ANALYSIS THE PERFORMANCE BETWEEN DUAL STACK AND IPV6 TUNNELING MECHANISM

TAN KEAN SIAK

UNIVERSITY TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS TESIS

JUDUL: ANALYSIS PERFORMANCE ON DUAL STACK AND IPv6

<u>MECHANISM</u>

SESI PENGAJIAN: 2009/2010

Saya <u>TAN KEAN SIAK</u>

(HURUF BESAR)

mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dengan syarat-syarat kegunaan seperti berikut:

- 1. Tesis dan projek adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ** Sila tandakan (/)

SULIT	(Mengandungi maklumat yang berdarjah
	keselamatan atau kepentingan Malaysia
	seperti yang termaktub di dalam AKTA
	RAHSIA RASMI 1972)

TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

_/ TIDAK TERHAD

(TANDATANGAN PENULIS) Alamat tetap: <u>15,USJ8/2E 47610</u> UEP Subang Jaya, Selangor

Tarikh: 25 JUNE 2010

I. MI

(TANDATANGAN PENYELIA) <u>Pn Syarulnaziah binti Anawar</u> Nama Penyelia

Tarikh: 25 JUNE 2010

CATATAN: *Tesis dimaksudkan sebagai Laporan Akhir Projek Sarjana Muda (PSM) ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa.

ANALYSIS THE PERFORMANCE BETWEEN DUAL STACK AND IPv6 TUNNELING MECHANISM

TAN KEAN SIAK

This report submitted in partial fulfillment of the requirements for the Bachelor of Computer Science (Computer Networking)

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2010

DECLARATION

I hereby declare that this project report entitled

ANALYSIS PERFORMANCE BETWEEN DUAL STACK AND IPv6 **TUNNELING MECHANISM**

is written by me and is my own effort and that no part has been plagiarized without citations.

STUDENT

SUPERVISOR

: TAN KEAN SIAK

Date: 25 JUNE 2010 Date: 25 JUNE 2010

C Universiti Teknikal Malaysia Melaka

DEDICATION

To my beloved parents and friends, thank you both of your support and consideration.

ACKNOWLEDGEMENTS

I would like to show my deepest gratitude to all those who assist me to complete the project. Firstly, I would like to express my sincere appreciation to my project supervisor, Pn Syarulnaziah for providing the guidelines with valuable advice and feedback throughout the project. Pn Syarulnaziah is a patient and helpful lecturer who willing to listen to my problem and at the same time suggested me how to overcome it. In order to ensure the project run smoothly, Pn Syarulnaziah had also given me full moral support along the project time. Thank you, Pn Syarulnaziah.

Secondly, I would like to the Faculty of Information and Communication and Technology for providing hardware equipment to me. Without the equipment, I will hardly complete my project now. Thank to FTMK so much.

Thirdly, I would like thank to my friend with their helping, moral support, opinion and sharing ideas throughout the project. Their valuable opinions and suggestions have helped me to improve my project in advance. Again, thanks for their help and support.

Last but not least, I would like to thank to my family for their understanding, encouragement and support towards the completion of the project. Thank you, Mum and Dad.

ABTRACTS

IPv6 is the next generation of Internet protocol that will replace IPv4 in the nearly future. The exhaustion of IPv4 address will be approached in few years time and it is possible to migrate from IPv4 network into IPv6 network. Subject to this matter, there are many studies and researches have been conducted as the transition from IPv4 to IPv6 require high level of compatibility and clear procedure for easy and independent deployment of IPv6. However, the transition from IPv4 to IPv6 will be a long process and required to coexist with during the migration stage. There are several transition mechanisms which proposed by the IETF Next Generation Work Group, however, dual stack and IPv6 tunnelling is the most popular mechanism that is being practiced currently. Although performance aspects for both of these mechanisms are required for practical deployment, they have yet to be empirically evaluated. Upon evaluate which is a better mechanism; the experimental testbed of dual stack and IPv6 tunnelling respectively will be conducted and analyzed in certain performance metrics throughout the project.

