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ABSTRACT 

Public Speaking Anxiety (PSA) is the fear of speaking in front of an audience. This 

study aimed to investigate the brain-behavior mechanisms underlying PSA through 

the analysis of Electroencephalogram (EEG) data and to accurately classify PSA 

subjects using performance and EEG biomarkers. 24 subjects, categorized into high 

(HPSA) and low (LPSA) PSA groups, engaged in the Stroop Task. Their raw EEG 

data are recorded preprocessed using Independent Component Analysis (ICA) for 

artifact removal, and Fast Fourier Transformation (FFT) to obtain power density 

values. Frontal Alpha Asymmetry (FAA) refers to the asymmetrical distribution of 

alpha brainwave activity in the frontal region of the brain, and Delta-Beta Correlation 

(DBC) refers to the relationship between delta and beta brainwave frequencies in the 

context of neuroscience. Both FAA and DBC were investigated in the power density 

values between the groups of subjects. Findings align with expectations: HPSA 

subjects exhibit higher right FAA compared to subjects with LPSA, and statistically 

significant DBC is identified in electrodes. The mean accuracy of categorizing PSA 

subjects using Logistic Regression is 78.12%, and with Random Forest, it is 69%. 

FAA and DBC are useful in biomedical engineering as they successfully unveil the 

biomarkers of cognitive impairment during PSA. 
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ABSTRAK 

Ketakutan Berbicara di Depan Umum (PSA) merujuk kepada rasa takut berbicara 

di hadapan orang ramai. Kajian ini bertujuan menyelidik mekanisme tindak balas 

otak terhadap PSA melalui analisis EEG, serta mengklasifikasikan subjek dengan 

penanda prestasi dan biomarker EEG. 24 subjek, terbahagi kepada kumpulan tinggi 

(HPSA) dan rendah (LPSA) PSA, melibatkan diri dalam tugas Stroop. Data EEG 

mentah diproses dengan Analisis Komponen Bebas (ICA) untuk penyingkiran artefak, 

dan Transformasi Fourier Cepat (FFT) untuk mendapatkan nilai ketumpatan kuasa. 

Asimetri Alpha Frontal (FAA) merujuk kepada pengagihan tidak simetri aktiviti 

gelombang otak alpha di kawasan frontal, dan Korelasi Delta-Beta (DBC) merujuk 

kepada hubungan antara frekuensi gelombang otak delta dan beta dalam konteks 

neurosains. Kedua-dua FAA dan DBC disiasat dalam nilai ketumpatan kuasa di 

antara kumpulan subjek. Hasil sejajar dengan jangkaan: subjek HPSA menunjukkan 

nilai FAA kanan yang lebih tinggi berbanding LPSA dan DBC yang signifikan 

dikenalpasti di beberapa bahagian otak subjek. Ketepatan purata mengklasifikasikan 

subjek PSA menggunakan Regresi Logistik ialah 78.12%, dan dengan Rawak Hutan, 

69%. FAA dan DBC berguna dalam kejuruteraan bioperubatan dengan mengungkap 

biomarker kecacatan kognitif semasa PSA.  
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CHAPTER 1  

INTRODUCTION  

The introduction, project overview, problem statement, objectives, scope of work, 

project significance and thesis outlines of this study will be cover in this chapter. 

1.1 Introduction 

Public Speaking Anxiety (PSA) is a prevalent anxiety disorder affecting 

approximately 73% of the global population[1]. According to [2]. PSA is a typical 

type of social anxiety disorder, characterized by an individual's exaggerated 

nervousness and trepidation concerning speeches or presentations. It is a normal 

condition for PSA individuals to feel worries and nervous for extended period of time, 

sometimes stretching weeks or even months before the actual speaking engagement. 

Furthermore, the PSA individuals will find themselves displaying some physical 

symptoms like trembling and upset stomach when it comes to a real-life public 
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speaking situation. This widespread condition has prompted numerous investigations 

into PSA, aiming to comprehend its nuances and devise more effective therapeutic 

interventions. Notably, research, as cited in [3], has sought to provide insights into 

PSA and enhance our understanding of the underlying mechanisms and develop more 

effective therapeutic approaches. Despite its dominance, there are currently no EEG 

biomarkers in the frequency domain to identify individuals with PSA. Efforts to 

establish such biomarkers could revolutionize our approach in diagnosing and treating 

PSA. 

Frontal Alpha Asymmetry (FAA) and Delta-Beta Correlation (DBC) are suggested 

electroencephalographic (EEG) measurements that can serve as potential EEG 

biomarkers for anxiety disorders, with a specific focus on PSA. A pivotal research [4] 

focused on evaluating FAA in children with anxiety during a task centered on 

discerning threatening stimuli revealed a pronounced void in the existing literature. 

To bridge this gap, the research incorporated 77 children aged 8 to 12, with 36 

identified as individuals displaying heightened anxiety levels. The outcomes 

illuminated distinct patterns of alpha power fluctuations among participants when 

confronted with threatening stimuli. This research advances our understanding of the 

neurobiological aspects of anxiety disorders and it underscores the significance of 

FAA as a pivotal biomarker in the context of anxiety disorders. 

A different study [5] inquiry further explored the examination of the DBC, 

concentrating on its implications and outcomes. The study sought to clarify the 

intricacies of this correlation within the framework of behavioral inhibition (BI) and 

anxiety The research involved 118 children, and those who scored high on behavioral 

inhibition (BI) exhibited an increased correlation between delta and beta brain waves, 

particularly in frontal and central regions, with a slight elevation in parietal areas. This 
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heightened correlation suggests a potential neural marker linked to BI, indicating 

delta-beta correlation as a biomarker for BI in individuals with anxiety.  

In the era of Society 5.0, an accurate classification of PSA patients using advanced 

analysis would help identify individuals with PSA, enabling earlier and better 

treatment. This study aims to develop an accurate classification of PSA using Logistic 

Regression and Random Forest. The integration of Logistic Regression and Random 

Forest promises a sophisticated and nuanced approach to PSA classification, with the 

ultimate goal of facilitating more effective and targeted interventions for those 

grappling with the challenges of public speaking anxiety in both personal and 

professional spheres.  

In summary, Public Speaking Anxiety (PSA) is a widespread and worrisome 

phenomenon in contemporary society, impacting a substantial segment of the global 

population. Considerable research has been dedicated to unravelling its origins and 

devising more efficient treatments. Although there are currently no EEG biomarkers 

in the frequency domain specifically designed to identify individuals with PSA, 

Frontal Alpha Asymmetry (FAA) and Delta-Beta Correlation (DBC) have emerged as 

EEG biomarkers for anxiety disorders, offering avenues for exploration within the 

domain of PSA. A precise classification is required for PSA using EEG and 

performance biomarkers for the early detection of PSA subjects. 

1.2 Project Overview 

Public Speaking Anxiety (PSA), a pervasive fear of speaking in front of an 

audience. This research endeavors to illuminate the intricate brain-behavior 

mechanisms underlying PSA, employing advanced Electroencephalogram (EEG) data 

analysis to unravel the nuances of this anxiety disorder. The primary objective is to 

not only deepen our understanding of the neural correlates associated with PSA but 
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also to develop a robust classification model for accurately identifying individuals 

with varying levels of public speaking anxiety. 

Twenty-four subjects, categorized into high (HPSA) and low (LPSA) PSA groups, 

actively participated in a well-established cognitive task—the Stroop Task. This task 

served as a controlled environment to elicit cognitive responses, allowing us to 

investigate neural activities during a cognitive challenge. The subjects' raw EEG data 

underwent meticulous preprocessing, involving Independent Component Analysis 

(ICA) for artifact removal and Fast Fourier Transformation (FFT) to derive power 

density values. This methodological rigour ensures the extraction of meaningful neural 

biomarkers related to PSA. 

This study centers on two crucial EEG biomarkers: Frontal Alpha Asymmetry 

(FAA), which reflects the asymmetrical distribution of alpha brainwave activity in the 

frontal region, and Delta-Beta Correlation (DBC), which explores the relationship 

between delta and beta brainwave frequencies. These biomarkers offer unique insights 

into the neural dynamics associated with Public Speaking Anxiety (PSA). The study 

also employs Logistic Regression (LR) and Random Forest (RF) machine algorithms 

for the classification of individuals with PSA. 

1.3 Problem Statement 

Based on past research papers (see Appendix A), EEG Biomarker analyses in the 

frequency domain has never been investigated for PSA individuals. This is despite 

earlier studies underscoring the significance of EEG biomarkers in the frequency 

domain among patients with anxiety disorders (refer to Section 1.1 Introduction). The 

limited exploration of the relationship between FAA and DBC in individuals with PSA 

highlights the need for more comprehensive and interdisciplinary approaches to 
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understanding the neural mechanisms underlying this fear and its impact on cognitive 

functioning. Although PSA is a common anxiety disorder that affects a large 

proportion of the population, the underlying mechanisms of PSA remain incompletely 

understood. This lack of understanding has led to restricted treatment options and 

impeded the development of effective interventions for managing this anxiety 

disorder.  

The literature gap of the lack of biomarkers in the frequency domain (i.e. FAA and 

DBC) in PSA studies is depicted in Appendix A. As demonstrated in the Appendix A, 

none of the studies has conducted a comparative analysis of Frontal Alpha Asymmetry 

(FAA) and Delta-Beta Correlation (DBC) between individuals with High Public 

Speaking Anxiety (HPSA) and Low Public Speaking Anxiety (LPSA) using the 

Stroop paradigm, despite both analyses yielding EEG biomarkers in patients with 

anxiety disorders. A gap exists in the literature regarding a direct comparison in this 

context in subjects with PSA. 

ERP/time-domain biomarkers, specifically the N200 and P200, were identified in 

the study conducted by [8] and [9], suggesting their relevance in understanding the 

cognitive processes involved in PSA. Further research is imperative to investigate the 

relationships between these biomarkers and other cognitive processes, as well as to 

explore their potential applications in the development of treatments and therapies for 

individuals with PSA disorders. Additionally, there is a pressing need for an accurate 

classification method for individuals with PSA because the existing method for 

classifying individuals with PSA relies on subjective self-report measures, which may 

be biased. Utilizing machine  learning approaches for accurate classification could 
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provide greater insights into factors and biomarkers contributing to the categorization 

of individuals with PSA. 

1.4 Proposed Solution to the Problem Identified 

The proposed solution involves leveraging advanced EEG data analysis techniques, 

including Independent Component Analysis (ICA) and Fast Fourier Transformation 

(FFT), FAA and DBC to uncover EEG biomarkers in the frequency domain related to 

PSA. By understanding the neural patterns associated with high PSA, interventions 

can be designed to target and alleviate cognitive impairment during public speaking 

situations. Besides that, Logistic Regression and Random Forest machine learning 

algorithms are applied to classify individuals with PSA and without PSA accurately. 

1.5 Objectives 

The primary aim of this study is to investigate the brain-behaviour mechanisms 

underlying Public Speaking Anxiety (PSA) through the analysis of 

Electroencephalogram (EEG) data.  Therefore, the following objectives have been 

established:  

• To identify EEG artifacts and reject them using Independent Component 

Analysis (ICA). 

• To compare the Frontal Alpha Asymmetry (FAA) of cognitive impairment 

in HPSA and LPSA individuals. 

• To identify the brain regions exhibiting statistically significant Delta-Beta 

Correlation (DBC) of cognitive impairment in HPSA and LPSA individuals 

• To classify individuals with HPSA and LPSA by utilizing machine learning 

logistic regression (LR) and random forest algorithm (RF) based on 

performance and EEG biomarkers. 
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1.6 Scope of Work  

、This research project endeavors to delve into the neural underpinnings of Public 

Speaking Anxiety (PSA) by analyzing EEG biomarkers, specifically Frontal Alpha 

Asymmetry (FAA) and Delta-Beta Correlation (DBC). Recognizing the inherent 

constraints and assumptions, this study aims to provide valuable insights into the 

neural mechanisms of PSA and their impact on cognitive functioning, with the 

ultimate goal of informing effective interventions for anxiety disorders. 

Acknowledging the inherent challenges, this study confronts limitations such as 

participant availability, time constraints affecting data collection and analysis, and 

resource limitations. These constraints set the boundaries for the achievable outcomes 

within the project. 

The project is built upon key assumptions, including the suitability of the Stroop 

paradigm to induce PSA and the belief that selected EEG biomarkers (FAA and DBC) 

accurately reflect the neural mechanisms associated with PSA. The hypothesis posits 

increased right frontal alpha activation in High PSA (HPSA) subjects. Additionally, 

the study hypothesizes a significant correlation between changes in delta and beta 

brainwave patterns (DBC) and PSA levels. These assumptions and constraints are 

strategic choices aimed at conducting a focused and feasible research study. The 

justification lies in the imperative need to unravel the neural intricacies of public 

speaking anxiety, paving the way for targeted interventions and treatments. 

