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ABSTRACT 

The advent of Convolutional Neural Networks (CNNs) has transformed the 

landscape of artificial intelligence, particularly in visual information processing. This 

thesis embarks on a comprehensive exploration of advanced architectures for CNNs, 

focusing on the strategic integration of ARM processors and Field-Programmable 

Gate Arrays (FPGAs). The overarching goal is to harness the synergies between these 

heterogeneous computing platforms, capitalizing on their respective strengths to 

engineer high-performance systems capable of intricate visual interpretation. The 

research unfolds through an in-depth investigation into both hardware and software 

aspects, aiming to optimize the design, deployment, and performance of CNNs. 

Special attention is given to the development of tailored algorithms that align with the 

unique features of ARM processors and FPGAs. This includes the implementation of 

efficient memory utilization strategies and parallelization techniques to fully exploit 

the parallel processing capabilities inherent in these architectures. A critical facet of 

the study involves addressing challenges related to power consumption, thermal 

considerations, and resource utilization. By exploring novel approaches to mitigate 

these challenges, the thesis seeks to establish a foundation for creating intelligent 

systems with brain-like processing capabilities while maintaining energy efficiency. 



ii 

 

The research methodology employs rigorous experimentation and performance 

evaluations, with a keen focus on determining the trade-offs between computational 

efficiency and model accuracy. Insights derived from this exploration contribute to the 

overarching goal of advancing the field, offering a nuanced understanding of how the 

integration of ARM processors and FPGAs can yield optimized architectures for 

CNNs. The findings of this thesis not only extend the current understanding of high-

performance architectures for CNNs but also lay the groundwork for future 

developments at the intersection of hardware design, neural networks, and artificial 

intelligence. The implications of this research resonate across various applications, 

from enhancing computer vision capabilities to empowering autonomous systems with 

sophisticated visual perception and interpretation.
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ABSTRAK 

Keberadaan Rangkaian Neural Konvolusional (CNNs) telah mengubah landskap 

kecerdasan buatan, khususnya dalam pemrosesan informasi visual. Tesis ini memulai 

eksplorasi komprehensif terhadap arsitektur canggih untuk CNNs, dengan fokus pada 

integrasi strategis prosesor ARM dan Field-Programmable Gate Arrays (FPGAs). 

Tujuan utamanya adalah memanfaatkan sinergi antara platform komputasi heterogen 

ini, memanfaatkan keunggulan masing-masing untuk merancang sistem berkinerja 

tinggi yang mampu melakukan interpretasi visual yang rumit.Penelitian ini 

dilaksanakan melalui penyelidikan mendalam terhadap aspek perangkat keras dan 

perangkat lunak, dengan tujuan mengoptimalkan desain, implementasi, dan kinerja 

CNNs. Perhatian khusus diberikan pada pengembangan algoritma yang disesuaikan 

dengan fitur unik dari prosesor ARM dan FPGAs. Ini termasuk penerapan strategi 

penggunaan memori yang efisien dan teknik paralelisasi untuk sepenuhnya 

memanfaatkan kemampuan pemrosesan paralel yang melekat dalam arsitektur 

ini.Fase penting dari penelitian ini melibatkan penanganan tantangan terkait 

konsumsi daya, pertimbangan termal, dan pemanfaatan sumber daya. Dengan 

mengeksplorasi pendekatan baru untuk mengatasi tantangan ini, tesis ini berusaha 

membentuk dasar bagi pembuatan sistem cerdas dengan kemampuan pemrosesan 
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mirip otak sambil tetap menjaga efisiensi energi.Metodologi penelitian menggunakan 

eksperimen yang ketat dan evaluasi kinerja, dengan fokus pada penentuan kompromi 

antara efisiensi komputasional dan akurasi model. Wawasan yang diperoleh dari 

eksplorasi ini memberikan kontribusi pada tujuan umum untuk memajukan bidang ini, 

menawarkan pemahaman yang mendalam tentang bagaimana integrasi prosesor 

ARM dan FPGAs dapat menghasilkan arsitektur yang dioptimalkan untuk CNNs. 

Temuan dari tesis ini tidak hanya memperluas pemahaman saat ini tentang arsitektur 

berkinerja tinggi untuk CNNs tetapi juga meletakkan dasar untuk pengembangan di 

masa depan di persimpangan desain perangkat keras, jaringan saraf, dan kecerdasan 

buatan. Implikasi dari penelitian ini mencakup berbagai aplikasi, mulai dari 

meningkatkan kemampuan visi komputer hingga memberdayakan sistem otonom 

dengan persepsi visual dan interpretasi yang canggih. 
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CHAPTER 1  

INTRODUCTION 

1.1 Introduction 

In this chapter, there will be 4 sections. The background study of the project will 

be discussed in Section 1.2 followed by the problem statement in Section 1.3. The 

objectives of the project are discussed in Section 1.4 and the scope of work is discussed 

in Section 1.5. 

1.2 Background Study 

Deep learning has become a game-changing technology with a wide range of 

applications in the quickly developing field of artificial intelligence. Convolutional 

Neural Networks (CNNs) are the most well-known deep learning architectures 

because of their outstanding results in image and video processing applications. But 

as of right now, we know that deploying CNNs on conventional computing platforms 
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like CPUs and GPUs frequently presents difficulties including excessive power 

consumption, expense, and thermal problems, which restricts their use in real-time 

settings.  

1.3 Objectives 

• To design and implement a CNN on an FPGA. 

• To explore optimization techniques for improving the performance of the 

CNN on the FPGA. 

• To analyze the performance of the FPGA-based CNN in terms of resource 

utilization, power consumption, and accuracy. 

The first objective of the project is to design and implement a CNN on an Field 

Programmable Gate Arrays (FPGA) with validation on board to make sure the CNN 

is actually working on board. With the resource constraint on FPGA, optimization 

technique needs to be done on the CNN would need to be explore in order to make 

sure the implementation works on real life FPGA board. Finally, analyzing the 

performance for the FPGA based CNN is also essential to gain an insight on the 

project.   

1.4 Problem Statement 

CNN has become a popular method in image and video processing. The trend of 

implementing the CNN are usually done on CPU and GPU since they have a better 

speed and resource constraint. However, the power consumption, expenses, and 

resource utilization of the traditional computing platform is elevating for the push of 

accuracy and speed. This project aims to tackle the issue discussed above by 

investigating the use of FPGA on implementing the CNN. This is because FPGA has 

become a possible alternative for implementing CNN since it uses lesser power 
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consumption, lesser resource and more cheaper compared to traditional computing 

platforms. FPGA is well known for its portability, reconfigurable and power 

consumption level.  

The basic concept of solving the issue with the traditional computing platform is to 

reduce its high computational power and high-power consumption. The plan is to 

utilize the parallel processing and the reconfigurable ability of the FPGA to provide a 

more economic and effective platform for implementing the CNN.  However, the 

challenges of doing so are also a foreseen bump. With the resource and power 

constraint and architecture of the FPGA, a series of work needs to be done to make 

the implementation of CNN successful in the FPGA. Analysis needs to be done as 

well to validate the problems of traditional computing platforms and the solution to 

use FPGA based CNN.  

The high cost of off-chip communication and the need for energy-efficient 

hardware acceleration of CNNs on FPGAs also needed to be emphasized. [1] The 

challenges of implementing CNNs on platforms with limited resources, such as 

FPGAs should also be highlighted. [2] This project aims to tackle this issue as well. 

1.5 Scope of work 

The scope of work for this project is to design and implement the CNN on the 

PYNQ Z1 board with optimization technique used and to also perform the 

performance analysis of the implemented CNN on the board. The dataset used are 

MNIST and Street View House Number (SVHN) datasets. Software used are the 

Docker, Jupyterlab, Vivado and Python. 
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1.6 Thesis Organization 

The 1st chapter of this thesis will be focusing on the introduction of the whole 

project with objectives and problem statements included. In the 2nd chapter, the 

background study of the project will be included as well as the literature review for a 

better understanding on the state-of-art for this project. The 3rd chapter will focus on 

the methodology of the project to achieve the objectives and solving the problems 

stated. The result and comparison of analysis will be in the 4th chapter of the thesis 

followed by the chapter 5 with conclusions and future works related to the project. 



 

 

 

CHAPTER 2  

BACKGROUND STUDY 

2.1 Introduction 

This chapter will be focusing on the background study of the project and the 

literature review for investigating the state-of-art of the project. Background study will 

be focusing on what is Artificial Intelligence and its branch, Field Programmable Gate 

Array (FPGA) and High-Level Synthesis. 

2.2 Background 

2.2.1 Artificial Intelligence 

The field of artificial intelligence (AI) has evolved from humble beginnings to a 

field with global impact. The definition of AI and of what should and should not be 

included has changed over time. Experts in the field joke that AI is everything that 

computers cannot currently do. Although facetious on the surface, there is a sense that 
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developing intelligent computers and robots means creating something that does not 

exist today. Artificial intelligence is a moving target.[3] 

The paper “What is AI?” has provided three definitions for AI. The most basic 

element common to all of them is that AI involves the study, design and building of 

intelligent agents that can achieve goals. The choice of an AI makes should be 

appropriate to its perceptual and cognitive limitations. If an AI is flexible and can learn 

from experience. sense, plan, and act on the basis of its initial configuration, it might 

be said to be more intelligent than an AI that just has a set of rules that guides a fixed 

set of actions. However, there are some contexts in which you might not want the AI 

to learn new rules and behaviors. Perception of AI differs for humans from different 

field. For example, developers of expert systems see AI as a repository of expert 

knowledge that humans can consult, whereas developers of machine learning systems 

see AI as something that might discover new knowledge. As we shall see, each 

approach has strengths and weaknesses. [3] 

2.2.2 Deep Learning 

Deep Learning (DL) is a subset of machine learning (ML). DL is to use the AI to 

imitate the human brains by using neurons and connect them creating a neural network 

to perform computational calculations for machines to learn from a large amount of 

data. DL is very commonly used for image classification tasks.  

