 69
5.3 Project Contribution 70
5.4 Project Limitation 71
5.5 Future Recommendations 72

5.6 Conclusion 73

REFERENCES 75

vii

LIST OF TABLES

TABLE TITLE PAGE

Table 2.1: Parameters in Dataset 21

Table 2.2: Confusion Matrix 23

Table 2.3 : Comparison of Past Related Projects 27

Table 3.1: List of URL Features 36

Table 4.1 : Comparison of Current Project with Past Project 66

viii

LIST OF FIGURES

FIGURE TITLE PAGE

Figure 2.1: Machine Learning Work (“Types of Machine Learning | Simplilearn”) 12

Figure 2.2: Machine Learning Work (“Types of Machine Learning | Simplilearn”) 13

Figure 2.3: Machine Learning Work (“Types of Machine Learning | Simplilearn”) 14

Figure 2.4: Machine Learning Work (“Types of Machine Learning | Simplilearn”) 15

Figure 3.1: Flowchart of Building the Machine Learning Model 30

Figure 3.2: Find tool 31

Figure 3.3: Anaconda Navigator Window 32

Figure 3.4: Jupyter Notebook Environment 33

Figure 3.5: Imported Libraries 33

Figure 3.6: Find phishing URLs dataset 34

Figure 3.7: Code Snippet of Loading the Dataset 35

Figure 3.8: Code Snippet of Searching Presence of IP Address 37

Figure 3.9: Code Snippet of Checking for Hostname 37

Figure 3.10: Code Snippet of Searching in Google 39

Figure 3.11: Count Number of dot in the URL 40

Figure 3.12: Target Encoding 41

Figure 3.13: Creation of Feature and Target 43

Figure 3.14 : Splitting the Dataset 44

Figure 3.15: Documenting the result 46

Figure 3.16: Deployment of Model 47

Figure 4.1: Type of Dataset 49

Figure 4.2: Data Visualization of IP Address Usage 51

Figure 4.3: Data Visualization of Long URL 52

Figure 4.4 : Logistic Regression 55

https://utemedu-my.sharepoint.com/personal/b082010084_student_utem_edu_my/Documents/PSM2_REPORT_B082010084.docx#_Toc156651995
https://utemedu-my.sharepoint.com/personal/b082010084_student_utem_edu_my/Documents/PSM2_REPORT_B082010084.docx#_Toc156651996
https://utemedu-my.sharepoint.com/personal/b082010084_student_utem_edu_my/Documents/PSM2_REPORT_B082010084.docx#_Toc156651997
https://utemedu-my.sharepoint.com/personal/b082010084_student_utem_edu_my/Documents/PSM2_REPORT_B082010084.docx#_Toc156651998

ix

Figure 4.5 : GBC Model 57

Figure 4.6 : Decision Tree 59

Figure 4.7 : XGBoost Classifier 61

Figure 4.8 : Random Forest 63

Figure 4.9 : Comparision of Model Accuracy 64

Figure 4.10 : Running on Local Host 64

Figure 4.11: Web Application on PC Browser 65

Figure 4.12: Web Application on Mobile Browser 65

1

INTRODUCTION

1.1 Background

 Cybersecurity is essential in safeguarding individuals and organizations from

online threats, with phishing attacks posing a significant risk worldwide. Machine learning

models have emerged as a promising solution for detecting and preventing such attacks.

By analyzing data and identifying patterns associated with phishing URLs, these models

can differentiate between legitimate and malicious links (Jang-Jaccard & Nepal, 2014).

This project focuses on developing a robust phishing URL detection system using state-of-

the-art machine learning algorithms. By accurately identifying and blocking malicious

URLs in real-time, the system aims to protect users' sensitive information, prevent financial

losses, and mitigate reputational damage caused by phishing scams. Integrating machine

learning models into existing security systems enhances their effectiveness and provides

an additional layer of defense against evolving phishing techniques. Ultimately, this project

contributes to a safer online environment by leveraging artificial intelligence and data

analysis to foster trust and protect sensitive information in the digital realm.

1.2 Addressing Cybercrimes involving malicious URLs using Artificial

Intelligence (AI)

 Cybercrimes involving malicious URLs, such as phishing attacks, malware

distribution, and other forms of online fraud, pose a significant threat to individuals,

organizations, and society as a whole. Due to the constantly developing nature of cyber

2

threats, conventional ways of detecting and managing such risks frequently fall short. To

combat cybercrimes employing harmful URLs, Artificial Intelligence (AI) has emerged as

a possible approach. AI-powered systems can quickly and accurately identify dangerous

URLs by analyzing enormous volumes of data in real-time. Large datasets of well-known

harmful URLs and other relevant data can be used to train machine learning algorithms to

spot patterns and traits common to bad URLs. Then, these algorithms can be used in real-

time to scan and analyze URLs automatically, identifying those that are probably harmful

for additional examination or blocking.

 In conclusion, AI has demonstrated significant promise in combating harmful

URL-related cybercrimes. It is an effective tool in the battle against cybercrime because of

its capacity to analyze significant volumes of data in real-time, spot patterns, and adapt to

emerging threats. To stay up with the changing threat landscape, organizations must be

attentive and regularly upgrade their cybersecurity safeguards.

1.3 Problem Statement

 In today's interconnected world, ensuring robust cybersecurity measures is

paramount. However, three critical problem statements pose significant challenges that

demand immediate attention. These challenges include insufficient user awareness and

education, rapidly evolving cyber threats, and inadequate collaboration and information

sharing. Addressing these problems is crucial for a secure digital future.

 Insufficient user awareness and education remain a primary challenge in

cybersecurity. Many individuals are unaware of the tactics employed by cybercriminals,

making them easy targets. Comprehensive educational initiatives are necessary to raise

awareness about common threats and promote safe online practices.

3

 Rapidly evolving cyber threats present another challenge. Cybercriminals adapt

techniques to exploit vulnerabilities, surpassing traditional security measures. Continuous

research, proactive defense mechanisms, and adoption of advanced technologies like

artificial intelligence are crucial for early detection and response.

 Inadequate collaboration and information sharing hinder effective cybersecurity.

Establishing frameworks for public-private partnerships and fostering international

cooperation can enhance overall cybersecurity posture and enable swift responses to

emerging threats.

 In conclusion, integrating machine learning into cybersecurity provides a

proactive solution to the challenges of user awareness, evolving threats, and

collaboration. It enables early detection and mitigation of cyber attacks, enhancing

overall defense capabilities and ensuring a more secure digital environment.

1.4 Project Objective

 The main aim of this project is to design and develop a website that can take URLs

as input and predict whether it’s a good or bad URL using AI. Specifically, the objectives

are as follows:

 To design classification techniques for analyzing phishing.

 To apply different classification techniques to phishing dataset.

 To evaluate the accuracy of results using different methods.

1.5 Scope of Project

The scope of this project are as follows:

4

 Data collection: Collecting a comprehensive dataset of known malicious

 URLs from public sources or using web scraping techniques. This dataset

 will be used to train and validate the machine learning model.

 Model development: Develop a deep learning based model using machine

 learning to classify URLs as malicious or benign based on extracted

 features.

 Model training and evaluation: Training the model on the collected dataset

 and evaluating it’s performance.

 Web development: Building a user-friendly web application to demonstrate

 the functionality of the model.The web application will allow users to input

 an URL and receive an output indicating whether the URL is malicious or

 benign.

 Deployment: Deploying the trained model and the web application on a

 local server

5

LITERATURE REVIEW

2.1 Introduction

 This chapter will include a literature study that includes a definition of phishing,

machine learning and other topics, as well as a critical analysis of the current issue, a

proposed solution, and a conclusion. The goal of the literature review is to explain the

subject, including definitions, classifications, and other elements. The purpose of this

review of the literature is to give the researcher more knowledge based on the project work.

The following section will go into greater detail on phishing, machine learning,

classification strategies, parameter measurement and other topics. The proposed solution

for the full project's issue will be presented at the conclusion of the literature review. The

project outcome and output were submitted after gathering information from articles and

the past, followed by a milestone.

2.2 Phishing

 This section will discuss phishing, including its definition, several classifications,

and different sorts of attacks. For this project, URL phishing will be the primary attack type

that we concentrate on.

2.2.1 Definition

 There are many definitions of “phishing” that have been put forth and studied by

experts, researchers, and cybersecurity organizations. Even though the term “phishing’ lacks

a set definition due to its ongoing evolution, it has been interpreted in a variety of ways

6

depending on its usage and context. The de facto definition of phishing attacks in general is

the process of deceiving the recipient into taking the attacker’s desired action. As per some

definitions websites are the only media that can be used to some definitions. Phishing is

described as “a fraudulent activity that involves the creation of a replica of an existing web

page to trick an user into submitting personal, financial, or password data” in the study

(Merwe et al., 2005, p. 1). By providing the user malicious links that direct them to a phoney

website, phishing is an attempt to deceive a user into giving personal information, such as

bank account and credit card data. Some people claim that emails are the only attack channel.

Phishing, for instance, is described as "a fraudulent attempt, typically made through email

to steal your personal information" by PishTank (2006). According to Kirda and Kruegel

(2005), phishing is "a form of online identity theft that aims to steal sensitive information

such as online banking passwords and credit card information from users." According to

certain definitions, using combined social and technical abilities is important. In the case of

phishing, the APWG describes it as "a criminal mechanism employing both social

engineering and technical subterfuge to steal consumers' personal identity data and financial

account credentials" (APWG, 2018, p.1).

2.2.2 Impact of Phishing Attacks on Society

 Phishing is one of the most organized crimes of the 21st century. Phishing attacks

can have a negative effect on society in several ways, including money losses, identity

theft, harm to one's reputation, and emotional suffering. Intentionally targeting their

employees, phishing efforts were discovered by more than 80% of worldwide firms. Over

255 million phishing attacks were launched in 2022, according to the State of Phishing 2022

report by messaging security provider SlashNext, a startling 61% increase from 2021. The

analysis also made clear that some security measures are unable to counteract these dangers

7

because hackers frequently conduct attacks using commercial and personal messaging apps

as well as well-known providers like Microsoft, Amazon Web providers, and Google. Based

on IBM’s 2022 cost of Data Breach Report, phishing was the second most common cause of

data breaches at 16% costing an average of $4.9 million. The industry that was found to be

the most vulnerable to phishing attacks in Q1 of 2022 was the financial sector at 23.6%

followed by the software-as-a- Service (SAAS) sector at 20.5% and nextly the e-commerce

site at 14.6% of the overall sectors which were targeted at. However, the cost of a breach

caused by a successful phishing attack was the highest in the healthcare sector. In terms of

individuals, millennials and Gen-Z internet users were the most likely to fall victim to

phishing attacks at 23% compared to 19% of Generation X internet users which is because

the number of elders and time spent by them on the internet being significantly lower

compared to the younger generation (AAG IT Services, 2023). In these cases, individuals

are targeted to get access to their device or steal users personal information especially bank

details by mimicking a legitimate websites such as banks or social media.

