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ABSTRACT 

Hevea brasiliensis also known as rubber seed oil (RSO) and Jatropha curcas oil (JCO) are 

non-edible feedstock used in biodiesel production. In this study, the integration of the 

Taguchi Method and Artificial Neural Network (ANN) are used to maximize and predict 

biodiesel yield of RSO and JCO feedstock using different waste shells as catalyst via two-

step transesterification microwave irradiation. The Taguchi Method is utilized to design the 

optimum experiments with 5 factors (catalyst type, catalyst loading, methanol to oil molar 

ratio, reaction time and microwave power) at 3 levels of experiment parameters using 

orthogonal array (OA). The highest biodiesel yield is 96.2% achieved by combination of 

Perna Viridis (PV) catalyst, 12 wt.% catalyst loading, 1:9 methanol to oil molar ratio, 7 

minutes of reaction time and 350 W microwave power for RSO while highest biodiesel yield 

is 95.26% achieved by combination of Corbicula Fluminea (CF) catalyst, 12 wt.% catalyst 

loading, 1:15 methanol to oil molar ratio, 9 minutes of reaction time and 400 W microwave 

power for JCO. Optimizations of experiment were done through SNR and ANOVA analysis 

to achieve the optimum combinations. ANN with single hidden layer using Levenberg-

Marquardt back-propagation algorithm achieved R2 of 0.99953 for RSO and 0.99736 for 

JCO indicate excellent linear regression predictions for the biodiesel yield. The high value 

of linear regression shows that ANN with a quick propagation algorithm is an appropriate 

approach for biodiesel conversion prediction. 
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ABSTRAK 

Hevea brasiliensis yang juga dikenali sebagai minyak biji getah (RSO) dan minyak Jatropha 

curcas (JCO) adalah bahan suapan bukan makanan yang digunakan dalam pengeluaran 

biodiesel. Dalam kajian ini, integrasi Kaedah Taguchi dan Rangkaian Neural Buatan 

(Artificial Neural Network atau ANN) digunakan untuk memaksimum dan menjangkakan 

hasil biodiesel daripada bahan suapan RSO dan JCO dengan menggunakan cengkerang 

buangan yang berbeza sebagai pemangkin melalui proses transesterifikasi gelombang 

mikro dalam 2 langkah. Kaedah Taguchi digunakan untuk mereka bentuk 5 faktor (jenis 

pemangkin, suapan pemangkin, nisbah mol metanol kepada minyak, masa tindak balas dan 

kuasa gelombang mikro) serta 3 tahap parameter eksperimen dengan menggunakan 

tatasusunan ortogon. Hasil biodiesel tertinggi adalah 96.2% dicapai melalui kombinasi 

pemangkin Perna Viridis (PV), suapan pemangkin 12 wt.%, nisbah mol metanol kepada 

minyak 1:9, masa tindak balas 7 minit dan 350 W kuasa gelombang mikro bagi RSO 

manakala hasil biodiesel tertinggi adalah 95.26% dicapai melalui kombinasi pemangkin 

Corbicula Fluminea (CF), suapan pemangkin 12 wt.%, nisbah mol metanol kepada minyak 

1:15, masa tindak balas 9 minit dan 400 W kuasa gelombang mikro bagi JCO. 

Pengoptimuman eksperimen telah dilakukan melalui analisis SNR dan ANOVA untuk 

mendapatkan kombinasi eksperimen yang terbaik. ANN dengan lapisan tersembunyi tunggal 

menggunakan algoritma penyebaran balik Levenberg-Marquardt mencapai nilai R2 

sebanyak 0.99953 untuk RSO dan 0.99736 untuk JCO yang menunjukkan jangkaan regresi 

linear yang sangat baik bagi penghasilan biodiesel. Nilai regresi linear yang tinggi 

menunjukkan bahawa ANN dengan algoritma penyebaran balik yang cepat adalah 

pendekatan yang sesuai untuk menjangkakan pemprosesan biodiesel.
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INTRODUCTION 

1.1 Background 

     The exigency for fuels made from petroleum has sharply increased in recent years, 

driven by the quick tempo of industrialization and ever-growing motorization of societies 

worldwide. As developing countries strive to achieve economic growth and modernization, the 

reliance on petroleum-based fuels has become paramount for powering industries, 

transportation systems, and the overall energy needs of their populations. However, the 

availability of fuels with a petroleum basis is inherently limited. These valuable resources are 

found in a relatively small number of deposits scattered across the globe. Furthermore, the 

distribution of these deposits is highly concentrated, with a few regions holding the majority 

of the world's petroleum reserves.  

This concentration of petroleum resources creates a complex dynamic in global energy 

markets. Nations lacking significant domestic petroleum reserves are compelled to heavily rely 

on energy importation for fulfilling the demands. This reliance on foreign sources of crude oil 

exposes these nations to various challenges, including vulnerabilities in energy security and 

foreign exchange rates. Consequently, countries without substantial petroleum resources face 

a dual crisis. First, they encounter an energy crisis as they grapple with the task of securing 

adequate and affordable supplies of petroleum-based fuels from international markets. The 

fluctuations in oil prices, geopolitical tensions, and supply disruptions can significantly impact 

their energy stability and economic development. 

Diesel fuel emissions, for example nitrogen oxide (NOx), sulfur dioxide (SO2), carbon 

monoxide (CO), spermine (SPM) and carbon dioxide (CO2), hydrocarbon (HC) and nitrous 
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oxide (N2O) can cause health and environmental problems. For example, the effects are 

irritation of lungs, respiratory infection, coughing, difficulty in breathing, eye irritation lungs 

diseases or damage and acid rain. Large-scale petroleum usage raises serious environmental 

and public health issues and this energy source is increasingly becoming unsustainable both 

economically and environmentally due to rising demand and volatile pricing (Hajjari et al., 

2017). Hence, it is crucial to explore alternative combustibles that may be made from materials 

that are already present, such as alcohol, biodiesel and vegetable oils. 

     Biodiesel is an environmentally friendly fuel sourced from sustainable and 

biodegradable materials, manufactured using organic substances like oils from vegetables, fats 

from animals or waste cooking oil. "Sustainable development" frequently refers to compelling 

approaches for meeting the present fuel market demands while effectively leveraging the 

advantages of biological resources and conserving them for the future. Biodiesel demonstrates 

a robust connection with various Sustainable Development Goals (SDGs) outlined by the 

United Nations (UN). These encompass SDG 7 (Affordable and Clean Energy), SDG 8 (Decent 

Work and Economic Growth), SDG 9 (Industry, Innovation and Infrastructure), SDG 13 

(Climate Action), and SDG 15 (Life on Land) (Nazari et al., 2021). 

     Among all renewable fuels, biodiesel has drawn the most attention due to its molecular 

structure. The molecular composition of biodiesel renders it biodegradable, economically 

viable, environmentally friendly as a clean energy source, capable of mitigating pollution and 

non-toxic in nature. Additionally, the oil may be grown on waste and agricultural areas, which 

diminishes dependence on crude oil imports. Biodiesel contributes to the nation's economic 

independence. When used with diesel, biodiesel helps to mitigate greenhouse gas (GHG) 

emissions. Furthermore, according to experts, biodiesel reduces GHG emissions by 65%. 

Because it is cleaner than conventional fuels, biodiesel extends the life of a car's engine by 

improving its efficiency. Biodiesel can be employed in various applications, including 
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commercial automobiles, mining and agricultural machinery, generators, boilers and ships, 

apart from requiring significant modifications or improvements because it shares 

characteristics with conventional diesel fuel. 

     A data-driven approach in biodiesel production involves utilizing machine learning, 

Artificial Neural Networks (ANN), Taguchi Method (TM) and Response Surface Methodology 

(RSM) for various aspects of process optimization. Machine learning algorithms have the 

capability to analyze extensive datasets, enabling them to detect patterns and establish 

relationships within the data, optimizing feedstock selection and predicting optimal reaction 

conditions. RSM and the TM enable statistical analysis and experimentation to determine 

optimal parameters and minimize variability. ANN models can learn from data to predict 

biodiesel quality, yield and optimize process parameters. By leveraging these data-driven 

techniques, producers can enhance their decision-making, streamline efficiency, cut down on 

costs, and enhance the sustainability of biodiesel production. 

     In summary, this research aims to integrate the TM and ANN to improve non-edible 

biodiesel yield such as rubber seed oil (RSO) and Jatropha curcas oil (JCO). The TM will be 

applied to design experiments and process optimization in order to determine optimal 

combination of factors, for example, catalyst type, catalyst loading, methanol to oil molar ratio 

(MR), reaction time and microwave power. Then, the collected data will then be utilized to 

train an ANN model, which can learn the intricate correlations between input parameters and 

biodiesel yield. The integrated approach will enable the identification of optimal process 

conditions for maximizing biodiesel production and facilitate accurate predictions of yield 

based on various input parameters. By combining the strengths of the TM and ANN, this 

research seeks to enhance the efficiency and effectiveness of biodiesel production. 
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1.2 Problem Statement 

     RSO and JCO serve as second-generation non-edible feedstocks for biodiesel 

production, offering sustainability, wide availability and reduced environmental impact 

compared to first-generation feedstocks. In Malaysia, where rubber tree is prevalent and has 

significant plantations with unused seeds, RSO becomes a valuable biodiesel feedstock due to 

its inedibility and lack of competition with food production. Conversely, Jatropha curcas 

seeds, toxic and with no major applications, find purpose as biodiesel feedstock given their 

high oil content (up to 40% of seed weight) and viscosity range (27 to 40%). Mollusk shells 

like clam, mussel and oyster shells, abundant and featuring a unique composition primarily of 

calcium carbonate, serve as eco-friendly catalysts through calcination to produce calcium oxide 

(CaO). These shells, with a porous structure enhancing catalytic activity, offer a sustainable 

and cost-effective alternative to synthetic catalysts, contributing to waste reduction and 

providing renewable resources for catalytic applications. 

Optimization and prediction of biodiesel yield is crucial to save time and cost and is 

applied in lots of biodiesel studies. There are various of optimization and prediction method 

such as RSM, TM and ANN. Lots of studies were done on biodiesel with these methods. 

Integration of these methods are studied to achieve optimal biodiesel yield. Researchers have 

explored the integration of various methods such as RSM, TM and ANN to enhance the 

accuracy and efficiency of biodiesel optimization and prediction. Currently, there is not much 

research related to integration of TM and ANN in enhancement and prediction of RSO and 

JCO yield.  
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1.3 Research Objective  

     The main aim of this research is to integrate TM and ANN for improving the yield of 

RSO and JCO biodiesel. 

1. To optimize the reaction variables (catalyst type, catalyst loading, methanol to oil 

molar ratio, reaction time and microwave power) in producing a high yield of RSO 

and JCO biodiesel using TM. 

2. To predict the yield of RSO and JCO biodiesel using ANN with high performance 

in term of coefficient of determination (R2) and mean square error (MSE). 

 

1.4 Scope of Research 

     The scope of this research are as follows: 

1. Identify parameters involved in producing a high yield biodiesel. 

2. Optimize reaction variables (catalyst type, catalyst loading, methanol to oil molar 

ratio, reaction time and microwave power) in biodiesel production through TM by 

using Minitab®21.4. 

3. ANN modelling, training and prediction using MATLAB R2021a. 

 

1.5 Significant of Research 

     The integration of TM and ANN in optimizing and estimating the yield of RSO and 

JCO biodiesel can have significant implications for cost, GHG emissions and waste disposal. 

Through the TM, the important process factors and levels that influence biodiesel yield can be 

determined, allowing for the identification of optimal parameter settings that maximize yield 

and minimize production costs. By optimizing the process, the consumption of raw materials, 
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energy and catalysts can be reduced, resulting in cost savings and improved economic 

feasibility in producing biodiesel. 

Additionally, utilization of an ANN model trained on RSO and JCO biodiesel data 

enables accurate prediction of biodiesel yield based on input parameters. This predictive 

capability eliminates the need for manual experimentation and reduces the associated costs and 

resources required for trial-and-error approaches. By using the model to predict biodiesel yield, 

producers can make informed decisions, optimize production planning and minimize wasteful 

overproduction. Consequently, this integrated approach aids in enhancing cost-effectiveness, 

reducing GHG emissions by improving process efficiency, and minimizing waste generation, 

leading to a more sustainable and ecologically conscious biodiesel production process. 
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LITERATURE REVIEW 

2.1 Overview on Biodiesel 

     Biodiesel, also referred to as fatty acid methyl ester (FAME), is manufactured through 

the transesterification process, which involves reacting vegetable oils or animal fats with 

methanol. The transesterification of oils or fat is as shown in Figure 2.1. Basically, biodiesel 

compared to petroleum-centered diesel has similarity in characteristics and composition such 

as viscosity, number of cetane, phase changes and energy content. Therefore, it can be directly 

used in any compression ignition (CI) diesel engine without requiring modifications, especially 

when blended with petroleum-based diesel. Biodiesel emits lower levels of GHG and possesses 

a higher cetane ignition rating and lubricity compared to petroleum-based diesel which make 

biodiesel one of the most common biofuels worldwide (Lim S & Teong L, 2010). 