DL uses a trainable features extractor as compared to ML uses a hand-crafted 

feature extractor. The representation of features is hierarchical and trained which 

usually are low, mid, and high-level features. Low level features are features that is 

the basic attribute of the image or video that can be extracted easily such as contours 

and edges. The mid-level feature acts as the bridge for connecting the low- and high-
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level features. The high-level feature are conceptual and more significant, they are 

formed by pairing the low-level feature and mid-level feature, they are often the 

characteristics or components of an object,  

However, DL requires a large number of labeled data or huge, labeled datasets to 

achieve a high accuracy not to mention that the configuration of the model is 

challenging to prevent overfitting due to large number of datasets.  

2.2.3 Convolutional Neural Network 

 

Figure 2.1: Basic Architecture of CNN 

CNN: CNNs are specialized neural networks designed for processing grid-like data, 

such as images and videos. They consist of multiple layers, including convolutional 

layers, pooling layers, and fully connected layers. Convolutional layers apply 

convolution filters to detect local patterns, while pooling layers downsample the data 

to reduce the size of data and its dimensionality while preserving key information. 

Activation functions introduce non-linearity into the network, allowing it to learn more 

complex patterns since CNN is normally dealing with classification tasks not trend or 

linear prediction. Commonly used activation functions are ReLU and sigmoid 

activation function. The fully connected layers will do the classification task based on 

the features extracted. CNN is normally well-suited for tasks like image classification, 

object detection, and image segmentation.   
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CNN also presents some challenges for implementation. Training and running 

CNNs is computationally expensive since it is requiring powerful hardware resources 

to make sure the performance meets the requirement. CNNs can easily achieving 

overfit, especially when dealing with small datasets where the accuracy of the testing 

does not provide a significant insight since the CNN is predicting the data using 

memorization. Despite the good performance, a deep CNN has been considered a 

black-box model with weak feature interpretability for decades. Boosting the feature 

interpretability of a deep model gradually attracts increasing attention recently, but it 

presents significant challenges for state-of-the-art algorithms.[4] Understanding how 

CNNs make decisions can be difficult due to their complex internal representations.  

Convolutional Neural Networks is a great tool to tackle with problems such as 

image classification. Its ability to learn and extract relevant features from images 

makes it a powerful tool for various applications. While challenges mentioned above 

exist, research and analysis of the CNN on various platforms is required for a better 

understanding and application using it to improve the level of lifestyle of human 

beings.  

2.2.4 Field Programmable Gate Arrays 

Field-Programmable Gate Arrays (FPGAs) is a kind of integrated circuits that 

offers a combination of reconfiguration and performance. Unlike traditional 

processors such as ASICS, FPGA is reprogrammable which allows users to configure 

them based on the needs and use. The flexibility of FPGA makes them suitable for 

many applications and researcher for the reuse of it based on each project needs. 

Field Programmable Gate Arrays are semiconductor devices that are based around 

a matrix of configurable logic blocks (CLBs) connected via programmable 
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interconnects. FPGAs can be reprogrammed to desired application or functionality 

requirements after manufacturing.[5] The ability to be reprogrammed of FPGAs 

makes them different compared to Application-Specific Integrated Circuits (ASICs) 

and general-purpose processors. The adaptive power of FPGA makes them a choice 

for a variety of applications. FPGAs are made from multiple logic blocks, which are 

the building blocks that can be configured to perform a specific logic functions based 

on the usage of the algorithm. The blocks that are normally found in a FPGA are Look-

Up Tables (LUTs), flip-flops, multiplexers, BRAM and DSP. The LUT is basically a 

table for producing output whenever an input is given. Flip flops or FF is the 

components that keeps the state of the chip, where it can store a single bit of 

information. Multiplexer is a selector which selects a single input from a variety of 

inputs. The BRAM or the memory is used to stored a lot of data which flows in the 

FPGA. The DSP in the FPGA acts as the computation unit for processing complex 

mathematical tasks.  

FPGAs are programmed by using Hardware Description Languages (HDLs) such 

as Verilog or VHDL. These languages allow designers to describe the desired 

functionality of the digital circuit, specifying how logic blocks should be 

interconnected and how data should flow through the system. FPGA has the ability to 

utilize parallelism during processing which can leads to a good performance for certain 

applications, offering advantages in terms of speed and efficiency compared to 

traditional processors such as CPU and GPU. While FPGAs offer parallelism and 

efficiency, their programming and optimization can be complex without decent 

understanding. The architecture, resource utilization, and timing constraints needs to 

be configured and considered in order to get a good performance.  
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FPGA allows users to reprogrammed and change the use of the FPGA based on 

their own needs which is a benefit for them as compared to the traditional computing 

platform. 

2.2.5 High Level Synthesis (HLS) 

High Level Synthesis (HLS) is an automated process which is also known as C 

synthesis. HLS takes an abstract behavioral specification of a digital system and finds 

a register-transfer level structure that realizes the given behavior. HLS allows 

programmers or design to write algorithms in a high level programming language such 

as C, C++ and Python and through the HLS process, the algorithm converts into the 

HDL code which is then can be use in the FPGA. This is crucial since designing  a 

complex algorithm in the HDL is a very complex task and allowing the synthesis to 

happen automatically from high level to low level language allows developers to 

implement complex model to the FPGA easier. 

Despite its advantages, HLS usage requires significant knowledge on the hardware 

architecture of the hardware that we want to implement. Flow, memory and the 

constraints are parts where the designer need to be careful on making sure the 

performance is significantly comparable to the traditional computing platform. Many 

FPGA vendors provide HLS tools integrated into their development environments. 

For example, Xilinx comes out with Vivado and Vitis as their HLS tools for the Xilinx 

FPGA board. 

As a conclusion, High Level Synthesis is a tools for designer to implement their 

high level language algorithms onto a hardware such as the FPGA that needs to be 

code in low level language such as the HDL by synthesizing the high level language 

to the low level language automatically. 
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2.3 Literature review 

2.3.1 An FPGA-Based Convolutional Neural Network Coprocessor 

In this study by the researchers in this paper, a convolutional neural network (CNN) 

coprocessor based on field-programmable gate arrays (FPGA) is introduced. In their 

research, the coprocessor features a row stationary (RS) streaming mode 1D 

convolutional computation unit PE and a pulsating array structure with a 3D 

convolutional computation unit PE chain. The flexibility of the coprocessor proposed 

lies in its ability to control the number of PE array openings based on the output 

channels of the convolutional layer. The paper also outlines the design of a storage 

system with multilevel cache, utilizing multiple broadcasts to distribute data to local 

caches. An image segmentation method compatible with the hardware architecture is 

proposed. [6] 

The presented coprocessor successfully implements the convolutional and pooling 

layers of the VGG16 neural network model. Quantization of activation values, weight 

values, and bias values is performed using 16-bit fixed-point quantization. The 

coprocessor achieves a peak computational performance of 316.0 GOP/s and an 

average computational performance of 62.54 GOP/s at a clock frequency of 200MHz, 

with a power consumption of approximately 9.25 W. These findings contribute to the 

literature on FPGA-based CNN coprocessors and their application in neural network 

models.[6] 

Table 1: Summary of An FPGA-Based Convolutional Neural Network 

Coprocessor 

Index Model Target Description 

[6] CNN ZC706 evaluation board Platform: ZynqXC7Z045 

Frequency (MHz): 200 

Quantification: 16 bits 

Power: 9.3W 
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Performance (GOP/s): 62.54 

 

2.3.2 MRI-based brain tumor segmentation using FPGA-accelerated neural 

network 

In contrast to conventional computing platforms, the FPGA accelerator introduced 

in this study demonstrates significant enhancements in both speed and power 

efficiency. Utilizing the BraTS19 and BraTS20 datasets, our FPGA-based brain tumor 

segmentation accelerator exhibits performance gains of 5.21 and 44.47 times 

compared to the TITAN V GPU and the Xeon CPU, respectively. Moreover, in terms 

of energy efficiency, our design outperforms the GPU and CPU, achieving 11.22 and 

82.33 times higher energy efficiency, respectively. These results shows a significant 

computational advantages and energy efficiency offered by their FPGA-based 

accelerator in the context of brain tumor segmentation.[7] 

Table 2: Summary of MRI-based brain tumor segmentation using FPGA-

accelerated neural network 

Index Model Target Description 

[7] CNN Xilinx’s Alveo 

U280 accelerator 

card 

FPGA accelerator demonstrates significant 

improvements in speed and power 

efficiency for brain tumor segmentation.  

 

BraTS19 and BraTS20 datasets 

 

Performance gains of 5.21 and 44.47 times 

compared to TITAN V GPU and Xeon CPU, 

respectively.  

 

Energy efficiency outperforms GPU and 

CPU, achieving 11.22 and 82.33 times 

higher efficiency, respectively.  

