ANALYSIS OF IPV4 AND IPV6 PERFORMANCE IN SMALL OFFICE HOME OFFICE (SOHO) NETWORK

ELMY MAWARNIE BINTI NAWI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS TESIS

JUDUL: <u>ANALYSIS OF IPV4 AND IPV6 PERFORMANCE IN SMALL OFFICE</u> HOME OFFICE (SOHO) NETWORK

SESI PENGAJIAN: SEMESTER 2 (2008/2009)

Saya ELMY MAWARNIE BINTI NAWI

(HURUF BESAR)

mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dengan syarat-syarat kegunaan seperti berikut:

Tesis dan projek adalah hakmilik Universiti Teknikal Malaysia Melaka (UTeM).
 Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi. 4. ** Sila tandakan (/)

SULIT

_____ TERHAD

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

(TANDATANGAN PENULIS)

Alamat Tetap: <u>333 Kampung Rahmat</u> Chalok 21450 Setiu Terengganu

Tarikh :

(TANDATA)

<u>EnNazrulazhar bin Haji Bahaman</u> Nama Penyelia

Tarikh: 2 Jul 09.

CATATAN: * Tesis dimaksudkan sebagai Laporan Akhir Projek Sarjana Muda (PSM) ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa.

ANALYSIS OF IPV4 AND IPV6 PERFORMANCE IN SMALL OFFICE HOME OFFICE (SOHO) NETWORK

ELMY MAWARNIE BINTI NAWI

This report is submitted in partial fulfillment of the requirements for the Bachelor of Computer Science (Networking)

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2009

DECLARATION

I hereby declare that this project report entitled

ANALYSIS OF IPV4 AND IPV6 PERFORMANCE IN SMALL OFFICE HOME OFFICE (SOHO) NETWORK

Is written by my own effort and that no part has been plagiarized without citations.

DATE: **STUDENT** (ELMY MAWARNIE BINTI NAWI) DATE: SUPERVISOR: (NAZRU **BAHAMAN**)

DEDICATION

To my beloved mom, sister and all of my lecturers and friends.....

ACKNOWLEDGEMENTS

First, thanks to Universiti Teknikal Malaysia Melaka (UTeM) for this Projek Sarjana Muda. This project gives me a lot of experience that will be use in the next day. This project also improves the students skill and as a preparation to go to work environment.

Second, special thanks to En Nazrulazhar Bin Bahaman which is my supervisor that guides and gives suggestions to me, starting from the project proposal until I complete this project. He also gives me this title of project and makes me understand how to start my project and what is the output should be.

Next, thanks to network administrator and staffs of Kolej Komuniti Bukit Beruang which is En Norashid Bin Majid for the cooperation, permission and suggestions are given by him to complete my project during the interview.

To my classmates and colleagues, thanks to you all for supporting, suggestions, extra ideas and so forth while I stack to complete this project.

And lastly to my lovely mom and sister for their understanding of my situation and support until I successful and complete this project.

ABSTRACT

Internet protocol version six (IPv6) are provided more features rather than current version, internet protocol version 4 (IPv4). To proof of this protocol theory, this project is developed to get the result about the network performance. To complete the project, the valid network design is needed to apply in simulator during the design and implementation phase. The network design of Kolej Komuniti Bukit Beruang (KKBB) is use as a case study to support this project. The implementation of this project is based on simulation technique by using the right simulation tool. Because it is includes the IPv6 environment in this project, the simulator that support IPv6 should be use to make this project run properly. By the researches and study, the simulator that supports IPv6 is starting from OPNET Modeler version 11 and above. The OPNET Modeler version 14.0 is chosen because it provide the user friendly tool and easy to use same as Modeler that learnt during class. This project will give the contribution to the network administrator and staffs at KKBB for future consideration.

ABSTRAK

Internet protokol versi enam (IPv6) menyediakan elemen-elemen yg lebih baik berbanding internet protokol versi empat (IPv4). Untuk membuktikan kesahihan teori mengenai protokol ini, projek ini telah dibangunkan bagi mendapatkan keputusan mengenai persembahan rangkaian. Untuk menyiapkan projek, rekabentuk rangkaian yang sah diperlukan untuk dilaksanakan di dalam pengsimulasi semasa fasa rekabentuk dan fasa pelaksanaan. Rekabentuk rangkaian Kolej Komuniti Bukit Beruang (KKBB) digunakan sebagai kajian kes untuk menyokong projek ini. Pelaksanaan projek ini adalah berdasarkan teknik simulasi dengan menggunakan perkakasan simulasi yang betul. Disebabkan projek ini melibatkan persekitaran IPv6, alat simulasi yang menyokong IPv6 mestilah digunakan bagi membolehkan projek ini berjalan lancar. Daripada penyelidikan dan kajian, alat simulasi yang menyokong IPv6 ialah OPNET Modeler yang bermula dari versi 11 dan ke atas. Opnet Modeler versi 14.0 telah dipilih disebabkan ia menyediakan perkakasan yang mudah dan mesra pengguna sama seperti Modeler yang telah dipelajari di dalam kelas. Projek ini akan memberikan sumbangan kepada pentadbir rangkaian dan staf di KKBB untuk pertimbangan pada masa akan datang