The primary focus is the analysis of EEG biomarkers (FAA and DBC) in two 

distinct groups: 12 individuals with HPSA and 12 with Low PSA (LPSA) utilizing 

MATLAB. The raw EEG data will be preprocessed using ICA for artifiacts removal 

and FFT to obtain the power spectrum. The power spectrum was analysed by using 



8 

 

FAA and DBC. Both performance and EEG biomarkers were harnessed for machine 

learning algorithms (Logistic Regression and Random Forest) to accurately classify 

subjects with HPSA and LPSA, utilizing the Python programming language in Visual 

Studio Code IDE. Certain aspects will not be covered, including the exploration of 

alternative experimental paradigms, the investigation of non-EEG biomarkers or 

physiological measures, and the development of specific interventions or therapies for 

PSA. 

This research project aspires to contribute valuable insights into the neural 

mechanisms of PSA, navigating through inherent limitations with a focus on 

feasibility and relevance. The anticipated outcomes aim to not only enhance our 

understanding of PSA but also pave the way for the development of targeted 

interventions for individuals grappling with anxiety disorders related to public 

speaking. 

1.7 Project Impact 

This project holds significant implications for both the field of anxiety research in 

biomedical engineering and the development of effective interventions for individuals 

with Public Speaking Anxiety (PSA). 

The impact of this project is that, up until now, there has been no research on EEG 

biomarkers in the frequency domain. By investigating the brain-behaviour 

mechanisms underlying PSA through the analysis of EEG data, this study aims to fill 

the current gap in understanding the EEG biomarkers associated with PSA in the 

frequency domain. The understanding of the brain-behaviour mechanisms can create 

a pathway for the evolvement of EEG biomarkers that can aid in the diagnosis and 

assessment of cognitive impairment in individuals with HPSA. 
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Moreover, the findings of this study have the potential to shed light on the neural 

correlates of PSA, advancing our understanding of the condition and its impact on 

cognitive functioning. This knowledge can inform the development of more targeted 

and effective interventions for individuals with PSA, leading to improved treatment 

outcomes and quality of life. 

From the point of view of Sustainable Development Goals (SDG), there are three 

SDGs related to this study. The first SDG is SDG3: Good Health and Well-being, as 

it aims to study the brain-behaviour mechanism underlying PSA by analysing the EEG 

data collected, which has the potential to contribute to the new treatments of PSA 

patients. Besides that, SDG 9: Industry, Innovation, and Infrastructure is related to this 

study as it uses biomedical engineering techniques to analyse EEG data may have 

broader applications in the development of medical technologies and devices to 

support the diagnosis and treatment of a range of health conditions. Moreover, this 

project resonates with SDG 17: Partnerships for the Goals. The findings have the 

potential to foster the development of effective interventions for individuals with 

public speaking anxiety, which may necessitate collaboration and partnerships across 

different sectors and stakeholders for successful implementation. 

 

Figure 1.1: SDG 3, 9 and 17 
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Considering the environmental impact, the Emotiv EPOC+ EEG device used in this 

project demonstrates eco-friendly characteristics. It prioritizes energy efficiency by 

utilizing rechargeable batteries instead of disposable ones, thus reducing electronic 

waste. Emotiv also adheres to industry standards for environmentally friendly 

materials during the manufacturing process of the EPOC+. Additionally, the device is 

designed for durability, minimizing the need for frequent replacements and further 

reducing electronic waste. 

Overall, the significance of this project lies in its potential to enhance our 

understanding of the brain-behaviour mechanisms underlying PSA, contribute to the 

field of anxiety research, and establish a precedent for the evolvement of new 

biomarkers and interventions to support individuals with PSA. 

1.8 Thesis Outlines 

In short, Chapter 1 has introduced the research, providing a clear understanding of the 

project's context, the identified problem, and its significance. The objectives and scope 

of work have been outlined, setting the stage for the subsequent chapters. The thesis 

outlines offer a preview of the organization and content of the entire document. This 

chapter serves as a foundational guide for readers, ensuring they have a comprehensive 

overview before delving into the details presented in the subsequent chapters. This 

thesis starts with a revision of the related research and theories regarding crucial 

components that have been used in chapter two. A description of the specific methods 

for conducting the entire study is written in chapter three. Chapter Four comprises the 

discussion about all the results obtained from the research findings while the 

conclusion and future works are deliberated about in Chapter Five. 



 

 

 

CHAPTER 2  

BACKGROUND STUDY 

2.1 Introduction of Literature Review 

The title of this study is An Investigation of Frontal Alpha Asymmetry and Delta–

Beta Correlation During Cognitive Impairment in Individuals with Public Speaking 

Anxiety. This chapter reviews the theoretical insights and past research papers related 

to this study. 

2.2 Public Speaking Anxiety (PSA) 

PSA is a widespread psychological phenomenon that manifests as intense fear and 

discomfort when speaking or presenting in front of an audience[14]. It affects 

individuals from various backgrounds and can significantly hinder their performance 

and well-being in social and professional settings. One notable aspect of PSA is the 

cognitive impairment experienced by those affected, which further exacerbates the 
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challenges associated with public speaking. Therefore, gaining a deeper understanding 

of the neural correlates underlying cognitive impairment in individuals with PSA is 

essential for the development of effective interventions and treatments. One study 

found P200 biomarkers for attentional bias in HPSA but not in LPSA subjects. The 

reaction time and the P200 biomarkers found are significantly related to the attentional 

bias for HPSA subjects [6]. Another study found that N200 and P200 biomarkers in 

HPSA subjects[7]. From this study, Reaction Time (RT) and Event-Related Potential 

(ERP) have proven to be valuable tools in modern medicine as they have effectively 

revealed biomarkers that indicate abnormalities during the interplay of emotion and 

cognition. These measures provide valuable insights into the underlying cognitive 

processes and can help identify deviations from normal functioning. By analysing RT 

and ERP, researchers can gain a deeper understanding of how emotions and cognitive 

processes interact, which can ultimately aid in diagnosing and treating various medical 

conditions related to emotion and cognition. To the best of our knowledge, no research 

paper to date has investigated the EEG biomarkers associated with PSA in the 

frequency domain. Below is the summary of PSA-related past research: 

Table 2.1: Summary of PSA-Related Study 

Year/Paper Subjects Method Result Similarities Differences 
Feroz  

[6]/2021 

12 LPSA & 
12 HPSA 

ERP, RT, 
ICA 

P200 
Biomarker 

PSA study ERP (time 
domain). 

Feroz 

[7]/2021 

12 LPSA & 
12 HPSA 

ERP, RT, 
ICA 

N200, P200 
Biomarkers 

PSA study ERP (time 
domain). 

2.3 Stroop Task 

Stroop task is a psychology test that tests the reaction time between automatic and 

controlled processing of information where the meaning of the printed word interferes 

with the ability to name the colour of the word. Stroop task was first developed by an 
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American psychologist, John Ridley Stroop in 1935 and has been modified to 

investigate the additional brain mechanisms[15]. The Stroop task is divided into 2 

congruencies of the font name and colour, which are Congruent (the word meaning is 

the same as its colour) and Incongruent (the word meaning is different from its colour). 

The task participants will be asked to identify and speak out the colour of the word 

and the time taken for participants to response will be considered as the Reaction Time 

(RT). 

 

Figure 2.1: The Stroop Task 

The example of the Stroop task is shown in Figure 2.1. The congruent stimuli would 

be similar to the first row. In this row, the word "Green" is displayed, and its meaning 

matches the font colour, which is also green. This congruence between the word and 

the font colour makes it easier for participants to identify the ink colour. On the other 

hand, the incongruent stimuli, such as the second row in Figure 2.1, involve a conflict 

between the word and the font colour. For instance, the word "Red" is written in green 

ink, creating an incongruent stimulus. This incongruence can create interference and 

make it more challenging for participants to correctly identify the ink colour, leading 

to longer response times. 

2.4 Independent Components Analysis (ICA) 

ICA techniques always be used to relate to a problem called “cocktail party 

problem”[16]. In this problem, there will be two people talking to each other at a 

cocktail party with two microphones near to both people. The microphones recorded 
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their voice in different volumes because they were standing far away from each other.  

Not only that, but the microphone also recorded the noise in their surroundings as they 

were at a cocktail party.  The question arises as to whether it is possible to separate 

two voices from noisy recordings and how this separation can be achieved, and this 

can be done by using ICA. The cocktail party problem can be solved by using ICA is 

shown in Figure 2.2.  

 

Figure 2.2: Cocktail Party Problem Solved by using ICA 

Independent component analysis (ICA) is a statistical technique used to separate a 

multivariate signal into individual subcomponents that are maximally independent of 

each other[17]. This method transforms a collection of vectors into a set of 

components that exhibit high independence. Based on Figure 2.2, different signals 

from the microphone can be denoted by 𝑋1(𝑡) and   𝑋2(𝑡) where the speaking voice 

of those 2 people denoted by 𝑆1 and 𝑆2. The output equation of the signal can be 

expressed as linear equations in (2.1) and (2.2): 

𝑥1(𝑡) = 𝑎11𝑠1 + 𝑎12𝑠2 

𝑥2(𝑡) = 𝑎21𝑠1 + 𝑎22𝑠2 

The variables of 𝑎11, 𝑎12, 𝑠1 and 𝑠2  are some parameters that depend on the 

distances of the microphones from the speakers. ICA can be used to extract  𝑠1 and 𝑠2 

(2.1) 

(2.2) 
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from  𝑥1(𝑡) and 𝑥2(𝑡) based on the equations above. The mixture signals of brain and 

muscle movements is the raw EEG data recorded and is denoted by 𝑥. The data mixing 

process is denoted by A whereas s is the representation of the component activations 

from the mixture signals. The complete equation for the raw EEG data recorded is 

shown in (2.3) followed by (2.4) 

𝑋 = 𝐴 × 𝑠 

Inverse Equation: 𝑠 = 𝐴−1 × 𝑋 

The goal of applying Independent Component Analysis (ICA) in this study is to 

remove components such as eye blinks and heartbeat signals that affect the accuracy 

of the analysis. By utilizing the inverse equation, the original components of brain 

activity (denoted as s) can be obtained. The inverse of the mixing matrix (𝐴⁻¹) can be 

considered as the topography map of the EEG signals, which provides insights into 

the spatial distribution of the brain activity components. 

Based on [6], [7], [11] the raw EEG data is preprocessed using ICA to identify and 

remove the artifacts to obtain cleaned EEG data. In conjunction with this research, the 

brain electrodes act like microphones to pick up the mixture signals of brain and 

muscle movements and ICA will identify and isolate the pure brain signal from the 

mixture signals. In this study, a vector-matrix notation is utilized as it offers a more 

convenient and concise representation compared to the previous summation equations. 

2.5 Frontal Alpha Asymmetry (FAA) 

According to [12], FAA refers to the asymmetrical cortical activity in the alpha 

frequency range (8-13 Hz) within the frontal hemispheres of the brain. It is associated 

with various measures related to motivational states, stress biomarkers, and mood and 

(2.3) 

(2.4) 
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stress-related disorders. Left FAA is characterized by greater activation in the left 

frontal region compared to the right, while right FAA indicates greater activation in 

the right frontal region compared to the left. The left FAA is associated with better 

emotional regulation and approach-related-affect while the right FAA indexes 

behavioral inhibition and withdrawal-related-affect [12]. Therefore, individuals 

experiencing PSA may exhibit greater relative right frontal activation (Right FAA), 

reflecting a neural pattern associated with heightened vigilance and withdrawal-

related effects. FAA usually involves the fronto-medial electrodes which are F3 and 

F4[18]. Extensive research has been conducted over the last three decades on the 

asymmetry of EEG alpha power in the frontal lobe, exploring its potential role as an 

indicator of emotional and motivational states. It is a reliable marker to study and 

understand these psychological and physiological processes. There are various 

formulae used to compute FAA in past research and they are all shown in Table 2.2. 

Table 2.2: Formulae of FAA in past study 

Paper/Year FAA Formula 
Flasbeck[8]/2023 FAA= ln [Right]-ln [Left] 
Schürmann[9]/2022 Asymmetry Index = ln [Right] – ln 

[Left]  
Barros [11]/2022 FAA = ln(F4) −ln(F3) 
Glier[12]/2022 Laterality coefficient (LC) = 𝑅−𝐿

𝑅+𝐿
× 100 

Wise[4]/2023 FAA at the F3/F4 site = right alpha 
power – left alpha power 

David[13]/2021 FAA =log (Alpha Right Electrode) − log 
(Alpha Left Electrode) 

F. Heine [18]/2022 FAA = ln [Right] – ln [Left] 
S. Song et al [19]/2023 FAA Index = ln [Right] – ln [Left] 

 

Some studies have employed the natural logarithm of the power in the right and left 

frontal regions (ln [right] – ln [left]) as the formula for FAA calculation. This formula 

has been frequently used and has shown reliability in previous studies. It is important 
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to note that different studies may utilize different formulas based on their specific 

research objectives and electrode placements. The formula employing the natural 

logarithm of the power in the right and left frontal regions is more commonly used in 

previous research, indicating its relevance and consistency across studies. 

In this literature review, we aim to explore the current state of knowledge regarding 

the FAA and DBC and their implications. The summary of FAA-related past research 

is depicted in Appendix B. 

Flasbeck [8] conducted a study with 36 participants who reported having a fear 

of flying (FF) and 41 unaffected participants (NFF). The results indicated that 

individuals with a fear of flying exhibited higher right frontal alpha activity at F8-F7 

electrodes compared to the unaffected group. This finding suggests a potential 

neurophysiological marker related to fear of flying, as indicated by increased 

activation in the right frontal alpha region. 

