

Faculty of Electronic and Computer Technology and Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

MUHAMMAD ZAKWAN BIN MUHAMAD

Bachelor of Computer Engineering Technology (Computer Systems) with Honours

DESIGN OF RAPID DRYING SHOES USING ESP32 CONTROLLER

MUHAMMAD ZAKWAN BIN MUHAMAD

A project report submitted in partial fulfillment of the requirements for the degree of Bachelor of Computer Engineering Technology (Computer Systems) with Honours

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2024

UNIVERSITI TEKNIKAL MALAYSIA MELAKA Fakulti teknologi dan kejuruteraan elektronik dan komputer borang pengesahan status laporan

PROJEK SARJANA MUDA II

Tajuk Projek : Design of Rapid Drying Shoes Using ESP32 Controller

Sesi Pengajian : Semesta 2 2023/2024

Saya Muhammad Zakwan Bin Muhamad . mengaku membenarkan laporan Projek Sarjana

- Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:
- 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
 - 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I declare that this project report entitled "Design Of Rapid Drying Shoes Using ESP32 Controller" is the result of my own research except as cited in the references. The project report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

LAYSIA Signature MUHAMMAD ZAKWAN BIN MUHAMAD Student Name • 15 January 2024 Date UNIVERSITI TEKNIKAL MALAYSIA MELAKA

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report is adequate in terms of scope and quality for the award of the degree of Bachelor of Computer Engineering Technology (Computer Systems) with Honours.

Signature : AALAYS/A Supervisor Name TS NADZRIE BIN MOHAMOOD : Date 21.02.2024 : **UNIVERSITI TEKNIKAL MALAYSIA MELAKA**

DEDICATION

To my cherished family, your unwavering tolerance, support, and understanding have provided the bedrock for my educational journey. Your love has been a wellspring of strength, especially during challenging moments. To my dearest friends: Navigating the intricacies of thesis writing was made enjoyable by your friendship and shared humor. Your presence has illuminated the academic path, turning it into a collective journey. I extend heartfelt gratitude to my mother for her constant guidance and my father, who tirelessly works to provide for the family; their indomitable spirit propels me through every page, every discovery, and every triumph. This thesis stands as a testament to the love and wisdom they bestowed upon me. To my mentors and advisors, who imparted knowledge, introduced me to new perspectives, and consistently guided me through mistakes, I express sincere appreciation.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ونيۈم سيتي تيكنيكل مليسيا ملاك

ABSTRACT

This project aims to address the problem of the lack of efficient and quick shoe drying solutions, especially during rainy weather conditions. Traditional drying methods are often cumbersome and ineffective, leading to discomfort for us. To overcome this challenge, the objective of this project is to design and develop a shoe drying system that combines a temperature and humidity sensor with an ESP32 microcontroller. The proposed method involves the use of sensors to accurately monitor and control the temperature and humidity levels inside the shoes. Therefore, this system aims to provide quick and efficient drying while ensuring the maintenance of shoe quality. The result is the creation of a compact and efficient shoe drying device that can effectively control temperature and humidity, facilitating quick and effective shoe drying. This solution improves user comfort and hygiene, offering a practical and systematic approach to shoe drying.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

اونيۈم سيتى تيكنيكل مليسيا ملاك

ABSTRAK

Projek ini bertujuan untuk menangani masalah kekurangan penyelesaian pengeringan kasut yang cekap dan cepat, terutamanya semasa keadaan cuaca hujan. Kaedah pengeringan tradisional sering menyusahkan dan tidak berkesan, membawa kepada ketidakselesaan bagi kita. Untuk mengatasi cabaran ini, objektif projek ini adalah untuk mereka bentuk dan membangunkan sistem pengeringan kasut yang menggabungkan sensor suhu dan kelembapan dengan mikropengawal ESP32. Kaedah yang dicadangkan melibatkan penggunaan sensor untuk memantau dan mengawal tahap suhu dan kelembapan di dalam kasut dengan tepat. Oleh itu, sistem ini bertujuan untuk menyediakan pengeringan yang cepat dan cekap di samping memastikan penyelenggaraan kualiti kasut. Hasil diperoleh ialah penciptaan peranti pengeringan kasut yang padat dan cekap yang boleh mengawal suhu dan kelembapan dengan berkesan, memudahkan pengeringan kasut yang cepat dan berkesan. Penyelesaian ini meningkatkan keselesaan dan kebersihan pengguna, menawarkan pendekatan yang praktikal dan sistematik untuk pengeringan kasut.

ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisor, and my co-supervisor, TS Nadzrie Bin Mohamood, Nurliyana Binti Abd Mutalib for their valuable guidance, words of wisdom and patience throughout this project.

I am also indebted to Universiti Teknikal Malaysia Melaka (UTeM) for enabling me to complete this project. Not forgetting my colleague, Muhammad Fauzan Aziman Bin Muhd Fadhil and Nur Maisarah Binti Mohd Kamal for sharing their views and ideas on the project.

My deepest appreciation goes to my parents and family members for their love and prayers throughout my studies. Honourable mention also goes to my brother Muhammad Zazmi Bin Muhamad for all the motivation and understanding.

Finally, I would like to thank all the staff at FTKEK, colleagues and classmates, Faculty members, as well as other individuals not listed here for their cooperation and assistance.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TABLE OF CONTENTS

		PAGE
DEC	LARATION	
APP	ROVAL	
DED	DICATIONS	
ABS	TRACT	i
ABS	TRAK	ii
АСК	NOWLEDGEMENTS	iii
ТАВ	LE OF CONTENTS	iv
	T OF TABLES	vi
	T OF FIGURES	vii 1
1.1	Background	1
1.2	Addressing Global Warming Through Weather Sensing Project (Example Societal/Global Issue)	le only for
1.3	Problem Statement	2
1.4 1.5	Project Objective Scope of Project SITI TEKNIKAL MALAYSIA MELAKA	2 3
СНА	APTER 2 LITERATURE REVIEW	4
2.1	Introduction	4
2.2 2.3	Understanding [Global/Current Issue] in the Literature (Example only) Overvew of Dryer Learning	4 5
2.3	2.3.1 ESp32 Learning	5
2.4	DHT11 Learning Algorithm	9
2.5	Moisture Sensor Learning Algorithm	11
2.6	Firebase Learning Algorithm	12
2.7	Heating Fan Learning Algorithm Relay Learning Algorithm	14 15
2.8 2.9	Applications Mobile Learning Algorithm	13 16
2.9	Table of related work	10
2.10	Summary	26
СНА	APTER 3 METHODOLOGY	27
3.1	Introduction	27
3.2	Block Diagram	27
	3.2.1 Experimental setup	28

	3.2.1.1 Equipment	28
	3.2.2 ESP32 NODEMCU	29
	3.2.3 Moisture Sensor	30
	3.2.4 Humidity and Temperature Sensor (DHT22)	31
	3.2.5 Relay	32
	3.2.6 Fan 12V	33
	3.2.7 Heater	34
	3.2.8 Battery 12V	35
3.3	Flowchart Project	36
3.5	Summary	38
CHAP	YTER 4 RESULTS AND DISCUSSIONS	39
4.1	Introduction	39
4.2	Hardware Setup	39
4.3	Software Setup	42
4.4	Data Collection and Analysis	43
4.5	Summary	45
	MALAYSIA	
СНАР	TER 5 CONCLUSION AND RECOMMENDATIONS	46
5.1	Conclusion	46
5.2	Future Works	46
REFE	RENCES	48
TURN		52
	shield la 15 · Si " " sid	
	اويوم سيبي تيه سيك متيسيا ملاك	
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1	Summary of literature review.	18
Table 4.1	Result process with wet shoe.	44
Table 4.2	Result process with moist shoe.	44

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1	Block scheme of the embedded system.	7
Figure 2.1.1	Block diagram design	8
Figure 2.1.2	The PHOENIX: A wireless ESP32 mesh network for fire detection and monitoring system.	9
Figure 2.2	Circuit Diagram for Indoor Vertical Garden Prototype	10
Figure 2.3	Cross sections of the ground showing the origin of the radiation that gives 65%, 95% and 99% of the intensity (gamma energy 2.62 MeV,	11
Figure 2.4	User info provided by Firebase Cloud system	13
Figure 2.5	Performance test schemes of the self-rotating fan system from the grilling stove waste heat.	14
Figure 2.6	Screenshot of Fracture Liaison Service (FLS) application and Safety Monitoring real-time signal from the IoT sensor	17
Figure 3.1	Block Diagram	27
Figure 3.2	ESP32 NODEMCUKNIKAL MALAYSIA MELAKA	29
Figure 3.3	Moisture sensor	30
Figure 3.4	DHT22	31
Figure 3.5	Relay	32
Figure 3.6	DC Fan 12V	33
Figure 3.7	Heater	34
Figure 3.8	Battery 12V	35
Figure 3.9	Flowchart for project	37
Figure 4.1	Shoes dryer startting ON	40
Figure 4.2	Fan and heater position inside box.	41
Figure 4.3	The position of the shoes is in the drying box.	41

