

BUILDING BRAINS WITH ARM PROCESSORS AND FPGAS
BASED ON HIGH PERFORMANCE ARCHITECTURES

CONVOLUTIONAL NEURAL NETWORKS

LAI JIAN CHANG

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BUILDING BRAINS WITH ARM PROCESSORS AND

FPGAS BASED ON HIGH PERFORMANCE

ARCHITECTURES CONVOLUTIONAL NEURAL

NETWORKS

LAI JIAN CHANG

This report is submitted in partial fulfilment of the requirements

for the degree of Bachelor of Computer Engineering with Honours

Faculty of Electronic and Computer Technology and Engineering

Universiti Teknikal Malaysia Melaka

2024

Tajuk Projek : Building Brains with ARM processors and FPGAs

based on high performance architectures

Convolutional Neural Networks

Sesi Pengajian : 2023/2024

Saya LAI JIAN CHANG mengaku membenarkan laporan Projek Sarjana Muda

ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan

pertukaran antara institusi pengajian tinggi.

4. Sila tandakan (✓):

SULIT*

(Mengandungi maklumat yang berdarjah

keselamatan atau kepentingan Malaysia

seperti yang termaktub di dalam AKTA

RAHSIA RASMI 1972)

TERHAD*

(Mengandungi maklumat terhad yang

telah ditentukan oleh organisasi/badan di

mana penyelidikan dijalankan.

 TIDAK TERHAD

 Disahkan oleh:

(TANDATANGAN PENULIS) (COP DAN TANDATANGAN PENYELIA)

Alamat Tetap: 2901 JLN RJ 5/2

TAMAN RASAH

JAYA 70300

SEREMBAN

NSDK

Tarikh : 10 JANUARI 2024 Tarikh : 01 Januari 2010

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan
dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA
FAKULTI TEKNOLOGI DAN KEJURUTERAAN ELEKTRONIK DAN

KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN

PROJEK SARJANA MUDA II

23 JANUARI 2024

DECLARATION

I declare that this report entitled “BUILDING BRAINS WITH ARM PROCESSORS

AND FPGAS BASED ON HIGH PERFORMANCE ARCHITECTURES

CONVOLUTIONAL NEURAL NETWORKS” is the result of my own work except

for quotes as cited in the references.

Signature : ……………………………

Author : LAI JIAN CHANG

Date : 10 JANUARY 2024

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient

in terms of scope and quality for the award of Bachelor of Computer Engineering with

Honours.

Signature : …………………………………

Supervisor Name : …………………………………

Date : …………………………………

PM Dr. Wong Yan Chiew

23 Jan 2024

DEDICATION

To my beloved parents, who have been my unwavering source of inspiration,

motivation, and encouragement throughout my academic journey. Without your love,

sacrifices, and unwavering support, I would not be where I am today. This thesis is a

testament to your unrelenting faith in me, and I dedicate it to you with all my heart.

To my academic supervisor, Dr. Wong Yan Chiew, whose expertise, guidance, and

mentorship have shaped my research and challenged me to push beyond my limits.

Your patience, constructive feedback, and valuable insights have been instrumental in

helping me grow as a researcher and a scholar. I am grateful for the opportunities you

have given me to learn, collaborate, and contribute to the academic community. To

Universiti Teknikal Malaysia Melaka, the institution that has provided me with a rich

and vibrant academic environment, cutting-edge resources, and a platform to pursue

my intellectual passions. My experience at this university has been transformative,

empowering me to think critically, to explore new ideas, and to engage with diverse

perspectives. I am honoured to be a part of this academic community, and I dedicate

this thesis to the university that has given me so much. Thank you.

i

ABSTRACT

The advent of Convolutional Neural Networks (CNNs) has transformed the

landscape of artificial intelligence, particularly in visual information processing. This

thesis embarks on a comprehensive exploration of advanced architectures for CNNs,

focusing on the strategic integration of ARM processors and Field-Programmable

Gate Arrays (FPGAs). The overarching goal is to harness the synergies between these

heterogeneous computing platforms, capitalizing on their respective strengths to

engineer high-performance systems capable of intricate visual interpretation. The

research unfolds through an in-depth investigation into both hardware and software

aspects, aiming to optimize the design, deployment, and performance of CNNs.

Special attention is given to the development of tailored algorithms that align with the

unique features of ARM processors and FPGAs. This includes the implementation of

efficient memory utilization strategies and parallelization techniques to fully exploit

the parallel processing capabilities inherent in these architectures. A critical facet of

the study involves addressing challenges related to power consumption, thermal

considerations, and resource utilization. By exploring novel approaches to mitigate

these challenges, the thesis seeks to establish a foundation for creating intelligent

systems with brain-like processing capabilities while maintaining energy efficiency.

ii

The research methodology employs rigorous experimentation and performance

evaluations, with a keen focus on determining the trade-offs between computational

efficiency and model accuracy. Insights derived from this exploration contribute to the

overarching goal of advancing the field, offering a nuanced understanding of how the

integration of ARM processors and FPGAs can yield optimized architectures for

CNNs. The findings of this thesis not only extend the current understanding of high-

performance architectures for CNNs but also lay the groundwork for future

developments at the intersection of hardware design, neural networks, and artificial

intelligence. The implications of this research resonate across various applications,

from enhancing computer vision capabilities to empowering autonomous systems with

sophisticated visual perception and interpretation.

iii

ABSTRAK

Keberadaan Rangkaian Neural Konvolusional (CNNs) telah mengubah landskap

kecerdasan buatan, khususnya dalam pemrosesan informasi visual. Tesis ini memulai

eksplorasi komprehensif terhadap arsitektur canggih untuk CNNs, dengan fokus pada

integrasi strategis prosesor ARM dan Field-Programmable Gate Arrays (FPGAs).

Tujuan utamanya adalah memanfaatkan sinergi antara platform komputasi heterogen

ini, memanfaatkan keunggulan masing-masing untuk merancang sistem berkinerja

tinggi yang mampu melakukan interpretasi visual yang rumit.Penelitian ini

dilaksanakan melalui penyelidikan mendalam terhadap aspek perangkat keras dan

perangkat lunak, dengan tujuan mengoptimalkan desain, implementasi, dan kinerja

CNNs. Perhatian khusus diberikan pada pengembangan algoritma yang disesuaikan

dengan fitur unik dari prosesor ARM dan FPGAs. Ini termasuk penerapan strategi

penggunaan memori yang efisien dan teknik paralelisasi untuk sepenuhnya

memanfaatkan kemampuan pemrosesan paralel yang melekat dalam arsitektur

ini.Fase penting dari penelitian ini melibatkan penanganan tantangan terkait

konsumsi daya, pertimbangan termal, dan pemanfaatan sumber daya. Dengan

mengeksplorasi pendekatan baru untuk mengatasi tantangan ini, tesis ini berusaha

membentuk dasar bagi pembuatan sistem cerdas dengan kemampuan pemrosesan

iv

mirip otak sambil tetap menjaga efisiensi energi.Metodologi penelitian menggunakan

eksperimen yang ketat dan evaluasi kinerja, dengan fokus pada penentuan kompromi

antara efisiensi komputasional dan akurasi model. Wawasan yang diperoleh dari

eksplorasi ini memberikan kontribusi pada tujuan umum untuk memajukan bidang ini,

menawarkan pemahaman yang mendalam tentang bagaimana integrasi prosesor

ARM dan FPGAs dapat menghasilkan arsitektur yang dioptimalkan untuk CNNs.

Temuan dari tesis ini tidak hanya memperluas pemahaman saat ini tentang arsitektur

berkinerja tinggi untuk CNNs tetapi juga meletakkan dasar untuk pengembangan di

masa depan di persimpangan desain perangkat keras, jaringan saraf, dan kecerdasan

buatan. Implikasi dari penelitian ini mencakup berbagai aplikasi, mulai dari

meningkatkan kemampuan visi komputer hingga memberdayakan sistem otonom

dengan persepsi visual dan interpretasi yang canggih.

v

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation and gratitude to the individuals

who have been instrumental in the completion of this thesis. First and foremost, I

extend my sincere thanks to my advisor, Profesor Madya Dr. Wong Yan Chiew for

their unwavering guidance, invaluable insights, and continuous support throughout the

entire research process. Their expertise and encouragement were instrumental in

shaping the direction of this work. I am indebted to the members of my thesis

committee for their constructive feedback, scholarly input, and commitment to

ensuring the quality of this research. Their collective expertise significantly enriched

the content and methodology of this thesis. Special thanks are due to Eng Yong Ming

for their collaborative spirit, insightful discussions, and shared commitment to

advancing our understanding in this field. The exchange of ideas and collective effort

greatly contributed to the success of this research. I express my gratitude to Universiti

Teknikal Malaysia Melaka for providing the necessary resources and research

facilities that facilitated the execution of this project. Heartfelt appreciation goes to

my family for their unwavering support, understanding, and encouragement

throughout this academic journey. Their love and encouragement were my pillars of

strength. Lastly, I extend my thanks to all those friends and mentors who, in various

vi

ways, contributed to the completion of this thesis. Your support has been truly

invaluable. This thesis is a testament to the collaborative spirit and collective efforts

of those who have touched my academic journey. Thank you all for your support and

encouragement.