ABSTRAK

IPv6 akan menggantikan IPv4 tidak lama lagi akibat daripada kehausan alamat IPv4. Dengan ini, terdapat banyak kajian dan penyelidikan telah dilakukan tentang peralihan dari IPv4 kepada IPv6. Namun demikian, peralihan dari IPv4 kepada IPv6 memerlukan proses yang panjang dan perlu berinteraksi dengan IPv4 selama tahap penghijrahan. Megikuti kajian daripada IETF (Badan Generasi Depan) dual stack dan tunneling IPv6 adalah mekanisme yang sering dipraktikkan. Walaupun prestasi aspek untuk kedua mekanisme ini ditunjuk secara praktikal, kedua-dua mekanisme tersebut masih belum dievaluasi secara empirik. Untuk menentukan mana mekanisme yang mumpunyai prestasi yang lebih baik, kedua-dua mekanisme ini akan dijalankan dalam projek ini dengan menggunakan prestasi ukuran yang sesuai dalam FTP dan streaming servis.

TABLE OF CONTENTS

CHAPTER	SUBJECT	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xiii
	LIST OF ABBREVIATIONS	xviii
	LIST OF ATTACHMENTS	xix
CHAPTER 1	INTRODUCTION	
	1.1 Project Background	1
	1.2 Problem Statement(s)	2
	1.3 Objectives	3
	1.4 Scope	3
	1.5 Project Significance	
	1.6 Expected Output	
	1.7 Conclusion	4
CHAPTER 2	LITERATURE REVIEW AND PROJECT	
	METHODOLOGY	
	2.1 Introduction	5
	2.2 Literature Review	6
	2.2.1 Domain	6

2.2.2 Keyword	12
2.2.3 Previous Research	12
2.3 Proposed Solution	22
2.3.1 Project Methodology	23
2.4 Project Schedule and Milestones	25
2.5 Conclusion	29

viii

CHAPTER 3 ANALYSIS

3.1 Introduction	31
3.2 Problem Analysis	32
3.2.1 Network Architecture	33
3.2.2 Logical and Physical Design	34
3.3 Requirement Analysis	37
3.3.1 Quality of Data	39
3.4 Conclusion	39

CHAPTER 4	DESIGN	
	4.1 Introduction	40
	4.2 Possible Experimental Setup	41
	4.2.1 Network Addressing	42
	4.2.2 Routing	43
	4.2.3 Performance metric	44
	4.3 Evaluation Scenario	45
	4.4 Conclusion	46

CHAPTER 5	IMPLEMENTATION	
	5.1 Introduction	47
	5.2 Network Configuration Management	48
	5.2.1 Configuration Environment	48
	Setup	
	5.2.1.1 FTP server installation	49
	and configuration	
	5.2.1.2 Video Streaming Server	56
	and Client installation	

	and configuration	
	5.2.1.2.1 Client & Server	56
	Installation	
	5.2.1.2.1 Streaming Server	59
	Configuration	
	5.2.1.2.2 Streaming Client	64
	Configuration	
	5.3 Hardware Configuration Management	66
	5.3.1 Hardware Setup	66
	5.3.1.1 Router & PC	67
	Configuration (Dual	
	Stack)	
	5.3.1.2 Router & PC	68
	Configuration (IPv6	
	Tunneling)	
	5.4 Security	70
	5.4.1 Security policies and plan	70
	5.5 Development Status	70
	5.6 Conclusion	71
CHAPTER 6	TESTING	
	6.1 Introduction	72
	6.2 Test Plan	73
	6.2.1 Test Organization	73
	6.2.2 Test Environment	73
	6.2.3 Test Schedule	74
	6.3 Test Strategy	75
	6.3.1 Classes of tests	76
	6.4 Test Design	81
	6.4.1 Test Description	82
	6.4.2 Test Data	88
	6.5 Test Result and Analysis	90
	6.5.1 FTP RTT Result	90

	6.5.2 FTP Throughput Result	92
	6.5.3 FTP Packet Loss Result	93
	6.5.4 Streaming Throughput	94
	Result	
	6.5.5 Streaming Packet Loss	94
	Result	
	6.56 Streaming Jitter Result	95
	6.6 Discussion	96
	6.7 Conclusion	99
7	CONCLUSION	

CHAPTER 7	CONCLUSION	
	7.1 Observation on Weakness and Strengths	100
	7.2 Proposition for improvement	101
	7.3 Contribution	102
	7.4 Conclusion	102
	REFERENCES	103