2.2.3 Types of Phishing Attacks

 This section will discuss about the common phishing types that are used by attackers

to impersonate individuals or organizations to trick people into providing sensitive

information.

2.2.3.1 Spear Phishing

 In spear phishing, a specific person within an organization is targeted in an effort to

obtain their login information. Before attacking, the attacker usually first learns about the

victim, including their name, title, and contact information.

8

2.2.3.2 Search Engine Phishing

 Attackers utilize search engine optimization strategies to build phony websites that

show up at the top of search results for well-known phrases, such as banks in an effort to

deceive visitors into providing their personal data.

2.2.3.3 Email Phishing

 Attackers deceive users into clicking on links or downloading attachments that lead

to phishing or malware-containing websites by sending fraudulent emails that look to be

from a reliable source, such a bank or an e-commerce site.

2.2.3.4 Smishing and Vishing

 In smishing (SMS phishing) and vishing (voice phishing), mobile phones take the

place of email. Attackers that engage in the practise of smishing send texts with deceptive

material that resembles phishing emails. Vishing refers to phone calls in which the con artist

speaks directly to the victim.

2.2.3.5 Whaling

 This type of spear phishing targets senior executives or those with access to important

data or resources, including CFOs or CEOs.

2.2.3.6 Social Media Phishing

 Attackers use phony social media identities to pose as real people or businesses in

order to deceive users into disclosing sensitive information or clicking on harmful links.

9

2.2.3.7 Watering Hole Phishing

 In a watering hole phishing attack, a hacker determines a website that a particular

user demographic frequently visits. Then, in an effort to break into the network, they use it

to infect the users' computers.

2.2.3.8 Malware-Based Phishing

 Attackers can steal sensitive data like passwords or credit card details by infecting a

user's device with malware.

2.2.4 Phishing Techniques

 In this section we will discuss about the phishing techniques which refer to the

different methods that the attacker uses to carry out a phishing attack.

2.2.4.1 Spoofing

 Spoofing is a technique in which attackers can deceive victims into disclosing

sensitive information by pretending to be a reputable source. Examples of spoofing

techniques used in phishing attacks are:

• Website Spoofing

To fool victims into providing sensitive information, attackers establish fake

websites that mimic real ones.

• Caller ID Spoofing

• To appear as though they are calling from a trusted soource, attackers employ a

phoney caller ID.

• Email Spoofing

10

• Attackers employ a bogus email address or change an email’s “From” field to

make it seem as though it was sent by a reliable source.

2.2.4.2 Link Manipulation

 Attackers employ link manipulation to trick users into clicking on links that look

legitimate but direct them to phishing sites or malicious software. In phishing attempts, link

manipulation tactics like the following are typical examples:

• Attackers employ URL shorteners to conceal a link's actual location. A link to a

phishing website, for instance, could appear to be for a reputable website.

• Attackers build URLs that look similar to authentic ones but have mistakes in

them. For instance, a URL similar to www.facebok.com might be used to deceive

consumers into thinking they are accessing the official www.facebook.com.

• Homograph Attacks is when attackers build URLs that resemble genuine ones by

using special characters or internationalized domain names (IDNs). For instance,

a URL similar to "www.google.com" (notice the Latin "o" has been replaced with

a Cyrillic "о") could be used to deceive users into believing they are accessing

the genuine "www.google.com."

2.2.4.3 Malware Injection

 Software that is intended to harm or exploit a computer system is known as malware.

Attackers can steal private data from a victim's device using malware, including login

passwords or financial information. Malware used in phishing attempts includes, for

instance:

• Keyloggers are malicious programmes that keep track of a victim's keystrokes

and can be used to steal login details and other private data.

11

• Trojans known as remote access tools (RATs) give an attacker access to a victim's

device and sensitive data from a distance.

• Ransomware encrypts a victim's files and demands payment in exchange for the

decryption key.

2.2.4.4 Mass Target

 A mass target phishing assault is one in which the attacker sends a lot of phishing

emails or messages to a big group of people in the hopes that at least some of the recipients

will fall for the con. Since the attacker's intention is to target a large number of people, they

frequently use generic language and may not tailor their message to each recipient in a mass

target phishing attack.

2.3 Machine Learning

 In this section we will discuss the definition of machine learning, types of machine

 learning and tools that we will be using in this project.

2.3.1 Definition

 A branch of artificial intelligence known as "machine learning" focuses on creating

algorithms and statistical models that let computers learn from data without having to be

explicitly programmed (Alpaydin, E., 2010). In this branch of artificial intelligence, data and

algorithms are used to replicate human learning, allowing machines to improve over time,

become more accurate when classifying objects or making predictions, or uncover data-

driven insights. In order to identify patterns and categorise data sets, it first uses a

combination of data and algorithms. Then, it evaluates accuracy by using an error function.

12

Finally, it maximises the fit of the data points into the model ("What Is Machine Learning?

| IBM"). The streamlined description of how machine learning operates is shown in Figure

2.1 below.

2.3.2 Types of Machine Learning

 To teach a machine to learn and make predictions, detect patterns, or classify data,

a lot of data must be presented to it. Supervised, unsupervised, and reinforcement learning

are the three categories of machine learning.

2.3.2.1 Supervised Learning

 Giving machine learning algorithms known historical input and output data allows

for supervised learning to take place. The algorithm modifies the model in each step after

processing each input-output pair to produce an output as near to the intended result as

possible.

 "Supervised learning can be used to make predictions, recognize data, or

 classify it."

 For instance, information from tens of thousands of bank transactions could be fed

into a model, with each transaction being classified as either real or fraudulent. The model

will be able to identify trends that led to "fraudulent" or "not fraudulent" outputs and, with

Figure 2.1: Machine Learning Work (“Types of Machine Learning | Simplilearn”)

13

time, it will develop the ability to forecast if a particular transaction is fraudulent. Historical

data, computer simulations, or labelling human data can all be used to generate input and

output data. In situations where unstructured data, such as pictures, videos, audio, or text, is

present, specific characteristics or categorizations may be used as output information. Data

can be anticipated, recognised, and categorised using supervised learning. The visual

representation of how supervised learning functions is presented in Figure 2.2 below.

2.3.2.2 Unsupervised Learning

 Contrary to supervised learning, unsupervised learning does not use the same labelled

training sets and data. The computer instead looks for less obvious patterns in the data. When

it comes to recognising patterns and rendering conclusions based on data, this kind of

machine learning is highly helpful. An illustration of it is shown in Figure 2.3 below.

Unsupervised learning methods including Hidden Markov models, k-means clustering, and

Gaussian mixture models are frequently used.

 Let's take the supervised learning case where you didn't know which customers had

loan defaults. Instead, you would provide the computer borrower data, and it would look for

Figure 2.2: Machine Learning Work (“Types of Machine Learning | Simplilearn”)

14

trends among the borrowers before grouping them into various clusters.It is usual practise to

use this kind of machine learning while creating prediction models.

 Two further typical applications are clustering, which creates a model that groups

objects together based on predetermined characteristics, and association, which identifies

the rules that connect the clusters.

2.3.2.3 Reinforcement Learning

 Reinforcement learning is the machine learning technique that most closely matches

human learning. The algorithm or agent being used learns by interacting with its

surroundings and getting rewards, whether positive or negative. Common algorithms include

deep adversarial networks, Q-learning, and temporal differences.

 As same as the bank loan client example, use a reinforcement learning system can be

used to look at customer data. If the system classifies them as high-risk and they default, the

algorithm benefits. If they don't default, the program gives them a negative reward. Both

instances, in the end, help machine learning by increasing its awareness of the problem and

its surroundings.

Figure 2.3: Machine Learning Work (“Types of Machine Learning | Simplilearn”)

15

2.3.3 Machine and Deep Learning Frameworks

 In this section we will discuss about what tools or frameworks will be used in this

project. There were various frameworks available for machine learning to make

classifications or not.

2.3.3.1 Pytorch

 PyTorch is an open-source machine learning framework that is based on the Torch

library. This framework is free and open-source, and it was developed by FAIR (Facebook's

AI Research unit). It's a well-known machine learning framework that may be used for many

different tasks, including computer vision and natural language processing. The Python

interface of PyTorch is more interactive than the C++ interface (“PyTorch”). On top of

PyTorch, other deep learning tools have been developed, including PyTorch Lightning,

Hugging Face's Transformers, Tesla Autopilot and etc.

Figure 2.4: Machine Learning Work (“Types of Machine Learning | Simplilearn”)

16

2.3.3.2 TensorFlow

 TensorFlow is one of the most popular open-source libraries for developing deep

learning and machine learning models. It was created by the Google Brain Team and

provides a JS library. It is quite well-liked by machine learning aficionados, who utilise it to

create various ML applications. For large-scale machine learning and deep learning projects

in particular, it provides a potent library, tools, and resources for numerical computing. It

makes it possible for ML developers and data scientists to quickly create and implement

machine learning applications. TensorFlow offers a high-level Keras API for training and

creating ML models, making it simple for users to get started with TensorFlow and machine

learning (“TensorFlow”).

2.3.3.3 Scikit Learn

 One of the best open-source frameworks for beginning machine learning is scikit-

learn. Because of its high-level wrappers, users may experiment with various methods and

examine a variety of classification, clustering, and regression model. Simply by unpacking

the code and following the dependencies, scikit-learn can also be a fantastic technique for

the inquisitive mind to obtain more insight into the models (F. Pedregosa, G. Varoquaux, et

al, 2011). The documentation for Scikit-learn is comprehensive and simple to read for both

novices and experts. Scikit-learn is excellent for machine learning solutions with a

constrained time and resource budget. It is solely machine learning-focused and has played

a key role in popular brands' predictive solutions over the past few years.

2.3.3.4 Microsoft Azure Machine Learning

 Thanks to Azure Machine Learning, data scientists and developers can create,

release, and maintain high-quality models more rapidly and with greater assurance. It

17

decreases time to value with market-leading machine learning operations (MLOps), open-

source interoperability, and integrated tools. For moral machine learning applications of

artificial intelligence, this trustworthy platform was developed ("Azure Machine Learning -

ML as a Service | Microsoft Azure").

2.3.3.5 Jupyter Notebook

 The Jupyter Notebook is an incredibly powerful tool for interactively designing and

presenting data science projects. A notebook integrates code and its output in a single

document that includes narrative language, mathematical equations, and other rich media.

For better readability, reproducibility, and sharing of your work, it's a single page where you

can run code, view the results, add reasons, formulas, and charts. Although Jupyter

Notebooks support a wide range of programming languages, this post will focus on Python

because it is the most popular language. Among R users, R Studio is often a more preferred

solution.

2.4 Machine Learning Algorithm Selection

 In this section we will discuss about the suitable types of algorithms that can be

used in this project.