vii

TABLE OF CONTENTS

Declaration i

Approval i

Dedication i

Abstract i

Abstrak iii

Acknowledgements v

Table of Contents vii

List of Figures xii

List of Tables xiv

List of Symbols and Abbreviations xv

List of Appendices xvi

CHAPTER 1 INTRODUCTION 1

1.1 Introduction 1

1.2 Background Study 1

1.3 Objectives 2

1.4 Problem Statement 2

viii

1.5 Scope of work 3

1.6 Thesis Organization 4

CHAPTER 2 BACKGROUND STUDY 5

2.1 Introduction 5

2.2 Background 5

2.2.1 Artificial Intelligence 5

2.2.2 Deep Learning 6

2.2.3 Convolutional Neural Network 7

2.2.4 Field Programmable Gate Arrays 8

2.2.5 High Level Synthesis (HLS) 10

2.3 Literature review 11

2.3.1 An FPGA-Based Convolutional Neural Network Coprocessor 11

2.3.2 MRI-based brain tumor segmentation using FPGA-accelerated neural

network 12

2.3.3 FPGA-Based CNN for Real-Time UAV Tracking and Detection 12

2.3.4 Briefly Analysis about CNN Accelerator based on FPGA. 13

2.3.5 A Review of the Optimal Design of Neural Networks Based on FPGA

 14

2.3.6 FPGA implementation for CNN-based optical remote sensing object

detection 15

2.3.7 FPGA-Based accelerators of deep learning networks for learning and

classification: A review 16

ix

2.3.8 Hardware implementation of neural network-based engine model using

FPGA 17

2.3.9 Summary of other Literature Reviews 18

2.4 Research gap 19

2.5 Summary 19

CHAPTER 3 METHODOLOGY 21

3.1 Introduction 21

3.2 Approach to the project 22

3.2.1 Dataset selection 22

3.2.2 HLS4ML 24

3.2.3 PYNQ Z1 board implementation 25

3.3 Proposed Method Flowchart 27

3.3.1 Data Preprocessing 29

3.3.2 Model Development 31

3.3.3 Pruning 33

3.3.4 Model Training 34

3.3.5 Model Testing 35

3.3.6 Quantization 35

3.3.7 Visualization 37

3.4 Implementation 37

3.4.1 HLS conversion 37

x

3.4.2 Simulation, Synthesis and Bitstream Generation 40

3.4.3 Deployment and Validation 41

3.5 Analyzation performance 41

3.5.1 Inference Time: 41

3.5.2 Resource Utilization: 41

3.5.3 Power Consumption: 41

3.5.4 Comparison with Traditional Platform Implementation: 42

3.5.5 Trade-offs and Optimization Strategies: 42

3.5.6 Validation of FPGA-Deployed Model: 42

CHAPTER 4 Result and discussion 43

4.1 Introduction 43

4.2 Result of Pruned CNN model 43

4.2.1 Accuracy 43

4.2.2 Resource Utilization 46

4.2.3 Power 48

4.2.4 Clock Constraint and Frequency 49

4.3 Quantized Pruned CNN model 50

4.3.1 Accuracy 50

4.3.2 Resource Utilization 52

4.3.3 Power 55

xi

4.3.4 Clock Constraint and Frequency 56

4.4 PYNQ Z1 board 56

4.4.1 Validation 56

4.4.2 Accuracy 58

4.5 Model in Google Colab 58

4.5.1 Accuracy 58

4.5.2 Resource Utilization 59

4.6 Comparison 60

4.7 Discussion 61

4.8 Environment and Sustainability 63

4.8.1 Needs and Importance for Sustainable Development 63

4.8.2 Impact of the Engineering Solution on Society 63

4.8.3 Impact on the environment 64

4.9 Summary 64

CHAPTER 5 Conclusion and future works 65

5.1 Introduction 65

5.2 Conclusion 65

5.3 Future Work 66

REFERENCES 68

xii

LIST OF FIGURES

Figure 2.1: Basic Architecture of CNN ... 7

Figure 3.1: SVHN dataset .. 23

Figure 3.2: HLS4ML workflow .. 24

Figure 3.3: PYNQ Z1 board .. 26

Figure 3.4: Zynq APSoC architecture ... 27

Figure 3.5: Flowchart .. 29

Figure 3.6: Pseudocode of the Data Preprocessing .. 31

Figure 3.7: Architecture of CNN model... 32

Figure 3.8: Pruning Process .. 34

Figure 3.9: Quantized CNN model Architecture ... 36

Figure 3.10: HLS Pruned CNN model architecture .. 39

Figure 3.11: HLS Quantized Pruned CNN model architecture 40

Figure 4.1: Confusion matrix of pruned CNN model .. 44

Figure 4.2: ROC of pruned CNN model .. 45

Figure 4.3: Slice Logic Report of Pruned CNN model .. 46

Figure 4.4: Memory usage report of Pruned CNN model ... 47

Figure 4.5: DSP usage report of Pruned CNN model ... 48

Figure 4.6: Power report ... 49

xiii

Figure 4.7: Clock summary ... 50

Figure 4.8: Clock constraint .. 50

Figure 4.9: Confusion matrix of Quantized Model .. 51

Figure 4.10: ROC of Quantized Pruned CNN model .. 52

Figure 4.11: Slice Logic report of Quantized Pruned CNN model 53

Figure 4.12: Memory report of Quantized Pruned CNN model 54

Figure 4.13: DSP usage report of Quantized Pruned CNN model 54

Figure 4.14: Power report of Quantized Pruned CNN model 55

Figure 4.15: Clock summary of Quantized Pruned CNN model 56

Figure 4.16: Clock Constraint of Quantized Pruned CNN model 56

Figure 4.17: PYNQ Z1 board inference .. 57

Figure 4.18: Validation of 1 image .. 57

Figure 4.19: Visualize of accuracy on Colab .. 59

Figure 4.20: Resource graph for Colab .. 60

Figure 4.21: Parallelization during Synthesize and Bitstream Generation 62

Figure 4.22: SDG ... 63

xiv

LIST OF TABLES

Table 1: Summary of An FPGA-Based Convolutional Neural Network Coprocessor

 11

Table 2: Summary of MRI-based brain tumor segmentation using FPGA-accelerated

neural network 12

Table 3: Summary of Briefly Analysis about CNN Accelerator based on FPGA 14

Table 4: Literature Review 18

Table 5: Comparison Analysis 60

xv

LIST OF SYMBOLS AND ABBREVIATIONS

 CNN : Convolutional Neural Network

xvi

LIST OF APPENDICES

CHAPTER 1

INTRODUCTION

1.1 Introduction

In this chapter, there will be 4 sections. The background study of the project will

be discussed in Section 1.2 followed by the problem statement in Section 1.3. The

objectives of the project are discussed in Section 1.4 and the scope of work is discussed

in Section 1.5.

1.2 Background Study

Deep learning has become a game-changing technology with a wide range of

applications in the quickly developing field of artificial intelligence. Convolutional

Neural Networks (CNNs) are the most well-known deep learning architectures

because of their outstanding results in image and video processing applications. But

as of right now, we know that deploying CNNs on conventional computing platforms

2

like CPUs and GPUs frequently presents difficulties including excessive power

consumption, expense, and thermal problems, which restricts their use in real-time

settings.

1.3 Objectives

• To design and implement a CNN on an FPGA.

• To explore optimization techniques for improving the performance of the

CNN on the FPGA.

• To analyze the performance of the FPGA-based CNN in terms of resource

utilization, power consumption, and accuracy.

The first objective of the project is to design and implement a CNN on an Field

Programmable Gate Arrays (FPGA) with validation on board to make sure the CNN

is actually working on board. With the resource constraint on FPGA, optimization

technique needs to be done on the CNN would need to be explore in order to make

sure the implementation works on real life FPGA board. Finally, analyzing the

performance for the FPGA based CNN is also essential to gain an insight on the

project.

1.4 Problem Statement

CNN has become a popular method in image and video processing. The trend of

implementing the CNN are usually done on CPU and GPU since they have a better

speed and resource constraint. However, the power consumption, expenses, and

resource utilization of the traditional computing platform is elevating for the push of

accuracy and speed. This project aims to tackle the issue discussed above by

investigating the use of FPGA on implementing the CNN. This is because FPGA has

become a possible alternative for implementing CNN since it uses lesser power

3

consumption, lesser resource and more cheaper compared to traditional computing

platforms. FPGA is well known for its portability, reconfigurable and power

consumption level.

The basic concept of solving the issue with the traditional computing platform is to

reduce its high computational power and high-power consumption. The plan is to

utilize the parallel processing and the reconfigurable ability of the FPGA to provide a

more economic and effective platform for implementing the CNN. However, the

challenges of doing so are also a foreseen bump. With the resource and power

constraint and architecture of the FPGA, a series of work needs to be done to make

the implementation of CNN successful in the FPGA. Analysis needs to be done as

well to validate the problems of traditional computing platforms and the solution to

use FPGA based CNN.

The high cost of off-chip communication and the need for energy-efficient

hardware acceleration of CNNs on FPGAs also needed to be emphasized. [1] The

challenges of implementing CNNs on platforms with limited resources, such as

FPGAs should also be highlighted. [2] This project aims to tackle this issue as well.

1.5 Scope of work

The scope of work for this project is to design and implement the CNN on the

PYNQ Z1 board with optimization technique used and to also perform the

performance analysis of the implemented CNN on the board. The dataset used are

MNIST and Street View House Number (SVHN) datasets. Software used are the

Docker, Jupyterlab, Vivado and Python.

4

1.6 Thesis Organization

The 1st chapter of this thesis will be focusing on the introduction of the whole

project with objectives and problem statements included. In the 2nd chapter, the

background study of the project will be included as well as the literature review for a

better understanding on the state-of-art for this project. The 3rd chapter will focus on

the methodology of the project to achieve the objectives and solving the problems

stated. The result and comparison of analysis will be in the 4th chapter of the thesis

followed by the chapter 5 with conclusions and future works related to the project.

CHAPTER 2

BACKGROUND STUDY

2.1 Introduction

This chapter will be focusing on the background study of the project and the

literature review for investigating the state-of-art of the project. Background study will

be focusing on what is Artificial Intelligence and its branch, Field Programmable Gate

Array (FPGA) and High-Level Synthesis.

2.2 Background

2.2.1 Artificial Intelligence

The field of artificial intelligence (AI) has evolved from humble beginnings to a

field with global impact. The definition of AI and of what should and should not be

included has changed over time. Experts in the field joke that AI is everything that

computers cannot currently do. Although facetious on the surface, there is a sense that

6

developing intelligent computers and robots means creating something that does not

exist today. Artificial intelligence is a moving target.[3]

The paper “What is AI?” has provided three definitions for AI. The most basic

element common to all of them is that AI involves the study, design and building of

intelligent agents that can achieve goals. The choice of an AI makes should be

appropriate to its perceptual and cognitive limitations. If an AI is flexible and can learn

from experience. sense, plan, and act on the basis of its initial configuration, it might

be said to be more intelligent than an AI that just has a set of rules that guides a fixed

set of actions. However, there are some contexts in which you might not want the AI

to learn new rules and behaviors. Perception of AI differs for humans from different

field. For example, developers of expert systems see AI as a repository of expert

knowledge that humans can consult, whereas developers of machine learning systems

see AI as something that might discover new knowledge. As we shall see, each

approach has strengths and weaknesses. [3]

2.2.2 Deep Learning

Deep Learning (DL) is a subset of machine learning (ML). DL is to use the AI to

imitate the human brains by using neurons and connect them creating a neural network

to perform computational calculations for machines to learn from a large amount of

data. DL is very commonly used for image classification tasks.

DL uses a trainable features extractor as compared to ML uses a hand-crafted

feature extractor. The representation of features is hierarchical and trained which

usually are low, mid, and high-level features. Low level features are features that is

the basic attribute of the image or video that can be extracted easily such as contours

and edges. The mid-level feature acts as the bridge for connecting the low- and high-

7

level features. The high-level feature are conceptual and more significant, they are

formed by pairing the low-level feature and mid-level feature, they are often the

characteristics or components of an object,

However, DL requires a large number of labeled data or huge, labeled datasets to

achieve a high accuracy not to mention that the configuration of the model is

challenging to prevent overfitting due to large number of datasets.

2.2.3 Convolutional Neural Network

Figure 2.1: Basic Architecture of CNN

CNN: CNNs are specialized neural networks designed for processing grid-like data,

such as images and videos. They consist of multiple layers, including convolutional

layers, pooling layers, and fully connected layers. Convolutional layers apply

convolution filters to detect local patterns, while pooling layers downsample the data

to reduce the size of data and its dimensionality while preserving key information.

Activation functions introduce non-linearity into the network, allowing it to learn more

complex patterns since CNN is normally dealing with classification tasks not trend or

linear prediction. Commonly used activation functions are ReLU and sigmoid

activation function. The fully connected layers will do the classification task based on

the features extracted. CNN is normally well-suited for tasks like image classification,

object detection, and image segmentation.