Figure 4.4	LCD show reading temperature, humidity and moisture.	42
Figure 4.5	Coding from Arduino IDE	42
Figure 4.6	Display from Blynk IoT app and ThingSpeak website.	43
Figure 4.7	Graph for wet shoe.	44
Figure 4.8	Graph for moist shoe.	45

CHAPTER 1

INTRODUCTION

1.1 Background

Difficulty, odor and bacterial or fungal growth can all be caused by damp or wet shoes. Traditional drying techniques often prove to be slow, ineffective, or dangerous. It was born out of a need for a quick and easy way to effectively dry shoes. This project uses an ESP32 microcontroller platform with temperature and humidity sensors to build a shoe drying system in an effort to solve this problem. This connection provides precise control and monitoring of the condition of the inner shoe, ensuring quick and efficient drying while maintaining the safety of the shoe. The adaptability of the ESP32 allows for further customization, including incorporating additional features such as timers or a user-friendly interface. This project aims to design an innovative shoe drying system that provides fast, effective and safe drying, improving overall shoe comfort and cleanliness. It does this by using temperature and humidity sensors. and adaptability.

1.2 Addressing Global Warming Through Weather Sensing Project

Malaysia experiences significant precipitation in the year, making rain a prominent climatic feature. The monsoon patterns, which are affected by the tropical climate, cause frequent and heavy rainfall in different parts of the world. Malaysia is more susceptible to rain because of its geographic location near the equator and wide coastline. The nation experiences a constant rainy season between October to March, which is occasionally accompanied by torrential rain. The extensive rainfall in Malaysia has a significant impact on the country's ecosystem and geography, necessitating effective infrastructure and readiness measures to reduce any potential negative consequences. As a result, temperature and humidity sensors are paired with ESP32 microcontrollers to measure the temperature and humidity of items.

1.3 Problem Statement

People have challenges as a result of the lack of an effective and speedy shoe drying solution, especially in wet weather. Traditional drying techniques are frequently laborious and ineffective, which causes discomfort. Therefore, a shoe drying system is required that can dry shoes fast and efficiently while guaranteeing that their quality is maintained.

1.4 Project Objective

This project's primary objective is to offer a methodical and practical approach for shoe drying systems. The following objectives are more precise:

- a) To conduct a thorough literature review of Design Of Rapid Drying Shoes Using ESP32 Controller. IKAL MALAYSIA MELAKA
- b) To design and develop a shoe dryer system that uses a temperature and humidity sensor along with an ESP32 NodeMCU microcontroller.
- c) To incorporating elements of IoT automation and connectivity.

1.5 Scope of Project

The scope of the project is as follows:

- a) To carry out a literature review on DHT22 sensor and moisture sensor.
- b) Accurately monitor and control indoor temperature and humidity levels.
- c) Accelerates drying while maintaining ideal temperature and humidity

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, the examination and evaluation of past research that is relevant to the subject at hand are presented. The information and data acquired will be used as an additional source of information as the project is researched and modified to be more successful. To get a better understanding of the researches involved in the project, a few literature studies had been undertaken.

2.2 Understanding [Global/Current Issue] in the Literature

Climate change and extreme weather events are one of the most pressing global issues today, with significant implications for weather patterns and extreme weather events. Scientists and researchers have extensively studied the relationship between climate change and weather, highlighting the increasing frequency and intensity of extreme weather events due to climate change. As you can see, at the end of this year, there will definitely be areas in Malaysia flooded due to non-stop rain and there will be a situation of rain for a month. This results in all citizens facing difficulties in moving especially to go to work, school and so on. Therefore, this shoe dryer project plays an important role for shoe users on a daily basis.

2.3 Overview of Dryer Learning

The introduction of this study on drying black pepper emphasises the importance of the spice and the widespread usage of convective air heating tray dryers in processed businesses. The problem statement highlights how important it is to determine the ideal drying conditions in order to save energy use and enhance the quality of black pepper. Using an experimental apparatus built in-house, the process entails examining drying characteristics at various temperature and air velocities. Model coefficients are assessed when preexisting drying model are fitted to data from experiments. The logarithmic model, which offers the best fit with an overall RMSE of 0.0140, is the suggested analytical technique. It is recommended that future studies focus on further optimising drying conditions. The study concludes that the logarithmic model is a good fit for explaining the drying of black pepper, that ideal drying conditions can be found, and that careful parameter selection can result in significant energy savings [1].

This study looks into the possibility of using flash drying instead of traditional sun drying for coir pith, a large byproduct in areas that grow coconuts. The traditional sun-drying approach has drawbacks, including extended drying times and vulnerability to outside influences. A pilot-scale flashing dryer is used in the study to test several ranges of temperatures and gas velocities in order to evaluate drying effectiveness and product quality. The best temperature for flash drying, according to the results, is 140 °C. This achieves quality criteria that are similar to drying in the sun but takes much less time (12 minutes as opposed to 9 hours). The study highlights the effectiveness of flash drying as a workable solution to the coir pith business, providing faster drying and lower microbial counts, and it suggests further studies for scaling up this method [2].

This paper presents the application using solar power for drying while emphasising past customs and the drawbacks of conventional open-air drying techniques. It pinpoints issues including quality degradation and protracted drying times. The methodology section describes many methods of solar drying, such as box and greenhouse dryers, hybrid systems, open sun drying out, indirect solar being dried, and indirect solar drying. The conclusion highlights the advantages of solar energy while acknowledging its drawbacks. Future ideas suggest cost-effective enhancements including storage of heat and hybrid systems. Overall, despite existing challenges, the study highlights the promise of solar drying for improved quality, faster drying times, and sustainable practices [3].

Other than that, in order to optimise temperature control during fruit drying, the study suggests the FRIT approach, which makes use of a prototype air drying. The objective is to match the intended response with the chamber's temperature. The modification of controller parameters is improved by the PSO-based FRIT technique, according to experimental results. The method uses an embedded controllers system in hardware design along with a mathematical model. The results of experiments and simulations show that temperature management is effective. The potential of FRIT to optimise drying operations is emphasised in the conclusion. Subsequent research endeavours may concentrate on enhancing and improving control methodologies [4].

2.3.1 ESP32 Learning Algorithm

The usage of ESP32 controllers for data processing and measurement in embedded systems and the Internet of Things is examined in this article. It talks about the ESP32 chip's popularity and the Internet of Things' expansion. There are explanations of several development techniques, including MicroPython, Arduino Core, and the Espressif IoT Framework. A variety of useful applications are shown, indicating that larger screens can display real-time data and graphics, while smaller ones are appropriate for status reporting. Platform recommendations depending on project complexity are summed up in the conclusion, and control strategy optimisation will be the focus of subsequent work [5].

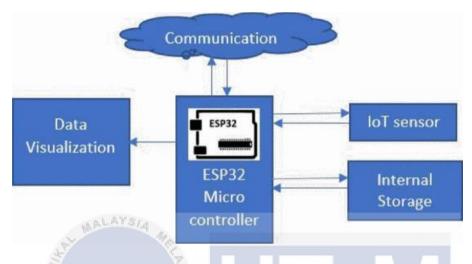


Figure 2.1 Block scheme of the embedded system [5]

Other project about Integration Of Lifting Pump Monitoring System Using ESP32 And Hostinger With Internet Of Things Based, This study focuses on improving the monitoring of a wastewater distribution system at Soekarno-Hatta Airport using an ESP32based prototype. The existing system required manual on-site visits twice daily, prompting the need for real-time monitoring. The proposed solution involves a prototype that reads pump current and voltage, processes the data, and sends it to Hostinger web for display on Android. The study draws inspiration from similar IoT applications in wastewater management. The results show the prototype's effectiveness, with less than 5% difference from actual measurements. Future recommendations include adding a temperature sensor and exploring alternative web servers. In conclusion, the ESP32-based system provides realtime monitoring, enhancing operational efficiency at the airport [6].