 

 

Figure 2.1  General equation for transesterification of triacylglycerol (Lim & Teong, 2010) 

 

     At the year of 1900, vegetable oils were used in the diesel engine by Rudolf Diesel, the 

inventor of diesel engine where the engine is named after him. In the Paris World Fair, he 
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demonstrated the usage of peanut oil as fuel for the engine. Usage of vegetable oils were 

continued to be use until year 1920 due to the uprise of petroleum-based diesel. Due to the 

lower cost, higher availability and subsidies given by government, petroleum-based diesel 

almost eliminated vegetable oils in the market. However, petroleum-based diesel has lower 

viscosity compared to vegetable oils. 

     To comply with the changes, manufacturers altered the diesel engine to utilize the lower 

viscosity and thus rendered the usage of vegetable oils impractical. Shortage in supply and 

safety problem of fossil fuels in 1970 had re-sparked the idea of developing vegetable oils as 

an alternative energy source to replace fossil fuels. Refinement of vegetable oils must be made 

to convert them into a quality fuel as the altered engine is not suitable for direct application of 

vegetable oils with high viscosity and low volatility. Methods such as pyrolysis, 

microemulsification and blending were investigated to reduce the viscosity of vegetable oils. 

However, these methods pose problems such as contamination and carbon deposition inside 

engine. As a result, the transesterification process has emerged as the most practical method 

for transforming vegetable oils for CI engine usage (Lim & Teong, 2010). 
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2.2 Biodiesel Statistics  

     According to Sustainability Report 2022 by Shell (one of the largest global traders and 

blenders of biofuels), Shell globally incorporated approximately 9.5 billion litres of biofuels 

into its petrol and diesel, an increase from 9.1 billion litres in 2021. Notably, this figure 

encompasses roughly 3 billion litres sourced from their joint venture Raízen in Brazil (Shell 

shareholding 44%, not Shell operated), in contrast to 3.2 billion litres in 2021. Bio-components 

were purchased by Shell for production, fuel blending and trading as shown in Figure 2.2. Some 

biofuel feedstocks are considered violation in term of human rights, biodiversity and emission 

of carbon into the atmosphere. All the feedstocks purchased were certified as sustainable under 

credible sustainability standards. 

 

 

Figure 2.2  Global bio-component purchase by feedstock classification 

(https://reports.shell.com/sustainability-report/2022/achieving-net-zero-emissions/fuelling-

mobility/biofuels.html) 

 

44.10%

21.30%

8.10%

7.10%

7.10%

6.70%

3.10%
1.50% 0.60% 0.50%

Global bio-component purchase by feedstock classification

corn waste molasses palm oil

rapeseed soy bean sugar cane other

wheat blended feedstock

https://reports.shell.com/sustainability-report/2022/achieving-net-zero-emissions/fuelling-mobility/biofuels.html
https://reports.shell.com/sustainability-report/2022/achieving-net-zero-emissions/fuelling-mobility/biofuels.html
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2.3 Biodiesel Pros and Cons 

   Biodiesel offers several advantages and disadvantages as shown in Table 2.1. One 

significant pro is that it is an energy source that renewable, which produced from organic 

materials that can be replenished. This makes biodiesel an alternative to fossil fuels which are 

finite resources. Additionally, biodiesel combustion generates no net carbon impact since the 

carbon dioxide emitted during combustion is counterbalanced by the carbon dioxide absorbed 

during the growth of the plants utilized for biodiesel production. The fuel also produces fewer 

harmful emissions compared to traditional diesel, contributing to improved air quality. 

Biodiesel exhibits superior lubricating characteristics than traditional diesel, which enhances 

durability of engine by reducing wear and tear. Furthermore, biodiesel boasts cetane number 

higher than diesel, signifying better ignition quality and potentially leading to smoother engine 

operation. The environmentally friendly nature of biodiesel harmonizes with the worldwide 

initiative for cleaner and more sustainable energy sources. 

    However, biodiesel also comes with its set of challenges. One notable con is the 

competition for resources. As the demand for biodiesel increases, there may be competition for 

the same agricultural resources needed for food production, leading to potential conflicts 

between fuel and food production. Biodiesel production costs more compared to traditional 

diesel, partly due to the expense of feedstock and refining processes. Higher cloud and pour 

points are additional drawbacks, as biodiesel tends to gel at higher temperatures, potentially 

causing fuel system issues in colder climates. These challenges highlight the need for ongoing 

research and development to address the economic and technical limitations of biodiesel, 

ensuring it becomes a more viable and widespread alternative in the future. 
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Table 2.1 Biodiesel Pros and Cons 

Pros Cons 

• Renewable Source 

• No Carbon Impact 

• Less Harmful Emission 

• Better lubrication 

• Higher cetane number 

• Environmentally safe 

• Works with most engine 

• Competition of resources 

• Higher cost 

• Higher cloud point 

• Higher pour point 

 

 

2.4 Type of Feedstock 

     Biofuels derived from different feedstocks are classified into four main categories such 

as first generation, second generation, third generation and fourth generation biodiesel. The 

categorization is based on the availability, properties and characteristics of the feedstock 

employed in their production (Ghosh & Halder, 2022). 

Table 2.2 shows the examples for edible and non-edible feedstock for biodiesel. First 

generation biodiesels are produced from edible feedstocks, for example palm, soybean, 

rapeseed, peanut, olive, corn, safflower, rice bran, castor, linseed, sunflower, milkweed seed, 

and coconut. Second generation biodiesel is produced from non-edible feedstocks like 

Jatropha curcas, Madhuca indica, Salvadora oleoides, Hevea brasilensis and Jojoba. Third 

generation biofuels are produced from microalgae through the anaerobic digestion process. 

However, commercialization of these biofuels is not expected until around 2050. The concept 

of fourth generation biofuels revolves around using sustainable feedstocks to efficiently capture 

and store CO2. Various CO2-absorbing biomasses are utilized to produce biodiesel, similar to 

other types of feedstocks. 
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Table 2.2 Type of Feedstock 

Type of 

feedstock 
Examples 

Edible 
Palm, soybean, rapeseed, peanut, olive, corn, safflower, rice bran, castor, 

linseed, sunflower, milkweed seed, coconut 

Non-edible 
Jatropha curcas, Madhuca indica, Salvadora oleoides, Hevea brasilensis, 

Jojoba 

 

2.4.1 Non-edible Feedstock 

     Biodiesel produced with non-edible feedstock is known as second generation biodiesel. 

Non-edible feedstocks were explored due to the expensive price and shortage of edible 

feedstocks. Researchers changed their focus from edible feedstocks to non-edible feedstocks 

under few reasons such as to preserve the environment, non-edible feedstocks lower cost, 

reduce food disparity and utilize the resources in rural areas. Jatropha curcas and Hevea 

brasiliensis are non-edible feedstocks used in biodiesel production.  
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2.5 Type of Catalyst 

     Unquestionably, catalysts have a vital role in accelerating the transformation rate of 

feedstock to biodiesel. By decreasing the activation energy requirement without undergoing 

significant changes in the process, the catalyst aids in transesterification. Both homogeneous 

and heterogeneous catalysts can be utilized to complete the biodiesel catalytic process. 

Heterogeneous catalysts operate in a separate phase from the reactant, while homogeneous 

catalysts function within the same phase as the reactant, making them indistinguishable. 

Numerous catalysts have been used throughout the years to enhance the quality of biodiesel. 

Figure 2.3 illustrates various categories of catalysts used to produce biodiesel. 

 

 

Figure 2.3  Classification of different catalyst (Ghosh & Halder, 2022) 
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2.5.1 Homogeneous Catalyst vs Heterogeneous Catalyst 

     Homogeneous catalysis is a chemistry process involving substances in the same phase 

such as solid, liquid or gaseous. Homogenous catalyst can be categorized into basic catalyst 

and acid catalyst. Homogeneous alkaline catalysts react faster comparing to acid catalyst  under 

gentle process circumstances. If the free fatty acid (FFA) amount of the triglyceride sources 

more than 2%, they can lead to soap creation. Sodium hydroxide (NaOH) and potassium 

hydroxide (KOH) are commonly utilized in regular alkaline-biodiesel generation. On the 

contrary, homogeneous acid catalyst is insensible to the existence of FFAs in triglyceride 

sources which make them appropriate for low-degree oil. Their catalysis acceleration is quieter 

compared to an alkaline catalyst. Hydrochloric acid (HCl) and sulfuric acid (H2SO4) are great 

acid catalysts in biodiesel generation reaction. Homogeneous catalysts are cheaper, easier to 

obtain and would provide adequate performance under gentle reaction circumstances. They 

also have disadvantages such as segregation of catalyst from the liquid blend , reactor 

deterioration and saponification reaction as by-product. Catalysts that commonly used are 

sodium hydroxide (NaOH) and potassium hydroxide (KOH) as basic, sulfuric acid (H2SO4) 

and hydrochloric acid (HCl) as acidic. 

In the other hand, heterogeneous catalysis is a chemical process involving substances 

in the different phase such as solid, liquid or gaseous. Heterogeneous catalyst can be 

categorized into basic catalyst and acid catalyst and are usually in solid state. They provide a 

surface for the reaction to occur. The advantages of heterogeneous catalyst are easier separation 

of the catalyst from biodiesel product and reduction of need for neutralization. Commonly used 

catalysts are lithium (Li), calcium oxide (CaO) and magnesium oxide (MgO) (Maheshwari et 

al., 2022). Table 2.3 lists the type of catalyst, their components, examples with advantages and 

disadvantages. Table 2.4 shows the comparison between homogeneous and heterogeneous 
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catalysts in few parameters such as rate of reaction, reusability, post treatment, methodology, 

presence of water or FFA and cost. 

 

Table 2.3 Summary of homogeneous and heterogeneous catalyst classification (Jume et al., 

2020) 
Type of 

catalyst 
Components 

Common 

example 
Advantages Disadvantages 

Homogeneous 
Alkaline 

Acidic 

KOH, NaOH, 

H2SO4, HCl, 

H3PO4 

Ease to use, short reaction 

time 

Sensitive to high FFA 

content feedstock and slow 

rate of reaction 

Heterogeneous 
Solid 

 

Shells, bones, 

ashes 

Reusable, easy separation, 

no soap formation, non-

toxic, high catalytic 

activity 

Long reaction time, high 

temperature, unwanted 

byproducts production 

 

Table 2.4 Comparison of homogeneous and heterogeneous catalysts in transesterification 

process (Maheshwari et al., 2022) 

Properties Homogeneous catalysts Heterogeneous catalyst 

Rate of Reaction Rapid Moderate conversion 

Reusability Possible Not possible 

Post Treatment Not recoverable Recoverable 

Methodology 
Limited utilisation of continuous 

methods 

Persistent fixed-bed operation is 

conceivable 

Presence of H2O/FFA Sensitive Not sensitive 

Cost High Lower 
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2.6 Biodiesel Production Technology 

     Biodiesel production is competitive in terms of being a low cost, sustainable and 

ecologically friendly energy source. There are many methods and technologies in biodiesel 

production such as pyrolysis, transesterification, emulsification and direct blending as shown 

in Table 2.5 along with their description, advantages and disadvantages. The properties of the 

feedstock during oil extraction process decide the biodiesel production method (Abusweireh 

R, Rajamohan N & Vasseghian Y, 2022). Crude oil must undergo different process to convert 

from high to low viscosity biodiesel and achieve the desired quality to be able to use in diesel 

engines (Ghosh & Halder, 2022). However, compared to other techniques, transesterification 

is the most practical commercial procedure (Khan et al., 2014; S. P. Singh & Singh, 2010). 

 

Table 2.5 Summary of biodiesel production method with advantages and disadvantages 
Method Description Advantages Disadvantages 

Transesterification Chemical reaction 

converting triglycerides 

to biodiesel 

• Well-established and widely used 

method 

• High conversion efficiency 

• Can utilize a variety of feedstocks 

• Produces high-quality biodiesel 

• Requires careful control of reaction 

conditions 

• Byproduct glycerol generation 

• Sensitivity to impurities in feedstock 

Pyrolysis Thermal decomposition 

of organic materials to 

bio-oil 

• Can utilize a wide range of 

feedstocks, including biomass and 

waste oils 

• Bio-oil can be further processed into 

biodiesel or other biofuels 

• Complex process requiring high 

temperatures and absence of oxygen 

• Yield and composition of bio-oil can 

vary based on feedstock 

Emulsification Formation of stable 

mixtures for efficient 

transesterification 

• Enhances reaction rates and 

biodiesel yield 

• Uniform mixing of reactants 

• Can use different feedstocks and 

alcohol types 

• Requires the use of surfactants and 

co-surfactants 

• Additional processing steps for 

surfactant removal and separation of 

phases 

Direct Blending Mixing biodiesel with 

petroleum diesel fuel 

• Easy incorporation into existing 

diesel infrastructure 

• Gradual transition to biodiesel 

• Reduced emissions and improved 

lubricity 

• Limited percentage of biodiesel in 

blends due to compatibility and 

regulatory requirements 

• Reliance on petroleum diesel fuel 
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2.6.1 Transesterification 

The most widely used technique for creating biodiesel is transesterification because the 

fuel it yields has qualities that are identical to those of regular diesel (B. Karmakar, S. 