8

CNN also presents some challenges for implementation. Training and running

CNNs is computationally expensive since it is requiring powerful hardware resources

to make sure the performance meets the requirement. CNNs can easily achieving

overfit, especially when dealing with small datasets where the accuracy of the testing

does not provide a significant insight since the CNN is predicting the data using

memorization. Despite the good performance, a deep CNN has been considered a

black-box model with weak feature interpretability for decades. Boosting the feature

interpretability of a deep model gradually attracts increasing attention recently, but it

presents significant challenges for state-of-the-art algorithms.[4] Understanding how

CNNs make decisions can be difficult due to their complex internal representations.

Convolutional Neural Networks is a great tool to tackle with problems such as

image classification. Its ability to learn and extract relevant features from images

makes it a powerful tool for various applications. While challenges mentioned above

exist, research and analysis of the CNN on various platforms is required for a better

understanding and application using it to improve the level of lifestyle of human

beings.

2.2.4 Field Programmable Gate Arrays

Field-Programmable Gate Arrays (FPGAs) is a kind of integrated circuits that

offers a combination of reconfiguration and performance. Unlike traditional

processors such as ASICS, FPGA is reprogrammable which allows users to configure

them based on the needs and use. The flexibility of FPGA makes them suitable for

many applications and researcher for the reuse of it based on each project needs.

Field Programmable Gate Arrays are semiconductor devices that are based around

a matrix of configurable logic blocks (CLBs) connected via programmable

9

interconnects. FPGAs can be reprogrammed to desired application or functionality

requirements after manufacturing.[5] The ability to be reprogrammed of FPGAs

makes them different compared to Application-Specific Integrated Circuits (ASICs)

and general-purpose processors. The adaptive power of FPGA makes them a choice

for a variety of applications. FPGAs are made from multiple logic blocks, which are

the building blocks that can be configured to perform a specific logic functions based

on the usage of the algorithm. The blocks that are normally found in a FPGA are Look-

Up Tables (LUTs), flip-flops, multiplexers, BRAM and DSP. The LUT is basically a

table for producing output whenever an input is given. Flip flops or FF is the

components that keeps the state of the chip, where it can store a single bit of

information. Multiplexer is a selector which selects a single input from a variety of

inputs. The BRAM or the memory is used to stored a lot of data which flows in the

FPGA. The DSP in the FPGA acts as the computation unit for processing complex

mathematical tasks.

FPGAs are programmed by using Hardware Description Languages (HDLs) such

as Verilog or VHDL. These languages allow designers to describe the desired

functionality of the digital circuit, specifying how logic blocks should be

interconnected and how data should flow through the system. FPGA has the ability to

utilize parallelism during processing which can leads to a good performance for certain

applications, offering advantages in terms of speed and efficiency compared to

traditional processors such as CPU and GPU. While FPGAs offer parallelism and

efficiency, their programming and optimization can be complex without decent

understanding. The architecture, resource utilization, and timing constraints needs to

be configured and considered in order to get a good performance.

10

FPGA allows users to reprogrammed and change the use of the FPGA based on

their own needs which is a benefit for them as compared to the traditional computing

platform.

2.2.5 High Level Synthesis (HLS)

High Level Synthesis (HLS) is an automated process which is also known as C

synthesis. HLS takes an abstract behavioral specification of a digital system and finds

a register-transfer level structure that realizes the given behavior. HLS allows

programmers or design to write algorithms in a high level programming language such

as C, C++ and Python and through the HLS process, the algorithm converts into the

HDL code which is then can be use in the FPGA. This is crucial since designing a

complex algorithm in the HDL is a very complex task and allowing the synthesis to

happen automatically from high level to low level language allows developers to

implement complex model to the FPGA easier.

Despite its advantages, HLS usage requires significant knowledge on the hardware

architecture of the hardware that we want to implement. Flow, memory and the

constraints are parts where the designer need to be careful on making sure the

performance is significantly comparable to the traditional computing platform. Many

FPGA vendors provide HLS tools integrated into their development environments.

For example, Xilinx comes out with Vivado and Vitis as their HLS tools for the Xilinx

FPGA board.

As a conclusion, High Level Synthesis is a tools for designer to implement their

high level language algorithms onto a hardware such as the FPGA that needs to be

code in low level language such as the HDL by synthesizing the high level language

to the low level language automatically.

11

2.3 Literature review

2.3.1 An FPGA-Based Convolutional Neural Network Coprocessor

In this study by the researchers in this paper, a convolutional neural network (CNN)

coprocessor based on field-programmable gate arrays (FPGA) is introduced. In their

research, the coprocessor features a row stationary (RS) streaming mode 1D

convolutional computation unit PE and a pulsating array structure with a 3D

convolutional computation unit PE chain. The flexibility of the coprocessor proposed

lies in its ability to control the number of PE array openings based on the output

channels of the convolutional layer. The paper also outlines the design of a storage

system with multilevel cache, utilizing multiple broadcasts to distribute data to local

caches. An image segmentation method compatible with the hardware architecture is

proposed. [6]

The presented coprocessor successfully implements the convolutional and pooling

layers of the VGG16 neural network model. Quantization of activation values, weight

values, and bias values is performed using 16-bit fixed-point quantization. The

coprocessor achieves a peak computational performance of 316.0 GOP/s and an

average computational performance of 62.54 GOP/s at a clock frequency of 200MHz,

with a power consumption of approximately 9.25 W. These findings contribute to the

literature on FPGA-based CNN coprocessors and their application in neural network

models.[6]

Table 1: Summary of An FPGA-Based Convolutional Neural Network

Coprocessor

Index Model Target Description

[6] CNN ZC706 evaluation board Platform: ZynqXC7Z045

Frequency (MHz): 200

Quantification: 16 bits

Power: 9.3W

12

Performance (GOP/s): 62.54

2.3.2 MRI-based brain tumor segmentation using FPGA-accelerated neural

network

In contrast to conventional computing platforms, the FPGA accelerator introduced

in this study demonstrates significant enhancements in both speed and power

efficiency. Utilizing the BraTS19 and BraTS20 datasets, our FPGA-based brain tumor

segmentation accelerator exhibits performance gains of 5.21 and 44.47 times

compared to the TITAN V GPU and the Xeon CPU, respectively. Moreover, in terms

of energy efficiency, our design outperforms the GPU and CPU, achieving 11.22 and

82.33 times higher energy efficiency, respectively. These results shows a significant

computational advantages and energy efficiency offered by their FPGA-based

accelerator in the context of brain tumor segmentation.[7]

Table 2: Summary of MRI-based brain tumor segmentation using FPGA-

accelerated neural network

Index Model Target Description

[7] CNN Xilinx’s Alveo

U280 accelerator

card

FPGA accelerator demonstrates significant

improvements in speed and power

efficiency for brain tumor segmentation.

BraTS19 and BraTS20 datasets

Performance gains of 5.21 and 44.47 times

compared to TITAN V GPU and Xeon CPU,

respectively.

Energy efficiency outperforms GPU and

CPU, achieving 11.22 and 82.33 times

higher efficiency, respectively.

2.3.3 FPGA-Based CNN for Real-Time UAV Tracking and Detection

Neural networks (NNs) play a crucial role in modern artificial intelligence

applications, particularly in tasks such as image classification and real-time object

13

tracking. This research paper introduces an innovative approach to address the

challenge of real-time monitoring and detection of unmanned aerial vehicles (UAVs)

using a convolutional neural network (CNN) implemented on a Zynq UltraScale

FPGA. The primary obstacle faced in implementing real-time algorithms on FPGA

platforms is the constraint of DSP hardware resources. The proposed design in this

journal successfully tackles the challenge in the context of autonomous real-time UAV

detection and tracking, which leverage the capabilities of Xilinx's Zynq UltraScale

XCZU9EG system on a chip (SoC).[8]

The solution presented in this study consists of two interconnected modules: a UAV

tracking module and a neural network-based UAV detection module. The tracking

module incorporates a novel background-differencing algorithm, while the UAV

detection module utilizes a modified CNN algorithm optimized for maximum field-

programmable gate array (FPGA) performance. These modules are synergistically

designed to enhance real-time UAV detection in any given video input. The proposed

system has undergone rigorous testing with actual flying UAVs, demonstrating an

accuracy of 82%. It operates at the full frame rate of the input camera for both tracking

and neural network detection, achieving performance comparable to an equivalent

deep learning processor unit (DPU) with UltraScale FPGA-based HD video and

tracking implementation. Notably, our approach exhibits lower resource utilization, as

evidenced by the results obtained in this study.[8]

2.3.4 Briefly Analysis about CNN Accelerator based on FPGA.

Given the extensive and time-intensive nature of convolutional computations in

deep learning, researchers frequently resort to leveraging GPU or FPGA acceleration

to expedite these processes. This paper elucidates the merits of employing FPGA

14

accelerators for convolutional computations. Specifically, it presents research findings

on convolutional computation utilizing FPGA and elucidates the prevalent approach

to FPGA accelerator design, employing high-level synthesis and Vitis AI.[9]

The paper further demonstrates the practical application of these concepts by

deploying and executing the YOLOv4 model on the ZCU102 evaluation board using

Vitis AI. The experimentation involves object detection with a tableware dataset,

resulting in a recognition accuracy of 96.2%. Notably, the FPGA-accelerated

implementation showcases a performance enhancement of 72.5 times compared to a

CPU-based approach. These findings underscore the efficacy of FPGA accelerators in

optimizing convolutional computations for deep learning applications.[9]

Table 3: Summary of Briefly Analysis about CNN Accelerator based on FPGA

Index Model Target Description

[9] CNN FPGA (ZCU102) The specific configuration of the CPU is:

memory of 32GB, processor of Intel Core

i7-8700 CPU @ 3.20GHz × 12, operating

system of ubuntu 16.04 LTS (64 bit). After

testing, the time required for YOLOv4

inference process on CPU is 1164.21

seconds, while it only takes 16.04 seconds

on ZCU102 evaluation board, which is

about 72.5 times higher than the

performance of CPU. It can be seen that,

compared to traditional CPU, FPGA can

bring a lot of performance improvements for

CNN inference process. The mean accuracy

precision is up to 96.2%

2.3.5 A Review of the Optimal Design of Neural Networks Based on FPGA

The widespread adoption of deep learning, rooted in neural networks, has led to

remarkable advancements in image recognition, speech recognition, natural language

processing, automatic driving, and various other domains. FPGA emerges as a

15

standout technology in the accelerated deep learning landscape due to its flexible

architecture, versatile logic units, high energy efficiency, robust compatibility, and

minimal latency. To stay current with the latest advancements in neural network

optimization on FPGA, this review delves into related technologies and research

themes.[10]

The paper begins by outlining the developmental trajectory and application

domains of key neural networks, underscoring the significance of studying deep

learning technology. It highlights the reasons and advantages of leveraging FPGA for

accelerating deep learning tasks. Several prevalent neural network models are

introduced, followed by an extensive review of contemporary FPGA-based neural

network acceleration technologies, methods, accelerators, and framework designs.

