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ABSTRACT 

Monitoring the condition of machines plays a vital role in guaranteeing the best 

possible performance and lifespan of industrial equipment. This research proposes a 

predictive maintenance system for monitoring machine conditions and enhancing 

industrial equipment performance and longevity. Leveraging the Raspberry Pi, 

sensors, and Node-RED, the system utilizes various sensors to collect real-time data 

on motor aspects like temperature and vibration. The Raspberry Pi serves as the central 

unit for data collection, processing, and analysis. Utilizing Node-RED's visual 

programming, a comprehensive monitoring and predictive maintenance plan is 

developed. The system employs advanced data analysis, including machine learning, 

to identify patterns and anomalies in sensor data, allowing for proactive fault detection 

aligning with predictive maintenance strategies. The comparison between two motors 

is analyzed by comparing the vibration and temperature variation. Each motor 

produces different vibration levels during operation and the differences in the motor’s 

age, design, and maintenance can affect motor efficiency. The effectiveness of the 

proposed system is demonstrated through experiments conducted on a real motor 

setup. 



ii 

 

ABSTRAK 

Penyelidikan ini mencadangkan sistem penyelenggaraan meramal untuk 

memantau keadaan mesin dan meningkatkan prestasi serta jangka hayat peralatan 

industri. Dengan menggunakan Raspberry Pi, sensor, dan Node-RED, sistem ini 

menggunakan pelbagai sensor untuk mengumpul data secara langsung mengenai 

aspek motor seperti suhu dan getaran. Raspberry Pi berfungsi sebagai unit pusat 

untuk pengumpulan, dan analisis data. Dengan menggunakan pemprograman visual 

Node-RED, satu cadangan pemantauan meramal yang menyeluruh dijalankan. Sistem 

ini menggunakan analisis data canggih, termasuk pembelajaran mesin, untuk 

mengenal pasti corak dan anomali dalam data sensor, membolehkan pengesanan 

ralat secara proaktif sejajar dengan strategi penyelenggaraan meramal. 

Perbandingan antara dua motor dianalisis dengan membandingkan variasi getaran 

dan suhu. Setiap motor menghasilkan tahap getaran yang berbeza semasa operasi 

dan perbezaan dalam usia, reka bentuk, dan penyelenggaraan motor boleh memberi 

kesan kepada kecekapan motor. Keberkesanan sistem yang dicadangkan ini 

ditunjukkan melalui eksperimen yang dijalankan pada suatu susunan motor sebenar. 
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CHAPTER 1  

INTRODUCTION  

Generally, the main purpose of project is to develop a condition monitoring system 

utilizing predictive maintenance techniques. The system integrated with Raspberry Pi 

microprocessor, acceleration sensor, a temperature sensor, Node-RED, and MATLAB 

for data analysis and visualization. The objective was to enable real-time monitoring 

of equipment health and anticipate potential failures for proactive maintenance 

actions. 

Nowadays, stepper motors are among the machines that are widely utilized in 

various fields including industrial and domestic applications that require effective 

detection of their status. Due to their robustness and affordability, stepping motors are 

frequently used as power sources in a variety of industrial applications. Yet, industrial 
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processes can halt when motor failures arise because of the characteristics of 

stepping motors. 

The productivity of stepper motor can be increased by decreasing the fault 

circumstances. From the operation of running motor, predictive maintenance is used 

to take the preemptive actions. Hence, the breakdown or machine failure can be 

detected early and save the cost of maintenance. Thus, the aim of this study is to 

develop a system where it can monitor the stepper motor from being faulty while 

running and can give predictive information before its breakdown to meet the 

specification required by Texas Instruments. In the developed system, a Node-RED 

software will be used in the optimization process to display the data directly to a web 

component such as gauge or table. At the end, the data then is analyzed using 

MATLAB software for predictive maintenance. 

1.1 Background 

Machine condition monitoring system is crucial in industrial settings to ensure 

equipment performs well and lasts long. Stepper motors are widely used in industries 

because they have precise control and positioning abilities. Nevertheless, like other 

machine, stepper motors can wear out, deteriorate, and possibly fail over time. To 

overcome these challenges, predictive maintenance techniques has been a growing 

interest in industrial. Predictive maintenance aims to find and fix potential issues 

before they cause big problems. By constantly checking the condition of stepper 

motors, organizations can spot early signs of wear, performance issues, or upcoming 

failures. This proactive approach enables timely maintenance actions like lubrication, 

repairs, or component replacements, leading to less downtime and improved 

productivity. One study proposes a predictive maintenance platform for stepper 
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motors that monitors the running status of the motor and collects and analyzes load 

value and prediction [1]. 

Setting up a system to monitor the condition of stepper motors requires combining 

different technologies and approaches. This involves using sensors to real-time data 

on important motor measurements like temperature, vibration, current, and position. 

The gathered data is then analyzed using advanced methods like machine learning 

algorithms to detect patterns, irregularities, and possible failure scenarios unique to 

stepper motors [2]. 

The Raspberry Pi is a small and affordable computer that can be used as the main 

processing unit for the machine condition monitoring system. It can effectively collect, 

process, and analyze sensor data, giving real-time information about the motor's 

condition. Additionally, user-friendly tools like Node-RED allow for easy creation of 

monitoring workflows, data visualization, and triggering maintenance actions based 

on preset limits or predictive models [3]. 

Implementing a predictive maintenance system for stepper motors in industries 

brings many advantages. It helps organizations optimize maintenance schedules, 

reduce unplanned downtime, and extend the lifespan of critical equipment. By 

proactively addressing potential issues, organizations can cut maintenance costs, 

enhance overall operational efficiency, and ensure the reliability and safety of their 

production processes. 

In this research, we propose developing a machine condition monitoring system 

that uses predictive maintenance techniques for stepper motors in industrial 

applications. The system aims to provide real-time monitoring, detect faults early, and 
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offer practical insights for maintenance staff, enabling informed decision-making and 

efficient resource allocation. Through experiments and data analysis, we will evaluate 

the system's effectiveness and feasibility, demonstrating its potential to improve the 

reliability and performance of stepper motors in industrial environments. 

1.2 Problem Statement 

The dependability and performance of a system with a low life-cycle cost have 

drawn a lot of attention in the engineering field. Machines are operating in more 

complicated contexts with greater unpredictability as industrial applications expand, 

raising the chance of system failure. The industry also faces a significant challenge 

due to the absence of effective and proactive condition monitoring methods for stepper 

motors. Without immediate knowledge about the motor's health and performance, it 

becomes challenging to foresee and mitigate potential failures. Therefore, predictive 

maintenance is necessary to prevent losses in maintenance and motor breakdown to 

ensure the operation of machinery is long lasting and durable. Hence, there is a 

pressing need to create a dependable and efficient predictive maintenance system 

tailored specifically for stepper to avoid complete failure. The potential for using 

condition monitoring and an open-source visual programming tool to identify issues 

is enormous.  

Motor defect detection can be done using a visual programming tool. Stepper motor 

defects need to be fixed right away to prevent losses. By using a visual programming 

tool such as Node-RED, it is such a fantastic maintenance technique. If a problem 

develops, the motor may continue operating and result in winding, core, and other 

failures. So, defects can be avoided by keeping an eye on motor output numbers and 

turning off the power before the motor breaks down [4]. In order to plan maintenance 
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and prevent significant failure, which would be costly in terms of plant repairs and 

lost production time, they are especially prevalent with large induction and 

synchronous machines. To improve risk management in many industry applications, 

continuous in-service monitoring is significantly beneficial for bearing failures 

detection in their incipient stage [5] . Another problem statement of this project is that 

a rotating machine also can be a failure. This can be attributed to be one of the serious 

causes of breakdown in machines where they operate at high or low rotational speeds 

[6]. Thus, this project aims to develop a machine condition monitoring system where 

it can monitor the performance of the motor over time, analyzing the collected data, 

and using this information to approach predictive maintenance. The measured data can 

then be displayed on the Node-RED dashboard and can be saved in the Excel file. 

From the collected data in Excel, predictive maintenance can be created using the 

MATLAB software. Predictive maintenance is needed to minimize downtime and 

reduce maintenance costs while maximizing equipment availability and performance.  

1.3 Project Objectives 

i. To examine and detect various types of motor abnormalities such as 

excessive vibration, and temperature levels. 

ii. To develop a monitoring system through the Node-RED visual 

programming tool using a Raspberry Pi as a microcontroller. 

iii. To develop predictive maintenance using historical data from collected 

sensor data. 

1.4 Project Scope and Project Impact 

 The scope of this project is to design and develop a monitoring system for a 

stepper motor that runs in a tape and reel machine. The stepper motor’s name is 
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VEXTA Stepping Motor PH569M-NBA, and it is already obsolete from the OEM. 

Hence, a monitoring system is developed to monitor the motor’s condition to give a 

warning or message on the Node-RED dashboard at the same time can make a 

predictive analytic before motor may be faulty or overheating and take proactive 

maintenance actions. The data is then saved in Excel file and utilize MATLAB 

software for data analytic to create a prediction model using machine learning 

algorithms in MATLAB. The project aims to achieve the following objectives: 

i. Hardware Integration: Integrate Raspberry Pi as the central processing unit 

and connect various sensors to collect real-time data on motor performance 

parameters, including temperature, vibration, current, and power 

consumption. 

ii. Software Development: Utilize Node-RED, a visual programming tool, to 

develop a comprehensive monitoring and predictive maintenance 

workflow. Design and implement the necessary software modules to 

capture, process, and analyze sensor data. 

iii. Data Analytics: Apply advanced data analytics techniques, including 

machine learning algorithms, to identify patterns and anomalies in the 

sensor data. Develop algorithms for predictive maintenance, enabling early 

detection of degradation, wear and tear, or potential faults. 

iv. Visualization and Reporting: Create a user-friendly dashboard or interface 

to visualize the real-time and historical data related to machine condition. 

Generate reports and provide actionable insights for maintenance 

personnel. 

v. Experimental Validation: Conduct experiments on a real-world motor 

setup to validate the effectiveness and accuracy of the proposed system. 
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Evaluate the system's performance in accurately monitoring the motor's 

condition, detecting abnormalities, and providing useful insights for 

maintenance personnel. 

vi. Documentation and Presentation: Prepare comprehensive documentation, 

including system design, implementation details, and user manuals. 

Present the project findings, methodologies, and outcomes in a clear and 

concise manner. 

1.5 Significance of Study 

This project is of great significance to the industry as it improves equipment 

reliability, reduces costs, enhances operational efficiency and safety, enables data-

driven decision making, and prepares for the future of industrial practices. By 

implementing a condition monitoring system using predictive maintenance 

techniques, it allows for real-time monitoring, early detection of faults, and proactive 

maintenance measures. This leads to reduced downtime, optimized maintenance 

efforts, and increased productivity. With access to data-driven insights, industry 

professionals can make well-informed decisions regarding maintenance, resource 

allocation, and equipment optimization. Moreover, the project aligns with the 

industry's shift towards automation and smart manufacturing, ensuring 

competitiveness and sustainability in the ever-changing market landscape. In 

summary, this project makes a substantial contribution to enhancing industry 

performance, safety, and long-term success. 

1.6 Propose Solutions for the Project. 

This project presents a comprehensive overview of the proposed solutions to 

address the identified challenges within the project’s scope. Identified the critical 
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importance of enhancing motor condition monitoring and maintenance practices, the 

proposed solutions aim to integrate advanced technologies, data analytics, and 

predictive maintenance to optimize motor performance, reliability, and longevity. A 

detailed explanation of the proposed solution’s components, methodologies, and 

potential impact in advancing the project’s objectives and addressing the identified 

problem is described: 

i. Sensor integration: Integrate the ADXL345 accelerometer sensor and 

DS18B20 temperature sensor to detect anomalies and temperature 

variations in the machine’s movement, providing a mechanical issue and 

overheating or cooling inefficiencies which may indicate operational 

problems. 

ii. Data acquisition and processing: Utilize Raspberry Pi as the central 

processing unit to gather data from the integrated sensors, facilitating a real-

time monitoring and analysis of machine conditions. Implement a Node-

RED to develop a visual flow-based programming interface, enabling 

seamless integration and communication between Raspberry Pi, sensors, 

and data visualization tools. 

iii. Data analysis and predictive maintenance: Utilize MATLAB for advanced 

data analysis, predictive maintenance modelling, ad visualization, using its 

powerful toolboxes and capabilities to optimize machine performance and 

reliability. 

iv. Continuous monitoring and optimization: Implement Node-RED 

Dashboard to generate real-time monitoring based on the analyzed data, 

establish a feedback loop mechanism. To continuously monitor, evaluate, 
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and optimize the sensor’s data based on the machine’s operational data and 

performance metrics. 

1.7 Structure of the Thesis 

The thesis follows a structured approach, comprising an introduction to provide an 

overview of the project, a comprehensive literature review to analyze existing research 

and theories, a methodology section outlining the research design and data collection 

methods, a results and discussion section to present and analyze the findings, and a 

conclusion and recommendation section that summarizes the key findings and offers 

insights for future projects and research. 

This dissertation is organized as follows: 

● Chapter 2 discusses previous work and research related to machine 

condition monitoring and predictive maintenance. The review focuses on 

the use of sensors, data analytics, and machine learning algorithms to detect 

patterns, anomalies, and potential faults in machinery. 

● Chapter 3 discusses the approach and techniques employed to achieve the 

research objectives. It provides a detailed description of the steps and 

procedures followed in implementing the proposed machine condition 

monitoring system using predictive maintenance. 

● Chapter 4 discusses the contributions of Node-RED monitoring and 

MATLAB in data management and predictive maintenance. Data 

processing using MATLAB software for predictive maintenance to build a 

predictive model. 

● Chapter 5 summarize the key findings and contributions of the research, 

emphasizing the significance in the field of motor condition monitoring. It 
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will provide closure to the thesis, reaffirming its relevance and setting the 

groundwork for advancements and innovations in motor monitoring 

technologies. 



 

 

 

CHAPTER 2  

BACKGROUND STUDY 

The literature review section of this study examines previous research and studies 

related to machine condition monitoring and predictive maintenance. It explores 

various approaches and techniques employed in monitoring the performance and 

health of industrial equipment. The review focuses on the use of sensors, data 

analytics, and machine learning algorithms to detect patterns, anomalies, and potential 

faults in machinery. By analyzing existing literature, this study aims to identify gaps 

and contribute to the existing knowledge by proposing a novel system for machine 

condition monitoring using predictive maintenance. 

2.1 Background Literature Review 

In recent years, there has been increasing interest in the utilization of condition 

monitoring and predictive maintenance as valuable approaches to enhance asset 
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management efficiency and minimize operational expenses. These practices have 

proven the importance in diverse domains such as structural health monitoring, 

industrial equipment maintenance, and environmental monitoring. Moreover, the 

advancement of microcomputer technology has introduced the Raspberry Pi as an 

economical and adaptable platform for the creation of vibration monitoring systems. 

The objective of this literature review is to offer a comprehensive summary of the 

current research on condition monitoring methods that incorporate predictive 

maintenance in diverse industries. Through an examination of numerous articles, this 

review seeks to uncover the primary techniques, technologies, and applications 

utilized in predictive maintenance for effective condition monitoring. 