2.3.3 FPGA-Based CNN for Real-Time UAV Tracking and Detection 

Neural networks (NNs) play a crucial role in modern artificial intelligence 

applications, particularly in tasks such as image classification and real-time object 
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tracking. This research paper introduces an innovative approach to address the 

challenge of real-time monitoring and detection of unmanned aerial vehicles (UAVs) 

using a convolutional neural network (CNN) implemented on a Zynq UltraScale 

FPGA. The primary obstacle faced in implementing real-time algorithms on FPGA 

platforms is the constraint of DSP hardware resources. The proposed design in this 

journal successfully tackles the challenge in the context of autonomous real-time UAV 

detection and tracking, which leverage the capabilities of Xilinx's Zynq UltraScale 

XCZU9EG system on a chip (SoC).[8] 

The solution presented in this study consists of two interconnected modules: a UAV 

tracking module and a neural network-based UAV detection module. The tracking 

module incorporates a novel background-differencing algorithm, while the UAV 

detection module utilizes a modified CNN algorithm optimized for maximum field-

programmable gate array (FPGA) performance. These modules are synergistically 

designed to enhance real-time UAV detection in any given video input. The proposed 

system has undergone rigorous testing with actual flying UAVs, demonstrating an 

accuracy of 82%. It operates at the full frame rate of the input camera for both tracking 

and neural network detection, achieving performance comparable to an equivalent 

deep learning processor unit (DPU) with UltraScale FPGA-based HD video and 

tracking implementation. Notably, our approach exhibits lower resource utilization, as 

evidenced by the results obtained in this study.[8] 

2.3.4 Briefly Analysis about CNN Accelerator based on FPGA. 

Given the extensive and time-intensive nature of convolutional computations in 

deep learning, researchers frequently resort to leveraging GPU or FPGA acceleration 

to expedite these processes. This paper elucidates the merits of employing FPGA 
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accelerators for convolutional computations. Specifically, it presents research findings 

on convolutional computation utilizing FPGA and elucidates the prevalent approach 

to FPGA accelerator design, employing high-level synthesis and Vitis AI.[9] 

The paper further demonstrates the practical application of these concepts by 

deploying and executing the YOLOv4 model on the ZCU102 evaluation board using 

Vitis AI. The experimentation involves object detection with a tableware dataset, 

resulting in a recognition accuracy of 96.2%. Notably, the FPGA-accelerated 

implementation showcases a performance enhancement of 72.5 times compared to a 

CPU-based approach. These findings underscore the efficacy of FPGA accelerators in 

optimizing convolutional computations for deep learning applications.[9] 

Table 3: Summary of Briefly Analysis about CNN Accelerator based on FPGA 

Index Model Target Description 

[9] CNN FPGA (ZCU102) The specific configuration of the CPU is: 

memory of 32GB, processor of Intel Core 

i7-8700 CPU @ 3.20GHz × 12, operating 

system of ubuntu 16.04 LTS (64 bit). After 

testing, the time required for YOLOv4 

inference process on CPU is 1164.21 

seconds, while it only takes 16.04 seconds 

on ZCU102 evaluation board, which is 

about 72.5 times higher than the 

performance of CPU. It can be seen that, 

compared to traditional CPU, FPGA can 

bring a lot of performance improvements for 

CNN inference process. The mean accuracy 

precision is up to 96.2% 

 

2.3.5 A Review of the Optimal Design of Neural Networks Based on FPGA 

The widespread adoption of deep learning, rooted in neural networks, has led to 

remarkable advancements in image recognition, speech recognition, natural language 

processing, automatic driving, and various other domains. FPGA emerges as a 
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standout technology in the accelerated deep learning landscape due to its flexible 

architecture, versatile logic units, high energy efficiency, robust compatibility, and 

minimal latency. To stay current with the latest advancements in neural network 

optimization on FPGA, this review delves into related technologies and research 

themes.[10] 

The paper begins by outlining the developmental trajectory and application 

domains of key neural networks, underscoring the significance of studying deep 

learning technology. It highlights the reasons and advantages of leveraging FPGA for 

accelerating deep learning tasks. Several prevalent neural network models are 

introduced, followed by an extensive review of contemporary FPGA-based neural 

network acceleration technologies, methods, accelerators, and framework designs. 

The paper also provides insights into the current challenges faced by FPGA-based 

neural network applications and proposes corresponding solutions. Lastly, it 

anticipates future research directions in this domain, aiming to offer valuable research 

perspectives for individuals involved in the field of neural network acceleration using 

FPGA.[10] 

2.3.6 FPGA implementation for CNN-based optical remote sensing object 

detection 

In recent years, optical remote sensing object detection has witnessed widespread 

application of convolutional neural network (CNN)-based methods, showcasing 

impressive performance. Aerospace systems, including satellites and aircraft, often 

employ these methods to observe ground objects. However, due to constrained logical 

resources and power budgets in these systems, the adoption of embedded devices 
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becomes an attractive option for implementing CNN-based methods. Striking a 

balance between performance and power consumption remains a challenge.[11] 

This paper presents an efficient hardware-implementation approach for optical 

remote sensing object detection. Initially, we optimize the CNN-based model for 

hardware implementation, laying the groundwork for effectively mapping the network 

onto a field-programmable gate array (FPGA). Additionally, we introduce a hardware 

architecture tailored for CNN-based remote sensing object detection. This architecture 

incorporates a general processing engine (PE) designed to execute various 

convolutions in the network using a uniform module. A streamlined data storage and 

access scheme is proposed, achieving low-latency calculations and a high memory 

bandwidth utilization rate.[11] 

To validate their approach, they deploy the enhanced YOLOv2 network on a Xilinx 

ZYNQ xc7z035 FPGA. Experimental results reveal that the FPGA implementation 

achieves a performance only 0.18% lower than that on a graphics processing unit 

(GPU) in mean average precision (mAP). Operating at a 200 MHz frequency, our 

design attains a throughput of 111.5 giga-operations per second (GOP/s) with a 5.96 

W on-chip power consumption. [11] 

2.3.7 FPGA-Based accelerators of deep learning networks for learning and 

classification: A review 

With recent advancements in digital technologies and the availability of reliable 

data, the field of artificial intelligence has witnessed the emergence of deep learning, 

showcasing its effectiveness in addressing complex learning challenges previously 

deemed insurmountable. Convolutional neural networks (CNNs), in particular, have 

proven highly effective in applications such as image detection and recognition. 
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However, the intensive CPU operations and memory bandwidth requirements pose 

challenges for general-purpose CPUs to achieve desired performance levels.[12] 

As a remedy, hardware accelerators utilizing application-specific integrated 

circuits, field-programmable gate arrays (FPGAs), and graphic processing units have 

been increasingly employed to enhance CNN throughput. Notably, FPGAs have 

gained traction for accelerating deep learning network implementations due to their 

capacity to maximize parallelism and energy efficiency. This paper undertakes a 

comprehensive review of recent techniques for accelerating deep learning networks 

on FPGAs. Emphasis is placed on the key features employed by these techniques to 

enhance acceleration performance. Additionally, the paper provides recommendations 

for optimizing FPGA utilization in CNN acceleration.[12] 

The techniques examined in this paper capture the latest trends in FPGA-based 

accelerators for deep learning networks, serving as a valuable reference for future 

advancements in efficient hardware accelerators. This work is anticipated to guide 

future research endeavors and prove beneficial for researchers delving into the realm 

of deep learning.[12] 

2.3.8 Hardware implementation of neural network-based engine model using 

FPGA 

This paper implements an artificial neural network (ANN)-based engine model 

using the Field Programmable Gate Array (FPGA). The developed (ANN)-based 

engine model will be used to estimate the engine gas emissions to mitigate the harmful 

effects of these emissions on human health. Getting reliable and robust FPGA-based 

ANNs implementations depends on the optimal choice of activation function that will 

provide minimal area occupation on FPGA. This study introduces, implements, and 
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investigates FPGA-based ANN-based engine models using five different activation 

functions. These implemented engine models were described using 

MATLAB/Simulink and hardware description language coder and carried out by 

Spartan -3E-500.CP132 FPGA platform from Xilinx. The performance of the 

implemented engine models was investigated in terms of area-efficient 

implementation and the regression values (R) to build a robust ANN-based engine 

model.[13] 

2.3.9 Summary of other Literature Reviews 

Table 4: Literature Review 

Index Model Target Accuracy LUT 

FF 

Power 

(W) 

Memory 

(RAM) 

DSP 

[14] CNN FPGA 

(Xilinx  

Zedboard

) 

Dataset: 

MNIST  

Accuracy

: 97% 

 

25436 

- 

- 257 188 

[15] CNN FPGA 

(xc7vx98

0t of the 

Virtex-7 

family) 

- 57438 

79327 

3.25 - 937 

[16] CNN FPGA 

(Xilinx 

ZYNQ 

7100) 

- 142291 

187146 

4.083 708 1926 

[17] CNN 

Mobil

eNet  

FPGA 

(XCZU7

EV) 

87% top-

5  

118233 

128614 

7.35 532 340 

[18] NN FPGA 

(Xilinx 

Artix 7 

xc7a35t) 

97.25% 10678 

16568 

- 9 6 

[19] NN FPGA 

(VIRTE

X-7 

FPGA) 

- 26499 

- 

- 12 126 
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[20] NN FPGA 96.0% (ReLU) 

7086  

6653 

(Sigmoid

) 

6256 

5297 

- (ReLU) 

15 

(Sigmoi

d) 

35 

(ReLU) 

160 

(Sigmoi

d) 

160 

[21] CNN FPGA 

(Virtex-6 

of part 

number 

XC6VLX

130T-2 

FPGA) 

- 1 PE 

339 

Register 

- - 1 PE 

16 

2.4 Research gap 

Review of FPGA-Based Accelerators of Deep Convolutional Neural Networks, by 

Philip and Sivamangai states 4 aspect that we can focus on to push the state of art. 