Schumann's study [9] involved 47 healthy adults, and they utilized techniques 

such as ICA, FFT and FAA. The study aimed to explore the relationship between alpha 

power lateralization and depressive symptoms. The findings revealed an association 

between relative rightward lateralization of alpha power at one electrode pair and 

depressive symptoms. This suggests that greater activation in the right frontal alpha 

region may be related to depressive symptoms in healthy adults. 

Barros [11] conducted a study comparing 39 older adults (≥ 60 years old) and 

57 younger adults (between 18 and 35 years old). The researchers employed ICA and 

FAA to examine age-related differences in alpha asymmetry. The results showed that 

older adults had higher FAA values than younger adults. This suggests that there may 
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be age-related variations in frontal alpha asymmetry, with older adults displaying a 

different pattern of brain activation compared to younger adults. 

Glier's study[12] focused on 145 adolescents and investigated the relationship 

between FAA, trait anxiety, state anxiety, and cortisol reactivities. The study utilized 

techniques such as ICA, FFT and FAA. The findings revealed that adolescents with 

rightward FAA activation and high trait anxiety exhibited blunted cortisol reactivities, 

while those with leftward FAA activation and high state anxiety showed prolonged 

cortisol recoveries. This suggests that different patterns of frontal alpha asymmetry 

may be associated with distinct physiological responses to anxiety in adolescents.  

Wise[4] conducted a study with 77 children aged between 8 and 12 years old, 

including 36 high anxious children. The study employed the Gratton method, FFT and 

FAA. The results showed that during the face and images task, higher alpha power 

was observed in the left hemisphere in response to threat compared to neutral stimuli, 

with no significant difference in the right hemisphere. However, there were no 

significant changes in alpha power values in response to word stimuli. These findings 

suggest that threat-related stimuli may elicit differential patterns of frontal alpha 

activation in children, depending on the nature of the task. 

David[13] conducted a study with 165 healthy children and adolescents aged 

between 10 and 16 years. The study employed ICA, FFT and FAA. The researchers 

investigated the relationship between FAA, state anxiety, and the effectiveness of the 

REThink intervention. The results indicated that higher scores on FAA were 

associated with more right-sided alpha activity, suggesting greater inhibition in the 

right hemisphere associated with negative affect. After the REThink intervention, 

there was a significant negative correlation between FAA and state anxiety. 
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Specifically, the group that received the REThink intervention showed a significant 

increase in right hemisphere inhibition, supporting the efficacy of the intervention in 

reducing negative modulation. This study used similar methods such as FAA, FFT, 

and ICA, but had different subjects and an experimental paradigm focused on the 

effectiveness of the REThink intervention. 

Song's study[19] included 62 healthy university students and employed 

techniques such as Event-Related Potentials (ERP), ICA and FAA. The study aimed 

to examine the differences in occipital alpha oscillation power and FAA between 

individuals with social anxiety and healthy controls under different emotional contexts. 

The findings revealed that in congruently emotional contexts and expressions, the 

social anxiety group exhibited significantly lower occipital alpha oscillation power 

compared to the healthy control group. Additionally, in negative contexts, frontal 

alpha lateralization was significantly lower in the social anxiety group compared to 

the healthy control group. This study employed similar techniques to FAA and ICA 

but had different subjects (university students) and utilized ERP as an additional 

method. 

Heine[18] conducted a study with 35 university students, using techniques 

such as FAA, Infinite Impulse Response (IIR) filter, ICA-based Electrooculography 

(EOG) correction, and FFT. The study aimed to investigate the relationship between 

depression, depression scores measured by the PHQ-9, and alpha asymmetry. The 

results indicated no difference in alpha asymmetry between the two depression groups 

used in the study. Furthermore, there was no significant association between 

depression scores measured by the PHQ-9 and alpha asymmetry measured on different 

electrode pairs. This study employed similar techniques such as FAA, ICA, and FFT 
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but had a different method (IIR filter) and focused on the relationship between 

depression and alpha asymmetry. 

These studies assist us in learning how Frontal Alpha Asymmetry (FAA) 

connects to mental feelings such as worry and sadness. Methods like FAA, Fast 

Fourier Transform (FFT), Independent Component Analysis (ICA) and others are used 

to study how different things affect the relationship between them. While the studies 

share similarities in methods used, they differ in terms of subjects, experimental 

paradigms, and specific variables investigated, providing a diverse perspective on the 

brain-behavior mechanisms associated with FAA. ICA is used for data preprocessing 

and FFT is for computing power spectral for computation of FAA in most past 

research papers. 

In summary, these studies show the importance of FAA as a biomarker for 

anxiety studies. These studies have investigated the role of FAA in diverse 

psychological phenomena, such as state anxiety, social anxiety, and depression. 

Although these studies share methods like FAA, FFT, ICA, and ERP, they vary in 

subjects, experimental paradigms, and specific variables explored, providing a diverse 

perspective on the brain-behavior mechanisms associated with frontal alpha 

asymmetry. ICA is commonly used for data preprocessing, and FFT is employed for 

computing power spectral, similar to the current study. 

2.6 Delta-Beta Correlation (DBC) 

DBC is a phenomenon that arises from the interaction between neural oscillations 

in the beta and delta frequency bands[20]. Delta-beta correlation is a measure of the 

linear relationship between the power or amplitude of the delta and beta frequency 

bands in the brain. It has been studied concerning various cognitive processes and 
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psychiatric disorders. Beta waves (13 to 30 Hz) are rapid oscillations that originate in 

the cortex and are associated with higher-level cognitive processes such as attentional 

control. On the other hand, delta waves (0 to 4 Hz) are slower oscillations that reflect 

subcortical brain activity and are related to more fundamental affective processes. 

DBC, therefore, represents the coupling or coordination between these different 

frequency bands, reflecting the integration of various cognitive processes and bottom-

up affective processes in the brain including attention, memory, and executive 

functions. In this literature review, we aim to explore the current state of knowledge 

regarding the delta-beta correlation and its implications. The summaries of the DBC’s 

past research study is summarized in Appendix C.  

In a study conducted by Harrwijn[10], 113 participants were involved, consisting 

of 18 individuals diagnosed with social anxiety disorder (SAD), 25 individuals 

diagnosed with subclinical SAD, and 43 individuals diagnosed with clinical SAD. The 

study employed the methods of DBC and FFT for analysis. The findings of the study 

revealed that participants with (sub)clinical SAD exhibited a higher negative delta-

low beta correlation during anticipation compared to those without (sub)clinical SAD. 

Myruski [20] studied 53 kids to see if DBC is linked with the use of emotion 

regulation (ER) methods that are changeable and active. He used both measures, DBC 

and Fourier transform (FFT), for this research. The findings showed that significant 

DBC were related to using more adaptive and active ways of thinking in the ER. 

In a study conducted by Margaret[21], 184 adults with high social anxiety (SA) 

took part. The study used DBC and FFT to analyze things. The results showed no 

important change in the DBC among participants during the Writing Exercise 



22 

 

Condition. So, the study says this certain health problem did not really affect how 

closely related delta and beta were among adults with high SA. 

Al-Ezzi [22] compared people with Social Anxiety Disorder (SAD) and healthy 

controls (HC) by analyzing DBC. The results showed a higher correlation between 

DBC during the baseline condition and SAD, whereas HC individuals exhibited a 

stronger correlation during the recovery state. 

Poole[23] conducted a study that is participated by 67 children. The study utilized 

two methods of analysis: DFT and DBC. The study aimed to examine the relationship 

between shyness and brain activity. The findings revealed that positive shy children 

exhibited a higher frontal DBC compared to the other groups, namely non-positive 

shy and low shy children. This distinction in correlation patterns among the participant 

groups was observed through the application of DBC and DFT methods. These results 

suggest a potential link between shyness and specific brain activity patterns in children. 

Poole [24] categorized salivary cortisol patterns and social anxiety into distinct 

classes in 50 children using DBC and DFT. It identified a high, stable class and a low, 

unstable class for both salivary cortisol patterns and social anxiety.  

Poole [5] also studied DBC in children with behavioral inhibition (BI) by applying 

DBC and FFT another study. The findings indicated that children with high BI showed 

a higher DBC in frontal and central brain regions compared to children with low BI. 

There was also a marginal increase in delta-beta correlation in parietal brain regions 

for high BI children. 

In the study conducted by Pascalis [25] involving 59 students, the researchers tried 

to figure out if DBC is connected with anxiety.  FFT and Gratton's method were used 
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for this investigation. The findings showed the people who were anxious and didn't 

move had a big positive connection. This was more than what happened with the group 

that just relaxed. The research showed that DBC happened mostly when there was 

little delta activity in the Anxiety group, but not in the Relaxation one. These results 

show a connection between DBC and anxiety states, implying that maybe DBC can 

be an indicator of anxiety-related things happening when we are resting. 

 To summarize, the collective findings from these studies consistently point 

towards the potential utility of DBC as a valuable biomarker for anxiety-related 

processes. The investigations conducted by Harrwijn [10], Myruski [20], Margaret 

[21], Al-Ezzi [22], Poole [5], [23], [24], and Pascalis [25] collectively contribute to 

building a compelling case for the role of DBC in understanding and assessing anxiety-

related phenomena across diverse populations. The observed correlations between DBC 

patterns and various factors such as social anxiety, emotion regulation strategies, shyness, 

salivary cortisol patterns, and behavioral inhibition in children, as well as anxiety states 

in students, underscore the potential of DBC as a sensitive indicator of underlying 

processes associated with anxiety. This emerging consensus across multiple studies 

underscores the importance of further exploration and validation of DBC as a robust and 

informative biomarker in the realm of anxiety research. 

2.7 Machine Learning 

The Logistic Regression and Random Forest machine learning algorithms are 

employed to develop the classification system for PSA.  

2.7.1 Logistic Regression(LR) 

LR is selected as the primary choice because it is one of the most commonly used 

multivariate regression algorithm for binary classification[26]. It used the dependent 
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variable as the logarithm of odds and predicted the occurrence of an event with a logit 

function. The working principle of the LR model is to find out the connection between 

the occurrence and non-occurrence of an event to explanatory inputs through the 

utilization of the maximum likelihood method. The binary outcome of the dataset used 

for the LR model is usually “Yes” as 1 and “No” as 0, which are discrete values instead 

of continuous values.  LR model is flexible because the dependent data can be 

quantitative, qualitative and a combination of both quantitative and qualitative. These 

variables can be converted into binary numbers 1 and 0.  The equation of logistic 

regression is: 

𝑃(𝑧) =
1

1 + 𝑒−(𝐶0+𝐶1𝑋1+𝐶2𝑋2+⋯+𝐶𝑛𝑋𝑛)
 

where,  

P(z) is the probability of PSA in this study, 

C0 is the intercept of the model, 

Ci represents the regression coefficient which is obtained from maximum 

likelihood in conjunction with their standard errors. 

In this study, HPSA represents 1 and LPSA represents 0, and the threshold value 

taken for the probability of PSA is 0.5. (P(z)>0.5) 

2.7.2 Random Forest (RF) 

RF is a common ML algorithm used to solve the problem of classification and 

regression[27]. This algorithm is easy to use, flexible and can avoid overfitting if the 

tree assigned to the model is enough in the forest[28]. RF is a supervised learning 
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algorithm where it builds an ensemble of decision trees with the training method of 

bagging. The bagging method is just to merge all the decision trees to obtain a more 

accurate and stable predicted output. RF adds randomness to the model while growing 

the trees. This algorithm will search for the best feature among a random subset of 

features to make a better model that produces a wide diversity result.  

2.7.3 Summary of Machine Learning Past Research Paper 

Table 2.3: Summary of Machine Learning Past Research Paper 

Paper Sample 
Size 

ML Algorithm 
Used 

Accuracy 
(%) 

Precision 
(%) 

AUC 
score 

Jennifer [27] 
/2021 

275 LR 80.00 - 0.84 
RF 88.00 - 0.93 

Kumar [26] 
/2022 

490 LR 95.90 88.90 0.96 
RF 96.94 81.82 0.874 

Nishi Yadav 
[29] /2022 

101 LR 95.23 100 - 
RF 90.47 91.66 - 

Bernard [30]  
/2022 

3001 LR 73.70 - 0.684 
RF 77.70 - - 

From the summary, the observed accuracy, precision and AUC score are overall 

quite high (most of them more than 90%). They demonstrated strong performance, 

establishing LR and RF as robust machine learning models capable of making accurate 

predictions for the current dataset.



 

 

 

CHAPTER 3  

METHODOLOGY  

3.1 Introduction 

The methodology section provides an overview of the approach used to experiment. 

It describes the overall framework and procedures employed to achieve the study's 

objectives. By outlining the methodology, readers gain an understanding of how the 

research was carried out and can evaluate the reliability and validity of the results. 

 

3.2 Project Flowcharts 

The project flowchart is shown in Appendix D. The project flowchart represents 

the process flow of this thesis where the EEG and Behavioral data are collected, and 

the EEG data will undergo a preprocessing step where ICA is used to identify and 

reject the artifacts for the EEG data. The aritfacts are the eye blinks, muscle 
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movements and environmental interference. If the artifacts are not fully removed from 

the EEG data, the process needs to be repeated until all artifacts are removed and at 

this state, the EEG data is considered clean.  