2.2 Condition Monitoring (CM) 

Previous study from Kumari Sarita et al. (2021), had reported the principle of 

component analysis technique for early fault detection. The paper highlighted an 

unsupervised statistical algorithm based on principal component analysis (PCA) for 

the predictive maintenance of industrial induced draft (ID) fan. However, the paper 

only concentrates on three identical ID fans that are monitored together using the 

proposed technique which is PCA technique and fast fourier transform (FFT) 

technique. Therefore, my study will emphasize on using this paper method in using 

the proposed technique for early prediction of the faulty part to help in forecasting the 

maintenance schedule for the equipment before breakdown [4]. 

Studies from research Grace, R. K., & Subhasri, V. P. (2022), had presented a cloud 

enabled predictive maintenance tool for induction motor. The paper highlights are to 

predict the failure of an induction motor and to schedule the preventive maintenance. 

However, the paper only concentrates on utilizing predictive maintenance to anticipate 
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failures in induction motors. Therefore, my study will target on using this paper 

method by using cloud storage advancements that enable data collection from various 

sources including sensors, to monitor motor performance [7].  

Ekkawach Noyjeen et al. (2021) presented a monitoring parameters of three-phase 

induction motor using IoT. The research emphasized the design of IoT technology to 

monitor and diagnose the performance of a three-phase induction motor and recording 

critical operating parameters. However, the paper only focuses on a design that utilizes 

IoT to collect and analyze critical motor parameters such as voltage, current, 

temperature, and vibration. The data is stored in the cloud and can be accessed through 

web pages and displayed on smartphones using the MIT application. Therefore, my 

study will emphasize on using this paper approach where fault alerts can be notified 

timely and the availability of historical data for predictive maintenance, resulting in 

reduced downtime and cost savings [8]. 

Next, a number of researchers have sought to propose that load fault diagnosis in 

induction motor using Artificial Intelligence algorithm. The paper highlighted 

developments of a machine learning strategy based on algorithms in order to learn the 

characteristics from vibration signal’s frequency distribution. However, the paper only 

focuses on ANN-based fault diagnosis system for Induction Motors since there is not 

enough data for artificial intelligence (AI) to identify problems. Therefore, my study 

will focus on using this paper method to create fault detection techniques where 

several parameters are measure such as temperature, voltage, and current [9]. 

Research such as that conducted by Guilherme Beraldi Lucas et al. (2006) stated 

that sensor applied to bearing fault detection in three-phase induction motors. The 

paper highlighted to present the state of the art of the past five years concerning the 
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sensing techniques based on current, vibration, and infra-red analysis, which are 

characterized as promising tools to perform bearing fault detection. However, the 

paper only focuses on the bearing fault models for current, vibration, and infrared 

sensors. Therefore, my study will targets on using this paper method in using the 

current and vibration frequencies of the bearing fault mathematical modeling for these 

techniques [10].. 

In 2022, G Aragón González et al. published a paper which they reported a paper 

about remote control and monitoring of a hydraulic machine. The paper underlines a 

deal with the testing of a low-cost electronic system based on an open-source 

programmable board, designed for remote control and monitoring of an industrial 

machine. Even so, the paper only focused on designing an electronic system based on 

an open-source programmable board that was tested for remote control and monitoring 

of a fluid power machine. Therefore, my study will focus on using this paper method 

on creating a code to process the information received from sensors and send it to user 

interface to make logical decisions and process the information from the control orders 

to govern the stepper motor [11]. 

In the previous years, a number of researchers have sought to propose that non-

contact condition monitoring of electrical drive. The paper highlighted a non-contact 

technology for conditional monitoring of an intelligent electric drive. The study is 

relevant to the field of smart manufacturing, which involves a continuous reduction in 

operating costs and the development of intelligent control systems for the condition 

monitoring of equipment. However, the paper only highlights on implementation 

using universal software, which permits to reduce production costs for condition 
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monitoring. Therefore, my study will be using this paper method for condition 

monitoring of electric motors [12]. 

Research study that conducted by N. Dehbashi et al. (2020) report a study of IoT 

Based Condition Monitoring and Control of Induction Motor Using Raspberry Pi. The 

paper highlighted the exploration use IoT in the control and monitoring of electric 

motors, which leads to the formation of smart drives. The data is collected by the 

Raspberry Pi and sent to the server, where it is stored in the database. However, the 

paper only focuses on save the process data and sent back to the Raspberry Pi. 

Therefore, my study will engage on using this paper method by using Raspberry Pi 

board as processor and measure temperature for detecting failures [13]. 

Next, a report by Hong-Chan Chang et al. presented that proactive operation 

condition monitoring system of high-voltage motors based on CNN and LSTM. The 

paper highlighted to develope an active monitoring system for high-voltage motor 

operation status based on a convolutional neural network and long short-term memory 

neural network. However, the paper only concentrates on predict the high-voltage 

motor operation by subtracting the maximum error value from the international 

threshold value. Therefore, my study will be using this paper method in determine the 

maximum error between the predicted and actual operation status [14]. 

Other studies related to this project is reported by Agam Gugaliya et al. (2022) that 

presented availability improvement of induction motors through condition monitoring. 

The paper highlighted to improve the availability of induction motors by reducing 

repair/replacement time and increasing the efficiency of maintenance. However, the 

paper only emphasizes on use fault diagnostic technique to find the fault at any point 

in P-F interval (potential failure to functional failure). Therefore, my study will be 
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using this paper method to monitor the motor's condition because early detection of 

potential failure may give maintenance managers sufficient time to arrange the 

necessary equipment for system maintenance [15]. 

Furthermore, study from Keyur V. Surti et al. (2018) stated that availability 

improvement of induction motors through condition monitoring. The paper 

highlighted to improve the availability of induction motors by reducing 

repair/replacement time and increasing the efficiency of maintenance. However, the 

paper only focuses on validate with real voltage and current signals acquired using 

laboratory experimental setup for a healthy and two unhealthy bearings. Therefore, 

my study will be using this paper method to differentiate between the unhealthy and 

healthy of motor condition [16]. 

Ramakrishnan Raman et al. (2023) presented that smart industrial motor 

monitoring with IoT enabled Photovoltaic system. The paper highlighted a new idea 

for combining a photovoltaic (PV) system with an induction motor (IM), together with 

IoT based monitoring technologies. However, the paper only focus on integrates the 

power-producing capabilities of the PV system with monitoring sensors provided by 

the IoT to deal with the drawbacks of conventional power sources. Therefore, my 

study will be using this paper method to have a real-time information on the motor's 

temperature and vibration is gathered by the IoT based monitoring devices [17]. 

Other than that, studies by Om Prakash Choudhary et al. (2021), presented that IoT 

enabled condition monitoring of low-voltage motors using Fuzzy Inference system. 

The paper highlighted is to develop a real-time condition monitoring prototype of a 

low voltage industrial motor. However, the paper only concentrate on using Zigbee 

module for sending data wirelessly to the remote end using IoT and then fed from 
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Thingspeak server to the Fuzzy Inference System (FIS) to estimate the health of the 

motor. Therefore, my study will focus on using this paper method to monitor vital 

parameters, temperature and vibration using suitable sensors connected to 

microcontroller [18]. 

Many studied conducted by Zayneb Bousselmi et al. (2021) reported that wireless 

IoT approach for testing is situ motor's axis vibration monitoring. The paper highlight 

is to develop a workbench for remote control of rotating machines that can predict the 

maintenance of a direct current (DC) motor in an efficient way. However, the paper 

only focus on utilizes Allan's variance technique to accomplish detection, definition, 

and localization of vibration signatures. Therefore, my study will emphasize on using 

this paper method by carrying out a large set of measurements of the acceleration 

signal, derived from MEMS accelerometer sensor placed on the rod axis [19]. 

Research that has been conducted by Michal Markiewicz et al. (2019) reported that 

predictive maintenance of induction motors using ultra-low power wireless sensors 

and compressed recurrent neural networks. The paper highlighted a novel architecture 

for machinery monitoring in real-world applications. However, the paper only focus 

on architecture involves moving the processing to the sensors themselves, which is 

made possible by using compresses recurrent neural networks. Therefore, my study 

will focus on using this paper method to process data locally and wirelessly send only 

a single packet with the probability that the machine is working incorrectly [20]. 

2.3 Vibration and Temperature Data 

Other studies related to this project is reported by L. Magadan et al. (2022) that 

presented a low-cost industrial IoT system for wireless monitoring of electric motors 

condition. The paper highlighted the design, implementation, and testing of a low-cost 
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Industrial of Things (IoT) system designed to monitor electric motors in real-time. 

However, the paper only focusses on collecting vibration data from electric motors. 

Therefore, my study will emphasize on using this paper method where the proposed 

system of this paper can be used to monitor of any rotary machine with similar 

accuracy to monitor devices in a professional way but in a low-cost [21]. 

Furthermore, study from Dileep Kumar et al. (2022) reported the triaxial bearing 

vibration dataset of induction motor under varying load conditions. The paper 

highlighted is discussion on triaxial vibration data for moto bearing faults detection 

and identification. However, this paper only focusses on the monitoring of rotating 

machines in industries through the analysis of vibrations. It presents findings on the 

detection and identification of motor bearing faults using triaxial vibration data 

collected using a MEMS accelerometer and the National Instruments myRIO board. 

The dataset includes different bearing conditions and load conditions, offering a means 

to evaluate the performance of novel approaches for effective bearing fault diagnosis. 

Therefore, my study will focus on using this paper method where the collected data is 

stored in separated values CSV files or Excel file [22].  

Studies conducted by Ioan Szabo et al. (2021), a vibration and temperature sensor 

network solutions: case study for industry 4.0 had been reported. The study is about a 

new predictive procedure for industrial ventilation installation and industrial testing 

equipment. However, the paper only highlighted the procedure involves digital signal 

processing of temperature and vibration sensor data to assess the operating regime and 

technical condition of the equipment. The tests conducted on ventilation devices and 

industrial gearbox testing equipment successfully identified faulty bearings through 

data analysis. Therefore, my study will concentrate on using this paper method where 
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a real-time data can be accessed through a cloud platform, and the solution is cost-

effective due to the utilization of open-source projects [23]. 

Research study that conducted by Khandelwal et al. (2022) report a study on sensor-

based vibration analysis of motor using MATLAB software. The paper highlighted a 

real-time graph monitoring of engine vibration and analyze to identify faults such as 

wear errors. However, this paper only focusses on using Arduino as microcontroller 

and MATLAB software for real-time monitoring. Therefore, my study will highlight 

on using this paper method where various parameters were measured by using various 

sensors that fitted to the motor as well can improved the efficiency of motor and using 

MATLAB software for data preprocessing [24]. 

In previous studies of J.M. Corres et al. (2006), different parameters have been used 

to be related to vibration of motor. The study is about vibration monitoring in electrical 

engines using an in-line fiber etalon. The paper highlighted a proposed sensor that has 

been optimized to achieve minimum detectable acceleration amplitude of 0.05 g in the 

frequency range of interest, although the preliminary scheme can be customized to the 

specific motion system. However, the paper only highlighted on new applications to 

electric machines condition monitoring (CM) using an ILFE fiber optic sensor. 

therefore, my study will focus on using this paper method where the sensor can do a 

predictive maintenance not only includes mechanical defects, because due to high 

sensitivity that can also be obtained in the low frequency range [5]. 

Previous study from A. Holovatyy et al. (2017) had proposed the development of a 

system monitoring vibration accelerations based on the Raspberry Pi microcomputer 

and the ADXL345 accelerometer. The paper highlighted the structure and the 

algorithm of functioning of the system for monitoring. However, the paper only 
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emphasizes on analyzing the vibration of acceleration spectrum which operates in a 

real-time mode. Therefore, my study will focus on using this paper method to reads 

data from the accelerometer, processes them which convert the vibration acceleration 

signal obtained from the sensor from the time domain to the frequency domain by 

using software [25]. 

Marek Iwaniec et al. (2017) had reported the development of vibration spectrum 

analyzer using the Raspberry Pi microcomputer and 3-axis digital MEMS 

accelerometer ADXL345. The paper highlighted about spectrum analyzer of vibration 

accelerations using the Raspberry Pi microcomputer and 3-axis digital MEMS 

ADXL345 accelerometer has been developed. However, this paper only concentrates 

on data acquiring using software and processing from the acceleration sensor, the 

conversion of the vibration acceleration signals from time domain into frequency 

domain using discrete fourier transform (DFT), graph plotting of the vibration 

accelerations and their spectra. Therefore, my study will focus on using this paper 

method for development of automated monitoring and control system the single-board 

microprocessor [26].     

Other researcher also makes a study about development of fault diagnosis unit for 

induction motor using digital signal processor and MEMS accelerometer written by 

Vishwanath hegde and Maruthi G. S. (2019). The paper highlighted the development 

of a portable fault diagnosis unit for Induction Motors (IM) using a digital signal 

processor and a MEMs accelerometer. However, the paper only emphasized on 

detection various electrical and mechanical faults in IMs, enabling continuous 

condition monitoring. Therefore, my study will focus on using this paper method 

involves capturing vibration signals using an accelerometer, converting them to 
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voltage signals, and performing spectral analysis through FFT on a digital signal 

processor [27]. 

Agusmian Partogi Ompusunggu et al. (2021) presented a condition monitoring of 

critical industrial assets using high performing low-cost MEMS accelerometers. The 

paper highlighted experiences in setting up two different remote vibration monitoring 

systems using low-cost MEMS accelerometers available on the market in two different 

industrial settings. However, the paper only focusses on demonstrations on the use of 

low-cost MEMS accelerometer for long-term condition monitoring of critical assets 

(induction motors as an expander machine) in two different industrial settings. 

Therefore, my study will highlight on using this paper method where the low-cost 

MEMS accelerometers are being used for monitoring the assets [28]. 

 Research study that conducted by Chhaya Devi R. Sahu et al. (2021), report a study 

on integration of machine learning and IoT system for monitoring parameters and 

optimizing farming. The paper’s approach is in hydroponic farming, leveraging 

Internet of Things (IoT) and Machine Learning technologies. Central to this system is 

the DS18B20 temperature sensor, interfaced with an ESP8266 Wi-fi module for real-

time monitoring. Through the ThingSpeak IoT platform, the sensor's data contributes 

to optimizing plant growth conditions, enhancing resource utilization and fostering 

sustainable agriculture practices in both urban and rural settings. However, this paper 

only focuses on storing all data from various sensors in a text file which is converted 

into a CSV file for machine learning algorithm and also this text file is sent to 

Thingspeak server for monitoring purpose which aggregate, visualize and analyze live 

data streams in the cloud. Therefore, my study will focus on using this paper method 
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to utilize a DS18B20 temperature sensor to measure the temperature of motor which 

it has an accuracy of about ±5°C [29]. 

2.4 Node-RED Visual Programming Tool 

Other than that, the study that related to this project is from Susmita Banerjee et al. 

(2020) entitled IoT instrumental food and grain warehouse traceability system for 

farmers. This paper highlighted about the proposal of an IoT enabled monitoring 

system for remote areas in India to reduce food losses and increase food safety. 

