

TRANSIENT STATE ANALYSIS AND OPTIMIZATION ON
POWER PLANT START-UP ROUTINE USING PSO

LEE YI YANG

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TRANSIENT STATE ANALYSIS AND OPTIMIZATION ON

POWER PLANT STARTUP ROUTINE USING PSO

LEE YI YANG

This report is submitted in partial fulfilment of the requirements

for the degree of Bachelor of Computer Engineering with Honours

Faculty of Electronic and Computer Technology and Engineering

Universiti Teknikal Malaysia Melaka

2024

Tajuk Projek : Transient State Analysis and Optimization on Power

Plant Startup Routine Using PSO

Sesi Pengajian : 2023/2024

Saya LEE YI YANG mengaku membenarkan laporan Projek Sarjana Muda ini

disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan

pertukaran antara institusi pengajian tinggi.

4. Sila tandakan (✓):

SULIT*

(Mengandungi maklumat yang berdarjah

keselamatan atau kepentingan Malaysia

seperti yang termaktub di dalam AKTA

RAHSIA RASMI 1972)

TERHAD*

(Mengandungi maklumat terhad yang

telah ditentukan oleh organisasi/badan di

mana penyelidikan dijalankan.

 TIDAK TERHAD

 Disahkan oleh:

(TANDATANGAN PENULIS) (COP DAN TANDATANGAN PENYELIA)

Alamat Tetap: SP1438, Jalan

Bukit Emas 4,

Taman Bukit

Emas, 78000 Alor

Gajah, Melaka

Tarikh : 24 January 2024 Tarikh : 01 Januari 2010

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan

dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA
FAKULTI KEJUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN

PROJEK SARJANA MUDA II

24 January 2024

yiyan
Pencil

yiyan
Highlight

yiyan
Pencil

yiyan
Pencil

DECLARATION

I declare that this report entitled “Transient State Analysis and Optimization on Power

Plant Startup Routine Using PSO” is the result of my own work except for quotes as

cited in the references.

Signature : …………………………………

Author : …………………………………

Date : …………………………………

Lee Yi Yang

24 January 2024

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient

in terms of scope and quality for the award of Bachelor of Computer Engineering with

Honours.

Signature : …………………………………

Supervisor Name : …………………………………

Date : …………………………………

Professor Madya Dr. Wira Hidayat bin Mohd Saad

24 January 2024

yiyan
Pencil

DEDICATION

To my beloved mother and father. To the experiences I would not trade for anything

in this world.

i

ABSTRACT

A conceptual novel method of optimizing power plant startup time is proposed in

this project to minimize the startup cost, synchronization problem and human error

associate with it. The problem that is long unoptimized power plant startup is

approached with a two phased solution that is transient state analysis and PSO model.

The purpose of the project is to explore new solution to the power plant startup

problem other than using dynamic model from power plant simulator. The project can

be further divided into four components namely PSO, Data Analysis, manual work

and Display GUI. The PSO is tasked with producing a set of parameters that can be

used to fine tune the power plant in order to produce predicted power level. Whereas

the Data Analysis part serves to model the power plant’s behaviour into a polynomial

equation. All of the work involved in the project is done in MATLAB with the

exception of manual work which is carried out in Microsoft Excel.

ii

ABSTRAK

Kaedah baru konseptual untuk mengoptimumkan masa permulaan loji kuasa

dicadangkan dalam projek ini untuk meminimumkan kos permulaan, masalah

penyegerakan dan ralat manusia yang dikaitkan dengannya. Masalah yang

merupakan permulaan loji janakuasa yang lama tidak dioptimumkan didekati dengan

penyelesaian dua fasa iaitu analisis keadaan sementara dan model PSO. Tujuan

projek ini adalah untuk meneroka penyelesaian baharu kepada masalah permulaan

loji janakuasa selain daripada menggunakan model dinamik daripada simulator loji

kuasa. Projek ini boleh dibahagikan lagi kepada empat komponen iaitu PSO, Analisis

Data, kerja manual dan GUI Paparan. PSO ditugaskan untuk menghasilkan satu set

parameter yang boleh digunakan untuk memperhalusi loji kuasa untuk menghasilkan

tahap kuasa yang diramalkan. Manakala bahagian Analisis Data berfungsi untuk

memodelkan tingkah laku loji kuasa ke dalam persamaan polinomial. Semua kerja

yang terlibat dalam projek ini dilakukan dalam MATLAB dengan pengecualian kerja

manual yang dijalankan dalam Microsoft Excel.

iii

ACKNOWLEDGEMENTS

I would like to express my utmost gratefulness to my parents and family which has

aid me in every way possible. Words cannot describe how much has gone into

supporting me on my academic journey. My gratitude also goes to my supervisor of

this project, Professor Madya Wira Hidayat, who has been my main enabler

throughout the research. He was always ready with suggestions and pragmatic ideas

regarding the project. The progress I have made is owe by his constant supervision in

the form of fortnightly meetings. Besides, I would like to extend my thanks to all my

friends who have always been with me through thick and thin. To Tey Eyson who

always brings laughter and joy wherever you go. To Ng Chertat who constantly aid

me in my studies. To all the friends I made along the way where their path intercepts

mine, thank you. To everyone whom I share this experience with, thank you and I wish

nothing but the best for you.

iv

TABLE OF CONTENTS

Declaration i

Approval i

Dedication i

Abstract i

Abstrak ii

Acknowledgements iii

Table of Contents iv

List of Figures ix

List of Tables xi

List of Symbols and Abbreviations xii

List of Appendices xiii

CHAPTER 1 INTRODUCTION 1

1.1 Project Overview 2

1.2 Problem Statement 2

1.3 Objectives and Scope 4

1.3.1 Objectives 4

v

1.3.2 Scope of Work 5

CHAPTER 2 BACKGROUND STUDY 7

2.1 Power Generator 8

2.2 CCGT Power Plant 9

2.3 Types of Start Up 11

2.3.1 Hot Start 11

2.3.2 Warm Start 12

2.3.3 Cold Start 12

2.4 Basic Start Up Routine 13

2.4.1 Gas Turbine Initiate Start 14

2.4.2 Purging 14

2.4.3 Firing 15

2.4.4 Warm Up 15

2.4.5 Full Speed No Load (FSNL) 16

2.4.6 Grid Synchronization 16

2.4.7 Temperature Matching 17

2.4.8 Steam Turbine Coupling 17

2.4.9 Inlet Pressure Control 18

2.4.10 Back Pressure Enable 18

2.4.11 Temperature Matching Off 18

vi

2.4.12 Sequence Complete 18

2.4.13 Minimum Load 18

2.4.14 Baseload/ Declare Available 19

2.5 Particle Swarm Optimization 19

2.6 Optimizer Model and Working Principle 21

2.7 Improvement on Existing System 21

2.8 Optimization System in Various Fields 23

2.9 Related Studies 24

CHAPTER 3 METHODOLOGY 26

3.1 Research Methodology 27

3.2 Data Collection 28

3.3 Data Pre-processing 31

3.4 Data Analysis 34

3.5 MATLAB 35

3.6 Optimization of Start-Up Routine 36

3.6.1 Setting of Parameters 36

3.6.2 Reducing the Process Time 38

CHAPTER 4 RESULTS AND DISCUSSION 40

4.1 Result Summary 41

4.2 Manual Work 42

vii

4.3 Coding Analysis 43

4.3.1 Particle Swarm Optimization Model 43

4.3.2 Data Analysis 45

4.3.3 Graphical User Interface (GUI) 46

4.4 Sensor Integration 47

4.5 Output Interpretation 49

4.6 Comparison Between Optimized and Unoptimized Start-Up Time 51

4.7 Time Saved 53

4.8 Impact of PSO Parameters on Optimized Curve 54

4.9 Accuracy of the Particle Swarm Model 57

4.9.1 Residual Sum of Squares (RSS) 57

4.9.2 Mean Error 59

4.10 Discussions 60

4.11 Research Limitation 61

4.12 Research Sustainability 62

CHAPTER 5 CONCLUSION AND FUTURE WORKS 64

5.1 Conclusion 65

5.2 Future Works 65

REFERENCES 67

APPENDICES 73

viii

ix

LIST OF FIGURES

Figure 2.1 CCGT Power Generator with Heat Recovery Steam Generator 10

Figure 2.2 Graph of Power output against Time Stamp of Hot Start 11

Figure 2.3 Graph of Power output against Time Stamp of Warm Start 12

Figure 2.4 Graph of Power output against Time Stamp of Cold Start 13

Figure 2.5 Basic Startup Sequence 14

Figure 2.6 Graphical Display of particle converging on a possible solution 20

Figure 2.7 Screening Curves of Total Cost against Operating hours per Year 22

Figure 3.1 Flowchart of Research Methodology 27

Figure 3.2 Sample Excerpt of Start-Up data provided by the company 30

Figure 3.3 Processes of Data Pre-Processing 33

Figure 4.1 Block Diagram 41

Figure 4.2 Design Plan 42

Figure 4.3 Updating with Value Closest to Target Value and One-Time Nested

Condition Checking Loop 44

Figure 4.4 Sample Output of PSO Model 45

Figure 4.5 Curve Fitting 46

Figure 4.6 Code Snippet of GUI 47

Figure 4.7 Declaration of Arduino Objects 48

Figure 4.8 Sensor Value Mapping 48

x

Figure 4.9 Construction of Sensor Integration with Accelerometer and Arduino UNO

 49

Figure 4.10 Output with Highlighted Explanation 50

Figure 4.11 Accuracy Metrics 51

Figure 4.12 num_particles = 100, w = 0.7, c1,c2 = 1.5 55

Figure 4.13 num_particles = 50, w = 0.7, c1,c2 = 1.5 55

Figure 4.14 num_particles = 10, w = 0.7, c1,c2 = 1.5 56

Figure 4.15 num_particles = 50, w = 0.5, c1,c2 = 1.5 56

Figure 4.16 num_particles = 50, w = 0.9, c1,c2 = 1.5 56

Figure 4.17 num_particles = 50, w = 1.0, c1,c2 = 1.5 57

Figure 4.18 Formula of RSS Calculation 58

xi

LIST OF TABLES

Table 4.1: Output Curves for Initiate and Purging Sequence 51

Table 4.2: Timesaved for Each Sequence 53

Table 4.3: RSS of Each Sequence 59

Table 4.4: Mean Error of Each Sequence 59

xii

LIST OF SYMBOLS AND ABBREVIATIONS

PSO : Particle Swarm Optimization

DC : Direct Current

AC : Alternating Current

CCGT : Combined Cycle Gas Turbine

GT : Gas Turbine

FSNL : Full Speed No Load

TNH : Actual Turbine Speed

HP : High Pressure

HRSG : Heat Recovery Steam Generator

PI : Plant Information

CSV : Comma-Separated Values

GUI : Graphical User Interface

ANOVA : Analysis of Variance

UI : User Interface

PC : Personal Computer

RSS : Residual Sum of Squares

ARIMA : Autoregressive Integrated Moving Average

xiii

LIST OF APPENDICES

Appendix A: PSO Sample Coding for Firing Sequence of Cold Startup 74

Appendix B: Data Analysis Sample Coding for Firing Sequence of Cold

Startup

77

Appendix C: Display GUI Sample Coding 77

……………………………………………………………..........................

CHAPTER 1

INTRODUCTION

This chapter aims to outline the objective and aims of the project Transient State

Analysis and Optimization Model on Power Plan Startup Routine. This chapter also

highlights the problems that lead to the need to develop this project. Besides this

chapter defines the outline of this project which includes data collection and analysis,

model development and lastly application development.

2

1.1 Project Overview

This project aims to conduct a transient state analysis and optimization of the power

plant startup routine. The aim of this project is to cut the time required for the power

plant to reach steady state by analyzing power plant behavior in transient state and

then apply PSO to obtain best parameter, by that it can minimize power consumption

during startup, and reduce equipment wear and tear.

The first phase of the research will involve data collection and analysis based on

previous startup routine, after that the behavior of each startup sequence will be

modelled in the form of a mathematical model. Emphasis will also be given to suggest

mitigative actions to power plant by PSO model in order to improve startup time. It

may or may not include modifying startup sequence, adjusting power plant

parameters, or implementing new technologies.

A display GUI which shows all the details regarding the PSO model and Data

Analysis will also be developed to allow users to understand the principles of PSO.

Accuracy test will be conducted to evaluate the goodness of the modelled function and

performance test will be carried out as well.

The ultimate goal of the project is to improve the efficiency, reliability, and safety

of the power plant, leading to cost savings and improved performance.

1.2 Problem Statement

Startup of a power plant is a irreplaceable process that is vulnerable to a plethora

of problems that can brings substantial impact on the efficiency, safety and cost

associated with the plant. The unoptimized startup routine is not ideal due to it is time-

3

consuming, energy-intensive. Moreover, due to prolonged start time the stress point

existing in the power plant will be unstable for a period longer than usual. One such

example is the thermal stress points in pressure components which in transient state

will have multiple stress point which relocate throughout the process. Unoptimized

startup leads to increased operating costs and compromised equipment lifespan.