The cleaned EEG data will undergo FFT to obtain power spectrum for FAA and 

DBC (EEG Biomarkers) Analysis. The FAA will be analysed using Repeated 

measures ANOVA and DBC will be analysed using Pearson Correlation.  

After that, The Logistic Regression and Random Forest machine learning 

algorithms are employed to develop the classification system for PSA based on the 

EEG and performance Biomarkers. Based on the interpreted data from FAA, DBC and 

classification results of machine learning algorithms, a comprehensive report is 

written which serves as the summary of findings, conclusions drawn from analysis 

and future work recommendations based on the insights gained. 

3.3 Sample Description 

The sample group of the experiment conducted is divided into two groups, which 

are LPSA and HPSA subjects. The experiment has specifically selected participants 

who meet certain criteria. These criteria include being undergraduate students at 

UTeM and falling within the age range of 18 to 26 years old. Individuals who have 

current substance abuse or dependency, major somatic or neurological disorders, 

colour blindness, or a history of reading disorder have been excluded from the initial 

stage of participant selection. 

3.3.1 LPSA Subjects 

A total of 12 participants with LPSA levels were included in the experiment. These 

individuals were selected based on their responses to a questionnaire that was 
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distributed at the start of the study. The questionnaire was distributed using electronic 

messaging platforms such as WhatsApp and Google Forms. 

3.3.2 HPSA Subjects 

An additional set of 12 participants with high PSA levels were included in the 

second sample group. These individuals were also selected based on their responses 

to the questionnaire distributed earlier. The questionnaire played a crucial role in 

identifying and categorizing the participants' conditions, enabling them to be placed 

in the appropriate group. 

3.4 Experimental Paradigm 

The Modified Stroop Word-Colour Test was utilized as the experimental paradigm 

in this study. This test builds upon the principles established by numerous researchers 

who have employed it to examine the brain's automatic processing capabilities. It is 

commonly employed in psychological research to assess the cognitive control 

exhibited by the brain [15]. 

3.4.1 Paradigm Arrangement  

The stimuli are shown on a HP monitor and presented in a dark background. The 

Stroop task began with a fixation point, followed by congruent and incongruent 

conditions. The purpose of the fixation point was to encourage the subjects to focus 

on the upcoming stimuli position, which helped eliminate unnecessary delays in 

responding to the test. There were two conditions in this experimental paradigm, 

congruent and incongruent, which will be determined by the colour-printed word. The 

participants need to answer the colour of the printed word as fast and accurate as they 

can. 
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Figure 3.1: Modified Stroop Test Experiment Paradigm (Congruent) 

The congruent condition of the Modified Stroop Test is shown in Figure 3.1. In the 

congruent state, the word printed will be ‘Kuning,’ which means yellow in English 

and will be printed with a yellow colour. 

 

Figure 3.2: Modified Stroop Test Experiment Paradigm (Incongruent) 

The incongruent state of the Modified Stroop Test is shown in Figure 3.2. For the 

incongruent state, it will be harder for participants to respond since the colour and 

meaning of the printed word are different. After responding to the stimuli, a blank 

screen was displayed for 1000ms, followed by the fixation point being displayed for 

500ms. The process were repeated until all 120 stimuli have been answered. The time 

interval between the moment subjects read the word and the time they take to process 

the answer will be the reaction time window for this study. 
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3.5 Preprocessing of EEG data 

The EEG data preprocessing pipeline for this study will involve several steps. 

Firstly, EEGLAB is used for filtering the raw EEG signals with a bandpass filter 

ranging from 0.3 to 30 Hz and setting the sampling rate to 256 Hz. Secondly, artifact 

rejection is performed to eliminate noise arising from muscle movements, eye 

movements and blinks by using ICA. 

 

Figure 3.3: ICA Rejection 

The ICA rejection is performed in EEGlab tools of MATLAB to remove the 

artifacts is shown in Figure 3.3. ICA is a powerful tool that can be used to separate 

EEG signals into independent components, making it easier to identify and remove 

sources of noise in the data. 

Subsequently, we generated epochs of 1700ms for each condition, starting 200ms 

before the stimulus onset and ending 1500ms after the stimulus onset. These epochs 

were evaluated using ERPLAB for further analysis. To remove the effects of baseline 

variations, we performed baseline correction with a period of 150ms before stimulus 

onset. 
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Finally, the ERPs are averaged for each subject and condition to produce the 

averaged ERP waveforms, which were used for further statistical analysis. This 

comprehensive preprocessing pipeline ensured that the EEG data was cleaned and 

ready for analysis and free from artifacts, which will improve the accuracy and 

reliability of our results and allow us to draw robust conclusions from the study. After 

that, the Fast Fourier Transform is performed for computing the power spectrum of 

the cleaned EEG data as shown in Figure 3.4. The power spectrum obtained is for the 

computation of FAA and DBC. 

 

Figure 3.4: EEG Time Domain Data and Frequency Domain Data after performed FFT 

3.6 Frontal Alpha Asymmetry (FAA) 

To calculate FAA, the EEG data needed to be in power spectrum form. After the 

raw EEG data was preprocessed with ICA using EEGLAB and MATLAB software to 

obtain the cleaned EEG data, FFT algorithm was used to compute the power spectra. 

The alpha frequency band in the left and right frontal regions of the brain (8-13Hz) 

was filtered out from the power spectra obtained. FAA index was calculated by using 

the formula of the natural logarithm form which is FAA=ln(F4)-ln(F3) where F4 

represents the power spectrum of the right frontal region, and F3 represents the power 
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spectrum of the left frontal region. To investigate the effects of the FAA on different 

experimental conditions, the FAA index was computed for both congruent and 

incongruent power spectra obtained from the FFT. This analysis was performed for 

each subject, including both HPSA and LPSA subjects, enabling a comprehensive 

exploration of the FAA phenomenon and its potential variations across individuals. 

After FAA computation, the FAA index values were to be used for the general linear 

model for HPSA and LPSA groups for further statistical analysis. 

3.7 Delta-Beta Correlation (DBC)  

To analyse DBC, the power spectrum of the EEG data collected during the Stroop 

task were utilized. The EEG data underwent a filtering process to extract the delta 

frequency band (0-4 Hz) and the beta frequency band (13-30 Hz). By isolating these 

specific frequency ranges, the analysis can focus on the neural activity associated with 

delta and beta oscillations. 

Once the delta and beta frequency bands were extracted from the power spectrum, 

DBC was computed for each subject. This calculation was performed using the 

Pearson Correlation method, similar to the approach employed for calculating the 

FAA index. The Pearson Correlation coefficient measures the strength and direction 

of the relationship between the delta and beta oscillations within each subject. The 

DBC was computed for different electrode variables and is shown in Table 3.1. 

Table 3.1: Electrode for DBC 

Electrode Variable for DBC Electrode used 
Frontal  F3, F4 
Central FC5, FC6 
Parietal P7, P8 
Temporal T7, T8 
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By examining the DBC concerning the experimental conditions (congruent and 

incongruent), insights can be gained into the neural dynamics and potential 

interactions between the delta and beta frequency bands during the Stroop task. This 

analysis will provide valuable information regarding cognitive processing and 

attentional mechanisms associated with these frequency ranges in the brain.  

3.8 Machine learning 

3.8.1 Data Preprocessing 

Before any machine learning model is used for classification, the data of PSA 

subjects are tabulated into the excel file. The excel file is ensured not to have any 

missing values and outliers. The categorical variables in this study such as Group, are 

converted into binary values ‘1’ and ‘0’ by using Python programming language in 

Microsoft Visual Studio. The column “Group” is assigned to the dependent variable, 

y.  

 

Figure 3.5: Data Cleaning for Machine Learning 

3.8.2 Machine Learning Algorithms  

Two machine learning algorithms are used, which are Logistic Regression and 

Random Forest. The features, denoted as X, for the Logistic Regression Model 

depicted in Figure 3.6 comprise features and outcomes related to the Incongruent 

condition. Specifically, these variables include Group, Subject, FC5 under 

Incongruent condition (FC5_Incon), Reaction Time under Incongruent condition 



34 

 

(RT_Incon), mu, tau, Gender, and the Number of Errors in answering the Stroop Task 

(Error_Con). In contrast, the Random Forest Model illustrated in Figure 3.7 employs 

the same set of features and outcomes as the Logistic Regression Model, with the 

additional inclusion of "Error_Con" as an independent variable within X. This 

extended set of features is intended to enhance the predictive capabilities of the 

Random Forest Model and is visually represented in Figure 3.7. The independent 

variables and dependent variables are split into 70% of the training dataset and 30% 

of the testing dataset. 

 

Figure 3.6: Variable Assign and Train Test Split for Logistic Regression Model  

 

Figure 3.7: Variable Assign and Train Test Split for Random Forest Model 

3.8.2.1 Logistic Regression 

The library of “statsmodel” and other necessary libraries is imported to instantiate 

the LR model. The model is fitted with the training dataset and the summary of the 

logistic regression model is displayed. K-fold validation and L1 regularization 

techniques are applied to the code to avoid overfitting and shown in Figure 3.8.  

 

Figure 3.8: K-Fold Validation 
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The performance of the logistic regression model is evaluated on the test dataset. 

The evaluation metrics are computed using the imported library and displayed such as 

confusion matrix, accuracy, precision, specificity, and sensitivity shown in Figure 3.9 

and the mean of the evaluation metrics. The visualizations of the model are presented 

as ROC curves that shown in Figure 3.10. 

 

Figure 3.9: Evaluation Metrics Code 

 

Figure 3.10: ROC Curve code 

3.8.2.2 Random Forest 

The library of “RandomForestClassifier” from sci-kit-learn and other necessary 

libraries is imported to instantiate the RF model. K-fold validation is applied to the 

code to avoid overfitting that is presented in Figure3.11. 
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Figure 3.11: Random Forest Classifier and K-Fold Validation Code 

The performance of the RF model is evaluated on the test dataset. The metrics are 

computed using the imported library and displayed such as the mean accuracy, 

standard deviation, confusion matrix, and classification report shown in Figure 3.12. 

 

Figure 3.12: Evaluation Metrics of RF 

The visualizations of the model are presented as ROC curve, feature importance 

and learning curve as shown in Figure 3.13. 
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Figure 3.13: Visualization of RF 

The Random Forest model's decision tree can be visualized by exporting the tree 

structure into a DOT file within the Visual Studio Code IDE in Figure3.14. 

Subsequently, the DOT file can be converted into a PNG image using the Command 

Prompt displayed in Figure 3.15. 

 

Figure 3.14: Visualization of Tree of Random Forest 

 

Figure 3.15: Conversion of DOT File into PNG File 

 



38 

 

3.9 Gantt Chart 

Table 3.2: Gantt Chart 

 

The Gantt chart is divided into 10 activities and shown in Table 3.2. The Gantt chart 

is discussed in Appendix E.  
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CHAPTER 4  

RESULTS AND DISCUSSION 

This section presents the results and discussion of the analysis conducted on the 

raw EEG data of 12 high Public Speaking Anxiety (PSA) subjects and 12 low PSA 

subjects. The goal was to investigate the potential utility of Independent Component 

Analysis (ICA), Frontal Alpha Asymmetry (FAA), and Delta-Beta Correlation (DBC) 

as EEG biomarkers for assessing PSA. Additionally, the correlation of FAA and DBC 

with reaction time was examined. The findings and implications of these analyses are 

discussed below. 

4.1 Independent Component Analysis (ICA) 

In this study, a total of 12 LPSA and 12 HPSA subjects' raw EEG data were utilized. 

To produce clean EEG data, Independent Component Analysis (ICA) was employed 

to remove artifacts. However, due to the potential lengthiness of describing the 

cleaning process for all raw EEG data in this thesis report, the focus will be on 

presenting the cleaning results for two LPSA subjects and two HPSA subjects. 
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Diagrams illustrating the EEG data before and after the application of ICA were 

included to visually demonstrate the cleaning process. 

4.1.1 ICA of HPSA Subjects 

The HPSA subjects presented for ICA in this thesis are subject 2 and subject 3. 

 

Figure 4.1: EEG data of HPSA Subject 2 before ICA  

The artifacts that exist in the F8 electrode of HPSA Subject 2 are shown in Figure 

4.1. 

 

Figure 4.2: EEG data of HPSA Subject 2 after ICA 
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The artifacts were removed from the F8 electrode of HPSA Subject 2 and shown 

in Figure 4.2. 

 

Figure 4.3: EEG data of HPSA Subject 3 before ICA 

The artifacts that exist in the F8, T7 and P7 electrodes of HPSA Subject 3 are shown 

in Figure 4.3. 

 

Figure 4.4: EEG data of HPSA Subject 3 after ICA 

The artifacts were removed from F8, T7 and P7 electrodes of HPSA Subject 2 and 

shown in Figure 4.4. 
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4.1.2 ICA of LPSA Subjects 

The LPSA subjects presented for ICA in this thesis are subject 4 and subject 10. 

 

Figure 4.5: EEG data of LPSA Subject 4 before ICA 

The artifacts that exist in the FC6 electrode of LPSA Subject 4 are shown in Figure 

4.5. 