2.4.1 Types of the Algorithms

 Machine learning techniques have been extensively investigated and used in phishing

URL detection. The numerous kinds of algorithms that are accessible are illustrated here.

18

2.4.1.1 Decision Tree Algorithm

 It ranks among the most widely used machine learning algorithms. The decision tree

approach is easy to understand and apply. Starting with the best splitter among the traits that

can be classified, or the tree's root, is the first task of a decision tree. Before reaching the leaf

node, the algorithm keeps expanding the tree. Each internal node in a decision tree

representation represents an attribute, whereas each leaf node represents a class label. Target

values or classes are forecast using this training model. To calculate these nodes, the decision

tree method uses the Gini index and information gain approaches ("Support Vector

Machines: A Simple Explanation - KDnuggets").

2.4.1.2 Random Forest Algorithm

 The random forest method, one of the most effective machine learning algorithms, is

based on the concept of the decision tree algorithm. There are many decision trees in the

forest, which was built using the random forest method. A huge number of trees provide

high detection accuracy. The process of creating a tree employs the bootstrap methodology.

Using attributes and samples from the dataset that are randomly selected, a single tree is built

using the bootstrap method. The random forest method will choose the best splitter from

among the randomly chosen features for categorization, much as the decision tree approach.

The method also uses information gain and the Gini index to do this. This process will

continue until the random forest yields on trees. The objective value is predicted by each tree

in the forest, and an algorithm then determines the votes for each target forecast. The aim

with the most votes is considered in the random forest algorithm's final forecast ("How the

Random Forest Algorithm Works in Machine Learning - Dataaspirant").

19

2.4.1.3 Gradient Boost Classifier

 In order to minimise a loss function, Gradient Boosting is a functional gradient

algorithm that continually chooses a function that points in the direction of a weak hypothesis

or negative gradient. A powerful prediction model is created by combining multiple weak

learning models with a gradient boosting classifier. The theory behind this kind of hypothesis

boosting is called Probability Approximately Correct Learning (PAC). This PAC learning

approach looks into machine learning problems to determine their level of complexity; a

comparable approach is used with hypothesis boosting. The algorithm weights the

observations and instances in the training set, giving harder-to-classify examples greater

weight. The system gradually adds more inexperienced students, pairing them with the

hardest training cases. The majority vote method is used in AdaBoost to make predictions,

and cases are categorised based on which class gets the most votes from weak learners.

(GeeksforGeeks).

2.4.1.4 XG Boost Classifier

 One of the most famous machine learning calculations in the planet is XGBoost.

Whatever the case, whether the vaticination work is retrogression or section. The results

produced by XGBoost are unquestionably superior to those of other AI calculations. In truth,

it has developed the "cutting edge" machine education calculation for managing organized

information ever since it began. XGBoost is a grade-appropriate variety of supporting

products that has been enhanced to be exceptionally persuasive, adaptable, and portable. It

carries out calculations for machine education using the Grade Boosting edge. XGBoost

offers similar tree assistance (also known as GBDT or GBM) to address a variety of

information understanding challenges (Aldawood and Skinner) quickly and accurately.

20

2.4.1.5 Logistic Regression Classifier

 Logistic Regression is a classification method employed in the field of machine

learning. The dependent variable is modelled using a logistic function. The dependent

variable is binary, meaning it can only have two alternative outcomes (e.g., whether the URL

is phishing or not). Consequently, this method is employed when handling binary data.

Logistic regression employs the sigmoid function to yield the likelihood of a specific label.

The Sigmoid Function is a mathematical function utilized to transform expected values into

probabilities. The function can transform any real value into a value that falls between the

range of 0 and 1. The logistic regression must adhere to the constraint that its value lies

within the range of 0 to 1. As it is restricted to a maximum value of 1, it creates a sigmoidal

curve on a graph. Here is a simple method to recognize the Sigmoid function, also known as

the logistic function Doe, J. (2023, March 5).

2.5 Analysis

 In this section we will discuss about the parameters that we will use to analyze the

data and the dataset itself. Later, we will also discuss the metric we will be using to evaluate

the performance of a model on a particular task.

2.5.1 Parameters

 Parameters are an important aspect of an analysis and in this project in order to

explore the effectiveness of using the algorithms different adjustments of parameters are

implemented. Table 2.1 below shows the parameters of the dataset that will be used in this

project. This helps us to chategorize a given population or some aspect of it.

21

Parameters

Dataset Name

Good/Benign Bad

(Dataset I) ✓ ✓

(Dataset II) ✓

Table 2.1: Parameters in Dataset

2.5.2 Datasets

 The datasets I was obtained from Kaggle notebook which consisted of 549,346

entries. Additionally, the datasets II was retrieved from Mendeley Data which is split into 2

sets of training and testing. The Training set has 2 million URLs for each phishing and clean

data. The Test set has 1 Million phish URLs and 1 million clean URLs. Both the datasets in

this project are only using 2 parametersq which is good and bad urls. However, in Dataset II

the good and bad urls are stored separately in 2 different files.

2.5.3 Metric

 The experiment of both training and testing is repeated many times with both SVM

and RF algorithms. The accuracy percentage of correct decisions among all testing

samples:

 𝑎𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 +𝐹𝑁
× 100%

22

 TP-True Positive counts the number of harmful URLs that have been appropriately

tagged; The number of harmful URLs incorrectly labelled as safe is known as FN- False

Negative; The amount of accurately labelled safe URLs is known as TN-True Negative;

According to Xuan et al., the number of safe URLs incorrectly labelled as harmful is

known as FP (False Positive).

Precision is the ratio of correctly classified harmful URLs (TP) to all malicious URLs

classified by the classifier (TP+FP).

𝑎𝑐𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100%

Recall: is the percentage of malicious URLs correctly labeled (TP) among allmalicious

URLs of the testing data (TP+FN).

 𝑎𝑐𝑐 =
𝑇𝑃

𝑇𝑃 +𝐹𝑁
× 100%

F1-score: is the harmonic mean of precision and recall. High F1 value means the classifier

is good.

𝐹1 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
× 100%

FPR (False prediction rate) is calculated as:

𝐹𝑅𝑃 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
× 100%

Both two data subsets are utilized separately to assess the machine learning algorithm's

training performance. These data subsets each have a distinct amount of data and a varied

23

distribution of data labels, which could affect how effectively training works. The Table 2.1

shows the Confusion Matrix.

 Classified Malicious URL Classified Safe URL

Real Malicious URLs TP FN

Real Safe URLs FP TN

Table 2.2: Confusion Matrix

2.6 Deployment of Model

 There are several ways to deploy a machine learning model in a website. Given

 below are some common approaches.

2.6.1 FastAPi

 For integrating machine learning models into a website, many people choose

FastAPI. Python APIs can be built using the contemporary, high-performance web

framework FastAPI. It is highly suited for deploying machine learning models because it is

built for speed and effectiveness (“FastAPI”).

2.6.2 Django

 Python's Django web framework offers a complete collection of tools and

functionality for developing web applications. Object-Relational Mapping (ORM) system,

authentication, and an admin interface are all included. Django is appropriate for bigger,

more complicated projects that need a thorough framework (Django Project).

24

2.6.3 Node.js

 You may create server-side JavaScript applications with Node.js, a well-liked

JavaScript runtime environment. Express.js and Koa.js are two frameworks that can be

used to build APIs to serve machine learning models. A non-blocking, event-driven

architecture offered by Node.js can be helpful for handling high concurrency situations

(“About | Node.js”).

2.6.4 Ruby on Rails

 Rails, sometimes known as Ruby on Rails, is a Ruby-based web application

framework. It adheres to the maxim of convention preceding configuration, with an

emphasis on efficiency and productivity. If you prefer working with Ruby, Rails offers a

simple and user-friendly framework for creating APIs (“Ruby on Rails”).

2.7 Comparison of Previous Related Projects

2.7.1 Project 1: (Ubing et al. , 2019)

 It focuses on enhancing the accuracy of phishing website detection. The researchers

employ a feature selection algorithm and integrate it with ensemble learning based on

majority voting. They compare this approach to various classification models like Random

Forest, Logistic Regression, and others. The study demonstrates that while current phishing

detection technologies have an accuracy rate between 70% and 82.52%, their proposed

model achieves up to 85% accuracy, outperforming existing methods. The model uses a

combination of different learning models, demonstrating promising accuracy rates in

experiments.

25

2.7.2 Project 2 : (Basit et al. , 2020)

 This journal article focuses on improving phishing attack detection. It introduces a

novel ensemble model combining Artificial Neural Network (ANN), K-Nearest Neighbors

(KNN), Decision Tree (C4.5), and Random Forest Classifier (RFC). This model aims to

enhance accuracy in detecting website phishing attacks. The study demonstrates that the

ensemble of KNN and RFC achieves a detection accuracy of 87.33%. The paper emphasizes

the increasing importance of effective phishing detection methods in the context of rising

cyber threats, particularly during the COVID-19 pandemic.

2.7.3 Project 3 : (Vishva and Aju , 2021)

 This journal presents a system for detecting phishing websites. It utilizes a novel

approach that combines URL analysis and content analysis using TF-IDF values. The system

employs machine learning classifiers including Logistic Regression, Random Forest,

Support Vector Machine, Naive Bayes, and Stochastic Gradient Descent. The methodology

achieves an accuracy of 80.68%. The study emphasizes the importance of advanced phishing

detection in the context of growing cybersecurity threats.

2.7.4 Project 4 : (Al-Sarem et al. , 2021 & Ghaleb Al-Mekhlafi et al. , 2022)

 This journal discusses on an improved method for detecting phishing websites using

an optimized stacking ensemble model. This model combines several machine learning

algorithms, including Random Forests, AdaBoost, XGBoost, Bagging, GradientBoost, and

LightGBM, and optimizes them using a genetic algorithm. The study tests this approach on

multiple datasets, achieving high detection accuracy and demonstrating its effectiveness over

traditional methods. The paper contributes significantly to cybersecurity by offering a robust

solution to combat phishing attacks.

26

2.7.5 Project 5 : (Taha , 2021)

 The journal proposes a novel phishing detection method. It combines multiple

machine learning algorithms with a weighted soft voting mechanism, enhancing the

accuracy of phishing website detection. The study uses a publicly available dataset from

the UCI Machine Learning Repository and achieves a high accuracy rate of 83% and an

Area Under the Curve (AUC) of 78.8%. The research underscores the efficacy of using an

ensemble approach with weighted voting in cybersecurity applications.

2.7.6 Summary

No. Author

reference

Classifier Features Issues

1 Ubing et

al. (2019)

The majority voting classifier

consists of several classifiers,

including Gaussian Naive

Bayes, Support Vector

Machine, k-Nearest

Neighbours, Logistic

Regression, Multilayer

Perceptron Neural Network,

Gradient Boosting, and

Random Forest classifiers.

The qualities of a URL

include its lexical

characteristics, content-

based attributes, and

external factors such as

DNS information and the

reputation of the web page.