However, this paper only focusses on system monitors warehouse parameters such as 

temperature, humidity, CO, motion, vibration, and smoke, which are critical for 

preserving grains. Therefore, my study will focus on using this paper approach where 

the data from sensors is collected by the ESP32 WiFi module and transmitted to the 

Node-red dashboard through an MQTT broker. Multiple IoT nodes installed at various 

locations at the motor provide information about the condition through mobile SMS 

and email notifications [30]. 

Research that conducted by Bhavana et al. (2023), stated that high security alert 

system for industrial atmospheric parameters. The highlighted topic of this study is 

the proposal of a cost and power-efficient real-time monitoring system for industrial 

processes. The system utilizes sensors to measure parameters such as temperature, gas, 

smoke, and fire, and transmits the data to a microprocessor and mobile device via a 

Raspberry Pi module and GSM module. However, the paper only focus on the system 

incorporates Wireless Sensor Network (WSN) and IoT technologies for wireless 

communication and cloud upload, enabling remote monitoring and reducing the need 

for human intervention. Therefore, my study will focus on using this paper method 

where the collected data display on node-red dashboard for monitoring [31].       
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A number of researchers have reported that monitoring system for elderly health 

care using smart band, Raspberry Pi, and Node-RED. The topic highlighted in this 

study is the development of a system for monitoring the health conditions of multiple 

elderly individuals and sending alerts during abnormal conditions based on heart rate 

values. Nevertheless, the paper only concentrates on the limitation of storing user data 

in the vendor's cloud and allows simultaneous data analysis and alerts for nurses, 

doctors, and family members. Therefore, my study will focus on using this paper 

method to give notification via any platform to users where in this paper, a smart band 

is used to monitor vital signs and human activity. The system includes a local database 

on Raspberry Pi and a monitoring system on the Node-RED platform to display health 

data. When an abnormal heart rate is detected, notifications are sent via Telegram to 

multiple registered receivers [32]. 

Other researchers have made a study that related to this project about environmental 

parameter monitoring system based on NodeMCU ESP8266, MQTT and Node-RED 

by Macheso et al. (2022). This paper highlighted about the utilization of IoT in smart 

environmental monitoring. However, the paper only focusses on using the system 

communication protocols like MQTT and end sensor nodes to connect to the internet. 

The central units consist of the ESP8266 NodeMCU microcontroller board, DHT22 

sensor, and Raspberry Pi with an MQTT broker. Therefore, my study will focus on 

using this paper method where the system collects environmental parameters such as 

air temperature and humidity through sensing and visualizes the sensor data on a 

Node-Red Dashboard [33].   

Recent studies from A. Sinan Cabuk (2022) have reported that experimental IoT 

study on fault detection and preventive apparatus using Node-RED ship's main engine 
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cooling water pump motor. The paper highlighted the thermal, vibration and current 

data of the 7.5 kW 3-phase induction motor in the cooling pump used for the cooling 

system of this ship’s main engine were analyzed and the data received were monitored 

by node-RED. However, the paper only focusses on an architecture that receives 

instantaneous data from sensors, transfers them to the internet via electronic circuit, 

and transfers them to users via the dashboard and stores these data on MySQL. 

Therefore, my study will emphasize on using this paper method in analyzing data 

using node-RED with the IoT sensor data [34]. 

A number of authors from Alaa Abdulhady Jaber et al. (2014), have reported on 

the state of the art in research into the condition monitoring of industrial machinery. 

The paper highlighted the basic concepts of condition monitoring and introduced the 

necessary background information about the various condition monitoring 

technologies used for different types of machines. However, the paper only focusses 

on a remote monitoring system for a rotating machine that can be run based on 

smartphone or PAD (personal digital assistant). Therefore, my study will highlight on 

using this paper method where the developers put the capability of informing the 

concerned user if a fault appears in the remotely monitored machine using Node-RED 

dashboard [35]. 

2.5 Predictive Maintenance using MATLAB apps. 

In 2021, Mohamed Hayouni et al. published a paper which they reported a paper 

about wireless IoT approach for testing in situ motor’s axis vibration monitoring. The 

paper underlines a development of workbench for remote control of rotating machines 

to make a predictive maintenance of a DC motor in efficient way. However, the paper 

only prioritize on the reliability of sensor systems and the proposed experimental 
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bench is tested through extensive measurements using a MEMS accelerometer sensor 

placed on the motor's rod axis. Various vibration signals with different characteristics 

are injected to assess the devices' reliability. The successful detection, definition, and 

localization of vibration signatures are achieved using Allan's variance technique. 

Therefore, my study will focus on using this paper method where a large set of 

measurements of the acceleration signal is derived from the MEMS accelerometer 

sensor that placed on the motor and use software for predictive analytic [36]. 

2.6 Comparison between technique used and parameters considered on 

literature. 

Table 2. 1 represents the comparison on different techniques for prediction of fault 

on motor in the literature. 
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Table 2. 1: Comparison on Literature 

No Technique Used Parameters 

Considered 

Efficiency 

1. IoT with art of cloud storage [7] Vibration, voltage, 

current, and speed 

90% of prediction 

from machine 

failure 

2. Using a non-contact technology 

[12] 

 

Current, voltage, 

and rotational 

speed 

Accuracy is high 

3. IoT with PWM [13] 

 

Temperature, 

current, and 

voltage signals 

Accuracy is high 

4. IoT with CNN and LSTM [14] 

 

Voltage, current, 

vibration, and 

temperature 

signals 

92% of accuracy 

5. IoT with Condition Based 

Maintenance (CBM) [15] 

Vibration 92.3% of accuracy 

6. IoT with K-Nearest Neighbors 

Based Classifier (KNN) [16] 

Current and 

voltage signals 

90.48% of 

accuracy 

7. IoT with Photovoltaic (PV) and 

Induction Motor (IM) [17] 

Temperature, 

vibration, and 

power 

consumption 

15% went up for 

efficiency 
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8. IoT with Fuzzy Inference 

System (FIS) [18] 

Temperature, 

vibration, and 

speed 

91% of accuracy 

9. IoT with Allan’s variance 

technique [19] 

Acceleration 

Signal 

Accuracy is high 

10. IoT with RNN [20] Accuracy, F1-

Score 

91.97% of 

accuracy 

11. Condition monitoring 

technique [28] 

Vibration Accuracy is 

medium 

12. IoT with Naïve Bayes classifier 

Invalid source specified. 

Vibration 93.2% of 

accuracy-Load 

100% of accuracy-

Nonload. 

 

 

ASUS
Pencil

ASUS
Pencil

[36]



 

 

 

CHAPTER 3  

METHODOLOGY  

The methodology section of this study outlines the approach and techniques 

employed to achieve the research objectives. It provides a detailed description of the 

steps and procedures followed in implementing the proposed machine condition 

monitoring system using predictive maintenance. The section begins by explaining the 

hardware integration, including the use of the Raspberry Pi as the central processing 

unit and the connection of various sensors to collect real-time data. Next, the software 

development process is discussed, highlighting the utilization of Node-RED as a visual 

programming tool and the development of software modules for data capture, 

processing, and analysis. The section further explores the application of advanced data 

analytics techniques, such as machine learning algorithms, to identify patterns and 

anomalies in the sensor data. The methodology section concludes by describing the 

experimental validation process, where real-world motor setups are utilized to 
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evaluate the system's performance and effectiveness in accurately monitoring the 

motor's condition and providing valuable insights for maintenance personnel. 

3.1 General Methodology 

The general methodology for this project involves several key steps. Firstly, a 

literature review will be conducted to gather relevant information from journals, 

articles, and other materials related to the project. Following that, measurements will 

be taken at the Lab Research facility where the machine’s motor is located to 

investigate the suspected source of vibration at Texas Instrumental Sdn. Bhd. for 

prototype measurement design. Subsequently, a simulation will be performed based 

on the data obtained from the parameter measurements. The analysis of the collected 

data will be presented, focusing on the detection of motor abnormalities, and 

proposing possible solutions. Finally, a comprehensive report summarizing the entire 

study will be written upon the project's completion. 

3.2 Flowchart 

Figure 3.1 shows the flowchart for PSM. The flowchart outlines a comprehensive 

approach to address motor abnormalities and deliver actionable insights for 

maintenance and optimization purposes through problem analysis, feasibility 

assessment, method selection, component selection, project design, code integration, 

prototype fabrication, testing, and data analysis. 
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OBJECTIVE 1 

OBJECTIVE 2 
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Figure 3.1: Flowchart to achieve objectives. 

OBJECTIVE 3 
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 Figure 3.1 illustrates the flowchart to achieve the objectives. The flowchart 

delineates the organized sequence of the project, commencing with a comprehensive 

literature review to amass pertinent information. It subsequently advances to crafting 

circuit connections, wherein the Raspberry Pi is seamlessly integrated with the 

ADXL345 accelerometer and DS18B20 temperature sensor using Python 

programming. The sensors adeptly gather acceleration and temperature data, 

prompting a validation step to ensure the precision of data acquisition. 

 The flow unfolds through phases of troubleshooting and redesign, accommodating 

adjustments as required. Subsequently, Node-RED is installed on the Raspberry Pi, 

and flows are constructed to amalgamate sensor data for real-time visualization. A 

purposeful dashboard is devised to exhibit information from the ADXL345 and 

DS18B20 sensors. A validation check ensures the successful display of data in the 

Node-RED dashboard, instigating further troubleshooting and redesign endeavors if 

necessary. 

 Following this stage, the data is stored in an Excel file for meticulous historical 

analysis. The historical data undergoes scrutiny utilizing an appropriate format for 

predictive maintenance, culminating in the development of a predictive model using 

MATLAB. Validation ensues to guarantee the accurate execution of the predictive 

model, with additional troubleshooting and redesign considerations as deemed 

necessary. 

 The flowchart then advances to the testing and troubleshooting of the entire system, 

ultimately culminating in the reporting of findings and the project's conclusion. Each 

step is meticulously detailed to ensure a methodical and comprehensive approach to 

the project's evolution and implementation. 
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3.2.1 Flowchart of Integration Circuit 

Figure 3.2 shows the flowchart of integration circuit between Raspberry Pi, 

ADXL345 sensor, and DS18B20 temperature data. 

 

Figure 3.2: Flowchart of integration circuit 
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The flowchart illustrates the seamless integration of various components, including 

the Raspberry Pi, ADXL345 sensor, DS18B20 sensor, Node-RED dashboard, and 

Excel file, in order to establish a robust and comprehensive system for predictive 

maintenance. The Raspberry Pi serves as the central hub, orchestrating the 

communication and data flow between the different elements. Through the I2C 

protocol, the Raspberry Pi interacts with the ADXL345 sensor to capture acceleration 

data, while the DS18B20 sensor provides temperature measurements.  

Moving forward in the flowchart, the acquired data enters the processing and 

visualization stage. Here, the Raspberry Pi employs suitable algorithms to process the 

sensor readings and formats them for display on the Node-RED dashboard. This real-

time visualization empowers users to monitor and analyze the sensor data effectively, 

providing valuable insights into the performance and condition of the monitored 

system. Simultaneously, the collected data is stored in an Excel file, serving as a 

valuable repository for historical analysis. This historical data facilitates predictive 

maintenance by enabling the identification of patterns, trends, and abnormalities that 

can inform timely maintenance interventions. 

By integrating these components, the flowchart showcases a holistic approach to 

predictive maintenance, encompassing data acquisition, processing, visualization, and 

storage. This comprehensive system empowers users to monitor the health and 

performance of the system in real-time while leveraging historical data to identify 

potential issues and optimize maintenance activities. The seamless integration of the 

Raspberry Pi, ADXL345 sensor, DS18B20 sensor, Node-RED dashboard, and Excel 

file underscores the power of technology in enabling efficient and proactive 

maintenance practices, ultimately leading to improved operational efficiency and 
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reduced downtime. The data is then processed using MATLAB software for predictive 

maintenance. 

3.3 Modern tools for enhanced project performance 

The modern tools used for this project to enhance project performance encompass 

a diverse range of technologies and methodologies aimed at improving efficiency, 

collaboration, and overall project outcomes. 

3.3.1 Circuit integration between Raspberry Pi, ADXL345 accelerometer 

sensor, and DS18B20 temperature digital sensor module 

The integration of sensors with computational platforms like the Raspberry Pi 

represents a fundamental integration of hardware and software methodologies. The 

discussion delves into the intricacies of connecting two distinct sensors: the ADXL345 

accelerometer and the DS18B20 temperature sensor. Referring to Figure 3.3, a circuit 

integration between a Raspberry Pi, ADXL345 accelerometer sensor, and DS18B20 

temperature digital sensor module, was set up by connecting the ADXL345's VCC pin 

to the Raspberry Pi's 3.3V output, its GND pin to the Pi's ground, and its SDA and 

SCL pins to the respective I2C GPIO pins on the Pi, typically GPIO2 for SDA and 

GPIO3 for SCL. For the DS18B20, connect its VCC pin to the Pi's 3.3V, the GND pin 

to ground, and its data pin to a GPIO pin, like GPIO4. Crucially, to ensure reliable 

communication on the 1-Wire bus for the DS18B20, integrate a 4.7kΩ pull-up resistor 

between its data pin and VCC. Once the physical connections are established, the I2C 

and 1-Wire interfaces, were enable by configure the Raspberry Pi’s software settings 

via ‘raspi-config’. Additionally, relevant libraries such as ‘w1thermsensor’ was 

installed to facilitate data reading from the DS18B20 and ADXL345 sensors.  
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Figure 3.3: Circuit connection between Raspberry Pi, ADXL345 

accelerometer sensor, and DS18B20 temperature sensor 

 After completion of circuit integration, the software development begins by write 

file in terminal of Raspberry Pi. In the exploration of sensor integration with the 

Raspberry Pi, Python emerges as an instrumental tool, bridging the hardware and 

software domains with precision. Consider the ADXL345 accelerometer: Python, with 

the aid of the `adafruit-circuitpython-adxl34x` library, facilitates detailed 

configuration, encompassing aspects such as the I2C address and data rate. Likewise, 

the DS18B20 temperature sensor finds its integration with Python, courtesy of the 

`w1thermsensor` library, ensuring calibrated temperature readings. As these sensors 

begin their data distribution, Python's role becomes important—it serves as the 

medium for data acquisition, interpretation, and analysis. Whether recognizing 

dynamics with the ADXL345 or conducting ambient temperature assessments via the 

DS18B20, Python orchestrates these operations with commendable efficiency. 

Furthermore, the integration concludes in a user-friendly interface; a concise 
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command within the Raspberry Pi's terminal initiates the Python script, thereby 

enabling a comprehensive exploration of the acquired data. This symbiotic 

combination of hardware interfacing and software orchestration underscores the 

complexity and promise capability in contemporary sensor integrations with the 

Raspberry Pi platform. 

3.3.2 Placement of sensors at motors 

In this project, a test rig comprising of a three-phase induction motor manufactured 

in year 2020 and ED-5311 Auto Driving Unit motor manufactured in year 2007 was 

utilized.  Figure 3.4 shows the setup used for bench marking the selected low-cost 

MEMS accelerometers (ADXL345) and DS18b20 temperature sensor. On this 

gearbox, the three sensors are mounted on the same side of the motor housing for three 

days of collection data, with the same measuring axis orientation. The sensors are 

mounted on the motor for four hours straight and the data is saved for further analysis.  