Optimize the remaining computation process where only a few experts are currently 

working on the activation part of the matrix operation because most of the research 

focuses on the loop. Next, is to access optimization. There needs to be more research 

on other data access optimization methods. FPGA integration. As illustrated in the 

paper, managing scheduling and allocation issues properly can lead to better 

performance on a multi-FPGA cluster. Moreover, there is not much research in this 

area at the moment. Hence, this direction deserves further exploration. Finally the 

automatic configuration. If it was possible to deploy applications on FPGAs more 

easily, such as NVIDIA’s CUDA (Compute Unified Device Architecture), complex 

programming could be eliminated.[22] 

2.5 Summary 

The literature review delves into existing research on integrating ARM processors 

and FPGAs for high-performance Convolutional Neural Networks (CNNs). It covers 

foundational CNN concepts, surveys relevant literature on FPGA-based neural 

networks, and identifies gaps for the current study. The background study 
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contextualizes the research within the broader hardware acceleration landscape, 

emphasizing the rationale for choosing ARM processors and FPGAs. Overall, this 

chapter provides a foundation for the thesis objectives, including FPGA-based CNN 

design, optimization exploration, and comprehensive performance analysis. 

 



 

 

 

CHAPTER 3  

METHODOLOGY  

3.1 Introduction 

In pursuit of the aforementioned research goal, the methodology employed in this 

study encompasses the comprehensive development and implementation of a 

Convolutional Neural Network (CNN) designed for image classification. Emphasizing 

the convergence of machine learning and hardware acceleration, this methodology 

seeks to optimize the deployment of the trained CNN model on an FPGA, leveraging 

the capabilities of the PYNQ Z1 board. The subsequent sections delineate the step-by-

step processes involved in data collection, model training, High-Level Synthesis 

(HLS), FPGA implementation, validation, and performance evaluation. 

The methodology will be covering on how the project is being conducted. The first 

step is to select suitable data and then preprocessing of the data. The next step would 



22 

 

be creating a CNN model and a quantized CNN model. Next, Prune and train both of 

the model before testing them to get the performance of the models. After that, the 

models is converted to HDL using HLS to prepare the models to be implemented on 

the FPGA. Testing of the HLS models is then conducted before the bitstream 

generation of the models. Then, the bitfiles of both model is transferred to the FPGA 

and perform validation. A thorough analysis will be conducted to provide insight on 

the FPGA based CNN.  

3.2 Approach to the project 

3.2.1 Dataset selection 

The Street View House Numbers (SVHN) dataset[23] is a good datasets for 

performing image recognition and classification tasks using the CNN. The reason for 

SVHN dataset to be good for the tasks is because it is real-world images of house 

numbers from Google Street View and this makes the dataset relevant to practical 

applications, such as optical character recognition in street-level images. The data 

quality of the SVHN datasets is a key for its advantage because it contains noise such 

as light diversity and noise on the image collected. The quality of data which is closest 

to the real-life environment makes sure that the model is able to adapt to images 

captured in real time. MNIST datasets is also 1 of the famous datasets to be used for 

the same reasons, but SVHN dataset is selected for this project to provide a more 

realistic approach to the image recognition and classification tasks since SVHN is a 

dataset collected in real life. The MNIST and SVHN is one of the benchmark datasets 

for models on digit recognition and classification. If the model successfully 

implemented on the SVHN, the capabilities of the model is shown.  
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SVHN dataset contains 72k images for training and 20k images for testing. The 

sufficient amount of data in a dataset is a key factor for a good model designation. It 

contains image with single digit and multiple digits with different colours, fonts and 

background. The variety of features in the datasets prevents the model from overfitting 

and achieve a higher precision with a good configuration of model designation.  

The SVHN dataset is preferred for CNN training due to its real-world relevance, 

large and diverse nature, varied digit appearances, provision of bounding box 

information, preprocessing challenges, benchmarking value, accessibility, and 

educational benefits. Figure 3.1 shows the data in the SVHN datasets with its labels. 

 

Figure 3.1: SVHN dataset 
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3.2.2 HLS4ML 

hls4ml is a Python package for machine learning inference in FPGAs. The library 

create firmware implementations of machine learning algorithms using high level 

synthesis language (HLS). It can be used translate traditional open-source machine 

learning package models into HLS that can be configured for needed case based on 

users needs. [24] Workflow of the HLS4ML is shown in Figure 3.2. 

With the help of open-source tools like PyTorch and Keras, machine learning 

models can be quickly and efficiently translated into high level synthesis (HLS) code, 

which can be transpiled and executed on an FPGA. This is the aim of hls4ml. 

Subsequently, the HLS project can be utilised to generate an IP that can be integrated 

into intricate designs or employed to develop a kernel for co-processing CPUs. Many 

of the parameters of the algorithm can be freely defined by the user to best suit their 

needs.[24] The hls4ml package makes it possible to quickly prototype the 

implementation of a machine learning algorithm in FPGAs, which significantly 

shortens the time it takes to get results. It also provides users with guidance on how to 

best design a machine learning algorithm for their application while balancing latency, 

resource consumption, and performance requirements. [24]  

 

Figure 3.2: HLS4ML workflow 
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An FPGA can be specifically programmed to do a certain task, in this case evaluate 

neural networks given a set of inputs, and as such can be highly optimized for the task, 

with tricks like pipelining and parallel evaluation. However, this means dynamic 

remapping while running isn’t really a possibility. FPGAs also often come at a 

comparatively low power cost with respect to CPUs and GPUs. This allows hls4ml to 

build HLS code from compressed neural networks that results in predictions on the 

microsecond scale for latency. The hls4ml tool saves the time investment needed to 

convert a neural network to a hardware design language or even HLS code, thus 

allowing for rapid prototyping. [24] 

In summary, HLS4ML serves as a bridge between high-level machine learning 

model development and efficient FPGA implementations. By automating the 

translation process and dealing with FPGA-specific optimizations, HLS4ML eases the 

deployment of machine learning models onto hardware, providing a valuable tool for 

developers seeking to leverage FPGA acceleration.  

3.2.3 PYNQ Z1 board implementation 

With the help of PYNQ, a brand-new open-source framework, embedded 

programmers can take advantage of the capabilities of Xilinx Zynq All Programmable 

SoCs (APSoCs) without having to create programmable logic circuits by using the 

PYNQ-Z1 board. Rather, Python is used to programme the APSoC, and the PYNQ-

Z1 is used to test and develop the code. The process of importing and programming 

programmable logic circuits is much the same as that of software libraries; they are 

imported as hardware libraries and programmed via their respective APIs.  

PYNQ provides a high-level programming abstraction, allowing developers to 

program the FPGA using Python. It provides the Jupyter Notebook in the PYNQ board 



26 

 

image. This allows the designers to write code and algorithms in Python directly in 

the board which solves the challenge of needing to write HDL code on a FPGA as they 

need to in the normal FPGA. PYNQ board uses the Zynq System on Chip which 

combines multiple features in a single chip but still able to perform the same desired 

function with multiple chips on board. ARM processor is also in the Zynq SoC. This 

enables hardware acceleration with the CPU, DSP and other components all on the 

same chip or board. The flexibility of the PYNQ board is also its advantage for 

reprogramming the SoC following the needs.  

To conclude, the PYNQ z1 board is chosen for its flexibility, reprogrammable 

ability and lower challenge compare to the other FPGA. The Python interface with 

jupyter Notebook built in the image of PYNQ and its Zynq SoC provides a huge 

advantage to implement CNN on the board for this project. The physical board is 

shown in Figure 3.3 and its architecture is shown in Figure 3.4.  

 

 

Figure 3.3: PYNQ Z1 board 
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Figure 3.4: Zynq APSoC architecture 

3.3 Proposed Method Flowchart 

The flowchart of this project is shown in Figure 3.5. The process starts with the 

research on the background and a thorough literature review on the project. After that, 

the dataset selection and the preprocessing of the data is conducted. After that, the 

CNN model is build on a Docker container. The Docker container is installed in the 

Ubuntu system on host machine, the reason to use the docker container because it is a 

isolated, standalone package to run all the applications. This saves the time and 

challenges to install software such as Vivado into the host machine, where installation 

of the software can be done on a single script with the command to do it all.  

The second objectives is to optimize the model created in the steps before. 

Quantization of the CNN model is created and the pruning with the training process is 

conducted. The model is then trained and tested using SVHN datasets. The 

configuration of the model is tuned until the accuracy reaches above 80% for the 

training and testing. Testing process makes sure the model is generalized for any new 

data can be classified correctly by the model. After the accuracy reaches the desired 
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level which is 80%, the HLS conversion of both of the models is conducted using the 

hls4ml library.  

The HLS conversion and configuration step optimizes the model for hardware 

implementation. This is followed by simulation and synthesis to test the model’s 

functionality before actual deployment. Bitstream generation is conducted after the 

synthesis process runs without any critical error. The model is then deployed on board 

by transferring the bitfile, hardware configuration file and the AXI stream driver to 

the PYNQ z1 board and validated. If the accuracy remains 80% or above, the process 

proceeds. If not, adjustments are made in the previous steps and the model is retested.  