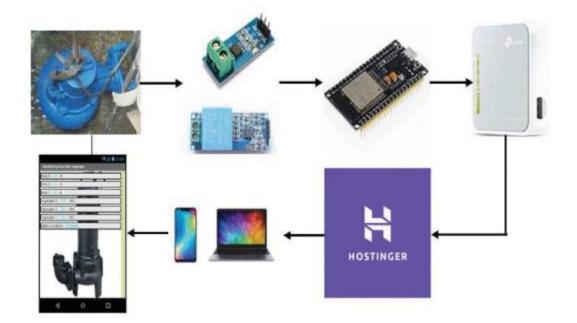


Figure 2.1.1 Block diagram design [6]

Efficiency and Performance Evaluation of an Early Fire Detector Device Using an ESP32 Wireless Sensor Network, The study addresses the deficiency of fire prevention measures in residential areas by introducing an ESP32-based wireless sensor network for early fire detection. Using ESP32 microcontrollers, the process entails building a system to collect fire data, such as temperature, humidity, pressure, and gas. Through a mobile application, a graphical user interface (GUI) transmits notifications and shows the data. To ensure precise identification, threshold values are validated using the ANOVA test. Future developments will include the addition of gas type detection, the ability to control fires, and the addition of more nodes to improve coverage. In summary, the system exhibits dependability in identifying and alerting authorities to fires, and suggestions for additional enhancements and uses are provided [7].

Figure 2.1.2 The PHOENIX: A wireless ESP32 mesh network for fire detection and monitoring system.[7]

2.4 DHT11 Learning Algorithm

Aiding Plant Growth Difference for Indoor Vertical Garden against Traditional Outdoor Vertical Garden Setup using DHT11 and Capacitive Soil Moisture Sensor, the study offers an automated lighting and watering system based on an ESP32 platform as a solution to common problems in indoor gardening. For particular plants, it contrasts indoor and outdoor vertically planting techniques. Hardware configuration, flowcharts, and conceptual frameworks are all part of the technique. Plant growth studies and sensor calibration show no appreciable variations from indoor and outdoor configurations. More plant kinds should be investigated, indoor growth treatments should be made, and watering should be improved [8].

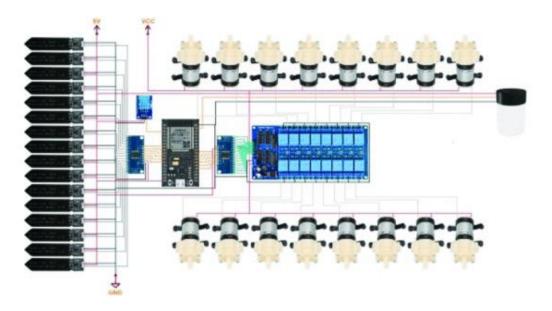
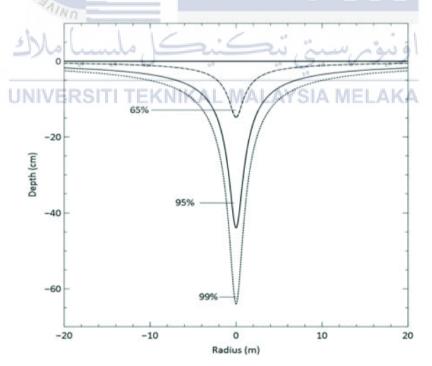



Figure 2.2 Circuit Diagram for Indoor Vertical Garden Prototype [8]

Other than that, lot Based Smart Window using Sensor Dht11. The Smart City initiative in India is the subject of this study, which focuses on improving urban and rural infrastructures digitally. The suggested remedy is a Smart Window system that is Internet of Things (IoT) based and intended to track temperature levels in enclosed areas in real time. By utilising DHT11 sensors, the technology makes it possible for windows to operate automatically without human input, which promotes sustainability and energy savings. An explanation for the Internet of Things (IoT) offers itself, emphasising its use in automation, energy conservation, and gadget integration. An analysis of the current and suggested systems highlights the shift from manually operating windows to automatically operating windows based on temperature detection. Stepping motors, DHT11 temperature sensors, and Arduino are all necessary for the system to function. The conclusion highlights possible uses in orphanages, hospitals, and smart buildings and offers directions for further development [9].

2.5 Moisture Sensor Learning Algortihm

The project name Using a gamma-ray spectrometer for soil moisture monitoring development of the the gamma Soil Moisture Sensor (gSMS) In order to measure soil moisture content, this work presents a novel gamma Soil Moisture Sensor (gSMS) that uses gamma-rays released by naturally occurring radionuclides in soil. The technique uses gamma-ray spectrometers (GRS) to measure radionuclide radiation emissions, and first findings imply relationships with soil moisture. The gSMS is placed in a potato field, and its spectral analysis plays a critical role in reducing noise caused by radon. Calculating the impacts of radon, comprehending the impact of measurement height, and calibrating sensors for a variety of soil types are among the challenges. The study highlights how gSMS may give agricultural areas spatially accurate information on soil moisture. Upcoming projects include improving calibration, tackling the effects of radon, and investigating UAV-based mapping for thorough soil moisture measurement [10].

Figure 2.3 Cross sections of the ground showing the origin of the radiation that gives 65%, 95% and 99% of the intensity (gamma energy 2.62 MeV, [10]

The study focuses on satellite from NASA's SMAP and ESA's SMOS, that are able to measure the top 5 cm of soil in particular locations, in order to solve shortcomings in current worldwide soil moisture measurement techniques. In order to get around this, the researchers investigate the possibility of measuring soil moisture in densely vegetated areas down to a depth of up to 10 cm using P-band radiometers. They compare P-band and L-band observations with surface soil moisture measurements using an aerial experiment conducted over an irrigated farm in Tasmania. According to the findings, P-band provides better accuracy in locations with greater vegetation. The work highlights the potential for improved accuracy and suggests more research on P-band for worldwide soil moisture detection from space [11].

2.6 Firebase Learning Algorithm

This study examines how Firebase databases are used in mobile applications, highlighting the importance of these databases for large enterprises. The paper discusses the difficulties in developing mobile apps and emphasises the requirement for efficient and safe solutions. It explores the features of Firebase, including as integration with other services and real-time data processing. In addition to discussing the advantages of Firebase over conventional databases and demonstrating its quicker data processing performance, the article offers step-by-step instructions for connect to Firebase in Android Studio. After conducting performance tests and comparing Firebase and MySQL for CRUD operations, the researchers came to the conclusion that Firebase works more responsively. The study ends by highlighting Firebase's applicability for mobile apps and outlining potential directions for further investigation and optimisation techniques [12].

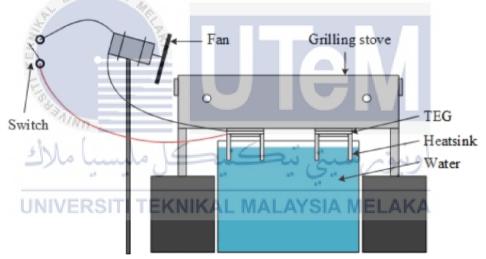

The technique that this research introduces enables patients to be continuously monitored outside of hospitals, thereby addressing the global challenge of cardiovascular disease. The solution combines Google Firebase for storage in the cloud and an Android app called "Healthy" that is paired with a hardware device via Bluetooth. In the event of an irregular heartbeat, the app alerts physicians and patients and shows real-time ECG data. The system is intended to be both economical and effective. Suggestions for future enhancements are made, and in general, the system works well for delivering prompt assistance and possibly lowering hospitalisation expenses [13].

Figure 2.4 User info provided by Firebase Cloud system [13]

2.7 Heating Fan Learning Algorithm

In an effort to lessen labor-intensive charcoal fanning, this study investigates the use of waste heat from grilled stoves to produce energy for a self-rotating fan. The study examines the effects of temperature and configurations use a thermoelectric module and discovers that water aids in temperature stabilization. According to the experiments, the module's dual parallel arrangement generates the most power, suggesting that grilling may be an energy-efficient process. Future innovations for integrated technology in remote places and portable grills are suggested by the study. The study concludes by highlighting the possibility of generating electricity in grilled stoves using waste heat, providing a practical and economical alternative [14].

Figure 2.5 Performance test schemes of the self-rotating fan system from the grilling stove waste heat. [14]

This work investigates the use of a vibrating piezoelectric fan to improve transfer of heat in an isothermal slots channel. A dimensionless frequency (Sr) and amplitude (A) ranges with different Prandtl values are the main topics of interest. Piezoelectric fan vibration greatly enhances heat transfer on downstream walls, according to numerical models. It is discovered that the advantages are Prandtl number sensitive, with a critical amplitude of 0.1. The study highlights the need for more advancements and offers possible uses in electronic cooling. In conclusion, enhancing heat transfer in channel flows may be possible by utilizing a piezoelectric fan as a vortex generator [15].

2.8 Relay Learning Algorithm

ALAYS!

The problem of higher currents of faults in power distribution systems as a result of scattered generation and rising power demand is addressed in this paper. The authors point out possible issues with the operation of over-current relays (OCRs), a typical protective device, but the main focus is on employing superconducting fault current limiters (SFCLs) as a remedy. They suggest an OCR that takes into account the voltage component in order to deal with SFCL-related OCR trip delays. A power distribution system incorporating SFCL and OCR is modelled using simulation tools, demonstrating better coordination. In order to improve protective coordination in power systems with SFCLs, the report recommends more research. In conclusion, sustaining protection coordination in power distribution systems using SFCLs appears to be a promising use case for the OCR utilising the voltage component [16].