The paper also provides insights into the current challenges faced by FPGA-based

neural network applications and proposes corresponding solutions. Lastly, it

anticipates future research directions in this domain, aiming to offer valuable research

perspectives for individuals involved in the field of neural network acceleration using

FPGA.[10]

2.3.6 FPGA implementation for CNN-based optical remote sensing object

detection

In recent years, optical remote sensing object detection has witnessed widespread

application of convolutional neural network (CNN)-based methods, showcasing

impressive performance. Aerospace systems, including satellites and aircraft, often

employ these methods to observe ground objects. However, due to constrained logical

resources and power budgets in these systems, the adoption of embedded devices

16

becomes an attractive option for implementing CNN-based methods. Striking a

balance between performance and power consumption remains a challenge.[11]

This paper presents an efficient hardware-implementation approach for optical

remote sensing object detection. Initially, we optimize the CNN-based model for

hardware implementation, laying the groundwork for effectively mapping the network

onto a field-programmable gate array (FPGA). Additionally, we introduce a hardware

architecture tailored for CNN-based remote sensing object detection. This architecture

incorporates a general processing engine (PE) designed to execute various

convolutions in the network using a uniform module. A streamlined data storage and

access scheme is proposed, achieving low-latency calculations and a high memory

bandwidth utilization rate.[11]

To validate their approach, they deploy the enhanced YOLOv2 network on a Xilinx

ZYNQ xc7z035 FPGA. Experimental results reveal that the FPGA implementation

achieves a performance only 0.18% lower than that on a graphics processing unit

(GPU) in mean average precision (mAP). Operating at a 200 MHz frequency, our

design attains a throughput of 111.5 giga-operations per second (GOP/s) with a 5.96

W on-chip power consumption. [11]

2.3.7 FPGA-Based accelerators of deep learning networks for learning and

classification: A review

With recent advancements in digital technologies and the availability of reliable

data, the field of artificial intelligence has witnessed the emergence of deep learning,

showcasing its effectiveness in addressing complex learning challenges previously

deemed insurmountable. Convolutional neural networks (CNNs), in particular, have

proven highly effective in applications such as image detection and recognition.

17

However, the intensive CPU operations and memory bandwidth requirements pose

challenges for general-purpose CPUs to achieve desired performance levels.[12]

As a remedy, hardware accelerators utilizing application-specific integrated

circuits, field-programmable gate arrays (FPGAs), and graphic processing units have

been increasingly employed to enhance CNN throughput. Notably, FPGAs have

gained traction for accelerating deep learning network implementations due to their

capacity to maximize parallelism and energy efficiency. This paper undertakes a

comprehensive review of recent techniques for accelerating deep learning networks

on FPGAs. Emphasis is placed on the key features employed by these techniques to

enhance acceleration performance. Additionally, the paper provides recommendations

for optimizing FPGA utilization in CNN acceleration.[12]

The techniques examined in this paper capture the latest trends in FPGA-based

accelerators for deep learning networks, serving as a valuable reference for future

advancements in efficient hardware accelerators. This work is anticipated to guide

future research endeavors and prove beneficial for researchers delving into the realm

of deep learning.[12]

2.3.8 Hardware implementation of neural network-based engine model using

FPGA

This paper implements an artificial neural network (ANN)-based engine model

using the Field Programmable Gate Array (FPGA). The developed (ANN)-based

engine model will be used to estimate the engine gas emissions to mitigate the harmful

effects of these emissions on human health. Getting reliable and robust FPGA-based

ANNs implementations depends on the optimal choice of activation function that will

provide minimal area occupation on FPGA. This study introduces, implements, and

18

investigates FPGA-based ANN-based engine models using five different activation

functions. These implemented engine models were described using

MATLAB/Simulink and hardware description language coder and carried out by

Spartan -3E-500.CP132 FPGA platform from Xilinx. The performance of the

implemented engine models was investigated in terms of area-efficient

implementation and the regression values (R) to build a robust ANN-based engine

model.[13]

2.3.9 Summary of other Literature Reviews

Table 4: Literature Review

Index Model Target Accuracy LUT

FF

Power

(W)

Memory

(RAM)

DSP

[14] CNN FPGA

(Xilinx

Zedboard

)

Dataset:

MNIST

Accuracy

: 97%

25436

-

- 257 188

[15] CNN FPGA

(xc7vx98

0t of the

Virtex-7

family)

- 57438

79327

3.25 - 937

[16] CNN FPGA

(Xilinx

ZYNQ

7100)

- 142291

187146

4.083 708 1926

[17] CNN

Mobil

eNet

FPGA

(XCZU7

EV)

87% top-

5

118233

128614

7.35 532 340

[18] NN FPGA

(Xilinx

Artix 7

xc7a35t)

97.25% 10678

16568

- 9 6

[19] NN FPGA

(VIRTE

X-7

FPGA)

- 26499

-

- 12 126

19

[20] NN FPGA 96.0% (ReLU)

7086

6653

(Sigmoid

)

6256

5297

- (ReLU)

15

(Sigmoi

d)

35

(ReLU)

160

(Sigmoi

d)

160

[21] CNN FPGA

(Virtex-6

of part

number

XC6VLX

130T-2

FPGA)

- 1 PE

339

Register

- - 1 PE

16

2.4 Research gap

Review of FPGA-Based Accelerators of Deep Convolutional Neural Networks, by

Philip and Sivamangai states 4 aspect that we can focus on to push the state of art.

Optimize the remaining computation process where only a few experts are currently

working on the activation part of the matrix operation because most of the research

focuses on the loop. Next, is to access optimization. There needs to be more research

on other data access optimization methods. FPGA integration. As illustrated in the

paper, managing scheduling and allocation issues properly can lead to better

performance on a multi-FPGA cluster. Moreover, there is not much research in this

area at the moment. Hence, this direction deserves further exploration. Finally the

automatic configuration. If it was possible to deploy applications on FPGAs more

easily, such as NVIDIA’s CUDA (Compute Unified Device Architecture), complex

programming could be eliminated.[22]

2.5 Summary

The literature review delves into existing research on integrating ARM processors

and FPGAs for high-performance Convolutional Neural Networks (CNNs). It covers

foundational CNN concepts, surveys relevant literature on FPGA-based neural

networks, and identifies gaps for the current study. The background study

20

contextualizes the research within the broader hardware acceleration landscape,

emphasizing the rationale for choosing ARM processors and FPGAs. Overall, this

chapter provides a foundation for the thesis objectives, including FPGA-based CNN

design, optimization exploration, and comprehensive performance analysis.

CHAPTER 3

METHODOLOGY

3.1 Introduction

In pursuit of the aforementioned research goal, the methodology employed in this

study encompasses the comprehensive development and implementation of a

Convolutional Neural Network (CNN) designed for image classification. Emphasizing

the convergence of machine learning and hardware acceleration, this methodology

seeks to optimize the deployment of the trained CNN model on an FPGA, leveraging

the capabilities of the PYNQ Z1 board. The subsequent sections delineate the step-by-

step processes involved in data collection, model training, High-Level Synthesis

(HLS), FPGA implementation, validation, and performance evaluation.

The methodology will be covering on how the project is being conducted. The first

step is to select suitable data and then preprocessing of the data. The next step would

22

be creating a CNN model and a quantized CNN model. Next, Prune and train both of

the model before testing them to get the performance of the models. After that, the

models is converted to HDL using HLS to prepare the models to be implemented on

the FPGA. Testing of the HLS models is then conducted before the bitstream

generation of the models. Then, the bitfiles of both model is transferred to the FPGA

and perform validation. A thorough analysis will be conducted to provide insight on

the FPGA based CNN.

3.2 Approach to the project

3.2.1 Dataset selection

The Street View House Numbers (SVHN) dataset[23] is a good datasets for

performing image recognition and classification tasks using the CNN. The reason for

SVHN dataset to be good for the tasks is because it is real-world images of house

numbers from Google Street View and this makes the dataset relevant to practical

applications, such as optical character recognition in street-level images. The data

quality of the SVHN datasets is a key for its advantage because it contains noise such

as light diversity and noise on the image collected. The quality of data which is closest

to the real-life environment makes sure that the model is able to adapt to images

captured in real time. MNIST datasets is also 1 of the famous datasets to be used for

the same reasons, but SVHN dataset is selected for this project to provide a more

realistic approach to the image recognition and classification tasks since SVHN is a

dataset collected in real life. The MNIST and SVHN is one of the benchmark datasets

for models on digit recognition and classification. If the model successfully

implemented on the SVHN, the capabilities of the model is shown.

23

SVHN dataset contains 72k images for training and 20k images for testing. The

sufficient amount of data in a dataset is a key factor for a good model designation. It

contains image with single digit and multiple digits with different colours, fonts and

background. The variety of features in the datasets prevents the model from overfitting

and achieve a higher precision with a good configuration of model designation.

The SVHN dataset is preferred for CNN training due to its real-world relevance,

large and diverse nature, varied digit appearances, provision of bounding box

information, preprocessing challenges, benchmarking value, accessibility, and

educational benefits. Figure 3.1 shows the data in the SVHN datasets with its labels.

Figure 3.1: SVHN dataset

24

3.2.2 HLS4ML

hls4ml is a Python package for machine learning inference in FPGAs. The library

create firmware implementations of machine learning algorithms using high level

synthesis language (HLS). It can be used translate traditional open-source machine

learning package models into HLS that can be configured for needed case based on

users needs. [24] Workflow of the HLS4ML is shown in Figure 3.2.

With the help of open-source tools like PyTorch and Keras, machine learning

models can be quickly and efficiently translated into high level synthesis (HLS) code,

which can be transpiled and executed on an FPGA. This is the aim of hls4ml.

Subsequently, the HLS project can be utilised to generate an IP that can be integrated

into intricate designs or employed to develop a kernel for co-processing CPUs. Many

of the parameters of the algorithm can be freely defined by the user to best suit their

needs.[24] The hls4ml package makes it possible to quickly prototype the

implementation of a machine learning algorithm in FPGAs, which significantly

shortens the time it takes to get results. It also provides users with guidance on how to

best design a machine learning algorithm for their application while balancing latency,

resource consumption, and performance requirements. [24]

Figure 3.2: HLS4ML workflow

25

An FPGA can be specifically programmed to do a certain task, in this case evaluate

neural networks given a set of inputs, and as such can be highly optimized for the task,

with tricks like pipelining and parallel evaluation. However, this means dynamic

remapping while running isn’t really a possibility. FPGAs also often come at a

comparatively low power cost with respect to CPUs and GPUs. This allows hls4ml to

build HLS code from compressed neural networks that results in predictions on the

microsecond scale for latency. The hls4ml tool saves the time investment needed to

convert a neural network to a hardware design language or even HLS code, thus

allowing for rapid prototyping. [24]

In summary, HLS4ML serves as a bridge between high-level machine learning

model development and efficient FPGA implementations. By automating the

translation process and dealing with FPGA-specific optimizations, HLS4ML eases the

deployment of machine learning models onto hardware, providing a valuable tool for

developers seeking to leverage FPGA acceleration.

3.2.3 PYNQ Z1 board implementation

With the help of PYNQ, a brand-new open-source framework, embedded

programmers can take advantage of the capabilities of Xilinx Zynq All Programmable

SoCs (APSoCs) without having to create programmable logic circuits by using the

PYNQ-Z1 board. Rather, Python is used to programme the APSoC, and the PYNQ-

Z1 is used to test and develop the code. The process of importing and programming

programmable logic circuits is much the same as that of software libraries; they are

imported as hardware libraries and programmed via their respective APIs.