Lalthazuala Rokhum, G. Halder, 2022). In transesterification, triglyceride-containing 

vegetable feedstock or fat reacts with alcohol and an appropriate catalyst to create ester and 

glycerol at the process' conclusion. As illustrated in Figure 2.4, the transesterification process 

transforms triglycerides into diglycerides, monoglycerides and fatty acid methyl esters in three 

successive phases. 

However, recovering extra methanol reduces the transesterification process's total cost. 

Due to the high solubility of glycerol at higher methanol percentages, glycerol separation 

becomes laborious at lower methanol percentages. Therefore, methanol concentrations above 

or below the ideal range impact the biodiesel output. Most often utilised alcohols are methanol 

and ethanol. Methanolysis occurs when methanol is used in the transesterification process. 

Because methanol is poorly soluble, careful blending of methanol with oil is crucial. The end 

product is known as FAME in the last step. Depending on the amount of FFA in the feedstock, 

biodiesel is either created using a single-stage transesterification with an alkali catalyst or a 

two-stage esterification with an acidic catalyst followed by transesterification (Ghosh & 

Halder, 2022). Properties of feedstock can be determined using gas chromatography-mass 

spectrometry (GCMS). 
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Figure 2.4  Overall reaction of transesterification (Ghosh & Halder, 2022) 

 

2.6.2 Two-step Transesterification 

     Two-step transesterification consists of two processes: acid esterification followed by 

transesterification. Acid esterification is a process in which triglycerides are treated with an 

acid to reduce the level of FFA present in the feedstock. It is performed by preparing the 

feedstock to react with strong acid, such as sulfuric acid (H2SO4) or hydrochloric acid (HCl), 

to decrease the FFA percentage of the feedstock until it reaches less than 5% of the acid value, 

allowing the transesterification process to proceed with the feedstock. This is necessary 

because the conditions for feedstock to undergo transesterification require an FFA content of 
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less than 5%. High FFA levels can lead to soap formation which is undesirable in biodiesel 

production (Cao et al., 2022; Thoai et al., 2017). 

 

2.7 Microwave in Biodiesel Production 

     In recent years, microwave energy has become increasingly significant for its capability 

to accelerate reaction rates (Chen et al., 2017). Microwave irradiation also known as MWI 

which is a form of electromagnetic radiation, have the ability to heat polar molecules in 

reactants. As a result, these polar molecules align themselves with the electromagnetic field of 

the microwaves and generate heat through friction, leading to an acceleration in reaction rates. 

Additionally, microwaves can also enhance reaction rates by causing the uncoupling of electron 

spins associated with atoms. These combined effects make microwave energy an effective tool 

for promoting faster reactions. Table 2.6 presents a comparison between three different heating 

methods for biodiesel preparation via the transesterification reaction (Gnaneswar Gude et al., 

2013). 

Few studies have been conducted to explore the impact of microwave heating on 

biodiesel production (Athar et al., 2022; Chuah et al., 2017; Hong et al., 2016). These studies 

have demonstrated that microwave-assisted chemical reactions outperform other synthetic 

techniques. Microwave heating systems have been shown to enhance reaction rates, increase 

product yields and improve the purity of the resulting products. Table 2.7 shows the summary 

of microwave-enhanced transesterification of different feedstock. Recent study focused on the 

production of biodiesel using a microwave heating system resulted in improved yields. These 

findings highlight the potential of microwave heating as a promising method for enhancing the 

efficiency and effectiveness of biodiesel production processes (Lin et al., 2015). Methanol, 

being a polar molecule with a high dielectric constant, is often preferred for microwave-assisted 
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transesterification reactions. Its characteristics make it suitable for efficient heat generation and 

promoting the desired chemical transformations in the reaction process (Nayak & Vyas, 2019). 

 

Table 2.6 Comparison between heating mechanisms for biodiesel production (Gnaneswar 

Gude et al., 2013) 
Characteristic/parameter Conventional heating Supercritical heating Microwave heating 

Reaction time Long (1-2 hr) Short (<1 hr) Very short (0.05-0.1 hr) 

Reaction temperature (℃) 40-100 250-400 40-100 

Reaction pressure Atmospheric High pressure (35-60 

MPa) 

Atmospheric 

Catalyst required Yes No Yes/No 

Heat losses High Moderate Low 

From of energy Electrical energy 

converted to thermal 

energy 

Electrical energy 

converted to thermal 

energy 

Electrical energy 

applied through 

microwaves 

Process efficiency Low Moderate High 

Catalyst removal Yes No Yes 

Soap removal Yes No Yes 

Advantages Simple operation, low 

energy source usage 

Short reaction time, 

easy product separation 

Short reaction time, 

cleaner products and 

energy efficient 

Limitations High energy 

requirements, 

saponified products 

High capital costs, 

pressure vessel safety 

May not be efficient 

with feedstock 

containing solids 
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Table 2.7 Summary of microwave-enhanced transesterification of different feedstock 

Feedstock 

Methanol to 

oil molar 

ratio 

Catalyst Type 

Catalyst 

Loading 

(wt.%) 

Reaction 

Time (min) 

Reaction 

Temperature 

(℃) 

Microwave 

Power (W) 
Biodiesel Yield (%) Researcher 

Papaya oil 9.5:1 NaOH 0.95 wt.% 3.5 62.33 700 99.30 
(Nayak & Vyas, 

2019) 

WCO 8:1 CaO 4 wt.% 75 65 300 98.2 
(Hsiao et al., 

2020) 

WCO 7.46:1 

Calcium 

diglyceroxide 

(CaDG) 

1.03 wt.% 15 62 - 94.86 
(Gupta & Rathod, 

2018) 

JCO 9:1 
Fe3O4@SiO2-

SO3 H 
8 w.t% 210 80 - 98±1 

(Changmai et al., 

2021) 

WCO 12:1 NaOH 0.8 wt.% 2 65 600 98.2 
(Hsiao et al., 

2021) 

Palm oil 5:1 Ca(OH)2 0.5 wt.% 10 - - 96 
(Marwan & 

Indarti, 2016) 

JCO 18:1 CaO 4 wt.% 5 - 800 94 

(Buasri & 

Loryuenyong, 

2017) 

Wet microalgae - 
Graphene Oxide 

(GO) 
5 wt.% 40 90 500-600 95.1 

(Cheng et al., 

2016) 
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Feedstock 

Methanol to 

oil molar 

ratio 

Catalyst Type 

Catalyst 

Loading 

(wt.%) 

Reaction 

Time (min) 

Reaction 

Temperature 

(℃) 

Microwave 

Power (W) 
Biodiesel Yield (%) Researcher 

Ceiba 

pentandra oil 
0.6:1 KOH 0.84 wt.% 388 s - - 96.19 

(Silitonga et al., 

2020) 

Camelina oil 6.91:1 KOH 1.26 wt.% 5.85 65-90 - 95.31 
(Rokni et al., 

2022) 

Chicken feather 

meal oil (CFMO) 
8:1 CaO 1 wt.% 5 - 500 95 

(Zhang et al., 

2022) 

WCO 0.3:1 KOH 1 wt.% 60 60 - 97.4 
(Hassan & Smith, 

2020) 

NO-RSO blend 

(6:4) 
25:1 Fe2(SO4)3 10 wt.% 120 65 150 98.77 ± 0.16 wt.% 

(Falowo et al., 

2019) 

WCCO 7:1 KOH 0.65 wt.% 9.6 - 180-450 96.44 
(Sharma et al., 

2019) 
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2.8 Variables in Biodiesel Production 

     Key factors influencing biodiesel production efficiency and yield include feedstock 

type and composition, catalyst selection, reaction conditions (temperature, time, alcohol-to-

oil molar ratio, agitation speed), fatty acid composition, water content, mass transfer, oil 

composition and residence time (Changmai et al., 2020) The selection of appropriate 

feedstocks is crucial, considering factors like large-scale utilization, costs, and oil content, 

as they significantly impact production costs. The chemical composition of feedstocks plays 

a vital role in determining biodiesel characteristics. The catalyst used in transesterification 

affects reaction rate and product quality, while alcohol type and ratio influence conversion 

efficiency and properties. Reaction temperature, time, and water presence affect kinetics and 

equilibrium. Adequate mixing is essential for proper reactant-catalyst contact during 

transesterification. Purification methods ensure biodiesel quality, and optimizing these 

variables enables producers to enhance efficiency, increase yields, and create high-quality 

biodiesel meeting specifications for a renewable and environmentally friendly alternative to 

conventional diesel fuel. Figure 2.5 illustrates variables affecting transesterification. 
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Figure 2.5  Variables in transesterification reaction 
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2.9 Biodiesel Properties 

     ASTM D6751 and EN 14214 are both standards for biodiesel fuel. ASTM 6751 was 

developed by the American Society for Testing and Materials (ASTM) and is the standard 

for biodiesel fuel in the United States. It covers the requirements and test methods for 

biodiesel fuel, including purity, stability and performance characteristics. It is widely used 

internationally except country with cold weather. EN 14214 was developed by the European 

Committee for Standardization (CEN) and is the standard for biodiesel fuel in the European 

Union. It is based on the German DIN 51606 standard and covers the requirements and test 

methods for biodiesel fuel, including purity, stability and performance characteristics.  

EN 14214 is widely used in Europe (EU) because it ensures the quality and 

consistency of biodiesel fuel produced and used within the EU. While both standards are 

similar in many respects, they differ in some technical details, such as the allowable limits 

for certain impurities. The choice of standard used often depends on the region and 

regulations governing the use of biodiesel fuel in that area. Therefore, Europe uses EN 14214 

as the standard for biodiesel fuel because it was developed by CEN and covers the 

requirements specific to the European Union. ASTM 975 is the standard for petrodiesel 

production (Yusuff A, Gbadamosi A, Atray N, 2022; Yusuff A, Popoola L, Adeniyi D, 

Olutoye M, 2022; Abdullahi K, Ojonugwa S, Yusuff A, Umaru M, Mohammed I, Olutoye 

M, Aberuagba F, 2023; Demirbas A, 2009). Table 2.8 shows the properties and qualities of 

biodiesel according to EN 14214 standard. Table 2.9 shows the comparison properties of 

different biodiesel production standards such as ASTM D975, ASTM D6751 and EN 14214  

(Atabani et al., 2012). 

     EN is used in country with cold weather due to cold start condition. According to EU 

regulations, a cold start is described as the engine initiation either after achieving thermal 
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equilibrium with the surrounding environment or within the initial 5 minutes until the coolant 

temperature reaches 70 °C. When the engine operates under cold start conditions, the 

elevated viscosity of diesel at lower temperatures adversely affects atomization and mixing 

properties. Consequently, this phenomenon leads to unavoidable elevated levels of unburned 

hydrocarbon (UHC) and carbon monoxide (CO) emissions during combustion within the 

cylinder (Chaudhari et al., 2021; Xu et al., 2024). 

     European biodiesel standards, exemplified by EN 14214, establish stringent criteria 

for the cold flow properties of biodiesel, crucial for its performance in low-temperature 

environments. These properties, including Cloud Point, which indicates the temperature of 

crystal formation causing cloudiness in the fuel, Cold Filter Plugging Point (CFPP), 

representing the lowest temperature for unhindered fuel passage through a standardized 

filtration test, and Pour Point, denoting the temperature at which the fuel maintains flow 

under gravitational force, collectively determine the resilience of biodiesel in cold 

conditions. Compliance with these standards ensures that biodiesel can function effectively 

in cold weather, preventing issues such as clogging in fuel lines and filters, and maintaining 

optimal operation in diesel engines. 
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Table 2.8 Properties and qualities of biodiesel according to EN 14214 (Pham et al., 2022) 

Property Test method Limits Units 

Ester content EN 14103 96.5 min % (mol/mol) 

Density, 15oC 
EN ISO 3675, EN ISO 

12185 
860-900 kg/m3 

Kinematic viscosity, 40oC 
EN ISO 3104, ISO 

3105 
3.5-5.0 mm2/s 

Flash point EN ISO 3679 120 min oC 

Sulfer content 
EN ISO 20846, EN ISO 

20884 
10.0 max mg/kg 

Carbon residue (10% distillation 

residue) 
EN ISO 10370 0.30 max %(mo;/mol) 

Cetane number EN ISO 5165 51 min - 

Sulfated ash ISO 3987 0.02 max % (mol/mol) 

Water content EN ISO 12937 500 max mg/kg 

Total contamination EN 12662 24 max mg/kg 

Copper strip corrosion (3h, 50oC) EN ISO 2160 1 
Degree of 

corrosion 

Oxidation stability, 110oC EN 14112 6.0 min h 

Acid value EN 14104 0.5 max mg KOH/g 

Iodine value EN 14111 120 max g I2/100 g 

Linolenic acid content EN14103 12.0 max % (mol/mol) 

Polyunsaturated (4 double bonds) 

methyl esters 
EN 14103 1 max % (mol/mol) 

Methanol content EN 14110 0.2 max % (mol/mol) 

MAG content EN 14105 0.80 max % (mol/mol) 

DAG content EN 14105 0.2 max % (mol/mol) 

TAG content EN 14105 0.2 max % (mol/mol) 

Free glycerol EN 14105 EN14106 
0.020 

max 
% (mol/mol) 

Total glycerol EN 14105 0.25 max % (mol/mol) 

Group I metals (Na, K) EN 14108 EN 14109 5.0 max mg/kg 

Group II metals (Na, K) EN 14538 5.0 max mg/kg 

Phosphorus content EN 14107 10.0 max mg/kg 
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Table 2.9 Properties and qualities of biodiesel in comparison with conventional diesel 

according to ASTM D6751 (Atabani et al., 2012; Mahesha et al., 2022; Moser et al., 2023) 

Fuel Properties 

Diesel fuel Biodiesel Test method 

ASTM 

D975 

ASTM 

D6751 

EN 

14214 
ASTM EN 

Density 15 °C (kg/m3) 850 880 860-900 D1298 
EN ISO 

3675/12185 

Viscosity at 40 °C (cSt) 2.6 1.9-6.0  3.5-5.0 D-445  EN ISO 3104 

Cetane number 40-55 Min. 47  Min. 51 D-613  EN ISO 5165 

Iodine number 38.3 - Max. 120 - EN 14111 

Calorific value (MJ/kg) 42-46 - 35 - EN 14214 

Acid (Neutralization) value (mg 

KOH/g) 
0.062  Max.0.50 Max.0.5 D-664 EN 14104 

Pour point (°C) -35 -15-16 - D 97  - 

Flash point (°C) 60-80 
Min. 100-

170  
>120 D-93  ISO DIS 3679 

Cloud point (°C) -20 -3-12 - 
D-

2500  
- 

Cold filter plugging point (°C) -25 19 Max. +5  
D-

6371 
EN 14214 

Copper strip corrosion (3h at 50 °C) 1 Max. 3  Min.1 D-130  EN ISO 2160 

Carbon (% wt) 84-87 77 - - - 

Hydrogen (% wt) 12-16 12 - - - 

Oxygen (% wt) 0-0.31 11 - - - 

Methanol content % (m/m) - - Max. 0.20 - EN 14110 

Water and sediment content (%vol) 0.05 Max. 0.05 
Max. 