Although the cost associated with start-up wear and tear is often subjective to the

model of power generator[1], Additionally, the synchronization of the power signal of

the generator with the on-grid signal is a major challenge with consideration such as

the phase sequence, voltage magnitude, frequency, and phase angle[2].

The power plant startup routine is a complex [3] and intricate process that

requires careful planning, execution, and monitoring. However, despite its

importance, this process is often prone to several problems that can have a significant

impact on the efficiency, safety, and cost-effectiveness of the power plant. One of the

main challenges in the startup routine is the time-consuming and energy-intensive

nature of the process, which can lead to significant costs in terms of fuel consumption

and labor. Additionally, the startup routine can cause significant wear and tear on

equipment, leading to increased operating costs and reduced equipment lifespan.

Furthermore, the current startup routine often involves manual procedures that

can be prone to errors, such as misalignments, miscommunications, or

misconfigurations, which can result in equipment damage, accidents, or even power

outages [4] . These problems can be especially problematic in power plants that

operate in remote or hazardous environments, where the risk of accidents and

equipment failure is particularly high. That is why a control system needs to be in

place to minimize those problems.

4

Power plant operators and engineers are currently exploring novel and

innovative method to improve startup with the combination of automation, monitoring

and controller. By implementing these technologies, it is possible to reduce the time,

energy, and labor required for the startup process[5], while also minimizing the risk

of errors and equipment damage. The efficiency, safety, and cost-effectiveness of

power plant operations can be increased with those efforts, ensuring stable and

sustainable power generation for years to come.

Besides, there are also factors such as synchronizing the generated power to the on-

grid signal which poses some difficulties. Few of the obstacles in this process comes

in the form of phase sequence, voltage magnitude, frequency, and phase angle. It is

crucial that the generator's signal matched the on-grid signal. Serious consequences,

such as electrical fires, equipment damage, or even widespread power outages [4] can

arise as a result of synchronization failure so it is important to steer clear of the issue.

Despite these challenges, however, the successful synchronization of generator power

signals with on-grid signals is essential to maintaining a reliable and efficient power

supply, particularly in areas with high demand for electricity.

1.3 Objectives and Scope

1.3.1 Objectives

 The aim of this project is to develop a control system model to analyze the

transient state and optimize the startup routine of Power Plan. To achieve that,

following objectives need to be accomplished:

a) To collect and analyze the data from previous Power Plan Startup Routine.

b) To achieve synchronization between the power signal generated by the

generator and the on-grid signal.

5

c) To propose a procedure of mitigative action to improve the startup time.

1.3.2 Scope of Work

First phase of the project is to perform data collection and analysis. The data will

be provided to researcher as this project is a collaboration with Malakoff Corporation

Berhad. Revision of past data will be carried out in the form of MATLAB coding to

identify any cause of long startup and areas for improvement. This phase is also

identified as data pre-processing.

After data pre-processing, construction of a mathematical model will begin by

leveraging curve fitting to replicate the behavior of the plant at each sequence. The

formula which is the output of the model will take in various parameters which is

measured variables, controllable variables and produce an output which in this case

the power level. A set of parameters at each time interval will also be the final product

of this phase.

The control system will be revised to synchronize the power signal of the generator

with the on-grid signal, reducing the risk of equipment damage, safety hazards, and

power outages. Various optimization strategies will be considered to improve startup

time and reduce power consumption. This may or may not include adjusting

equipment settings, changing operational procedures, or implementing new

technologies.

The effectiveness of the PSO model will be evaluated with performance metric as

well as the accuracy metrics. The GUI built will also enable the authorized personnel

from power plants to understand the impact of the project on the startup time.

6

The application which is the Display GUI will display various status of the

sequence including the mathematical model, dataset and the improvement from

unoptimized startup. The streamlined and direct presentation of power plant stat will

allow human operators to work more efficiently.

Overall, the scope of work which encompasses four component Manual Work, PSO

model, Display GUI and Data Analysis is focused on optimizing the power plant with

efficiency, safety, and cost-effectiveness as the main goals of the optimization.

CHAPTER 2

BACKGROUND STUDY

The chapter serves to conceptualize the basics principles that are important throughout

the development process of the research project. It includes basic working principles

of power plant, Start-up type and sequences. Similar works that have been studied also

will be covered in this chapter to provide a means of comparison to this project.

Emphasis will also be given to existing technology used in the optimization process.

A review of previous literature will also be carried out.

8

2.1 Power Generator

The generation and distribution of electricity are an important aspect of modern

human civilization, it provides a mean of energy transfer for electric equipment

utilization. Power generator which is at the starting point of the generation plays an

irreplaceable role to convert mechanical energy from chemical energy from the fuel

to electrical energy. It is commonly used in a variety of settings such as power plants,

industrial facilities, and emergency backup systems [6]. The operating principle

behind a power generator is electromagnetic induction of Faraday’s law, it dictates

that when an electrical conductor is passing through a magnetic field, an electric signal

will be induced in the conductor. Power generators can be categorized into two main

types: AC generators and DC generators[7]. The most common generator which is AC

generator generate AC current which is easy to distribute and require an adapter to

convert it back into DC current. DC generators, on the other hand, are designed to

produce direct current, which is used in applications such as battery charging and

electroplating.

One of the most common types of power generators used today is the gas turbine

generator. This type of generator is based on the Brayton cycle[8], which is a

thermodynamic cycle that uses air as the working fluid. Gas turbine generators can be

used in both simple cycle and combined cycle configurations. In a simple cycle

configuration, the byproduct such as the steam from outlet, which also have some

leftover energy in it is not utilized resulting in inefficiency. In a combined cycle

configuration, the gas turbine is combined with a steam turbine to produce additional

power[9]. The more common variant of the two is combined cycle configuration

because of the higher efficiency.

9

Another important aspect of power generators is the start-up process. Depending

on the type of generator and the application, start-up processes can vary

significantly[10]. Some generators are designed for continuous operation, while others

are only operated intermittently. A sequential procedure is usually involved in the

startup routine such as initialization, purging, firing, warming up, synchronization, and

load increase. The entirety of the process can possibly take up to several hours,

nevertheless it requires meticulous monitoring and control, any deviation in

parameters will affect the outcome drastically.

A growing focus on sustainable and eco-friendly power generation solutions can

be observed in recent years due to increased environmental awareness. This has driven

researcher to invest more effort into developing renewable energy, energy storage, and

optimization of various aspects of power plant. The crucial role of power generator

has in meeting the world’s ever-growing energy needs and technological

advancements will continue to endure the test of time at least in the foreseeable future.

2.2 CCGT Power Plant

The low emissions and high efficiency of Combined Cycle Gas Turbine (CCGT) is

the main advantages of the configuration of the power generator and has cemented the

type of power plant as a reliable and efficient choice for energy generation. The type

of power plant differs from normal power plant configuration as it consists of a gas

turbine as well as a heat recovery steam generator (HRSG). The fuel which is usually

natural gas is used to move the gas turbine, and the byproduct steam is recovered to

move a secondary steam turbine. This way there are two point of energy generation in

10

the whole plant. The combination of these two cycles (gas and steam) results in a high

efficiency that can reach up to 60%[11].

Flexibility is key in CCGT power plants to enable quick response to changes in grid

demand. They have the ability to start and stopped relatively quicker than their

counterparts, thus making them suitable for both base load and peaking operation.

With this advantage it also comes with the disadvantage of having a higher number of

startup and shut down. In addition, CCGT power plants emit significantly lower levels

of pollutants such as NOx, SOx, and CO2 than conventional fossil fuel power

plants[12], making them relatively more environmentally friendly. A illustration of

the CCGT is included in Figure 2.1 below.

Figure 2.1 CCGT Power Generator with Heat Recovery Steam Generator

The use of CCGT power plants has become increasingly popular in the electricity

industry due to their high efficiency, low emissions, and operational flexibility. They

11

are ideal for meeting the ever-increasing demand for electricity in a sustainable and

eco-friendly manner. The growing emphasis on clean energy and reduction of

greenhouse gas emissions is believed to drive adoption of more CCGT power plants

in the near future.

2.3 Types of Start Up

2.3.1 Hot Start

Hot start is defined as a method of starting up a turbine where it is already at the

operating temperature. The method is commonly used in restarting the power plant, in

this case the gas turbine is shutdown, but the combustion chamber remains hot. This

method is also efficient because the turbine is already at operating temperature, which

means that there is no need for additional fuel to bring the turbine up to

temperature[13]. Though it poses risks of damaging the turbine or other components

of the power plant because the combustion chamber is not cooled down properly as it

causes thermal and mechanical stress across the power plant. Figure 2.2 shows the

power output plotted against time of hot start.

Figure 2.2 Graph of Power output against Time Stamp of Hot Start

12

2.3.2 Warm Start

A warm start is a type of start-up procedure for a power plant where the turbine and

associated equipment are still at a high temperature, but the gas turbine has cooled

down to some extent. In this start-up mode, the unit is brought online faster than in a

cold start, but slower than in a hot start. This type of start-up procedure is often used

when the power plant has been shut down for a relatively short period, such as

overnight, and the equipment is still warm. Warm starts can help reduce wear and tear

on the equipment and allow for faster ramp-up times. Figure 2.3 shows the power

output plotted against time of warm start.

Figure 2.3 Graph of Power output against Time Stamp of Warm Start

2.3.3 Cold Start

In a cold start, the gas turbine has been completely shut down, and the temperature

of all of its components has dropped to the ambient temperature. In this situation, the

gas turbine has to be restarted from the beginning, which means that it has to be turned

on and warmed up. The process of warming up the gas turbine components to their

13

operating temperature can take several hours, depending on the size and design of the

turbine. During this process, the gas turbine is brought up to speed gradually, and the

temperature of the various components is increased slowly to avoid thermal shock and

damage. Once the gas turbine is up to its operating temperature, it can be synchronized

to the grid and begin generating electricity. A cold start is typically the most time-

consuming and energy-intensive type of start-up for a gas turbine. Figure 2.4 shows

the power output plotted against time of cold start.

Figure 2.4 Graph of Power output against Time Stamp of Cold Start

2.4 Basic Start Up Routine

The start up routine is divided into fourteen sequences, it will be discussed in

sequential order as in the actual power plant start up. The sequences have different

runtime across each startup time and different behavior can also be observed too. A

basic startup routine is shown in Figure 2.5.

14

Figure 2.5 Basic Startup Sequence

2.4.1 Gas Turbine Initiate Start

In the first phase, the signal GT Initiate Start is sent to the gas turbine, operator is

required to manually initiate start once all permissive are achieved. The permissive

action includes the following, Steam Turbine ready to start, Aux Steam pressure is

greater than twelve bar, Aux Steam temperature is greater than 150 Celsius and etc.

2.4.2 Purging

Purging is a process used to clear the compressor of any residual gases before

starting the combustion process. This is done to prevent the risk of a flashback, which

can occur when the fuel ignites prematurely inside the combustion chamber, causing

damage to the turbine blades and other components. Purging involves injecting air or

an inert gas, such as nitrogen or carbon dioxide, into the combustion chamber to push

out any residual gases. This process is typically automated and controlled by the plant's

15

control system to ensure that the purging is done safely and efficiently. The high-

pressure turbine is at 23.45% speed (703rpm) for 11 minutes.

2.4.3 Firing

After purging, the vacant combustion chamber provides a place for fuel

introduction. With the presence of fuel, the igniter or spark plug are activated to ignite

the fuel. Throughout the combustion, the high-temperature gas escapes the

combustion chamber and being directed to the gas turbine for power generation. The

power plant is now generating power at a non-ideal state. High-pressure turbine is

brought down to TNH=14% (420rpm).

2.4.4 Warm Up

Warm up sequence allows the high-pressure turbine to adapt to the speed and

temperature for operation. It maintains the speed of the turbine at constant for

approximately one minute. Firstly, by gradually increasing the operating temperature

and reducing thermal stress it prolongs the lifespan of components. Secondly, it

ensures optimal performance by allowing the generator to reach its ideal operating

temperature[14], resulting in improved efficiency and fuel consumption. Thirdly, the

sequence allow testing and calibrating of parameters from the control systems and

safety mechanisms to take place thus increasing stability. Fourthly, it helps control

emissions by allowing the generator to reach its optimal combustion temperature,

minimizing environmental impact. Lastly, it extends the lifespan of the equipment and

enhances safety by detecting any abnormalities or malfunctions before full operation.

16

Overall, the warm-up phase can be summarized as a buffer sequence for various fine-

tuning of parameter to take place and is essential for efficient, dependable, and safe

power generation.