The report of the implementation and the accuracy of all the processes is recorded 

and analyzed. These steps provide an insight on the implementation of CNN on the 

PYNQ Z1 board.  
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Figure 3.5: Flowchart 

3.3.1 Data Preprocessing 

The pseudocode of the data preprocessing is shown in Figure 3.6. The SVHN 

dataset is provided by the TensorFlow Dataset. After loading the dataset, the 

preprocessing step is conducted. The dataset is first split into 90/10 where 90% of the 

data will be used in the training and the remaining will be the validation datasets.  

A preprocess function is build for doing the preprocessing of datasets. The function 

starts by normalizing the pixel values which are normally in 8 bit image[0 255] into a 

standardized floating points ranging from [0 1]. Normalization needs to be done to 
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make sure that training process of the training process runs steadily to achieve good 

convergence and performance of the model. The next step is to encode the class label  

convert the integer-encoded labels into a one-hot encoded representation. Any 

unnecessary dimensions in removed from the label tensor. The encoding process 

generates binary vector representation of the data. For example for image with image 

3 in the SVHN datasets which has 10 classes (0-9), the representation would be [0 0 0 

1 0 0 0 0 0 0]. This format enables a better interpretation of the image or data for the 

CNN model.  

Next, we let the training dataset to undergo the preprocess stage to achieve the 

format that is reliable to be used in the CNN model.  The preprocessed data is then 

shuffled, batched and prefetch to increase the performance of the training process. 

Shuffling of the data avoids bias and introduce randomness to the model. The bath 

size is set to 1024 for training purposes. The validation dataset also undergoes the 

preprocessed stage for the same purpose. The testing dataset is fetch and undergo the 

preprocessing stage as well to ensure the consistency of the data fed into the model. 

In summary, the datasets undergo preprocessing for a better training and testing 

process so that the CNN model is able to do the digit recognition task from the image 

in the dataset. It meticulously handles preprocessing intricacies, batch organization, 

and prefetching, thereby laying a robust foundation for subsequent model training and 

evaluation endeavors  
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Figure 3.6: Pseudocode of the Data Preprocessing 

3.3.2 Model Development 

A convolutional neural network (CNN) architecture is meticulously crafted using 

the Keras API in conjunction with the TensorFlow backend.[25] The architecture 

unfolds through a series of convolutional blocks, where each block encapsulates a 3x3 

convolutional layer, batch normalization for stability, rectified linear unit (ReLU) 

activation for introducing non-linearity, and 2x2 max pooling to downsample spatial 

dimensions is shown in Figure 3.7. The configuration of each convolutional block, 

specifically the number of filters, is specified by the filters_per_conv_layer list. 

Following the convolutional blocks, the flattened output is directed through dense 

blocks, signifying fully connected layers. Each dense block is composed of a dense 

layer, batch normalization to mitigate internal covariate shift, and ReLU activation for 

non-linearity. The number of neurons in each dense block is determined by the 

neurons_per_dense_layer list. 
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The final dense layer outputs logits corresponding to the number of classes 

(n_classes), and a softmax activation function is applied to obtain class probabilities. 

The model is compiled for training using categorical cross-entropy as the loss function 

and the Adam optimizer. 

 

Figure 3.7: Architecture of CNN model 
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3.3.3 Pruning 

Pruning is a technique employed to reduce the size of neural networks by 

eliminating certain weights, thereby promoting sparsity. This is done with the goal of 

achieving a more efficient model in terms of memory usage, inference speed, and 

potentially improving generalization performance.  

The pruning process is done with a custom designed function, with applying weight 

pruning to the layers in the CNN. The pruning process is determined by the 

PolynomialDecay function provided by TensorFlow which will increase the sparsity 

from 0 until 50% sparsity is reached for the models. The function will increase the 

sparsity every 2 epoch during the training process.  

The pruneFunction is a custom function designed to apply weight pruning to 

specific layers of the neural network. The pruning schedule is determined by the 

PolynomialDecay function from TF-MOT, which gradually increases sparsity from an 

initial value of 0.0 to a final sparsity level of 50%. This increase occurs every 2 epochs, 

starting at the specified begin_step and ending at the end_step, with a specified 

frequency determined by frequency. The layers that will be pruned is the convolutional 

layers and the dense layers. These layers are pruned since they have the most 

complexity and pruning them can eventually lead to a significant reduction in model 

size without affecting the performance of the model. Pruning is done by setting a 

portion of weight to 0 gradually during the training process so that the model can adapt 

to the sparsity constraint. 

Finally the pruned model is created after the training process of the model. This is 

to create a model that is smaller so that it is more resource efficient. This optimization 

step is crucial since we are to deploy the model in the PYNQ Z1 board which is a 
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FPGA that has tighter resource constraint and limited computational power. With a 

pruned model, the model could have a faster model inference and development. The 

pruning process is shown in Figure 3.8. 

 

Figure 3.8: Pruning Process 

3.3.4 Model Training 

The training process is conducted following a logic statement, where the training 

will only conducted if the statement is True whereas when it is false, the training 

function will only load the pre-saved model in the previous session.  

The training is done with the following steps, specifying the loss function which is 

the categorical cross-entropy in my project and the Adam optimizer with the learning 

rate, beta values, epsilon and the ANSGrad. The model undergoes 30 epoch or 

iterations of training with callbacks such as early stopping and learning rate reduction 

for training efficiency. After the training has been done, the pruned and trained model 

is then saved as a h5 file.   
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3.3.5 Model Testing 

The testing process is conducted after the training process to see if the model is 

well trained. The accuracy desired is above 80%. The testing input data is defined as 

X_test and the ground truth label is defined as Y_test. The data is then put in the 

trained model for prediction of the class probabilities and performance of the model is 

recorded.  

3.3.6 Quantization 

Quantization is an optimization technique which reduces the precision of weights 

and activations in the neural network. Quantization can improve the model efficiency 

and reduce the resource utilization which may leads to hardware inference and 

implementation which is the aim of this project.  

The quantization of the CNN model is done by using the QKeras library which 

provides the simplicity to use the quantized layer in model developing. The 

development process of the CNN model is the same as the non-quantized model with 

just using the function QConv and QDense while developing the CNN model. By 

using this function, the quantized convolutional and dense layers of CNN is created. 

The kernel and bias for the convolutional layer is set to 6 bits quantization with 0 

fractional bits. The activation used in the quantized model is also a 6 bits ReLU 

activation function. The configuration of the Dense layer is also set to 6 bits 

quantization and 0 fractional bit. With these configuration, a qkeras which is a 

quantized CNN model is created.   

The model is then gone through the same process as the not quantized model which 

is training, pruning and testing. The architecture of the quantized model is shown in 

the Figure 3.9. 
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Quantization is performed to leverage the benefits of reduced precision arithmetic, 

leading to more memory-efficient models and potentially faster inference on hardware 

with support for quantized operations. While quantization introduces a trade-off 

between model accuracy and computational efficiency, it is particularly useful in 

scenarios where computational resources are constrained, such as edge devices and 

embedded systems. The specific choice of quantization parameters, such as the 

number of bits and alpha values, allows for a balance between model efficiency and 

performance. 

 

Figure 3.9: Quantized CNN model Architecture 
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3.3.7 Visualization 

A Receiver Operating Characteristic (ROC) curve is created for a multi-class 

classification task, comparing the performance of a baseline Keras model with a 

quantized Keras (QKeras) model. The ROC curve is a graphical representation of the 

trade-off between true positive rate (sensitivity) and false positive rate (1 - specificity) 

at various classification thresholds. This comparison is performed for each class in the 

classification task. For each class label, the true positive rate (tpr) and false positive 

rate (fpr) are calculated and the area under the ROC curve (AUC) is also computed. 

This visualization serves to compare the performance of the baseline Keras model 

with the quantized Keras model. A higher AUC value generally indicates better model 

performance in distinguishing between positive and negative instances. The 

comparison also extends to accuracy metrics, providing a good evaluation of the 

models.  

3.4 Implementation 

3.4.1 HLS conversion 

The pruning layer is removed to make sure that the appropriate custom layer is 

passed. The hls4ml library is utilized to convert and compile a pruned convolutional 

neural network (CNN) model, which was originally defined in Keras, into a hardware 

description language (HDL) representation suitable for FPGA (Field-Programmable 

Gate Array) deployment.  

Configuring hls4ml using the `hls4ml.utils.config_from_keras_model` function, 

extracting configuration parameters from the Keras model is needed to be done as the 

first step. The granularity is set to 'name,' meaning that each layer's configuration is 

specified by its name. The precision for the entire model is set to 'ap_fixed<16,6>,' 
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indicating a fixed-point representation with 16 bits (total width) and 6 bits for the 

fractional part. The reuse factor is set to 1, meaning that the hardware design aims to 

fully parallelize the computation for each layer. For each layer, the strategy is set to 

'Latency,' suggesting that the design aims to minimize the latency (execution time) for 

that layer. Additionally, the strategy for the output layer ('output_softmax') is set to 

'Stable' to ensure better numerical stability, especially for high-accuracy models. A 

configuration dictionary (`cfg`) is created for hls4ml conversion, specifying 

parameters such as the backend ('Vivado'), IO type ('io_stream'), the HLS 

configuration (`hls_config`), the Keras model (`model`), the output directory 

('pruned_cnn/'), and the target Xilinx FPGA part. The 

`hls4ml.converters.keras_to_hls` function is called to convert the Keras model into an 

HLS representation using the provided configuration (`cfg`).The resulting HLS model 

is then compiled using the `compile` method. 