PYNQ provides a high-level programming abstraction, allowing developers to

program the FPGA using Python. It provides the Jupyter Notebook in the PYNQ board

26

image. This allows the designers to write code and algorithms in Python directly in

the board which solves the challenge of needing to write HDL code on a FPGA as they

need to in the normal FPGA. PYNQ board uses the Zynq System on Chip which

combines multiple features in a single chip but still able to perform the same desired

function with multiple chips on board. ARM processor is also in the Zynq SoC. This

enables hardware acceleration with the CPU, DSP and other components all on the

same chip or board. The flexibility of the PYNQ board is also its advantage for

reprogramming the SoC following the needs.

To conclude, the PYNQ z1 board is chosen for its flexibility, reprogrammable

ability and lower challenge compare to the other FPGA. The Python interface with

jupyter Notebook built in the image of PYNQ and its Zynq SoC provides a huge

advantage to implement CNN on the board for this project. The physical board is

shown in Figure 3.3 and its architecture is shown in Figure 3.4.

Figure 3.3: PYNQ Z1 board

27

Figure 3.4: Zynq APSoC architecture

3.3 Proposed Method Flowchart

The flowchart of this project is shown in Figure 3.5. The process starts with the

research on the background and a thorough literature review on the project. After that,

the dataset selection and the preprocessing of the data is conducted. After that, the

CNN model is build on a Docker container. The Docker container is installed in the

Ubuntu system on host machine, the reason to use the docker container because it is a

isolated, standalone package to run all the applications. This saves the time and

challenges to install software such as Vivado into the host machine, where installation

of the software can be done on a single script with the command to do it all.

The second objectives is to optimize the model created in the steps before.

Quantization of the CNN model is created and the pruning with the training process is

conducted. The model is then trained and tested using SVHN datasets. The

configuration of the model is tuned until the accuracy reaches above 80% for the

training and testing. Testing process makes sure the model is generalized for any new

data can be classified correctly by the model. After the accuracy reaches the desired

28

level which is 80%, the HLS conversion of both of the models is conducted using the

hls4ml library.

The HLS conversion and configuration step optimizes the model for hardware

implementation. This is followed by simulation and synthesis to test the model’s

functionality before actual deployment. Bitstream generation is conducted after the

synthesis process runs without any critical error. The model is then deployed on board

by transferring the bitfile, hardware configuration file and the AXI stream driver to

the PYNQ z1 board and validated. If the accuracy remains 80% or above, the process

proceeds. If not, adjustments are made in the previous steps and the model is retested.

The report of the implementation and the accuracy of all the processes is recorded

and analyzed. These steps provide an insight on the implementation of CNN on the

PYNQ Z1 board.

29

Figure 3.5: Flowchart

3.3.1 Data Preprocessing

The pseudocode of the data preprocessing is shown in Figure 3.6. The SVHN

dataset is provided by the TensorFlow Dataset. After loading the dataset, the

preprocessing step is conducted. The dataset is first split into 90/10 where 90% of the

data will be used in the training and the remaining will be the validation datasets.

A preprocess function is build for doing the preprocessing of datasets. The function

starts by normalizing the pixel values which are normally in 8 bit image[0 255] into a

standardized floating points ranging from [0 1]. Normalization needs to be done to

30

make sure that training process of the training process runs steadily to achieve good

convergence and performance of the model. The next step is to encode the class label

convert the integer-encoded labels into a one-hot encoded representation. Any

unnecessary dimensions in removed from the label tensor. The encoding process

generates binary vector representation of the data. For example for image with image

3 in the SVHN datasets which has 10 classes (0-9), the representation would be [0 0 0

1 0 0 0 0 0 0]. This format enables a better interpretation of the image or data for the

CNN model.

Next, we let the training dataset to undergo the preprocess stage to achieve the

format that is reliable to be used in the CNN model. The preprocessed data is then

shuffled, batched and prefetch to increase the performance of the training process.

Shuffling of the data avoids bias and introduce randomness to the model. The bath

size is set to 1024 for training purposes. The validation dataset also undergoes the

preprocessed stage for the same purpose. The testing dataset is fetch and undergo the

preprocessing stage as well to ensure the consistency of the data fed into the model.

In summary, the datasets undergo preprocessing for a better training and testing

process so that the CNN model is able to do the digit recognition task from the image

in the dataset. It meticulously handles preprocessing intricacies, batch organization,

and prefetching, thereby laying a robust foundation for subsequent model training and

evaluation endeavors

31

Figure 3.6: Pseudocode of the Data Preprocessing

3.3.2 Model Development

A convolutional neural network (CNN) architecture is meticulously crafted using

the Keras API in conjunction with the TensorFlow backend.[25] The architecture

unfolds through a series of convolutional blocks, where each block encapsulates a 3x3

convolutional layer, batch normalization for stability, rectified linear unit (ReLU)

activation for introducing non-linearity, and 2x2 max pooling to downsample spatial

dimensions is shown in Figure 3.7. The configuration of each convolutional block,

specifically the number of filters, is specified by the filters_per_conv_layer list.

Following the convolutional blocks, the flattened output is directed through dense

blocks, signifying fully connected layers. Each dense block is composed of a dense

layer, batch normalization to mitigate internal covariate shift, and ReLU activation for

non-linearity. The number of neurons in each dense block is determined by the

neurons_per_dense_layer list.

32

The final dense layer outputs logits corresponding to the number of classes

(n_classes), and a softmax activation function is applied to obtain class probabilities.

The model is compiled for training using categorical cross-entropy as the loss function

and the Adam optimizer.

Figure 3.7: Architecture of CNN model

33

3.3.3 Pruning

Pruning is a technique employed to reduce the size of neural networks by

eliminating certain weights, thereby promoting sparsity. This is done with the goal of

achieving a more efficient model in terms of memory usage, inference speed, and

potentially improving generalization performance.

The pruning process is done with a custom designed function, with applying weight

pruning to the layers in the CNN. The pruning process is determined by the

PolynomialDecay function provided by TensorFlow which will increase the sparsity

from 0 until 50% sparsity is reached for the models. The function will increase the

sparsity every 2 epoch during the training process.

The pruneFunction is a custom function designed to apply weight pruning to

specific layers of the neural network. The pruning schedule is determined by the

PolynomialDecay function from TF-MOT, which gradually increases sparsity from an

initial value of 0.0 to a final sparsity level of 50%. This increase occurs every 2 epochs,

starting at the specified begin_step and ending at the end_step, with a specified

frequency determined by frequency. The layers that will be pruned is the convolutional

layers and the dense layers. These layers are pruned since they have the most

complexity and pruning them can eventually lead to a significant reduction in model

size without affecting the performance of the model. Pruning is done by setting a

portion of weight to 0 gradually during the training process so that the model can adapt

to the sparsity constraint.

Finally the pruned model is created after the training process of the model. This is

to create a model that is smaller so that it is more resource efficient. This optimization

step is crucial since we are to deploy the model in the PYNQ Z1 board which is a

34

FPGA that has tighter resource constraint and limited computational power. With a

pruned model, the model could have a faster model inference and development. The

pruning process is shown in Figure 3.8.

Figure 3.8: Pruning Process

3.3.4 Model Training

The training process is conducted following a logic statement, where the training

will only conducted if the statement is True whereas when it is false, the training

function will only load the pre-saved model in the previous session.

The training is done with the following steps, specifying the loss function which is

the categorical cross-entropy in my project and the Adam optimizer with the learning

rate, beta values, epsilon and the ANSGrad. The model undergoes 30 epoch or

iterations of training with callbacks such as early stopping and learning rate reduction

for training efficiency. After the training has been done, the pruned and trained model

is then saved as a h5 file.

35

3.3.5 Model Testing

The testing process is conducted after the training process to see if the model is

well trained. The accuracy desired is above 80%. The testing input data is defined as

X_test and the ground truth label is defined as Y_test. The data is then put in the

trained model for prediction of the class probabilities and performance of the model is

recorded.

3.3.6 Quantization

Quantization is an optimization technique which reduces the precision of weights

and activations in the neural network. Quantization can improve the model efficiency

and reduce the resource utilization which may leads to hardware inference and

implementation which is the aim of this project.

The quantization of the CNN model is done by using the QKeras library which

provides the simplicity to use the quantized layer in model developing. The

development process of the CNN model is the same as the non-quantized model with

just using the function QConv and QDense while developing the CNN model. By

using this function, the quantized convolutional and dense layers of CNN is created.

The kernel and bias for the convolutional layer is set to 6 bits quantization with 0

fractional bits. The activation used in the quantized model is also a 6 bits ReLU

activation function. The configuration of the Dense layer is also set to 6 bits

quantization and 0 fractional bit. With these configuration, a qkeras which is a

quantized CNN model is created.

The model is then gone through the same process as the not quantized model which

is training, pruning and testing. The architecture of the quantized model is shown in

the Figure 3.9.

36

Quantization is performed to leverage the benefits of reduced precision arithmetic,

leading to more memory-efficient models and potentially faster inference on hardware

with support for quantized operations. While quantization introduces a trade-off

between model accuracy and computational efficiency, it is particularly useful in

scenarios where computational resources are constrained, such as edge devices and

embedded systems. The specific choice of quantization parameters, such as the

number of bits and alpha values, allows for a balance between model efficiency and

performance.

Figure 3.9: Quantized CNN model Architecture

37

3.3.7 Visualization

A Receiver Operating Characteristic (ROC) curve is created for a multi-class

classification task, comparing the performance of a baseline Keras model with a

quantized Keras (QKeras) model. The ROC curve is a graphical representation of the

trade-off between true positive rate (sensitivity) and false positive rate (1 - specificity)

at various classification thresholds. This comparison is performed for each class in the

classification task. For each class label, the true positive rate (tpr) and false positive

rate (fpr) are calculated and the area under the ROC curve (AUC) is also computed.

This visualization serves to compare the performance of the baseline Keras model

with the quantized Keras model. A higher AUC value generally indicates better model

performance in distinguishing between positive and negative instances. The

comparison also extends to accuracy metrics, providing a good evaluation of the

models.

3.4 Implementation

3.4.1 HLS conversion

The pruning layer is removed to make sure that the appropriate custom layer is

passed. The hls4ml library is utilized to convert and compile a pruned convolutional

neural network (CNN) model, which was originally defined in Keras, into a hardware

description language (HDL) representation suitable for FPGA (Field-Programmable

Gate Array) deployment.

Configuring hls4ml using the `hls4ml.utils.config_from_keras_model` function,

extracting configuration parameters from the Keras model is needed to be done as the

first step. The granularity is set to 'name,' meaning that each layer's configuration is

specified by its name. The precision for the entire model is set to 'ap_fixed<16,6>,'

38

indicating a fixed-point representation with 16 bits (total width) and 6 bits for the

fractional part. The reuse factor is set to 1, meaning that the hardware design aims to

fully parallelize the computation for each layer. For each layer, the strategy is set to

'Latency,' suggesting that the design aims to minimize the latency (execution time) for

that layer. Additionally, the strategy for the output layer ('output_softmax') is set to

'Stable' to ensure better numerical stability, especially for high-accuracy models. A

configuration dictionary (`cfg`) is created for hls4ml conversion, specifying

parameters such as the backend ('Vivado'), IO type ('io_stream'), the HLS

configuration (`hls_config`), the Keras model (`model`), the output directory

('pruned_cnn/'), and the target Xilinx FPGA part. The

`hls4ml.converters.keras_to_hls` function is called to convert the Keras model into an

HLS representation using the provided configuration (`cfg`).The resulting HLS model

is then compiled using the `compile` method.