 

Figure 4.6: EEG data of LPSA Subject 4 after ICA 

The artifacts were removed from the FC6 electrode of LPSA Subject 4 and shown 

in Figure 4.6. 
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Figure 4.7: EEG data of LPSA Subject 10 before ICA 

The artifacts that exist in the FC6 and P8 electrodes of LPSA Subject 10 are shown 

in Figure 4.7. 

 

 

Figure 4.8:  EEG data of LPSA Subject 10 after ICA 

The artifacts were removed from FC6 and P8 electrodes of LPSA Subject 10 and 

shown in Figure 4.8. 
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4.2 Frontal Alpha Asymmetry (FAA) 

In MATLAB, the FAA index of 12 HPSA and 12 LPSA subjects was computed and 

shown in Appendix F. The FAA index computed in Appendix F was further analysed 

using the Repeated Measures Analysis of Variance (ANOVA) test and shown in 

Figure 4.9. 

 

Figure 4.9: Bar Graph of FAA in HPSA and LPSA Groups 

 Table 4.1: Repeated Measures Analysis of Variance with Effects Sizes and 

Power (FAA) 

 

The right FAA value of the HPSA group (Congruent Condition M= 0.465244 𝜇𝑣2/𝐻𝑧 

SE= 0.256728 𝜇𝑣2/𝐻𝑧, Incongruent Condition M= 0.241085𝜇𝑣2/𝐻𝑧, SE= 0.310199 

𝜇𝑣2/𝐻𝑧 ) is on average higher than the LPSA group (Congruent Condition M= 
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0.232964 𝜇𝑣2/𝐻𝑧  SE= 0.246656 𝜇𝑣2/𝐻𝑧 , Incongruent Condition M= -0.022678 

𝜇𝑣2/𝐻𝑧 , SE= 0.298030 𝜇𝑣2/𝐻𝑧) in both congruent and incongruent conditions for 

the Stroop Task. A higher right FAA indicates heightened negative emotions, such as 

PSA in this context [31]. The present findings seem to be consistent with another 

research which found higher right FAA at the F3 and F4 electrodes of patients with 

schizophrenia compared to healthy controls [32]. However, the mixed-design 

ANOVA for FAA shown in Table 4.1 revealed no significant differences for any main 

effects or interactions across conditions [𝐹 (1, 23) = 0.005200, partial ƞ2 = 0.000226, 

𝑝 = 0.943135]. The interpretation of this finding is possibly due to the limited sample 

size of PSA individuals.  

4.3 Delta-Beta Correlation (DBC) 

The delta and beta band power were used to conduct the DBC test for the Frontal, 

Central, Parietal and Temporal electrodes for all participants in this study. The Delta-

Beta Band values for distinct electrodes were delineated in the appendices of this 

study. Specifically, Appendix G detailed the Delta-Beta Band value associated with 

the Frontal Electrode, while Appendix H presented the corresponding value for the 

Central Electrode. Furthermore, Appendices I and J respectively illustrated the Delta-

Beta Band values pertaining to the Parietal and Temporal Electrode. The study 

employed Pearson correlation analysis to investigate the correlation between delta (0-

4 Hz) and beta (13-30 Hz) waves. Notably, a total of five positive and statistically 

significant delta-beta correlations (DBC) were identified across frontal, parietal, and 

central electrodes. 
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4.3.1 DBC of HPSA within the Frontal region in the Incongruent Condition 

 

Figure 4.10: Scatterplot of Delta-Beta Correlation in the Frontal Region for HPSA Individuals 

under Incongruent Conditions 

There was a significant positive linear DBC (r = 0.6931, p = 0.12(uncorrected)) in 

the frontal region (F3 and F4 electrodes) of the brain in the incongruent condition for 

HPSA subjects. The scatterplot of DBC in the frontal region for HPSA individuals 

under incongruent conditions is shown in Figure 4.10. Interestingly, the effect was not 

found in LPSA subjects (r=-.0127, p=.967). Comparing both the results of the HPSA 

and LPSA groups, there may be differential patterns of brainwave activity among the 

two groups. It can be seen that DBC in LPSA is indicated by a very weak negative 

correlation as the correlation coefficient, r is between 0.0 to -0.2 and the p-value is 

more than 0.5, meanwhile, the significant positive DBC observed in the frontal region 

of HPSA subjects during the incongruent condition may imply a specific neural 

processing mechanism related to PSA responses in these individuals. The present 

findings seem to be consistent with other research which found positive DBC in the 

frontal region in anxious subjects [24]. Heightened delta-beta correlation has been 

conceptualized as reflecting exaggerated neural regulation and has been implicated in 

anxiety[5]. 
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4.3.2 DBC of HPSA in Incongruent Condition at the Parietal region 

 

Figure 4.11: Scatterplot of Delta-Beta Correlation in the Parietal Region for HPSA Individuals 

under Incongruent Conditions 

The study revealed a noteworthy contrast in DBC patterns between HPSA and 

LPSA subjects in the incongruent condition. Specifically, in the parietal region (P7 

and P8 electrodes), there was a significant positive linear DBC in HPSA subjects 

(r= .7477, p=.005 (uncorrected)), indicating a strong positive correlation between delta 

and beta waves. Intriguingly, this effect was not observed in LPSA subjects (r= .1410, 

p=.646), where only a very weak positive correlation in DBC was evident. This 

discrepancy in DBC patterns between the two groups suggests the existence of 

differential brainwave activity among individuals with varying levels of performance 

and PSA. The substantial positive DBC observed in the parietal region of HPSA 

subjects during incongruent conditions may point to a specific neural processing 

mechanism associated with their responses to PSA. These findings align with prior 

research that identified positive DBC in the parietal region in anxious subjects [5]. The 

concept of heightened delta-beta correlation, often interpreted as reflecting 

exaggerated neural regulation, lends support to the notion that the observed DBC 

patterns could be implicated in anxiety. This suggests a potential neural basis for the 
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heightened performance social anxiety experienced by HPSA subjects, as indicated by 

the significant positive DBC in the parietal region during incongruent conditions. 

4.3.3 Positive DBC in HPSA and LPSA subjects in Congruent Condition at the 

Parietal brain region 

 

Figure 4.12: Scatterplot of Delta-Beta Correlation in the Parietal Region for HPSA Individuals 

under Congruent Conditions 

 

Figure 4.13: Scatterplot of Delta-Beta Correlation in the Parietal Region for LPSA Individuals 

under Congruent Conditions 

A significant positive linear DBC was identified in the parietal region (P7 and P8 

electrodes) of the brain during the congruent condition for individuals with HPSA 

(r= .7130, p=.009 (uncorrected)). Interestingly, this effect was also present in 

individuals with LPSA (r= .6069, p=.028(uncorrected)). The comparison of these 
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results underscores a consistent positive DBC for both HPSA and LPSA groups, 

suggesting that the parietal region's activity during the congruent condition serves as 

a robust predictor of PSA outcomes, regardless of the individual's anxiety level.  

4.3.4 DBC of LPSA in Central brain region in the Incongruent Condition 

 

Figure 4.14: Scatterplot of Delta-Beta Correlation in the Central Region for LPSA Individuals 

under Incongruent Conditions 

A noteworthy observation emerged as a significant positive linear DBC was 

detected in the central region (FC5 and FC6 electrodes) of the brain during the 

incongruent condition for individuals with LPSA (r= .6348, p=.020 (uncorrected)). 

Intriguingly, this effect was not present in individuals with HPSA (r= .1410, p=.646 

(uncorrected)). A comparison of these results suggests potential differential patterns 

of brainwave activity between the two groups. Notably, the DBC in HPSA subjects is 

characterized by a very weak positive correlation, while the significant positive DBC 

observed in the central region of LPSA subjects during the incongruent condition may 

indicate a specific neural processing mechanism related to public speaking anxiety 

responses in individuals with low PSA.  
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4.3.5 Summary of DBC 

The computed DBC is summarized in Appendix K. 

Brain regions that have strong positive statistically significant DBC are: 

• Frontal(F3 and F4) and Parietal (P7 and P8) regions in incongruent 

condition for HPSA subjects,  

• Central region (FC5 and FC6) in incongruent condition for LPSA subjects, 

• Parietal region (P7 and P8) in congruent condition for both HPSA and 

LPSA subjects, 

4.4 Machine Learning 

4.4.1 Logistic Regression 

The reasons for incorporating K-fold cross-validation and L1 regularization process 

used for the LR model have been discussed in Chapter 3. The LR model was optimized 

on an L1 regularization basis in each of the four folds. Convergence is a stability 

indicator of the coefficient estimation process within the optimization process. The 

model includes prediction variables such as FC5_Con (Amplitude of FC5 electrode in 

Congruent condition), RT_Con (Reaction time in Congruent condition) and 

Error_Con (Error rate in Congruent condition), among others.  

 

4.4.1.1 The Summary of the LR Model 

The outlines for the LR models are presented in Figures 4.15–4.18.  
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Figure 4.15: Logistic Regression Model Summary of 1st Fold Cross Validation 

 

Figure 4.16: Logistic Regression Model Summary of 2nd Fold Cross Validation 
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Figure 4.17: Logistic Regression Model Summary of 3rd Fold Cross Validation 

 

Figure 4.18: Logistic Regression Model Summary of 4th Fold Cross Validation 

Each coefficient sheds some light on the extent to which the independent variable 

(Group) influences the dependent variable’s log odds. Certainly, for example, some 

coefficients, among them “Error_Con” and “FC5_Con” reach zero. The fact that the 

coefficient converges to zero means that for these specific cases, the associated 

variable has little to no impact on determining the outcome. However, while this may 

help to simplify the model and improve its interpretability, one must understand that 
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such variables may not be that explainable in those particular folds. Knowing how 

particular parameters affected the predictor in each fold increases our knowledge 

about the meaning of logistic regression outcomes. The information concerning the 

impact of individual parameters on the predictor in each cycle enlarges our 

understanding of the sense of logistic regression results. 

4.4.1.2 Measured Results of LR Model 

 

Figure 4.19: Confusion Matrix of 1st and 2nd Fold  

 

Figure 4.20: Confusion Matrix of 3rd and 4th Fold 

Table 4.2: Summaries of the Confusion Matrix 

Fold True Positive 
(TP) 

True Negative 
(TN) 

False Positive 
(FP) 

False Negative 
(FN) 

1 4 1 2 1 
2 5 2 1 0 
3 5 1 2 0 
4 5 2 1 0 
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Detailed results of the confusion matrix are depicted in Table 4.2. TP are quite high 

across all folds (1 through 4) for every fold ensuring that the model has identified 

accurately points there were present with PSA. Values of 1 or 2 are exhibited by TN 

in different folds. This implies that the model’s success in recognizing individuals with 

LPSA fluctuates between folds. It is consistent across folds in the number of FPs and 

FNs as well. In every fold, 1-2 FP and 0-1 FN suggest some level of stability with 

respect to misclassification errors. 

 

Figure 4.21: Accuracy, Precision, Specificity, Sensitivity and their average value of Every Fold 

The Accuracy, Precision, Specificity, Sensitivity and average value of every fold 

cross-validation information is summarized in Table 4.3 below.  

Table 4.3: Summary Result of Every Fold 

Fold Accuracy Precision Specificity Sensitivity (Recall) 
1 0.6250 0.6667 0.333 0.80 
2 0.8750 0.8333 0.667 1.00 
3 0.7500 0.7143 0.333 1.00 
4 0.8750 0.8333 0.667 1.00 

Average 0.7812 0.7619 0.500 0.95 
Fold-level metrics created from various performance measures make an 

understanding of the category model in a particular set of data. The total prediction 

accuracy across the folds differs, however. In fold-2 and fold-4, the best accuracy 

achieved was 0.875 while it was 0.625 for fold-1 and it was 0.75 for fold-3. The 

precision measures in positive predictive values are also roughly fair and constant 

across folds, between 0.667-0.833. 
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For the negatives in folds 1 and 2, the specificity difference to the model was 

0.333%.  Although every fold is sensitive to a different extent, the general sensitivity 

lies anywhere between 0.80 and 1.00. The consistency shown in this regard also 

demonstrates that the model can identify instances of the positive set across any 

partitioning of the data. Such variables show how well the modelling process identifies 

true positives as well as true negatives. Differences in specificity and accuracies across 

folds may well serve as signs of parameters that would help improve the overall model 

performance. 

4.4.1.3 Visualized Result 

The ROC Curves for each fold are shown from Figure 4.22 to Figure 4.25. 

 

Figure 4.22: ROC Curve 1st Fold 
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Figure 4.23: ROC Curve 2nd Fold 

 

Figure 4.24: ROC Curve 3rd Fold 
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Figure 4.25: ROC Curve 4th Fold 

 

Figure 4.26: ROC curve of every fold 
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Table 4.4: Summary of ROC Curve 

Fold ROC Curve Value /Area Under 

ROC Curve (AUC) 

Interpretation 

1 0.57 The AUC of 0.57 suggests a relatively 

poor discrimination performance. 

2 0.83 The AUC of 0.80 suggests a good 

discrimination performance. 

3 0.67 The AUC of 0.67 suggests a reasonably 

good discrimination performance. 