2.4.5 Full Speed No Load (FSNL)

Full speed no load (FSNL) is a mode of operation for Combined Cycle Gas Turbine

(CCGT) power plants, it starts when no electricity can be generated although the gas

turbine is at its maximum speed. This is to stabilize the gas turbine and enable it to

reach its maximum rotational speed. As with most of the few starting sequence in

power plant startup it serves the purpose of increasing safety and efficiency during the

startup process. Power generation is cut by disconnecting the gas turbine from the

generator and the steam is bypassed around the heat recovery steam generator (HRSG)

and discharged directly into the atmosphere without passing the steam turbine. The

high-pressure turbine is at TNH 100% (3000rpm).

2.4.6 Grid Synchronization

In a combined cycle gas turbine (CCGT) power plant, after the gas turbine is fired

and the speed has reached the rated speed, the generator is synchronized to the grid by

using a generator circuit breaker (GCB). To ensure that the generator voltage and

frequency match the grid synchronization is needed. To achieve stable

synchronization, the sequence of the turbine and generator must be held, allowing time

for the drum level to stabilize. The sequence may be hold for a longer period to ensure

stability, in the optimization of the startup time, the faster the power plant reach this

17

sequence, the amount of time allowable for this sequence to take place is greater. After

synchronization, the generator can be connected to the grid, and the load can be

increased gradually[14].

2.4.7 Temperature Matching

It is important to maintain temperature matching between the gas turbine and steam

turbine in order to maximize efficiency and power output. Temperature mismatches

can lead to reduced efficiency and potential damage to the equipment. One way to

achieve temperature matching is through careful control of the firing temperature in

the gas turbine and the steam temperature in the heat recovery steam generator.

Additionally, control systems can be implemented to monitor and adjust temperatures

in real-time to ensure they remain within the desired range.

2.4.8 Steam Turbine Coupling

In this process, high pressure steam is admitted to the HP steam turbine by HRSG.

This process requires a human operator to manually initiate the sequence in order to

admit steam into the steam turbine. There are a few conditions that need to be met

before this process can be commence. Some of a few conditions include High Pressure

bypass valve should be 20 percent open and the High-Pressure header pressure should

be no lesser than thirty-seven bar.

18

2.4.9 Inlet Pressure Control

Inlet pressure control is turned on and HP bypass is slowly close to increase

pressure to the Steam Turbine.

2.4.10 Back Pressure Enable

IP and LP bypass is slowly close to increase pressure in the steam turbines. The

back pressure will proceed in 30 seconds if the startup sequence is not set to HOLD.

2.4.11 Temperature Matching Off

In normal condition, if the start up sequence is not HOLD, the temperature

matching will be switched off in 30 seconds after back pressure is enabled.

2.4.12 Sequence Complete

The sequence is completed after the temperature matching is switched off. The

power generator is now in steady state.

2.4.13 Minimum Load

The minimum load of the generator varies based on the type of start-up and needs

to be confirmed by a human operator. The operator is required to input the minimum

load value.

19

2.4.14 Baseload/ Declare Available

The load can now be increased to suit the needs of the client. The load might be

slightly under the desired power level due to the ambient temperature.

2.5 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population-based optimization algorithm

inspired by the social behavior of birds in a flock or fish in a school[15]. The algorithm

sustains a population of candidates of solution also known as particles. The parameters

of the particles can be tweaked to suit different optimization problem. The particles

will then drift around the predetermined search space bounded by an upper and lower

boundary and search for the position with best cost value. The position and velocity

will be adjusted based on previous best personal and global position every iteration.

Each particles position represents a possible solution for the problem, and its fitness

is calculated with a formula known as objective function. The objective function

determines how good or bad the particle's position is, and the goal is to find the particle

that has the best fitness value, i.e., the global optimum. The global optimum can either

be a global maximum or global minimum based on the problem one is trying to solve.

First, the algorithm initializes a population with size specified by user, and assign

random position and velocity bound by the search space. Then, it updates the velocity

and position of each particle based on its own best-known position and the best-known

position of the swarm[15]. The velocity update equation consists of two terms: the

cognitive component, which is the particle's memory of its own best-known position,

and the social component, which is the swarm's memory of the best-known position

20

so far. These terms are weighted by two constants called acceleration coefficients

those constants dictate how much the particles are affected by their previous best

position and the global best position.

At each iteration the velocity and position value are replaced if better fitness value

is achieved or if the same or worse fitness value is obtained, the position remains the

same as the previous iteration. The iteration is stopped when the stopping criteria is

met. Finally, the particle with the best fitness value is returned as the optimal solution.

Figure 2.6 display the convergence of particle with animation for visualization.

Figure 2.6 Graphical Display of particle converging on a possible solution

PSO has been successfully applied to various optimization problems in

engineering, science, economics, and other fields. Its advantages include simplicity,

21

ease of implementation, and fast convergence to the global optimum. However, it is

also prone to getting stuck in local optima and may require careful parameter tuning.

2.6 Optimizer Model and Working Principle

An optimizer model is a mathematical model that is designed to solve optimization

problems. It is essentially a set of algorithms that aim to find the best solution to a

particular problem by minimizing or maximizing an objective function[15]. The

optimizer model works by iteratively adjusting the input parameters of the objective

function until it finds the best combination of input parameters that result in the

optimal output value of the objective function. In this way, it is able to search through

a large number of possible solutions and converge towards the best possible solution.

The optimizer model can be used in a wide range of applications, from engineering

and finance to healthcare and logistics, to name just a few examples.

2.7 Improvement on Existing System

The main problem that the optimization algorithm intends to solve is the

synchronization problem. As the current system does not have an optimizing algorithm

in place, this results in a prolonged start up period because the control system needs

to hold the power generator before it can close the circuit to sync with the power

grid[16]. There are a few factors that act upon the time of power generator to achieve

the desired signal namely the electromagnetics created by excitation circuit, the speed

of the rotor and rotor spinning direction. Most of the factors stated above are dictated

by the prime mover of the turbine which is combustion gas and steam. Besides, the

22

start-up period is largely restricted by the heat recovery steam generator (HRSG) and

steam turbine generator (STG). The improvement on the start-up time can be achieve

by using an algorithm that have the capability to process big data as the plant has been

continuously generating lots of process and operating data including transient data

associated with the CCGT unit start-up. All of these data are stored into PI historians

and are analyzed routinely by O&M personnel for performance and reliability

purposes. The significance of the optimizing algorithm is improving the start-up

period that will in turn reduce the capital cost[4] and assist the plant to meet the Energy

Commission (EC) requirement. Comparison of cost between OCGT, Coal, CCGT and

Nuclear power plant is represented in Figure 2.7.

Figure 2.7 Screening Curves of Total Cost against Operating hours per Year

23

2.8 Optimization System in Various Fields

Optimization algorithms are used in a variety of fields to find the best solution to a

given problem. In finance, optimization algorithms are used to determine the best

investment strategy given certain constraints. For example, an investor may use

optimization algorithms to determine the optimal mix of stocks, bonds, and other

investments to maximize returns while minimizing risk.

In logistics, optimization algorithms are used to determine the most efficient way

to transport goods from one location to another. For example, a delivery company may

use optimization algorithms to determine the best route for its trucks to take to

minimize travel time and fuel consumption.

In engineering, optimization algorithms are used to design and optimize various

systems and processes[15]. For example, in mechanical engineering, optimization

algorithms are used to design and optimize structures such as bridges and buildings.

In chemical engineering, optimization algorithms are used to design and optimize

chemical processes such as the production of drugs and other chemicals.

In machine learning, optimization algorithms are used to train models to make

accurate predictions. For example, optimization algorithms such as gradient descent

are used to minimize the error between the predicted outputs of a model and the actual

outputs.

In summary, optimization algorithms have broad applications in various fields, and

they can be used to solve a wide range of problems.

24

2.9 Related Studies

A study by Alessandro Nannarone and Sikke A. Klein titled “Start-Up

Optimization of a CCGT Power Station Using Model-based Gas Turbine Control”

focuses on a novel start-up procedure of existing combined cycle power station by

applying a feedback loop to ensure that the stresses in steam turbine is reduced. The

optimization is done in dynamic model that consists of blocks such as heat exchangers,

valves, meters, sensors, and turbines. The model is also generally applicable to other

power plant installations[17]. The feedback loop also controls the input such as steam

turbine housing temperature. The startup time reduction of this study is 32.5% and

31.8% for cold and warm startup and the cost reduction is 47% and 32.4%[18].

This study is different from the one in this thesis because it utilizes a dynamic

model whereas in this thesis the main subject is data-driven optimization. The key

takeaway from this study is that the input such as the fuel supply influence the power

level substantially, and by increasing the input the ideal output power can be achieved.

Another study named “Particle Swarm Optimization: A Comprehensive Survey”

by T. M. Shami highlights the impact of PSO parameters on the optimization result of

the algorithm. It reviews the basic concepts of PSO, its variants, application and

drawbacks of PSO and etc. The paper also shed light on the possibilities to hybridize

the algorithm with other algorithms such as genetic algorithm (GA) and differential

evolution (DE). It also states that PSO is simple to implement and code. There are

three controlling parameters namely inertia weight, cognitive ratio and social ratio

important in PSO[19].

25

This study has helped in understanding the basics of PSO and provide insight into

how the algorithm should be applied to the particular problem that is power plant

startup routine optimization for this thesis.

The paper by Hubel M and Meinke S titled “ Modelling and simulation of a coal-

fire power plant for start-up optimization” also puts emphasis on the optimization with

dynamic model building as the main method. The model included in the study can

identify restrictions for quicker start-ups, with additional benefits of lesser fuel

consumption and decreased emission all while having an acceptable amount of

thermal and mechanical stress[20].

Through reading the papers, a few points are made in the form of understanding

how the power plant works and the chain of operation needed to produce the optimal

power output.

CHAPTER 3

METHODOLOGY

The aims of this chapter are to inform the techniques and methods that have been

leveraged to develop the project. The flow of the project is divided into two phases

and carefully explained. The reason of choosing each of the method will also be

provided.

27

3.1 Research Methodology

The flowchart for this project would consist of several key stages, including data

collection and pre-processing, model development, and application development. The

flowchart is illustrated below in Figure 3.1.

Figure 3.1 Flowchart of Research Methodology

28

3.2 Data Collection

The data collection is done by obtaining data from the collaborating company,

Malakoff Corporation Berhad. By gathering the data needed, the underlying pattern of

the data and behavior of the plant can be modelled. The collaborating company

collected the data by placing sensors strategically across the generator. The sensor

selection is also crucial for their ability to capture parameters change across startup

timeline.

Collaboration with the company provides valuable insights and access to critical

information[21]. The company presents the chain of operation, outlining the sequence

of steps required for the power generation process, in a comprehensive Word

document. This document serves as a crucial guide, providing a clear understanding

of the operational workflow and the interdependencies between different operations.

The prerequisite conditions for each step are listed down in great detail, offering a

thorough understanding of the necessary requirements for a successful process.

Moreover, the company also provides a detailed document to be used as a guide to

understand the datasheet by labelling the sensor data. It enables precise identification

and location of the sensor in the plant. By using the guide, the data analysis can be

carried out with accurate mapping between the physical sensor to the readings in the

Excel dataset.

It is important to highlight that the data collection process relies heavily on the

collaboration and partnership with the company due to the sensitive nature of the data.

As such, strict confidentiality measures and data security protocols are implemented

to safeguard the proprietary information. The collaborative nature of the data

29

collection process fosters trust and mutual understanding between the research team

and the company, ensuring a smooth and productive data collection experience.

Overall, the data collection phase benefits greatly from the collaborative effort with

the company. The presented chain of operation, with its detailed prerequisites, guides

the data collection process and facilitates the understanding of the power generation

system. Additionally, the inventory of sensors and their label names enables precise

data collection and mapping of sensor readings to specific components. The

partnership with the company ensures the protection of sensitive data, fostering a

successful and mutually beneficial collaboration throughout the data collection phase.

The collected data was then meticulously organized and stored in a spreadsheet

format using Excel. This approach ensured that the data could be easily accessed,

analyzed, and manipulated for subsequent stages of the research. The dataset

encompassed a comprehensive range of measurements, including drum level, drum

pressure, turbine speed, and temperature readings from various components within the

power generator. These parameters were specifically chosen due to their significant

impact on assessing the generator's operational efficiency and overall performance.

The sample of data extracted from the dataset is shown in Figure 3.2.

30

Figure 3.2 Sample Excerpt of Start-Up data provided by the company

Before commencing data collection, thorough calibration procedures were

conducted for each sensor. This step was crucial to ensure that the measurements

obtained were accurate and reliable. Additionally, regular maintenance and

monitoring of the sensors were performed throughout the data collection process to

preserve their optimal functioning.

Ethical considerations were strictly adhered to during data collection. This involved

obtaining informed consent from relevant stakeholders and ensuring the

confidentiality of any sensitive information or proprietary data obtained.