BIBIOGRAPHY	105

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Comparison between IPv6 and IPv4	9
2.2	Summary of Previous Research	21
2.3	Project Schedule	26
3.1	Application Requirement Table	37
3.2	Device Requirement Table	37
3.3	Network Requirement Table	38
5.1	Hardware Specification	66
5.2	Development Status	70
6.1	Test Schedule	75
6.2	Network Connectivity Testing	76
6.3	Acceptance Testing	78
6.4	FTP RTT test data	88
6.5	FTP Throughput test data	88
6.6	FTP Packet Loss test data	89
6.7	Streaming Throughput test data	
6.8	Streaming Packet Loss test data	89
6.9	Streaming Jitter test data	90
6.10	FTP RTT Result	
6.11	FTP Throughput Result	92
6.12	FTP Packet Loss Result	

6.13	Streaming Throughput Result	94
6.14	Streaming Packet Loss Result	94
6.15	Streaming Jitter Result	95

LIST OF FIGURES

DIAGRAM	TITLE	PAGE
2.1	Dual Stack Approach	10
2.2	Tunneling Approach	11
2.3	Setup of IPv4/IPv6	13
2.4	v4-to-v6 BDMS connection via BDMS translator	15
2.5	v6-to-v4 BDMS connection via BDMS translator	15
2.6	v6-to-v4 DSTM connection via DSTM Gateway	16
2.7	Host-to-host encapsulation	19
2.8	Router-to-router tunneling	19
2.9	Setup of the network	20
2.10	Gantt chart for PSM 1	28
2.11	Gantt chart for PSM 2	29
3.1	IPV4 address space allocation for IANA pool and	32
	RIR pool	
3.2	Dual Stack architecture	33
3.3	IPv6 Tunneling architecture	34

C Universiti Teknikal Malaysia Melaka

3.4	Logical Diagram for IPv6 Tunneling	34
3.5	Logical Diagram for Dual Stack	35
3.6	Network diagram at Wireless lab	36
3.7	Physical Design of the network	36
4.1	Logical Diagram for IPv6 Tunneling	41
4.2	Logical Diagram for Dual Stack	41
4.3	Network Assigned for the network	42
4.4	Logical address for IPv6 tunneling	42
4.5	Logical address for Dual Stack	43
5.1	Network design for IPv6 tunneling	48
5.2	Network Design for Dual Stack	48
5.3	Xlight FTP Server Wizard	50
5.4	License Agreement	50
5.5	Select Destination Location	51
5.6	Install the application	51
5.7	Installation Completed	52
5.8	Xlight FTP Server Startup	52
5.9	New Virtual Server Configuration	53
5.10	Select New User List	54

5.11	Add User List	54
5.12	Create Username and Password	55
5.13	Select user home path	55
5.14	Start the FTP server	56
5.15	VLC Setup Wizard	57
5.16	VLC License Agreement	57
5.17	Choose Components to install	58
5.18	Choose Location to install	58
5.19	Installation in progress	58
5.20	Installation completed	59
5.21	Launch VLC media player	60
5.22	Add file to stream	60
5.23	Select file to stream	61
5.24	Prepare to stream the file	62
5.25	Verify source to stream	62
5.26	Verify protocol to stream	63
5.27	Assign destination IP to stream	63
5.28	Streaming Output	64
5.29	Launch VLC media player	64

XV

5.30	Open Network to stream	65
5.31	Assign source IP and protocol to play the streaming	65
5.32	Router A configuration (Dual Stack)	67
5.33	Router B configuration (Dual Stack)	68
5.34	Router A Configuration (IPv6 Tunneling)	69
5.35	Router B Configuration (IPv6 Tunneling)	69
6.1	Location to carry out the testing	74
6.2	Arrangement of the network setup	74
6.3	Select file for FTP transfer	82
6.4	RTT shown on the WireShark application	83
6.5	FTP throughput	83
6.6	FTP packet loss	84
6.7	Measure streaming throughput using NetMeter	85
6.8	Analyze streaming packet loss using WireShark	86
6.9	RTP Stream	86
6.10	RTP Stream Analysis	87
6.11	Export csv file into Microsoft Excel form	87
6.12	Average FTP RTT graph	91
6.13	Average FTP throughput graph	92