2.9 Applications Mobile Learning Algorithm

In order to help osteoporotic patients avoid additional fractures, the study presents a brand-new smartphone software called Fracture Liaison Service (FLS). By utilising Internet of Things (IoT) sensors for safety monitoring and fall prediction in smart wheelchairs, it solves the problem of the absence of a worldwide mobile FLS. The process entails building the FLS app in phases for risk assessment, education, and fracture treatment. The smart wheelchairs' pressure sensors are part of the safety monitoring system. The study indicates possible commercialization by demonstrating successful development and testing for usability. In the future, the app will be improved, AI algorithms will be implemented, and an intelligent personalised FLS will be investigated. The contribution to fracture prevention worldwide and the possibilities for an intelligent health care system are emphasised in the conclusion [17].

This paper examines Progressive Web Applications (PWAs) is a more rapid and economical alternative to native applications for testing mobile-based solutions. Native app development via conventional methods requires a lot of resources, especially for startups. Benefits of the suggested PWA methodology include less updates, easy development, crossplatform interoperability, and easier A/B testing. Using a case study including a PWA prototype for a the college's digital Identity Card Portal, the paper demonstrates these benefits. It highlights how PWAs are more easily developed and support multiple platforms than native and websites. Future research will include non-LEAN approaches, scaling tactics, raising startup awareness, and creating process metrics. PWAs, in summary, seem to be a useful tool for entrepreneurs, allowing for effective and inexpensive idea iteration [18].

Fall Prevention 🛛 🖷 🖬 🗄	Pacture Risk	Educational Materi. 0000	Risk Factor Management	REAL-TIME VIEWLIN/TION
Resp Tee fait prevention-publicitie 100 paint	60 lass insis	Autobic searcise and turners date	Easy for tak befor publics. 21 post	
First shoes that are not slippery when asking	tere Adged Seconda	 Secon collesponses patients are receip existing and effecty econerverse tack economics of the feet economic economic particular controls such as the feet economy. 	🗧 Salas make — in bost by settion inc.	
🔤 En net kase argitringer die fear	Teatring Stight Tease1.0	with a locating chevely of should like minutes a star	Caffere make Drift reducement inters or	
Crab file salidy har share-using/ite contains or stars.	Dermitminister	Increased risk of death secondary fracture of enternance cohoroconsis		
E Bighten Latinoons, Latinoon lights		Consequences in a salitati a quantitizere third tensaure there a no spirature and impletized, it will execute therein. Foreign with orthogonomy in	Distant Section State	
Marrian and hanage the floor level	Produce dia	particular an offen more likely to harmon again to months after they have handwed inclusion their formation and weath. We work to convent an operation	Distant the formation of	
E to to the ballwoost before designing	Plant Prantises study within "10 years	tractures because it can lead to death as well as the gasing of the of the parset.	Last of services line or instance because	
Make contribution right is on at regit.	Mage subsequences B1%	Prevention of vitamin 2 Names	Contraction and the sector poly	BARRON NO
	Notation B15 Accessories des	Vitame 8 helps calman-absorption mitte Intendines and etemplities, massive denergifi to prevent fesciares. It is recommended that you	Senschalter of American A	
III III III III IIII IIII IIIIIIIIIIII	0000-000-0000	appeared the etament of with sound the about	Sandy Noting of These is advanced frames	Oncorrent

Figure 2.6 Screenshot of Fracture Liaison Service (FLS) application and Safety Monitoring real-time signal from the IoT sensor [17]

2.10 Table of related work

Name	Year	Platform	Purpose	Advantage	Disadvantage
Virantha,	2021	Dryer	To look into and	When	Convection air
Ishan;		Learning	improve the black	compared to	heating tray
Wijewardane,		U	pepper drying process	open sun	dryers are
Anusha			using a tray dryer of	drying, the	common,
			the convective kind. In	usage of	however they
			order to reduce overall	convective	may require more
			drying energy	heated air	initial setup
			consumption and	tray dryers	money than open
			improve the taste of	implies	sun drying
			black pepper, the	increased	techniques. For
			study attempts to	efficiency. A	small-scale
			determine the ideal	more	farmers with
			drying temperature	regulated and	limited resources,
			and high air velocity.	consistent	this could be a
			After running tests at	drying	challenge.
	MALAY	SIA	various temperatures	process can	
4	7		and air speeds and	be obtained	
(MI)		E.	fitting the results to	with artificial	
		P	drying models, the	dryers.	
-			researchers came to the conclusion that the		
2			logarithmic approach		
0.0	Aller		best accounted for the		
	an i		drying process.		
	0010	Dila 4			F 1 1 1 1 1
Fernando, J.	2019	Dryer	To investigate and	Coir pith can	Flash drying is a
A.K.M.		Learning	analyse flash drying as	be dried in as	quicker drying
Amarasinghe,	IIVERS	ITI TEKN	a substitute for sun	little as 12	method, it usually
A. D.U.S.			drying coir pith, with	minutes using	calls for greater
Jayarathna, W. A.R.			the goal of comparing	flash drying,	temperatures and
W. A.K. Narayana, M.			the quality parameters	as opposed to 9.1 hours	gas velocity.
Inalayalla, M.			and drying effectiveness of the	using sun	Particularly in terms of energy
			dried item to those	drying. This	sustainability, the
			attained by	faster	higher energy
			conventional sun	processing	input needed for
			drying.	speed might	these conditions
			JB.	be a	can be viewed as
				significant	a drawback and
				benefit in	result in higher
				terms of	operating costs.
				effectiveness	1 0
				and	
				quickness.	

Name	Year	Platform	Purpose	Advantage	Disadvantage
Moitra, Mohini	2022	Dryer	Talk about how solar	Since solar	The efficiency of
		Learning	drying techniques	energy is a	solar dryness is
			have advanced,	clean and	highly reliant on
			surpassing the	renewable	meteorological
			limitations of earlier	energy	factors,
			open systems that	source, using	specifically
			were vulnerable to	it for drying	sunlight. The
			weather and insect	has several benefits. It	drying process
			damage. It investigates	promotes	can be greatly impacted by
			enhanced solar	environmental	cloudy days or
			dryers to accomplish	sustainability	bad weather,
			quicker, more	by lowering	which might
			effective, and more	reliance on	make it less
			hygienic drying	non-	dependable and
			procedures for a	renewable	possibly slower
			range of uses,	resources.	than other drying
			including drying		techniques.
	AALAYSI.	14	crops, fruit, carpets,		
3		2	bricks, and		
E.		1	agricultural		
Ruangurai,	2020	Dryer	products. This research	To better	The efficiency of
Piyanun	2020	Learning	presents a novel	regulate the	solar dryness is
Silawatchananai,		Dearning	approach to	temperature	highly reliant on
Chaiyaporn	Ukn		temperature	within the	meteorological
Howimanporn,	1	11/	management during	fruit dryer	factors,
Suppachai	s hun	کل ملہ	fruit drying:	chamber so	specifically
	44		Fictitious Reference	that it almost	sunlight. The
UNIV	ERSIT	I TEKNI	Iterative Tuning	exactly	drying process
			(FRIT). Maintaining	corresponds	can be greatly
			a temperature within	to the	impacted by
			the drying chamber	intended	cloudy days or
			that corresponds with the intended	reaction.	bad weather,
			response is the aim.		which might make it less
			Using an initial air		dependable and
			dryer as a test bench,		possibly slower
			the study's		than other drying
			experimental		techniques.
			findings show that		-
			optimising controller		
			parameters with the		
			PSO-based FRIT		
			method is more		
			effective.		

Name	Year	Platform	Purpose	Advantage	Disadvantage
Babiuch, Marek	2019	ESP32	This experiences	The ability of	Sensors and IoT
Foltynek, Petr		Learning	with the creation of	the ESP32	modules can
Smutny, Pavel		Algorithm	ESP32	microcontrollers	occasionally be
		-	microcontroller	to interface with	complicated,
			applications and	a variety of	requiring
			offers a thorough	internet of	technological
			analysis of the	things and smart	know-how.
			potential for	sensors	
			developing data	is emphasized,	
			processing and	demonstrating	
			measurement	how well they	
			applications on this	can be	
			platform.	integrated into	
			Microcontrollers	systems for	
			typically establish	applications	
			connections with	involving data	
			IoT modules along	processing and	
	1. 5.17.2		with other	measurement.	
	MALAYS	IA AS	intelligent sensors,		
5		3	transferring data to		
3		E	higher-level		
	2021	FGDGG	systems.		
Budiyanto,	2021	ESP32	To solve the lifting	The voltage and	The system relies
Setiyo		Learning	pump monitoring	current of the	on internet access
Silalahi,	100-	Algorithm	system's	pump are	as it transmits
Lukman	1		inefficiency, which	available in real	data to hosting
Medriavin	0	21 2/2	necessitates twice-	time with the	web for Android
Silaban, Freddy Artadima			daily on-site visits.	suggested	display. Any
			In order to improve	monitoring	interruptions to internet access
Simanjuntak, NP Imelda Uli	/ERSI	TI TEKNI	accessibility and information retrieval	system. This makes it	
Vistalina			efficiency, the	possible to	might have an impact on the
Rochendi, Agus			research proposes	identify	real-time
Dendi			and implements a	problems or	monitoring
Darusalam,			prototype for an	anomalies	features and
Ucuk			immediate time	quickly, which	cause important
			flow measurement	facilitates	information to be
			and voltage	effective	delayed.
			monitoring device	management	
			utilising an ESP32.	and immediate	
			This will enable	intervention.	
			remote monitoring		
			using web hosting		
			and Android.		