The goal is to prepare a pruned CNN model for deployment on an FPGA by 

converting it into an HLS representation. The configuration settings, such as precision, 

reuse factor, and layer-wise strategies, are crucial for optimizing the hardware design 

based on the characteristics of the model and the target FPGA device. The resulting 

HLS model can be further synthesized and implemented on an FPGA for efficient and 

high-performance inference. After that, we check the accuracy of the hls4ml model 

and plot the ROC for it. The architecture of the HLS models is shown in Figure 3.10 

and Figure 3.11 
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Figure 3.10: HLS Pruned CNN model architecture 
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Figure 3.11: HLS Quantized Pruned CNN model architecture 

3.4.2 Simulation, Synthesis and Bitstream Generation 

Simulation and synthesis is done using the command build from the hls4ml library. 

The estimated resource utilization report is generated for analysis purposes. The 

configuration of hls4ml is slightly different compared to the synthesis part where the 

backend used is the Vivado accelerator where the synthesis process uses the Vivado 

as backend. The bitfile, hardware handsoff, driver and testing data is archived into a 

tar.gz file and copied to the PYNQ board. 
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3.4.3 Deployment and Validation 

The image of the board is downloaded and loaded into a SD card for the pynq board 

to work. After that, the NN inference can be done with the driver AXI and the output 

is saved for analysis. The accuracy on board is being compared with the host 

machine’s accuracy. 

3.5 Analyzation performance 

3.5.1 Inference Time: 

In the context of FPGA deployment, the inference time is a critical metric reflecting 

the speed at which the model processes input data and produces classification results. 

The FPGA's parallel processing capabilities are harnessed to optimize inference time, 

and measurements are taken to quantify the reduction achieved compared to a purely 

software-based implementation. 

3.5.2 Resource Utilization: 

Resource Utilization is the amount of resources used by an FPGA for the particular 

design, in my project, it is the HLS pruned CNN model and HLS quantized pruned 

CNN model. The aspects that is often consider is Lookup table, Digital Signal 

Processing (DSP), Flip Flops (FF), Block RAM and I/O block. They are affected by 

the architecture of the model and the designation of the model and also the HLS 

conversion technique.  

3.5.3 Power Consumption: 

Power Consumption is the power needed for the FPGA to run the model. It is 

usually affected by the function and the frequency of the FPGA running. The design 

complexity and operating condition can also changes the power consumption of 

FPGA. 
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3.5.4 Comparison with Traditional Platform Implementation: 

In order to visualize the advantages and limitations of FPGA comparing to the CPU 

and GPU, the comparison between them is needed to be done and analyze for gaining 

insight on both of the platforms implementing the same model performing the same 

classification task.  

3.5.5 Trade-offs and Optimization Strategies: 

With optimization technique done on the models for resource and power efficiency, 

there will also be trade-offs in the accuracy of the model. Performance analysis is done 

to inspect the significance of the optimization technique. Balancing the efficiency and 

accuracy is one of the main key aspect.  

3.5.6 Validation of FPGA-Deployed Model: 

The performance metrics derived from FPGA implementation are cross-validated 

against the metrics obtained during the training and validation phases in Python. This 

step is to perform an analysis on the performance of the FPGA. This makes sure the 

implementation of FPGA based CNN is significant.  



 

 

 

CHAPTER 4  

RESULT AND DISCUSSION 

4.1 Introduction 

In this section, the accuracy, resource utilization and power of the pruned CNN 

model and the quantized pruned CNN model will be discussed. The validation and 

accuracy of both models in the PYNQ Z1 will also be displayed as the result.  

4.2 Result of Pruned CNN model 

4.2.1 Accuracy 

The accuracy of the pruned CNN model is 88.97% and the pruned CNN HLS model 

has the accuracy of 88.73%. The accuracy stated is the accuracy running on the CPU 

i5 7th generation. There is a slight decrease in the accuracy for the HLS model. This is 

a normal phenomenon since there are certain optimizations done during the HLS 

process to make the model more suitable for hardware implementation. 
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The confusion matrix in the Figure 4.1 is a useful tool for understanding the 

performance of a machine learning model. It shows the number of times each class 

was predicted for every true class. Darker shades in the matrix indicate higher 

numbers, providing insights into which classes the model is accurately predicting and 

which ones it’s struggling with. In the context of the statement, the confusion matrix 

could be used to analyze the performance of the pruned CNN model both before and 

after the HLS conversion.  

 

Figure 4.1: Confusion matrix of pruned CNN model 

The graph in Figure 4.2 is the ROC of the pruned CNN model and the pruned CNN 

model HLS. It is the representation of the performance for both the models. They are 

evaluated based on their Area under Curve, AUC which is a metric to measure the 

performance of classification task. Higher AUC indicates the model performance is 

good. As we can see in the graph, the x axis is the signal efficiency and the y axis is 

the background efficiency, Signal Efficiency is the rate at which true positive events 

are correctly identified, and Background Efficiency is the rate at which false positive 

events are incorrectly identified as true. A model with perfect classification would 
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have a signal efficiency of 1 and a background efficiency of 0. Both models are closing 

in towards 1.o which indicates both model perform well for all the classes in the 

classification task. In summary, the graph helps us to visualize the model’s 

performance.  

 

Figure 4.2: ROC of pruned CNN model 

In conclusion, the goal of using high-performance architectures like ARM 

processors and FPGAs is to strike a balance between computational efficiency and 

model accuracy. A small drop in accuracy might be acceptable if the gains in 

efficiency are significant. This is particularly true for applications where real-time 

processing and low power consumption are critical. The success of deploying 

Convolutional Neural Networks (CNNs) on Field-Programmable Gate Arrays 

(FPGAs) lies not only in achieving hardware acceleration but also in preserving the 

model's predictive accuracy. This section presents a comprehensive analysis of the 

accuracy results obtained through various implementations 
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4.2.2 Resource Utilization  

This section presents the implementation report focusing on the resource utilization 

report by Vivado. The resource utilization report is shown in Figure 4.3, Figure 4.4 

and Figure 4.5. Slice LUT is used for implementing combinational logic. Out of the 

available 53,200 Slice LUTs, 36,460 are utilized, achieving a utilization rate of 

68.53%. The breakdown reveals that 63.80% of these LUTs are configured for general 

logic purposes, while 14.48% are allocated for use as memory. A portion of the Slice 

LUTs is dedicated to specific functions such as Distributed RAM and Shift Register. 

In the report, it states that 22 LUTs serve as Distributed RAM, and 2,497 LUTs are 

configured as Shift Registers. The slice registers is used for storing intermediate and 

final results, displays a utilization of 55.61%. All 59,173 registers are employed, with 

the entirety configured as Flip Flops, indicating a predominant use for sequential logic. 

The utilization of F7 and F8 multiplexers, critical for routing signals within the FPGA, 

is presented. F7 Muxes demonstrate a utilization of 6.70%, with 1,781 out of 26,600 

in use. Similarly, F8 Muxes exhibit a utilization of 4.31%, with 573 out of 13,300 

utilized.  

 

Figure 4.3: Slice Logic Report of Pruned CNN model 
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The memory report is shown in Figure 4.4. The Block RAM Tile serves as a 

fundamental memory component in the FPGA design, providing 71 utilized instances 

out of an available pool of 140 which shows the utilization rate of 50.71%. Block 

RAM Tiles are versatile and commonly used for storing data in FPGA designs, 

contributing significantly to the overall memory landscape. Specific instances of 

memory, namely RAMB36/FIFO and RAMB36E1, are employed in the design with 

4 instances each. These instances are drawn from an available pool of 140, resulting 

in a modest utilization rate of 2.86% for both types. These memories are essential for 

applications requiring specialized memory structures, such as First-In-First-Out 

(FIFO) implementations. The RAMB18 module, known for its capacity and 

versatility, is utilized with 134 instances out of an available 280, achieving a utilization 

rate of 47.86%. This memory component is commonly employed for various data 

storage and retrieval operations within the FPGA design. Similar to RAMB18, the 

RAMB18E1 module exhibits a utilization rate of 47.86%, with all 134 instances 

actively contributing to the design. RAMB18E1, with its enhanced features, further 

enhances the memory capabilities of the FPGA. 

 

Figure 4.4: Memory usage report of Pruned CNN model 

The DSP resource utilization shown in Figure 4.5 is 215 instances actively in use 

out of an available pool of 220, resulting in a utilization rate of 97.73%. DSP modules 
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are crucial for accelerating complex mathematical computations and signal processing 

tasks within FPGA designs.  

 

Figure 4.5: DSP usage report of Pruned CNN model 

The integrated analysis of Slice Logic, DSP, and Memory utilization showcases a 

holistic approach to resource management. The near-maximal use of DSP resources 

suggests an efficient alignment of computational tasks with specialized hardware 

capabilities. The balance between Slice Logic and Memory utilization indicates a 

harmonized allocation of resources for both computational and data storage 

requirements. 

4.2.3 Power 

The power report is appended in Figure 4.6. Total On-Chip Power (W) is the total 

power consumption of the chip in Watts. The value 2.173W means that the chip is 

consuming approximately 2.173W of power. Dynamic (W) is the dynamic power 

consumption of the chip, which is the power consumed when the chip is active or in 

operation. The chip is consuming approximately 2.007 Watts of dynamic power. 

