ANALYZING VOIP WITH VIDEO CONFERENCING IN IPV6 PLATFORM

CHAN YI XIAN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS TESIS*

JUDUL: Analyzing VoIP with Video Conferencing in IPv6 platform

SESI PENGAJIAN: <u>2009/2010</u>

Saya <u>CHAN YI XIAN</u>

(HURUF BESAR)

mengaku membenarkan tesis (PSM) ini disimpan di Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dengan syarat-syarat kegunaan seperti berikut:

- 1. Tesis dan projek adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ** Sila tandakan (/)

_____ SULIT

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

TERHAD

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

 (TANDATANGAN PENULIS)

 Alamat tetap:
 <u>60 Tingkat Kledang 17</u>

 <u>Taman Kledang Sentosa</u>

 <u>31450 Menglembu. Perak</u>

 Tarikh:
 $\sqrt{5}$

(TANDATANGAN PENYELM)

Dr Mohd Faizal Bin Abdollah Nama Penyelia

Tarikh: 25/0/10

ANALYZING VOIP WITH VIDEO CONFERENCING IN IPV6 PLATFORM

CHAN YI XIAN

This report is submitted in partial fulfillment of the requirement for the Bachelor of Computer Science (Computer Networking)

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2010

DECLARATION

I hereby declare that this project report entitled ANALYZING VOIP WITH VIDEO CONFERENCING IN IPV6 PLATFORM

is written by me and is my own effort and that no part has been plagiarized without citations.

____ Date: ____5/6/10 **STUDENT** (CHAN YI XIAN) Date: $\frac{\partial T}{\partial b}$ b [10] SUPERVISOR (DR MOHD FAIZAL BIN ABDOLLAH)

C Universiti Teknikal Malaysia Melaka

DEDICATION

This thesis is dedicated to my family especially to my beloved parents, Chan Kok Weng and Yap Fee Khoon, who always give me encouragement all the way since the beginning of my studies.

ACKNOWLEDGEMENTS

I would like to express my gratitude to all those who gave me the possibility to complete this project. First of all, I would like to thank the Faculty of Information and Communication of Technology (FICT), UTeM for giving me the chance and opportunity to enroll this subject "Project Sarjana Muda", PSM as one of main subject that have greatly allow me to implement what I have learn in this 3 years to the project. Besides that, I also like to thank to my Supervisor Dr. Mohd Faizal bin Abdollah who had gives me guides and advices to complete this project. As we know, he is a very kind and patient lecturer who tolerated since the beginning of the document to the completion. I also want to thank to Mr. Nor Azman bin Mat Ariff that also guide me and give many extra information for me to complete this project even though he is not my supervisor.

However, I would also likes to special thanks and apologies to my family, where they had give me a lots of the spiritual support.

All the experiences and knowledge that I have gained from all are very valuable and thankful. Thank you for giving me better perspective.

🔘 Universiti Teknikal Malaysia Melaka

ABSTRACT

This project is mainly about the comparison performance between IPv6 and IPv4 network in VoIP in the presence of varying levels of background UDP traffic and it is successfully be tested in different operating system which are Windows XP and Linux Ubuntu 10. The packet that will focus on this project is only the video packet. This project will analyze the VoIP by make 3 calls for each traffic in every bandwidth. The durations of each calls is 5 minutes. The performance measures are maximum and mean delta (time between the arrival of video packets), maximum and mean jitter and packet loss. The traffic of this project is using the virtualized traffic, means that the traffic will be generate by using traffic generator software.

ABSTRAK

Projek ini terutamanya adalah mengenai prestasi perbandingan antara IPv6 dan IPv4 rangkaian dalam VoIP di atas pelbagai peringkat lalu lintas UDP dan telah berjaya diuji dalam sistem pengoperasian yang berbeza, Windows XP dan Linux Ubuntu 10. Paket yang akan fokus pada projek ini adalah hanya paket video. Projek ini akan menganalisakan VoIP dengan membuat 3 panggilan untuk setiap lalu lintas di setiap bandwidth. Masa yang digunakan dalam setiap panggilan adalah selama 5 minit. Jenisjenis prestasi yang diuji dalan projek ini adalah maksimum dan min *delta* (waktu antara penghantaran paket video), maksimum dan min *jitter* dan *packet loss*. Lalu lintas dalam projek ini adalah dengan menggunakan virtual lalu lintas, ini bermakna lalu lintas yang akan dihasilkan dengan menggunakan perisian *Traffic Generator*.