• In majority voting, the

individual probabilities

assigned to each model

are ignored.

• The process of selecting

features requires a

thorough understanding of

the domain, as the chosen

features may not

effectively utilise the

dataset.

• Content-based features

need a higher amount of

computational resources

and are not secure when

handling harmful content.

• Additional processing

overhead is required for

external features such as

DNS server-based

features and web page

reputation features.
2 Basit et al.

(2020)

Ensemble model (combines

two classifiers taking RFC as a

base classifier with ANN,

kNN and C4.5 algorithms)

URL lexical features,

content-based features,

external features such as

DNS information,

reputation of the web page

• The importance of the

base classifiers is

disregarded.

 • Extracting features

requires time, particularly

for external data, and

analysing content might

lead to security concerns.
3 Vishva and

Aju (2021)

URL analysis: Uses default

feature set and three machine

URL features and content

features

• Weightage of the base

classifier is not taken into

27

learning classification

algorithms were used such as

linear regression, random

forest and support vector

machine for classification.

Content analysis: vectorizing

the text using TF-IDF, bag of

words, n-grams and Naïve

Bayes, linear regression, linear

SVM, stochastic gradient

descent and random forest

classifiers are used for

classification

account, and classification

is based on the best

classifier from both URL

analysis and content

analysis.

• Feature extraction takes

time, especially for

external data, and content

analysis can cause

security issues.

4 Al-Sarem

et al.

(2021),

Ghaleb Al-

Mekhlafi

et al.

(2022)

The stacking ensemble

approach utilises a

combination of random

forests, AdaBoost, XGBoost,

Bagging, GradientBoost, and

LightGBM models. The

parameters of these models are

optimised using genetic

algorithms. The top three

models have been chosen for

classification.

URL features and content

features

• Optimising parameters

through the utilisation of

genetic algorithms.

• The weight of the base

classifier is disregarded.

• Feature extraction is a

time-consuming process,

particularly when dealing

with external data.

5 Taha

(2021)

k statistics-based weighted soft

voting. (Weights were

assigned to the individual

classifiers using k statistics.)

URL lexical features,

content-based features,

external features such as

DNS information,

reputation of the web page

• Feature extraction takes

time, especially for

external data, and content

analysis can cause

security issues
Table 2.3 : Comparison of Past Related Projects

2.8 Summary

 Overall, these projects will analyze phishing URLs using machine learning

techniques. To identify and solve the problem, this chapter discusses the definition of

phishing, categories, type of attack, definition machine learning, type of learning, tools that

used definition techniques, classification technique, parameter, dataset, metric, and

comparison of previous related works. More research and related works on phishing URLs

utilizing machine learning techniques will be discussed in the following chapter.

28

29

METHODOLOGY

3.1 Introduction

 In this chapter, it presents the method that has been conducted to develop the

project, to achieve the objectives. There are three main parts in this chapter, which is known

as the study design, project methodology and elaboration of the process flow.

3.2 Project Workflow

 In this section will discuss about the project methodology. Figure 3.1 shows the

analysis methodology for phishing URL, which consists of 9 phases. During the first phase,

the setup required to train and test the model is established in this case Jupyter Notebook

was used. The second phase is to import the required libraries to execute blocks of codes

that might require them such as for visualization and training the model. Thirdly, we will

look for datasets to employ in this project and import them. The fourth phase will be to do

feature engineering of extracting lexical features from raw URLs as these features will be

used as the input features for training the machine learning model. The fifth phase is to do

visualization for the features extracted to help get a better understanding of them to be used

in this project. The sixth phase is to do data processing for cleaner data. The seventh phase

is to split the dataset for testing and training. The eighth phase is to find the machine

learning tool then to identify the optimum algorithm based on the dataset. Finally, in the

last phase, the model will be deployed to a local server. The steps in methodology are

explained in detail in the section below.

30

Figure 3.1: Flowchart of Building the Machine Learning Model

31

3.2.1 Phase 1 : Setting up the Environment

 Figure 3.1 shows about phase I methodology in this project which is setting up the

environment. During the initial phase of this project, a machine learning tool is required to

implement and execute various machine learning algorithms and techniques. It provides an

environment and set of functionalities that enable users to train, test and deploy machine

learning models efficiently.

Figure 3.2: Find tool

 After careful consideration and analysis, Jupyter Notebook was choosen as the

machine learening framework. This is because Jupyter Notebook is a free web-based

application that provides with an easy-to-use, interative data environment. It supports all

programming language including Python and since it’s web based application it can be run

on any environment that has the minimum hardware requirements. As for this project, it will

be run on a Windows 11 device with 12GB or RAM. In order to get started with it, Anaconda

32

was installed first . It is a distributor for the Python that comes with preloaded with all the

most popular libraries and tools. It lets users run Jupyter Notebook right away without the

hassle of managing countless installations or worrying about dependancies and OS-specific

installation issues. Figure 3.3 shows the Jupyter Notebook in the Anaconda Navigator

window.

Figure 3.3: Anaconda Navigator Window

 After selecting or creating the desired environment, Anaconda Navigator will launch

Jupyter Notebook in your web browser. Jupyter Notebook provides an interactive computing

environment where you can write and execute Python code, create visualizations, and

document your work using Markdown. Once Jupyter Notebook is opened, you can create a

new notebook by clicking on the "New" button and selecting "Python 3" or any other

available kernel that suits your project requirements. In the notebook interface, you can write

and execute Python code cells as in Figure 3.4. You can also add Markdown cells for

documentation and explanations. Jupyter Notebook allows you to run individual code cells

or the entire notebook.

33

Figure 3.4: Jupyter Notebook Environment

3.2.2 Phase 2: Importing Libraries

 The libraries utilized in the code snippet in Figure 3 serve crucial roles in machine

learning and data analysis tasks. These libraries provide reusable code, efficient algorithms,

extended functionality, community support, integration capabilities, and security. By

leveraging these libraries, developers can streamline their workflows, enhance their

analyses, and build robust machine learning models with ease. More libraries can be added

on while going through the rest of the process such as feature extractions and exploratory

data analysis.

Figure 3.5: Imported Libraries

34

3.2.3 Phase 3: Finding and Selecting Dataset to Import

 Figure 3.6 shows the phase II methodology in this project which is finding the

dataset. The phishing data consists of a phishing URL gathered from earlier researches.

Two number of datasets were choosen based on the criteria required. As for finding the

dataset. PhishTank, Kaggle and UCI Machine Learning Repository was used. This dataset

will be later split into for both training and testing. However, some level of preprocessing

data might be required.

Figure 3.6: Find phishing URLs dataset

 After weighing in the factors such as quality , accurasy of labels and the adequate

sample size, the datasets from (Malicious URLs dataset | PhishTank) was choosen. A

comprehensive dataset containing verified phishing URLs was assembled by the members

of the community. To expand the dataset with more benign URLs, dataset was retrieved from

http://data.phishtank.com/data/online-valid.csv

35

personal browster history that were verified to be safe sites such as goverment and large

corporation sites.

 Loading and reading datasets are crucial steps in data analysis and machine learning.

These steps involve retrieving data from external sources and converting it into a format that

can be processed by Python code.. To load the dataset, the function of ‘read_csv()’ offered

by the pandas is used to load the CSV file as in Figure 3.7.

Figure 3.7: Code Snippet of Loading the Dataset

 After loading the dataset, it is assigned to a variable, usually in the form of a pandas

DataFrame. This tabular data structure enables easy manipulation and analysis of the data.

The dataset can then be explored to understand its structure and contents. Functions and

methods provided by the library allow users to view the shape of the dataset, check column

names, examine sample data, and obtain basic statistics.

3.2.4 Phase 4 : Feature Extracton

After importing the datasets, the following lexical features will be extracted from

raw URLs in this step and utilised as input features to train the machine learning

model. The ensuing features are produced based on the Table 3.1. Each feature plays

a crucial role in distinguishing between legitimate and malicious URLs. By

36

examining these features closely, machine learning models are able to identify

patterns often seen in phishing sites. The objective is to develop a robust system

capable of accurately detecting and flagging potential phishing URLs, enhancing

cyber security and safeguarding users from online threats. This method, which

considers various elements of a URL's structure and content, ensures a high level of

precision and reliability in phishing detection, offering strong protection against the

myriad of deceptions found on the internet.

No Feature Description

1 IpAddress Check if the IP address is used in the hostname of the website URL

2 Abnormal URL Identity is frequently included in the URL of a trustworthy website.

3 GoogleIndex Determine whether or not the URL has been indexed by Google Search

Engine.

4 CountNumDot Number of character '.' in URL

5 Count-www Number of www in URL

6 Count_@ There exists a character '@' in URL

7 DoubleSlashInPath There exists a slash '//' in the link path

8 UrlLength The length of URL

9 NumDash Number of the dash character '-'

10 NumSensitiveWords Number of sensitive words (i.e., “secure”, “account”, “webscr”,

“login”, “ebayisapi”, “sign in”, “banking”, “confirm”) in website

11 ShortURL Determine whether a URL has been shortened using a service, such as

bit.ly, goo.gl, go2l.ink, etc.

12 NoHttps Check if there exists a HTTPS in website URL

13 CountHTTP Check number of HTTP in URL

14 NumPercent Number of the character '%'

15 Count(?) Check number of times (?) has been used in URL

16 Count(-) Check number of times (-) has been used in URL

17 Couunt(=) Check number of times (=) has been used in URL

18 HostnameLength Length of hostname

19 PathLength Length of the link path

20 InitialDirectorySize Determine how long the URL's first directory should be

21 TPD_Length Determine length of the TLD

22 NumNumericChars Number of the numeric character

Table 3.1: List of URL Features

Given below is few explanations of how the feature extractions works.

3.2.4.1 Search for Presence of IP Address

 Initially, a search for patterns indicating the presence of an IP address in the URL is

done as in Figure 3.8.

37

Figure 3.8: Code Snippet of Searching Presence of IP Address

The provided code snippet contains a function called having_ip_address() that checks if a

given URL contains an IP address. It uses the regular expression search function from the re

module to search for specific IP address patterns, including IPv4 and IPv6 formats. If a match

is found, indicating the presence of an IP address, the function returns 1; otherwise, it

returns 0.

3.2.4.2 Check for Hostname within URL

 Nextly, an attempt to extract the hostname from the URL and then to check if the

hostname appears within the URL itself is done as per in Figure 3.9.

Figure 3.9: Code Snippet of Checking for Hostname

38

The provided code snippet demonstrates a function called abnormal_url() that identifies

URLs with abnormal structures where the URL itself contains its own hostname. It utilizes

the urlparse() function from the urllib.parse module to extract the hostname from the given

URL. The function takes a URL as input and uses urlparse(url).hostname to retrieve the

hostname. It then converts the hostname to a string for further processing. Next, it applies a

regular expression search using re.search() to check if the hostname appears within the URL

itself. If a match is found, indicating that the URL contains its own hostname, the function

returns 1. Otherwise, it returns 0. This function is applied to each URL in the DataFrame

df['url'] using a lambda function.