To ensure the integrity and quality of the collected data, various validation

techniques were employed. Cross-checking readings from different sensors and

comparing them against known reference values were instrumental in identifying and

addressing any inconsistencies or outliers within the dataset[22]. By conducting

careful scrutiny and, when necessary, additional measurements, the integrity of the

data was preserved.

31

The comprehensive dataset acquired through this rigorous data collection

methodology serves as a solid foundation for the subsequent stages of analysis and

evaluation within this thesis. It enables a detailed examination of the power generator's

operational characteristics, facilitates the identification of potential issues, and paves

the way for the formulation of practical recommendations for improvement.

In conclusion, the data collection methodology implemented in this research

employed a strategic placement of sensors, meticulous calibration procedures, regular

maintenance, and adherence to ethical guidelines. The resulting dataset, stored in an

Excel spreadsheet, provides a reliable and accurate representation of critical

parameters such as drum level, drum pressure, turbine speed, and component

temperatures. This comprehensive dataset forms the basis for further analysis and

insights throughout the thesis.

3.3 Data Pre-processing

The data preprocessing phase played a crucial role in refining the collected dataset

to ensure its suitability for analysis and optimization purposes. This section outlines

the various steps undertaken during the preprocessing stage.

Firstly, the variables need to be categorized into two classes, measured variable and

controllable variables. Measured variable includes factors such as atmospheric

pressure and surrounding temperature that can only be measured but not optimized.

And the controllable variables will be the main subject of the optimization, by

carefully examining the variables and their impact on the output power, a subset of

essential variables can be retained for further analysis. This is to eliminate any

32

undesirable noise or redundant information that could lower the performance of the

PSO model.

After variable selection, the next step involved converting the Excel spreadsheet

containing the collected data into a more standardized format, namely the CSV

(Comma-Separated Values) format. Converting to CSV allowed for easier data

handling and compatibility with various data analysis tools and software packages.

The conversion process ensured that the data maintained its structure and integrity

while facilitating seamless integration with subsequent data analysis techniques.

Data cleaning was another crucial aspect of the preprocessing phase. This involved

identifying and handling missing data, outliers, and inconsistencies within the dataset.

Missing data points were either imputed using appropriate techniques or, if the

missingness was significant, carefully analyzed for potential implications on the

subsequent analysis and optimization results. Outliers and inconsistencies were

identified through statistical methods and domain knowledge, and appropriate

treatment strategies were applied, such as removing or adjusting these values based on

their impact on the overall dataset. Those outliers and missing values are ignored most

of the time in the data analysis.

Additionally, data normalization techniques were implemented to standardize the

range and distribution of variables. These techniques are most frequently used to

normalize the measured variable because the values that are obtained from the sensors

are more than likely not in the standard unit of measurement. These values are usually

in the unit of voltage and need to be normalized before included in the model [23].

Normalization ensured that variables with different scales and units were brought to a

common scale, allowing for fair comparisons and accurate optimization analysis.

33

Common normalization techniques used included min-max scaling or z-score

normalization, depending on the specific requirements of the optimization algorithms

or models employed in the research. Figure 3.3 illustrates the processes of data pre-

processing.

Figure 3.3 Processes of Data Pre-Processing

Throughout the data preprocessing phase, data integrity and quality were

maintained by conducting thorough checks and validations. This involved verifying

the accuracy of the converted dataset, cross-validating against the original Excel

spreadsheet, and ensuring the consistency of variable names and data formats.

In summary, the data preprocessing phase involved several critical steps. This

included selecting variables relevant to the optimization process, converting the

dataset from Excel to CSV format, handling missing data and outliers, and performing

data normalization. These steps were crucial in refining and preparing the dataset for

34

subsequent analysis and optimization, ensuring the accuracy, consistency, and

reliability of the data used in the thesis.

3.4 Data Analysis

Data analysis is usually done using simulation model, especially with complex

optimization problem like the one this project aims to solve [24]. However, in this

project, there will be no simulation process, instead curve fitting will be used to

determine the relationship between the dependent and independent variable. This is

because there is not enough information to construct a dynamic model as it involves

sensitive information that is best left undisclosed. Curve fitting in MATLAB is a

valuable technique that can be applied to the project, specifically when working with

datasets obtained from an Excel file. MATLAB provides powerful tools and functions

for curve fitting, allowing us to analyze and model the relationship between variables

in the dataset. By importing the dataset into MATLAB, we can use functions like

"xlsread" or "readtable" to extract the data into MATLAB variables. Once the data is

available, we can utilize various curve fitting methods, such as linear regression,

polynomial fitting, or custom models, to find the best-fit curve that represents the

relationship between the variables. MATLAB's curve fitting toolbox offers functions

like "fit" and "cftool" that provide easy-to-use interfaces for performing curve fitting

and obtaining the fitted curve equation, coefficients, and goodness-of-fit measures.

With the fitted curve, we can make predictions, interpolate missing values, or gain

insights into the behavior of the variables in the dataset. Curve fitting in MATLAB

enhances the project's data analysis capabilities, enabling a deeper understanding of

the system dynamics and aiding in decision-making processes.

35

3.5 MATLAB

The coding in MATLAB consists of three parts, the first part implements the PSO

according to the formula fitted in the second coding, and the third part is the GUI

implemented to provide convenience to the user to compare the startup time with and

without the optimization. The provided code implements the Particle Swarm

Optimization (PSO) algorithm to optimize the start-up routine parameters of a power

generator. The PSO algorithm aims to find the best values for the parameters that

minimize the difference between the desired and actual power output over time. The

algorithm begins by defining the PSO parameters, search space boundaries, and

initializing particles' positions and velocities. It also initializes personal and global

best positions and costs based on the initial positions.

The PSO algorithm iteratively updates the particle velocities and positions based

on the best positions found so far. It also enforces the search space bounds to ensure

that the particles remain within the specified range. The personal and global best

positions and costs are updated as better parameters are found. The algorithm

continues for a specified number of iterations, tracking the best cost achieved.

After running the PSO algorithm, the code prints the final results, including the best

parameters and cost. It then proceeds to plot the desired and actual power output over

time using the optimized parameters. The desired power output is defined by a set of

power values plotted over the timeline of the start-up sequence, while the actual power

output is calculated based on the optimized start-up routine parameters.

Additionally, the code includes a section related to turbine speed and temperature

constraints. It defines a start-up routine timetable, sets constraints for the turbine speed

and temperature, and formulates an optimization problem. The objective of the

36

optimization problem is to minimize the overall duration of the start-up routine,

subject to the defined constraints. The problem is solved, and the results, including the

time saved for each start-up sequence, duration, data set, and change in power over

time, are displayed in a GUI application with the use of MATLAB app designer.

In summary, the code uses the PSO algorithm to optimize the start-up routine

parameters of a power generator. It iteratively updates particle positions and velocities

to find the best parameter values that minimize the difference between the desired and

actual power output. The code also considers constraints on the controllable variable

such as the fuel supply, drum level setpoint and so on. The optimized parameters are

then used to plot the desired and actual power output over time for the sake of

comparison with the original dataset and the fitted curve of the original dataset.

3.6 Optimization of Start-Up Routine

3.6.1 Setting of Parameters

The selection of optimal values for parameters, such as turbine speed, drum

pressure, drum level, steam temperature, and others, is a critical aspect of the power

generator's operation. These parameters directly influence the readings obtained from

sensors and subsequently impact the efficiency and performance of the power

generation process. Moreover, their accurate determination is crucial in ensuring the

fulfillment of prerequisites for the smooth execution of the start-up routine.

The start-up routine in the power generator involves a chain of interconnected

operations, each with specific prerequisites that must be fulfilled before proceeding to

the next step. For instance, certain parameters need to reach specified thresholds or

37

stable levels before the subsequent operation can be initiated. Failure to meet these

prerequisites can result in delays or even failure of the start-up process.

To select the best values for the parameters, an iterative optimization approach may

be employed. This involves adjusting the parameter values within a given range and

evaluating their impact on the fulfilment of prerequisites and subsequent sensor

readings. Various optimization algorithms, such as gradient-based methods or

evolutionary algorithms, can be utilized to efficiently explore the parameter space and

identify the values that optimize the start-up routine.

During the optimization process, it is crucial to consider the interdependencies

between parameters and their effects on sensor readings. For example, increasing the

turbine speed may influence drum pressure or temperature, which can directly affect

the time required to fulfil certain prerequisites. Careful analysis and understanding of

these relationships are vital to ensure an effective optimization strategy.

In addition to optimization, the selection of parameter values should take into

account operational constraints, safety considerations, and equipment limitations.

Parameters should be set within permissible ranges to avoid compromising the

stability and integrity of the power generator.

Overall, the selection of optimal parameter values is essential to ensure the

successful fulfilment of prerequisites during the start-up routine of the power

generator. By employing optimization techniques and considering the

interdependencies between parameters and sensor readings, it is possible to enhance

the efficiency and reliability of the start-up process. Striking the right balance between

38

parameter values, prerequisite fulfilment, and operational constraints is crucial for

achieving optimal power generation performance.

3.6.2 Reducing the Process Time

Efficiently reducing process time is a key objective in power generation, as it leads

to enhanced productivity and operational effectiveness. This section focuses on

strategies to minimize process time, with specific examples related to purging time,

the fuel amount in the ignition chamber, and simultaneous process execution.

Purging time is a crucial step in power generation, which involves removing any

unwanted gases or contaminants from the system before initiating full operation.

Turbine speed plays a significant role in reducing purging time. By increasing the

turbine speed, a higher flow rate of gases and contaminants can be achieved,

expediting the purging process and reducing the overall time required.

Furthermore, the fuel amount in the ignition chamber is another parameter that

influences process time. The fuel amount affects the steam temperature and drum

pressure, which are critical for initiating and maintaining the power generation

process. Optimizing the fuel amount in the ignition chamber, based on the desired

steam temperature and drum pressure, ensures efficient and timely power generation

initiation.

In addition to optimizing individual parameters, simultaneous process execution

can significantly reduce process time. Certain operations within the power generation

system can run concurrently, allowing for parallel execution and expedited completion

of the overall process. For example, while the purging process is underway, other

39

preparatory tasks, such as preheating the steam, can be initiated simultaneously. This

parallel execution of processes minimizes idle time and maximizes overall efficiency.

It is important to note that careful consideration should be given to safety and

operational constraints when implementing simultaneous process execution. Proper

coordination, monitoring, and control mechanisms need to be in place to ensure that

the simultaneous processes do not compromise system integrity or result in

undesirable consequences.

By strategically optimizing parameters such as turbine speed, fuel amount, and

leveraging simultaneous process execution, significant reductions in process time can

be achieved in power generation. These strategies enhance overall operational

efficiency, leading to increased productivity, reduced downtime, and improved

economic viability of the power generation system.

CHAPTER 4

RESULTS AND DISCUSSION

This chapter shed some light on the results obtained from the research project and

contains discussions regarding the results. A few snippets of the coding and their

respective remarks will be provided and given emphasis. And the components of the

research project will be dissected and inspect meticulously. The optimized results will

be compared to the original data to graphically represent the improvement. The

accuracy of the model constructed will be tested and explanation will be provided

regarding it. Lastly, the chapter will be concluded with discussions and research

limitations.

41

4.1 Result Summary

The block diagram below in Figure 4.1 sums up the results of the project. It consists

of four components namely PSO, Data Analysis, Manual Work and Display GUI.

Design plan is also included in Figure 4.2.

Figure 4.1 Block Diagram

42

Figure 4.2 Design Plan

4.2 Manual Work

At the commence of the project the data that is collected needs to be pre-processed

and a lot of it is being done manually. One such procedure is deciding where the

sequence start and end. The process cannot be replicated by using code as every

sequence have different starting and stopping criteria and MATLAB cannot identify

the value of the criteria row by row in the datasheet.

Analysis of Variance (ANOVA) is also being done manually, but it can be

automated using anova() function in MATLAB. ANOVA produces a table of variables

along with their respective p-value which indicates how influential the independent

variable is to the dependent variable. ANOVA is not being implemented for all of the

sequence because the accuracy will drop after excluding a certain number of variables.

Only the initiate sequence of cold startup includes feature selection done by ANOVA

and the accuracy experienced a substantial decrease.

43

Upper and lower boundary will also need to be obtained manually for each

sequence. Last but not least, the code will need to be modify manually per sequence

and startup type. There is a way to automate the process that is by developing an

automation script but that is out of the scope of this project.

4.3 Coding Analysis

4.3.1 Particle Swarm Optimization Model

The model is constructed in MATLAB, first the PSO parameters such as w, c1 and

c2 is defined. w dictates the step size each parameter can take, so the speed of the

convergence can be increased with a higher w value. c1 and c2 define the ability of

the particle to be influenced by their best personal best position and the global best

position respectively.