TABLE OF CONTENTS

CHAPTER	SUBJECT	PAGE
	DECLARATION	i
	DEDICATION	ii
	ACKNOWLEDGEMENT	iii
	ABSTRACT	iv
	ABSTRAK	v
	TABLE OF CONTENTS	vi
	LIST OF TABLES	X
	LIST OF FIGURES	xiii
	LIST OF ABBREVIATIONS	xvi

CHAPTER I INTRODUCTION

1.1	Project Background	1
1.2	Problem Statement	3
1.3	Objective	3

1.4	Scope	3
1.5	Project Significance	4
1.6	Expected Output	4
1.7	Conclusion	5

CHAPTER II. LITERATURE REVIEW AND

PROJECT METHODOLOGY

2.1	Introduction	6
2.2	Literature Review	7
	2.2.1 Domain	8
	2.2.2 Keyword	13
	2.2.3 Previous Research	13
2.3	Proposed Solution	24
	2.3.1 Project Methodology	24
2.4	Project Schedule and Milestone	26
2.5	Conclusion	27

CHAPTER III ANALYSIS

3.1	Introduction	29
3.2	Problem Analysis	30
	3.2.1 Network Architecture	30
	3.2.1.1 Software Requirement	31
	3.2.1.2 Hardware Requirement	32
	3.2.2 Logical and Physical Design	33
3.3	Requirement Analysis	35
	3.3.1 Quality of Data	35
3.4	Conclusion	35

CHAPTER IV I

4.1	Introduction	37
4.2	Project Design	38
4.2.1	Overall Design	38
	4.2.2 Specific Design	44
4.3	Conclusion	45

CHAPTER V IMPLEMENTATION

Introduction	47
Network Configuration Management	48
5.2.1 Configuration Environment setup	48
Hardware Configuration Management	49
5.3.1 Hardware Setup	49
5.3.1.1 Router configuration	51
5.3.1.2 Switch configuration	53
5.3.1.3 Windows XP IPv6 configuration	54
5.3.1.4 Ubuntu IPv6 configuration	55
Security	55
5.4.1 Security policies and plan	56
Development Status	56
Conclusion	58
	Network Configuration Management 5.2.1 Configuration Environment setup Hardware Configuration Management 5.3.1 Hardware Setup 5.3.1.1 Router configuration 5.3.1.2 Switch configuration 5.3.1.3 Windows XP IPv6 configuration 5.3.1.4 Ubuntu IPv6 configuration Security 5.4.1 Security policies and plan Development Status

CHAPTER VI TESTING

6.1	Introduction	59
6.2	Test Plan	60
	6.2.1 Test Organization	60
	6.2.2 Test Environment	60
	6.2.3 Test Schedule	62
6.3	Test Strategy	62
	6.3.1 Classes of tests	63
6.4	Test Design	66
	6.4.1 Test Description	66
	6.4.2 Test Data	70

6.5	Test Result and Analysis	73
	6.5.1 Maximum delta	74
	6.5.2 Mean delta	78
	6.5.3 Maximum jitter	83
	6.5.4 Mean jitter	87
	6.5.5 Packet loss	92
	6.5.6 Performance Comparison	96
6.6	Conclusion	97

CHAPTER VII PROJECT CONCLUSION

7.1	Observation on Weaknesses and Strengths	98
7.2	Propositions for Improvement	99
7.3	Contribution	100
7.4	Conclusion	100
References		101
Appendix A – Gannt Chart		103
Appendix B – Installation & configuration		105
Appendix C – Project Proposal		123

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Requirement communication quality of VoIP	19
2.2	VoIP calls configuration on wireshark packet analyzer	19
2.3	RTP Stream on wireshark packet analyzer	20
2.4	Summary of previous research	23
2.5	Project schedule for PSM I	26
3.1	Software requirement	31
3.2	Hardware requirement	32
5.1	Hardware Specification	50
5.2	Development Status	56
6.1	Hardware and software requirement for testing environment	61
6.2	Test Schedule	62
6.3	Network Connection Testing	63
6.4	Acceptance testing	64
6.5	Test data for maximum delta	71