 

Figure 3.4: Sensor placement at Motor 1 

Figure 3.5 shows the sensor placement on Motor 2. The data is collected for three 

days for a comparison between data collection on Motor 1 and Motor 2. The vibration 
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signals and temperature signal of the three sensors were acquired for four days. Then, 

the data measured by the sensors is then displayed in Node-RED dashboard. From 

there, can be seen vibration and temperature data that have been collected for four 

hours over three days. 

 

Figure 3.5: Sensor placement at Motor 2 

3.3.3 Node-RED development tool 

Node-RED is an open-source development environment, ideal for IoT systems. It 

enables the creation of data streams by connecting hardware and software components. 

Node-RED is a free JavaScript-based tool, built on Node.js platform, offering a 

graphical web-based editor for creating flows. Within this system, nodes are 

represented with specific icons. Users can interact by dragging, dropping, and 

connecting nodes or by importing JavaScript scripts [37]. Node-RED simplifies data 

processing and allows for easy compilation of logic and transfer of processed data to 

various systems or immediate display. It provides a Dashboard interface that 

eliminates the need for HTML and CSS knowledge when creating visually appealing 
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interfaces. The platform offers a wide range of nodes with different functions and uses 

JSON objects to store created processes.  

Node-RED is flexible, facilitates real-time application development, and is 

excellent for prototyping. It provides the industry with the opportunity to build and 

test prototypes before committing significant resources to innovation. Node-RED's 

ease of use and cost-effectiveness set it apart from other software options like TIA 

Portal and Sysmac Studio, which have steeper learning curves and expensive licenses 

[38]. 

3.3.3.1 Node-RED applications 

Node-RED Dashboard stands out as an exceptional option for presenting data 

collected from a Raspberry Pi, ADXL345 sensor, and DS18B20 digital temperature 

sensor module due to its user-friendly interface, adaptability, and wide compatibility. 

What sets Node-RED Dashboard apart is its intuitive design, which allows users with 

various levels of programming proficiency to effortlessly create and personalize 

interactive dashboards without extensive coding knowledge. Moreover, Node-RED 

Dashboard boasts remarkable integration capabilities, supporting an extensive range 

of protocols and interfaces. This compatibility extends to the ADXL345 accelerometer 

sensor, and DS18B20 digital temperature sensor module connected to the Raspberry 

Pi, enabling straightforward data collection and seamless visualization on the 

dashboard. 

Real-time data visualization is a key feature of Node-RED Dashboard, empowering 

users to monitor and analyze sensor data in the moment. By leveraging its responsive 

and dynamic widgets, users can view data collected from the ADXL345 accelerometer 

sensor such as acceleration data and DS18B20 temperature sensor module such as 
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temperature data in real time. This instantaneous feedback proves invaluable for 

making prompt assessments and informed decisions based on the sensor data at hand. 

Node-RED Dashboard further impresses with its diverse set of customizable widgets, 

including gauges, charts, sliders, and switches. These widgets can be tailored to meet 

specific requirements, resulting in visually engaging and meaningful representations 

of the sensor data. Users have the freedom to configure these widgets according to 

their preferences, thus enhancing the interpretation and analysis of the presented 

information [39]. 

Additionally, the versatility of Node-RED Dashboard allows for easy expansion 

and integration of additional sensors or devices as needed. Its comprehensive library 

of available Node-RED nodes and flows offers ample options for enhancing the 

capabilities of the dashboard as shown in Figure 3.6. Consequently, the dashboard can 

effortlessly accommodate the integration of new sensors or devices without significant 

modifications to the existing setup. Node-RED Dashboard provides users with 

multiple deployment options, ensuring flexibility in choosing the most suitable 

method based on project requirements and scalability needs. Whether running the 

dashboard locally on the Raspberry Pi or hosting it on a remote server, Node-RED 

Dashboard facilitates a seamless deployment experience [40]. 



41 

 

 

Figure 3.6: Overview of Node-RED Library 

Furthermore, the thriving community surrounding Node-RED contributes to its 

appeal, as developers and enthusiasts actively provide support, share resources, 

tutorials, and examples. This collaborative community fosters knowledge sharing, 

troubleshooting, and innovation, ultimately enhancing the overall experience of 

utilizing Node-RED Dashboard. Considering these remarkable attributes, it becomes 

evident that Node-RED Dashboard is an outstanding choice for presenting data from 

a Raspberry Pi, ADXL345 sensor, and DS18B20 temperature sensor. Its user-friendly 

nature, adaptability, real-time data visualization capabilities, extensive integration 

options, and the supportive community surrounding it make Node-RED Dashboard a 

powerful tool for effectively visualizing and monitoring sensor data. With Node-RED 

Dashboard, users can derive valuable insights, make informed decisions, and drive 

innovation in their projects [41]. 
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3.3.3.2 Installation of Nodejs and Node-RED on Raspberry Pi 3, Model b 

 Raspberry Pi is a single-board computer, size of credit card, developed in the 

United Kingdom by the Raspberry Pi Foundation. Before installing the Node.js 

module and Node-RED editor, it is necessary that Raspberry Pi has an operating 

system installed, Raspbian or NOOBS, which can be found on the official Raspberry 

Pi web page [42]. 

 The command for installing Node.js module and Node-RED editor is as shown in 

Figure 3.7 

 

Figure 3.7: Command for installing Node-RED in Raspberry Pi 

Node-RED runs from the terminal with command: node-red-start. Accessing over 

the browser by entering the IP address of Raspberry Pi and the 1880 port, for example: 

http://<ip.address.>:1880, then a Node-RED interface will be displayed, confirming 

that the installation was successful. The appearance of the Node-RED is shown in 



43 

 

Figure 3.8. Pressing Ctrl + C stops the execution of the tool, and Node-RED is 

switched off by the command: node-red-stop.  

  

Figure 3.8: Interface of Nore-RED 

3.3.3.3 Overview of Node-RED Dashboard of the project 

 Figure 3.9 shows the visual representation of the application’s logic, consist of 

interconnected nodes and code block that perform specific functions and tasks.  

 

Figure 3.9: Node-RED Flow 
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The construction of a flow in Node-RED involves utilizing a user-friendly drag-

and-drop interface, which simplifies the process of assembling nodes into 

configurations that yield functional programs. Node-RED offers a range of pre-

installed nodes, and additional third-party nodes can be installed. Similar to Arduino's 

third-party libraries, Node-RED allows for the installation of such nodes. The name 

Node-RED derives from its foundation on Node.js, a lightweight JavaScript 

framework. This framework enables efficient and speedy execution, making it ideal 

for creating applications that require nimble performance, even on low-cost hardware 

like the Raspberry Pi. Being an open-source platform, Node-RED benefits from a large 

community of contributors. Its longstanding presence and stability have attracted users 

from hobbyists to major corporations, further validating its widespread adoption and 

usage [43]. 

3.3.3.4 Functional overview of Node-RED Flow 

 Based on the theoretical background presented above, a condition monitoring 

application have been developed and its environment using Node-RED. Various 

sensors record the motor’s operating data (vibration) and changes in its environment 

(temperature). This data is displayed in real-time on an interface via a Node-RED 

Dashboard. Taking the advantages of the features provided by the Node-RED 

Dashboard, a simple and easy-to be use interface as shown in Figure 3.10 and related 

topic, using real-time important data, and manipulating some of the selected 

parameters on the interface.  
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Figure 3.10: Node-RED dashboard visualization. 

In order to have an adequate amount of IoT sensor data, a python code is used 

to simulate the operation of a general industrial motor and its environment. Using the 

code, the sensors is created using JSON (JavaScript Object Notation) objects and give 

them a start value. Figure 3.11 shows several nodes were used to execute the reading 

from ADXL345 sensor to Node-RED Dashboard. Pythonshell node is used to execute 

a python script from Node-RED. Input to the node will become the argument for the 

python script, output of the script will be sent to output of the node. The node 

connected to output node of Pythonshell is Split node, where it is utilized to break 

down a message containing raw accelerometer data typically received as a single 

measure or array into individual components such as acceleration values along the X, 

Y, and Z axes. The sensor sends a message containing space-separated acceleration 

values like “X Y Z”, the Split node can separate them into individual X, Y, and Z 

values. Next is the change node, where its role is to change the type of values from a 

string to numbers for mathematical calculations, for example add units (e.g., 

“mm/sec”) for clarity. Switch node is to routes messages to different outputs based on 
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certain conditions. The data read from sensors will be sent to three different processing 

nodes for X, Y, and Z values. Next is for Rate-avg node where it purpose is to calculate 

a rolling average of incoming values over a specified time window and it is to smooth 

out fluctuations and provides a more stable representation of sensor readings [44] The 

period is set to 500 milliseconds for a cleaner visualization or readings. The gauge and 

chart node were used to display sensor’s data in real-time as shown in Figure 3.10. 

 

Figure 3.11: Node-RED flow for ADXL345 accelerometer sensor. 

Figure 3.12 illustrates the flow of Node-RED for DS18B20 temperature sensor 

integrate with Raspberry Pi 3. Several nodes also were used to perform a logic function 

which is Inject, DS18B20, and Function nodes. Node-red-contrib-sensors-ds18b20 is 

specifically designed for DS18B20 sensors that work with Raspberry Pi, hence, the 

node is used to configure and read the sensor’s data in a python code. For every 

detected sensor, the system provides an `msg` object with the topic corresponding to 

the sensor's ID and the temperature as its payload. The node's topic is adjusted to the 

device ID, ensuring a singular reading for that specific sensor. When the "Array" 
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option is enabled or when `msg.array` is true, the data is presented as an array within 

`msg.payload`. Additionally, the timestamp is consistently embedded as 

`msg.timestamp`. A straightforward workflow involves triggering an input node with 

a blank message, directing it to the sensor node, and observing the resultant output via 

a debug node. 

 

Figure 3.12: Node-RED flow for DS18B20 temperature sensor. 

3.3.4 3D-printing of prototype 

Figure 3.13 shows the 3D-print Ender-3 that was used in printing the prototype for 

the project. Ender-3 is an FDM 3D printer, an open-frame all-metal 3D printer. It 

prints parts by melting and extruding a thermoplastic filament through a heated single 

extruder equipped with a Bowden feeder system. The extruder module has been 

designed for printing with generic 1.75mm filaments, whatever the brand [45]. There 

are total of 9 parts of the prototype to be printed using Ender-3 as shown in Figure 

3.13. Before slicing the 3D model, Onshape modelling software is used to generate 



48 

 

and designing the prototype. Then, the file is saved in stl file to open in Cura Ultimaker 

software. This free and open-source software can give a control over the printing 

settings, it features ongoing upgrades and provides over 400 settings to fine-tune print 

model to get optimum printing results.  

 

Figure 3.13: Ender-3 3D printer 

3.3.5 Python code for ADXL345 accelerometer sensor and DS18B20 

temperature sensor 

The Python programming code that was generated to integrate ADXL345 

accelerometer sensor with Raspberry Pi microcontroller can be referred in Appendix 

K. The Python program code is written using Nano text editor and saved in the 

terminal of Raspberry Pi. The file is saved as adxl345.py and adxl345_2.py in order 

to differentiate the file from other typed of files. The Python script also can be run 

directly from the terminal by using ‘python3 adxl345.py’. The script will be executed 

inside the terminal. To stop the execution, simply pressed CTRL + C. Additionally, 

the Python code enable the integration between a Raspberry Pi and ADXL345 

accelerometer sensor. Upon initialization, the code configures the sensor's 
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measurement mode and sets the acceleration range. A function, `read_acceleration`, is 

employed to extract raw acceleration data from the sensor registers, convert the 

combined bytes into a signed 16-bit value, and subsequently transform it into 

acceleration values in m/s^2 units. Within the main program loop, acceleration data 

along the X, Y, and Z axes are continuously retrieved, printed, and displayed, with a 

2-second delay between each iteration. Exception handling ensures a smooth exit from 

the program upon receiving a keyboard interrupt. 

In Appendix L shows the Python programming code write that was generated for 

DS18B20 temperature sensor integrate with Raspberry Pi microcontroller. In order to 

execute the file is similar to what mentioned above. The file is saved as ds18b20.py in 

the terminal of Raspberry Pi. For this python script, it utilizes the `w1thermsensor` 

library to continuously read temperature data from a DS18B20 sensor. Upon 

execution, the `read_temperature()` function initializes the sensor and retrieves the 

current temperature in Celsius. The main loop then prints this temperature value with 

two decimal places, followed by a one-second delay before the next reading. If the 

user interrupts the script, it gracefully stops the temperature readings. 

3.3.6 MATLAB for data analysis and predictive maintenance 

After the collecting data from sensors, the MATLAB software is utilized to analyse 

the data for data analytics and processing. The Neural Net Time Series apps is used to 

visualize, and train dynamic neural networks using the collected data. In Neural Net 

Time Series app, it provides a built-in training algorithms to train neural network. 

There are three type of training algorithm available but for this project, only two 

training algorithms that were used which is Levenberg-Marquardt and Scaled 

conjugate gradient backpropagation. Both algorithms have their own advantages and 
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disadvantages, the main difference lies in their approach. The LM algorithm adjusts 

the self-scaling parameter to improve convergence, while the SCG algorithm uses a 

conjugate gradient method to find the optimal solution. In terms of performance, the 

LM algorithm has been shown to have quadratic convergence under certain conditions, 

while the SCG algorithm has been found to have lower false alarm rate in flood 

forecasting [46]. Figure 3.14 illustrates the interface of the Neural Net Time Series 

app in MATLAB. At Train can select either Levenberg-Marquardt or Scaled 

Conjugate Gradient. 

 

Figure 3.14: Network pane in MATLAB for NAR network 

From the select network, there are three different kinds of time series problem. 

Hence for this project, only one series is involved which is each data for sensors is 

taken only one reading. It is called as NAR Network where the future values of a time 

series are predicted only from the past values of that series, this is called as a nonlinear 

autoregressive, or NAR. After that, to train the network, select Train > Train with 

Levenberg-Marquardt / Scaled Conjugate Gradient, then it will show the Training 

pane as shown in Figure 3.15. Training continues until one of the stopping criteria is 

met. In this example for data DS18B20 temperature sensor, training continues until 

the validation error increases consecutively for six iterations. 
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Figure 3.15: Training Progress in Training pane 

Figure 3.16 shows the Model Summary that contains information about the training 

algorithm and the training results for each data set. In order to analyse the results, the 

plot is generated, there are several graphs that can be plotted including Training State, 

Performance, Error Histogram, Response, Error Autocorrelation, and Input-Error 

Correlation.  

 

Figure 3.16: Model Summary of training algorithm 

Other than plotting the graphs directly from there, the MATLAB code is generated 

to reproduce the previous step from the command line. Then, the trained network and 

results is exported to Workspace. Figure shows the MATLAB code that was generated 

using the Neural Net Time Series app. The code is then modified to customize the 

training process.  The related program code can be referred in Appendix J. 