500b 
D2709 EN ISO 12937 

Ash content % (w/w,) 0.01 0.02 0.02  EN 14214 

Sulphur % (m/m) 0.05 Max. 0.05  10b D 5453  EN ISO 20846 

Sulphated ash % (m/m) - Max. 0.02 Max. 0.02 D-874  EN ISO 3987 

Phosphorus content - Max. 0.001  10b 
D-

4951  
EN 14107 

Free glycerine % (m/m) - Max. 0.02  Max.0.02 
D-

6584  

EN 

14105/14106 

Total glycerine % (m/m) - Max. 0.24  0.25 
D-

6584  
EN 14105 

Monoglyceride % (m/m) - 0.52 0.8 - EN 14105 

Diglyceride % (m/m) - - 0.2 - EN 14105 

Triglyceride % (m/m) - - 0.2 - EN 14105 

CCR 100% (% mass) 0.17 (0.1)d Max. 0.05  Max. 0.03 
D-

4530  
EN ISO10370 

Distillation temperature (%)   - Max. 360 °C - 
D-

1160 
- 

Oxidation stability (hrs, 110 °C) - 3 min 6 min D-675 EN 14112 

Lubricity (HFRR; μm) 685 314 - - - 

 

 

http://en.wikipedia.org/w/index.php?title=EN_ISO_2160&action=edit&redlink=1
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2.10 Biodiesel Optimization Method 

     Optimization in biodiesel production is important because it can increase the yield of 

biodiesel given a limited amount of feedstock, resulting in more efficient use of resources 

and potentially lower cost. The yield of biodiesel depends on a variety of factors, including 

the type and quality of the feedstock, the reaction conditions, the catalyst used, and the 

method of separation and purification. Optimization involves systematically varying these 

factors to determine the combination that maximizes the yield of biodiesel. By optimizing 

the process, it may be possible to increase the yield of biodiesel and reduce the amount of 

waste and by-products generated during production. This can make biodiesel a more cost-

effective and environmentally friendly alternative to petroleum-based diesel fuels.  

Additionally, optimizing the production process can also lead to improvements in the 

quality and performance of the biodiesel, making it a more viable option for use in diesel 

engines. There are several optimization methods such as Taguchi Method (Aniza R, Chen 

W, Yang F, Pugazhendh A, Singh Y, 2022), Response Surface Methodology (RSM) 

(Abdullahi et al., 2023; Sai et al., 2020) and Artificial Neural Network (ANN)  (Agus 

Haryanto et al., 2020; Aniza et al., 2022; El-Shafay et al., 2022; Farobie et al., 2015; Filho 

& Viegas, 2018; Jerniti et al., 2016; Mogilicharla & Reddy, 2021; Okonkwo et al., 2023; 

Vinoth Arul Raj et al., 2021) were applied in biodiesel production. Table 2.10 shows the 

summary of optimization method used to produce various type of feedstocks with 

heterogeneous catalyst (shell, CaO). Table 2.11 shows the summary of optimization method 

focusing on RSO. From the table, most of the optimization are RSM and ANN focused. 
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Table 2.10 Summary of optimization method used to produce various type of feedstocks 

with heterogeneous catalyst (shell, CaO) 
Type of 

feedstock 

Heterogeneous 

catalyst (shell) 
Variables Yield 

Optimization 

method 
Authors 

Waste 

cooking oil 

(WCO) 

Walnut shell, 

sawdust 

MR, catalyst loading, 

reaction time, reaction 

temperature 

92.25% RSM, ANN 
(Maleki et al., 

2023) 

Marine 

fishmeal 

plant 

(MFMP) oil 

Crab shell 

MR, catalyst loading, 

reaction time, reaction 

temperature 

87.47 - 88.16 RSM 
(Karkal et al., 

2023) 

Waste frying 

oil (WFO) 
Chicken eggshell 

MR, catalyst loading, 

reaction time, reaction 

temperature 

93.27% 
Taguchi 

method 

(Ur Rahman et 

al., 2021) 

Microalgae 

dry biomass 
Egg shell waste 

Reaction time, catalyst 

loading, stirring 

intensity 

86.41% RSM 
(Pandit & 

Fulekar, 2017) 

WCO 
Crab shell,  

plantain peels 

Reaction temperature, 

catalyst loading , 

reaction time, MR 

93% RSM 
(Amenaghawon 

et al., 2022) 

WCO Eggshell 

Catalyst calcinations 

temperature, catalyst 

calcinations time, 

catalyst loading, MR, 

reaction temperature 

and reaction time 

96.6 ± 0.05%, 

96.3 ± 0.10% 

RSM, Taguchi 

method 

(T. S. Singh & 

Verma, 2019) 
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Table 2.11 Summary of optimization method focusing on RSO 

Type of 

feedstock 

Heterogeneous 

catalyst (shell) 
Variables Yield 

Optimization 

method 
R2 Authors 

RSO Fluorite (CaF2) 
MR, catalyst loading, 

reaction time 
- RSM, ANN 

0.8179, 

0.993 

(Sai 

Bharadwaj, S, 

et al., 2019) 

RSO Eggshell (CaO) 
MR, catalyst loading, 

reaction time 
99.7% RSM, ANN 

0.9566, 

0.9976 

(Sai 

Bharadwaj, 

Singh, et al., 

2019) 

RSO Fluorite (CaF2) 
MR, catalyst loading, 

reaction time 
95.95% RSM, ANN 

0.8732, 

0.9885 

(A. V. S. L. 

Sai et al., 

2019) 

RSO Eggshell (CaO) 
MR, reaction time, 

catalyst loading 

97.84 

% 
RSM, ANN 0.9118, 0.99 

(Sai et al., 

2020) 

RSO 
Achatina fulica 

(CaO) 

Reaction temperature, 

reaction time, MR, and 

catalyst loading 

96.70% RSM 0.994 
(Aisien & 

Aisien, 2023) 
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2.10.1 Taguchi Method (TM) 

     The TM is one of the statistical methods also known as robust design methods 

developed by Genichi Taguchi. Its purpose is to improve the quality of manufactured 

products and can be applied to various fields such as engineering, biotechnology and 

marketing. Taguchi experiment design is commonly used to optimize the process parameter 

values to improve the quality properties of a product. Conventional experiment design 

methods are basically complicated despite being not that accurate. Besides that, conventional 

methods require more runs of experiments as the number of process parameters increases.  

TM utilizes a special design of orthogonal arrays (OA) that allows whole parameter 

space to be studied with a small number of experiments. This method has other advantages 

as well such as reduce the variability of the response variable in term of economy, determine 

the best solution for optimum process conditions in experiments, improve the production of 

Research and Development (R&D) process and can be applied to whatever process. The 

difference between the experimental value and the intended value is then determined using 

a loss function. 

     To quantify the performance characteristic deviating from the target value, Taguchi 

suggests using the loss function. The loss function's value is subsequently converted into the 

Signal-to-noise ratio (SNR), 𝜂. TM utilizes SNR for measurement of variance from the 

experiment design. SNR is the ratio of the mean (signal) to the standard deviation (noise). 

SNR is a logarithmic function used in optimization of the process or product design and 

minimization of the variability. The SNR also can be interpreted as the variance inverse and 

the maximization of SNR reduces the variability of the process opposed to unfavourable 

changes in the surrounding environment. Appropriate SNR function must be chosen in the 

SNR analysis. There are 3 categories of SNR performance characteristics which is smaller-



 

33 

 

the-better, larger-the-better and nominal-the-better. According to the objectives of the 

problem, these characteristics values describe different characteristic of quality. The 

formulae are as shown below:  

 

Nominal-the-better: 𝜂 =  𝑆 𝑁𝑇⁄ = 10 log
�̅�

𝑠𝑦
2                                         (2.1) 

Larger-the-better (maximize): 𝜂 = 𝑆 𝑁𝐿⁄ =  −10 log (
1

𝑛
∑

1

𝑦𝑖
2

𝑛
𝑖=1 )                      (2.2) 

Smaller-the-better (minimize): 𝜂 = 𝑆 𝑁𝑆⁄ =  −10 𝑙𝑜𝑔 (
1

𝑛
∑ 𝑦𝑖

2𝑛
𝑖=1 )                      (2.3) 

 

where �̅� is the average of observed data, 𝑠𝑦
2 is the variance of y, n is the number of 

observations and y is the observed data (Ginting & Tambunan, 2018; Nalbant et al., 2007). 

     Expression of SNR are in decibel scale. Every single SNR characteristic has their own 

usage. Nominal-the-better as in Equation 2.1 is used for reduction of variability surrounding 

a specific target. Larger-the-better as in Equation 2.2 is used for optimization of system with 

largest response possible. Smaller-the-better as in Equation 2.3 is used for optimization of 

system with smallest response possible. In biodiesel production, the purpose is to optimize 

the yield of biodiesel. Therefore, larger-the-better is suitable to use in this research. By 

comparing the equality of different means, the analysis of variance (ANOVA) is used to 

determine whether process parameters or factors are statistically significant. Results of 

ANOVA display each factor values of sum of square deviations from the mean (SS), degree 

of freedom (DOF), mean of squares (MS), ratio between the mean of squares effect and the 

mean of squares error (F-value) and probability value (P-value). Several studies have been 

done using TM for optimization of biodiesel production (Agrawal et al., 2020; Aniza et al., 

2022). 
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2.10.2 Artificial Neural Network (ANN) 

     An ANN is a set of computational algorithms that emulates the operations of the 

human nervous system, aiming to replicate how the human brain analyzes and processes 

information. Similar to the human brain's ability to recognize patterns and categorize 

information, ANNs are adept at performing analogous tasks. They exhibit self-learning 

capabilities, offering effective solutions for addressing complex problems that may pose 

challenges for human resolution. Artificial neural networks have broad applications across 

various domains of Artificial Intelligence, notably in Deep Learning models. They find 

utility in financial operations, marketing research, enterprise planning, trading, business 

analytics, product maintenance and other areas. 

     Furthermore, neural networks prove highly effective in time series forecasting, 

enabling accurate predictions of future trends based on historical data. Their application 

extends to classification and regression tasks, such as image classification and sentiment 

analysis. Additionally, neural networks play a pivotal role in diverse data science disciplines, 

including natural language processing, computer vision, recommender systems and 

sentiment analysis. The inherent advantages of neural networks, such as parallel processing 

capabilities, internal data storage, self-learning abilities and robustness in handling messy 

data, position them as powerful tools for solving intricate problems and fostering innovation 

across numerous industries (Kılıç et al., 2020; Maleki et al., 2023). 

ANNs are indeed based on the biological neural network found in the human brain 

as shown in Figure 2.6. ANNs draw inspiration from the structure and functioning of the 

human biological neuron as shown in Table 2.12. In an ANN, the basic building blocks 

correspond to elements found in a biological neuron. For example, the input layer in an ANN 

is akin to dendrites in a biological neuron, as it receives signals or information. The neurons 
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within the hidden layers simulate the processing capabilities of the biological neuron's soma. 

The weights assigned to connections between neurons in an ANN are analogous to the 

strength of synapses in a biological neuron, influencing the flow of information. Finally, the 

output layer in an ANN corresponds to the axon, providing the ultimate result or output. 

Similar to their biological counterparts, ANNs continuously learn from observational data 

or training sets.  