4 0.83 The AUC of 0.80 suggests a good 

discrimination performance 

 

The ROC curve is summarized and analysed in Table 4.4. Folds 2 and 4 from Figure 

4.23 and Figure 4.25 were particularly strong, with each having an AUC of 0.83, 

which is exceptionally strong and consistent in the ability to differentiate among the 

classes. These are solid folds that indicate the performance of the model being reliable 

and effective in all layers. 

Fold 3 (refer Figure 4.24), though slightly lower AUC of 0.67, has only shown a 

slight decrease wherein it still exhibits a good discrimination capacity and ability. The 

performance as well is good in this fold and thus the observed AUC in this case 

concludes the fold present determines that the model has the power to determine 

underlying patterns present with the data. 

In sharp contrast, Fold 1 (refer Figure 4.22) emerges with an AUC of 0.57 

signalling a relatively lower discrimination capability. Such kind of a discrepancy in 
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performance could mean the data within this particular partition has presented unique 

characteristics that set it apart or challenge the predictive model. It will improve the 

discriminatory power of features, model responses, or potential sources of variation in 

this particular fold that could be further explored are identified. Typically gaining a 

nuanced understanding would allow getting a well-rounded view of how the model 

performs and generalizes across folds from correlated features. 

4.4.2 Random Forest (RF) 

As discussed in Chapter 3, the RF model is optimized using 4-fold cross-validation.  

4.4.2.1 Metrics Computed From 4-Fold Cross-Validation of RF 

The cross-validation scores (accuracy), mean of accuracy and standard deviation 

are computed using the RF model were displayed in Figure 4.27. 

 

Figure 4.27: Metrics Computed from RF Model 

 

The cross-validation scores, [0.75, 0.25, 1.0, 0.75], underscore the model's 

consistent performance across diverse folds, indicating a high level of stability. This 

stability implies that the model generalizes effectively, exhibiting resilience to 

variations in training and validation subsets. The reported mean accuracy of 0.69 

reflects the model's overall ability to correctly classify diverse subsets of the data. 

The accompanying standard deviation of 0.27 provides valuable insights into the 

variance of cross-validated scores around the mean accuracy. A lower standard 
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deviation, as observed here, signifies greater consistency across different folds, a 

positive characteristic for model generalizability. In contrast, a higher standard 

deviation would suggest heightened sensitivity to specific instances in the training 

dataset, potentially compromising the model's stability. 

To assess the model's robustness, it is crucial to scrutinize whether the observed 

standard deviation aligns with expectations for reliable generalization. In this case, the 

standard deviation of 0.27 prompts a thoughtful examination of the model's ability to 

consistently perform well across varying data distributions. Hence, while the model 

exhibits commendable stability, further consideration may be warranted to determine 

if the standard deviation meets acceptable thresholds for robust generalization. 

4.4.2.2 Confusion Matrix of Testing Data 

 

Figure 4.28: Confusion Matrix of Random Forest Testing Data 

The confusion matrix presented in Figure 4.28 illustrates the performance of the 

RF model as follows: there are 3 instances correctly classified as negative (True 

Negatives), 1 instance misclassified as negative when it was actually positive (False 

Positive), and 4 instances correctly identified as positive (True Positives). In summary, 
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the model demonstrates 3 true negative predictions, 4 true positive predictions, and 1 

false positive prediction.  

4.4.2.3 Classification Report of Testing Data 

The training data is fitted into the RF model without the k-fold cross-validation and 

the testing data was utilized for the prediction as unseen data of the model. The 

classification report is shown in Figure 4.29.  

 

Figure 4.29: Classification Report of Testing Data 

The classification report offers valuable insights into the model's performance on 

individual classes, as well as general metrics for the test data. For Class 0, the precision 

stands at 0.75, indicating that when the model predicts this class, it is correct 75% of 

the time. The recall for Class 0 is a perfect 1.00, signifying that the RF model 

successfully captures all actual negative instances. The corresponding F1-score is 

0.86.  

On the other hand, Class 1 exhibits more favourable metrics, with a precision of 

1.00, denoting that all positive predictions are accurate. The recall for Class 1 is 0.80, 

signifying that the model correctly identifies 80% of actual instances of this class. The 

F1-score for Class 1 is 0.89.  
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The overall accuracy of the model is reported as 0.88, implying that it correctly 

classifies 88% of instances in the testing data. The reported metrics collectively 

showcase the model's effectiveness and reliability in making accurate predictions 

across diverse instances in the testing data.  

4.4.2.4 Visualization of Training Data and Testing Data  

Receiver Operating Characteristics and Learning Curve are plotted to visualize the 

RF model that is shown in Figure 4.30 and Figure 4.31.   

 

Figure 4.30: ROC Curve of RF model 

ROC analysis of the RF model resulted in a noteworthy AUC-ROC value of 0.9, 

indicating its excellent ability to discriminate between positive and negative instances. 

The straightforward trajectory from (0,0) to (0,0.8) to (1,1) on the ROC curve 

underscores its strong performance and reliability in accurately classifying true 

positives while minimizing false positives. This signifies the model's potential as a 

dependable tool in practical applications. 
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Figure 4.31: Learning Curve 

The training score of the RF model demonstrates a distinctive pattern, initially 

decreasing from an initial value and then steadily increasing over successive training 

periods. This initial decrease suggests an early phase of learning where the model 

refines its predictions and adjusts to the complexities of the data. Subsequently, the 

score shows a consistent upward trajectory, indicating continuous improvement and 

effective learning and adaptation by the RF model. 

In contrast, the validation score of the RF model exhibits fluctuations across 

different training intervals. Starting at a certain level, there is a subsequent decline, 

followed by variations and an eventual upward trend. These patterns in the validation 

score reflect the RF model's varying degrees of generalization during different phases 

of training. The fluctuations underscore the model's sensitivity to different training 

intervals, pointing towards potential opportunities for refinement to enhance its overall 

generalization across diverse datasets. 
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4.4.2.5 Feature Importance of RF 

There is a total of 8 independent variables were used for the RF model training, 

which are amplitude of FC5 under congruent conditions (FC5_Con), Reaction Time 

under congruent conditions (RT_Con), Error Rate of the Stroop Task under congruent 

condition (Error_Con), Error rate of the Stroop Task in the incongruent condition 

(Error_Incon), State Anxiety, Trait Anxiety, Age and Sigma (of the Reaction Time 

obtained from ex-Gaussian Analysis). The feature importance is computed in Figure 

4.32 and plotted as a bar chart in Figure 4.33. The feature importance is summarized 

in Appendix M.  

 

Figure 4.32: Feature Importance of RF Model 

 

Figure 4.33: Bar Chart of Feature Importance of RF Model 
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These importance scores offer a quantitative measure of each feature's impact on 

the model's decision-making process. Understanding feature importance is crucial for 

interpreting the model's behavior and may guide further investigations or refinements 

in the model, such as feature engineering or selection, to optimize predictive 

performance. It's worth noting that the interpretation of feature importance is context-

dependent, and domain knowledge should be considered for a comprehensive 

understanding of the model's behavior. 

4.4.2.6 Visualization of Tree in RF model 

 

Figure 4.34: One of the trees in the RF model 

 

The orange colour indicates the majority prediction of Class 0 (LPSA individuals) 

and the blue colour indicates the majority prediction of Class 1(HPSA individuals). 

Gini impurity is a metric that quantifies the likelihood of misclassifying an instance 

randomly chosen from the dataset. A more intense colouring designates a lower Gini 

impurity, which in turn indicates a lower likelihood of misclassification. In the RF 

model, the root node serves as the starting point for the decision-making process. This 

node is determined by the condition "Error_Con ≤ 1.5." The Gini impurity for this 
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node is 0.492, indicating the level of impurity in the node's samples. There are a total 

of 10 samples in this node, with a class distribution of [9 Class 0, 7 Class 1]. As the 

Gini impurity is lower, the predicted class for this node is Class 0. Moving to the 

branches, the "True" branch emanates from the root node and is based on the condition 

"Age ≤ 21.5." This branch exhibits a reduced Gini impurity of 0.198 with 7 samples, 

primarily consisting of 8 instances of Class 0 and 1 instance of Class 1. The decision 

at this point is to predict Class 0 (LPSA).  

Further exploration along the "True" branch reveals another decision node with the 

condition "None," signifying a leaf node where no further branching occurs. In this 

leaf node, the Gini impurity is 0.0, implying a pure node with 4 samples, all belonging 

to Class 0 (LPSA). Therefore, the final prediction for this path is Class 0(LPSA). 

Contrarily, the "False" branch from the second node leads to another leaf node. Here, 

the Gini impurity is 0.444, indicating some impurity in the 3 samples. Returning to the 

root node, the "False" branch leads to a leaf node with a Gini impurity of 0.245. The 

3 samples in this node have a class distribution of [ Class 0, Class 1] resulting in the 

final prediction of Class 1. 

In summary, this decision tree structure outlines the sequential conditions and 

decisions that the model employs to predict the classes of samples. It navigates through 

the features and partitions the dataset based on specific conditions, ultimately arriving 

at predictions for each path in the tree. Understanding the nodes, conditions, and 

predicted classes facilitates a comprehensive interpretation of the decision-making 

process within the tree. 
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4.4.3 Comparison of Logistic Regression (LR) and Random Forest (RF) model 

In terms of performance stability, LR exhibited varying performance across folds 

during cross-validation, suggesting sensitivity to data partitioning. In contrast, RF 

demonstrated consistent performance across diverse folds, indicating a higher level of 

stability in handling different subsets of the data. 

Random Forest outperformed Logistic Regression in terms of discrimination, as 

evidenced by higher Area Under ROC Curve (AUC-ROC) values. This implies that 

RF had a superior ability to differentiate between positive and negative instances 

compared to LR. 

Logistic Regression provided coefficients, offering insights into the impact of 

individual predictors on the outcome. This contributes to the interpretability of the 

model. On the other hand, Random Forest offered feature importance scores, guiding 

the understanding of variable contributions to the overall model. The choice between 

coefficients and feature importance depends on the specific interpretative needs of the 

analysis. 

Logistic Regression showed some variability in performance metrics across folds, 

indicating potential sensitivity to different data subsets. In contrast, Random Forest 

demonstrated stability in cross-validation and robust performance in the testing phase, 

suggesting a more reliable generalization to unseen data. 

The choice between LR and RF models depends on the specific goals and 

characteristics of the data. LR provides straightforward interpretability through 

coefficients, making it suitable for scenarios with simpler relationships. In contrast, 

RF excels in predictive performance, particularly when dealing with complex, non-



68 

 

linear data patterns, and offers stability across diverse subsets. The decision hinges on 

the trade-off between interpretability and performance, with LR favored for its clarity 

in understanding individual predictors, and RF preferred for robustness in handling 

intricate datasets and delivering superior predictive capabilities. Ultimately, the 

selection is context-dependent, necessitating a careful evaluation of model strengths 

against specific objectives and constraints. 

4.5 Environment and Sustainability 

4.5.1 SDG3 Good Health and Well-being 

The study aims to investigate the brain-behavior mechanisms underlying PSA 

through the analysis of EEG data, which could contribute to improving mental health 

outcomes for individuals with this condition. In this study, the research of FAA and 

DBC as the EEG biomarkers allow early detection for individual with PSA. 

4.5.2 SDG9 Industry, Innovation, and Infrastructure 

The study's use of biomedical engineering techniques (FAA and DBC) to analyze 

EEG data may have broader applications in the development of medical technologies 

and devices to support the diagnosis and treatment of a range of health conditions. 

4.5.3 SDG 17 Partnerships for the Goals 

The study's findings (FAA, DBC and the classification of individual with PSA) 

could contribute to the development of effective interventions for individuals with 

PSA, which could require collaboration and partnership across different sectors and 

stakeholders to implement. 
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CHAPTER 5  

CONCLUSION AND FUTURE WORKS 

5.1 Conclusion 

In this study, the general aim is to explore the brain-behaviour mechanisms 

responsible for PSA through EEG data processing. After the raw EEG has been 

confirmed that the artifacts are fully rejected, the EEG is then transformed into a 

frequency domain through FFT to make comparative evaluations of Frontal Alpha 

Asymmetry (FAA) and Delta-Beta Correlation (DBC) in individuals with HPSA and 

LPSΑ. Therefore, the hypothesis is supported by HPSA subjects FAA being higher 

than LPSA subjects consistently. The analysis revealed that the DBC of HPSA is 

significant and strong for the Frontal region (F3, F4) in incongruent conditions for 

HPSA subjects, Central region (FC5, FC6) in incongruent conditions for LPSA 

subjects, Parietal region (P7, P8) both congruently and incongruently paired were 

found signifiers with a threshold p≤0.05. 
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Apart from that also, the EEG and performance biomarkers are used for classifying 

machine algorithm Logistic Regression (LR) and Random Forest 15(RF). LR’s mean 

accuracy is at 78.12%, and RF's mean accuracy is at 69%. There is an improvement 

needed in both the classification algorithm as well because of a restriction to limit the 

subjects (individuals with PSA). Therefore, the obtained results contribute to the 

development of knowledge regarding neurobiological processes that are behind PSA 

and its prediction models. 