 

 

 

CHAPTER 4  

RESULTS AND DISCUSSION 

This chapter serves as an important junction in thesis journey, where we 

meticulously dissect the essence of our research. Here, readers will find a blend of 

succinct summaries and in-depth analyses of our primary findings. Leveraging a 

combination of visuals and narrative, we not only present our data but also 

contextualize it within the broader academic framework. This chapter aims to bridge 

the gap between raw results and meaningful insights, offering readers a comprehensive 

understanding of the study's implications, significance, and potential avenues for 

future exploration. 

4.1 Collection data for two motors 

For this project, the data is collected from two different motors which is located at 

Automation Lab and Industrial Electronic Lab. The data is taken for four hours in three 
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days. The sensors are mounted on the motors to collect vibration and temperature data. 

Each data is then analyzed by using MATLAB software. Figure 4.1 shows the Node-

RED Dashboard that display the reading taken from the ADXL345 sensors and 

DS18B20 sensor. The data from ADXL345 is display by axes, X, Y, and Z meanwhile 

the data taken from DS18B20 is display in Celsius, using gauge and charts.   

 

Figure 4.1: Data from ADXL345 sensor and DS18B20 sensor displayed in 

Node-RED Dashboard 

The data from both sensors have been collected and visualized using gauge and 

charts in Node-RED dashboard. The collected data is saved in CSV file for further 

analysis. The MATLAB software is utilized to make a predictive analytic using Neural 

Net Time Series app.  

4.2 Detection of motor abnormalities in vibration and temperature levels 

 This project addresses a real-world industrial challenge faced by Texas 

Instruments: implementing machine condition monitoring for predictive maintenance 

through vibration and temperature level detection of motors. Due to the strict 
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regulations and standards within the industrial environment, data collection was 

limited to two motors available at faculty for vibration and temperature signal analysis. 

Figure 4.2 displays the collected data from both ADXL345 sensors in Node-RED 

dashboard. The data is plotted as an acceleration-over-time graph, offering a clear 

visualization of motor vibrations. The dashboard gauge showcases the readings of the 

ADXL345's triple-axis accelerometer (X, Y, and Z axes) in real-time. Two ADXL345 

sensors were utilized in this project. To enable the I2C communication protocol, each 

sensor's SPA pin had to be connected to either ground or VCC on the Raspberry Pi. 

This configuration allowed differentiation between sensor 1 and sensor 2, enabling 

separate data readouts for each motor and comprehensive vibration analysis. 

 

Figure 4.2: Node-RED dashboard for ADXL345 sensor’s data 

Figure 4.3 depicts a dashboard gauge and chart displaying real-time temperature data 

collected from the motors using DS18B20 sensors. This sensor utilizes a simple one-

wire protocol, requiring only one data pin for connection to a Raspberry Pi data logger. 

Additional pins provide ground and power supply (VCC). Temperatures from both 
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motors are monitored simultaneously, enabling side-by-side comparisons and 

insightful analysis.  

 

Figure 4.3: Node-RED dashboard for DS18B20 sensor's data 

4.3 A monitoring system using Node-RED Dashboard 

For this project, where vibration and temperature data from motors are measured, 

a Node-RED dashboard is employed for real-time monitoring. As the sensors capture 

data, it is instantly displayed on the Node-RED Dashboard, providing users with 

immediate insights into environmental conditions. The ADXL345 sensor contributes 

precise three-axis acceleration data, supplying valuable details about movement and 

vibrations. Simultaneously, the DS18B20 sensor ensures accurate temperature 

measurements. Node-RED, known for its user-friendly visual programming, 

seamlessly integrates these sensor inputs, enabling users to effortlessly monitor and 

analyze the data. The Raspberry Pi acts as a reliable and compact computing platform, 

ensuring the monitoring system's dependability. Through the Node-RED dashboard, 

users can visually engage with the sensor data, fostering efficient monitoring and 

decision-making. This cohesive solution showcases the effectiveness of combining 

open-source technologies to create adaptable and user-friendly monitoring systems. 
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4.4  A predictive analytic using MATLAB software. 

The collected data for four days from motors one is manufactured in 2007 while 

the other motor is manufactured in 2020 is analyzed to make a predictive analytic. The 

MATLAB software is utilized for data processing. The data is analyzed for each sensor 

and then a comparison is made between Motor 1 and Motor 2. In this analysis, there 

are two methods in Neural Net Time Series app are used to make a comparison 

between those method to choose which are the best train performance. Here, the 

Levenberg-Marquardt and Scaled Conjugate Gradient is used. The data for vibration 

and temperature is analyzed separately for both motors using these methods. 

4.4.1  Levenberg-Marquardt Train Performance 

After completing collect data from the sensor for three hours each day, the data 

then is analyzed using two methods which are Levenberg-Marquardt and Scaled 

Conjugate Gradient techniques. The Levenberg-Marquardt training algorithm is an 

optimization method used to solve nonlinear least squares problems and it uses a self-

scaling parameter to control its performance [46]. 

4.4.1.1 DS18B20 data for 3 days at Motor 1 

The historical data collected from DS18B20 temperature sensor mounted on Motor 

1 and Motor 2 is analyzed using Levenberg-Marquardt algorithm in MATLAB. 

Purpose of using this algorithm is to build a model to predict future temperature. A 

neural network is chosen to map the past temperature values to the predicted future 

temperature. The Levenberg-Marquardt algorithm can be used to optimize the model’s 

parameter by minimizing the difference between the predicted and actual temperatures 

in the training data. Other than that, it also is a type of machine learning algorithm that 

train the neural network. Firstly, the collected data for each day is saved in CSV file 
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and analyzed. Figure 4.4 illustrates the neural network training data using Levenberg-

Marquardt algorithm. 

 

Figure 4.4: Neural Network Training for Levenberg-Marquardt algorithm 

that data taken for three days at Motor 1. 

As can be seen from Figure 4.4, the results of training program shows that the 

network was able to learn the training data very well. This is because the performance 

of the network improved significantly from the beginning to the end of the training. 

From observation and analyzation of the data, the network was trained for 142 epochs, 

where it represents one complete pass through the entire training dataset. The network 

was trained for 142 epochs, so it means that it repeatedly learned from the training 
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data 48 times. The values for gradient also decreased significantly, which indicates 

that the network is no longer train anything new from the training data. As for the mu 

values, it is also decreased, from 0.001 to 1e-06, which indicates that the algorithm is 

becoming more confident in its results.  

As illustrates in Figure 4.5, can be seen that training and validation errors decreased 

until the highlighted epoch which is 136. The graph plots the Mean Squared Error 

(MSE) on a logarithmic scale against the number of epochs.  From the graph, both 

training and validation curves start with high MSE values, shows that model’s initial 

have a poor performance in predicting data. During the early epochs, both curves 

decrease rapidly, showing significant improvement in the model’s ability to learn the 

historical data patterns. The training curve continues to decrease and eventually 

plateaus, showing that the model has optimized the parameters for the training data. 

The best validation performance is marked and achieved at epoch 136 with an MSE 

of 0.0012498. The validation curve follows closely with the training curve but remains 

higher. This model indicates that it is not overfitting the training data and can be seen 

generally.  
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Figure 4.5: Validation performance for DS18B20 sensor using LM algorithm 

at Motor 1 

As shown in Figure 4.6, the graph represents data collected from a DS18B20 sensor 

over three days. The regression signal represents a scatter plot of data points in circle 

and a fit solid blue line. The circles represent the actual data points, and the solid blue 

line is the fit achieved using this algorithm. The data points are closely aligned with 

the fit line, indicating a strong positive linear relationship between the ‘Target’ and 

‘Output’. The correlation coefficient is 0.99789, which is very closed to 1, indicating 

an extremely strong positive linear correlation between the two variables. The ‘Target’ 

axis represents the desired future temperature that want to predict while the ‘Output’ 

axis represents the temperature measurements by the DS18B20 sensor itself. The 

straight line is the slope regression line where from the graph, the slope is positive. It 

means that the output temperature increases as the target temperature increases. 
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Figure 4.6: Regression graph for DS18B20 sensor using LM algorithm at 

Motor 1 

Figure 4.7 depicts the Mean Absolute Error (MAE) between actual and predicted 

offset over time. The MSE is utilized to measure the average magnitude of errors in a 

set of predictions. From the graph, can be seen that MAE have a lower range of number 

which indicates that it is better because of it have a small average error. The MAE is 

calculated as the average of the absolute differences between the predicted and actual 

values of temperature data. Furthermore, the Levenberg-Marquardt algorithm is 

typically used for curve-fitting problems, so in this context, it has been used to 

minimize the error between observed and predicted temperature readings from the 
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sensor over three days. There are two prominent spikes in MAE around the 1900 and 

9000 mark on the time axis, signalling a large error at that specific point in time.  

 

Figure 4.7: Graph OF Mean Absolute Error (MAE) between actual and 

predicted offset for DS18B20 sensor using LM algorithm at Motor 1 

Figure 4.8 illustrates the graph of a comparison between actual and predicted offset 

over time. The actual offset starts at approximately 26.5 mm and have been dropped 

around 1700 seconds, stabilizing near 25.2 mm for the remainder of the time observed. 

In contrast, the predicted offset remains relatively constant throughout, with minor 

fluctuations but not mirroring the sharp decline of the actual offset. These generated 

graphs are utilizing sensors data at Motor 1 for three days. 
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Figure 4.8: Graph for comparison between actual and predicted offset using 

LM algorithm at Motor 1 

Table 4.1 shows the Mean Square Error (MSE) and regression values for training, 

validation, and testing phases. The MSE measures the average squared difference 

between the predicted and actual values while the R value measures the correlation 

between the predicted and actual values. The MSE values are quite low for all three 

phases, indicating a good model fit for a better performance with the minimal error 

between the predicted and actual outcomes. The R values are very close to 1 for all 

three phases as well, suggesting a strong correlation between the predicted and actual 

outcomes, indicating an excellent fit of the model. The graph can be referred to 

Appendix E. 
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Table 4.1: The Mean Square Error (MSE) and Regression (R) values for the 

Training, Validation and Testing of DS18B20 sensor using LM algorithm at 

Motor 1 

 MSE R 

Training 0.000902 0.99804 

Validation 0.0018 0.99715 

Testing 0.00108 0.99794 

 

4.4.1.2 ADXL345_1 data for 3 days at Motor 1 

Data taken from ADXL345 sensors also been analyzed using the same method 

which is LM algorithm. The data is combined together for three days to make data 

processing become easy. For ADXL345 sensor at Motor 1, from observation and 

analyzation of the data, the network was trained for 51 epochs, where it represents one 

complete pass through the entire training dataset. The network was trained for 51 

epochs, so it means that it repeatedly learned from the training data 51 times. The 

values for gradient also decreased significantly, which indicates that the network is no 

longer train anything new from the training data. This data explanation can be referred 

in Appendix A 

Figure 4.9 depicts the Mean Squared Error (MSE) in relation to the number of 

epochs for predictive analytics model during its training, validation, and testing 

phases. The MSE is plotted on a logarithmic scale. As the number of epochs increases, 

the error for training, validation, ad testing decreases significantly and then stabilizes. 

The best validation performance is indicated by the lowest mean squared error that 

was marked on the graph with a circle at epoch 45 with an MSE of 2.4494. All three 

lines-Train, Validation, Test start with high MSE values but rapidly decreases as 

epochs increase.  
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Figure 4.9: Validation performance for ADXL345_1 using LM algorithm at 

Motor 1 

Figure 4.10 illustrates the regression analysis for using the LM algorithm. It shows 

the relationship between target and output variables. The R-squared value of 0.96771 

indicates a very strong positive correlation, meaning that the model explains 96.71% 

of the variability in the dependent variable by the independent variable. In terms of 

predictive analytics, this high R-squared value suggest that the model has excellent 

predictive power and accuracy. Therefore, the model can be used to predict future 

values of the dependent variable with a high degree of accuracy. 
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Figure 4.10: Regression graph for ADXL345_1 sensor using LM algorithm at 

Motor 1 

Table 4.2 shows the values for training, validation, and testing phases of a model. 

It can be observed that the model has a lower MSE values indicates it is a better fit of 

the model to the data. The training phase has an MSE of 1.84, indicating a relatively 

good fit while the validation phase has a higher MSE of 2.92, suggesting that the model 

didn’t perform as well on unseen data. The R values for each phase is listed in the 

table and it is shown that all R values close to 1, indicating a strong positive 

correlation. The related graph can be referred in Appendix E. 
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Table 4.2: The Mean Square Error (MSE) and Regression (R) values for the 

Training, Validation and Testing of ADXL345_1 sensor using LM algorithm at 

Motor 1 

 MSE R 

Training 1.84 0.96829 

Validation 2.92 0.96471 

Testing 2.4 0.96802 

 

4.4.1.3 ADXL345_2 data for 3 days at Motor 1 

The second ADXL345 sensor also been analyzed using LM algorithm, although it 

is the same sensor, but the placement of sensors is different and the reading also 

different. Hence, for both ADXL345 sensors, the reading is record and analyzed using 

the same training algorithm. For this second ADXL345, from observation and 

analyzation of the data, the network was trained for 15 epochs, where it much lower 

than the first ADXL345 sensor. The network was trained for 15 epochs, so it means 

that it repeatedly learned from the training data 15 times. The values for gradient also 

decreased significantly, which indicates that the network is no longer train anything 

new from the training data. This data explanation can be referred in Appendix A. 

Figure 4. 11 depicts the best validation performance which indicated by the lowest 

mean squared error (MSE), was achieved at epoch 9 with an MSE of 5.5183. The 

graph depicts MSE over 15 epochs for training, validation, and testing phases. The x-

axis is labeled “15 epochs” and shows the increments of five from 0 to 15. The MSE 

decreases sharply during the initial epochs and then stabilizes. The best validation 

performance, marked by a circle on the graph, is 5.5183 at epoch 9. This indicates that 

at this point, the model has achieved its lowest validation error and is likely to be the 

most generalized version of the model before it starts overfitting.  Overfitting is a 

modelling error that occurs when a statistical model fits too closely to a particular set 
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of data and may therefore fail to fit to additional data or predict future observations 

reliably. 

 

Figure 4.11: Validation performance for ADXL345_2 sensor using LM 

algorithm at Motor 1 

Figure 4.12 illustrates the regression analysis using the LM algorithm for second 

ADXL345 sensor. The relationship between the LM algorithm and predictive 

analytics is demonstrated through the fit of the model to the data points. The R values, 

0.9293 indicates a strong positive correlation, meaning that as the target variable 

increases, the output also increases. In terms of performance, the high R-value 

suggests that the LM algorithm is performing well in predicting outcomes based on 

the input data.  
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Figure 4.12: Regression graph for ADXL345_2 sensor using LM algorithm at 

Motor 1 

Next as for the Table 4.3, the MSE and regression values for three phases is listed 

using the LM algorithm. The MSE values are 7.29, 5.31 and 4.51 for training, 

validation, and testing respectively. Meanwhile the R values are 0.92822, 0.93114, 

and0.93259 respectively. The MSE values was decreases from training to testing 

which indicates that the model is learning effectively. The lowest MSE in testing 

suggest that model has generalized well from its training data. As for the R values, all 

values are closer to 1 which indicates a strong positive relationship between predicted 

and actual values in all phases. In conclusion, as the values for MSE is decreasing, and 

R values is high, the LM algorithm is become effective. The high R values signifies 
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that predictions made by this model can be highly trusted due to strong correlations 

with actual outcomes. The regression plot for each phase can be referred in Appendix 

E. 