Device Static (W) is the static power consumption of the chip, which is the power 

consumed when the chip is idle or not in operation. The chip is consuming 

approximately 0.166 Watts of static power. Effective TJA (C/W) stands for Thermal 
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Resistance Junction to Ambient. It’s a measure of how effectively the chip can transfer 

heat from the junction (the part of the chip that gets hot) to the ambient environment. 

The lower the TJA, the better the chip is at cooling itself. Max Ambient is the 

maximum ambient temperature, in Celsius, at which the chip can operate. Junction 

Temperature is the temperature, in Celsius, at the junction of the chip. This is typically 

the hottest point on the chip. The total on-chip power is also lower compared to the 

pruned CNN model which indicates that the quantization process leads to a lesser 

power usage model. 

 

Figure 4.6: Power report 

4.2.4 Clock Constraint and Frequency 

As shown in Figure 4.7 and 4.8, the clock frequency used is 100 MHz and there is 

no violation of clock for the setup, hold and PW which is a good design features. In 

Vivado, the "worst slack" in the Clock Report refers to the timing slack of the critical 

path with the least amount of margin in terms of meeting the specified timing 

constraints. The timing constraints define the desired performance goals for the 

model’s design, such as maximum clock frequency, setup time, and hold time 

requirements.  
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The timing slack represents the amount of time by which a signal can be delayed 

without violating the specified timing constraints. A positive slack value indicates that 

the design meets the timing requirements, whereas a negative slack value indicates a 

timing violation. The "worst slack" is the smallest (most negative) slack value among 

all the critical paths in your design. 

If the worst slack is negative, it means that the design is failing to meet timing at 

that particular critical path. This could be due to various reasons, such as congested 

routing, inefficient placement of logic elements, or inadequate clock-to-q delays in the 

sequential elements along the critical path. 

 

Figure 4.7: Clock summary 

 

Figure 4.8: Clock constraint 

4.3 Quantized Pruned CNN model 

4.3.1 Accuracy 

In the assessment of Convolutional Neural Networks (CNNs) within the scope of 

our research on 'Building Brains with ARM Processors and FPGAs Based on High-

Performance Architectures,' we evaluated the model's performance using two distinct 

frameworks: qkeras and qkeras_hls4ml. The accuracy metric, a key indicator of the 

model's classification performance, was determined for each framework. The achieved 
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accuracy for the qkeras implementation was 87.5%, while the accuracy for the 

qkeras_hls4ml implementation was slightly lower at 87.46666666666667 %. These 

values reflect the models' abilities to correctly classify input data, providing insights 

into the effectiveness of each framework in implementing high-performance CNNs on 

the selected hardware architectures. 

The confusion matrix in Figure 4.9 allows us to identify the performance of all the 

classes for classification. We can specifically look at each class to determine which 

class has the highest performance and which has the lowest. We are also able to look 

at which class has the highest number of data in the test dataset we used. 

 

Figure 4.9: Confusion matrix of Quantized Model 

The performance is evaluated based on the Area Under Curve (AUC) values, which 

is a common metric used in machine learning to measure the quality of binary 

classification problems. 

The graph in Figure 4.10 plots Signal Efficiency against Background Efficiency, 

which can be interpreted as the model’s ability to correctly classify signal (true 

positives) and background (true negatives) instances. This is crucial in the context of 
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CNNs as it directly relates to the model’s accuracy and precision. The different colored 

lines represent different taggers, each with a specific AUC value. These taggers is the 

classes of prediction which is 0 to 9. “Signal Efficiency” is the rate at which true 

positive events are correctly identified, and “Background Efficiency” is the rate at 

which false positive events are incorrectly identified as true. A model with perfect 

classification would have a signal efficiency of 1 and a background efficiency of 0. 

As we can see in the figure, there is less performance drop after the HLS conversion 

which is a good phenomenon for our aim.  

 

Figure 4.10: ROC of Quantized Pruned CNN model 

4.3.2 Resource Utilization 

The resource utilization report is presented in Figure 4.11, 4.12 and 4.13. Slice 

Look-Up Tables (LUTs) are fundamental building blocks in an FPGA. They 

implement arbitrary Boolean logic functions. The utilization of 66.58% indicates that 

a significant portion of the logic in the design is implemented using these LUTs. A 

utilization of 62.57% suggests that a majority of the LUTs are used for this purpose. 
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LUTs can also be used as small memories or shift registers. The utilization of 12.26% 

indicates that a small portion of the LUTs are used as memory elements. Slice registers 

are used to store data or state information in sequential logic. The utilization of 46.34% 

suggests that about half of the available slice registers are used in the design. Register 

as flip flops refers to registers that are used as flip-flops, a basic unit of memory in 

digital circuits. The utilization matches that of the slice registers, suggesting that all 

used registers are configured as flip-flops. All the utilization percentages drop 

compared to the pruned CNN model. This indicates that the quantized pruned CNN 

model uses lesser resource compared to the pruned CNN model.  

 

Figure 4.11: Slice Logic report of Quantized Pruned CNN model 

Block RAMs are used to implement larger memory arrays. They are used in designs 

that require storage of large amounts of data or coefficients. The utilization of 29.64% 

indicates that less than a third of the available Block RAM Tiles are used in the design. 

There is a significant drop in the memory utilization of the quantized pruned CNN 

model compared to the pruned CNN model. Quantization reduces the precision of the 

weights in the neural network. For example, weights that were originally 32-bit 

floating point numbers might be reduced to 8-bit integers. This can significantly 

reduce the memory requirements of the model, as well as the computational 
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requirements of the forward pass. In conclusion, the low memory utilization in the 

report can be attributed to the use of quantization and pruning techniques. These 

techniques have reduced the memory footprint of the CNN model, allowing it to fit on 

the FPGA with plenty of resources to spare. This is particularly beneficial in embedded 

systems where memory and computational resources are limited. 

 

Figure 4.12: Memory report of Quantized Pruned CNN model 

DSPs are used to perform arithmetic functions, such as multiply-accumulate, in a 

single operation. They are crucial for implementing the convolutional layers in a CNN. 

The utilization of 83.64% indicates that a significant portion of the DSPs are used in 

the design. Quantization can significantly reduce the computational requirements of 

the forward pass, which in turn can lead to a reduction in DSP usage.  

 

Figure 4.13: DSP usage report of Quantized Pruned CNN model 
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4.3.3 Power 

The power report is appended in Figure 4.14. Total On-Chip Power (W) is the total 

power consumption of the chip in Watts. The value 1.953 suggests that the chip is 

consuming approximately 1.953 Watts of power. Dynamic (W) is the dynamic power 

consumption of the chip, which is the power consumed when the chip is active or in 

operation. The chip is consuming approximately 1.798 Watts of dynamic power. 

Device Static (W) is the static power consumption of the chip, which is the power 

consumed when the chip is idle or not in operation. The chip is consuming 

approximately 0.154 Watts of static power. Effective TJA (C/W) stands for Thermal 

Resistance Junction to Ambient. It’s a measure of how effectively the chip can transfer 

heat from the junction (the part of the chip that gets hot) to the ambient environment. 

The lower the TJA, the better the chip is at cooling itself. Max Ambient is the 

maximum ambient temperature, in Celsius, at which the chip can operate. Junction 

Temperature is the temperature, in Celsius, at the junction of the chip. This is typically 

the hottest point on the chip. The total on-chip power is also lower compared to the 

pruned CNN model which indicates that the quantization process leads to a lesser 

power usage model. 

 

Figure 4.14: Power report of Quantized Pruned CNN model 
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4.3.4 Clock Constraint and Frequency 

As in the pruned CNN model clock summary report, the clock frequency used in 

the quantized pruned CNN model is also 100MHz and there is also no clock violation 

found after the implementation process which we are able to notice in Figure 4.15 and 

4.16. 

 

Figure 4.15: Clock summary of Quantized Pruned CNN model 

 

Figure 4.16: Clock Constraint of Quantized Pruned CNN model 

4.4 PYNQ Z1 board 

4.4.1 Validation 

The validation process is done which is shown in Figure 4.17 and to make sure the 

practical implementation of the pruned CNN model and the quantized pruned CNN 

model works on the PYNQ Z1 board. The code shows the inference process is done 

using the axi driver which is the communication protocol, the bitfile and configuration 

file.  
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Figure 4.17: PYNQ Z1 board inference 

Another way shown in Figure 4.18 that is tested for validation is by using an image 

in the testing dataset and using it to the model on the board and check the predicted 

class. This is a qualitative analysis for the model on the board PYNQ Z1.  

 

Figure 4.18: Validation of 1 image 
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4.4.2 Accuracy 

The accuracy onboard(Keras) is 88.73333333333333%, whereas the accuracy 

onboard(QKeras) is 87.46666666666667%. The accuracy is same for both model 

respectively to the accuracy after the HLS conversion. This indicates that there is no 

accuracy loss during the inference on board. 

4.5 Model in Google Colab 

Both model are also built in the Google Colab using the Colab’s CPU and GPU 

workspace to perform a comparison analysis. 