Name	Year	Platform	Purpose	Advantage	Disadvantage
Garcia, Celina	2023	ESP32	ESP32 wireless	Early	Delay in
Francine I.		Learning	sensor network will	Identification	notification.
Ibarra, Joseph		Algorithm	be used to create an	and Extensive	
Bryan G.		0	early detection	Surveillance.	
			device that will		
			collect data on fire		
			the location,		
			temperatures,		
			pressure, humidity,		
			and gas		
			concentration. The		
			goal is to offer a		
			graphically		
			interfaced,		
			reasonably priced,		
			dependable, and		
			effective fire		
			detector that enables		
	MALAY	SIA A	users to log and		
S		10	track the		
1		PX.	environment in real-		
E		A	time via a mobile		
-			application.		
Kagalingan,	2022	DHT11	To describe and	Effective	The ESP32
Ruby Jon M. 🌑		Learning	illustrate the	Indoor	module, sensors,
Tolentino,	What .	Algorithm	potential use of an	Horticulture	and automatic
Bernard Piolo	(11/	ESP32 module	. 1	irrigation are only
M. –) /	a hu	=ل مليه	boards and a variety	اويوم	a few examples of
Balbin, Jessie			of sensors in a	10 - 10 -	the technologies
Jaye R.	/FRS	TI TEKNI	vertical garden		that make the
onn	1001100		control system as a	TTTLE BAD II O I	system work.
			means of addressing		
			the issues associated		
			with indoor farming.		
			The system's goals		
			are to increase plant		
			development		
			efficiency and get		
			around the		
			drawbacks of indoor		
			environments		
			lacking in sunlight.		