Table 4.3: The Mean Square Error (MSE) and Regression (R) values for the 

Training, Validation and Testing of ADXL345_2 sensor using LM algorithm at 

Motor 1 

 MSE R 

Training 7.29 0.92822 

Validation 5.31 0.93114 

Testing 4.51 0.93259 

 

4.4.1.4  DS18B20 data for 3 days at Motor 2 

The readings from DS18B20 sensor at Motor 2 also been recorded and analyzed 

using the same training algorithm which is Levenberg-Marquardt algorithm. Figure 

4.13 illustrates the neural network training algorithm. From observation and 

analyzation of the data, the network was trained for 22 epochs, where it represents one 

complete pass through the entire training dataset. The network was trained for 22 

epochs, so it means that it repeatedly learned from the training data 22 times. The 

values for gradient also decreased significantly, which indicates that the network is no 

longer train anything new from the training data. As for the mu values, it is also 

decreased, from 0.001 to 1e-05, which indicates that the algorithm is becoming more 

confident in its results.  
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Figure 4.13: Neural Network Training for Levenberg-Marquardt algorithm 

that data taken for three days at Motor 2. 

Figure 4.14 depicts the Mean Squared Error (MSE) over 16 epochs for training, 

algorithm, validation, and testing data from a DS18B20 sensor. The Levenberg-

Marquardt algorithm is using for curve-fitting problem, so in this context, it is used to 

minimize the error between the observed and predicted temperature readings from the 

DS18B20 sensor on day 3. From the graph, it can be seen that validation performance 

initially increases rapidly as the network learns from the data, but it starts to decrease 

until the highlighted epoch as the network was trained. Moreover, the best validation 

performance is 0.00060587, and it was achieved at epoch 16. This indicates that the 

network performed best on unseen data at the end of epoch 16. 
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Figure 4.14: Validation performance for DS18B20 sensor using LM 

algorithm at Motor 2 

Figure 4.15 illustrates the scatter plot that shows the relationship between two 

variables for regression graph for DS18B20 sensor for three days. It can be concluded 

that the regression line has a strong linear relationship where the R value of 0.9947 

indicates a very strong linear relationship between the target and output variables. 

However, the presence of more scatter shows that the relationship might not be 

perfectly linear, and there could be some other factors influencing the output. Despite 

of having more scatter, the model can still predict the output values with very high 

accuracy, given a target value. The R value shows that the model explains 99.95% of 

the variance in the output variable. 
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Figure 4.15: Regression graph for DS18B20 sensor using LM algorithm at 

Motor 2 

A comparison between actual and predicted offset over time of the training 

network. The x-axis represents time in seconds (s), ranging from 0 to 12000, while the 

y-axis represents offset in millimeters (mm), ranging from approximately 23 to 27.5. 

Both lines show similar trends but have noticeable differences in their values at 

various points on the graph. There are three sections on the graph where both lines rise 

sharply, plateau, then fall sharply. Initially, both the actual and predicted offsets are 

closely aligned, but discrepancies become apparent as time progresses. Around 2000s, 

there is a sharp increase in both values but the predicted offset lags slightly behind the 

actual offset. Between 4000s to 8000s, the predicted offset is consistently higher than 
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the actual one. After 8000s, both values drop sharply with the predicted offset again 

lagging slightly. The related graph can be referred in Appendix C. 

 Figure 4.16 depicts the Mean Absolute Error (MAE) between the actual and 

predicted offset over time. The MAE values are mostly concentrated around 0, 

indicating a good model performance for those instances. However, there are 

noticeable spikes at certain points in time around 4000, and 9000, where the MAE 

nearly 2. This indicates that significant errors between the predicted and actual offset 

at these specific times,  

 

Figure 4.16: Graph OF Mean Absolute Error (MAE) between actual and 

predicted offset for DS18B20 sensor using LM algorithm at Motor 2 

Table 4.4 shows the Mean Square Error (MSE) and regression values for training, 

validation, and testing phases. The MSE values are low for all three phases, indicating 
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a good fit of the model to the data. The R values are very close to 1 for all three phases 

as well, indicating a strong correlation between the predicted and actual outcomes. 

The graph can be referred to Appendix F. 

Table 4.4: The Mean Square Error (MSE) and Regression (R) values for the 

Training, Validation and Testing of DS18B20 sensor using LM algorithm at 

Motor 2 

 MSE R 

Training 0.0014 0.99955 

Validation 0.000736 0.99976 

Testing 0.00445 0.99877 

 

4.4.1.5 ADXL345_1 data for 3 days at Motor 2 

For motor 2 that is produced at year 2007, the data from ADXL345 sensors also 

being collected to make a predictive analytic using Levenberg-Marquardt algorithm. 

From the training results of neural network, the training stopped at 13 epochs, with a 

performance of 2.28. The gradient is at 0.534, indicating the rate of changes in error 

with respect to the weights and biases in the network. The low mu value suggests that 

adjustments made during training were small, leading to a more refined model fit. 

Initially, the mu values are at 0.01 and stopped at an extremely small value of 1e+10 

indicating precision in adjustments during training.  The neural network of training 

results for ADXL345 sensors can be referred in Appendix A.  

Figure 4. 17 depicts the validation performance of the model. The data from 

ADXL345 sensor is used as input to make a prediction about future data points or 

trends. The graph has shown the MSE error over 13 epochs. As for this sensor, the 

best validation performance is 2.4891 at epoch 7 which have been marked by a circle 

on the graph. This indicates that at this point, the mode has achieved its lowest 
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validation error. Initially, the MSE values is increases rapidly as the network learns 

from the data, but later it starts to decrease.  

 

Figure 4.17: Validation performance for ADXL345_1 using LM algorithm at 

Motor 2 

Figure 4.18 illustrates the regression plot for data taken from ADXL345_1 at Motor 

2. The scatter plot shows the relationship between the target and output variables, with 

a high correlation coefficient of R=0.94135, indicating a strong linear relationship. 

The blue line represents the fit of the LM algorithm to the data, while the dotted line 

represents perfect prediction. As for the predictive analytics using LM algorithm, the 

relationship would involve using ADXL345 sensor’s data from Motor 2 as input to 

make predictions about future data points or trends. To conclude with, the LM 

algorithm is a good fit for the data and has an excellent predictive power and 

efficiency.  
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Figure 4.18: Regression graph for ADXL345_1 sensor using LM algorithm at 

Motor 2 

Table 4.5 shows the Mean Square Error (MSE) and regression values for training, 

validation, and testing phases. The R values are very close to 1 for all three phases, 

indicating a strong correlation between the predicted and actual outcomes. However, 

there is an increase in MSE during validation which suggests that the model might be 

overfitting to the training data. The regression graph for each phase can be referred to 

Appendix F. 

Table 4.5: The Mean Square Error (MSE) and Regression (R) values for the 

Training, Validation and Testing of ADXL345_1 using LM algorithm at Motor 

2 

 MSE R 

Training 1.73 0.94199 

Validation 3.01 0.93787 

Testing 2.45 0.94188 
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4.4.1.6 ADXL345_2 data for 3 days at Motor 2 

The neural network training algorithm for ADXL345_2 is also being analyzed. 

From observation and analyzation of the data, the network was trained for 107 epochs, 

where it represents one complete pass through the entire training dataset. The network 

was trained for 107 epochs, so it means that it repeatedly learned from the training 

data 107 times. The values for gradient also decreased significantly, which indicates 

that the network is no longer train anything new from the training data. As for the mu 

values, it is also decreased, from 0.001 to 0.0001, which indicates that the algorithm 

is becoming more confident in its results. The neural network training results can be 

referred to Appendix A. 

Figure 4.19 illustrates the Mean Squared Error (MSE) across 107 epochs for 

training, algorithm, validation, and testing data obtained from a DS18B20 sensor. 

Employing the Levenberg-Marquardt algorithm for curve-fitting, it aims to minimize 

the disparity between observed and predicted temperature readings from the DS18B20 

sensor for three days. The graph depicts a rapid initial increase in validation 

performance as the network learns from the data, followed by a subsequent decline 

until the highlighted epoch during the training phase. Notably, the optimal validation 

performance, reaching 0.50183, was attained at epoch 101. This suggests that the 

network demonstrated its highest performance on unseen data towards the conclusion 

of epoch 101. 
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Figure 4.19: Validation performance for ADXL345_2 using LM algorithm at 

Motor 2 

Meanwhile, Figure 4.20 illustrates a regression graph spanning three days, 

incorporating data from the ADXL345 sensor. The x-axis denotes the actual 

temperature readings retrieved from the ADXL345 sensor, while the y-axis represents 

temperature values derived through the scaled conjugate gradient algorithm. 

Individual data points are depicted as circles, and a linear fit, represented by the blue 

line, emphasizes a robust positive correlation with an R-value of 0.98858. This 

indicates a proportional increase in output values as the target values rise, signifying 

a strong positive relationship. In the realm of predictive analytics, the elevated 

correlation coefficient implies that the model exhibits high accuracy in forecasting 

future data points based on historical data. 
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Figure 4.20: Regression graph for ADXL345_2 sensor using LM algorithm at 

Motor 2 

Table 4.6 presents the Mean Square Error (MSE) and regression values during the 

training, validation, and testing phases. MSE quantifies the average squared difference 

between predicted and actual values, while the R-value gauges the correlation between 

these values. The consistently low MSE values across all phases signify a well-fitted 

model, demonstrating superior performance with minimal discrepancies between 

predicted and actual outcomes. Similarly, the R-values, approaching 1 for each phase, 

underscore a robust correlation between predicted and actual outcomes, affirming the 

model's excellent fit. The graph can be referred in Appendix F. 
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Table 4.6: The Mean Square Error (MSE) and Regression (R) values for the 

Training, Validation and Testing of ADXL345_2 sensor using LM algorithm at 

Motor 2 

 MSE R 

Training 0.411 0.98884 

Validation 0.479 0.98838 

Testing 0.614 0.98756 

 

4.4.2  Scaled Conjugate Gradient Train Performance 

Other than using the Levenberg-Marquardt training algorithm, the Scaled 

Conjugate Gradient training algorithm is also being used to analyze and process data 

from sensors. This is because to make a comparison between two methods, which one 

is the best one to use for data analysis. The Scaled Conjugate Gradient technique is a 

gradient-based method that is commonly used for training artificial neural networks.  

4.4.2.1  DS18B20 data for 3 data at Motor 1 

Figure 4.21 depicts the neural network from data of DS18B20 sensor using Scaled 

Conjugate Gradient algorithm. From observation and analyzation of the data, the 

network was trained for 62 epochs, where it represents one complete pass through the 

entire training dataset. Initially, the network was trained for 62 epochs, while the target 

was set to 1000 epochs, so it means that it repeatedly learned from the training data 62 

times. As for the performance, the initial value was 0.992 and it improved significantly 

to a stopped valued of 0.00205, with a target value of 0. The values for gradient also 

decreased significantly, which indicates that the network is no longer train anything 

new from the training data. Where it started at a value of 4.31 and reduced to 0.00298, 

approaching towards a very small target value (1e-06).   
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Figure 4.21: Neural Network Training for Scaled Conjugate Gradient 

algorithm that data taken for three days at Motor 1. 

Figure 4.22 depicts the Mean Squared Error (MSE) over 62 epochs for training, 

algorithm, validation, and testing data from a DS18B20 sensor. The Levenberg-

Marquardt algorithm is using for curve-fitting problem, so in this context, it is used to 

minimize the error between the observed and predicted temperature readings from the 

DS18B20 sensor on day 3. From the graph, it can be seen that validation performance 

initially increases rapidly as the network learns from the data, but it starts to decrease 

until the highlighted epoch as the network was trained. Moreover, the best validation 

performance is 0.0017247, and it was achieved at epoch 56. This indicates that the 

network performed best on unseen data at the end of epoch 56. 
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Figure 4.22: Validation performance for DS18B20 sensor using SCG 

algorithm at Motor 1 

Meanwhile Figure 4.23 represents regression graph over three days for data from 

DS18B20 sensors too. The x-axis represents the actual temperature readings from the 

DS18B20 sensor. While the y-axis indicates the temperature values obtained through 

the scaled conjugate gradient algorithm. The circles represent individual data points, 

and the blue line is a linear fit to this data, indicating a strong positive correlation with 

an R-values of 0.99552. It means that as the target values increase, the output values 

also increase proportionally. In predictive analytics, this high correlation coefficient 

suggests that the model is highly accurate in predicting future data points based on 

historical data.  
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Figure 4.23: Regression graph for DS18B20 sensor using SCG algorithm at 

Motor 1 

Figure 4.24 illustrates the graph of a comparison between actual and predicted 

offset over time. The actual offset is depicted in red and exhibits a sharp decline at 

26.5mm before stabilizing at 25.2 mm and then dropping again. In contrast, the 

predicted offset, shown in blue, closely follows the actual trend but with slight 

deviations with time observation. The predicted offset remains relatively constant 

throughout, with minor fluctuations but not mirroring the sharp decline of the actual 

offset. Furthermore, this type of graph is crucial for evaluating the performance of 

predictive models like SCG. It allows analysts to visually assess how accurately a 

model’s predictions align with actual outcomes over a specified or under certain 
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conditions. The closer these two lines are throughout the graph, the more accurate and 

reliable the predictive model is considered to be. These generated graphs are utilizing 

sensors data at Motor 1 for three days. 

 

Figure 4.24: Graph for comparison between actual and predicted offset using 

SCG algorithm at Motor 1 

Figure 4.25 depicts the Mean Absolute Error (MAE) using the SCG algorithm over 

a time period. The MAE is a measure used to quantify how accurate predictions are, 

it measures the average magnitude of errors between predicted and observed values, 

without considering their direction. A blue line on the graph depicts fluctuations in 

MAE over time. In predictive analytics, a lower MAE indicates more accurate 

predictions. Moreover, in this graph, for most of the time periods, the MAE is 

relatively low but there are spikes indicating instances where the predicted offsets 

were significantly different from actual offsets. This could imply that while SCG 
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algorithm is generally effective, there might be certain conditions or data patterns 

where its performance decreases. 

 

Figure 4.25: Graph of Mean Absolute Error (MAE) between actual and 

predicted offset for DS18B20 sensor using SCG algorithm at Motor 1 

Table 4.7 shows the Mean Square Error (MSE) and regression values for training, 

validation, and testing phases. The MSE values are low for all three phases, indicating 

a good fit of the model to the data. The R values are very close to 1 for all three phases 

as well, indicating a strong correlation between the predicted and actual outcomes. 