6.6	Test data for mean delta	71
6.7	Test data for maximum jitter	72
6.8	Test data for mean jitter	72
6.9	Test data for packet loss	73
6.10	Maximum delta with 256Mbps (Windows XP)	74
6.11	Maximum delta with 256Mbps (Ubuntu)	74
6.12	Maximum delta with 384Mbps (Windows XP)	75
6.13	Maximum delta with 384Mbps (Ubuntu)	76
6.14	Maximum delta with 512Mbps (Windows XP)	77
6.15	Maximum delta with 512Mbps (Ubuntu)	77
6.16	Mean delta with 256Mbps (Windows XP)	78
6.17	Mean delta with 256Mbps (Ubuntu)	79
6.18	Mean delta with 384Mbps (Windows XP)	80
6.19	Mean delta with 384Mbps (Ubuntu)	80
6.20	Mean delta with 512Mbps (Windows XP)	81
6.21	Mean delta with 512Mbps (Ubuntu)	82
6.22	Maximum jitter with 256Mbps (Windows XP)	83
6.23	Maximum jitter with 256Mbps (Ubuntu)	83
6.24	Maximum jitter with 384Mbps (Windows XP)	84
6.25	Maximum jitter with 384Mbps (Ubuntu)	85
6.26	Maximum jitter with 512Mbps (Windows XP)	86

6.27	Maximum jitter with 512Mbps (Ubuntu)	86
6.28	Mean jitter with 256Mbps (Windows XP)	87
6.29	Mean jitter with 256Mbps (Ubuntu)	88
6.30	Mean jitter with 384Mbps (Windows XP)	89
6.31	Mean jitter with 384Mbps (Ubuntu)	89
6.32	Mean jitter with 512Mbps (Windows XP)	90
6.33	Mean jitter with 512Mbps (Ubuntu)	91
6.34	Packet loss with 256Mbps (Windows XP)	92
6.35	Packet loss with 256Mbps (Ubuntu)	92
6.36	Packet loss with 384Mbps (Windows XP)	93
6.37	Packet loss with 384Mbps (Ubuntu)	94
6.38	Packet loss with 512Mbps (Windows XP)	95
6.39	Packet loss with 512Mbps (Ubuntu)	95
6.40	Performance comparison	96

C Universiti Teknikal Malaysia Melaka

LIST OF FIGURES

DIAGRAM	TITLE	
2.1	Test LAN	14
2.2	Maximum delta	15
2.3	Mean delta	15
2.4	Maximum jitter	16
2.5	Mean jitter	16
2.6	Packet loss	17
2.7	MOS	17
2.8	Throughput	18
2.9	VoIP calls and RTP streams number of packets	20
2.10	Packet lost (%) of each number of calls	21
2.11	Waterfall Life Cycle Diagram	24
3.1	Logical design	33
3.2	Physical design	34

4.1	Flowchart of overall design	38
4.2	Network design of the project	39
4.3	Main network design	40
4.4	Logical design for network 1	41
4.5	Logical design for network 2	42
4.6	Flowchart of specific design	44
5.1	Network Design	48
5.2	Configure interface fa0/0	51
5.3	Configure interface Se0/2/1	51
5.4	Show IP interface brief	52
5.5	Configure RIPv2	52
5.6	Configure ipv6 rip interface Se0/2/1	52
5.7	Configure ipv6 rip interface fa0/1	53
5.8	Configure vlan	53
5.9	Show vlan	54
5.10	Install IPv6	54
5.11	Add IPv6 address	54
5.12	Add IPv6 route address	55
6.1	Start video call	67
6.2	Answer call	67
6.3	Video frame	68

6.4	Choose network interface	68
6.5	Show all streams	69
6.6	RTP Streams	69
6.7	RTP Stream Analysis	70
6.8	Maximum delta in 256Mbps	75
6.9	Maximum delta in 384Mbps	76
6.10	Maximum delta in 512Mbps	78
6.11	Mean delta in 256Mbps	79
6.12	Mean delta in 384Mbps	81
6.13	Mean delta in 512Mbps	82
6.14	Maximum jitter in 256Mbps	84
6.15	Maximum jitter in 384Mbps	85
6.16	Maximum jitter in 512Mbps	87
6.17	Mean jitter in 256Mbps	88
6.18	Mean jitter in 384Mbps	90
6.19	Mean jitter in 512Mbps	91
6.20	Packet loss in 256Mbps	93
6.21	Packet loss in 384Mbps	94
6.22	Packet loss in 512Mbps	96