The goal is to prepare a pruned CNN model for deployment on an FPGA by

converting it into an HLS representation. The configuration settings, such as precision,

reuse factor, and layer-wise strategies, are crucial for optimizing the hardware design

based on the characteristics of the model and the target FPGA device. The resulting

HLS model can be further synthesized and implemented on an FPGA for efficient and

high-performance inference. After that, we check the accuracy of the hls4ml model

and plot the ROC for it. The architecture of the HLS models is shown in Figure 3.10

and Figure 3.11

39

Figure 3.10: HLS Pruned CNN model architecture

40

Figure 3.11: HLS Quantized Pruned CNN model architecture

3.4.2 Simulation, Synthesis and Bitstream Generation

Simulation and synthesis is done using the command build from the hls4ml library.

The estimated resource utilization report is generated for analysis purposes. The

configuration of hls4ml is slightly different compared to the synthesis part where the

backend used is the Vivado accelerator where the synthesis process uses the Vivado

as backend. The bitfile, hardware handsoff, driver and testing data is archived into a

tar.gz file and copied to the PYNQ board.

41

3.4.3 Deployment and Validation

The image of the board is downloaded and loaded into a SD card for the pynq board

to work. After that, the NN inference can be done with the driver AXI and the output

is saved for analysis. The accuracy on board is being compared with the host

machine’s accuracy.

3.5 Analyzation performance

3.5.1 Inference Time:

In the context of FPGA deployment, the inference time is a critical metric reflecting

the speed at which the model processes input data and produces classification results.

The FPGA's parallel processing capabilities are harnessed to optimize inference time,

and measurements are taken to quantify the reduction achieved compared to a purely

software-based implementation.

3.5.2 Resource Utilization:

Resource Utilization is the amount of resources used by an FPGA for the particular

design, in my project, it is the HLS pruned CNN model and HLS quantized pruned

CNN model. The aspects that is often consider is Lookup table, Digital Signal

Processing (DSP), Flip Flops (FF), Block RAM and I/O block. They are affected by

the architecture of the model and the designation of the model and also the HLS

conversion technique.

3.5.3 Power Consumption:

Power Consumption is the power needed for the FPGA to run the model. It is

usually affected by the function and the frequency of the FPGA running. The design

complexity and operating condition can also changes the power consumption of

FPGA.

42

3.5.4 Comparison with Traditional Platform Implementation:

In order to visualize the advantages and limitations of FPGA comparing to the CPU

and GPU, the comparison between them is needed to be done and analyze for gaining

insight on both of the platforms implementing the same model performing the same

classification task.

3.5.5 Trade-offs and Optimization Strategies:

With optimization technique done on the models for resource and power efficiency,

there will also be trade-offs in the accuracy of the model. Performance analysis is done

to inspect the significance of the optimization technique. Balancing the efficiency and

accuracy is one of the main key aspect.

3.5.6 Validation of FPGA-Deployed Model:

The performance metrics derived from FPGA implementation are cross-validated

against the metrics obtained during the training and validation phases in Python. This

step is to perform an analysis on the performance of the FPGA. This makes sure the

implementation of FPGA based CNN is significant.

CHAPTER 4

RESULT AND DISCUSSION

4.1 Introduction

In this section, the accuracy, resource utilization and power of the pruned CNN

model and the quantized pruned CNN model will be discussed. The validation and

accuracy of both models in the PYNQ Z1 will also be displayed as the result.

4.2 Result of Pruned CNN model

4.2.1 Accuracy

The accuracy of the pruned CNN model is 88.97% and the pruned CNN HLS model

has the accuracy of 88.73%. The accuracy stated is the accuracy running on the CPU

i5 7th generation. There is a slight decrease in the accuracy for the HLS model. This is

a normal phenomenon since there are certain optimizations done during the HLS

process to make the model more suitable for hardware implementation.

44

The confusion matrix in the Figure 4.1 is a useful tool for understanding the

performance of a machine learning model. It shows the number of times each class

was predicted for every true class. Darker shades in the matrix indicate higher

numbers, providing insights into which classes the model is accurately predicting and

which ones it’s struggling with. In the context of the statement, the confusion matrix

could be used to analyze the performance of the pruned CNN model both before and

after the HLS conversion.

Figure 4.1: Confusion matrix of pruned CNN model

The graph in Figure 4.2 is the ROC of the pruned CNN model and the pruned CNN

model HLS. It is the representation of the performance for both the models. They are

evaluated based on their Area under Curve, AUC which is a metric to measure the

performance of classification task. Higher AUC indicates the model performance is

good. As we can see in the graph, the x axis is the signal efficiency and the y axis is

the background efficiency, Signal Efficiency is the rate at which true positive events

are correctly identified, and Background Efficiency is the rate at which false positive

events are incorrectly identified as true. A model with perfect classification would

45

have a signal efficiency of 1 and a background efficiency of 0. Both models are closing

in towards 1.o which indicates both model perform well for all the classes in the

classification task. In summary, the graph helps us to visualize the model’s

performance.

Figure 4.2: ROC of pruned CNN model

In conclusion, the goal of using high-performance architectures like ARM

processors and FPGAs is to strike a balance between computational efficiency and

model accuracy. A small drop in accuracy might be acceptable if the gains in

efficiency are significant. This is particularly true for applications where real-time

processing and low power consumption are critical. The success of deploying

Convolutional Neural Networks (CNNs) on Field-Programmable Gate Arrays

(FPGAs) lies not only in achieving hardware acceleration but also in preserving the

model's predictive accuracy. This section presents a comprehensive analysis of the

accuracy results obtained through various implementations

46

4.2.2 Resource Utilization

This section presents the implementation report focusing on the resource utilization

report by Vivado. The resource utilization report is shown in Figure 4.3, Figure 4.4

and Figure 4.5. Slice LUT is used for implementing combinational logic. Out of the

available 53,200 Slice LUTs, 36,460 are utilized, achieving a utilization rate of

68.53%. The breakdown reveals that 63.80% of these LUTs are configured for general

logic purposes, while 14.48% are allocated for use as memory. A portion of the Slice

LUTs is dedicated to specific functions such as Distributed RAM and Shift Register.

In the report, it states that 22 LUTs serve as Distributed RAM, and 2,497 LUTs are

configured as Shift Registers. The slice registers is used for storing intermediate and

final results, displays a utilization of 55.61%. All 59,173 registers are employed, with

the entirety configured as Flip Flops, indicating a predominant use for sequential logic.

The utilization of F7 and F8 multiplexers, critical for routing signals within the FPGA,

is presented. F7 Muxes demonstrate a utilization of 6.70%, with 1,781 out of 26,600

in use. Similarly, F8 Muxes exhibit a utilization of 4.31%, with 573 out of 13,300

utilized.

Figure 4.3: Slice Logic Report of Pruned CNN model

47

The memory report is shown in Figure 4.4. The Block RAM Tile serves as a

fundamental memory component in the FPGA design, providing 71 utilized instances

out of an available pool of 140 which shows the utilization rate of 50.71%. Block

RAM Tiles are versatile and commonly used for storing data in FPGA designs,

contributing significantly to the overall memory landscape. Specific instances of

memory, namely RAMB36/FIFO and RAMB36E1, are employed in the design with

4 instances each. These instances are drawn from an available pool of 140, resulting

in a modest utilization rate of 2.86% for both types. These memories are essential for

applications requiring specialized memory structures, such as First-In-First-Out

(FIFO) implementations. The RAMB18 module, known for its capacity and

versatility, is utilized with 134 instances out of an available 280, achieving a utilization

rate of 47.86%. This memory component is commonly employed for various data

storage and retrieval operations within the FPGA design. Similar to RAMB18, the

RAMB18E1 module exhibits a utilization rate of 47.86%, with all 134 instances

actively contributing to the design. RAMB18E1, with its enhanced features, further

enhances the memory capabilities of the FPGA.

Figure 4.4: Memory usage report of Pruned CNN model

The DSP resource utilization shown in Figure 4.5 is 215 instances actively in use

out of an available pool of 220, resulting in a utilization rate of 97.73%. DSP modules

48

are crucial for accelerating complex mathematical computations and signal processing

tasks within FPGA designs.

Figure 4.5: DSP usage report of Pruned CNN model

The integrated analysis of Slice Logic, DSP, and Memory utilization showcases a

holistic approach to resource management. The near-maximal use of DSP resources

suggests an efficient alignment of computational tasks with specialized hardware

capabilities. The balance between Slice Logic and Memory utilization indicates a

harmonized allocation of resources for both computational and data storage

requirements.

4.2.3 Power

The power report is appended in Figure 4.6. Total On-Chip Power (W) is the total

power consumption of the chip in Watts. The value 2.173W means that the chip is

consuming approximately 2.173W of power. Dynamic (W) is the dynamic power

consumption of the chip, which is the power consumed when the chip is active or in

operation. The chip is consuming approximately 2.007 Watts of dynamic power.

Device Static (W) is the static power consumption of the chip, which is the power

consumed when the chip is idle or not in operation. The chip is consuming

approximately 0.166 Watts of static power. Effective TJA (C/W) stands for Thermal

49

Resistance Junction to Ambient. It’s a measure of how effectively the chip can transfer

heat from the junction (the part of the chip that gets hot) to the ambient environment.

The lower the TJA, the better the chip is at cooling itself. Max Ambient is the

maximum ambient temperature, in Celsius, at which the chip can operate. Junction

Temperature is the temperature, in Celsius, at the junction of the chip. This is typically

the hottest point on the chip. The total on-chip power is also lower compared to the

pruned CNN model which indicates that the quantization process leads to a lesser

power usage model.

Figure 4.6: Power report

4.2.4 Clock Constraint and Frequency

As shown in Figure 4.7 and 4.8, the clock frequency used is 100 MHz and there is

no violation of clock for the setup, hold and PW which is a good design features. In

Vivado, the "worst slack" in the Clock Report refers to the timing slack of the critical

path with the least amount of margin in terms of meeting the specified timing

constraints. The timing constraints define the desired performance goals for the

model’s design, such as maximum clock frequency, setup time, and hold time

requirements.

50

The timing slack represents the amount of time by which a signal can be delayed

without violating the specified timing constraints. A positive slack value indicates that

the design meets the timing requirements, whereas a negative slack value indicates a

timing violation. The "worst slack" is the smallest (most negative) slack value among

all the critical paths in your design.

If the worst slack is negative, it means that the design is failing to meet timing at

that particular critical path. This could be due to various reasons, such as congested

routing, inefficient placement of logic elements, or inadequate clock-to-q delays in the

sequential elements along the critical path.

Figure 4.7: Clock summary

Figure 4.8: Clock constraint

4.3 Quantized Pruned CNN model

4.3.1 Accuracy

In the assessment of Convolutional Neural Networks (CNNs) within the scope of

our research on 'Building Brains with ARM Processors and FPGAs Based on High-

Performance Architectures,' we evaluated the model's performance using two distinct

frameworks: qkeras and qkeras_hls4ml. The accuracy metric, a key indicator of the

model's classification performance, was determined for each framework. The achieved

51

accuracy for the qkeras implementation was 87.5%, while the accuracy for the

qkeras_hls4ml implementation was slightly lower at 87.46666666666667 %. These

values reflect the models' abilities to correctly classify input data, providing insights

into the effectiveness of each framework in implementing high-performance CNNs on

the selected hardware architectures.