After that, the optimization parameters are defined the parameters include

tolerance, target value and placeholders. The tolerable error in ideal power level is

defined as tolerance, it is usually kept under 0.01. Whereas target value is simply the

ideal power level. The placeholder to hold values such as the personal and global best

position is also declared beforehand.

After the declaration of the parameters above, PSO can be initiate by initializing

the particles starting position and velocity. The particles take on a random position

within the upper and lower boundary. The velocity is also randomized so that the

particles can search within such boundaries.

The PSO then runs until it reached its maximum iteration or until it reached it is the

ideal power level. Throughout the process, the personal best and global best position

44

is updated continuously where the value of the parameter is stored in the array declared

beforehand. The position is a set of parameters that differs from one sequence and

another. Whether if the position of the particle is desirable is decide by the objective

function, the objective function will output a value which is the power level. This PSO

differs from other in the aspect of desirable value as it updates the personal and global

best with the value closest to ideal power level not the maximum or minimum value.

The coding snippet of how this can be achieved is shown below in Figure 4.3.

Figure 4.3 Updating with Value Closest to Target Value and One-Time Nested Condition

Checking Loop

Last but not least, the result of each iteration is displayed and the ideal set of

parameters for each iteration is shown. The output of the coding is a time series set of

parameters that can achieve the power level associated with it. With an example of it

displayed in Figure 4.4.

45

Figure 4.4 Sample Output of PSO Model

 The time taken for the particle to converge to the power level differs each time

after running the code as the particles’ position and velocity is randomized, but the

graph representing the curve is the same with marginal difference.

4.3.2 Data Analysis

The data analysis code is the shortest among the three, but it is the first process that

the receive the data in the form of Excel datasheet. The code takes in the range of

independent variables, dependent variable and the total data point. According to the

range provided, it reads into the Excel file and then performs curve fitting using the

46

function polyfitn() before plotting the data using polyvaln(). The section of the code

is showcase below with their respective input parameters in Figure 4.5.

Figure 4.5 Curve Fitting

 The coefficient of each variable will be determined by the code and stored

inside an array. An output with the form of a formula will be the final product of this

code. It also has a graph display function, but that function is later moved to the GUI

section to centralize all the display components.

4.3.3 Graphical User Interface (GUI)

The GUI provided a means for user to interact with the program written in

MATLAB. The GUI is coded with the help of MATLAB App Designer, it is an app

designer that can be use with ease as UI component can be constructed by simply

dragging the component on the UI view.

The GUI constructed enables users to display the dataset that is associate with a

type of start up by users, choose the sequence of the startup, generate a polynomial

formula based on the users’ selection, subsequently display the comparison between

original data, fitted curve and the optimized curve and lastly show the time saved for

the startup sequence in selection.

47

Button is used in the UI to enable users to select the startup type and sequence.

Text/Number area and UIAxes are used to display texts/numbers and plot graphs

respectively. A snippet of GUI code is provided in Figure 4.6.

Figure 4.6 Code Snippet of GUI

Every time the user selects a startup type and sequence, PSO model and data

analysis coding will execute sequentially and produce formula, optimized curve,

original curve, fitted curve, time saved, accuracy metrics and dataset accordingly. The

result of the display GUI will also be the final output of this project.

4.4 Sensor Integration

The project also includes an optional procedure that integrates sensor to the

MATLAB coding in order to simulate the natural fluctuation of measured variables

such as surrounding temperature, atmospheric pressure, humidity and such. An

interface in the form of an Arduino board will first need to be procured and connected

to both the sensor and Personal Computer correctly. After that, the code in PSO will

48

need to be modify accordingly for it to be include inside the PSO iteration. In Figure

4.7, a snippet of the coding is provided below as a reference.

Figure 4.7 Declaration of Arduino Objects

The section of code creates an Arduino object by specifying the port that is used to

establish connection with PC, model of the board, library and the type of connection.

Then the MPU6050 Accelerometer object declare the address of the board once it is

connected. After that an array is declared to store the readings from the sensor. The

array named rray here is an array that has number of particles as rows and three

columns.

Figure 4.8 Sensor Value Mapping

After that the value that is obtained directly from the sensors will need to be mapped

to the actual value represented. This is because most of the sensor value is send as

electrical signal in the form of voltage. The formula of the mapping is given above

49

with upper boundary and lower boundary as input, and it will return a mapped value

that represent the value of that particular variable.

The main purpose of sensor integration is to simulate the changes in uncontrollable

variable and a prototype constructed with accelerometer is tested out in the research.

Besides, the sensor integration is also aimed to prove that sensor can be used to read

measured variable to increase the functionality of the project. Said construction of the

setup is included below in Figure 4.9.

Figure 4.9 Construction of Sensor Integration with Accelerometer and Arduino UNO

4.5 Output Interpretation

Figure 4.10 below shows the output of the PSO coding or more specifically the

output of the PSO coding in the display GUI. The formula is highlighted in grey, it is

part of the result of the curve fitting in data analysis. The number of variables in the

formula differs for each startup type and sequence so the terms of the formula vary

50

from one formula to another. The area highlighted in yellow is user selection for

sequence and startup type. Noted only one selection is available for each sequence and

startup type. The area in black is the unprocessed dataset of each startup type and the

one in red is all the curves. The most key component of the GUI is the time saved of

each sequence and it is represented in green box. It is calculated by subtracting time

taken when ideal power level is reached from total time taken.

Figure 4.10 Output with Highlighted Explanation

The accuracy metrics is added later to the GUI to show how accurate the fitted

curve is with the original data. The display area of the metrics is positioned below the

startup type selection. A sample of the section is illustrated below in Figure 4.11.

51

Figure 4.11 Accuracy Metrics

4.6 Comparison Between Optimized and Unoptimized Start-Up Time

For sake of comparison, two identical sequences from each startup type are chosen

and displayed in Table 1.

Table 4.1: Output Curves for Initiate and Purging Sequence

Startup

Type

Sequence Graphs

Cold Initiate

Purging

52

Warm

1

Initiate

Purging

Warm

2

Initiate

Purging

Hot Initiate

53

Purging

4.7 Time Saved

Time is the chosen metric for the performance measurement for the PSO model to

investigate the speed of convergence. It is calculated by subtracting the time taken to

reach ideal power level from total time taken for the unoptimized curve. The PSO is

proven to accelerate the process of a chosen sequence ranging from 14.2 percent to as

high as 78.4 percent depending on the startup type and sequence as well as the PSO

parameters such as w, c1, c2 and number of particles. Five samples are taken for each

startup type and sequence because the time saved will vary each time running the PSO

as it is highly dependent on the randomness of the initial particle position and velocity.

The time saved for each sequence is shown below in Table 2.

Table 4.2: Timesaved for Each Sequence

Startup

Type

Sequence Time

Saved/s

Average

Time

Saved

Time Taken/s

(Unoptimized)

Percentage

of Time

Saved/%

Cold Initiate 5, 185, 190,

191, 201

154.4 226 68.3

54

Purging 437, 401,

552, 259,

469

423.6 660 64.2

Warm 1 Initiate 136, 155,

152, 153,

192

157.6 201 78.4

Purging 348, 461,

326, 411,

451

399.4 661 60.4

Warm 2 Initiate 37, 41, 35, 1,

42

31.2 220 14.2

Purging 169, 204,

123, 371,

356

244.6 660 37.1

Hot Initiate 53, 183, 77,

162, 132

121.4 239 50.8

Purging 406, 316,

369, 285,

383

351.8 660 53.3

4.8 Impact of PSO Parameters on Optimized Curve

This section demonstrates the influence PSO parameters have on the optimized

curve. Observation can be made where the larger the number of particles the faster the

55

PSO will reach convergence. Besides, the higher w value also reduces the time needed

for convergence [25]. Whereas c1 and c2 are kept constant with the same value of 1.5

as it dictates how likely the particle will follow personal best and global best position

respectively. This way the particle will follow both positions equally. From Figure

4.12 to Figure 4.17 the output curves of the PSO model is shown with varying

optimizing parameters.

Figure 4.12 num_particles = 100, w = 0.7, c1,c2 = 1.5

Figure 4.13 num_particles = 50, w = 0.7, c1,c2 = 1.5

56

Figure 4.14 num_particles = 10, w = 0.7, c1,c2 = 1.5

Figure 4.15 num_particles = 50, w = 0.5, c1,c2 = 1.5

Figure 4.16 num_particles = 50, w = 0.9, c1,c2 = 1.5

57

Figure 4.17 num_particles = 50, w = 1.0, c1,c2 = 1.5

4.9 Accuracy of the Particle Swarm Model

Two crucial metrics are chosen to measure the accuracy of the formula obtained. It

is of utmost importance that the formulas obtained have high accuracy because it is

the objective function of the PSO model. The two metrics are Residual Sum of Squares

and Mean Error. One important finding that is being discovered in the process of

accuracy measurement is the dropping of accuracy when reducing number of variables

of objective function as a result of variable selection[26]. By excluding some

variables, the behavior of the power plant cannot be represented as accurately.

4.9.1 Residual Sum of Squares (RSS)

RSS measures the variance in the error of a regression model [27]. It is the measure

of difference between the data and the estimation model.

In this project Residual Sum of Squares is used to indicate the accuracy of the

objective functions obtained from the curve fitting. The objective function represents

the behavior of the power plant at the selected sequence and startup type, thus it is

58

important that there is a method to measure the goodness of the formula. RSS is

applied to the curve fitted from the MATLAB coding. The reason as to why the RSS

is not performed on the optimized curve is because the curve is optimized to reduce

the time taken for the startup, so naturally it will differ from the original curve by a

great margin. Therefore, the correct way is to compare the fitted curve to the actual

curve as the formula of the fitted curve is also used to obtain the optimized curve.

The RSS calculation is repeated for each sequence for all the startup type. The

formula for RSS is provided in Figure 4.18 and the RSS for each sequence is shown

in Table 3.

Figure 4.18 Formula of RSS Calculation

59

Table 4.3: RSS of Each Sequence

Startup Sequence RSS

Cold Initiate

Purging

Warm 1 Initiate

Purging

Warm 2 Initiate

Purging

Hot Initiate

Purging

4.9.2 Mean Error

Mean error is chosen to represent the deviation of the fitted curve from the original

curve obtained from the Excel datasheet. Lesser mean error indicates a less deviation

from the actual data point [28]. It is the most direct method of accuracy measurement

calculated by obtaining the difference between the predicted and actual data point and

averaging the values. The mean error is shown below in Table 4.

Table 4.4: Mean Error of Each Sequence

Startup Sequence Mean Error

Cold Initiate

Purging

60

Warm 1 Initiate

Purging

Warm 2 Initiate

Purging

Hot Initiate

Purging

 Noted that the mean error of Initiate sequence from cold startup is relatively

high compared to the other sequence because ANOVA is performed as a means of

feature selection before curve fitting so the number of variables is reduced so does the

accuracy.

4.10 Discussions

The result display in the GUI indicates that the method used to reduce the startup

time is valid. This can be observed by the low RSS and Mean Error value. The time

saved varies from one sequence to another, but all shows positive improvement. The

flaw of this method is that the particles move too quickly to the ideal power level

resulting in a premature convergence. Though the approximate behavior of the plant

can be summarized in the form of objective function with marginal deviation.

Implementation of a way to delay the time of convergence is advisable, but the

selection of method must be cautiously carried out. This is because a simple wait time

that is introduced artificially is not desirable as the power plant have a certain chain of

operation that have dependency on the previous operation.

61

This brings us to the limitation of the research project, the dataset sourced from

Malakoff Corporation Berhad is not sufficient to derive useful detail for feature

selection as most of it is highly confidential and sensitive. And there is no way to know

the dependency of each parameter simply from the dataset. Besides, the project

employs PSO as method of optimization which cannot capture the full complexity of

time series problem and sensitivity to initial conditions.

In the research, the chosen method for data pre-processing is manual work, this

method is very time consuming as the dataset needs to be modify repeatedly for each

sequence and there are thirty-two sequences in total. A revision on the method is

advisable to avoid wasting time, and the proposed method is an automated script to

perform data splitting according to parameter values, feature selection and procuring

maximum and minimum for each variable. Besides, an automated script like

PowerShell for windows or AppleScript for apple can be developed to automate the

process of code modification in MATLAB.

While this project is still not mature to be used to improve power plant startup time

completely, it is deployable as an auxiliary tool to aid the existing system and provide

insight into the parameters that is needed to achieve ideal power output for a power

plant.

4.11 Research Limitation

The first limitation is the particles converge too quickly to the objective which in

this case is the ideal power level for each sequence. The particles will always move to

the objective on the start of the sequence[29], it is not desirable because it does not

62

represent true behavior of the power plant. The proposed solution to this limitation is

to add sort of a time delay or set a constraint on the rate of change of each parameter.