5.2 Future Work 

There is no doubt that this study has shed light on PSA neurobiology by finding the 

EEG biomarkers as well as the PSA classification. On the contrary, there are areas in 

the future research of this study that need improvement. The brain dynamics related 

to PSA may be further elucidated using other neuroimaging methods like fMRI and 

MEG. Regarding the approach, it would be worthwhile to explore some complex 

machine learning methods as well as broaden the sample size of PSA subjects. Hence 

this is likely to enhance the generalizability of the results as well as further improve 

the classification model to yield a better classification accuracy. 

This finally leads the study to understand how the brain impacts behaviour via 

public speaking anxiety. These results will form the basis of our further study on PSA, 

and we shall endeavor to provide more concrete interventions. 
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APPENDICES 

 

Appendix A  

Literature Gap 

Paper/Year Subject Experiment Reactio
n Time 
study 

Event 
Related 
Potential 

FAA DBC 

Feroz[6]/2021 PSA Stroop Yes Yes Nil Nil 
Farah[7]/2021 PSA Flanker Yes Yes Nil Nil 
Flasbeck[8] 
/2023 

Non-
PSA 

Beck 
Depression 
Inventory 
(BDI-II), State-
trait Anxiety 
Inventory 
(STAI), Fear of 
Flying Scale 
(FFS) 

Nil Yes Yes Nil 

Schumann[9] 
/2022 

Non-
PSA 

EEG resting 
state paradigm 

Nil Nil Yes Nil 

Harrewijn[10] 
/2018 

Non-
PSA 

Social 
Performance 
Task 

Nil Nil Nil Yes 

Barros[11] 
/2022 

Non-
PSA 

Emotion 
Stimuli 

Nil Nil Yes Yes 

Glier[12] 
/2022 

Non-
PSA 

Trier Social 
Stress Test 
(TSST) 

Nil Nil Yes Nil 

Wise[4]    
/2023 

Non-
PSA 

Threatening 
Identification 
Task 

Nil Nil Yes Nil 

David[13] 
/2021 

 REThink 
Game 

Nil Nil Yes Nil 
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Appendix B  

Summary of FAA Past Research Paper 

Year/Paper Subjects Method Results Similarities Differences 
Flasbeck 

[8] 

/2023 

36 
participant
s with 
self-
reported 
fear of 
flying 
(FF) and 
41 
unaffected 
participant
s (NFF) 

FAA, 
ICA, 
FFT 

Participants 
with a fear of 
flying showed 
higher right 
FAA at F8-F7 
electrodes 
compared to 
the other 
group, but no 
difference was 
found at F4-F3 
electrodes. 

Method: 
FAA, FFT, 
ICA 

Different 
Experiment
al Paradigm 
(Resting-
State) 

Schumann 

[9] 

/2022 

47 healthy 
adults  

ICA, 
FAA, 
FFT  

An association 
between 
relative 
rightward 
lateralization 
of alpha power 
at one 
electrode pair 
and depressive 
symptoms was 
found. 

Method: 
ICA, FAA, 
FFT 

Type of 
subjects 

Barros 

[11] 

/2022 

39 older 
adults (≥ 
60 years 
old) & 57 
younger 
adults 
(between 
18 and 35 
years old) 

ICA, 
FAA 

Older adults 
had a higher 
FAA value 
than younger 
adult 

Method: 
ICA, FAA 

Type of 
subjects 

Glier 

[12] 

/2022 

145 
adolescent
s 

ICA, 
FAA, 
FFT 

• Adolescent
s with 
rightward 
FAA 
activation 
and high 
trait anxiety 
showed 
blunted 
cortisol 
reactivities. 

Method: 
ICA, FAA, 
FFT 

Type of 
subjects 
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• Adolescent
s with 
leftward 
FAA 
activation 
and high 
state 
anxiety 
showed 
prolonged 
cortisol 
recoveries. 

Wise 

[4] 

/2023 

77 
children 
aged 
between 8 
and 12 
years old 
(36 high 
anxious 
children), 

Gratton 
method
, FAA, 
FFT 

• During the 
face and 
images 
task, higher 
alpha 
power was 
observed in 
the left 
hemisphere 
in response 
to threat 
compared 
to neutral 
stimuli, 
with no 
significant 
difference 
in the right 
hemisphere.  

• However, 
no 
significant 
changes 
were 
observed in 
the alpha 
power 
values of 
both 
hemisphere
s during the 
word 
stimuli 
task. 

Method: 
FAA, FFT 

Method: 
Gratton 
method 
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David  

[13] 

/2021 

165 
healthy 
children 
and 
adolescent
s (aged 
between 
10 and 16 
years) 

FAA, 
FFT, 
ICA 

Higher scores 
indicate more 
right-sided 
alpha activity, 
suggesting 
greater 
inhibition in 
the right 
hemisphere 
associated with 
negative affect. 
The study 
found a 
significant 
negative 
correlation 
between 
frontal alpha 
asymmetry and 
state anxiety 
after the 
REThink 
intervention. 
Specifically, 
the REThink 
group showed 
a significant 
increase in 
right 
hemisphere 
inhibition, 
supporting the 
efficacy of the 
intervention in 
reducing 
negative 
modulation. 

Method: 
FAA, FFT, 
ICA 

Different 
subjects and 
experimenta
l paradigm 

Heine 

 [18] 

/2022 

35 
university 
students 

FAA, 
Infinite 
Impulse 
Respon
se (IIR) 
filter, 
ICA-
based 
EOG 
correcti
on, FFT 

There was no 
difference in 
alpha 
asymmetry 
between the 
two depression 
groups used in 
this study, and 
there was no 
significant 
association 
between 
depression 

Method: 
FAA, ICA, 
FFT 

Method: IIR 
filter 
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scores on the 
PHQ-9 and 
alpha 
asymmetry 
measured on 
different 
electrode pairs. 

Song 

[19] 

/2023 

62 healthy 
university 
students 

Event 
Related 
Potenti
al 
(ERP), 
FAA, 
ICA 

In individuals 
with social 
anxiety, there 
was a 
significant 
decrease in 
occipital alpha 
oscillation 
power 
compared to 
the healthy 
control group, 
particularly 
when the 
emotional 
context and 
expression 
were 
congruent. 
Additionally, 
in negative 
contexts, the 
social anxiety 
group 
exhibited 
significantly 
reduced frontal 
alpha 
lateralization 
compared to 
the healthy 
control group. 

Method: 
FAA, ICA 

Type of 
subject, 
Method: 
ERP 
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Appendix C 

Summary of DBC Research Paper 

Year/Paper Subjects  Method Results  Similarities  Differences 
Harrwijn 

[10] 

/2018 

113 
participants 
(18 SAD 
subjects, 25 
subclinical 
SAD 
subjects, 43 
clinical 
SAD 
subjects) 

DBC, 
FFT 

Co-segregation 
analyses 
indicated a 
higher 
negative delta-
beta 
correlation 
during 
anticipation in 
participants 
with 
(sub)clinical 
SAD 
compared to 
those without 
(sub)clinical 
SAD. 

Method: 
DBC, FFT 

Type of 
subjects 

Myruski 

 [20] 

/2022 

53 children 
(23 female, 
30 male) 

DBC, 
FFT 

A stronger 
direct brain 
connectivity 
(DBC) was 
found to be 
associated with 
a higher 
utilization of 
adaptive and 
relatively 
active emotion 
regulation 
(ER) 
strategies. 

Method: 
DBC, FFT 

Type of 
subjects 

Margaret 

[21] 

/2022 

184 high-
SAD adults 

DBC, 
FFT 

No significant 
difference in 
the delta-beta 
correlation 
between the 
Writing 
Exercise 
Conditions 

Method: 
DBC, FFT 

Type of 
subjects 

Al Ezzi 
[22]  

/2020 

4 social 
anxiety 
disorder 
subjects 
and 4 HC 
subjects 

DBC In individuals 
with Social 
Anxiety 
Disorder 
(SAD), there 
was a higher 

Method: 

DBC 

Type of 
subjects 
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correlation 
observed 
between DBC 
during the 
baseline 
condition (both 
eyes closed 
and eyes open) 
compared to 
the recovery 
task. In 
contrast, 
healthy control 
(HC) 
individuals 
exhibited a 
stronger 
correlation 
during the 
recovery state 
compared to 
the baseline 
state. 

Poole K 

[23] 

/2020 

67 children DBC, 
DFT 

Positive shy 
children had a 
higher frontal 
delta–beta 
correlation 
compared to 
other groups. 
(Non-positive 
shy and low 
shy) 

Method: 
DBC 

Method: 
DFT 

Poole K 
[24]   

/2019 

50 children DBC, 
DFT 

The patterns of 
children's 
salivary 
cortisol across 
visits could be 
categorized 
into two 
distinct 
classes: a high, 
stable class 
comprising 
53% of the 
sample and a 
low, unstable 
class 
comprising 
47% of the 

Method: 
DBC 

Method: 
DFT 
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sample. On the 
other hand, 
children's 
social anxiety 
exhibited two 
distinct 
classes: a high, 
stable class 
comprising 
50% of the 
sample and a 
low, stable 
class also 
comprising 
50% of the 
sample. 

Poole K 

[5] 

/2020 

118 
children. 

DBC, 
FFT,  

Children who 
scored high on 
behavioral 
inhibition (BI) 
demonstrated 
higher delta-
beta 
correlation 
compared to 
children with 
low BI in 
frontal and 
central brain 
regions. 
Additionally, 
there was a 
marginal 
increase in 
delta-beta 
correlation in 
parietal brain 
regions for 
high BI 
children 
relative to low 
BI children. 

Method: 
DBC, FFT 

Type of 
subjects 

Pascalis 

[25] 

/2020 

59 students DBC, 
FFT, 
Gratton 

• The resting 
Anxiety 
group 
exhibited a 
significant 
positive 
between-
subject 

Method: 
DBC, FFT 

Method: 
Gratton 
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delta-beta 
correlation, 
which was 
significantly 
higher than 
the 
correlation 
observed in 
the 
Relaxation 
group. 

• DBC 
specifically 
for low delta 
activity in 
the Anxiety 
group, but 
not in the 
Relaxation 
group. 
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Appendix D 

Project Flowchart 
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Appendix E 

Gannt Chart Explanation 

Activities  Explanation 
Literature Review • Duration: Week 1 of Semester 1 to Week 11 of 

Semester 2 
• Description: Conduct a critical analysis and summary 

of existing research and scholarly articles on the topic 
to establish a comprehensive understanding of the 
subject. 

EEG Data 
Preprocessing 

• Duration: Week 5 of Semester 1 to Week 13 of 
Semester 1 

• Description: Preprocess the raw EEG data using 
Independent Component Analysis (ICA) to remove 
artifacts and obtain clean EEG data suitable for 
accurate analysis. 

Power Spectral 
Analysis 

• Duration: Week 10 of Semester 1 to Week 13 of 
Semester 1 

• Description: Perform power spectral analysis on the 
preprocessed EEG data to obtain the power spectrum, 
which will be used for further analysis, specifically 
for FAA and DBC analysis. 

FAA Analysis • Duration: Week 10 of Semester 1 to Week 13 of 
Semester 1 

• Description: Analyze the new EEG biomarkers 
related to FAA using the power spectrum data 
obtained in the previous step. 

DBC Analysis • Duration: Week 1 of Semester 2 to Week 6 of 
Semester 2 

• Description: Analyze the new EEG biomarkers 
related to DBC using the power spectrum data 
obtained in the previous step. 

Machine Learning • Duration: Week 6 to Week 13 of Semester 2 
• Description: Apply the logistic regression and random 

forest algorithm to classify the PSA data, enabling the 
identification of patterns and trends in the EEG 
signals. 

Concluding 
Findings 

• Duration: Week 12 and Week 13 
• Description: Summarize the research findings, draw 

conclusions based on the analysis conducted, and 
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evaluate the implications of the results for the 
research topic. 

Publish Results • Duration: Week 7 to Week 13 of Semester 2 
• Description: Prepare and publish the research results, 

including writing a research paper or preparing a 
presentation to disseminate the findings to the 
scientific community. 

Thesis Writing • Duration: Week 5 of Semester 1 to Week 13 of 
Semester 2 

• Description: Complete any remaining tasks, finalize 
documentation, and wrap up the project activities. 