C Universiti Teknikal Malaysia Melaka

LIST OF ABBREVIATIONS

VoIP	-	Voice over Internet Protocol
IPv4	2	Internet Protocol version 4
IPv6	-	Internet Protocol version 6
VTC	-	Video Teleconferencing
MCU	-	Multipoint Control Unit
UDP	-	User Datagram Protocol
LAN	-	Local Area Network
WAN	-	Wide Area Network
WLAN	-	Wireless Local Area Network
VLAN	-	Virtual Local Area Network
MIPv6	-	Mobile Internet Protocol version 6
MOS	-	Mean Opinion Score

CHAPTER I

INTRODUCTION

1.1 Project Background

VoIP (Voice over Internet Protocol) is a general term for a family of transmission technologies for delivery of voice communications over Internet Protocol networks while videoconference is a set of interactive telecommunication technologies which allow two or more locations to interact via two-way video and audio transmissions simultaneously. Nowadays, there are many types of VoIP in the market such as Windows Live Messenger, SKYPE, ICQ and so on. Most of these VoIP are integrated with video call function and run in IPv4.

IPv6 is the next generation network layer protocol, which was at first called IPng, future internet next generation that was designed as a replacement for the current IPv4

protocol due to the limitations and shortcomings of IPv4 and more importantly, the exhaustion of IPv4 addresses.

The exhaustion of address space is one of the issues as the momentum of VoIP grows significantly. The 32-bit address space in IPv4 precludes its scalability to a large user base. IPv6 addresses this problem of IPv4 with a very large address space that consists of 128 bits. Therefore, it is now possible to support 2^{128} unique IP addresses, a substantial increase in number of computer that can be addressed with the help of IPv6 addressing scheme.

Also, in order for VoIP to be widely deployed, security concerns such as eavesdropping and hacking must be addressed as well. The other issues that impact VoIP are:

- End-to-end integrity of signaling and bearer paths details.
- IP voice packet delivery across firewall
- NAT (network address translation) addressing issues that cause several networking problem in end-to-end nature of the internet.
- Preventing denial or disruption of service.

As the growing popularity of VoIP will make it a significant component of traffic in the future internet, it is one of the interests to compare the VoIP performance. The result would help to determine if there are any differences in VoIP performance over IPv6 due to overhead resulting from the larger IPv6 header. Performance is measured using maximum and mean values of delta, maximum and mean jitter and packet loss.

1.2 Problem Statements

The problem statements in this project are:

- Performances of VoIP in IPv4 is not as stable as in IPv6 environment
- Every platform of operating system may affect the performance of VoIP in IPv4 and IPv6 environment

1.3 Objective

There are few objectives that will be achieved from this project:

- Analyze the performance of VoIP in IPv4 and IPv6 environment in term of value of delta with different operating system.
- Analyze the performance of VoIP in IPv4 and IPv6 environment in term of value of jitter and packet loss with different operating system.
- Compare the performance of VoIP and show the suitable recommendation for different operating system platform.

1.4 Scope

The scopes of this project are:

- This project will only cover VoIP with video conferencing in IPv6 and comparison with IPv4
- This performance will be test in Windows XP and also Linux Ubuntu 10.
- The target users are for network technicians that are in charge of networks in companies, offices, schools and organizations.

1.5 Project Significance

There are several benefit and significance of this proposed project. The results of the performance will show the comparison between IPv6 and IPv4 in VoIP network. Through the comparison, we can know the different of performance in both technologies. Besides that, the result also will show the limitation of VoIP in IPv6. By doing this research, we also can find the different performance of VoIP when run on different Operating System. Therefore, VoIP developer can improve the limitation of it in the future.

1.6 Expected Output

At the end of the analysis, we will get the result of the performance from VoIP which run in IPv6 and IPv4 platform. Based on the result, the improvement of current VoIP development can be enhanced for future.

1.7 Conclusion

As we know, IPv4 addresses will exhausted soon and IPv6 will slowly replace it in our future life. Therefore, analysis of VoIP in IPv6 is a must to get the result of limitation, so that the developer can easily improve the VoIP due to the result given.

From this chapter, the problem statements, objectives, scope, project significance and expected output are being identified in order to analyze the VoIP with video conferencing in IPv6 platform.

After finishing this chapter, it will proceed to the second chapter which is the Literature Review and Project Methodology. This chapter will discuss and analyze the existing systems.