Besides, the time needed for particles to converge is subjected to factors such as

sensor involvement, number of particles and max iteration. There is currently no way

to speed up this process as the communication between the sensor and the MATLAB

code requires a set amount of time.

Generalization issues with PSO include sensitivity to initial conditions, early

convergence tendency, and difficulties with adapting to time series problem. Its

efficacy varies depending on the type of optimization problem, and its complexity is

increased by the requirement for meticulous parameter fine tuning. Constrained

generalizability of PSO is further exacerbated by its memory constraints, constraint

handling challenges, and restricted applicability in noisy or stochastic situations. Even

though PSO has shown to be successful for some optimization tasks, its resilience in

a variety of problem cases is still an issue[30]. For this reason, different optimization

algorithms should be taken into consideration depending on the particulars of the

problem at hand. One such example for time series problem includes Autoregressive

Integrated Moving Average (ARIMA) Model.

4.12 Research Sustainability

This research coincides with Goal 7: Affordable and clean energy, Goal 9: Industry,

Innovation and Infrastructure and Goal 13: Climate action. The project does so by

providing a means to reduce greenhouse gas emission with improved startup time thus

providing clean and affordable energy. It also signifies innovation as the project offers

63

a novel approach to increase startup efficiency. Lesser greenhouse gas emission also

contributes in fighting climate change as lower emission will reduce the atmospheric

temperature of the earth.

CHAPTER 5

CONCLUSION AND FUTURE WORKS

The last chapter concludes the thesis, it contains conclusion and future works. This

chapters summarize the project and provide insight as to where is the future of the

research leads. The section future works re-emphasize the flaws and limitations of the

project and provide advice on solutions for improvement.

65

5.1 Conclusion

In this thesis I have explored the possibility of leveraging Particle Swarm

Optimization to reduce the startup time for power plant startup routine and carried out

transient state analysis with MATLAB as tool. I have demonstrated that the startup

time can indeed be improved by proposing a procedure of mitigative action in the form

of a set of power plant parameters procured from PSO. By doing this, the PSO

basically reverse the clock and allow more time for fine tuning of parameters such as

signal arc and phase crucial for synchronization to take place. Collection and analysis

of data is also being accomplished.

This work has contributed new insight to propose solution for time series problems

which in this case is the startup time optimization. Application of PSO to this specific

problem is a first so there is a new horizon to discover. Although the method had its

weakness of converging too quickly but the potential for real-world implementation is

still high regardless.

Future research could further explore the implications of these findings and

continue on refine the research to minimize the weakness aforementioned. With this,

the thesis has come to a conclude where all the objectives are fulfilled.

5.2 Future Works

After the conclusion of thesis, much discovery has been made and with that comes

the implications of limitations regarding the research project. Suggestions as to where

the future of the research lies can thus be advised.

66

If this project is to be refined, there are a few key takeaways that can be derived

from project limitations. First, the timing of the particle convergence must take into

account the parameter dependencies of the power plant. This can ensure that maximum

amount of detail can be modelled into the PSO.

Besides, a new script can be developed to automate the tedious manual work that

have been done in this research is advisable and the same script needs to be applicable

for all of the sequence for ease of use. This way the data pre-processing phase can be

sped up by a great margin. The form of the script should be written in PowerShell for

Windows or AppleScript for Apple devices, anything similar can also be utilized.

Last but not least, an additional section of GUI can be added to compile the result

from all of the sequence to summarize how much the total time saved. The findings

have opened up new avenues for future work, promising exciting developments and

deeper understanding. This project is still immature and requires a great amount of

time to realize its real potential, it would be great if future research can heed the

suggestion stated in this section.

67

REFERENCES

[1] W.-P. Schill, M. Pahle, and C. Gambardella, “On Start-Up Costs of Thermal

Power Plants in Markets with Increasing Shares of Fluctuating Renewables,”

SSRN Electronic Journal, 2016, doi: 10.2139/ssrn.2723897.

[2] A. Ghulomzoda et al., “Recloser-based decentralized control of the grid with

distributed generation in the Lahsh district of the Rasht grid in Tajikistan,

central Asia,” Energies (Basel), vol. 13, no. 14, 2020, doi:

10.3390/en13143673.

[3] Y. Yoshida, T. Yoshida, Y. Enomoto, N. Osaki, Y. Nagahama, and Y. Tsuge,

“Start-up optimization of combined cycle power plants: A field test in a

commercial power plant,” J Eng Gas Turbine Power, vol. 141, no. 3, 2019, doi:

10.1115/1.4041521.

[4] C. Yin, H. Wu, M. Sechilariu, and F. Locment, “Power management strategy

for an autonomous DC microgrid,” Applied Sciences (Switzerland), vol. 10, no.

11, 2018, doi: 10.3390/app8112202.

68

[5] M. Shirakawa, M. Nakamoto, and S. Hosaka, “Dynamic simulation and

optimization of start-up processes in combined cycle power plants,” JSME

International Journal, Series B: Fluids and Thermal Engineering, vol. 48, no.

1, 2005, doi: 10.1299/jsmeb.48.122.

[6] WETO, “How Do Wind Turbines Work?,” WETO.

[7] M. D. P. Buitrago-Villada, S. Garcia-Marin, J. E. Zuluaga-Orozco, and C. E.

Murillo-Sanchez, “On the Importance of using an AC or DC Network Model

in the Multi-Period Secure Stochastic Optimal Power Flow for Settling a

Multidimensional Day-Ahead Market,” IEEE Latin America Transactions, vol.

19, no. 12, 2021, doi: 10.1109/TLA.2021.9480141.

[8] M. Goodarzi, “Energy and exergy analyses of a new atmospheric regenerative

Brayton and Inverse Brayton cycle,” Energy Reports, vol. 7, 2021, doi:

10.1016/j.egyr.2021.07.034.

[9] T. k. Ibrahim et al., “The optimum performance of the combined cycle power

plant: A comprehensive review,” Renewable and Sustainable Energy Reviews,

vol. 79. 2017. doi: 10.1016/j.rser.2017.05.060.

[10] W. P. Schill, M. Pahle, and C. Gambardella, “Start-up costs of thermal power

plants in markets with increasing shares of variable renewable generation,” Nat

Energy, vol. 2, no. 6, 2017, doi: 10.1038/nenergy.2017.50.

[11] A. J. Seebregts, “Gas-Fired Power,” IEA ETSAP - Technology Brief E02 – April

2010, no. April, 2010.

69

[12] Z. Geng et al., “Environmental economic dispatch towards multiple emissions

control coordination considering a variety of clean generation technologies,” in

IEEE Power and Energy Society General Meeting, 2015. doi:

10.1109/PESGM.2015.7286311.

[13] Z. Wu, W. Xu, C. Li, and X. Meng, “A new approach for generator startup

sequence online decision making with a heuristic search algorithm and graph

theory,” Energy Reports, vol. 8, 2022, doi: 10.1016/j.egyr.2022.02.239.

[14] D. Chao and S. Yongjian, “Working process of steam turbine and establishment

of start-up model,” International Journal of Physics Research and

Applications, vol. 4, no. 1, 2021, doi: 10.29328/journal.ijpra.1001040.

[15] T. M. Shami, A. A. El-Saleh, M. Alswaitti, Q. Al-Tashi, M. A. Summakieh,

and S. Mirjalili, “Particle Swarm Optimization: A Comprehensive Survey,”

IEEE Access, vol. 10, pp. 10031–10061, 2022, doi:

10.1109/access.2022.3142859.

[16] A. Sajadi, R. W. Kenyon, and B.-M. Hodge, “Synchronization in electric power

networks with inherent heterogeneity up to 100% inverter-based renewable

generation,” Nat Commun, vol. 13, no. 1, p. 2490, May 2022, doi:

10.1038/s41467-022-30164-3.

[17] E. Andersson, “Development of a dynamic model for start-up optimization of

coal-fired power plants,” MASTERS THESIS in Automatic Control, no. June,

2013.

70

[18] A. Nannarone and S. A. Klein, “Start-Up Optimization of a CCGT Power

Station Using Model-Based Gas Turbine Control,” J Eng Gas Turbine Power,

vol. 141, no. 4, 2018, doi: 10.1115/1.4041273.

[19] T. M. Shami, A. A. El-Saleh, M. Alswaitti, Q. Al-Tashi, M. A. Summakieh,

and S. Mirjalili, “Particle Swarm Optimization: A Comprehensive Survey,”

IEEE Access, vol. 10, 2022, doi: 10.1109/ACCESS.2022.3142859.

[20] M. Hübel et al., “Modelling and simulation of a coal-fired power plant for start-

up optimisation,” Appl Energy, vol. 208, 2017, doi:

10.1016/j.apenergy.2017.10.033.

[21] H. Taherdoost, “Data Collection Methods and Tools for Research; A Step-by-

Step Guide to Choose Data Collection Technique for Academic and Business

Research,” International Journal of Academic Research in Management

(IJARM), vol. 2021, no. 1, 2021.

[22] Y. Roh, G. Heo, and S. E. Whang, “A Survey on Data Collection for Machine

Learning: A Big Data-AI Integration Perspective,” IEEE Transactions on

Knowledge and Data Engineering, vol. 33, no. 4. 2021. doi:

10.1109/TKDE.2019.2946162.

[23] Z. Jin, M. Yao, and D. Tao, “Sensor Data Normalization Among Heterogeneous

Smartphones for Implicit Authentication,” in Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 2022. doi: 10.1007/978-3-030-95391-1_21.

71

[24] Y. Zhang, T. Huang, and E. F. Bompard, “Big data analytics in smart grids: a

review,” Energy Informatics, vol. 1, no. 1, 2018, doi: 10.1186/s42162-018-

0007-5.

[25] A. Nickabadi, M. M. Ebadzadeh, and R. Safabakhsh, “A novel particle swarm

optimization algorithm with adaptive inertia weight,” Applied Soft Computing

Journal, vol. 11, no. 4, 2011, doi: 10.1016/j.asoc.2011.01.037.

[26] M. Krystek and M. Anton, “A weighted total least-squares algorithm for fitting

a straight line,” Meas Sci Technol, vol. 18, no. 11, 2007, doi: 10.1088/0957-

0233/18/11/025.

[27] J. A. Morgan and J. F. Tatar, “Calculation of the Residual Sum of Squares for

all Possible Regressions,” Technometrics, vol. 14, no. 2, 1972, doi:

10.1080/00401706.1972.10488918.

[28] A. de Myttenaere, B. Golden, B. Le Grand, and F. Rossi, “Mean Absolute

Percentage Error for regression models,” Neurocomputing, vol. 192, 2016, doi:

10.1016/j.neucom.2015.12.114.

[29] Z. Yuan, L. Yang, Y. Wu, L. Liao, and G. Li, “Chaotic particle swarm

optimization algorithm for traveling salesman problem,” in Proceedings of the

IEEE International Conference on Automation and Logistics, ICAL 2007, 2007.

doi: 10.1109/ICAL.2007.4338736.

[30] A. M. Abdelbar, S. Abdelshahid, and D. C. Wunsch, “Fuzzy PSO: A

generalization of particle swarm optimization,” in Proceedings of the

72

International Joint Conference on Neural Networks, 2005. doi:

10.1109/IJCNN.2005.1556004.