4.5.1 Accuracy 

The accuracy with the training and testing using CPU and GPU on the Google 

Colab of the Keras model is 88.1% and the accuracy for quantized keras model is 

84.9% which is slightly lower than the only CPU using intel i5 7th generation’s 

accuracy stated in the section above. This can be due to the GPU limitations which the 

use of floating-point precision on GPUs compared to CPUs can indeed be a factor that 

affects the accuracy of computations and, consequently, the overall accuracy of a 

machine learning model. GPUs often use lower-precision floating-point formats (such 

as half-precision or mixed-precision) to accelerate computations, which may result in 

some loss of precision compared to the higher precision typically used on CPUs 

(single or double precision). Visualization of the graph can be seen in Figure 4.19. 
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Figure 4.19: Visualize of accuracy on Colab  

4.5.2 Resource Utilization 

The resource Utilization graph of the Google Colab can be seen in Figure 4.20. The 

CPU usage of the training and testing is very high where it fluctuated from 0 to 100%, 

the memory usage for the models are at 30% average and the GPU usage fluctuated at 

0 to 60%.  
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Figure 4.20: Resource graph for Colab 

4.6 Comparison 

Table 5 shows the comparison of both the pruned models and quantized models on 

different platforms in terms of accuracy, power, and resource utilization. The CPU and 

GPU approach have a slightly lower accuracy, but the training process is a lot quicker 

compared to the CPU only approach.  

Table 5: Comparison Analysis 

Device Model Power Resource Utilization Testing 

Accuracy 

CPU & GPU 

(Colab) 

Faster Training 

Pruned CNN 61W & 

300W 

(on server) 

100% CPU, 60% GPU, 

35% Memory 

88.1%  

CPU & GPU 

(Colab) 

Quantized 

Pruned CNN 

61W & 

300W 

(on server) 

100% CPU, 60% GPU, 

35% Memory 

84.9% 

CPU (Ubuntu 

Intel i5 7th gen)  

Slower 

Training 

Pruned CNN 65W - 88.9% 

CPU (Ubuntu 

Intel i5 7th gen) 

Quantized 

Pruned CNN 

65W - 87.5% 
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CPU (Ubuntu 

Intel i5 7th gen) 

Pruned CNN 

HLS 

65W - 88.7% 

CPU (Ubuntu 

Intel i5 7th gen) 

Quantized 

Pruned CNN 

HLS 

65W - 87.4% 

PYNQ Z1 Pruned CNN 

HLS 

2.173W 68.53% LUT,  

55.61% Registers, 

97.73% DSP,  

50.71% Memory 

88.7% 

PYNQ Z1 Quantized 

Pruned CNN 

HLS 

1.953W 66.58% LUT 

46.34% Registers 

83.64% DSP 

29.64% Memory 

87.4% 

 

4.7 Discussion 

The PYNQ Z1 utilizes parallelism techniques such as unrolling, pipelining, inlining 

and partitioning array. Loop unrolling is a compiler optimization technique employed 

to enhance parallelism in software implementations, particularly within loops. By 

replicating the loop body multiple times, loop unrolling reduces loop overhead and 

exposes more opportunities for instruction-level parallelism. This approach allows 

multiple iterations of the loop to execute concurrently, facilitating improved 

throughput and computational efficiency. Inlining, another optimization strategy, 

involves incorporating the body of a function directly into the calling code, eliminating 

the overhead associated with function calls. In the context of parallelism, inlined code 

offers better optimization opportunities as the compiler can more easily identify and 

exploit parallelism within the broader context of the calling code. Furthermore, 

partitioning arrays is a technique where large arrays are broken down into smaller, 

manageable chunks, enabling independent or parallel processing of segments. This 

approach distributes the workload and enhances overall throughput by creating 

opportunities for parallel execution. Lastly, pipelining is a hardware design strategy 
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that breaks down a computation into stages, allowing each stage to operate 

concurrently. This technique enhances concurrency by overlapping the execution of 

different stages, where each stage processes a different set of data. The result is 

efficient parallel processing of multiple data elements at various stages 

simultaneously, further optimizing the overall performance of the computation. The 

parallelism of FPGA allows it to increase the performance in terms of resource 

utilization, power and thermal. Some of the examples are shown in Figure 4.22 for the 

parallelization technique. The technique used is automated by the HLS4Ml library.  

However, with the resource constraint of the RAM on board, the training process is 

not able to run on the board, which means that the training must be done on host 

machine and then convert the trained model into the bitfile and hardware configuration 

file then only the inference can be done the PYNQ Z1 board. The example of the 

parallelism done is shown in Figure 4.21. 

 

Figure 4.21: Parallelization during Synthesize and Bitstream Generation 
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4.8 Environment and Sustainability 

4.8.1 Needs and Importance for Sustainable Development 

 

Figure 4.22: SDG 

The first aspect is developing an advanced Computing for AI Applications. The 

demand nowadays for AI application in the healthcare, finance and automation sector 

is increasing since AI eases the work needed to be done by humans not to mention 

excels in some of the job. Advanced computing solutions such as ARM processor and 

FPGA has become a necessity for answer those demands. The project is also aiming 

for energy efficiency. Energy efficiency is able to reduce environmental impact done 

by technology in order to improve the lifestyle of humans. ARM processor and FPGA 

are well known for their power efficiency, which can be a solution for energy-

efficiency. ARM processors and FPGA can provide the scalability and flexibility in 

developing neural networks. This ensure the adaptability of the board for the evolution 

of neural networks which happens in the blink of an eye. ARM processors and FPGA 

has the ability to optimize resource utilization and ensuring sustainability.  

4.8.2 Impact of the Engineering Solution on Society 

Application of CNN on FPGA allows the medical advancement in imaging, 

diagnostic which can lead to better healthcare outcomes. Nowadays, autonomous 
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systems is a trend for things such as vehicles and drones. This project provide an 

insight on the real time image based recognition system to enhance safety. Precision 

agriculture is also an aspect that can potentially benefit from this project. Wastage of 

resource can be avoid when precision agriculture can be implemented using FPGA 

based CNN.  

4.8.3 Impact on the environment 

The impact of this project on the environment can be reducing carbon footprint, e-

waste management and natural resource conservation. Energy efficiency of the ARM 

processor and FPGA can lead to reduce in overall carbon footprint. The flexibility and 

reprogrammability of FPGA allows lesser of e-waste since it can be reuse and 

reprogram each time according to the needs of user. Energy efficient of the ARM 

processor and FPGA also allows this project to contributes in natural resource 

conservation. 

4.9 Summary 

Based on the accuracy, power, resource consumption comparison analysis, the 

results of my project on "Building Brains with ARM processors and FPGAs based on 

high-performance architectures for Convolutional Neural Networks (CNNs)" suggest 

that there are advantages and disadvantages for advanced computing for AI 

applications. The advantages are optimized resource utilization and power 

consumption. The drawback would be the resource constraint causing the training 

process to not be able to be done on the PYNQ z1 board. The results highlight the 

potential of ARM processors and FPGAs in addressing the computational needs of 

high-performance CNNs, offering a pathway for the advancement of AI applications 

in various sectors.  



 

 

 

CHAPTER 5  

CONCLUSION AND FUTURE WORKS 

5.1 Introduction 

The chapter will cover the conclusion of the project in Section 5.2 and the future 

work of this project in Section 5.3.  

5.2 Conclusion 

This thesis focuses on the development of optimized CNN models based on PYNQ 

z1 FPGA. All the objectives of the project has been achieved with the model on the 

FPGA validation successfully done, optimization technique used on the model and 

analysis done for the performance of the pruned and pruned quantized CNN models 

in the CPU, GPU and FPGA.  

The first objective aimed to design and implement a CNN on an FPGA. The 

objective is achieved with the validation on board is completed and the result such as 
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implementation report and accuracy are recorded. The second objective is to 

implement optimization technique to the CNN model, which is also achieved with 

pruning and quantization done to the CNN model. Parallelization technique is also 

utilized while converting the model into HLS model where the pipelining, inlining and 

partitioning array is done to utilize the parallelization abilities of the FPGA. The third 

objective is to perform a performance analysis to the result in order to gain insight on 

the comparison of traditional computing platform with the FPGA. This objective is 

achieved when we can conclude the advantages and the drawback of the FPGA in 

comparison to the traditional computing platform based on the accuracy and 

implementation report generated.  

In conclusion, the successful achievement of these objectives underscores the 

significance of integrating ARM processors and FPGAs for CNN applications. The 

findings presented in this thesis not only advance the current understanding of 

hardware-accelerated neural networks but also provide a solid foundation for future 

research and development in the pursuit of optimized, high-performance computing 

solutions in the realm of artificial intelligence. 

5.3 Future Work 

The limitations found on this project can be improved in the future in exploring the 

limits of FPGA. By fine tuning the configuration of each layers in the CNN, the 

method of improving the accuracy, resource utilization and power consumption can 

be expected. Investigating on other optimization technique could also be one of the 

direction to work on in order to improve the performance of neural network based 

FPGA. Other than CNN, other NN model such as Recurrent Neural Network, Spiking 

Neural Network and et cetera, can also be explore to implement on the FPGA to test 
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the limits of FPGA with various applications. Real time inference using a camara on 

FPGA can also be the path to explore the FPGA, since real time data from camera can 

be a challenging topic to work on. Cross-platform compatibility is a key consideration 

for broadening the implementation's reach across various FPGA architectures. 

Evaluating power consumption and efficiency aspects, implementing power-aware 

design techniques, and exploring dynamic reconfiguration for on-the-fly adjustments 

to FPGA configurations can contribute to energy-efficient CNN models. Furthermore, 

integration with edge computing platforms and thorough benchmarking against 

alternative FPGA-based CNN implementations will provide insights into the strengths 

and weaknesses of the proposed approach in comparison to existing solutions. In 

essence, these future research directions aim to push the boundaries of FPGA-

accelerated CNN deployment, advancing the fields of hardware-accelerated deep 

learning and edge computing. 
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