3.2.4.3 Search for URL in Google

 As in Figure 3.10 , the provided code snippet installs the googlesearch-python

library and imports the search function from it. The function google_index() takes a URL

as input and performs a Google search using the search() function, searching for the given

URL in the top 5 search results. If the URL is found in the search results, indicating that it

is indexed by Google, the function returns 1. Otherwise, it returns 0. This function is then

applied to each URL in the DataFrame df['url'] using a lambda function, and the results are

stored in a new column called google_index in the DataFrame.

39

Figure 3.10: Code Snippet of Searching in Google

3.2.4.4 Count numbe of dots(.) in URL

 The provided code snippet in Figure 3.11 demonstrates a function called

count_dot() that counts the occurrences of the dot character ('.') in a given URL. The

function uses the count() method available for strings in Python to count the number of

dots in the URL.The function takes a URL as input and applies url.count('.') to count the

occurrences of the dot character. It then returns the count. This function is applied to each

URL in the DataFrame df['url'] using a lambda function.The code also includes an

additional step where the count_dot() function is applied to each URL, and the results are

stored in a new column called count. in the DataFrame.

40

Figure 3.11: Count Number of dot in the URL

 Similarly, the same method was used to count other lexical features by defining

separate functions that extract and count specific features of interest. For example, a function

can be created to count the occurrence of a specific character, count the length of the URL,

count the number of digits, count the number of special characters, or count the occurrence

of certain keywords. By defining and applying these functions to the URLs in the DataFrame,

various lexical features can be extracted and quantified that may be informative for the

analysis or machine learning model.

3.2.5 Phase 5: Data Visualization

 Data visualization in the context of feature extraction, as exemplified by the seaborn

(sns) box plot. This is done to understand the data distribution because it help on

understanding how these features vary across different groups. This can reveal patterns or

anomalies that might not be apparent from raw data. By visualizing the distribution of

features across different classes, one can assess how well a feature might distinguish between

those classes. This helps in understanding the relevance of each feature for the classification

task. It is a vital step in the data science workflow as it aids in understanding, preprocessing,

and utilizing data effectively for building robust machine learning models.

41

3.2.6 Phase 6: Data Proprocessing

Data processing, also referred to as data preprocessing or data preparation, is a critical step

that follows exploratory data analysis (EDA) in the overall data analysis workflow. It

involves transforming raw data into a format suitable for machine learning algorithms or

further analysis. Data processing plays a pivotal role in enhancing the quality, usability, and

effectiveness of the data for modeling and analysis purposes. Feature engineering is another

integral part of data processing. It involves creating new features or transforming existing

ones to capture relevant information and improve model performance. Below are the two

vital preprocessing methods that have been completed.

I) Target Encoding (Figure 3.12)

 Target encoding is a common preprocessing step in machine learning

especially for classification tasks. It enables the conversion of categorical labels into

a numerical format, allowing machine learning algorithms to process the data

effectively. The numerical codes assigned to each category are typically in ascending

order, representing different classes or categories of the target variable. This

encoding process facilitates the training and evaluation of classification models, as

they generally require numeric inputs for predictions and analysis.

 Figure 3.12: Target Encoding

42

 The code snippet provided demonstrates the process of encoding

categorical labels into numerical representations using the LabelEncoder class

from the scikit-learn library. This step is commonly known as target encoding,

where the target variable (in this case, "type") is encoded into numerical codes to

be understood by machine learning algorithms.

 First, the LabelEncoder object is instantiated as "lb_make". Then,

 the "fit_transform" method of the LabelEncoder object is applied to the "type"

 column of the DataFrame, denoted as "df['type']". This step fits the encoder to

 the unique categories in the "type" column and transforms those categories into

 corresponding numerical codes. The resulting numerical codes are assigned to

 a new column called "type_code" in the DataFrame.The "value_counts()"

 method is then used to count the occurrences of each numerical code in the

 "type_code" column. This provides insights into the distribution of the encoded

 labels, showing how many instances belong to each category.

II) Creation of Feature and Target (Figure 3.13)

 This part of the code creates the predictor variables (features) and the

target variable, setting the stage for model training and evaluation.

43

 Figure 3.13: Creation of Feature and Target

 In the provided code snippet, the predictor variables and the target

variable are created as part of the data preprocessing stage. The predictor

variables, denoted as "X," are selected from the DataFrame "df" using double

square brackets.These variables are features that will be used to predict the target

variable. In this case, the selected predictor variables include features such as

'use_of_ip', 'long_url', 'Domain_Date', 'Disable_Click', 'Https_Domain', and

various other features. These features are extracted from the DataFrame and

stored in the "X" variable.

 On the other hand, the target variable, denoted as "y," is extracted from

the DataFrame "df" using single square brackets. In this case, the target variable

is 'type_code,' which represents the encoded numerical labels for the target

variable 'type.' The target variable is stored in the "y" variable.

 By separating the predictor variables (features) and the target variable,

the data is prepared for further analysis and modeling. The predictor variables are

 used as input to train the machine learning model, while the target variable serves

as the ground truth or the variable to be predicted.

44

 This separation allows for easy manipulation and processing of the data,

as well as the ability to apply various machine learning algorithms to predict the

target variable based on the given features.

3.2.7 Phase 7: Splitting Dataset for Training and Testing

The dataset is split into two parts which is a training set and a test set as like in

Figure 3.14. This is to make sure the machine learning model generalizes the

unseen data. The ‘X_train’ and ‘y_train’ represents the training data and labels.

In addition, the ‘X_test’ and ‘y_test’ represent the testing data and labels. The

dataset is split into a ratio of 80 to 20 for training and testing respectively.

Figure 3.14 : Splitting the Dataset

3.2.8 Phase 8 : Finding and Selecting the Machine Learning Algorithm

 In this phase we find the types machine learning models suitable for this project. Based

on the dataset, it uses a classification problem it has input URL classified as safe and unsafe.

Hence, it is a supervised machine learning model. The model that are considered based on

the previous analysis and their success rate to train the datasets in this notebooks are as given

above in Figure 3.8.

45

3.2.8.1 Decision Tree Classifier

 The interpretability, feature importance analysis, and ability to handle nonlinear

relationships make decision trees a powerful algorithm for building a machine learning

model to determine good or phishing sites.

3.2.8.2 Random Forest Classifier

 Random Forest's robustness and accuracy, feature selection capabilities, and ability

to handle imbalanced data make it a powerful algorithm for building a machine learning

model to determine good or phishing sites.

3.2.8.3 XG Boost Classifier

 XGBoost's high predictive performance, ability to handle imbalanced data, and

feature importance analysis and regularization capabilities make it an excellent algorithm

for building a machine learning model to determine good or phishing sites.

3.2.8.4 Gradient Boost Classifier

 Gradient Boosting Classifier excels in URL safety prediction due to its capability of

handling complex, web-related datasets. This model iteratively builds an ensemble of

decision trees, each addressing previous errors, efficiently capturing the patterns in URL

data. Its robustness against imbalanced datasets, where unsafe URLs are rarer, is a significant

advantage.

46

3.2.8.5 Logistic Regression

 Logistic Regression is inherently suited for binary outcomes, like classifying URLs

as safe or unsafe. It predicts the probability that a given URL belongs to one of these two

categories. The model provides coefficients for each feature, indicating how each predictor

influences the odds of a URL being safe or unsafe. If the relationship between the features

of URLs and their safety status is linear or approximately linear, Logistic Regression can

model these relationships effectively.

 Figure 3.15 depicts the documentation of the results of the analysis. The outcome

will be documented after comparing the accuracy of all five models and determining the best

two algorithms based on their accuracy rate. The accuracy of the models is documented in

confusion matrix and precision. The best two models will later be dumped into a pickle file.

Figure 3.15: Documenting the result

3.2.9 Phase VII: Deployment of Model

 Figure 3.16 shows the deployment process of the machine learning model to provide

interface for the users to input any web address of a site to test whether it is a phishing or

legitimate site. Firstly, both the trained models in pickle files are imported into Flask

initialization file named ‘app.py’. The ‘FeatureExtraction’ class is responsible for processing

a given URL by user and extracting various features that are relevant. These extracted

features are used by the best two models for prediction. This web framework, Flask was

47

chosen to integrate the model to run on a local server because it comes with a built-in

development server. After running the application, any devices in the same network as the

host address would have access to use this web application. Also, a HTML template using

Bootstrap for styling and better compatibility with mobile devices and JavaScript was used

for displaying the model predictions.

Figure 3.16: Deployment of Model

3.3 Summary

 This chapter discusses methodology, project methodology, and project scheduling.

Finding the tool and dataset, selecting the tool and data, installing the tool, information

gathering, information analysis, and documenting the results are all part of the project

methodology. This project will take advantage of it. Aside from that, it demonstrates how

the project is being prepared and how long it takes to prepare for one chapter.

48

RESULTS AND DISCUSSIONS

4.1 Introduction

 In this chapter, the results obtained from the experiments conducted on the phishing

website prediction using machine learning models are presented. The purpose of this

chapter is to analyze and interpret the performance of the trained models and discuss the

implications of the findings. The experiments were designed to evaluate the effectiveness

and accuracy of the selected machine learning algorithms in identifying phishing websites.

4.2 Analysis of Workflow

Analysis helps in understanding complex data and information, leading to better decision-

making. By analyzing information, trends, patterns, and insights can be identifies that are

not apparent at first glance.

4.2.1 Analysis of Dataset

For the dataset, choice was made to go with a smaller dataset as in Figure 4.1 that was

verified personally isntead of using a huge dataset because in deployment the model trained

with huge dataset performed poorly although during training and testing it performed well.

This could have been due to several reasons.

49

Figure 4.1: Type of Dataset

I) Data quality

It could have been because the larger dataset includes mislabeled instances,

duplicates, or irrelevant features which can directly affect the model’s

performance.

In order to overcome this issue, the solution was to come up with a new dataset

consisting of only verified URL whether they’re safe or unsafe. To achieve this,

the list of unsafe URL were retrieved from PhishTank site where community

members had verified on unsafe URL and only those had been verified were

selected. As for safe URL, the list was retrieved from own past experience in sites

which you have trust such as government sites, large social media platforms,

trusted services from Google and Microsoft, widely known news media and

official banking sites.

II) Overfitting on huge data

This essentially means the model had learned to perform very well on training

data, including outliers rather than capturing the true underlying patters the

generalize to new, unseen data. This could be due to the use of non-representative

of broader real-world scenarios data where the data will be applied. To resolve

this, a dataset consisting of only couple hundreds of URL was created.