In the human brain, a neuron serves as the fundamental unit of the nervous system, 

communicating through electrical and chemical signals. With over 86 billion neurons, each 

neuron is connected to numerous others, receiving inputs and transmitting signals to the cell 

body. In ANNs, the artificial neuron, also known as a node, functions similarly to a 

biological neuron. It utilizes an activation function, which determines the output based on 

the input. Typical neural networks architecture consist of three layer: input layer, hidden 

layer and output layer as shown in Figure 2.7. Input nodes receive information and present 

it as activation values, with each node assigned a specific number. This information then 

propagates through the network, passing through hidden nodes, until it reaches the output 

nodes. 

 

 

Figure 2.6  Biological neural network (Negnevitsky, 2005) 
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Figure 2.7  Typical architecture of ANN (Negnevitsky, 2005) 

 

Table 2.12 Analogy and function of biological neural network and ANN 

Biological neural 

network 
ANN Functions 

Soma Neuron Process information 

Dendrite Input Receives information 

Axon Output Carries information to other neurons 

Synapse Weight 
Junction between axon end and dendrites of other 

neuron 

 

 
Figure 2.8  ANN model structure (Öztürk & Başar, 2022) 

 

      Figure 2.8 illustrates that a neuron can have more than one input (x1, x2, ..., xm), with 

each input value being multiplied by a corresponding weight (w1, w2, ..., wm). These weights 
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play a crucial role in determining the impact of inputs on the cell. In its simplest structure, 

the products of these multiplications are summed and sent to a transfer function, which yields 

the result and transforms it into an output. This fundamental principle can be extended by 

employing various additional functions, known as transfer functions, and adopting different 

network structures. The bias represents an additional constant term, usually denoted as b, 

which is not associated with any specific input but is added to the weighted sum before 

passing through the transfer function. The bias allows the neural network to account for 

certain offsets or shifts in the input data, providing flexibility in capturing more complex 

relationships (Öztürk & Başar, 2022). 

     Activation function (AF) also known as transfer function is a fundamental 

mathematic function in ANN used to connect input to output to decide whether the neurons 

should be activated or not. There is 3 types of AF which is log-sigmoid (LOGSIG), 

hyperbolic tangent-sigmoid (TANSIG) and linear (PURELIN) as shown in Figure 2.9. 

LOGSIG and TANSIG are used in ANN for non-linear fitting while PURELIN is used for 

linear fitting. LOGSIG maps input values to output values in the range of [0, 1] while 

TANSIG maps in the range of [-1, 1]. 

 

 

Figure 2.9  Activation function logsig, tansig and purelin (Agus Haryanto et al., 2020) 
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Figure 2.10  Back-propagation neural network (Negnevitsky, 2005) 

 

     The back-propagation process, depicted in Figure 2.10 involves the propagation of 

input signals (x1, x2, ..., xn) from left to right, and error signals (e1, e2, ..., el) from right to left 

in the network. The symbol wij denotes the weight for the connection between neuron i in 

the input layer and neuron j in the hidden layer, and the symbol wjk is the weight between 

neuron j in the hidden layer and neuron k in the output layer. The prediction error, or the 

difference between actual data and desired data, is computed at the output layer, and the 

error signals are fed back to the network to update the weights, completing one cycle. This 

iterative process is repeated multiple times until the predicted error is sufficiently reduced, 

constituting a full epoch in the training stage (Negnevitsky, 2005). 
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METHODOLOGY 

3.1 Introduction   

     In this study, the integration of TM and ANN is applied to optimize and predict the 

yield of biodiesel produced from feedstocks RSO and JCO. The integration of TM and ANN 

has emerged as a valuable approach for optimizing complex systems and improving their 

performance. While not a new concept, this integration combines the statistical and 

experimental design principles of TM with the predictive and learning capabilities of ANN 

models. 

     TM aids in reducing problem dimensionality, identifying influential factors, and 

determining optimal factor levels, guiding the training and optimization process of the ANN. 

By leveraging the strengths of both techniques, this integration offers advantages such as 

enhanced prediction accuracy, reduced experimental effort, and efficient optimization of 

intricate systems. Consequently, the combination of TM and ANN has found applications in 

diverse fields, including engineering, manufacturing, quality control, and process 

optimization.  

     However, the integration of the TM and ANN in biodiesel production is relatively 

uncommon and lack of research (Aniza et al., 2022; Kılıç et al., 2020). In biodiesel 

production, the TM has been used to optimize parameters such as temperature, time and 

catalyst concentration, aiming for high yield and quality. ANN has been employed for 

modelling biodiesel properties, process optimization and predict. Although the integration 

of these two methods is not widely explored in the context of biodiesel production, it is an 
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area of potential future research for improving optimization and control strategies in the 

industry. 

 

3.2 Integration of Taguchi Method and ANN Process 

                                                         
                     (a)                                                                    (b) 

Figure 3.1  Integration of TM and ANN flowchart (a) TM (b) ANN 

 

Figure 3.1 illustrates the integration of TM and ANN in the experimental and 

optimization process. The methodology commences with the TM involving meticulous 

experiment planning including the problem definition, factors and levels identification. By 

using OA design, optimum experiment run can be acheived. Leveraging data from prior 
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studies, Taguchi analysis, encompassing SNR and ANOVA, is conducted to ascertain the 

significance of factors on the output and achieve optimal results. Subsequently, an 

optimization phase ensues, executing experiments with the identified optimal factor 

combination gleaned from the SNR plot and validating the model's accuracy through 

predictions. If the data validation is correct, then the ANN can proceed. If not, the data must 

be reviewed based on the experiment or previous studies. 

The ANN process starts with importation and normalization of experimental data 

which is then separated into input and target parameters. The training alogorithm and 

function are determined for model training. The optimum number of neurons is selected from 

four sets of number (5 ,10, 15 and 20) using validation of network based on the lowest MSE 

and highest R2. The ANN is trained multiple times to obtain the best neural network 

performance. Then, the network is ready for prediction. Optimization data from TM is 

inputted, and the model simulates the prediction, producing output data. Percentage error 

calculation is carried out to ensure the ANN model is not overfitting. Finally, the flow 

process concludes, and the network can be utilized for making predictions and generating 

insights based on the provided input parameters. This integrative methodology synergizes 

the strengths of TM's structured experimental design with the predictive capabilities of ANN, 

facilitating a thorough analysis and efficient optimization of the studied system. The PSM 1 

and PSM 2 timeline are as shown in APPENDIX A and B respectively. 

 

3.3 Minitab 

     Minitab is a powerful statistical software package developed by Minitab Inc., a 

privately owned company based in State College, Pennsylvania, United States. Founded in 

1972 by Dr. Barbara F. Ryan, Thomas A. Ryan, Jr. and Paul G. Zikmund, Minitab Inc. 
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sought to create accessible statistical software for professionals and non-statisticians alike. 

Minitab has since become widely recognized and trusted in industries worldwide for data 

analysis and quality improvement.  

The software offers a range of tools and techniques for statistical analysis, data 

visualization and process optimization. With its user-friendly interface, users can import, 

manipulate and analyze data, apply statistical methods and create insightful graphs and 

charts. Minitab supports quality improvement efforts through features like capability 

analysis, statistical process control and Six Sigma methodologies. Additionally, it enables 

experimental design, reliability analysis, and report generation. Minitab is a valuable tool 

for making data-driven decisions, improving processes and driving continuous improvement 

initiatives across diverse sectors.  

Various studies have been conducted using TM in Minitab software. In this study, 

Taguchi design of experiment (DOE) and analyses such as SNR and ANOVA are utilized 

using Minitab®21.4. 

 

3.4 Taguchi Method Optimization Application 

     TM is a statistical approach to optimize the performance of a system or process by 

identifying the key factors that affect the output and determining the optimal settings for 

those factors. An OA is a structured array used in the TM to design and conduct experiments 

efficiently. It is a set of predetermined experimental combinations that cover all possible 

factor level combinations with a minimum number of experimental runs. The key principle 

behind using an OA is to reduce the number of experiments required to obtain meaningful 

data while still capturing the important information about the factors being studied. By using 

an OA, the experimental design becomes more efficient, saving time and resources.  
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The specific choice of the OA depends on the number of factors and levels being 

investigated. The array is selected based on the desired level of interactions between factors 

and the desired level of precision in estimating the effects of the factors. L27 OA was chosen 

due to the complexity of the study and higher precision compared to L9 OA (Agrawal et al., 

2020). The OA ensures that each factor is varied independently and the interactions between 

factors are evenly distributed across the experimental design. This allows for the 

identification of the main factors affecting the output and their optimal levels, while 

minimizing the impact of confounding factors. Table 3.1 shows the factors and levels that 

are going to be implement in OA. 5 factors used in the experiment are catalyst type, catalyst 

loading, methanol to oil molar ratio, reaction time and microwave power with 3 levels (high, 

medium and low). Table 3.2 shows the OA used to design the experiments with 5 factors at 

three levels with a total of 27 runs. Table 3.3 shows the L27(3
5) OA with 5 factors at three 

levels. 

 

Table 3.1 Factors and levels 

Factors 
Levels 

1 2 3 

A Catalyst type CF PV AG 

B Catalyst loading (wt.%) 7 9 12 

C Methanol to oil molar ratio 9 12 15 

D Reaction time (min) 5 7 9 

E Microwave power (W) 350 400 450 

*CF = Corbicula Fluminea (Asian Clam); PV = Perna Viridis (Green Mussel); AG = 

Anadara Granosa (Blood Clam) 
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Table 3.2 OA used to design the experiments with 5 factors at three levels, L27(3
5) 

Run 

No. 

Process Control Factors 

A B C D E 

1 1 1 1 1 1 

2 1 1 1 1 2 

3 1 1 1 1 3 

4 1 2 2 2 1 

5 1 2 2 2 2 

6 1 2 2 2 3 

7 1 3 3 3 1 

8 1 3 3 3 2 

9 1 3 3 3 3 

10 2 1 2 3 1 

11 2 1 2 3 2 

12 2 1 2 3 3 

13 2 2 3 1 1 

14 2 2 3 1 2 

15 2 2 3 1 3 

16 2 3 1 2 1 

17 2 3 1 2 2 

18 2 3 1 2 3 

19 3 1 3 2 1 

20 3 1 3 2 2 

21 3 1 3 2 3 

22 3 2 1 3 1 

23 3 2 1 3 2 

24 3 2 1 3 3 

25 3 3 2 1 1 

26 3 3 2 1 2 

27 3 3 2 1 3 
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Table 3.3 L27(3
5) OA with 5 factors at three levels 

Run 

no. 

Catalyst 

type 

Catalyst 

loading 

(wt.%) 

Methanol 

to oil 

molar 

ratio  

Reaction 

time 

(min) 

Microwave 

power (W) 

1 CF 7 9 5 350 

2 CF 7 9 5 400 

3 CF 7 9 5 450 

4 CF 9 12 7 350 

5 CF 9 12 7 400 

6 CF 9 12 7 450 

7 CF 12 15 9 350 

8 CF 12 15 9 400 

9 CF 12 15 9 450 

10 PV 7 12 9 350 

11 PV 7 12 9 400 

12 PV 7 12 9 450 

13 PV 9 15 5 350 

14 PV 9 15 5 400 

15 PV 9 15 5 450 

16 PV 12 9 7 350 

17 PV 12 9 7 400 

18 PV 12 9 7 450 

19 AG 7 15 7 350 

20 AG 7 15 7 400 

21 AG 7 15 7 450 

22 AG 9 9 9 350 

23 AG 9 9 9 400 

24 AG 9 9 9 450 

25 AG 12 12 5 350 

26 AG 12 12 5 400 

27 AG 12 12 5 450 
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3.5 Analysis of Variance (ANOVA) 

     ANOVA, or Analysis of Variance, is a statistical method used to compare the means 

of two or more groups. It helps determine if there are significant differences among the 

means of the groups being compared. The technique involves partitioning the total variability 

in the data into different components to evaluate the variation between groups and within 

groups. By comparing the variation between groups to the variation within groups, ANOVA 

assesses if the observed differences in means are statistically significant. 

     The ANOVA process involves several steps. First, hypotheses are formulated, with 

the null hypothesis assuming no significant differences among the group means and the 

alternative hypothesis suggesting at least one group mean is significantly different. Next, 

variability is calculated using sum of squares (SS) for each source of variation, including 

total sum of square (SST), SS between groups and SS within groups. DOF are calculated for 

each source of variation, and mean squares are obtained by dividing the SS by the 

corresponding DOF. The F-value is then calculated as the ratio of the MS between groups 

to the MS within groups. By comparing the F-value to the critical value or calculating the 

P-value, a decision is made regarding the rejection or acceptance of the null hypothesis. 

     ANOVA is a widely used statistical technique in various fields. It provides a reliable 

method to compare means and determine if differences among groups are statistically 

significant. By utilizing ANOVA, researchers can gain insights into the effects of different 

factors or treatments on the mean outcome, making it valuable for experimental studies and 

hypothesis testing. ANOVA's versatility allows for the examination of multiple groups or 

treatments simultaneously, making it a powerful tool for analyzing data with complex 

designs. 
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3.6 MATLAB 

MATLAB, short for "MATrix LABoratory," is a powerful numerical computing and 

programming software developed by MathWorks which is co-founded by Jack Little and 

Cleve Moler. MATLAB provides a comprehensive environment for algorithm development, 

data analysis, visualization and numerical computations. With its extensive library of 

functions and toolboxes, MATLAB enables engineers, scientists and researchers to work 

with matrices, vectors and arrays, perform mathematical operations, optimize algorithms, 

process signals and images, design control systems and implement machine learning 

techniques. Its user-friendly programming language and interactive environment facilitate 

rapid prototyping and exploration of algorithms.   