73

APPENDICES

Appendix A: PSO Sample Coding for Firing Sequence of Cold Startup

%clear all
clc

% PSO parameters
num_particles = 50;
max_iterations = 29;
w = 1;
c1 = 1.5;
c2 = 1.5;
target_value = -0.44;
IdealIter=0;

% Search space bounds
lb = [-749.43 -666.99 -470.77 -337.64 -327.18 13.20
 396.25 -127.33 103.43 44.62 29.72 29.98 33.47 5.60 88.31
 74.03 33.06 29.84 61.05];
ub = [-749.41 -663.67 -468.91 -337.60 -321.35 14.12
 423.75 -125.17 103.54 45.42 29.78 30.03 33.53 9.24 88.51
 74.41 33.09 30.16 63.60];
VarCount=numel(ub);

% Initialize particles
x = zeros(num_particles, VarCount);
v = zeros(num_particles, VarCount);
for i = 1:num_particles
 x(i, :) = [-749.43 -665.58 -469.70 -337.60 -323.90 14.12 423.75 -
125.17 103.51 45.42 29.77 30.01 33.51 9.24 88.44 74.10 33.09 30.16
61.53];%lb + (ub - lb) .* rand(1, 10);
 v(i, :) = -1 + 2 .* rand(1, VarCount);
end

% Initialize personal best positions and costs
pbest_x = x;
pbest_cost = zeros(num_particles, 1);
for i = 1:num_particles
 pbest_cost(i) = objective(x(i, :));
end

% Initialize global best position and cost
[gbest_cost, gbest_index] = min(pbest_cost);
gbest_x = pbest_x(gbest_index, :);

% Run PSO

74

for iter = 1:max_iterations
 % Update particle velocities and positions
 for i = 1:num_particles
 r1 = rand(1, VarCount);
 r2 = rand(1, VarCount);
 v(i, :) = w * v(i, :) + c1 .* r1 .* (pbest_x(i, :) - x(i, :)) +
c2 .* r2 .* (gbest_x - x(i, :));
 x(i, :) = x(i, :) + v(i, :);

 % Enforce search space bounds
 x(i, :) = min(x(i, :), ub);
 x(i, :) = max(x(i, :), lb);
 end

 % Update personal best positions and costs
 for i = 1:num_particles
 cost = objective(x(i, :));
 if abs(cost - target_value) < abs(pbest_cost - target_value)%cost
< pbest_cost(i)
 pbest_x(i, :) = x(i, :);
 pbest_cost(i) = cost;
 end
 end

 % Update global best position and cost
 [min_cost, min_index] = min(pbest_cost);
 if abs(min_cost - target_value) < abs(gbest_cost - target_value)
 gbest_cost = min_cost;
 ideal_reached=false;
 if abs(gbest_cost - target_value) <= 0.1 && ideal_reached==false
 IdealIter=iter;
 ideal_reached=true;
 end
 gbest_x = pbest_x(min_index, :);
 end

 % Print current iteration and best cost
 fprintf('Iteration %d: Best cost = %.4f\n', iter, gbest_cost);
 %onetime = true;
 %if gbest_cost == target_value && onetime
 %fprintf('\nIdeal Power Reached in second: %d\n',iter);
 %onetime = false;
 %end
 disp(gbest_x);
 power(iter) = gbest_cost;
 %pause(1);
end

% Print final results
fprintf('\nFinal results:\n');
fprintf('Best parameters =
[%.2f %.2f %.2f %.2f %.2f %.2f %.2f %.2f %.2f %.2f]\n', gbest_x);
fprintf('Best cost = %.4f\n', gbest_cost);
timesaved = iter-IdealIter;

% Plot the desired and actual power output over time using the best
parameters
t_desired = [0 10 20 30 40 50 60 70 80 90 100];

75

P_desired = [0 0.2 0.3 0.4 0.6 0.8 1.0 0.9 0.8 0.6 0.4];
t_actual = linspace(0, 100, 11);
P_actual = zeros(size(t_actual));
P_actual(t_actual >= gbest_x(1) & t_actual < gbest_x(2)) =
(t_actual(t_actual >= gbest_x(1) & t_actual < gbest_x(2)) - gbest_x(1)) /
(gbest_x(2) - gbest_x(1));
P_actual(t_actual >= gbest_x(2) & t_actual < gbest_x(3)) = 1;
P_actual(t_actual >= gbest_x(3) & t_actual < gbest_x(4)) = 1 -
(t_actual(t_actual >= gbest_x(3) & t_actual < gbest_x(4)) - gbest_x(3)) /
(gbest_x(4) - gbest_x(3));
P_actual(t_actual >= gbest_x(4) & t_actual < gbest_x(5)) = 0.5 * (1 +
cos(pi * (t_actual(t_actual >= gbest_x(4) & t_actual < gbest_x(5))) /
(gbest_x(5) - gbest_x(4))));

% Find the position of each particle where the best cost is achieved
best_positions = x;

% Display the positions
disp('Particle positions where best cost is achieved:');
disp(best_positions);

%Define the objective function
function cost = objective(x)
 %Define the desired power output over time
 x1 = x(:,1);
 x2 = x(:,2);
 x3 = x(:,3);
 x4 = x(:,4);
 x5 = x(:,5);
 x6 = x(:,6);
 x7 = x(:,7);
 x8 = x(:,8);
 x9 = x(:,9);
 x10 = x(:,10);
 x11 = x(:,11);
 x12 = x(:,12);
 x13 = x(:,13);
 x14 = x(:,14);
 x15 = x(:,15);
 x16= x(:,16);
 x17 = x(:,17);
 x18 = x(:,18);
 x19 = x(:,19);

total_process_duration=@(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x1
5,x16,x17,x18,x19) -26.20 * x1 + 0.00 * x2 + -0.39 * x3 + -5.69 * x4 + -
0.16 * x5 + 0.29 * x6 + -0.03 * x7 + 0.18 * x8 + -6.42 * x9 + 1.65 * x10 +
5.06 * x11 + 4.50 * x12 + 1.10 * x13 + -0.06 * x14 + -0.78 * x15 + -0.37 *
x16 + 3.37 * x17 + -0.29 * x18 + 0.19 * x19 + -21507.32;%-21505.42;
 total_process_duration2=@(P_fuel2,T_steam2,P_inlet2,P_outlet2,Speed2)
(((P_outlet2*P_inlet2)/T_steam2)/(2*P_fuel2))*Speed2+60;

 wt = 0.06;
 wt2 = 0.3;

76

duration_total=total_process_duration(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x
12,x13,x14,x15,x16,x17,x18,x19);

 % Calculate the weighted sum of process durations
 cost = duration_total;%+wt2*duration_total2;
end

Appendix B: Data Analysis Sample Coding for Firing Sequence of Cold

Startup

sheet = 1;
xlRangex = 'C3:U31';
xlRangey = 'B3:B31';
xlRangetime = 'B2:B227';
independent = xlsread('Firing Cold.xlsx',sheet, xlRangex);
dependent = xlsread('Firing Cold.xlsx',sheet, xlRangey);
timeline = 1:size(dependent);
%xlsread('Initiate Cold.xlsx',sheet, xlRangetime);

% Define the degree of the polynomial you want to fit
degree = 1; % You can change this to the desired degree

% Fit the polynomial
coefficients = polyfitn(independent, dependent, degree);

% Evaluate the polynomial fit
yFit = polyvaln(coefficients, independent);

coef = coefficients.Coefficients;
varnum = size(coef,2);
coefficientPairs = cell(1, varnum);
for i = 1:varnum
 coefficientPairs{i} = sprintf('%.2f * x%d', coef(i), i);
end
coefficientString = strjoin(coefficientPairs, ' + ');
fprintf('y = %s\n', coefficientString);
curve=power;

Appendix C: Display GUI Sample Coding

classdef App < matlab.apps.AppBase

 % Properties that correspond to app components
 properties (Access = public)
 UIFigure matlab.ui.Figure
 MeanErrorEditField matlab.ui.control.NumericEditField
 MeanErrorEditFieldLabel matlab.ui.control.Label
 RSSEditField matlab.ui.control.NumericEditField
 RSSEditFieldLabel matlab.ui.control.Label
 SequenceButtonGroup matlab.ui.container.ButtonGroup
 IPCOnButton matlab.ui.control.ToggleButton
 WarmUpButton matlab.ui.control.ToggleButton
 TempMatchButton matlab.ui.control.ToggleButton

77

 FSNLButton matlab.ui.control.ToggleButton
 SyncButton matlab.ui.control.ToggleButton
 FiringButton matlab.ui.control.ToggleButton
 PurgeButton matlab.ui.control.ToggleButton
 InitiateButton matlab.ui.control.ToggleButton
 TimeSavedsEditField matlab.ui.control.NumericEditField
 TimeSavedsEditFieldLabel matlab.ui.control.Label
 StartupTypeButtonGroup matlab.ui.container.ButtonGroup
 HotButton matlab.ui.control.ToggleButton
 Warm2Button matlab.ui.control.ToggleButton
 Warm1Button matlab.ui.control.ToggleButton
 ColdButton matlab.ui.control.ToggleButton
 FormulaTextArea matlab.ui.control.TextArea
 FormulaTextAreaLabel matlab.ui.control.Label
 UITable matlab.ui.control.Table
 UIAxes matlab.ui.control.UIAxes
 end

 % Callbacks that handle component events
 methods (Access = private)

 % Callback function
 function ButtonValueChanged(app, event)
 value = app.Button.Value;
 %[filename,path]=uigetfile();
 temp=readtable("Initiate Cold.xlsx");
 app.UITable.Data = temp;
 figure(app.UIFigure);
 end

 % Display data changed function: UITable
 function UITableDisplayDataChanged(app, event)
 newDisplayData = app.UITable.DisplayData;
 end

 % Value changed function: FormulaTextArea
 function FormulaTextAreaValueChanged(app, event)
 value = app.FormulaTextArea.Value;
 end

 % Button down function: UIAxes
 function UIAxesButtonDown(app, event)

 end

 % Selection changed function: StartupTypeButtonGroup
 function StartupTypeButtonGroupSelectionChanged(app, event)
 selectedButton = app.StartupTypeButtonGroup.SelectedObject;
 if app.ColdButton.Value==1
 temp=readtable("Labelled
Data.xlsx",ReadRowNames=true,Sheet="Cold Start Sample");
 app.UITable.Data = temp;
 elseif app.Warm1Button.Value==1
 temp=readtable("Labelled
Data.xlsx",ReadRowNames=true,Sheet="Warm I Start Sample");
 app.UITable.Data = temp;
 elseif app.Warm2Button.Value==1
 temp=readtable("Labelled
Data.xlsx",ReadRowNames=true,Sheet="Warm IIStart Sample");

78

 app.UITable.Data = temp;
 elseif app.HotButton.Value==1
 temp=readtable("Labelled
Data.xlsx",ReadRowNames=true,Sheet="Hot Start Sample");
 app.UITable.Data = temp;
 end
 end

 % Value changed function: TimeSavedsEditField
 function TimeSavedsEditFieldValueChanged(app, event)
 value = app.TimeSavedsEditField.Value;
 end

 % Selection changed function: SequenceButtonGroup
 function SequenceButtonGroupSelectionChanged(app, event)
 selectedButton = app.SequenceButtonGroup.SelectedObject;
 if app.PurgeButton.Value==1 && app.ColdButton.Value==1
 Purge_Cold_PSO;
 Purge_Cold;
 cla(app.UIAxes);
 formula = coefficientString;
 app.FormulaTextArea.Value = formula;
 app.TimeSavedsEditField.Value=timesaved;
 y=curve;
 plot(app.UIAxes,timeline, y,'--
or',timeline,dependent,'g',timeline,yFit,'b');
 title(app.UIAxes,"Power over Time");
 legend(app.UIAxes,'Optimized Data','Original Data','Fitted
Curve');
 app.RSSEditField.Value = RSS;
 app.MeanErrorEditField.Value = MeanError;
 elseif app.InitiateButton.Value==1 && app.ColdButton.Value==1
 Approx_cost;
 Initiate_Cold;
 cla(app.UIAxes);
 formula = coefficientString;
 app.FormulaTextArea.Value = formula;
 app.TimeSavedsEditField.Value=timesaved;
 y=curve;
 plot(app.UIAxes,timeline, y,'--
or',timeline,dependent,'g',timeline,yFit,'b');
 title(app.UIAxes,"Power over Time");
 legend(app.UIAxes,'Optimized Data','Original Data','Fitted
Curve');
 app.RSSEditField.Value = RSS;
 app.MeanErrorEditField.Value = MeanError;
 elseif app.FiringButton.Value==1 && app.ColdButton.Value==1
 Firing_Cold_PSO;
 Firing_Cold;
 cla(app.UIAxes);
 formula = coefficientString;
 app.FormulaTextArea.Value = formula;
 app.TimeSavedsEditField.Value=timesaved;
 y=curve;
 plot(app.UIAxes,timeline, y,'--
or',timeline,dependent,'g',timeline,yFit,'b');
 title(app.UIAxes,"Power over Time");
 legend(app.UIAxes,'Optimized Data','Original Data','Fitted
Curve');