The graph can be referred to Appendix G. 
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Table 4.7: The Mean Square Error (MSE) and Regression (R) values for the 

Training, Validation and Testing of DS18B20 sensor using SCG algorithm at 

Motor 1 

 MSE R 

Training 0.00252 0.99531 

Validation 0.00176  0.99609 

Testing 0.00192 0.99595 

 

4.4.2.2 ADXL345_ 1 data at Motor 1 

The data acquired from ADXL345 sensors underwent analysis using the SCG 

algorithm. To facilitate data processing, the information from three days was 

consolidated. For Motor 1's ADXL345 sensor, the neural network underwent training 

for 56 epochs, representing complete passes through the training dataset. The 

decreasing gradient values signify diminishing learning from the training data. 

Additional details about this data illustrations can be found in Appendix B. 

The accompanying Figure 4.26 illustrates the Mean Squared Error (MSE) 

concerning the number of epochs in the predictive analytics model's training, 

validation, and testing phases. The logarithmic scale depicts MSE, revealing a 

substantial decrease and subsequent stabilization as the epochs increase. The epoch 56 

marks the best validation performance, denoted by the lowest MSE of 2.5909. The 

MSE values for training, validation, and testing start high but consistently decline with 

increasing epochs. 
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Figure 4.26: Validation performance for ADXL345_1 sensor using SCG 

algorithm at Motor 1 

Figure 4.27 visualizes the regression analysis conducted with the SCG algorithm, 

portraying the connection between target and output variables. The R-squared value 

of 0.96443 signifies a remarkably robust positive correlation, signifying that the model 

elucidates 96.44% of the variability in the dependent variable through the independent 

variable. In the context of predictive analytics, this elevated R-squared value implies 

the model's outstanding predictive capability and accuracy. Consequently, the model 

is well-suited for accurately predicting future values of the dependent variable. 
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Figure 4.27: Regression graph for ADXL345_1 sensor using SCG algorithm 

at Motor 1 

Table 4.8 presents the values corresponding to the training, validation, and testing 

phases of the model. Notably, lower MSE values across all phases signify a superior 

fit of the model to the data. The training phase exhibits an MSE of 2.57, indicating a 

relatively commendable fit. Conversely, the validation phase displays a higher MSE 

of 3.52, implying that the model didn't perform as effectively on unseen data. The R 

values for each phase are included in the table, and it's evident that all R values are 

close to 1, denoting a robust positive correlation.  The related graph can refer in 

Appendix G. 
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Table 4.8: The Mean Square Error (MSE) and Regression (R) values for the 

Training, Validation and Testing of ADXL345_1 sensor using SCG algorithm at 

Motor 

 MSE R 

Training 2.57 0.96463 

Validation 3.52 0.9621 

Testing 2.05 0.96578 

 

4.4.2.3 ADXl345_2 data at Motor 1 

The second ADXL345 sensor was also analyzed using the SCG algorithm. Despite 

being the same sensor, variations in sensor placement and readings occurred. 

Consequently, both ADXL345 sensors' readings were recorded and analyzed using the 

same training algorithm. For this second ADXL345 sensor, upon observing and 

analyzing the data, the network underwent training for 102 epochs, surpassing the 

number for the first ADXL345 sensor. The gradient values experienced a significant 

decrease, signifying that the network ceased learning anything new from the training 

data. Further details on this data are available in Appendix B. 

The accompanying Figure 4.28 illustrates the best validation performance, 

identified by the lowest mean squared error (MSE), achieved at epoch 96 with an MSE 

of 6.12. The graph portrays the MSE trends over 102 epochs for the training, 

validation, and testing phases. The x-axis is labeled "102 epochs," with increments of 

ten from 0 to 100. The MSE sharply decreases in the initial epochs and subsequently 

stabilizes. The circled point on the graph represents the best validation performance, 

which is 6.12 at epoch 96. This signifies that at this juncture, the model has attained 

its lowest validation error and is likely the most generalized version before the risk of 

overfitting begins. 
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Figure 4.28: Validation performance for ADXL345_2 sensor using SCG 

algorithm at Motor 1 

 Figure 4.29 depicts the regression analysis employing the SCG algorithm for the 

second ADXL345 sensor. It showcases the model's alignment with the data points, 

illustrating the interplay between the LM algorithm and predictive analytics. The R-

value of 0.9244 signifies a robust positive correlation, indicating that as the target 

variable rises, the output similarly increases. In terms of performance, the elevated R-

value implies that the SCG algorithm excels in predicting outcomes based on the 

provided input data. 
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Figure 4.29: Regression graph for ADXL345_2 sensor using SCG algorithm 

at Motor 1 

  In the Table 4.9, the LM algorithm's MSE and regression values for the three 

phases are presented. The MSE values are 6.09, 7.48, and 5.00 for training, validation, 

and testing, respectively. Notably, the MSE values for validation show an increase, 

whereas for testing, there is a decrease. The lowest MSE in testing indicates that the 

model has generalized effectively from its training data. Regarding the R values, all 

are close to 1, signifying a robust positive relationship between predicted and actual 

values in all phases. In conclusion, the effectiveness of the SCG algorithm is evident, 

as indicated by the high R values. These high R values affirm the model's reliability 
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in producing trustworthy predictions, showcasing strong correlations with actual 

outcomes. The regression plots for each phase can be found in the Appendix G. 

Table 4.9: The Mean Square Error (MSE) and Regression (R) values for the 

Training, Validation and Testing of ADXL345_2 sensor using SCG algorithm at 

Motor 1 

 MSE R 

Training 2.57 0.96463 

Validation 3.52 0.9621 

Testing 2.05 0.96578 

 

4.4.2.4  DS18B20 data at Motor 2 

After completing analyze data for Motor 1, the sensors data for Motor 2 is then 

analyzed using the same technique which is Scaled Conjugate Gradient training 

algorithm. The purpose of data processing is to make a predictive analysis between 

two motors over three days of testing. Figure 4. 30 illustrates the results of training a 

neural network using the SCG algorithm. The training stopped at 73 epochs, with a 

target of reaching 1000 epochs. There were initially zero checks and it stopped after 

performing six checks.  
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Figure 4. 30: Neural Network Training for Scaled Conjugate Gradient 

algorithm that data taken for three days at Motor 2. 

Figure 4.31 illustrates the Mean Squared Error (MSE) of a model trained on data 

taken from DS18B20 sensor over 73 epochs. Can be seen that the MSE for training, 

validation, and testing datasets are plotted. The best validation performance, marked 

by a dotted line, is achieved at epoch 67 with an MSE of 0.0035358.  
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Figure 4.31: Validation performance for DS18B20 sensor using SCG 

algorithm at Motor 2 

Next is for regression graph that can be seen at Figure 4.32. The blue line represents 

the model’s predictions, R, from graph can be seen that R value is close to 1, indicates 

that a very strong positive linear relationship between the predicted and actual values. 

This is because, the closed the points are to the blue line, the better the model’s 

predictions.  
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Figure 4.32: Regression graph for DS18B20 sensor using SCG algorithm at 

Motor 2 

The predicted analytics involved here would be utilizing historical data to forecast 

future offset values. In this case, it appears that the predictive model was not entirely 

accurate, as there are noticeable discrepancies between the actual and predicted 

offsets, especially from 4000s to 8700s time mark. This can be referred to Appendix 

I. 

Next, Figure 4.33 shows graph of the Mean Absolute Error (MAE). This graph 

indicates the average magnitude of errors between predicted and actual offsets over 

time. The spike in MAE shows the predicted model’s performance deviated 

significantly from the actual data, indicating a need for model refinement to improve 
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accuracy. From the graph, can observed that there are several spikes in MAE visible 

on the graph, with two prominent ones reaching close to a MAE of 1.8 around times 

3800 and 2 around 8800 respectively. Most of the errors are clustered near the bottom, 

indicating a low mean absolute error for most of the predictions. 

 

Figure 4.33: Graph of Mean Absolute Error (MAE) between actual and 

predicted offset for DS18B20 sensor using SCG algorithm at Motor 2 

Table 4.10 shows the Mean Square Error (MSE) and regression values for training, 

validation, and testing phases. The MSE values are low for all three phases, indicating 

a good fit of the model to the data. The R values are very close to 1 for all three phases 

as well, indicating a strong correlation between the predicted and actual outcomes. 

The graph can be referred to Appendix H. 
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Table 4.10: The Mean Square Error (MSE) and Regression (R) values for 

the Training, Validation and Testing of DS18B20 sensor using SCG algorithm 

at Motor 2 

 MSE R 

Training 0.00185 0.99937 

Validation 0.00452 0.9986 

Testing 0.00135 0.99939 

 

4.4.2.5 ADXL345_1 data at Motor 2 

For motor 2 that is produced at year 2007, the data from ADXL345 sensors also 

being collected to make a predictive analytic using Scaled Conjugate Gradient 

algorithm. From the training results of neural network, the training stopped at 92 

epochs, with a performance of 2.4. The gradient is at 0.174, indicating the rate of 

changes in error with respect to the weights and biases in the network. The neural 

network of training results for ADXL345 sensors can be referred in Appendix B.  

Figure 4.34 illustrates the validation performance of the model using data from the 

ADXL345 sensor as input for predicting future data points or trends. Displaying the 

MSE error over 92 epochs, the graph highlights the best validation performance at 

epoch 86, marked by a circle. This signifies the point where the model has attained its 

lowest validation error. Initially, the MSE values increase rapidly as the network learns 

from the data, but subsequently, they start to decrease. 
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Figure 4.34: Validation performance for ADXL345_1 sensor using SCG 

algorithm at Motor 2 

Figure 4.35 presents the regression plot for the data obtained from ADXL345_1 at 

Motor 2. This scatter plot visually displays the relationship between the target and 

output variables, showcasing a robust linear correlation with an R-value of 0.93978. 

The blue line represents the fit of the SCG algorithm to the data, while the dotted line 

signifies perfect prediction. In the realm of predictive analytics using the SCG 

algorithm, this relationship involves utilizing the data from the ADXL345 sensor at 

Motor 2 as input for predicting future data points or trends. In conclusion, the SCG 

algorithm proves to be a fitting model for the data, demonstrating excellent predictive 

power and efficiency. 
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Figure 4.35: Regression graph for ADXL345_1 sensor using SCG algorithm 

at Motor 2 

Table 4.11 provides information on the Mean Square Error (MSE) and regression 

values during the training, validation, and testing phases. The R values are consistently 

close to 1 across all three phases, signifying a strong correlation between the predicted 

and actual outcomes. However, there is a notable increase in MSE during the testing 

phase, suggesting a potential issue of overfitting to the training data. For a detailed 

visualization of the regression graphs for each phase, please refer to the Appendix H.  
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Table 4.11: The Mean Square Error (MSE) and Regression (R) values for 

the Training, Validation and Testing of ADXL345_1 sensor using SCG 

algorithm at Motor 2 

 MSE R 

Training 2.84 0.93955 

Validation 2.02 0.9413 

Testing 2.92 0.9394 

 

4.4.2.6  ADXL345_2 data at Motor 2 

The neural network training algorithm for ADXL345_2 is under scrutiny. Upon 

observing and analyzing the data, the network underwent training for 106 epochs, 

signifying a complete pass through the entire training dataset. With each epoch 

representing a repeated learning cycle from the training data, the gradient values 

exhibited a significant decrease, indicating that the network ceased learning anything 

new from the training data. Detailed results of the neural network training can be found 

in Appendix B.  

The accompanying Figure 4.36 illustrates the Mean Squared Error (MSE) across 

106 epochs, encompassing training, algorithm, validation, and testing data from an 

ADXL345 sensor. Utilizing the Scaled Conjugate Gradient algorithm for curve-fitting, 

the objective is to minimize the disparity between observed and predicted temperature 

readings from the ADXL345 sensor over three days. The graph reflects an initial rapid 

increase in validation performance during the network's learning phase, succeeded by 

a subsequent decline until the highlighted epoch. Notably, the optimal validation 

performance, reaching 0.53908, was achieved at epoch 100, indicating the network's 

peak performance on unseen data toward the conclusion of this epoch. 
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Figure 4.36: Validation performance for ADXL345_2 sensor using SCG 

algorithm at Motor 2 

In the Figure 4.37, a regression graph spanning three days showcases data from the 

ADXL345 sensor. The x-axis illustrates actual temperature readings retrieved from 

the ADXL345 sensor, while the y-axis displays temperature values obtained through 

the scaled conjugate gradient algorithm. Each data point is represented by a circle, and 

the blue line indicates a linear fit, highlighting a robust positive correlation with an R-

value of 0.98793. This suggests that output values increase proportionally with rising 

target values, demonstrating a strong positive relationship. Within the realm of 

predictive analytics, the elevated correlation coefficient indicates that the model 

possesses high accuracy in forecasting future data points based on historical data. 



102 

 

 

Figure 4.37: Regression graph for DS18B20 sensor using SCG algorithm at 

Motor 2 

 Table 4.12 displays the Mean Square Error (MSE) and regression values 

throughout the training, validation, and testing phases. MSE measures the average 

squared difference between predicted and actual values, while the R-value assesses 

the correlation between these values. The consistently low MSE values across all 

phases indicate a well-fitted model, showcasing superior performance with minimal 

disparities between predicted and actual outcomes. Similarly, the R-values, nearing 1 

for each phase, emphasize a robust correlation between predicted and actual outcomes, 

affirming the model's excellent fit. The corresponding graph is available in the 

Appendix H. 
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Table 4.12: The Mean Square Error (MSE) and Regression (R) values for 

the Training, Validation and Testing of ADXL345_2 sensor using SCG 

algorithm at Motor 2 

 MSE R 

Training 0.371 0.98808 

Validation 0.72 0.98712 

Testing 0.371 0.988 

 

4.4.3 Comparison network training using different training algorithms for 

each motor. 

After all sensor’s data been analysed with different technique, then the comparison 

is made between using LM algorithm and SCG algorithm by combining all data from 

Motor 1 and Motor 2 to train. This action is taken to observe the training performance 

for both motors when using different algorithm. From the observation, can be seen 

that Levenberg-Marquardt algorithm   offered the best accuracy in terms of neural 

network training, validation performance and R obtained as shown in Table 4.13. This 

can be proved with several training results to compare both algorithms. First, the 

neural network training results using LM algorithm shows that the training stopped at 

56 epochs while training for SCG algorithm, stopped at 190 epochs. LM algorithm 

shows that it is the faster as it requires fewer epochs to converge. This makes LM 

algorithm is more efficient in the specific instance because it achieved the desired 

performance in less time and fewer iterations. 

 Other than that, in the context of the LM algorithm, the best validation performance 

is 0.00088256 was achieved at epoch 50. This means that the model achieved the best 

performance on the validation dataset at epoch 50.  However, in the context of SCG 

algorithm, the best validation performance is 0.0015796 was achieved at epoch 184. 

This means that the model achieved the best performance on the validation dataset at 
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epoch 184. This indicates LM algorithm has achieved the lowest value of the 

validation performance during the training process, which the data is trained well.  

Furthermore, LM algorithm also shown that it has the higher values for R-squared 

which is 0.9992 near to 1 compared to SCG algorithm which is 0.99895. Both have 

the best values of R-squared but LM algorithm much higher than SCG algorithm. The 

higher the values, the better the model fit to the data. 
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Table 4.13: Table comparison between using LM algorithm and SCG algorithm. 