Name	Year	Platform	Purpose	Advantage	Disadvantage
Margret	2019	DHT11	To showcase the	By enabling	Any malfunctions
Sharmila, F.		Learning	implementation of an	automated	or loss of
Suryaganesh, P.		Algorithm	Internet of Things-	temperature	connectivity
Abishek, M.			based solution for	adjustments	could affect the
Benny, Ullas			effective and	for keeping a	system's capacity
			automated window	comfortable	to track and
			operating in support	level, this	regulate the
			of India's Smart City	may lessen	temperature,
			aim. Real-time	demand for	which could
			temperature	artificial	cause disruptions
			monitoring in	cooling or	to its intelligent
			enclosed spaces is the	heating and	functioning.
			major goal, with the	increase	
			goal of preserving	energy	
			ideal temperatures	efficiency.	
			and achieving		
			automated window		
			functions.		
Van Der Veeke,	2020	Moisture	To present and	Innovative	Radon Sensitivity
Steven 🔊		Sensor	explain the gamma	Approach to	in the
Koomans,		Learning	Soil Moisture Sensor	Measurement	Atmosphere
Ronald		Algorithm	(gSMS), a		
Limburg, Han			revolutionary soil		
Ea			moisture sensor that		
43	100		measures soil		
	in .		moisture content by		
11/2		1.15	using gamma-rays	In the second	
	~~~~		released by the soil.	اويور	
			The sensor's working		
UNI	/ERS	ITI TEKNIK	principle, reliance on	IELAKA	
			naturally occurring		
			radionuclides, and		
			the requirement for		
			spectrum analysis to weed out extraneous		
			elements like air		
			radon concentrations		
			are all covered in the		
			text.		
			1011.		

Name	Year	Platform	Purpose	Advantage	Disadvantage
Madaminov,	2023	Moisture	Will thoroughly	Effective data	Internet access is
Uktam A.		Sensor	examine and talk	management	necessary for
Allaberganova,		Learning	about using	is made	Firebase to
Muyassar R.		Algorithm	Firebase's database	possible by	synchronise data
			in mobile apps, with	the usage of	in real time.
			an emphasis on big	Firebase	
			businesses. The	databases in	
			paper attempts to	mobile	
			address a number of	applications.	
			topics, such as how		
			the system interfaces		
			with mobile		
			applications, how		
			best to utilise		
			Firebase's specific		
			libraries, real-world application		
			problems, safety		
	AALAY	SIA	considerations, and		
2		Mo	operational		
ST.		2	techniques.		
Meziane,	2023	Firebase	Presents a method	Remote	The system's
Nacera		Learning	for keeping an eye	cardiovascular	Cloud Firebase
Bouzid, 📃		Algorithm	on patients with	monitoring	and Bluetooth
Merouane			cardiovascular	makes it	connectivity. The
Meziane, Dalila	UNN .		disease utilising	possible to	effectiveness of
1 de		LIC	Cloud Firebase and	track ECG	the system for
27	o u	_ ميس	an Android app. It	data in real-	remotely
			makes it possible to	time, identify	monitoring may
UNIV	<b>/ERS</b>	ITI TEKNI	remotely monitor	irregular	be jeopardised in
			ECG data and	heartbeats	circumstances in which there are
			instantly alert medical	right away,	
			professionals about	and promptly notify doctors	technical difficulties,
			irregular heartbeats.	so that they	network
			Through Bluetooth	can take	challenges, or
			communication, the	appropriate	constraints on the
			hardware and app	action.	capabilities of the
			gather and show		smartphone.
			ECG data		L ···
			continually. The		
			application is easy to		
			use and alerts the		
			physician and patient		
			to any irregularities,		
			demonstrating its		
			potential for		
			effective remote		
1			health monitoring.		

Name	Year	Platform	Purpose	Advantage	Disadvantage
Sagita, Diang	2020	Firebase	To investigate the	Demonstrates	Incorporates a
		Learning	possibility of	how to	number of
		Algorithm	producing energy for	efficiently	treatments and
		_	a self-rotating fans	convert the	configurations,
			system by using	surplus heat	including
			waste heat from a	produced	different
			traditional grilled	during grilling	thermoelectric
			burner. The	into energy.	module
			experiment focuses		arrangements and
			on using		the use of water
			thermoelectric		in the heatsink.
			modules to transform		
			thermal energy into		
			electrical energy		
			with the goal of		
			improving power		
			generation efficiency		
			and configuration		
	MALAY	SIA	optimisation.		
Qiu, Yunlong	2018	Heating	To conduct a	Piezoelectric	Fan vibration's
Wu, Changju		Fan 🖌	numerical	fan vibrations	ability to
Ť.		Learning	investigation on the	greatly	improve heat
2		Algorithm	enhancement of heat	enhance heat	transmission is
50			transfer in an	transfer in the	greatly
43	100		isothermal slot	channel,	dependent on the
	in .		channels resulting	providing	characteristics of
1 Az		1.14	from the shedding of	superior	the fluid,
>>	s us	_ میں	vortices by a	cooling for	especially the
			vibrating	walls	Prandtl number.
UNIN	/ERS	ITI TEKNI	piezoelectric fans.	downstream.	
			The purpose of the		
			study is to		
			investigate how heat		
			transfer performance		
			is impacted by		
			dimensional the		
			frequency,		
			dimensionless		
			amplitude, and		
			Prandtl number.		

Name	Year	Platform	Purpose	Advantage	Disadvantage
Madaminov,	2023	Heating Fan	Must carefully	For large	Any database
Uktam A.		Learning	investigate how	organisations,	system is
Allaberganova,		Algorithm	Firebase databases	effective data	vulnerable to
Muyassar R.			are used in mobile	management	security threats,
			applications,	is made	even though
			particularly in large	possible by	Firebase is
			enterprises. It	the usage of	generally safe.
			emphasises best	Firebase	Possible system
			practices and	databases in	vulnerabilities
			specialised libraries	mobile	that could raise
			while focusing on	applications.	security issues
			connecting systems		could exist,
			and mobile apps.		depending on
			Additionally, the		how the system is
			study sets Firebase		implemented and
			apart from other		configured.
			databases, covers		-
			security concerns,		
	MALAY	SIA .	talks about real-		
S		100	world application		
1		PX	challenges, and		
EX		A	shows how useful		
F			Firebase is for		
E			teaching mobile		
8 B B	-		technology courses.		
Sagita, Diang	2020	Relay	To produce power	Uses the	Involves a
chil	(	Learning	from waste heat to a	waste heat	number of steps
יעב	a ha	Algorithm	grill in order to	from a	and several
	10		increase the energy	traditional	thermoelectric
UNI	ERS	TITEKNIK	efficiency of grilling.	grilled burner	designs, with the
ONIN	1100	TT TETATAT	Its main objectives	to create	usage of water in
			are to test a	electricity,	a cooling among
			thermoelectric	which is an	them.
			module, investigate	inventive	
			different	method.	
			configurations, and		
			look at how water		
			impacts temperature		
			stability.		

Name	Year	Platform	Purpose	Advantage	Disadvantage
Virantha,	2021	Application	To maximise the	Enhancing	The
Ishan		Learning	drying of black	the black	implementation
Wijewardane,		Algorithm	pepper by employing	pepper's	difficult,
Anusha			a tray dryer of the	quality and	particularly for
			convective type.	offering a	individuals
			Finding the optimal	more	without
			drying temperature	successful	specialised
			and hot air velocity	and efficient	knowledge in the
			is the main goal in	drying	area, which can
			order to reduce the	procedure.	restrict access to
			overall energy		the ideal drying
			consumption during		conditions.
			the drying process		
			and improve the		
			quality of the black		
			pepper.		

#### Table 2.1 Summary of literature review

#### 2.11 Summary

MALAYS/

In this chapter, it's describe the resources from the search as well as project examples. It also introduces how to use components and understand the flow of projects that have been produced in the past year. Test results also help to visualize project progress. With search results, it is understandable and pleasant to make methodology easily. A research project that explores related previous studies can show understanding to create a project and identify the components used. This study provides valuable in sights and practical solutions for accurate humidity measurement, measuring temperature, appropriate types of heaters and much more.

#### **CHAPTER 3**

#### METHODOLOGY

#### 3.1 Introduction

This chapter will outline the structure's primary flow as it lifts the suggested project. 'Design of Rapid Drying Shoes Using ESP32 Controller' project is being offered to assist those who struggle with hard-to-dry shoes. This study is based on specific phases of work that are done correctly and successfully in accordance with the goals. This application device needs to be developed in order to meet the project's objectives. This prototype was created using the hardware and software indicated as being utilized for this project.

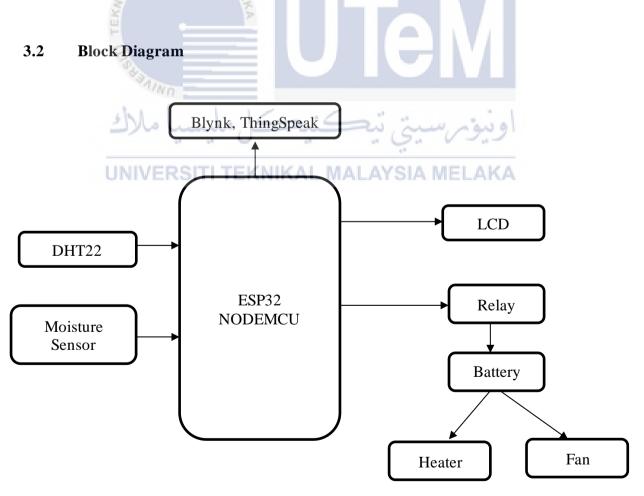



Figure 3.1 Block Diagram

#### **3.2.1** Experimental setup

A DHT22 sensor for humidity and temperature measurement, a moisture sensor for detecting shoe moisture, a relay module for controlling a fan and heater, a battery with 12 volts for power, and connection with the Bling! app for controlling the device remotely and ThingSpeak for data logging comprise the test setup for designing rapid-drying shoes using an ESP32 controller. Both sensors are connected to the ESP32, and the heater and fan are controlled by the relay module to ensure effective drying. Users may modify drying parameters with ease thanks to the Bling! app, which enables remote monitoring and control. The ThingSpeak platform also records moisture, humidity, and temperature data analysis.

#### 3.2.1.1 Equipment

A DHT22 sensor, a moisture sensor, a relay, a 12V battery, an LCD, an ESP32 NODEMCU, a fan, and a heating element are among the tools used for this project. The DHT22 sensor starts this equipment's operating flow by measuring the humidity and temperature. The moisture sensor then measures the amount of moisture within the shoes, and the LCD shows both sets of data. For effective drying, the relay activates the fan and heating when certain thresholds are reached. All acquired data is recorded and visualised via the Blynk application, which allows for remote control and monitoring in order to improve user accessibility. Furthermore, ThingSpeak is included for thorough data logging, which enables users to assess and enhance the drying process for increased effectiveness.