50

4.2.2 Exploratory Data Analysis

 Exploratory Data Analysis (EDA) is a crucial step in any data analysis or modeling

process. It serves as a foundation for understanding the dataset, revealing patterns,

relationships, and insights hidden within the data. In the context of phishing detection, EDA

plays a vital role in preparing the data for further analysis and modeling. The EDA process

begins with gaining an overview of the dataset. By examining the structure, size, and basic

statistics of the data, data scientists can understand its composition and identify any initial

data quality issues.

 There have been usage of countplot and boxplot to help visualize the distribution

and variability of the extracted features among different types of URLs, aiding in identifying

potential patterns or outliers withing the dataset. Below given is few examples of the

visualization and it’s elaboration.

I) Distribution of Usage of IP Address (Figure 4.2)

 The code snippet provided demonstrates the visualization of the

distribution of the variable "use_of_ip" in the dataset using a countplot. The

countplot is created using the seaborn library, which offers enhanced visualization

capabilities. The countplot is constructed by specifying the target variable ("type")

on the y-axis and the variable of interest ("use_of_ip") on the x-axis. Additionally,

the "hue" parameter is set to "use_of_ip" to differentiate the count of each category

within the "use_of_ip" variable.

 By using a countplot, we can observe the distribution of the "use_of_ip"

variable across different types of URLs. The countplot represents the frequency of

each category, allowing us to understand the prevalence of URLs with or without IP

addresses in different types of URLs. The hue encoding further provides a visual

51

distinction between the categories, facilitating the comparison of the counts within

each category.

 Figure 4.2: Data Visualization of IP Address Usage

II) Distribution of Count of Dot [.] (Figure 4.3)

 In our analysis of the URL length distribution within the dataset, three

distinct categories were identified based on character count. The first category,

labeled as -1, encompasses URLs that exceed 75 characters. This group

demonstrates a moderate frequency, with an occurrence ranging between 40 and

60 instances. This indicates a notable presence of longer URLs within the dataset.

The second category, denoted as 0, includes URLs with a length varying from 54

to 75 characters. This category exhibits a lower frequency, with the count ranging

between 20 and 40. This suggests that URLs of a moderate length are

comparatively less common in the dataset.

 The third and final category, marked as 1, represents URLs that are shorter

than 54 characters. This group displays a significantly higher prevalence, with

occurrences exceeding 100. This finding suggests that shorter URLs are

predominantly more common in the dataset.

 The observed data distribution indicates a tendency toward shorter URLs

within the dataset. URLs of moderate length are the least frequent, while there is

52

a substantial yet lesser occurrence of very long URLs. Understanding this

distribution is crucial, as it can offer insights into user behavior regarding URL

sharing and usage. Additionally, this distribution might reflect optimization

practices for search engine optimization (SEO), where shorter URLs are preferred.

Further analysis, taking into consideration the origin of the URLs and the specific

objectives of the dataset, would provide a more comprehensive understanding of

these trends.

Figure 4.3: Data Visualization of Long URL

4.2.3 Model Training and Testing

For all five models, ‘GridSearchCV’ method from ‘scikit-learn’ library was used

to optimize the settings for classification by testing for all combinations of

parameters. It is done through cross-validation, which involves splitting the training

data into several parts, training the model on some parts and validating it on others.

This method helps in evaluating the model's performance more robustly. The

parameters cv, n_jobs, verbose, and scoring='accuracy' control various aspects of this

53

process, like the number of folds for cross-validation, the use of all processors for

faster computation, logging verbosity, and the performance metric.

After executing grid_search.fit(X_train, y_train), the grid search trains the model

using different parameter combinations on the training data (X_train, y_train) and

identifies the best performing parameters (grid_search.best_params_). The model

that performed the best is then retrieved (grid_search.best_estimator). Finally, this

optimized model is used to make predictions on both the training data and the test

data (X_test), allowing to evaluate how well the model has learned from the training

data and how it generalizes to new, unseen data. This entire process ensures that the

model is tuned to provide the best possible predictions for your specific dataset. All

five models used this parameters to train the model however each model was fine

tuned to come out with the best outcome.

I) Logistic Regression

 The Logistic Regression model in this study, tailored for classifying URLs as 'safe'

or 'unsafe', shines as a top performer among the five models tested. Using 30 carefully

selected features, its effectiveness is clearly shown through impressive performance

metrics and insights from the confusion matrix.

 Looking at Figure 4.4, the model boasts a notable precision of 0.65 for Class 0,

which includes 'safe' URLs. This means it correctly identifies 65% of 'safe' URLs,

showcasing a high accuracy level. Even more impressive is the model's recall rate for

'safe' URLs at 0.83, indicating its strong capability in correctly spotting actual safe URLs,

a significant feat in URL classification.

54

 For Class 1, representing 'unsafe' URLs, the model shows a higher precision of

0.84, emphasizing its reliability and effectiveness in pinpointing unsafe URLs, crucial in

cybersecurity. The recall rate for 'unsafe' URLs is 0.67, further proving the model's

robustness by accurately identifying 67% of actual unsafe URLs.

 The balanced F1-scores, ranging from 0.73 to 0.74 for both classes, reflect a well-

maintained balance between precision and recall, essential for practical use to ensure

both accuracy and reliability. The overall model accuracy is an impressive 73.8%,

showcasing consistent predictive performance.

 In the confusion matrix, the model's practical efficacy is evident. It accurately

classified 'safe' URLs 15 times and 'unsafe' URLs 16 times. Despite some

misclassifications, these are relatively minor, especially given the challenge of

differentiating safe from unsafe URLs. This slight limitation doesn't detract from the

model's overall outstanding performance.The model tends to err on the side of caution

in predicting a URL as unsafe, a strategic decision in line with security-centric best

practices. This approach reflects the model's sophisticated design, aiming to minimize

false negatives in a field where errors can be costly. In summary, this Logistic Regression

model emerges as an exceptional performer, striking a commendable balance in

predictive capabilities.

55

Figure 4.4 : Logistic Regression

II) Gradient Boost Classifier

 The model shown in Figure 4.5 displays a commendable performance, particularly

in the challenging and high-stakes realm of URL classification for security purposes.

With an overall accuracy of 64.3%, it shows a dependable ability to distinguish between

'safe' and 'unsafe' URLs, a task that is complex due to the subtle and constantly changing

nature of online threats.

 In the 'safe' category (Class 0), the model achieves a precision of 0.57. While this

indicates potential areas for improvement, it's noteworthy that it correctly identifies over

half of the URLs marked as safe. The recall rate of 0.72 means that 72% of actual safe

URLs are successfully identified, a substantial achievement in a security context. This

56

high recall is critical, as it reflects the model's proficiency in recognizing a large majority

of safe interactions, which is vital for maintaining user trust and confidence.

 Turning to the 'dangerous' category (Class 1), the model shows a higher precision

of 0.74, accurately identifying 74% of unsafe URLs. This level of precision is essential

in a security tool to reduce false alarms, which could erode user trust and operational

efficiency. The recall rate of 0.58, though moderate, suggests that the model is still

effective in detecting a majority of dangerous URLs, thereby enhancing user safety.

 The F1-scores, at 0.63 and 0.65 for both classes, indicate a balanced trade-off

between recall and precision. This balance is crucial in security applications where

accurately identifying true threats and minimizing false positives are equally important.

Analyzing the confusion matrix reveals the model's practicality, showing its capacity to

accurately categorize a significant number of both safe and dangerous URLs. Although

there are some misclassifications, these are relatively minor considering the task's

complexity. The model's tendency towards more false negatives is an area for attention,

as reducing these would further improve its ability to identify potential threats. In

conclusion, as the second-best performing model in this evaluation, it demonstrates a

promising combination of precision and recall.

57

Figure 4.5 : GBC Model

III) Decision Tree Classifier

 The model has an overall accuracy of 59.5% according to the categorization report

on Figure 4.6, indicating a reasonable degree of predictive power. But this accuracy

might not be strong enough when it comes to classifying URLs for security reasons, since

wrongly categorised URLs could be dangerous.

Analysing the performance indicators:

• Class 0 ('class_1') has a precision of 0.52 meaning that the model is just over half

correct when it predicts a URL to be in this class. At 0.78, the recall is greater,

indicating that although there are more false positives, the model is reasonably

effective at identifying the genuine 'class_1' instances.

• With a precision of 0.73, Class 1 (also known as "class_2") exhibits greater

dependability in the model's predictions. The recall of 0.46, on the other hand,

indicates that the model is unable to correctly identify over half of the real

58

instances of 'class_2'. This is a serious problem, particularly if 'class_2' stands for

unsafe URLs.

 'Class_1' and 'class_2' have F1-scores of 0.62 and 0.56, respectively, which are

not very high. This indicates that the model is having difficulty striking a good balance

between precision and recall.

The model's predictions are shown visually in the confusion matrix:

• Thirteen instances of 'class_2' were wrongly predicted as 'class_1', whereas

fourteen instances of 'class_1' were correctly predicted.

• When it came to 'class_2', the model predicted 11 cases accurately; but, in 4 cases,

it predicted 'class_1' wrongly as 'class_2'.

 The significant percentage of false negatives (unsafe URLs being categorised as

safe) suggests that the model may have a tendency to misclassify instances of 'class_2'

as 'class_1'. This is a serious problem because it implies that the model cannot

consistently identify URLs that may be dangerous, which is probably the more important

factor between the two for this kind of categorization task.

 In summary, even though the Decision Tree model can accurately categorise a

respectable number of URLs, there is clearly much space for improvement given the

degree of accuracy, precision, and recall attained. It's important to focus on lowering the

quantity of incorrect negative predictions in the 'class_2' forecasts.

59

Figure 4.6 : Decision Tree

IV) XGBoost Classifier

 The categorization report in Figure 4.7 reveals an overall accuracy of 57.143%,

meaning that slightly more than half of the time, the model accurately predicts a URL's

safety. The details are as follows:

• The precision for the'safe' class is 0.50, indicating that only 50% of the predicted

safe URLs are in fact safe. With a recall of just 0.33, the model only correctly

predicts 33% of the real secure URLs. Similar to this, the'safe' class performed

poorly, as seen by the low F1-score of 0.40.

• With a precision of 0.60—that is, 60% of URLs predicted as malicious are

properly identified—the 'bad' class performs better. With a recall of 0.75, which

is higher, the model may be able to identify 75% of the malicious URLs. The 'bad'

class's F1-score is 0.67, which shows potential for improvement but also

represents a better balanced performance when compared to the'safe' class.

Within the matrix of confusion:

• Correctly, the model has detected 18 "bad" and 6 "safe" URLs.

60

• However, it has mistakenly classified 12 'safe' URLs as 'bad' and 6 'bad' URLs as

'safe'.

 The confusion matrix reveals a serious problem with false positives (type I error)

in the prediction of "safe" URLs, which could lead to over-caution and possibly cause

trouble by marking safe URLs as possibly hazardous. Furthermore, dangerous URLs may

pass past the filter due to false negatives (type II errors), in which "bad" URLs are

categorised as "safe."