Levenberg-Marquardt Algorithm Scaled Conjugate Gradient Algorithm 
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Table 4.14 represents the Mean Square Error (MSE) and regression values for 

training, validation, and testing phases of two algorithms: Levenberg-Marquardt and 

Scaled Conjugate Gradient algorithms. In terms of predictive analytics, LM algorithm 

has the lower MSE values across all three phases compared to SCG algorithm, 

indicating a better performance in terms of error rate. The R values for LM algorithm 

also are slightly higher than those for SCG algorithm, suggesting that LM also 

performs better in terms of regression. In conclusion, LM algorithm is better than the 

SCG algorithm for predictive analytics and performance.  

Table 4.14: The Mean Square Error (MSE) and Regression (R) values for 

the Training, Validation and Testing of sensors at Motor 1 and Motor 2 

 Levenberg-Marquardt 

Algorithm 

Scaled Conjugate Gradient 

Algorithm 

 MSE R MSE R 

Training 0.0012 0.99915 0.0022 0.99898 

Validation 0.00256 0.99932 0.00136 0.99871 

Testing 0.000675 0.99929 0.00104 0.99907 

 

4.5 Relationship with Sustainable Development Goal (SDG). 

The machine condition monitoring project aligns with Sustainable Development 

Goal (SDG) No. 9, which emphasizes the need to build resilient infrastructure, 

promote inclusive and sustainable industrialization, and foster innovation. By focusing 

on predictive maintenance techniques, the project contributes to the resilience of 

industrial infrastructure by proactively addressing potential faults and minimizing 

disruptions. It also promotes sustainable industrialization by ensuring optimal 

performance and longevity of machinery, thereby enhancing efficiency in industrial 

processes. The incorporation of innovative technologies, such as Raspberry Pi, 
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sensors, and Node-RED, showcases a commitment to fostering innovation in the field 

of industrial maintenance. Overall, the project exemplifies a comprehensive approach 

to advancing SDG No. 9 through its emphasis on resilient infrastructure, sustainable 

industrial practices, and technological innovation. 

 The machine condition monitoring project using predictive maintenance 

contributes to Sustainable Development Goal (SDG) No. 12, which focuses on 

ensuring sustainable consumption and production patterns. By implementing 

predictive maintenance techniques, the project aims to prolong the lifespan of 

industrial machinery and optimize their performance. This approach aligns with SDG 

No. 12 by promoting sustainable practices in industrial production. Through the 

proactive identification of potential faults, the project minimizes unnecessary resource 

consumption associated with reactive maintenance and unplanned downtime. By 

fostering efficient and sustainable consumption of resources, the project contributes 

to the broader objective of achieving sustainable production patterns outlined in SDG 

No. 12. 

 

 

  



 

 

 

CHAPTER 5  

CONCLUSION AND FUTURE WORKS 

In conclusion, there are various methods to detect motor abnormalities such as 

vibration analysis, energy monitoring, and sensor data-based predictive maintenance  

using ADXL345 and DS18B20 sensors. . By integrating advanced sensors, including 

ADXL345 for vibration detection and DS18B20 for temperature monitoring, the 

system has provided accurate and timely insights into the motor's condition, enabling 

proactive interventions, and minimizing the risk of catastrophic failures.  These 

methods can help detect potential issues or faults in the motor, which can help 

minimize downtime and costly repairs. 

In this study, Node-RED has been used to develop a real-time data processing and 

visualization. Node-RED is a powerful open-source tool for visual programming that 

can be used to build Internet of Things (IoT) applications. This innovative solution 

https://ieeexplore.ieee.org/document/9974858
https://ieeexplore.ieee.org/document/9974858
https://ieeexplore.ieee.org/document/9974858
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facilitates real-time data acquisition, processing, and visualization, empowering 

maintenance teams with a user-friendly interface to monitor motor conditions and 

make informed decisions effectively. The monitoring system collet data from sensors 

and use that data to make a prediction about future performance.  

Additionally, predictive maintenance is developed using historical data from 

collected sensor’s data. By leveraging historical data, sensor data, and advanced 

analytics, predictive maintenance aims to identify potential failures or issues before 

they occur, allowing for proactive maintenance actions and minimizing downtime and 

costly repairs. The data analytics and machine learning techniques had been used to 

analyse patterns, identifies potential failure modes, and optimizes maintenance 

schedule.  

Hence, by combining the methods mentioned above, it is possible to develop a 

system that can detect motor abnormalities, develop a monitoring system using the 

Node-RED visual programming tool with a Raspberry Pi as a microcontroller, and 

develop predictive maintenance using historical data from collected sensor data. This 

can help ensure the efficient operation of the motor and minimize downtime and costly 

repairs.  

5.1  Future works 

The motor condition monitoring project, utilizing predictive maintenance through 

components like Raspberry Pi, ADXL345, DS18B20, Node-RED, and MATLAB, 

presents promising avenues for future enhancements. One of the future works which 

can be made is include integrating advanced sensors for comprehensive motor data 

capture and exploring wireless sensor deployment. For example, current sensors, or 

acoustic sensors to capture more comprehensive data about the motor’s condition. 

https://ieeexplore.ieee.org/document/9974858
https://ieeexplore.ieee.org/document/9974858
https://www.influxdata.com/blog/predictive-maintenance-machine-learning-guide/
https://www.influxdata.com/blog/predictive-maintenance-machine-learning-guide/
https://www.influxdata.com/blog/predictive-maintenance-machine-learning-guide/
https://www.influxdata.com/blog/predictive-maintenance-machine-learning-guide/
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Next is, cloud platform integration which offers centralized data management and 

remote monitoring capabilities, enhancing accessibility and responsiveness where 

maintenance teams can monitor motor conditions from anywhere and receive alerts on 

their devices. 

After that another future works can be implemented is in term of user interface and 

visualization where it focuses on intuitive dashboards and trend visualization tools, 

empowering maintenance teams with user-friendly manner. Continuous optimization 

of predictive algorithms, which a through safety assessment and implement an 

additional safety feature, such as emergency shutdown mechanisms or redundant 

monitoring systems. A compliance with safety regulations, scalability, and integration 

with existing systems also can ensure a holistic approach to motor maintenance. 

Moreover, emphasizing training and skill development for maintenance teams on 

utilizing the enhances system capabilities effectively can keep abreast of emerging 

technologies and best practices in for optimizing motor performance, reliability, and 

safety.  
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APPENDICES 

APPENDIX A: Neural Network Training for ADXL345 sensors using 

Levenberg-Marquardt algorithm. 

 

 

(a) Neural network for ADXL345_1 

at Motor 1 

 

 

(b) Neural network for 

ADXL345_2 at Motor 1 
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(c) Neural network for ADXL345_1 

at Motor 2 

 

(d) Neural network for 

ADXL345_2 at Motor 2 
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APPENDIX B: Neural Network Training for ADXL345 sensors using 

Scaled Conjugate Gradient algorithm. 

 

(a) Neural network for ADXL345_1 

at Motor 1 

 

(b) Neural network for 

ADXL345_2 at Motor 1 

 

(c) Neural network for ADXL345_1 

at Motor 2 

 

(d) Neural network for 

ADXL345_2 at Motor 2 
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APPENDIX C: Comparison of Actual and Predicted Offset of 

ADXL345_1 and ADXl345_2 using Levenberg-Marquardt algorithm.   

 

     

(a) Graph for ADXL345_1 at Motor 1 and Motor 2 

  

     

(b) Graph for ADXL345_2 at Motor 1 and Motor 2 
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APPENDIX D: Comparison of Actual and Predicted Offset of 

ADXL345_1 and ADXl345_2 using Scaled Conjugate Gradient 

algorithm. 

 

   

     

(a) Graph for ADXL345_1 at Motor 1 and Motor 2 

  

      

(b) Graph for ADXL345_2 at Motor 1 and Motor 2 
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APPENDIX E: Regression graph for Training, Validation, and Testing 

for DS18B20 sensor and ADXL345 sensors using Levenberg-Marquardt 

algorithm at Motor 1 

 

 

(a) Regression graph for DS18B20 

sensor        

 

 

(b) Regression graph for ADXL345_1 

sensor 

 

 

(c)  Regression graph for ADXL345_2 sensor 

 

  



126 

 

APPENDIX F: Regression graph for Training, Validation, and Testing 

for DS18B20 sensor and ADXL345 sensors using Levenberg-Marquardt 

algorithm at Motor 2 

 

 

(a) Regression graph for DS18B20 

sensor        

 

 

(b) Regression graph for ADXL345_1 

sensor 

 

 

(c)  Regression graph for ADXL345_2 sensor 
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APPENDIX G: Regression graph for Training, Validation, and Testing 

for DS18B20 sensor and ADXL345 sensors using Scaled Conjugate 

Gradient algorithm at Motor 1 

 

\  

(a) Regression graph for DS18B20 

sensor        

 

 

(b) Regression graph for ADXL345_1 

sensor 

 

\  

(c)  Regression graph for ADXL345_2 sensor 
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APPENDIX H: Regression graph for Training, Validation, and Testing 

for DS18B20 sensor and ADXL345 sensors using Scaled Conjugate 

Gradient algorithm at Motor 2 

 

 

 

 

 

(a) Regression graph for DS18B20 

sensor        

 

 

(b) Regression graph for ADXL345_1 

sensor 

 

   

(c)  Regression graph for ADXL345_2 sensor 
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APPENDIX I: Graph for Comparison of Actual and Predicted Offset 

for DS18B20 sensor at Motor 2 

 

(a) Graph for DS18B20 sensor using Levenberg-Marquardt algorithm. 

 

(b) Graph for DS18B20 sensor using Scaled Conjugate Gradient algorithm. 
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APPENDIX J: MATLAB code for Levenberg-Marquardt and Scaled 

Conjugate Gradient algorithm. 

 

% Solve an Autoregression Time-Series Problem with a NAR Neural 
Network 
% Script generated by Neural Time Series app 
% Created 08-Jan-2024 04:58:53 
% 
% This script assumes this variable is defined: 
% 
%   data - feedback time series. 
 
T = tonndata(data,false,false); 
 
% Choose a Training Function 
% For a list of all training functions type: help nntrain 
% 'trainlm' is usually fastest. 
% 'trainbr' takes longer but may be better for challenging problems. 
% 'trainscg' uses less memory. Suitable in low memory situations. 
trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 
 
% Create a Nonlinear Autoregressive Network 
feedbackDelays = 1:2; 
hiddenLayerSize = 10; 
net = narnet(feedbackDelays,hiddenLayerSize,'open',trainFcn); 
 
% Prepare the Data for Training and Simulation 
% The function PREPARETS prepares timeseries data for a particular 
network, 
% shifting time by the minimum amount to fill input states and layer 
% states. Using PREPARETS allows you to keep your original time series 
data 
% unchanged, while easily customizing it for networks with differing 
% numbers of delays, with open loop or closed loop feedback modes. 
[x,xi,ai,t] = preparets(net,{},{},T); 
 
% Setup Division of Data for Training, Validation, Testing 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 
 
% Train the Network 
[net,tr] = train(net,x,t,xi,ai); 
 
% Test the Network 
y = net(x,xi,ai); 
e = gsubtract(t,y); 
performance = perform(net,t,y) 
 
% View the Network 
view(net) 
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% Plots 
% Uncomment these lines to enable various plots. 
%figure, plotperform(tr) 
%figure, plottrainstate(tr) 
%figure, ploterrhist(e) 
%figure, plotregression(t,y) 
%figure, plotresponse(t,y) 
%figure, ploterrcorr(e) 
%figure, plotinerrcorr(x,e) 
 
% Closed Loop Network 
% Use this network to do multi-step prediction. 
% The function CLOSELOOP replaces the feedback input with a direct 
% connection from the output layer. 
netc = closeloop(net); 
netc.name = [net.name ' - Closed Loop']; 
view(netc) 
[xc,xic,aic,tc] = preparets(netc,{},{},T); 
yc = netc(xc,xic,aic); 
closedLoopPerformance = perform(net,tc,yc) 
 
% Step-Ahead Prediction Network 
% For some applications it helps to get the prediction a timestep 
early. 
% The original network returns predicted y(t+1) at the same time it is 
% given y(t+1). For some applications such as decision making, it would 
% help to have predicted y(t+1) once y(t) is available, but before the 
% actual y(t+1) occurs. The network can be made to return its output a 
% timestep early by removing one delay so that its minimal tap delay is 
now 
% 0 instead of 1. The new network returns the same outputs as the 
original 
% network, but outputs are shifted left one timestep. 
nets = removedelay(net); 
nets.name = [net.name ' - Predict One Step Ahead']; 
view(nets) 
[xs,xis,ais,ts] = preparets(nets,{},{},T); 
ys = nets(xs,xis,ais); 
stepAheadPerformance = perform(nets,ts,ys) 
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APPENDIX K: Python code for ADXL345 accelerometer sensor 

 

  

import smbus 

import time 

# ADXL345 registers 

POWER_CTL = 0x2D 

DATA_FORMAT = 0x31 

DATAX0 = 0x32 

DATAX1 = 0x33 

DATAY0 = 0x34 

DATAY1 = 0x35 

DATAZ0 = 0x36 

DATAZ1 = 0x37 

# Raspberry Pi configuration 

bus = smbus.SMBus(1)  # Use I2C bus 1 

address = 0x53        # ADXL345 address 

# Initialize ADXL345 

bus.write_byte_data(address, POWER_CTL, 0x08)  # Enable measurement mode 

bus.write_byte_data(address, DATA_FORMAT, 0x0B)  # Set range to +/- 16g 

# Read acceleration data 

def read_acceleration(reg): 

 # Read lower and upper bytes 

       lower_byte = bus.read_byte_data(address, reg) 

    upper_byte = bus.read_byte_data(address, reg + 1) 

        value = -(65536 - value) 
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# Combine bytes into a signed 16-bit value 

    value = (upper_byte << 8) + lower_byte 

    if value & 0x8000:  # Check for negative value 

        value = -(65536 - value) 

    # Convert to acceleration in g 

    acceleration = value * 0.00390625  # 1 LSB = 0.00390625g 

    # Convert to acceleration in m/s^2 

    acceleration_m_s2 = acceleration * 9.8 

    return acceleration_m_s2 

# Main program loop 

try: 

    while True: 

        # Read acceleration data 

        x = read_acceleration(DATAX0) 

        y = read_acceleration(DATAY0) 

        z = read_acceleration(DATAZ0) 

        # Print the values 

        print("{:.2f} {:.2f} {:.2f}".format(x, y, z)) 

        # Wait for a while 

        time.sleep(2) 

except KeyboardInterrupt: 

    pass 

# Disable ADXL345 

bus.write_byte_data(address, POWER_CTL, 0x00) 
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APPENDIX L: Python code for DS18B20 temperature sensor 

 

 

from w1thermsensor import W1ThermSensor 

import time 

def read_temperature(): 

    # Initialize the sensor 

    sensor = W1ThermSensor() 

    # Get the temperature in Celsius 

    temperature = sensor.get_temperature() 

    return temperature 

if __name__ == "__main__": 

    try: 

        while True: 

            temp = read_temperature() 

            print(f"{temp:.2f}") 

            time.sleep(1)  # Wait for 1 second before the next reading 

    except KeyboardInterrupt: 

        print("\nStopping the temperature reading.") 

 

 