6.14	Dual Stack Mechanism	96
6.15	Encapsulation process	97
6.16	Fragmentation during Encapsulation	98
6.17	De-capsulation process	98

LIST OF ABBREVIATIONS

IP	2	Internet Protocol
IPv4	ė.	Internet Protocol version 4
IPv6	÷	Internet Protocol version 6
FTP	-	File Transfer Protocol
DTE	÷	Data Terminal Equipment
DCE	ē.	Data Communication Equipment
PCs	-	Personal Computers
OS	e -	Operating System
RTT	ę.	Round Trip Time
MTU	4	Maximum Transmission Unit

LIST OF ATTACHMENTS

ATTACHMENT	TITLE	PAGE
1.1	Log book	APPENDIX I
1.2	Proposal form	APPENDIX II

CHAPTER I

INTRODUCTION

1.1 Project Background

The exhaustion of the remaining pool of unallocated IPv4 address is approaching within the next few years. It has been a concern by many network experts to overcome this problem. According to the survey from IANA (Internet Assign Number Authority), IPv4 addresses only provided for around 4 billion addresses only and estimated to reach exhaustion at the year of 2012. As the consumption of IPv4 addresses seems to be increase every day, it is ideal for users to migrate into IPv6 environment.

IPv6 is the next generation of Internet Protocol and has overcome IPv4 limitation such as addressing space, integration of application level protocol, quality of service and security. Migration to IPv6 completely is not a short term period. It has to coexist with IPv4 during migration stage in order to avoid breaking IPv4 networks and allow all the current services and applications to keep working without any disruption.

Basically, there are several mechanisms for the translation (AlJa'afreh et al, 2009). They are dual stack and IPv6 tunneling. IPv6 tunneling enables IPv6 host and routers to connect with other IPv6 host and router over IPv4 packets. The main purpose to deploy IPv6 is to maintain the compatibility between IPv4 hosts and router by encapsulating IPv6 datagram into IPv4 packet and de-capsulation back from Ipv4 packet into IPv6 datagram. On the other hand, Dual stack is a network that compatible with both IPv4 and IPv6 network. This mechanism allows the operating system or application to choose which protocol used for each communication.

1.2 Problem Statement(s)

From the past decade, IPv4 is most widely used Internet Protocol. IPV4 has 32 bits and can allocate 4294967296 addresses space. As the consumption of IPv4 gradually increases, it will encounter exhaustion in nearly future. According to RIRs (Regional Internet Registries) and IANA (Internet Assigned Numbers Authority), the pool of IPv4 address will run out between 2010 and 2012. The figure 3.2.1 illustrated the address space allocation for RIR pool and IANA pool. Base on the figure, the exhaustion of unallocated address for RIR pool and IANA pool is predicted on year 2011 and 2012 respectively. Hence, after year 2012, there is no more unallocated IPV4 addresses available from the RIR and IANA. As a result, migration into IPv6 is required to overcome this problem.

IPv6 tunneling and dual stack are the solution to overcome IPv4 exhaustion. Both of them can be used for migration into IPv6 environment. However, users might hardly make decision when comes to implement the migration mechanism, either in IPv6 tunneling or dual stack mechanism. In order to decide which mechanism is better, both of the mechanisms will be implemented and analyzed the traffic performance in terms of latency, throughput, packet loss and jitter.

1.3 Objective

The objectives of the project are listed as the following:

- To investigate the use of IPv6 tunneling and dual stack mechanism.
- To implement and analyze dual stack and IPv6 tunneling mechanisms with different performance metrics in Window's platform.
- To evaluate the performance of dual stack and IPv6 tunneling using FTP and streaming services.

1.4 Scope

The project is mainly about analyzing the performance traffic between IPv6 tunneling and dual stack in terms of network metrics such as network connectivity, RTT (Round Trip Time), throughput, packet loss and jitter. The main purpose of analyzing the performance traffic is to compare which method is better for users to migrate their IPs into IPv6 environment. The experiment will be conducted at wireless lab and required to complete within 3 months. During the implementation, there will be 2 workstations and 2 routers only. 1 PCs serve as clients and 1 PCs serve as servers. As the project related to IPv6 and IPv4, the router (Cisco 2800 and above) must be compatible with both of these environments. Lastly, the workstations must be implemented in Window's platform only.