The confusion matrix in Figure 4.9 allows us to identify the performance of all the

classes for classification. We can specifically look at each class to determine which

class has the highest performance and which has the lowest. We are also able to look

at which class has the highest number of data in the test dataset we used.

Figure 4.9: Confusion matrix of Quantized Model

The performance is evaluated based on the Area Under Curve (AUC) values, which

is a common metric used in machine learning to measure the quality of binary

classification problems.

The graph in Figure 4.10 plots Signal Efficiency against Background Efficiency,

which can be interpreted as the model’s ability to correctly classify signal (true

positives) and background (true negatives) instances. This is crucial in the context of

52

CNNs as it directly relates to the model’s accuracy and precision. The different colored

lines represent different taggers, each with a specific AUC value. These taggers is the

classes of prediction which is 0 to 9. “Signal Efficiency” is the rate at which true

positive events are correctly identified, and “Background Efficiency” is the rate at

which false positive events are incorrectly identified as true. A model with perfect

classification would have a signal efficiency of 1 and a background efficiency of 0.

As we can see in the figure, there is less performance drop after the HLS conversion

which is a good phenomenon for our aim.

Figure 4.10: ROC of Quantized Pruned CNN model

4.3.2 Resource Utilization

The resource utilization report is presented in Figure 4.11, 4.12 and 4.13. Slice

Look-Up Tables (LUTs) are fundamental building blocks in an FPGA. They

implement arbitrary Boolean logic functions. The utilization of 66.58% indicates that

a significant portion of the logic in the design is implemented using these LUTs. A

utilization of 62.57% suggests that a majority of the LUTs are used for this purpose.

53

LUTs can also be used as small memories or shift registers. The utilization of 12.26%

indicates that a small portion of the LUTs are used as memory elements. Slice registers

are used to store data or state information in sequential logic. The utilization of 46.34%

suggests that about half of the available slice registers are used in the design. Register

as flip flops refers to registers that are used as flip-flops, a basic unit of memory in

digital circuits. The utilization matches that of the slice registers, suggesting that all

used registers are configured as flip-flops. All the utilization percentages drop

compared to the pruned CNN model. This indicates that the quantized pruned CNN

model uses lesser resource compared to the pruned CNN model.

Figure 4.11: Slice Logic report of Quantized Pruned CNN model

Block RAMs are used to implement larger memory arrays. They are used in designs

that require storage of large amounts of data or coefficients. The utilization of 29.64%

indicates that less than a third of the available Block RAM Tiles are used in the design.

There is a significant drop in the memory utilization of the quantized pruned CNN

model compared to the pruned CNN model. Quantization reduces the precision of the

weights in the neural network. For example, weights that were originally 32-bit

floating point numbers might be reduced to 8-bit integers. This can significantly

reduce the memory requirements of the model, as well as the computational

54

requirements of the forward pass. In conclusion, the low memory utilization in the

report can be attributed to the use of quantization and pruning techniques. These

techniques have reduced the memory footprint of the CNN model, allowing it to fit on

the FPGA with plenty of resources to spare. This is particularly beneficial in embedded

systems where memory and computational resources are limited.

Figure 4.12: Memory report of Quantized Pruned CNN model

DSPs are used to perform arithmetic functions, such as multiply-accumulate, in a

single operation. They are crucial for implementing the convolutional layers in a CNN.

The utilization of 83.64% indicates that a significant portion of the DSPs are used in

the design. Quantization can significantly reduce the computational requirements of

the forward pass, which in turn can lead to a reduction in DSP usage.

Figure 4.13: DSP usage report of Quantized Pruned CNN model

55

4.3.3 Power

The power report is appended in Figure 4.14. Total On-Chip Power (W) is the total

power consumption of the chip in Watts. The value 1.953 suggests that the chip is

consuming approximately 1.953 Watts of power. Dynamic (W) is the dynamic power

consumption of the chip, which is the power consumed when the chip is active or in

operation. The chip is consuming approximately 1.798 Watts of dynamic power.

Device Static (W) is the static power consumption of the chip, which is the power

consumed when the chip is idle or not in operation. The chip is consuming

approximately 0.154 Watts of static power. Effective TJA (C/W) stands for Thermal

Resistance Junction to Ambient. It’s a measure of how effectively the chip can transfer

heat from the junction (the part of the chip that gets hot) to the ambient environment.

The lower the TJA, the better the chip is at cooling itself. Max Ambient is the

maximum ambient temperature, in Celsius, at which the chip can operate. Junction

Temperature is the temperature, in Celsius, at the junction of the chip. This is typically

the hottest point on the chip. The total on-chip power is also lower compared to the

pruned CNN model which indicates that the quantization process leads to a lesser

power usage model.

Figure 4.14: Power report of Quantized Pruned CNN model

56

4.3.4 Clock Constraint and Frequency

As in the pruned CNN model clock summary report, the clock frequency used in

the quantized pruned CNN model is also 100MHz and there is also no clock violation

found after the implementation process which we are able to notice in Figure 4.15 and

4.16.

Figure 4.15: Clock summary of Quantized Pruned CNN model

Figure 4.16: Clock Constraint of Quantized Pruned CNN model

4.4 PYNQ Z1 board

4.4.1 Validation

The validation process is done which is shown in Figure 4.17 and to make sure the

practical implementation of the pruned CNN model and the quantized pruned CNN

model works on the PYNQ Z1 board. The code shows the inference process is done

using the axi driver which is the communication protocol, the bitfile and configuration

file.

57

Figure 4.17: PYNQ Z1 board inference

Another way shown in Figure 4.18 that is tested for validation is by using an image

in the testing dataset and using it to the model on the board and check the predicted

class. This is a qualitative analysis for the model on the board PYNQ Z1.

Figure 4.18: Validation of 1 image

58

4.4.2 Accuracy

The accuracy onboard(Keras) is 88.73333333333333%, whereas the accuracy

onboard(QKeras) is 87.46666666666667%. The accuracy is same for both model

respectively to the accuracy after the HLS conversion. This indicates that there is no

accuracy loss during the inference on board.

4.5 Model in Google Colab

Both model are also built in the Google Colab using the Colab’s CPU and GPU

workspace to perform a comparison analysis.

4.5.1 Accuracy

The accuracy with the training and testing using CPU and GPU on the Google

Colab of the Keras model is 88.1% and the accuracy for quantized keras model is

84.9% which is slightly lower than the only CPU using intel i5 7th generation’s

accuracy stated in the section above. This can be due to the GPU limitations which the

use of floating-point precision on GPUs compared to CPUs can indeed be a factor that

affects the accuracy of computations and, consequently, the overall accuracy of a

machine learning model. GPUs often use lower-precision floating-point formats (such

as half-precision or mixed-precision) to accelerate computations, which may result in

some loss of precision compared to the higher precision typically used on CPUs

(single or double precision). Visualization of the graph can be seen in Figure 4.19.

59

Figure 4.19: Visualize of accuracy on Colab

4.5.2 Resource Utilization

The resource Utilization graph of the Google Colab can be seen in Figure 4.20. The

CPU usage of the training and testing is very high where it fluctuated from 0 to 100%,

the memory usage for the models are at 30% average and the GPU usage fluctuated at

0 to 60%.

60

Figure 4.20: Resource graph for Colab

4.6 Comparison

Table 5 shows the comparison of both the pruned models and quantized models on

different platforms in terms of accuracy, power, and resource utilization. The CPU and

GPU approach have a slightly lower accuracy, but the training process is a lot quicker

compared to the CPU only approach.

Table 5: Comparison Analysis

Device Model Power Resource Utilization Testing

Accuracy

CPU & GPU

(Colab)

Faster Training

Pruned CNN 61W &

300W

(on server)

100% CPU, 60% GPU,

35% Memory

88.1%

CPU & GPU

(Colab)

Quantized

Pruned CNN

61W &

300W

(on server)

100% CPU, 60% GPU,

35% Memory

84.9%

CPU (Ubuntu

Intel i5 7th gen)

Slower

Training

Pruned CNN 65W - 88.9%

CPU (Ubuntu

Intel i5 7th gen)

Quantized

Pruned CNN

65W - 87.5%

61

CPU (Ubuntu

Intel i5 7th gen)

Pruned CNN

HLS

65W - 88.7%

CPU (Ubuntu

Intel i5 7th gen)

Quantized

Pruned CNN

HLS

65W - 87.4%

PYNQ Z1 Pruned CNN

HLS

2.173W 68.53% LUT,

55.61% Registers,

97.73% DSP,

50.71% Memory

88.7%

PYNQ Z1 Quantized

Pruned CNN

HLS

1.953W 66.58% LUT

46.34% Registers

83.64% DSP

29.64% Memory

87.4%

4.7 Discussion

The PYNQ Z1 utilizes parallelism techniques such as unrolling, pipelining, inlining

and partitioning array. Loop unrolling is a compiler optimization technique employed

to enhance parallelism in software implementations, particularly within loops. By

replicating the loop body multiple times, loop unrolling reduces loop overhead and

exposes more opportunities for instruction-level parallelism. This approach allows

multiple iterations of the loop to execute concurrently, facilitating improved

throughput and computational efficiency. Inlining, another optimization strategy,

involves incorporating the body of a function directly into the calling code, eliminating

the overhead associated with function calls. In the context of parallelism, inlined code

offers better optimization opportunities as the compiler can more easily identify and

exploit parallelism within the broader context of the calling code. Furthermore,

partitioning arrays is a technique where large arrays are broken down into smaller,

manageable chunks, enabling independent or parallel processing of segments. This

approach distributes the workload and enhances overall throughput by creating

opportunities for parallel execution. Lastly, pipelining is a hardware design strategy

62

that breaks down a computation into stages, allowing each stage to operate

concurrently. This technique enhances concurrency by overlapping the execution of

different stages, where each stage processes a different set of data. The result is

efficient parallel processing of multiple data elements at various stages

simultaneously, further optimizing the overall performance of the computation. The

parallelism of FPGA allows it to increase the performance in terms of resource

utilization, power and thermal. Some of the examples are shown in Figure 4.22 for the

parallelization technique. The technique used is automated by the HLS4Ml library.

However, with the resource constraint of the RAM on board, the training process is

not able to run on the board, which means that the training must be done on host

machine and then convert the trained model into the bitfile and hardware configuration

file then only the inference can be done the PYNQ Z1 board. The example of the

parallelism done is shown in Figure 4.21.