79

 elseif app.WarmUpButton.Value==1 && app.ColdButton.Value==1
 WarmUp_Cold_PSO;
 WarmUp_Cold;
 cla(app.UIAxes);
 formula = coefficientString;
 app.FormulaTextArea.Value = formula;
 app.TimeSavedsEditField.Value=timesaved;
 y=curve;
 plot(app.UIAxes,timeline, y,'--
or',timeline,dependent,'g',timeline,yFit,'b');
 title(app.UIAxes,"Power over Time");
 legend(app.UIAxes,'Optimized Data','Original Data','Fitted
Curve');
 elseif app.SyncButton.Value==1 && app.ColdButton.Value==1
 cla(app.UIAxes);
 app.FormulaTextArea.Value = "No Data";
 elseif app.FSNLButton.Value==1 && app.ColdButton.Value==1
 cla(app.UIAxes);
 app.FormulaTextArea.Value = "No Data";
 elseif app.TempMatchButton.Value==1 && app.ColdButton.Value==1
 cla(app.UIAxes);
 app.FormulaTextArea.Value = "No Data";
 elseif app.IPCOnButton.Value==1 && app.ColdButton.Value==1
 cla(app.UIAxes);
 app.FormulaTextArea.Value = "No Data";
 elseif app.InitiateButton.Value==1 && app.Warm1Button.Value==1
 Initiate_Warm_1_PSO;
 Initiate_Warm_1;
 cla(app.UIAxes);
 formula = coefficientString;
 app.FormulaTextArea.Value = formula;
 app.TimeSavedsEditField.Value=timesaved;
 y=curve;
 plot(app.UIAxes,timeline, y,'--
or',timeline,dependent,'g',timeline,yFit,'b');
 title(app.UIAxes,"Power over Time");
 legend(app.UIAxes,'Optimized Data','Original Data','Fitted
Curve');
 app.RSSEditField.Value = RSS;
 app.MeanErrorEditField.Value = MeanError;
 elseif app.PurgeButton.Value==1 && app.Warm1Button.Value==1
 Purge_Warm1_PSO;
 Purge_Warm1;
 cla(app.UIAxes);
 formula = coefficientString;
 app.FormulaTextArea.Value = formula;
 app.TimeSavedsEditField.Value=timesaved;
 y=curve;
 plot(app.UIAxes,timeline, y,'--
or',timeline,dependent,'g',timeline,yFit,'b');
 title(app.UIAxes,"Power over Time");
 legend(app.UIAxes,'Optimized Data','Original Data','Fitted
Curve');
 app.RSSEditField.Value = RSS;
 app.MeanErrorEditField.Value = MeanError;
 elseif app.SyncButton.Value==1 && app.Warm1Button.Value==1
 Sync_Warm_PSO;
 Sync_Warm;
 cla(app.UIAxes);

80

 formula = coefficientString;
 app.FormulaTextArea.Value = formula;
 app.TimeSavedsEditField.Value=timesaved;
 y=curve;
 plot(app.UIAxes,timeline, y,'--
or',timeline,dependent,'g',timeline,yFit,'b');
 title(app.UIAxes,"Power over Time");
 legend(app.UIAxes,'Optimized Data','Original Data','Fitted
Curve');
 app.RSSEditField.Value = RSS;
 app.MeanErrorEditField.Value = MeanError;
 elseif app.InitiateButton.Value==1 && app.Warm2Button.Value==1
 Initiate_Warm_2_PSO;
 Initiate_Warm_2;
 cla(app.UIAxes);
 formula = coefficientString;
 app.FormulaTextArea.Value = formula;
 app.TimeSavedsEditField.Value=timesaved;
 y=curve;
 plot(app.UIAxes,timeline, y,'--
or',timeline,dependent,'g',timeline,yFit,'b');
 title(app.UIAxes,"Power over Time");
 legend(app.UIAxes,'Optimized Data','Original Data','Fitted
Curve');
 app.RSSEditField.Value = RSS;
 app.MeanErrorEditField.Value = MeanError;
 elseif app.PurgeButton.Value==1 && app.Warm2Button.Value==1
 Purge_Warm2_PSO;
 Purge_Warm2;
 cla(app.UIAxes);
 formula = coefficientString;
 app.FormulaTextArea.Value = formula;
 app.TimeSavedsEditField.Value=timesaved;
 y=curve;
 plot(app.UIAxes,timeline, y,'--
or',timeline,dependent,'g',timeline,yFit,'b');
 title(app.UIAxes,"Power over Time");
 legend(app.UIAxes,'Optimized Data','Original Data','Fitted
Curve');
 app.RSSEditField.Value = RSS;
 app.MeanErrorEditField.Value = MeanError;
 elseif app.InitiateButton.Value==1 && app.HotButton.Value==1
 Initiate_Hot_PSO;
 Initiate_Hot;
 cla(app.UIAxes);
 formula = coefficientString;
 app.FormulaTextArea.Value = formula;
 app.TimeSavedsEditField.Value=timesaved;
 y=curve;
 plot(app.UIAxes,timeline, y,'--
or',timeline,dependent,'g',timeline,yFit,'b');
 title(app.UIAxes,"Power over Time");
 legend(app.UIAxes,'Optimized Data','Original Data','Fitted
Curve');
 app.RSSEditField.Value = RSS;
 app.MeanErrorEditField.Value = MeanError;
 elseif app.PurgeButton.Value==1 && app.HotButton.Value==1
 Purge_Hot_PSO;
 Purge_Hot;

81

 cla(app.UIAxes);
 formula = coefficientString;
 app.FormulaTextArea.Value = formula;
 app.TimeSavedsEditField.Value=timesaved;
 y=curve;
 plot(app.UIAxes,timeline, y,'--
or',timeline,dependent,'g',timeline,yFit,'b');
 title(app.UIAxes,"Power over Time");
 legend(app.UIAxes,'Optimized Data','Original Data','Fitted
Curve');
 app.RSSEditField.Value = RSS;
 app.MeanErrorEditField.Value = MeanError;
 end
 end

 % Value changed function: RSSEditField
 function RSSEditFieldValueChanged(app, event)
 value = app.RSSEditField.Value;
 end

 % Value changed function: MeanErrorEditField
 function MeanErrorEditFieldValueChanged(app, event)
 value = app.MeanErrorEditField.Value;
 end
 end

 % Component initialization
 methods (Access = private)

 % Create UIFigure and components
 function createComponents(app)

 % Create UIFigure and hide until all components are created
 app.UIFigure = uifigure('Visible', 'off');
 app.UIFigure.Position = [100 100 640 480];
 app.UIFigure.Name = 'MATLAB App';

 % Create UIAxes
 app.UIAxes = uiaxes(app.UIFigure);
 xlabel(app.UIAxes, 'Timeline')
 ylabel(app.UIAxes, 'Power')
 zlabel(app.UIAxes, 'Z')
 app.UIAxes.ButtonDownFcn = createCallbackFcn(app,
@UIAxesButtonDown, true);
 app.UIAxes.Position = [33 64 300 185];

 % Create UITable
 app.UITable = uitable(app.UIFigure);
 app.UITable.ColumnName = {'Column 1'; 'Column 2'; 'Column 3';
'Column 4'; 'Column 5'; 'Column 1'; 'Column 2'; 'Column 3'; 'Column 4';
'Column 5'; 'Column 1'; 'Column 2'; 'Column 3'; 'Column 4'; 'Column 5';
'Column 16'};
 app.UITable.RowName = {};
 app.UITable.DisplayDataChangedFcn = createCallbackFcn(app,
@UITableDisplayDataChanged, true);
 app.UITable.Position = [320 273 302 185];

 % Create FormulaTextAreaLabel
 app.FormulaTextAreaLabel = uilabel(app.UIFigure);

82

 app.FormulaTextAreaLabel.HorizontalAlignment = 'right';
 app.FormulaTextAreaLabel.Position = [44 434 49 22];
 app.FormulaTextAreaLabel.Text = 'Formula';

 % Create FormulaTextArea
 app.FormulaTextArea = uitextarea(app.UIFigure);
 app.FormulaTextArea.ValueChangedFcn = createCallbackFcn(app,
@FormulaTextAreaValueChanged, true);
 app.FormulaTextArea.Position = [108 398 150 60];

 % Create StartupTypeButtonGroup
 app.StartupTypeButtonGroup = uibuttongroup(app.UIFigure);
 app.StartupTypeButtonGroup.SelectionChangedFcn =
createCallbackFcn(app, @StartupTypeButtonGroupSelectionChanged, true);
 app.StartupTypeButtonGroup.Title = 'Start-up Type';
 app.StartupTypeButtonGroup.Position = [422 140 123 123];

 % Create ColdButton
 app.ColdButton = uitogglebutton(app.StartupTypeButtonGroup);
 app.ColdButton.Text = 'Cold';
 app.ColdButton.Position = [11 69 100 23];
 app.ColdButton.Value = true;

 % Create Warm1Button
 app.Warm1Button = uitogglebutton(app.StartupTypeButtonGroup);
 app.Warm1Button.Text = 'Warm 1';
 app.Warm1Button.Position = [11 48 100 23];

 % Create Warm2Button
 app.Warm2Button = uitogglebutton(app.StartupTypeButtonGroup);
 app.Warm2Button.Text = 'Warm 2';
 app.Warm2Button.Position = [12 27 100 23];

 % Create HotButton
 app.HotButton = uitogglebutton(app.StartupTypeButtonGroup);
 app.HotButton.Text = 'Hot';
 app.HotButton.Position = [11 5 100 23];

 % Create TimeSavedsEditFieldLabel
 app.TimeSavedsEditFieldLabel = uilabel(app.UIFigure);
 app.TimeSavedsEditFieldLabel.HorizontalAlignment = 'right';
 app.TimeSavedsEditFieldLabel.Position = [48 24 86 22];
 app.TimeSavedsEditFieldLabel.Text = 'Time Saved (s)';

 % Create TimeSavedsEditField
 app.TimeSavedsEditField = uieditfield(app.UIFigure,
'numeric');
 app.TimeSavedsEditField.ValueChangedFcn =
createCallbackFcn(app, @TimeSavedsEditFieldValueChanged, true);
 app.TimeSavedsEditField.Position = [149 24 100 22];

 % Create SequenceButtonGroup
 app.SequenceButtonGroup = uibuttongroup(app.UIFigure);
 app.SequenceButtonGroup.SelectionChangedFcn =
createCallbackFcn(app, @SequenceButtonGroupSelectionChanged, true);
 app.SequenceButtonGroup.Title = 'Sequence';
 app.SequenceButtonGroup.Position = [12 262 291 117];

 % Create InitiateButton

83

 app.InitiateButton = uitogglebutton(app.SequenceButtonGroup);
 app.InitiateButton.Text = 'Initiate';
 app.InitiateButton.Position = [38 69 100 23];
 app.InitiateButton.Value = true;

 % Create PurgeButton
 app.PurgeButton = uitogglebutton(app.SequenceButtonGroup);
 app.PurgeButton.Text = 'Purge';
 app.PurgeButton.Position = [38 48 100 23];

 % Create FiringButton
 app.FiringButton = uitogglebutton(app.SequenceButtonGroup);
 app.FiringButton.Text = 'Firing';
 app.FiringButton.Position = [38 27 100 23];

 % Create SyncButton
 app.SyncButton = uitogglebutton(app.SequenceButtonGroup);
 app.SyncButton.Text = 'Sync';
 app.SyncButton.Position = [141 69 100 23];

 % Create FSNLButton
 app.FSNLButton = uitogglebutton(app.SequenceButtonGroup);
 app.FSNLButton.Text = 'FSNL';
 app.FSNLButton.Position = [141 48 100 23];

 % Create TempMatchButton
 app.TempMatchButton = uitogglebutton(app.SequenceButtonGroup);
 app.TempMatchButton.Text = 'TempMatch';
 app.TempMatchButton.Position = [141 27 100 23];

 % Create WarmUpButton
 app.WarmUpButton = uitogglebutton(app.SequenceButtonGroup);
 app.WarmUpButton.Text = 'WarmUp';
 app.WarmUpButton.Position = [39 6 100 23];

 % Create IPCOnButton
 app.IPCOnButton = uitogglebutton(app.SequenceButtonGroup);
 app.IPCOnButton.Text = 'IPCOn';
 app.IPCOnButton.Position = [141 6 100 23];

 % Create RSSEditFieldLabel
 app.RSSEditFieldLabel = uilabel(app.UIFigure);
 app.RSSEditFieldLabel.HorizontalAlignment = 'right';
 app.RSSEditFieldLabel.Position = [411 101 30 22];
 app.RSSEditFieldLabel.Text = 'RSS';

 % Create RSSEditField
 app.RSSEditField = uieditfield(app.UIFigure, 'numeric');
 app.RSSEditField.ValueChangedFcn = createCallbackFcn(app,
@RSSEditFieldValueChanged, true);
 app.RSSEditField.Position = [456 101 100 22];

 % Create MeanErrorEditFieldLabel
 app.MeanErrorEditFieldLabel = uilabel(app.UIFigure);
 app.MeanErrorEditFieldLabel.HorizontalAlignment = 'right';
 app.MeanErrorEditFieldLabel.Position = [379 55 65 22];
 app.MeanErrorEditFieldLabel.Text = 'Mean Error';

 % Create MeanErrorEditField

84

 app.MeanErrorEditField = uieditfield(app.UIFigure, 'numeric');
 app.MeanErrorEditField.ValueChangedFcn =
createCallbackFcn(app, @MeanErrorEditFieldValueChanged, true);
 app.MeanErrorEditField.Position = [459 55 100 22];

 % Show the figure after all components are created
 app.UIFigure.Visible = 'on';
 end
 end

 % App creation and deletion
 methods (Access = public)

 % Construct app
 function app = App

 % Create UIFigure and components
 createComponents(app)

 % Register the app with App Designer
 registerApp(app, app.UIFigure)

 if nargout == 0
 clear app
 end
 end

 % Code that executes before app deletion
 function delete(app)

 % Delete UIFigure when app is deleted
 delete(app.UIFigure)
 end
 end
end