#### 3.2.2 ESP32 NODEMCU

Based on the the ESP32 device chipset, the ESP32 NodeMCU is a flexible and potent microcontroller board. Its dual-core processor, built-in Wi-Fi and Bluetooth, and other features make it perfect for a wide range of Internet of Things (IoT) applications. With its versatile devices GPIO (General Purpose Input/Output) ports, and analog-to-digital converter, the ESP32 NodeMCU is suitable for a wide range of electronic projects. A large developer community can utilise it as it is able to written with the Arduino IDE. featuring a small form size, affordability, and a wide range of functions.



Figure 3.2 ESP32 NODEMCU [18]

#### 3.2.3 Moisture Sensor

One type of sensor used to determine the volumetric content of water in the soil is the soil moisture sensor. As the soil moisture straight gravimetric dimension needs to be removed, dried, as well as sample weighting. These sensors measure the volumetric water content indirectly using the electrical resistance, neutron interaction, dielectric constant, and other soil laws as well as replacement of the moisture content. It is necessary to calibrate the link between the observed parameters and soil moisture since it can change based on the environment, including the kind of soil, temperature, and electrical conductivity.




Figure 3.3 Moisture sensor. [19]

#### **3.2.4** Humidity and Temperature Sensor (DHT22)

Temperature and humidity sensors are electronic devices that measure, detect and report both ambient temperature and humidity at low cost. the ratio of the optimum quantity of moisture at a given air temperature to the total amount of moisture. One of the most important tools to track and determine temperature and humidity to a specific place, especially in a data center or server room, has been widely used in consumer, industrial, biomedical or environmental applications. This type of sensor uses a Negative Temperature Ratio Thermistor to measure temperature, which results in a decrease in resistance value as the temperature increases. These sensors are usually made of ceramic polymers or semiconductors to obtain better resistance values also for small temperature changes. The DHT22 has a temperature range of 0 to 50 degrees Celsius for an accuracy of 2 degrees. This sensor has a humidity range of 20 to 80% with an accuracy of 5%. This sensor has a sampling rate of 1Hz, meaning one reading per second. The DHT22 is also a small device with an operating range of 3 to 5 volts. 2.5mA is the maximum current that can be used to measure.

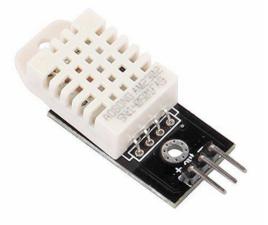



Figure 3.4 DHT22. [20]

#### 3.2.5 Relay

Relays are electrically powered switches that operate by processing electrical signals from other sources to open and close circuits. Some individuals may associate the term "relay" with team sports such as racing where competitors pass batons back and forth to finish the race. Similar to this, "relays" built into electrical items receive electrical signals and send them to additional equipment by turning switches on and off. Relays are electronic control devices commonly used in automatic control circuits. They have two systems: the control system (also known as the input loop) and the controlled system (also known as the output loop). In reality, it is an "automatic switch" that controls a larger current with a smaller current. Relays function as circuit automatic balancing, safety protection and switching circuits.




Figure 3.5 Relay. [21]

#### 3.2.6 Fan 12V

An electrical device intended for cooling reasons, a DC fan, more precisely a 12V DC fan, runs in direct current (DC) electricity at the voltage of 12 volts. Common uses for these fans include a wide range of electrical and electronic equipment, such as computers, electronics, automobiles, and more. When energised, the 12V DC fan's rotor and stator, which include blades, create airflow that helps dissipate heat and keep the connected equipment working at the ideal temperature. The voltage needed to power the fan is indicated by the 12V standard, and it is imperative that users match this voltage requirement to guarantee good operation and avoid damaging the fan motor.

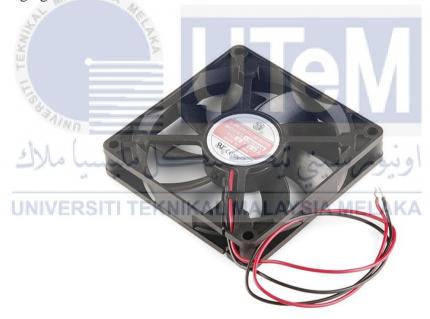



Figure 3.6 Fan 12V. [22]

#### 3.2.7 Heater

Adopting PTC ceramic heating element and aluminium tube, low heat resistance, high heat transmission efficiency. This device is an energy-efficient electric heater that maintains a steady temperature automatically. This PTC ceramic the air heaters includes an automatic energy conservation feature. Excellent performance, simple to install and maintain. 50W of strong aluminium are utilised, with a 12V AC/DC voltage source.



Figure 3.7 Heater. [23]

#### **3.2.8 Battery 12V**

A recharged energy storage device with an initial voltage of 12 volts is referred to as a 12-volt battery. Numerous applications, including as automobiles marine, solar energy systems, and other electrical equipment, frequently use these batteries. The 12-volt designation refers to the average output voltage of the battery when it is in operation; between cycles of charge and discharge, there may be modest variations. The electrical power required to run the numerous onboard electronics is supplied by the 12V battery. 12V batteries are also utilised as power storage devices for devices like solar panels and wind turbines in off-grid and renewable power systems.



Figure 3.8 Battery 12V. [24]

#### **3.2.9 Blynk IoT Application**

Users are able to monitor and control their shoe drying process remotely by implementing the Blynk IoT application. Custom mobile interfaces with features like real-time drying status information, customisable drying parameters, and notifications are made possible using the Blynk platform. In the case of quick-dry shoes, this flawless integration not only guarantees effective drying through precise management but also shows how IoT technology can be combined with useful, everyday solutions.

#### 3.2.10 ThingSpeak website

This system is improved by the interface with the Thingspeak website, which makes monitoring in real time and data visualisation possible. The moisture data is sent to Thingspeak via the ESP32's Wi-Fi capability, giving consumers information about the drying process. This not only keeps the shoes from getting too moist, but it also lets users monitor and manage the drying process remotely via the Thingspeak platform, making it a smooth connected experience for those looking for cuttingedge technical solutions in footwear development.

## **3.3** Flowchart Project




Figure 3.9 Flowchart for Project

#### 3.4 Summary

More important actions have been taken in this chapter, where a comprehensive shoe drying system has been developed, integrating key components to monitor and manage the drying process effectively. The system includes the ESP32 microcontroller board, a temperature and humidity sensor, a moisture sensor, a relay, and a fan/heater. Acting as the brain of the system, the ESP32 receives input from the sensors and orchestrates the output devices accordingly. The moisture sensor gauges the moisture content, while the temperature and humidity sensors assess the shoe's internal atmosphere. Leveraging the capabilities of Blynk apps and ThingSpeak, the ESP32 communicates real-time data to the Thingspeak website, allowing users to remotely monitor and control the drying process through the Blynk application. The ESP32, following a predefined flowchart, determines whether to activate the heating element via the relay based on the sensor readings. The fan/blower enhances air circulation, expediting the drying process. This interconnected system, utilizing Blynk and ThingSpeak, harmonizes the components for a controlled and efficient shoe drying experience.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

#### **CHAPTER 4**

#### **RESULTS AND DISCUSSIONS**

#### 4.1 Introduction

4.2

The project "Design of Rapid Drying Shoes Hanger using ESP32 Microcontroller" is shown in this chapter, showing the result of unifying the components and prototype of the project using plywood and pallet wood. This chapter also shows the analysis and results using ThingSpeak and Blynk IoT based on the output from the DHT22 and moisture sensor. This experiment shows how shoe dryers can maintain ideal drying conditions without overheating or drying out through intensive testing and analysis. The presentation emphasized the value of accurate temperature and humidity readings for efficient drying and the advantages of the ESP32 as a reliable and customizable platform.

# اونيوم سيتي تيڪنيڪل مليسيا ملاك Hardware Setup

This image at figure 4.1, the LCD showing the message "Shoes are ready to be used" when the switch is turned ON. This visual indication assists the user in quickly verifying that all systems are operational and ready for use. For figure 4.2, This illustrates the placement of the fan and heater inside the wooden box. This design ensures optimal use of the 12V battery capacity, allowing the fan to effectively remove hot air. Next, the shoes are positioned within the wooden box, the moisture sensor is strategically attached to the shoe to measure its moisture level, triggering the automatic activation of the fan and heater. Meanwhile, the DHT22 sensor reads the humidity and temperature levels in the surrounding environment. The temperature and humidity readings reflect the current environmental conditions; however, these values may fluctuate when the fan and heater are activated. The introduction of hot air can elevate the temperature and increase humidity. Additionally, the moisture sensor registers a reading of 0 when the shoe is dry, while a value above 0 suggests the likelihood of dampness or wetness on the top surface of the shoe.



UNIVERS Figure 4.1 Shoes dryer startting ON



Figure 4.2 Fan and heater position inside box.



Figure 4.3 The position of the shoes is in the drying box.





Figure 4.4 LCD show reading temperature, humidity and moisture.


#### 4.3 Software Setup

This code establishes the connection between the hardware setup and ThingSpeak as well as the Blynk IoT app. The code requires the input of specific ID and API parameters for proper configuration. As figure 4.6, this situation is depicted while the shoe dryer is in operation. The readings from both Blynk and ThingSpeak align with the information displayed on the LCD. These readings dynamically adjust based on the humidity and moisture levels of the shoes inserted into the project, providing real-time updates on the drying progress.