 The model's efficiency in differentiating between'safe' and 'bad' URLs, especially

in light of the comparatively poor recall for the'safe' class and the overall accuracy.

Enhancements could involve accumulating additional training data, or adding new

discriminative features to assist the model more precisely distinguish between "safe" and

"bad" URLs. The final objective would be to improve recall and precision for both classes,

with a focus on lowering false negatives to make sure potentially harmful URLs are not

overlooked.

61

Figure 4.7 : XGBoost Classifier

V) Random Forest

 Starting with the classification report in Figure 4.8, the model achieves an overall

accuracy of 59.524%. This means that it correctly predicts the class of a URL about 60%

of the time, which is not particularly high for a classification task that could be critical

for cybersecurity purposes.

Delving into the details:

• The precision for the 'safe' class is 0.52, indicating that when the model predicts

a URL as safe, it is correct just over half the time. However, the recall is relatively

higher at 0.78, meaning that the model is capable of identifying 78% of the actual

safe URLs in the dataset. The F1-score, a measure that combines precision and

recall, is 0.62, suggesting a moderate balance between these two metrics for the

'safe' class.

• For the 'bad' class, the precision is somewhat better at 0.73, suggesting that the

model is more reliable when it predicts a URL to be bad. Nevertheless, the recall

62

for this class is low at 0.46, indicating that the model fails to detect more than

half of the actual bad URLs. The F1-score for the 'bad' class reflects this

imbalance at 0.56.

The confusion matrix visualizes the distribution of predictions:

• It shows that the model correctly identified 14 safe URLs and 11 bad URLs.

• It also reveals that the model misclassified 13 bad URLs as safe and 4 safe URLs

as bad.

 This confusion matrix reveals a critical issue with the model: it tends to

misclassify bad URLs as safe (false negatives) more often than safe URLs as bad (false

positives). In the context of URL classification, this is a significant concern because it

means the model might not be reliable in flagging potentially dangerous URLs, which

could have serious security implications.

 The Random Forest the model might improve with a more balanced training dataset

or a richer set of features that could help discriminate between safe and bad URLs more

effectively. Given the security risks associated with misclassifying bad URLs as safe, it's

crucial to focus on reducing the number of false negatives, even if it might result in a

slight increase in false positives, as the latter is generally a less severe error in the context

of cybersecurity.

63

Figure 4.8 : Random Forest

VI) Comparision of Result

 In summary, the best model for this specific task would be Logistic Regression

and followed by Gradient Boost Classifier if we were to rank these models only based

on accuracy. But it's crucial to remember that there are other metrics to take into account

when assessing a model's performance, particularly in classification tasks where the cost

of false positives and false negatives can vary greatly. It's also important to consider the

particular use case, memory, F1 score, and precision.

64

Figure 4.9 : Comparision of Model Accuracy

4.2.4 Deploying Model

To have establish an user friendly interface for the user and also to test the model with real-

world scenarios or unseen data, the model has to be deployed. For this, Flask Pyton was used

as it offers a simple solution and it can be run on localhost as per Figure 4.10. Below in

Figure 4.11 is the interface for the user to input the link of the site they wish to test and the

Figure 4.12 is it being run on a mobile browser.

Figure 4.10 : Running on Local Host

65

Figure 4.11: Web Application on PC Browser

Figure 4.12: Web Application on Mobile Browser

4.3 Comparison of Results Between Past Projects

Project Algorithm

Variant

Accuracy(%) Precision(%) Recall(%) F-Measure(%)

This

Project

Logistic

Regression

73.8 75 75 74

66

GBC 64.3 65 65 64

Decision Tree 59.5 63 62 59

XGBoost 57.143 55 54 53

Random

Forest

59.524 63 62 59

Nagaraj,

K., et al.

(2018).

LR 56.78 68.09 65.90 66.97

DT CART 66.54 70.46 69.79 70.12

C4.5 67.97 73.65 72.33 72.97

SVM

Polynomial

70.01 74.82 73.36 73.56

BP 66.01 69.93 68.84 69.38

Table 4.1 : Comparison of Current Project with Past Project

 Overall, the Logistic Regression model from this project has been the most efficient.

The project's success is highlighted by the model's robust performance metrics, which

demonstrate the effective execution of a machine learning task. The project's models exhibit

a high level of resilience, particularly when accounting for the complexities and potential

variability present in real-world data. This demonstrates the project's methodology, data

management, and feature selection procedure, affirming its effectiveness and the high quality

of its results.

 However, the model accuracy based on training and testing does not amplify its

effectiveness in real-world scenarios and the model from this project has proven to be more

accurate when tested against unseen data compared to the earlier method which used a larger

dataset and without hyperparameter tuning of model that was used which had achieved a

higher accuracy of 96% but performed poorly against unseen data which indicated that it

was a case of overfitting.

 This project also had solved several issues that were faced by the previous projects

as per in Table 2.3. Firstly, by utilizing a diverse set of 32 features, which included URL

lexical attributes and content-based characteristics the project successfully streamlined the

feature extraction process, thereby reducing the overall time required for this critical step. In

67

this project, a different path was taken compared to the usual bagging methods. A boosting

technique was employed, allowing for more precise adjustments in the importance of each

classifier. Typically, bagging can lead to some parts being overly emphasized and others

underrepresented. A significant amount of time was dedicated to fine-tuning the parameters,

ensuring optimal performance from the models. This thorough approach paid off, leading to

the selection of the two most effective models from a variety of classifiers. This highlights

the strategic and efficient application of machine learning techniques in the project.

4.4 Summary

 The data preprocessing phase is an essential step in building a phishing detection

model. It involves several key processes, each contributing to the refinement and

optimization of the dataset for analysis and modeling purposes. Initially, the dataset is

loaded and read using the pandas library. This allows for easy manipulation and exploration

of the data. Exploratory data analysis (EDA) is performed to gain insights into the dataset's

structure, distribution, and relationships.

 Afterwards, feature engineering techniques are applied to extract relevant lexical

features from the URL data. Following feature engineering, exploratory data analysis is

conducted to gain further understanding of the dataset. Visualizations, such as count

plots and box plots, are used to examine the distribution and relationships between

variables. These visualizations provide insights into the presence of certain patterns or

anomalies within the dataset.

 Data processing process of label encoding the target variable, converting the

categorical labels into numerical representations using the LabelEncoder class. This

facilitates the use of machine learning algorithms that require numeric inputs. Lastly, the

68

predictor variables (features) and the target variable are separated into X and y,

respectively, forming the basis for model training and valuation.

 Next, the dataset is split into predictor variables (features) and the target variable.

Predictor variables are selected based on their relevance to the problem at hand, while the

target variable represents the type of the URL (safe and unsafe). Nextly, we train the model

using five different algorithms to get the best algorithm for the model.

 In deployment, the best two models were chosen which were Logistic Regression

and Gradient Boost Classifier which were tuned to be effective in real-world scenarios that

users could face and can use their mobile or desktop browser to verify a sites legitamacy.

 Overall, these processes, including data loading, feature engineering, exploratory

data analysis, data processing, and target encoding, are crucial for preparing the dataset for

building an effective phishing detection model. They ensure data quality, feature

extraction, and appropriate representation for machine learning algorithms, ultimately

leading to accurate predictions and insights.

69

CONCLUSION AND RECOMMENDATIONS

5.1 Introduction

The overall project implementation is concluded, and future recommendations are

suggested in this chapter.

5.2 Project Summarization

 The goal of this project is to develop a phishing detection system using machine

learning algorithms and deploy it as a web application. The dataset, consisting of URLs

labeled safe and phishing, will be used for training and testing the models.

 The project begins with data preprocessing steps, including loading and reading the

dataset, exploratory data analysis, feature engineering to extract lexical features from the

URLs, and data processing to handle missing values, outliers, and feature scaling. Five

different classifiers, namely random forest, decision tree, and XG Boost, Logistic

Regression and Gradient Boost Classifier will be trained on the dataset to detect phishing

sites. These classifiers have been chosen for their ability to handle complex classification

tasks.

 Once the models are trained and evaluated, the two best-performing model was

selected for deployment. The chosen model was integrated into a web application using

FastAPI, a Python web framework, allowing users to input URLs and receive predictions

on whether they are phishing sites or not.

 By combining machine learning algorithms and web development, this project

aims to create a reliable and user-friendly phishing detection system. The deployed web

70

application will provide a practical tool for users to identify potentially malicious URLs

and enhance their online security.

5.3 Project Contribution

 Phishing attacks have become a widespread and significant cybersecurity threat,

affecting individuals, businesses, and even governments worldwide. This project makes

valuable contributions to address societal and global issues related to cybersecurity and

online safety.

 The development of a phishing detection system and its deployment as a web

application enhances online security by accurately identifying and blocking phishing sites.

By distinguishing between legitimate and malicious URLs, the project empowers users to

make informed decisions and protect their sensitive information, reducing the risk of falling

victim to phishing attacks.

 Additionally, the project plays a crucial role in mitigating financial losses caused

by phishing attacks. By promptly detecting and blocking phishing sites, its afeguards

individuals and businesses from economic harm, preserving financial resources and

stability.

 Moreover, the project preserves personal privacy by identifying and preventing

phishing attempts that aim to obtain sensitive information. By reducing the risk of identity

theft and privacy breaches, it enhances individuals' confidence in their online interactions.

 Furthermore, the project contributes to the advancement of cybersecurity research

and development by implementing advanced techniques such as random forest, decision

tree, and XG Boost classifiers. This improves the effectiveness of phishing detection

methodologies and fosters the evolution of robust cybersecurity solutions.

71

 In conclusion, the development and deployment of a phishing detection system as

a web application contribute to societal and global issues related to cybersecurity and

online safety. By enhancing online security, mitigating financial losses, and preserving

personal privacy, this project actively works towards creating a safer digital landscape for

individuals, businesses, and societies worldwide.

5.4 Project Limitation

 Every project has its limitations, and it's important to acknowledge them in order to

understand the potential challenges and areas for improvement. In the case of the phishing

detection model and web application described here, there are several limitations to

consider.

 Firstly, the model may generate false positives, mistakenly classifying legitimate

websites as phishing sites. This can lead to user inconvenience and may impact user trust

in the system.

 Secondly, phishing techniques are constantly evolving, and the model may not be

equipped to detect new or sophisticated tactics. As attackers develop novel approaches, the

model's effectiveness may decrease if it is not regularly updated and trained on the latest

phishing strategies.

 Thirdly, the performance of the model heavily relies on the quality and diversity

of the dataset used for training. If the dataset is limited or not representative of the wide

range of phishing characteristics, the model's accuracy may be compromised.

 To address these limitations, continuous monitoring, feedback, better

hyperparameter tuning and updates to the model are crucial. Regular evaluation and

improvement of the dataset, as well as keeping abreast of emerging phishing techniques,

72

can help enhance the model's performance and ensure its effectiveness in real-world

scenarios.