MATLAB's exceptional plotting and visualization capabilities allow for the creation 

of 2D and 3D plots, histograms, surface plots, animations and interactive graphics. It also 

has a vibrant user community and a File Exchange platform for sharing codes and toolboxes. 

Widely used in academia, research institutions and industries such as engineering, finance 

and data analytics. MATLAB is a versatile tool for solving complex mathematical problems, 

analyzing data and facilitating research and development across various fields. MATLAB 

software was widely employed by numerous studies for outcome prediction (Agus Haryanto 

et al., 2020; Farobie et al., 2015; Kumar et al., 2023; Okonkwo et al., 2023; Vinoth Arul Raj 

et al., 2021). In this study, the Neural Network (nntool) command in MATLAB R2021a is 

utilized for modelling and training of ANN. 
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3.7 Levenberg-Marquardt (LM) Algorithm 

Levenberg-Marquardt is type of backpropagation algorithm which operates on the 

error-back propagation principle. It was utilized in numerous studies for the training of ANN 

because it consistently achieved the highest R2 value and demonstrated the lowest standard 

deviation and MSE, outperforming other algorithms (A. V. S. L. Sai et al., 2019; Agus 

Haryanto et al., 2020; Farobie et al., 2015; Kılıç et al., 2020; Mogilicharla & Reddy, 2021; 

Okonkwo et al., 2023; Sai Bharadwaj, Singh, et al., 2019; Vinoth Arul Raj et al., 2021). 

The Levenberg-Marquardt (LM) algorithm is commonly used as an optimization 

technique for training ANNs. It combines the steepest descent method with the Gauss-

Newton method to iteratively minimize the error between the predicted output and the 

desired output. By adjusting a damping parameter, the algorithm finds a balance between the 

two methods, allowing it to converge quickly even in complex, non-linear error surfaces. 

The algorithm calculates the gradient of the error with respect to the weights and biases of 

the network using backpropagation and updates them in a way that progressively reduces the 

error. This algorithm is widely utilized in training various types of ANNs and its 

effectiveness makes it a popular choice in the field. 

 

3.8 Tangent-Sigmoid Function 

     The TANSIG function is employed to convert input values, spanning from negative 

to positive infinity, into a more manageable range of -1 to 1. Neurons incorporating this 

function are commonly utilized in back-propagation networks. The TANSIG function finds 

application in various research endeavors aimed at training ANN (A. V. S. L. Sai et al., 2019; 

Agrawal et al., 2020; Sai Bharadwaj et al., 2023; Sai Bharadwaj, Singh, et al., 2019). 



 

49 

 

3.9 Coefficient of Determination (R2) 

     The coefficient of determination, also known as R-values or R2 is a statistical measure 

used to assess the goodness of fit of a regression model. R2 represents the proportion of the 

variance in the dependent variable that can be explained by the independent variable(s) in 

the model. It is a value ranging from 0 to 1, where 0 indicates that the model does not explain 

any of the variability in the dependent variable, and 1 indicates that the model perfectly 

explains all the observed variance. In essence, R2 measures the extent to which the 

independent variable(s) account for the variability in the dependent variable. It serves as an 

indicator of the strength of the relationship between the independent and dependent 

variables.  

However, it is important to note that R2 does not determine causality or the validity 

of the model itself. Therefore, it is essential to consider other statistical measures and 

contextual factors when interpreting the R2 value and assessing the effectiveness of a 

regression model. R2 can be expressed in Equation 3.1: 

 

𝑅2 = 1 − ∑ (𝑧𝑖 − �̂�𝑖)
𝑛
𝑖=0 /(𝑧𝑖 − 𝑧𝑚)--------------------     ----(3.1) 

 

where n is the total number of observations or runs, �̂�𝑖 is the experimental value and  𝑧𝑖 is 

the estimated value. 

 

3.10 Mean Square Error (MSE) 

     A MSE is a statistical metric used to evaluate the accuracy and goodness of fit of a 

regression model. It measures the average squared difference between the predicted values 
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generated by the model and the actual values of the dependent variable. The MSE provides 

a way to quantify how well the model's predictions align with the observed data. To calculate 

the MSE, the differences between the predicted and actual values are squared to ensure 

positive values and emphasize larger errors. These squared differences are then averaged 

over the entire dataset, resulting in a single value that represents the average magnitude of 

the prediction errors.  

A lower MSE indicates a better fit, with smaller prediction errors and closer 

alignment between the model's predictions and the actual data. The MSE is a widely used 

measure because it considers all the data points in the evaluation and penalizes larger errors 

more than smaller ones due to the squaring operation. However, it is sensitive to outliers as 

they can significantly influence the squared differences. Researchers and practitioners often 

employ MSE as a loss function to train and optimize regression models, aiming to minimize 

it and improve the model's prediction accuracy. MSE are used to measure the performance 

of ANN in multiple studies (A. V. S. L. Sai et al., 2019; Farobie et al., 2015; Filho & Viegas, 

2018; Okonkwo et al., 2023; Sai Bharadwaj et al., 2023; Vinoth Arul Raj et al., 2021). MSE 

value is defined in Equation 3.2: 

 

𝑀𝑆𝐸 =
1

𝑛
∑ (�̂�𝑖 − 𝑧𝑖)

2𝑛
𝑛=1 --------------------  ------------(3.2) 

 

where 𝑛 is the total number of observations or data points in the dataset, �̂�𝑖 is the 

experimental value and  𝑧𝑖 is the estimated value.  
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3.11 ANN Training Setting 

     By using nntool command in MATLAB 2021a, modelling setting of the ANN model 

is as shown in Figure 3.2. Feed-forward backpropagation network is used. Input data and 

target data needed to be converted to numeric array to import into MATLAB. TRAINLM 

which is LM algorithm and transfer function TANSIG is used. The performance is in terms 

of MSE. The number of layers (2) consists of one hidden layer and one output layer. The 

number of neurons can be adjustable according to the performance. 

 

 

Figure 3.2 ANN modelling setting 
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RESULTS AND DISCUSSION 

4.1 Introduction 

     The Taguchi experimental design is utilized to examine the influence of different 

process parameters on both the quality and yield of biodiesel. Key parameters of interest 

include catalyst type, catalyst loading, methanol to oil molar ratio, reaction time and 

microwave power. Predicting the optimal combination of these parameters through regular 

experimentation can be challenging and time-consuming. The Taguchi optimization 

technique offers a systematic approach to minimize the number of experiments required 

while still obtaining significant results. This method allows for efficient and effective 

exploration of process parameters to optimize the quality and yield of biodiesel. 

The SNR is utilized in prediction of the optimum combination of process factors, The 

Taguchi optimization technique evaluates the response of different process parameters and 

determines the optimal response based on the highest SNR value. This helps identify the 

settings that yield the most favourable outcomes in terms of quality and yield of biodiesel. 

The SNR is calculated based on three conditions as described by specific equations. While 

SNR helps in predicting the optimal response, it does not provide information about the not 

only determines the optimal response but also provides valuable insights into the 

contribution and influence of each input parameter on the output. This information helps in 

understanding the relative importance of different factors and their impact on the quality and 

yield of biodiesel production. To address this, the ANOVA test is used. The F-value (Fisher 

Test) obtained from ANOVA analysis indicates the significance of individual parameters in 
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affecting the output response, while the P-value indicates the probability of obtaining the 

observed F-value or a more extreme value if the null hypothesis is true. In the context of 

statistical analysis, it is used to determine the statistical significance of the observed data and 

assess whether the results are likely due to chance or if there is a genuine effect or 

relationship present. (Aniza et al., 2022; Kılıç et al., 2020). 

ANN has arisen as a powerful tool for solving complex engineering problems and 

have gained significant popularity in recent years, particularly for predicting and optimizing 

nonlinear processes. ANN functions as a predictive model inspired by the biological neural 

system, employing interconnected neurons with adjustable synaptic weights. 

The accuracy of predictions achieved by ANN surpasses that of many other statistical 

techniques, making it highly reliable for various applications. Consequently, in this study, 

the effectiveness of the optimum combination obtained from the Taguchi optimization 

technique is further validated using ANN. By comparing the experimental results with the 

predicted results, one can assess the accuracy and validity of the predictive model or 

equation, the closeness of the match confirms the efficacy of the identified optimum 

combination. This validation process strengthens the confidence in the reliability and 

accuracy of the chosen combination of process parameters (A. V. S. L. Sai et al., 2019; Kılıç 

et al., 2020). 
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4.2 Characteristics of Oils 

     Properties of JCO and RSO including acid number, kinematic viscosity at 40℃, 

density at 15℃, water content, iodine value and colour were tested using standard method 

as shown in Table 4.1. JCO has an acid number of 36.5 mg KOH/g, 34.94 mm2/s, 0.9133 

kg/L, 0.3 wt.%, 106.3 g Iodine/100g and golden yellow in colour while RSO has an acid 

number of 104.74 mg KOH/g, 36.96 mm2/s, 0.9848 kg/L, 0.49 wt.%, 139 g Iodine/100g and 

dark brown in colour. 

 

Table 4.1 Properties of crude JCO and RSO 
Test Unit Method JCO RSO 

Acid Number mg KOH/g ASTM D664 36.50 104.74 

Kinematic Viscosity 

@ 40℃ 

mm2/s ASTM D445 34.94 36.96 

Density @ 15℃ kg/L ASTM D4052 0.9133 0.9848 

Water Content wt.% EN ISO 12937 0.30 0.49 

Iodine Value g Iodine/100g AOCS Cd 1d-92 106.3 139 

Colour - - Golden yellow Dark brown 

  

 

   

4.3 Taguchi Orthogonal Array L27(35) 

     Based on the OA design L27(3
5), total of 27 experiments with 5 factors at 3 levels 

were done in previous study for both RSO and JCO biodiesel. The experimental results 

which is the biodiesel yield were recorded in Table 4.2 (RSO) and Table 4.3 (JCO). For 

RSO, highest yield was obtained at the 16th run of the experiments which is 96.2% with 12 

wt.% of PV catalyst, 1:9 methanol to oil molar ratio, reaction time of 7 mins and microwave 

power of 350 W. For JCO, Highest yield was obtained at the 8th run of the experiments 
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which is 95.26% with 12 wt.% of AG catalyst, 1:15 methanol to oil molar ratio, reaction time 

of 9 mins and microwave power of 400 W. 

 

Table 4.2 OA L27(3
5)  experimental matrix for RSO 

Run 

no. 

Catalyst 

type 

Catalyst 

loading (wt%) 

Molar ratio 

methanol to oil 

Reaction 

time (min) 

Microwave 

power (W) 

Yield 

(%) 

1 CF 7 9 5 350 87.30 

2 CF 7 9 5 400 88.60 

3 CF 7 9 5 450 87.80 

4 CF 9 12 7 350 94.20 

5 CF 9 12 7 400 95.20 

6 CF 9 12 7 450 94.80 

7 CF 12 15 9 350 93.60 

8 CF 12 15 9 400 95.60 

9 CF 12 15 9 450 94.40 

10 PV 7 12 9 350 90.20 

11 PV 7 12 9 400 90.80 

12 PV 7 12 9 450 89.60 

13 PV 9 15 5 350 91.80 

14 PV 9 15 5 400 92.60 

15 PV 9 15 5 450 92.30 

16 PV 12 9 7 350 96.20 

17 PV 12 9 7 400 95.80 

18 PV 12 9 7 450 96.10 

19 AG 7 15 7 350 91.50 

20 AG 7 15 7 400 92.20 

21 AG 7 15 7 450 91.60 

22 AG 9 9 9 350 90.50 

23 AG 9 9 9 400 92.30 

24 AG 9 9 9 450 91.10 

25 AG 12 12 5 350 93.50 

26 AG 12 12 5 400 95.20 

27 AG 12 12 5 450 94.10 

*Highlighted: Optimum yield 
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Table 4.3 OA L27(3
5) experimental matrix for JCO 

Run 

no. 