Figure 4.21: Parallelization during Synthesize and Bitstream Generation

63

4.8 Environment and Sustainability

4.8.1 Needs and Importance for Sustainable Development

Figure 4.22: SDG

The first aspect is developing an advanced Computing for AI Applications. The

demand nowadays for AI application in the healthcare, finance and automation sector

is increasing since AI eases the work needed to be done by humans not to mention

excels in some of the job. Advanced computing solutions such as ARM processor and

FPGA has become a necessity for answer those demands. The project is also aiming

for energy efficiency. Energy efficiency is able to reduce environmental impact done

by technology in order to improve the lifestyle of humans. ARM processor and FPGA

are well known for their power efficiency, which can be a solution for energy-

efficiency. ARM processors and FPGA can provide the scalability and flexibility in

developing neural networks. This ensure the adaptability of the board for the evolution

of neural networks which happens in the blink of an eye. ARM processors and FPGA

has the ability to optimize resource utilization and ensuring sustainability.

4.8.2 Impact of the Engineering Solution on Society

Application of CNN on FPGA allows the medical advancement in imaging,

diagnostic which can lead to better healthcare outcomes. Nowadays, autonomous

64

systems is a trend for things such as vehicles and drones. This project provide an

insight on the real time image based recognition system to enhance safety. Precision

agriculture is also an aspect that can potentially benefit from this project. Wastage of

resource can be avoid when precision agriculture can be implemented using FPGA

based CNN.

4.8.3 Impact on the environment

The impact of this project on the environment can be reducing carbon footprint, e-

waste management and natural resource conservation. Energy efficiency of the ARM

processor and FPGA can lead to reduce in overall carbon footprint. The flexibility and

reprogrammability of FPGA allows lesser of e-waste since it can be reuse and

reprogram each time according to the needs of user. Energy efficient of the ARM

processor and FPGA also allows this project to contributes in natural resource

conservation.

4.9 Summary

Based on the accuracy, power, resource consumption comparison analysis, the

results of my project on "Building Brains with ARM processors and FPGAs based on

high-performance architectures for Convolutional Neural Networks (CNNs)" suggest

that there are advantages and disadvantages for advanced computing for AI

applications. The advantages are optimized resource utilization and power

consumption. The drawback would be the resource constraint causing the training

process to not be able to be done on the PYNQ z1 board. The results highlight the

potential of ARM processors and FPGAs in addressing the computational needs of

high-performance CNNs, offering a pathway for the advancement of AI applications

in various sectors.

CHAPTER 5

CONCLUSION AND FUTURE WORKS

5.1 Introduction

The chapter will cover the conclusion of the project in Section 5.2 and the future

work of this project in Section 5.3.

5.2 Conclusion

This thesis focuses on the development of optimized CNN models based on PYNQ

z1 FPGA. All the objectives of the project has been achieved with the model on the

FPGA validation successfully done, optimization technique used on the model and

analysis done for the performance of the pruned and pruned quantized CNN models

in the CPU, GPU and FPGA.

The first objective aimed to design and implement a CNN on an FPGA. The

objective is achieved with the validation on board is completed and the result such as

66

implementation report and accuracy are recorded. The second objective is to

implement optimization technique to the CNN model, which is also achieved with

pruning and quantization done to the CNN model. Parallelization technique is also

utilized while converting the model into HLS model where the pipelining, inlining and

partitioning array is done to utilize the parallelization abilities of the FPGA. The third

objective is to perform a performance analysis to the result in order to gain insight on

the comparison of traditional computing platform with the FPGA. This objective is

achieved when we can conclude the advantages and the drawback of the FPGA in

comparison to the traditional computing platform based on the accuracy and

implementation report generated.

In conclusion, the successful achievement of these objectives underscores the

significance of integrating ARM processors and FPGAs for CNN applications. The

findings presented in this thesis not only advance the current understanding of

hardware-accelerated neural networks but also provide a solid foundation for future

research and development in the pursuit of optimized, high-performance computing

solutions in the realm of artificial intelligence.

5.3 Future Work

The limitations found on this project can be improved in the future in exploring the

limits of FPGA. By fine tuning the configuration of each layers in the CNN, the

method of improving the accuracy, resource utilization and power consumption can

be expected. Investigating on other optimization technique could also be one of the

direction to work on in order to improve the performance of neural network based

FPGA. Other than CNN, other NN model such as Recurrent Neural Network, Spiking

Neural Network and et cetera, can also be explore to implement on the FPGA to test

67

the limits of FPGA with various applications. Real time inference using a camara on

FPGA can also be the path to explore the FPGA, since real time data from camera can

be a challenging topic to work on. Cross-platform compatibility is a key consideration

for broadening the implementation's reach across various FPGA architectures.

Evaluating power consumption and efficiency aspects, implementing power-aware

design techniques, and exploring dynamic reconfiguration for on-the-fly adjustments

to FPGA configurations can contribute to energy-efficient CNN models. Furthermore,

integration with edge computing platforms and thorough benchmarking against

alternative FPGA-based CNN implementations will provide insights into the strengths

and weaknesses of the proposed approach in comparison to existing solutions. In

essence, these future research directions aim to push the boundaries of FPGA-

accelerated CNN deployment, advancing the fields of hardware-accelerated deep

learning and edge computing.

68

REFERENCES

[1] Y. Ma, Y. Cao, S. Vrudhula, and J. S. Seo, “Optimizing the Convolution

Operation to Accelerate Deep Neural Networks on FPGA,” IEEE Trans

Very Large Scale Integr VLSI Syst, vol. 26, no. 7, 2018, doi:

10.1109/TVLSI.2018.2815603.

[2] D. Parra, D. Escobar Sanabria, and C. Camargo, “A Methodology and

Open-Source Tools to Implement Convolutional Neural Networks

Quantized with TensorFlow Lite on FPGAs,” Electronics (Switzerland),

vol. 12, no. 20, Oct. 2023, doi: 10.3390/electronics12204367.

[3] C. Bartneck, C. Lütge, A. Wagner, and S. Welsh, “What Is AI?,” in

SpringerBriefs in Ethics, 2021. doi: 10.1007/978-3-030-51110-4_2.

[4] Q. Zhang, X. Wang, Y. N. Wu, H. Zhou, and S. C. Zhu, “Interpretable

CNNs for Object Classification,” IEEE Trans Pattern Anal Mach Intell,

vol. 43, no. 10, 2021, doi: 10.1109/TPAMI.2020.2982882.

[5] Xilinx Inc., “Field Programmable Gate Array (FPGA): What is an

FPGA?,” Xilinx.

69

[6] C. Qiu, X. Wang, T. Zhao, Q. Li, B. Wang, and H. Wang, “An FPGA-

Based Convolutional Neural Network Coprocessor,” Wirel Commun

Mob Comput, vol. 2021, 2021, doi: 10.1155/2021/3768724.

[7] S. Xiong et al., “MRI-based brain tumor segmentation using FPGA-

accelerated neural network,” BMC Bioinformatics, vol. 22, no. 1, 2021,

doi: 10.1186/s12859-021-04347-6.

[8] P. Hobden, S. Srivastava, and E. Nurellari, “FPGA-Based CNN for Real-

Time UAV Tracking and Detection,” Frontiers in Space Technologies,

vol. 3, 2022, doi: 10.3389/frspt.2022.878010.

[9] Z. Wang, H. Li, X. Yue, and L. Meng, “Briefly Analysis about CNN

Accelerator based on FPGA,” in Procedia Computer Science, 2022. doi:

10.1016/j.procs.2022.04.036.

[10] C. Wang and Z. Luo, “A Review of the Optimal Design of Neural

Networks Based on FPGA,” Applied Sciences (Switzerland), vol. 12, no.

21. 2022. doi: 10.3390/app122110771.

[11] N. Zhang, X. Wei, H. Chen, and W. Liu, “FPGA implementation for

CNN-based optical remote sensing object detection,” Electronics

(Switzerland), vol. 10, no. 3, 2021, doi: 10.3390/electronics10030282.

[12] A. Shawahna, S. M. Sait, and A. El-Maleh, “FPGA-Based accelerators

of deep learning networks for learning and classification: A review,”

IEEE Access, vol. 7. 2019. doi: 10.1109/ACCESS.2018.2890150.

70

[13] M. Magdy Saady and M. Hassan Essai, “Hardware implementation of

neural network-based engine model using FPGA,” Alexandria

Engineering Journal, vol. 61, no. 12, 2022, doi:

10.1016/j.aej.2022.05.035.

[14] S. Zhai, C. Qiu, Y. Yang, J. Li, and Y. Cui, “Design of Convolutional

Neural Network Based on FPGA,” in Journal of Physics: Conference

Series, 2019. doi: 10.1088/1742-6596/1168/6/062016.

[15] S. Bouguezzi, H. Ben Fredj, T. Belabed, C. Valderrama, H. Faiedh, and

C. Souani, “An efficient fpga-based convolutional neural network for

classification: Ad-mobilenet,” Electronics (Switzerland), vol. 10, no. 18,

2021, doi: 10.3390/electronics10182272.

[16] B. Liu, D. Zou, L. Feng, S. Feng, P. Fu, and J. Li, “An FPGA-based CNN

accelerator integrating depthwise separable convolution,” Electronics

(Switzerland), vol. 8, no. 3, 2019, doi: 10.3390/electronics8030281.

[17] I. Pérez and M. Figueroa, “A heterogeneous hardware accelerator for

image classification in embedded systems,” Sensors, vol. 21, no. 8, 2021,

doi: 10.3390/s21082637.

[18] T. Addabbo et al., “A Low-Complexity FPGA-Based Neural Network

for Hand-Arm Vibrations Classification,” in 2023 IEEE International

Workshop on Metrology for Industry 4.0 and IoT, MetroInd4.0 and IoT

2023 - Proceedings, 2023. doi:

10.1109/MetroInd4.0IoT57462.2023.10180160.

71

[19] M. T. Ahmed and S. Sinha, “Design and Development of Efficient Face

Recognition Architecture Using Neural Network on FPGA,” in

Proceedings of the 2nd International Conference on Intelligent

Computing and Control Systems, ICICCS 2018, 2018. doi:

10.1109/ICCONS.2018.8663098.

[20] S. S. Lingala, S. Bedekar, P. Tyagi, P. Saha, and P. Shahane, “FPGA

Based Implementation of Neural Network,” in Proceedings - IEEE

International Conference on Advances in Computing, Communication

and Applied Informatics, ACCAI 2022, 2022. doi:

10.1109/ACCAI53970.2022.9752656.

[21] F. U. D. Farrukh, T. Xie, C. Zhang, and Z. Wang, “Optimization for

Efficient Hardware Implementation of CNN on FPGA,” in Proceedings

of 2018 IEEE International Conference on Integrated Circuits,

Technologies and Applications, ICTA 2018, 2018. doi:

10.1109/CICTA.2018.8706067.

[22] N. M. Philip and N. M. Sivamangai, “Review of FPGA-Based

Accelerators of Deep Convolutional Neural Networks,” in ICDCS 2022

- 2022 6th International Conference on Devices, Circuits and Systems,

2022. doi: 10.1109/ICDCS54290.2022.9780689.

[23] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “The

Street View House Numbers (SVHN) Dataset,” NIPS Workshop.

72

[24] J. Duarte et al., “Fast inference of deep neural networks in FPGAs for

particle physics,” Journal of Instrumentation, vol. 13, no. 7, 2018, doi:

10.1088/1748-0221/13/07/P07027.

[25] T. Aarrestad et al., “Fast convolutional neural networks on FPGAs with

hls4ml,” Mach Learn Sci Technol, vol. 2, no. 4, 2021, doi: 10.1088/2632-

2153/ac0ea1.