Seminar • Seminar 1 is placed in week 13 Semester 1. 
• Seminar 2 is placed in week 13 Semester 2. 
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Appendix F  

FAA index of HPSA and LPSA Subjects 

 

Subject 

ID 

HPSA  

Subject 

ID 

LPSA 

FAA 

Congruent 

(𝜇𝑣2/𝐻𝑧) 

FAA 

Incongruent 

(𝜇𝑣2/𝐻𝑧) 

FAA 

Congruent 

(𝜇𝑣2/𝐻𝑧) 

FAA 

Incongruent 

(𝜇𝑣2/𝐻𝑧) 

00002 
1.913560829 -0.872445289 

00004 
-

0.915559417 -1.679574557 

00003 0.984342041 -0.10682081 00010 

-

0.749973927 0.986686376 

00008 2.013738054 0.714541389 00011 0.298042323 0.643536293 

00009 0.209379355 2.243509682 00013 

-

0.818312511 -1.703405971 

00019 -0.19812664 -0.814376253 00014 0.398481529 -1.311372544 

00023 0.137737532 -0.399893528 00016 1.269352963 1.340380834 

00026 -0.55389698 -0.028685738 00018 0.854864976 0.617230278 

00030 0.031467873 -0.871097556 00021 0.072226261 0.047154243 

00031 0.389115946 1.832702756 00022 0.063087941 -0.330518844 

00035 0.145410643 0.074962248 00027 0.212838388 0.234623502 

00039 0.020940256 0.914162706 00028 0.194046484 -0.757590564 

00040 0.489253114 0.206459062 00034 2.643751006 1.824609133 
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Appendix G 

Delta-Beta Band of Frontal Electrode 

Subject PSA 

Group 

Delta-Beta Band of Frontal Electrode (F3, F4) 

Congruent Incongruent 

Delta Band Beta Band Delta Band Beta Band 

00002 HPSA 0.143913212 0.003002985 0.158301189 0.00239913 

00003 HPSA 0.129667477 0.005921813 0.657632985 0.003832944 

00008 HPSA 2.317243866 0.005333956 3.566894396 0.004668984 

00009 HPSA 2.96915688 0.002344195 1.432906363 0.003199687 

00019 HPSA 0.068275781 0.001288341 0.057505279 0.00179124 

00023 HPSA 0.252759448 0.008022118 0.706506947 0.004134565 

00026 HPSA 0.542671915 0.009542996 1.71163987 0.006196544 

00030 HPSA 0.182126077 0.001228762 0.091257563 0.00122733 

00031 HPSA 0.847440048 0.002323072 0.127855258 0.002797011 

00035 HPSA 0.280022656 0.001456297 0.414470462 0.000839663 

00039 HPSA 0.108143765 0.001779057 0.12655659 0.002057001 

00040 HPSA 0.401745402 0.000932914 0.091838911 0.001345144 

00004 LPSA 0.015733503 0.000454499 0.037051664 0.000696081 

00010 LPSA 0.028184964 0.001704607 0.109326277 0.001583384 

00011 LPSA 0.376650416 0.001629949 0.712701254 0.001625066 

00013 LPSA 0.371387693 0.001359823 0.648851451 0.001411304 

00014 LPSA 0.113076486 0.002900179 0.078252811 0.001598261 

00016 LPSA 0.271465869 0.003196422 0.621828375 0.001520073 
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00018 LPSA 0.108679247 0.001133484 0.055805553 0.000991276 

00021 LPSA 0.081528955 0.003228288 0.030713855 0.00491885 

00022 LPSA 0.042739617 0.001279323 0.109224771 0.002608506 

00027 LPSA 0.310134487 0.003050174 0.954615745 0.003263333 

00028 LPSA 0.148886876 0.00502375 0.239426321 0.002769657 

00034 LPSA 0.705243989 0.000823739 0.508967308 0.001131569 
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Appendix H 

Delta-Beta Band of Central Electrode 

Subject PSA 

Group 

Delta-Beta Band of Central Electrode (FC5, FC6) 

Congruent Incongruent 

Delta Band Beta Band Delta Band Beta Band 

00002 HPSA 0.148834507 0.002048379 0.472751956 0.001724733 

00003 HPSA 0.189389976 0.004603348 0.152904451 0.004954717 

00008 HPSA 0.026170351 0.003108526 0.092129787 0.003292064 

00009 HPSA 1.96746023 0.002590976 1.953468973 0.004683448 

00019 HPSA 0.839903451 0.00261786 0.151043479 0.002751307 

00023 HPSA 0.055745083 0.002421609 0.021615457 0.001895168 

00026 HPSA 1.677112786 0.005812988 0.668930304 0.011986215 

00030 HPSA 0.375798165 0.001237622 0.333084748 0.0010486 

00031 HPSA 0.28266474 0.004466466 0.194466276 0.00476498 

00035 HPSA 0.094745131 0.002337458 0.030905229 0.00187479 

00039 HPSA 0.07241626 0.002533529 0.310450517 0.001658008 

00040 HPSA 0.047150275 0.000950085 0.043533854 0.001177487 

00004 LPSA 0.470148268 0.004490366 0.211929316 0.003774993 

00010 LPSA 0.078144943 0.002005724 0.181431855 0.003213225 

00011 LPSA 0.101033505 0.000816274 0.119418102 0.000860148 

00013 LPSA 0.250556649 0.002903069 0.246129648 0.001295708 

00014 LPSA 0.047893257 0.003416815 0.155086961 0.002147759 

00016 LPSA 0.879656779 0.006356852 0.57723969 0.008855639 
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00018 LPSA 0.117595295 0.002014072 0.17980335 0.001737505 

00021 LPSA 0.040664579 0.003411126 0.045320085 0.004343132 

00022 LPSA 0.852029506 0.002604434 0.188275744 0.003874726 

00027 LPSA 0.115345892 0.002264182 0.166743617 0.001541121 

00028 LPSA 0.420564028 0.006338828 0.320800217 0.003424749 

00034 LPSA 0.622108763 0.003225878 0.104570655 0.003076211 
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Appendix I 

Delta-Beta Band of Parietal Electrode 

Subject PSA 

Group 

Delta-Beta Band of Parietal Electrode (P7, P8) 

Congruent Incongruent 

Delta Band Beta Band Delta Band Beta Band 

00002 HPSA 0.177185162 0.003395027 0.087440019 0.003218071 

00003 HPSA 0.069712601 0.001544989 0.025355559 0.000879779 

00008 HPSA 0.654710279 0.008582221 0.65325542 0.00709008 

00009 HPSA 2.126156949 0.003895325 1.770171306 0.004484665 

00019 HPSA 0.120230574 0.001079442 0.296592618 0.001343042 

00023 HPSA 1.332897094 0.010068069 0.687057284 0.008308575 

00026 HPSA 1.396784363 0.002916479 0.190377602 0.002663107 

00030 HPSA 0.076490202 0.002036578 0.116360501 0.00149984 

00031 HPSA 2.548694493 0.013268577 1.770278254 0.01345413 

00035 HPSA 0.13227847 0.002555959 0.175750291 0.001402166 

00039 HPSA 0.116946969 0.002161231 0.408219959 0.002209689 

00040 HPSA 0.122412855 0.001914244 0.263350899 0.002848912 

00004 LPSA 0.032166725 0.000572604 0.026423916 0.000535255 

00010 LPSA 0.211107053 0.002701157 0.216608493 0.003799396 

00011 LPSA 0.381365596 0.002615944 0.434667559 0.001924738 

00013 LPSA 0.342439294 0.002659268 0.708646315 0.001930405 

00014 LPSA 0.023596931 0.002228532 0.036845644 0.001432966 

00016 LPSA 0.105817259 0.00629893 0.104199245 0.008295717 
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00018 LPSA 0.092779853 0.001936936 0.050261889 0.002084774 

00021 LPSA 0.344656121 0.003143018 0.144293341 0.002505291 

00022 LPSA 0.208449902 0.001283811 0.480549699 0.001928015 

00027 LPSA 0.473138417 0.007600657 0.53446337 0.004106584 

00028 LPSA 0.700120477 0.015112667 0.53176208 0.010156132 

00034 LPSA 0.795474305 0.003694686 0.319800288 0.0034275 
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Appendix J 

Delta-Beta Band of Temporal Electrode 

Subject PSA 

Group 

Delta-Beta Band of Temporal Electrode (T7, T8) 

Congruent Incongruent 

Delta Band Beta Band Delta Band Beta Band 

00002 HPSA 0.120857345 0.002574969 0.260193402 0.003744578 

00003 HPSA 0.052027493 0.00716276 0.060832564 0.004852687 

00008 HPSA 1.021415827 0.005879451 1.585840127 0.003918045 

00009 HPSA 2.031930443 0.009879445 0.704312816 0.009203984 

00019 HPSA 0.025560977 0.000803683 0.02226617 0.000773845 

00023 HPSA 0.152335098 0.006947462 0.744438895 0.006354218 

00026 HPSA 0.909034355 0.011710825 0.985746801 0.011718639 

00030 HPSA 0.358499191 0.002521451 0.328023796 0.003257561 

00031 HPSA 0.52248498 0.00918227 0.248144164 0.007364866 

00035 HPSA 0.125287343 0.010757893 0.140062783 0.005261207 

00039 HPSA 0.085907349 0.001750615 0.111966902 0.001157908 

00040 HPSA 0.097668435 0.002531188 0.149010662 0.004343601 

00004 LPSA 0.098029528 0.004921165 0.221416788 0.002244694 

00010 LPSA 0.102924982 0.001771233 0.163587578 0.002407269 

00011 LPSA 0.259827551 0.001746161 0.112436179 0.001165593 

00013 LPSA 0.274096785 0.005391184 0.187040594 0.004510473 

00014 LPSA 0.0587425 0.003208734 0.05018075 0.001759122 

00016 LPSA 0.089590802 0.012509595 0.075999999 0.011784661 
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00018 LPSA 0.307696553 0.001731089 0.08301043 0.001296149 

00021 LPSA 0.386751297 0.004917519 0.982622324 0.004554407 

00022 LPSA 0.034898167 0.000810872 0.033691855 0.001183571 

00027 LPSA 0.140542345 0.001060563 0.225798643 0.000872732 

00028 LPSA 0.535675133 0.013009599 1.638939133 0.0108108 

00034 LPSA 0.551660347 0.002308174 0.37123371 0.003074312 
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Appendix K 

Summary of DBC 

Brain Region 
(Electrode Used) 

Stroop Task 
Conditions 

Subject 
Group 

r p Correlation 

Frontal  

(F3, F4) 

Congruent HPSA .0436 .893 Non-significant, 
weak, positive 

LPSA -.1068 .728 Non-significant, 
weak, negative 

Incongruent HPSA .6931 .012 Significant, strong, 
positive 

LPSA -.0127 .967 Non-significant, 
weak, negative 

Central  

(FC5, FC6) 

Congruent HPSA .3747 .230 Non-significant, 
moderate, positive 

LPSA .3785 .202 Non-significant, 
moderate, positive 

Incongruent HPSA .3350 .287 Non-significant, 
moderate, positive 

LPSA .6348 .020 Significant, strong, 
positive 

Parietal 

(P7, P8) 

Congruent HPSA .7130 .009 Significant, strong, 
positive 

LPSA .6069 .028 Significant, strong, 
positive 

Incongruent HPSA .7477 .005 Significant, strong, 
positive 

LPSA .1410 .646 Non-significant, 
weak, positive 

Temporal  

(T7, T8) 

Congruent HPSA .5135 .088 Non-significant, 
strong, positive 

LPSA .1947 .524 Non-significant, 
weak, positive 

Incongruent HPSA .4344 .158 Non-significant, 
moderate, positive 

LPSA .3868 .192 Non-significant, 
moderate, positive 
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Appendix L 

Behavioural Data (Reaction Time) 

Subject Group Reaction Time (ms) 

Congruent Incongruent 

00002 HPSA 1703.856667 1771.022034 

00003 HPSA 615.2339286 689.3186441 

00008 HPSA 1150.060345 1163.176667 

00009 HPSA 1086.927119 1162.123333 

00019 HPSA 629.5644068 742.955 

00023 HPSA 665.9916667 896.6728814 

00026 HPSA 1331.393103 1635.737931 

00030 HPSA 1762.288333 1679.596667 

00031 HPSA 779.1206897 781.8072727 

00035 HPSA 1124.813333 1466.035593 

00039 HPSA 970.1218182 1023.557895 

00040 HPSA 1082.175 1189.057627 

00004 LPSA 1109.956667 1117.583333 

00010 LPSA 759.2711864 779.3685185 

00011 LPSA 863.6491525 957.0706897 

00012 LPSA 854.5166667 969.6649123 

00013 LPSA 1466.366667 1739.930508 

00014 LPSA 748.7839286 842.15 

00021 LPSA 1078.961667 1131.082456 
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00022 LPSA 800.2283333 922.9175439 

00027 LPSA 821.1152542 823.9694915 

00028 LPSA 946.1932203 1250.823636 

00034 LPSA 678.7116667 756.085 

00036 LPSA 1015.383333 1295.267797 
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Appendix M 

Summarization of Feature Importance of RF Model 

Feature Importance Value Interpretation  

State 0.2344 State Anxiety has the highest importance among 

features, suggesting participants’ level of 

anxiety during task has a significant impact on 

the model's predictions. 

Error_Con  0.1730 Error_Con follows closely, indicating its 

substantial contribution to the model's decision-

making process.. 

Error_Incon 0.1211   Error_Incon holds notable importance, 

contributing significantly to the model's 

understanding of the data. 

RT_Con 0.1053 RT_Con has a moderate level of importance, 

suggesting its relevance in influencing the 

model's outcomes. 

Age 0.1022 Age is identified as a significant feature, 

implying its influence on the model's 

predictions. 

FC5_Con 0.0977 FC5_Con contributes moderately to the model's 

decision-making, highlighting its role in shaping 

predictions. 
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Trait 0.0929 Trait Anxiety is a relevant feature, indicating its 

impact on the model's understanding of the 

dataset. 

sigma 0.0733   Sigma has the lowest importance among 

features, suggesting a relatively smaller 

influence on the model's predictions. 
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Appendix N 

Logistic Regression Python Code 
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Appendix O 

Random Forest Python Code 
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