Catalyst 

type 

Catalyst 

loading (wt%) 

Molar ratio 

methanol to oil 

Reaction 

time (min) 

Microwave 

power (W) 

Yield 

(%) 

1 CF 7 9 5 350 86.40 

2 CF 7 9 5 400 86.30 

3 CF 7 9 5 450 87.20 

4 CF 9 12 7 350 92.38 

5 CF 9 12 7 400 93.80 

6 CF 9 12 7 450 92.69 

7 CF 12 15 9 350 92.70 

8 CF 12 15 9 400 95.26 

9 CF 12 15 9 450 95.15 

10 PV 7 12 9 350 87.40 

11 PV 7 12 9 400 90.40 

12 PV 7 12 9 450 89.60 

13 PV 9 15 5 350 91.30 

14 PV 9 15 5 400 90.80 

15 PV 9 15 5 450 90.50 

16 PV 12 9 7 350 94.68 

17 PV 12 9 7 400 93.50 

18 PV 12 9 7 450 94.82 

19 AG 7 15 7 350 91.20 

20 AG 7 15 7 400 92.50 

21 AG 7 15 7 450 91.70 

22 AG 9 9 9 350 92.34 

23 AG 9 9 9 400 93.26 

24 AG 9 9 9 450 91.65 

25 AG 12 12 5 350 93.50 

26 AG 12 12 5 400 92.67 

27 AG 12 12 5 450 93.60 

*Highlighted: Optimum yield 
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4.3.1 Signal-to-noise Ratio (SNR) 

By using the appropriate SNR formula based on the response type, the Taguchi 

method aims to find the optimal levels of input factors that maximize the SNR and minimize 

the impact of noise factors, leading to improved product or process quality. To obtain the 

highest yield, the larger-the-better type of SNR was utilized for both RSO and JCO. Table 

4.4 and 4.5 present the OA L27(3
5) along with the SNR for RSO and JCO, respectively. A 

higher yield often means a stronger signal output. A stronger signal is generally easier to 

distinguish from background noise, leading to a higher SNR. For RSO, the highest SNR is 

39.66 while for JCO, the highest SNR is 39.58 as highlighted. 
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Table 4.4 SNR of OA L27(3
5) for RSO 

Run 

no. 

Catalyst 

type 

Catalyst 

loading 

(wt.%) 

Methanol to 

oil molar 

ratio 

Reaction 

time (min) 

Microwave 

power (W) 

Yield 

(%) 
SNR 

1 CF 7 9 5 350 87.3 38.82 

2 CF 7 9 5 400 88.6 38.95 

3 CF 7 9 5 450 87.8 38.87 

4 CF 9 12 7 350 94.2 39.48 

5 CF 9 12 7 400 95.2 39.57 

6 CF 9 12 7 450 94.8 39.54 

7 CF 12 15 9 350 93.6 39.43 

8 CF 12 15 9 400 95.6 39.61 

9 CF 12 15 9 450 94.4 39.50 

10 PV 7 12 9 350 90.2 39.10 

11 PV 7 12 9 400 90.8 39.16 

12 PV 7 12 9 450 89.6 39.05 

13 PV 9 15 5 350 91.8 39.26 

14 PV 9 15 5 400 92.6 39.33 

15 PV 9 15 5 450 92.3 39.30 

16 PV 12 9 7 350 96.2 39.66 

17 PV 12 9 7 400 95.8 39.63 

18 PV 12 9 7 450 96.1 39.65 

19 AG 7 15 7 350 91.5 39.23 

20 AG 7 15 7 400 92.2 39.29 

21 AG 7 15 7 450 91.6 39.24 

22 AG 9 9 9 350 90.5 39.13 

23 AG 9 9 9 400 92.3 39.30 

24 AG 9 9 9 450 91.1 39.19 

25 AG 12 12 5 350 93.5 39.42 

26 AG 12 12 5 400 95.2 39.57 

27 AG 12 12 5 450 94.1 39.47 

*Highlighted: Optimum yield & SNR 
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Table 4.5 SNR of OA L27(3
5) for JCO 

Run 

no. 

Catalyst 

type 

Catalyst 

loading 

(wt.%) 

Methanol to 

oil molar 

ratio 

Reaction 

time (min) 

Microwave 

power (W) 

Yield 

(%) 
SNR 

1 CF 7 9 5 350 86.40 38.73 

2 CF 7 9 5 400 86.30 38.72 

3 CF 7 9 5 450 87.20 38.81 

4 CF 9 12 7 350 92.38 39.31 

5 CF 9 12 7 400 93.80 39.44 

6 CF 9 12 7 450 92.69 39.34 

7 CF 12 15 9 350 92.70 39.34 

8 CF 12 15 9 400 95.26 39.58 

9 CF 12 15 9 450 95.15 39.57 

10 PV 7 12 9 350 87.40 38.83 

11 PV 7 12 9 400 90.40 39.12 

12 PV 7 12 9 450 89.60 39.05 

13 PV 9 15 5 350 91.30 39.21 

14 PV 9 15 5 400 90.80 39.16 

15 PV 9 15 5 450 90.50 39.13 

16 PV 12 9 7 350 94.68 39.53 

17 PV 12 9 7 400 93.50 39.42 

18 PV 12 9 7 450 94.82 39.54 

19 AG 7 15 7 350 91.20 39.20 

20 AG 7 15 7 400 92.50 39.32 

21 AG 7 15 7 450 91.70 39.25 

22 AG 9 9 9 350 92.34 39.31 

23 AG 9 9 9 400 93.26 39.39 

24 AG 9 9 9 450 91.65 39.24 

25 AG 12 12 5 350 93.50 39.42 

26 AG 12 12 5 400 92.67 39.34 

27 AG 12 12 5 450 93.60 39.43 

*Highlighted: Optimum yield & SNR 
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Table 4.6 Response table for RSO SNR 

Level 
Catalyst 

type 

Catalyst 

loading 

(wt.%) 

Methanol to oil 

molar ratio 

Reaction 

time (min) 

Microwave 

power (W) 

1 39.31 39.08 39.25 39.22 39.28 

2 39.35 39.35 39.37 39.48 39.38 

3 39.32 39.55 39.35 39.27 39.31 

Delta 0.04 0.47 0.13 0.26 0.10 

Rank 5 1 3 2 4 

*Highlighted: Optimum SNR 

 

Table 4.7 Response table for JCO SNR 

Level 
Catalyst 

type 

Catalyst 

loading 

(wt.%) 

Methanol to oil 

molar ratio 

Reaction 

time (min) 

Microwave 

power (W) 

1 39.21 39.00 39.19 39.11 39.21 

2 39.22 39.28 39.25 39.37 39.28 

3 39.32 39.46 39.31 39.27 39.26 

Delta 0.12 0.46 0.12 0.27 0.07 

Rank 4 1 3 2 5 

*Highlighted: Optimum SNR 
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Figure 4.1  SNR main effects plot of RSO 

 

 
 Figure 4.2 SNR main effects plot of JCO 
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      27 experiments for each biodiesel were conducted based on the design matrix of L27 

orthogonal array in previous study and the output response yield of the biodiesel is presented 

in Table 4.2 (RSO) and Table 4.3 (JCO). In order to predict the optimum combination of 

variable process parameters such as type of catalyst, catalyst concentration, methanol to oil 

molar ratio, reaction time and microwave power from the set of 27 experiments, SNR was 

used. The SNR measures the impact of noise factors on the process parameters and these 

noise factors cannot be controlled during the experimental process. Therefore, these factors 

cause variations in response data and need to be considered while analyzing the results. In 

general, the prediction of SNR is based on three mathematical equations (1-3): nominal-the-

better, larger-the-better is better, smaller-the-better. In this endeavor, the objective is to 

increase the yield of biodiesel. Therefore, larger-the-better was chosen for SNR. 

     The order of influence of the parameters on RSO yield was B (catalyst loading) > D 

(reaction time) > C (methanol to oil molar ratio) > E (microwave power) > A (catalyst type) 

as shown in Table 4.6. For JCO yield, the order of influence of the parameters was B (catalyst 

loading) > D (reaction time) > C (methanol to oil molar ratio) > A (catalyst type) > E 

(microwave power) as shown in Table 4.7. The numerical value of the maximum point in 

each graph indicates the optimum range of the experimental conditions. Based on the SNR 

plots as shown in Figure 4.1, the optimum parameters for RSO were A (catalyst type) at level 

2 (PV), B (catalyst loading) at level 3 (12 wt.%), C (methanol to oil molar ratio) at level 2 

(1:12), D (reaction time) at level 2 (7 mins) and E (microwave power) at level 2 (400 W). 

For JCO, the optimum parameters for RSO were A (catalyst type) at level 3 (AG), B (catalyst 

loading) at level 3 (12 wt.%), C (methanol to oil molar ratio) at level 2 (1:15), D (reaction 

time) at level 2 (7 mins) and E (microwave power) at level 2 (400 W) as shown in Figure 

4.2. 
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4.3.2 Analysis of Variance (ANOVA) 

     The Taguchi OA is employed to create an experimental design that efficiently 

investigates multiple factors with a reduced number of experiments. The mean square is 

calculated by summing the square of the SST and the sum of error sum of squares (SSE), 

which follows the ANOVA analysis. The resulting mean square is then used to generate an 

F-value. By referencing the F-distribution table, the corresponding P-value can be obtained. 

From the P-value, significance of each factor can be obtained. 

     ANOVA is used to model the relationship between 5 factors and one response. From 

the P value, significance of each factor can be obtained as shown in Table 4.4. P-value that 

greater than 0.05 is considered not significant. From here, factor A has a P-value of 0.083 

(>0.05) is considered not significant while factor B, C, D and E with P-value of 0 (<0.05) 

are considered significant in the ANOVA. Besides that, the R2 value obtained is 0.984 which 

is quite closer to 1. When R2 is closer to 1, it signifies a strong relationship between the 

independent and dependent variables in a regression model. This implies that a larger 

proportion of the variance in the dependent variable can be explained by the independent 

variable(s). In practical terms, a higher R2 suggests that the model's predictions are more 

accurate and closer to the actual values of the dependent variable. It indicates that the model 

has a better fit to the observed data, as it captures a significant amount of the variability in 

the dependent variable.  
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Table 4.8 ANOVA for RSO 
Source DOF SS MS F-value P-value Remarks 

Catalyst Type 2 0.00920 0.004600 3.09 0.074 Not Significant 

Catalyst Loading (wt.%) 2 0.99927 0.499634 335.12 0.000 Significant 

Methanol to Oil Molar Ratio 2 0.08554 0.042770 28.69 0.000 Significant 

Reaction Time (min) 2 0.32811 0.164056 110.04 0.000 Significant 

Microwave Power (W) 2 0.04647 0.023233 15.58 0.000 Significant 

Error 16 0.02385 0.001491    

Total 26 1.49244     

R2 0.984      

Adj R2 0.974      

 

Table 4.9 ANOVA for JCO 
Source DOF SS MS F-value P-value Remarks 

Catalyst Type 2 0.07232 0.036162 5.34 0.017 Significant 

Catalyst Loading (wt.%) 2 0.95711 0.478556 70.68 0.000 Significant 

Methanol to Oil Molar Ratio 2 0.06473 0.032363 4.78 0.024 Significant 

Reaction Time (min) 2 0.32617 0.163084 24.09 0.000 Significant 

Microwave Power (W) 2 0.02390 0.011948 1.76 0.203 Not Significant 

Error 16 0.10833 0.006771    

Total 26 1.55255     

R2 0.930      

Adj R2 0.887      
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4.4 ANN Modelling & Training 

     The ANN model was developed using MATLAB R2021a. The model was structured 

with three parts: the input layer, hidden layer and output layer and its architecture (5-10-1) 

is as shown in Figure 4.3. In the input layer, five neurons were allocated, each representing 

a specific variable: type of catalyst, catalyst loading (wt.%), methanol to oil molar ratio, 

reaction time (min) and microwave power (W). Single hidden layer is utilized in this 

research. Some researches suggested to use only 10 neurons. To determine the suitable layer 

size, several trials and errors were conducted, typically ranging from 2 to 20 neurons depends 

on the inputs. 4 sets of neurons number (5, 10, 15 and 20) are investigated for their 

performances as shown in Table 4.10. From the investigation, the optimum neurons number 

for RSO and JCO are 10. Conversely, only one output neuron was used to represent the 

biodiesel yield (%). 
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Figure 4.3 ANN architechture 5-10-1 

 

Table 4.10 Summary of performance for different number of neurons 

No. of neurons 
R2 

MSE 
Training Validation Test All 

RSO 

5 0.98312 0.99984 0.98753 0.98454 0.0036139 

10 0.99948 1 0.999 0.99953 5.64E-08 

15 0.57286 0.64485 0.96539 0.58989 7.6334 

20 0.96407 0.99999 0.99999 0.97288 3.57E-05 

JCO 

5 0.99738 0.98476 0.99364 0.9883 0.72827 

10 0.99679 0.99983 0.99998 0.99736 1.09E-03 

15 0.99503 0.99714 0.99519 0.9951 0.017904 

20 0.94417 0.99959 0.99994 0.97069 1.94E-02 

      *Highlighted: Best result 

 

      Both RSO and JCO dataset consisting of 27 combinations from Taguchi OA as 

shown in Table 4.2 (RSO) and 4.3 (JCO) were utilized in the training of ANN models. The 

training interface is as shown in Figure 4.4. The dataset was divided into three subsets by 
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default: 19 data (70%) for training, 4 data (15%) for validation and 4 data (15%) for testing 

purposes for each model. The selection of data for each subset was done randomly. The LM 

algorithm was employed during the training process to minimize the MSE. Besides that, 

TANSIG activation function is utilized for non-linear problem and minimization of MSE. 

The ANN model was trained multiple times to achieve highest R2 and lowest MSE. 

Concurrently, the R2 value was targeted to be near or exactly one which indicating a strong 

relationship between the predicted and actual yield values. These criteria ensured the 

accuracy and reliability of the trained ANN model. 