5.5 Future Recommendations

 In order to enhance user protection against phishing attacks, education and

awareness remain crucial. Internet users should be educated about security tips provided

by experts and trained not to blindly follow links to websites where they are prompted to

enter sensitive information. It is important for users to check the URL before accessing a

website.

 In the future, the system can be upgraded to automatically detect web pages and

ensure compatibility with web browsers by being implemented as an API. Additional

characteristics can be incorporated to distinguish between fake and legitimate web pages.

Furthermore, the project can be extended to include a web browser extension as a feature,

providing real-time phishing detection and warnings to users while they browse the

internet.

 Several areas of improvement can be explored, such as broadening the dataset by

including a wider range of phishing URL patterns, particulary those reflecting the latest

phishing trends. In addition, adjusting model parameters is a delicate balance between

model complexity and learning capacity without overfitting. Improved fine-tuning might

include a broader grid search across the model's hyperparameters, adopting advanced

optimization methods like Bayesian optimization, or exploring new machine learning

algorithms for potentially better results. More effective inference rules and strategies can

be designed to identify suspicious web pages and improve the overall performance of the

system.

73

 Additionally, developing a robust malware detection method and retaining accuracy

for future phishing emails is an ongoing challenge. Combining dynamic and static features

can be considered important for achieving high accuracy in phishing detection.

 Overall, these future recommendations aim to enhance user awareness, expand the

system's capabilities, and incorporate advanced techniques to improve the accuracy and

effectiveness of phishing detection.

5.6 Conclusion

 In conclusion, this project successfully achieved its three main objectives, which

were to design classification techniques for analyzing phishing, apply these techniques to

a phishing dataset, and evaluate the accuracy results using different methods.

 Firstly, a comprehensive set of classification techniques was designed to identify

and analyze phishing websites. These techniques incorporated lexical features, such as the

presence of IP addresses, abnormal URL structures, and Google index, to accurately

classify websites as benign or phishing.

 Secondly, the developed classification techniques were applied to a phishing

dataset. Through data preprocessing, feature engineering, and exploratory data analysis,

the dataset was prepared for training and testing the models. The predictor variables were

carefully selected, considering their relevance in detecting phishing characteristics.

 In addition, the accuracy results of the classification techniques were evaluated

using different methods. Various metrics, such as confusion matrix, classification report,

and accuracy score, were employed to assess the performance of the models. This

evaluation provided valuable insights into the strengths and limitations of the classification

techniques. Lastly, the model was deployment to be used for unseen URL and new patterns

of URL.

74

 Overall, this project successfully addressed the objectives of designing, applying,

and evaluating classification techniques for phishing detection. The developed models and

techniques contribute to the ongoing efforts in combating phishing attacks and protecting

users from online threats. Further improvements and optimizations can be made in the

future to enhance the accuracy and effectiveness of the classification techniques, thereby

strengthening the overall security of online platforms and safeguarding users' sensitive

information.

75

REFERENCES

 Anti-Phishing Working Group (APWG). (2021). APWG Phishing Activity

Trends Report, 4th Quarter 2020. Retrieved from

https://docs.apwg.org/reports/apwg_trends_report_q4_2020.pdf

 Maity, S., Bhattacharya, A., & Paul, A. (2019). An Intelligent Model for

Detection of Phishing URLs Using Machine Learning Techniques. In

Proceedings of the International Conference on Machine Learning, Big Data,

and Business Intelligence (pp. 114-127).

 Springer. Sheng, S., Zhang, H., & Zhang, Z. (2018). Phishing website detection

based on deep learning techniques. In Proceedings of the International

Conference on Security and Privacy in Communication Networks (pp. 532-

549).

 Springer. Symantec. (2020). Internet Security Threat Report, Volume 25.

Retrieved from

https://www.symantec.com/content/dam/symantec/docs/reports/istr-25-2020-

en.pdf

 Apps, Spanning Cloud. “Cyberattacks 2022: Statistics and Trends to Know |

Spanning.” Spanning, 5 Apr. 2023, spanning.com/blog/cyberattacks-2022-

phishing-ransomware-data-breach-statistics.

 “The Latest Phishing Statistics (Updated April 2023) | AAG IT Support.” AAG

IT Services, 4 June 2023, aag-it.com/the-latest-phishing-statistics.

 Alkhalil, Zainab, et al. “Phishing Attacks: A Recent Comprehensive Study and

a New Anatomy.” Frontiers, 18 Jan. 2021,

https://doi.org/10.3389/fcomp.2021.563060.

https://docs.apwg.org/reports/apwg_trends_report_q4_2020.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-25-2020-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-25-2020-en.pdf

76

 “Phishing – Challenges and Solutions.” Phishing – Challenges and Solutions -

ScienceDirect, 31 Jan. 2018, https://doi.org/10.1016/S1361-3723(18)30007-1.

 “What Is Machine Learning? | IBM.” What Is Machine Learning? | IBM,

www.ibm.com/topics/machine-learning.

 Alpaydin, E. (2010). Introduction to machine learning (2nd ed.). Cambridge,

MA: MIT Press.

 “Types of Machine Learning | Simplilearn.” Simplilearn.com,

www.simplilearn.com/tutorials/machine-learning-tutorial/types-of-machine-

learning.

 “Azure Machine Learning - ML as a Service | Microsoft Azure.” Azure

Machine Learning - ML as a Service | Microsoft Azure,

azure.microsoft.com/en-us/products/machine-learning.

 “TensorFlow.” TensorFlow, www.tensorflow.org.

 F. Pedregosa, G. Varoquaux, et al. Scikit-learn: Machine learning in python.

Journal of Machine Learning Research, 12(85):2825–2830, 2011.

 “PyTorch.” PyTorch, www.pytorch.org.

 Aldawood, Hussain, and Geoffrey Skinner. “An Academic Review of Current

Industrial and Commercial Cyber Security Social Engineering Solutions.”

Proceedings of the 3rd International Conference on Cryptography, Security

and Privacy, USA, ACM, Jan. 2019. Crossref,

https://doi.org/10.1145/3309074.3309083.

 Abdelhamid, Neda, et al. “Phishing Detection: A Recent Intelligent Machine

Learning Comparison Based on Models Content and Features.” 2017 IEEE

International Conference on Intelligence and Security Informatics (ISI), IEEE,

July 2017. Crossref, https://doi.org/10.1109/isi.2017.8004877.

https://doi.org/10.1109/isi.2017.8004877

77

 djangoproject. “Django.” Django Project, www.djangoproject.com.

 “FastAPI.” FastAPI, fastapi.tiangolo.com/lo.

 “About | Node.js.” Node.js, nodejs.org/en/about.

 “Ruby on Rails.” Ruby on Rails, rubyonrails.org.

 J. Shad and S. Sharma, “A Novel Machine Learning Approach to Detect

Phishing Websites Jaypee Institute of Information Technology,” pp. 425–430,

2018.

 Y. Sönmez, T. Tuncer, H. Gökal, and E. Avci, “Phishing web sites features

classification based on extreme learning machine,” 6th Int. Symp. Digit.

Forensic Secur. ISDFS 2018 - Proceeding, vol. 2018–Janua, pp. 1–5, 2018.

 S. Parekh, D. Parikh, S. Kotak, and P. S. Sankhe, “A New Method for

Detection of Phishing Websites: URL Detection,” in 2018 Second International

Conference on Inventive Communication and Computational Technologies

(ICICCT), 2018, vol. 0, no. Icicct, pp. 949–952.

 Khomane, Sagar, et al. “Phishing Website Detection Using Machine Learning.”

International Journal of Research Publication and Reviews, vol. 3, no. 4, May

2022, pp. 5895–98. www.ijrpr.com.

 Jang-Jaccard J, Nepal S. “A Survey on Emerging Threats in Cybersecurity”

Journal of Computer Systems Sciences, 2.

 Developer Information. https://www.phishtank.com/developer_info.php. [Last

accessed 01/2024].

 WisdomML. (n.d.). Malicious URL detection using machine learning in

Python. Wisdom ML. Retrieved January 13, 2024, from

https://wisdomml.in/malicious-url-detection-using-machine-learning-in-

python/#Dataset_description.

https://wisdomml.in/malicious-url-detection-using-machine-learning-in-python/#Dataset_description
https://wisdomml.in/malicious-url-detection-using-machine-learning-in-python/#Dataset_description

78

 L. Machado and J. Gadge, "Phishing Sites Detection Based on C4.5 Decision

Tree Algorithm," 2017 International Conference on Computing,

Communication, Control and Automation (ICCUBEA), Pune, India, 2017, pp.

1-5, doi: 10.1109/ICCUBEA.2017.8463818.

 GeeksforGeeks. (n.d.). ML | Gradient Boosting. GeeksforGeeks. Retrieved

January 13, 2024, from https://www.geeksforgeeks.org/ml-gradient-boosting/

 Doe, J. (2023, March 5). The Perfect Recipe for Classification using Logistic

Regression. Towards Data Science. https://towardsdatascience.com/the-perfect-

recipe-for-classification-using-logistic-regression-f8648e267592.

 Ubing, A.A., Jasmi, S.K.B., Abdullah, A., Jhanjhi, N.Z. and Supramaniam, M.

(2019), “Phishing website detection: an improved accuracy through feature

selection and ensemble learning”, International Journal of Advanced Computer

Science and Applications, Vol. 10 No. 1.

 Basit, A., Zafar, M., Javed, A.R. and Jalil, Z. (2020), “A novel ensemble

machine learning method to detect phishing attack”, IEEE 23rd International

Multitopic Conference (INMIC).

 Vishva, E.S. and Aju, D. (2021), “Phisher fighter: website phishing detection

system based on URL and term frequency-inverse document frequency values”,

Journal of Cyber Security and Mobility, Vol. 11 No. 1, pp. 83-104.

 Al-Sarem, M., Saeed, F., Al-Mekhlafi, Z.G., Mohammed, B.A., Al-Hadhrami,

T., Alshammari, M.T., Alreshidi, A. and Alshammari, T.S. (2021), “An

optimized stacking ensemble model for phishing websites detection”,

Electronics, Vol. 10 No. 11, p. 1285.

https://www.geeksforgeeks.org/ml-gradient-boosting/
https://towardsdatascience.com/the-perfect-recipe-for-classification-using-logistic-regression-f8648e267592
https://towardsdatascience.com/the-perfect-recipe-for-classification-using-logistic-regression-f8648e267592

	47aa6a29ddd1f5c5158390387450afe429b8e56da7d29015bba2a406a7a5efa8.pdf
	DESIGN AND DEVELOPMENT OF PHISHING SITES DETECTOR USING MACHINE LEARNING

	ETHESIS B082010084
	47aa6a29ddd1f5c5158390387450afe429b8e56da7d29015bba2a406a7a5efa8.pdf
	PSM2_THESIS_B082010084.pdf
	DESIGN AND DEVELOPMENT OF PHISHING SITES DETECTOR USING MACHINE LEARNING