const char* WIFI_NAME = "Zkwn"; const char* WIFI_PASSWORD = "12345678"; const int myChannelNumber =2401019 ; const char* myApiKey = "GDMWLRPB69CJPHBW"; const char* server = "api.thingspeak.com";

Figure 4.5 Coding from Arduino IDE



Tables 4.1 and 4.2 present the analysis results obtained for two scenarios: wet shoes and damp shoes. The drying process typically takes 30 to 40 minutes, depending on factors such as the type and thickness of the shoe. Accordingly, Figure 4.3 illustrates the analysis for wet shoes, while Figure 4.4 represents the analysis for half-wet shoes.

4.4

Min	Moisture	Temperature	Humidity	Shoe wetness condition
1	35	33.7	83	Wet
3	29	35.8	82	Moist and wet
6	20	38	79	Moist
10	16	41	67	Moist
15	12	43	64	Moist
25	5	44	46	Moist
34	1	44	31	Dry and moist

Table 4.1 Result process with wet shoe.

Table 4.2 Result process with moist shoe.

Min	Moisture	Temperature	Humidity	Shoe wetness condition
1	22	24	80	
1	22	34	80	Moist and wet
3	WALAYS/20	37	78	Moist
6	17	38	76	Moist
10	14 🛃	41	67	Moist
15	10	42.5	62	Moist
25	3	43.7	40	Moist
34	1	44	33	Dry and moist

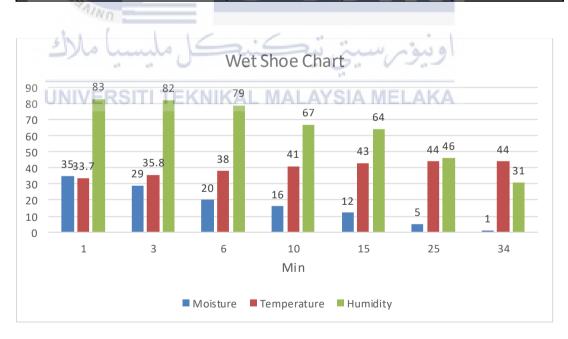



Figure 4.7 Graph for wet shoe.

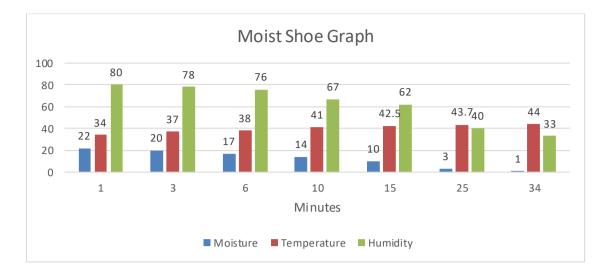



Figure 4.8 Graph for moist shoe.

### 4.5 Summary

The case study "Design of Rapid Drying Shoes Hanger using ESP32 Controller" presented in this chapter illustrates how to measure the moisture content of shoes using a humidity sensor and DHT22. Using the correct moisture sensor on the shoe produces a result between 0 and 1. If the moisture content of the shoe is within that reading, the heating system will be turned on based on that data. The output will then be presented on an LCD for easy viewing and will be displayed live on ThingSpeak as well as Blynk IoT. The use and effectiveness of shoe dryers have been proven with this early discovery. This can lay the foundation for additional development and advancements in technology.

#### **CHAPTER 5**

#### CONCLUSION AND RECOMMENDATIONS

#### 5.1 Conclusion

In conclusion, the "Design Of Rapid Drying Shoes Hanger using ESP32 Controller" project aims to offer a systematic and useful approach to shoe drying systems. The first objective that was successfully achieved was to conduct a comprehensive literature review on the Design of Fast Drying Shoe Hangers Using ESP32 Controllers. In addition, the search results can be learned a lot to create and design an ESP32 microcontroller-based shoe drying system that includes temperature and humidity sensors. The second go al achieved is to create an effective small device that can monitor and control the temperature and humidity levels inside the shoes. The goal of this project is to maintain the quality of shoes and make it easier for users to dry shoes even in rainy weather. This creative approach improves user comfort and hygiene while offering a reliable and practical way to dry shoes quickly.

## UNIVERSITI TEKNIKAL MALAYSIA MELAKA

#### 5.2 Future Works

Certainly, here are potential future works or areas for further development in the design of Rapid Drying Shoes using the ESP32 Controller:

- i) Investigate cutting-edge sensor technologies to enhance the precision and effectiveness of the shoes' moisture detection system. Examine more accurate sensors that can identify particular fabrics or materials.
- ii) Utilise machine learning techniques to examine past drying data. This can assist in forecasting the best drying durations depending on several factors, including material kinds, beginning moisture content, and outside humidity levels.

- iii) Look at methods to reduce the drying system's energy usage. This could entail using energy-saving parts, dynamically modifying the settings for the heater and fans based on data collected in real time, or looking into alternate energy sources.
- iv) Permit customers to create customized drying profiles according to the kind of shoes or fabrics they are using. This could involve adjusting the drying temperatures, times, and fan speeds to suit the needs of the user or particular types of footwear.
- v) Include methods for user feedback in the programme to learn about user happiness, areas for improvement, and problems that users have run across. The design may be improved in the future using this data.
- vi) By putting reliable encryption protocols and security mechanisms in place to safeguard user data and guarantee system integrity, you may improve the security of the Internet of Things connection.
- vii) Work on improving the drying system's physical layout to make it more userfriendly and aesthetically pleasing in the hopes of promoting broader usage.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

#### REFERENCES

[1] Benny, Ullas, M. S., F. Suryaganesh, P. Abishek, M. (2019). *IOT based smart window using sensor DHT11 - semantic scholar*. Iot Based Smart Window using Sensor Dht11. <u>https://www.semanticscholar.org/paper/Iot-Based-Smart-Window-using-Sensor-Dht11-M.-</u> S./024e4917b58b87b3ef5809fe475804c27104b4a2/figure/0

[2] Ronald Limburg, Han, V. D. V., Steven Koomans, (2020). Using a gamma-ray spectrometer for soil moisture monitoring: Development of the the gamma Soil Moisture Sensor (gSMS). Utem Library proxy. https://ieeexplore.ieee.org.libproxy.utem.edu.my/document/8818930

[3] Ibarra, Joseph Bryan G., G., Celina Francine I. (2023). Efficiency and Performance Evaluation of an Early Fire Detector Device Using an ESP32 Wireless Sensor Network. Utem Library proxy. <u>https://ieeexplore.ieee.org.libproxy.utem.edu.my/document/9430321/</u>

[4] Ibarra, Joseph Bryan G., G., Celina Francine I. (2023). Efficiency and Performance Evaluation of an Early Fire Detector Device Using an ESP32 Wireless Sensor Network. Utem Library proxy. https://ieeexplore.ieee.org.libproxy.utem.edu.my/document/9430321/

[5] Budiyanto, Setiyo Silalahi, Lukman Medriavin Silaban, Freddy Artadima Simanjuntak, Imelda Uli Vistalina Rochendi, Agus Dendi Darusalam, Ucuk. (2021). Integration of Lifting Pump Monitoring System Using ESP32 and Hostinger with Internet of Things Based. Utem Library proxy. https://ieeexplore.ieee.org.libproxy.utem.edu.my/document/8765944 [6] Suppachai, R., Piyanun Silawatchananai, Chaiyaporn Howimanporn, (2020). PSO based Fictitious Reference Iterative Tuning of air dryer for fruit drying process. Utem Library proxy. <u>https://ieeexplore.ieee.org.libproxy.utem.edu.my/document/9701989</u>

[7] Pavel, B., Marek Foltynek, Petr Smutny,. (2019). Using the ESP32 microcontroller for
 data processing. Utem Library proxy.
 https://ieeexplore.ieee.org.libproxy.utem.edu.my/document/10156954

[8] Mohini, M. (2022). A review of Delineation, Burgeoning and Performance of Solar Energy for Drying Technology. Utem Library proxy. <u>https://ieeexplore.ieee.org.libproxy.utem.edu.my/document/9815472</u>

[9] Narayana, M., F., J. A. K. M. Amarasinghe, A. D. U. S. Jayarathna, W. A. R. (2019). Flash Drying of Coir Pith as an Alternative to Sun Drying. Utem Library proxy. <u>https://ieeexplore.ieee.org.libproxy.utem.edu.my/document/8728426</u>

[10] Mali, Swati, M., Aatmaj. (2023). Progressive Web Applications, a New Way for Faster Testing of Mobile Application Products. Utem Library proxy. https://ieeexplore.ieee.org.libproxy.utem.edu.my/document/9277560

[11] Dong Sik Chang, Hyuk Jae, K., Sung Woo Won, Young Jun Chae, (2019). A New Fracture Liaison Service Using the Mobile Application and IoT Sensor. Utem Library proxy. https://ieeexplore.ieee.org.libproxy.utem.edu.my/document/10347828

[12] Sung Hun, L., Seung Taek Lim, (2020). Analysis on Protective Coordination between
 Over-Current Relays with Voltage Component in a Power Distribution System with SFCL.
 Utem Library proxy. <u>https://ieeexplore.ieee.org.libproxy.utem.edu.my/document/10286804</u>

[13] Changju, Q., Yunlong Wu,. (2018). Numerical Investigation of Heat Transfer Enhancement in a Slot Channel Induced by a Piezoelectric Fan. Utem Library proxy. https://ieeexplore.ieee.org.libproxy.utem.edu.my/document/9306171

[14] Muyassar R., M., Uktam A. Allaberganova, (2023). Firebase Database Usage and Application Technology in Modern Mobile Applications. Utem Library proxy. https://ieeexplore.ieee.org.libproxy.utem.edu.my/document/8557033

[15] Dalila, M., Nacera Bouzid, Merouane Meziane,. (2023). Cardiovascular Monitoring System Using Android-Based Mobile Application with Cloud Firebase. Utem Library proxy. https://ieeexplore.ieee.org.libproxy.utem.edu.my/document/8665871

[16] Diang, S. (2020). Experimental Test on Utilization of Waste Heat from Grilling Stove for Developing Self-Rotating Fan System. Utem Library proxy. <u>https://ieeexplore.ieee.org.libproxy.utem.edu.my/document/8857094</u>

[17] Anusha, V., Ishan Wijewardane, (2021). Determine the optimum operating conditions for black pepper drying in a tray dryer to minimize the total drying energy. Utem Library proxy. <u>https://ieeexplore.ieee.org.libproxy.utem.edu.my/document/10269806</u>

[18] MediaWiki, wikipedia. (2024, January 9). ESP32. Wikipedia. https://en.wikipedia.org/wiki/ESP32

[19] Agarwal, T. (2019, August 3). Soil moisture sensor: Pin configuration, working and applications. ElProCus. <u>https://www.elprocus.com/soil-moisture-sensor-working-and-applications/</u>

[20] Industries, A. (2021). DHT22 temperature-humidity sensor + extras. adafruit industries blog RSS. <u>https://www.adafruit.com/product/385#:~:text=The%20DHT22%20is%20a%20basic,caref</u> <u>ul%20timing%20to%20grab%20data</u>.

[21] sumo, j. (2023). 12V 4 channel Relay Board Relay Boards. https://www.jsumo.com/. https://www.jsumo.com/12v-4-channel-relay-

board#:~:text=The%204%20channel%20Relay%20Board,your%20Arduino%20and%20Relay%20board).

[22] Pelonis Technologies, Inc. (2016). The difference between AC Fans & DC Fans. Pelonis Technologies, INC. <u>https://www.pelonistechnologies.com/blog/advantages-and-disadvantages-of-ac-fans-and-dc-</u>

fans#:~:text=The% 20direct%20current%20fans% 2C% 20or, and %20of%20equal%20negative%20value.

[23] Kev Go, R. W. (2020). Quora. What are the advantages and disadvantages of heater element 12v 3000 watts and 220v 3000 watts? <u>https://www.quora.com/What-are-the-advantages-and-disadvantages-of-heater-element-12v-3000-watts-and-220v-3000-watts</u>

[24] Junction, B. (2006). 12V - voltage - batteries. Battery Junction. https://www.batteryjunction.com/batteries/12v

## TURNITIN

## DESIGN OF RAPID DRYING SHOES USING ESP32 CONTROLLER





% INTERNET SOURCES