     Training was halted upon reaching predefined criteria, such as achieving a 

performance value of 0 or completing six validation checks. This termination criterion 

ensures that the neural network has adequately generalized to the dataset. Training was 

considered complete when the lowest MSE value was achieved and the R2 value approached 

or reached 1. Figure 4.5 demonstrates the R2 values for RSO and JCO respectively, providing 

insights into the training progress. For RSO, R2 of training, validation and test is 0.99948, 1, 

0.999 with an overall R2 of 0.99953. For JCO, R2 of training, validation and test is 0.99679, 

0.99983, 0.9998 with an overall R2 of 0.99736. R2 value between 0.7 to 1.0 is considered 

acceptable (Kılıç et al., 2020). This showed that the predicted and actual values have a strong 

correlation. 

Figure 4.6 demonstrates the MSE performance of the network. For RSO, the best 

validation performance is 5.6442e-08 at epoch 0. For JCO, the best validation performance 

is 0.0010897 at epoch 0. Trials and errors must be done to obtain the best R2 and lowest 

MSE. Once the best architecture is obtained, the ANN model is ready for prediction, 

enabling the estimation of yield based on new input data.  
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                                                 (a)                                                      (b) 

Figure 4.4 ANN training interface (a) RSO (b) JCO 

 

   
                                            (a)                                                            (b) 

Figure 4.5 Regression analysis (a) RSO (b) JCO 
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                                          (a)                                                         (b) 

Figure 4.6  MSE performance (a) RSO (b) JCO 

 

4.5 ANN Prediction 

Predictions done were recorded in Table 4.11 (RSO) and Table 4.12 (JCO). Lastly, 

the percentage error of actual result and predicted result were calculated. Comparison of 

experimental and ANN prediction were plotted as shown in Figure 4.7. The highest yield of 

actual result is 16th run for RSO and 8th run for JCO. The chosen ANN models predicted 

the highest yield for RSO and JCO correctly. Next, the optimization combinations of RSO 

and JCO from TM were inputed and the predictions are as shown in Table 4.13.  
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Table 4.11 ANN Prediction for RSO 

Catalyst 

Type 

Catalyst 

Loading 

(wt.%) 

Methanol to oil 

molar ratio 

Reaction 

Time 

(min) 

Microwave 

Power (W) 

Yield 

(%) 

ANN 

Predicted 

% 

Error 

CF 7 9 5 350 87.30 87.32 0.02 

CF 7 9 5 400 88.60 88.48 0.14 

CF 7 9 5 450 87.80 87.76 0.05 

CF 9 12 7 350 94.20 94.16 0.04 

CF 9 12 7 400 95.20 95.20 0.00 

CF 9 12 7 450 94.80 94.53 0.28 

CF 12 15 9 350 93.60 93.60 0.00 

CF 12 15 9 400 95.60 95.60 0.00 

CF 12 15 9 450 94.40 94.40 0.00 

PV 7 12 9 350 90.20 90.45 0.28 

PV 7 12 9 400 90.80 90.80 0.00 

PV 7 12 9 450 89.60 89.50 0.11 

PV 9 15 5 350 91.80 91.80 0.00 

PV 9 15 5 400 92.60 92.60 0.00 

PV 9 15 5 450 92.30 92.30 0.00 

PV 12 9 7 350 96.20 96.20 0.00 

PV 12 9 7 400 95.80 95.80 0.00 

PV 12 9 7 450 96.10 96.10 0.00 

AG 7 15 7 350 91.50 91.50 0.00 

AG 7 15 7 400 92.20 92.20 0.00 

AG 7 15 7 450 91.60 91.60 0.00 

AG 9 9 9 350 90.50 90.50 0.00 

AG 9 9 9 400 92.30 92.30 0.00 

AG 9 9 9 450 91.10 91.10 0.00 

AG 12 12 5 350 93.50 93.50 0.00 

AG 12 12 5 400 95.20 95.20 0.00 

AG 12 12 5 450 94.10 94.09 0.01 

  *Highlighted: Optimum yield 
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Table 4.12 ANN Prediction for JCO 

Catalyst 

Type 

Catalyst 

Loading 

Methanol to oil 

molar ratio 

Reaction 

Time 

(min) 

Microwave 

Power (W) 

Yield 

(%) 

ANN 

Predicted 

% 

Error 

CF 7 9 5 350 86.40 86.37 0.03 

CF 7 9 5 400 86.30 86.33 0.03 

CF 7 9 5 450 87.20 87.10 0.11 

CF 9 12 7 350 92.38 92.37 0.01 

CF 9 12 7 400 93.80 93.80 0.00 

CF 9 12 7 450 92.69 92.69 0.00 

CF 12 15 9 350 92.70 92.95 0.27 

CF 12 15 9 400 95.26 95.22 0.04 

CF 12 15 9 450 95.15 95.16 0.01 

PV 7 12 9 350 87.40 87.40 0.00 

PV 7 12 9 400 90.40 89.73 0.74 

PV 7 12 9 450 89.60 89.60 0.00 

PV 9 15 5 350 91.30 91.33 0.03 

PV 9 15 5 400 90.80 90.66 0.15 

PV 9 15 5 450 90.50 90.53 0.03 

PV 12 9 7 350 94.68 94.68 0.00 

PV 12 9 7 400 93.50 93.51 0.01 

PV 12 9 7 450 94.82 94.82 0.00 

AG 7 15 7 350 91.20 91.13 0.08 

AG 7 15 7 400 92.50 92.51 0.01 

AG 7 15 7 450 91.70 91.79 0.10 

AG 9 9 9 350 92.34 92.59 0.27 

AG 9 9 9 400 93.26 93.84 0.62 

AG 9 9 9 450 91.65 91.65 0.00 

AG 12 12 5 350 93.50 93.51 0.01 

AG 12 12 5 400 92.67 92.68 0.01 

AG 12 12 5 450 93.60 93.60 0.00 

  *Highlighted: Optimum yield 
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(a)                                                                                                              (b)  

Figure 4.7  Graph of experimental and ANN predicted yield for 27 runs (a) RSO (b) JCO 

 

Table 4.13 TM & ANN prediction of optimization data 

Biodiesel 
Catalyst 

type 

Catalyst 

loading 

(wt.%) 

Methanol to oil 

molar ratio 

Reaction 

time (min) 

Microwave 

power (W) 

Experimental 

Yield 

Taguchi 

Prediction 

Error 

(%) 

ANN 

Prediction 

Error 

(%) 

RSO PV 12 12 7 400 96.61 97.95 1.39 96.10 0.53 

JCO AG 12 15 7 400 95.88 96.90 1.06 95.24 0.67 
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     Table 4.13 presents the optimum combinations for RSO and JCO based on the TM, 

including their experimental yields, as well as the predicted yields and percentage errors 

obtained through both TM and ANN. For RSO, the optimal conditions involve a 12 wt.% 

PV catalyst, a 1:12 methanol to oil molar ratio, a reaction time of 7 minutes, and 400 W 

microwave power. The experimental yield achieved for RSO is 96.61%, while TM and ANN 

predicted yields of 97.95% and 96.10%, respectively. The percentage error for TM is 1.39%, 

and for ANN, it is 0.53%. Similarly, the optimal combination for JCO includes a 12 wt.% 

AG catalyst, a 1:15 methanol to oil molar ratio, a reaction time of 7 minutes, and 400 W 

microwave power. The experimental yield for JCO is 95.88%, with TM and ANN predicting 

yields of 96.90% and 95.24%, respectively. The percentage error for TM is 1.06%, and for 

ANN, it is 0.67%. 

     In conclusion, the outcomes of this study reveal that both the TM and ANN 

demonstrate a high level of accuracy in predicting yields, with percentage errors of 1.39% 

and 0.53% for TM and 1.06% and 0.67% for ANN in the case of RSO and JCO, respectively. 

These results affirm the efficacy of both optimization approaches in reliably forecasting 

yields within a narrow margin of error, highlighting their suitability for predicting outcomes 

in the given experimental condition. 

 

 

 

 



 

74 

 

  

CONCLUSION AND RECOMMENDATION 

 

5.1 Conclusion 

     This study, titled "Integrating Taguchi Method and Artificial Neural Network for 

Predicting and Maximizing of RSO and JCO Biodiesel Yield," aimed to investigate the 

combined application of the TM and ANN in optimizing biodiesel production processes. 

Focusing on the synthesis of RSO and JCO biodiesel, the study assessed the predictive 

capabilities of TM and ANN to achieve optimal yields. 

     The experimental results, meticulously documented in Table 4.13, underscore the 

successful integration of TM and ANN in predicting optimal conditions for RSO and JCO 

biodiesel production. The identified optimal parameters, encompassing catalyst type, 

catalyst loading, methanol to oil molar ratio, reaction time and microwave power, highlight 

the potential of this integrated approach to significantly enhance yield outcomes. 

     The yields obtained through experimentation closely aligned with predictions from 

both TM and ANN, exhibiting percentage errors well within acceptable margins. 

Specifically, for RSO, the experimental yield was 96.61%, while TM and ANN predicted 

yields of 97.95% and 96.10%, respectively. Similarly, for JCO, the experimental yield was 

95.88%, with TM and ANN predicting yields of 96.90% and 95.24%, respectively. 

     This convergence between experimental and predicted outcomes substantiates the 

efficacy and reliability of the integrated TM and ANN methodology in optimizing biodiesel 

production processes. The identified optimal conditions, specifically tailored for RSO and 

JCO, serve as a robust foundation for further research and potential application in industrial-

scale biodiesel production. 
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5.2 Recommendations 

     Firstly, it is advisable to conduct further optimization studies encompassing a broader 

spectrum of input parameters and conditions. This expanded exploration would enhance the 

depth of our understanding of optimal process conditions, potentially leading to even higher 

yields and a more robust model. 

     Secondly, a sensitivity analysis on the input parameters should be undertaken to 

gauge the model's robustness. Understanding the model's sensitivity to variations in input 

parameters will contribute to the reliability of predictions, ensuring that the integrated TM 

and ANN model can adapt to real-world variations. 

     Moreover, continuous experimental validation is paramount to confirming the 

reliability of the model under diverse conditions. Additional experiments should be 

conducted to validate the predictive capabilities of the integrated approach across different 

feedstocks and reaction conditions, thereby fortifying its practical applicability. 

     Furthermore, an economic feasibility analysis should be integrated into future 

research endeavors. This analysis would evaluate the cost-effectiveness of implementing the 

optimized conditions for large-scale biodiesel production, considering factors such as raw 

material costs, energy consumption and catalyst expenses. 

     Finally, the integration of contemporary machine learning methodologies enhances 

the robustness of our approach. Leveraging cloud services, encompassing modeling, 

training, and deployment, streamlines the implementation of our model. Moreover, 

employing APIs or endpoints for deployment facilitates convenient access to the predictive 

model. This modernized approach not only ensures efficiency but also aligns with current 

trends in machine learning, fostering a more dynamic and responsive framework. 
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5.3 Project Potential 

     The successful integration of the TM and ANN in predicting and maximizing RSO 

and JCO biodiesel yields unveils substantial potential for impactful projects within the 

biodiesel production domain. This integrated methodology stands poised to enhance overall 

biodiesel production efficiency. By accurately predicting optimal conditions for the 

synthesis of RSO and JCO biodiesel, the project addresses a crucial aspect of the production 

process, potentially leading to increased yields. The streamlined processes not only reduce 

resource consumption but also minimize waste, contributing to a more sustainable and 

efficient biodiesel production landscape. 

     Furthermore, the project has the potential to optimize costs associated with industrial-

scale biodiesel production. The identified optimal parameters, serving as valuable insights, 

offer the prospect of cost reduction by minimizing the need for extensive experimentation 

and refining production processes. This economic feasibility can enhance the attractiveness 

of large-scale biodiesel production, aligning with industry goals of sustainability and 

economic viability. 

     A notable strength of the project lies in its adaptability to different feedstocks beyond 

RSO and JCO. This versatility opens avenues for tailoring the optimization approach to 

various raw materials, broadening the application of the technology across diverse biodiesel 

production scenarios. As such, the project paves the way for customizable and efficient 

biodiesel production strategies that can be tailored to specific feedstock characteristics. 

     Beyond its immediate applications, the project contributes to broader sustainability 

and environmental impact objectives. Improving biodiesel yield efficiency aligns with global 

efforts to transition towards renewable energy sources, thereby reducing greenhouse gas 
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emissions and mitigating the environmental footprint associated with conventional fossil 

fuels. 

     The integration of the project's findings and optimized conditions with existing 

industry practices represents a seamless progression towards industry standards. This 

potential for integration can catalyze advancements in biodiesel production methodologies, 

making a positive and lasting impact on the industry's operational norms and practices. 

     Moreover, the success of this project opens the door to further research opportunities. 

Future investigations could explore additional parameters, alternative feedstocks and 

refinements to the methodology, thereby ensuring continuous advancements in biodiesel 

production optimization. This ongoing pursuit of knowledge can further solidify the project's 

standing as a catalyst for innovation within the biodiesel industry. 

     In conclusion, the integration of TM and ANN for RSO and JCO biodiesel production 

holds considerable potential to revolutionize biodiesel production. From increased efficiency 

and cost savings to broader sustainability impacts, the project signifies numerous 

opportunities for transformative projects that align with the evolving landscape of 

sustainable energy production. 
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