TABLE OF CONTENTS

CHAPTER	SUBJECT	PAGE
---------	---------	------

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xii
LIST OF FIGURES	xvii

CHAPTER I INTRODUCTION

1.1 Project Background	1
1.2 Problem Statement	2
1.3 Objective	3
1.4 Scope	3
1.5 Project Significant	4
1.6 Expected Output	4
1.7 Conclusion	5

CHAPTER II LITERATURE REVIEW AND PROJECT METHODOLOGY

2.1 Introduction	
2.2 Literature Review	
2.2.1 Domain	7
2.2.1.1 Computer Networking	7
2.2.1.2 Network Performance	8
2.2.2 Keyword	10
2.2.2.1 Simulation	10
2.2.2.2 IPv4	10
2.2.2.3 IPv6	11
2.2.3 Previous Research	11
2.2.3.1 OPNET Modeler	11
2.2.3.2 NS-2	13
2.2.3.3 CNET	14
2.3 Proposed Solution	16
2.3.1 SDLC	16
2.3.1.1 Feasibility	17
2.3.1.2 Requirement Analysis And	
Design	17
2.3.1.3 Implementation	17
2.3.1.4 Testing	17
2.3.1.5 Maintenance	18
2.4 Project Schedule and Milestones	18
2.4.1 Gantt Chart	20
2.5 Conclusion	20

CHAPTER III ANALYSIS

3.1 Introduction	21
3.2 Problem Analysis	22
3.2.1 Network Architecture	22
3.2.2 Logical and Physical Design	
3.2.2.1 Logical Design	25
3.2.2.2 Physical Design	27
3.3 Requirement analysis	
3.3.1 Quality of Data	29
3.4 Conclusion	31

CHAPTER IV DESIGN

4.1 Introduction	32
4.2 Possible Scenario	33
4.2.1 IP Environment	34
4.4 Conclusion	36

CHAPTER V IMPLEMENTATION

5.1 Introduction	37
5.2 Network Configuration Management	38
5.2.1 Configuration Environment Setup	
5.2.1.1 Statistics	38
5.2.1.2 Application Configuration	40
5.2.1.3 Profile Configuration	47
5.2.2 Version Control Procedure	50
5.3 Hardware Configuration Management	
5.3.1 Hardware Setup	51
5.3.1.1 Router Cisco 1700	51

5.3.1.2 Server	53
5.3.1.3 User Workstation	63
5.3.1.3 Links	71
5.4 Security	
5.4.1 Security Policies and plan	72
5.4.1.1 Firewall	72
5.4.1.2 Antivirus	73
5.4.1.3 User Authentication	73
5.5 Development Status	74
5.6 Conclusion	74

CHAPTER VI TESTING

6.1 Introduction	75
6.2 Test Plan	76
6.2.1 Test Organization	77
6.2.2 Test Environment	77
6.3 Test Strategy	79
6.4 Test Designs	79
6.4.1 Test Description	79
6.4.2 Test Data	80
6.5 Test Result and Analysis	81
6.5.1 Ethernet Delay	82
6.5.2Link Utilization	83
6.5.3 FTP Download response time	84
6.5.4 FTP Upload response time	85
6.5.5 FTP Traffic Sent and receive	86
6.5.6 Email Download response time	88
6.5.7 Email Upload response time	89

	6.5.8 Email Traffic Sent and receive	90
	6.5.9 Database response time	91
	6.5.10 Print Traffic Sent and receive	92
	6.5.11 HTTP Traffic Sent and receive	93
	6.5.12 Remote Login Sent and receive	95
	6.5.13 VoiceTraffic Sent and receive	96
	6.5.14 Conclusion for testing result	100
	6.6 Conclusion	100
CHAPTER VII	CONCLUSION	
	7.1 Observation on Weaknesses and Strengths	101
	7.1.1 Weaknesses	
	7.1.1.1 Security	102
	7.1.1.2 Simulator	102
	7.1.2 Strengths	
	7.1.2.1 Individually Task	102
	7.1.2.2 Logical And Physical Design	103
	7.1.2.3 IP addressing	103
	7.2 Propositions for Improvement	103
	7.3 Contribution	104
	7.4 Conclusion	104
	REFERENCES	105
	APPENDICES	107
	APPENDIX A	108
	APPENDIX B	110

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	The description of the term of network performances	9
2.2	Comparison between OPNET, NS-2 and CNET	14
2.3	Milestones for PSM I	18
2.4	Milestones for PSM II	19
3.1	Number of devices in KKBB network	23
3.2	Number of workstations in KKBB	24
3.3	Number of user per user	25
3.4	Questionnaire format	29
3.5	Type of Interview question	30
5.1	Statistic Descriptions	38
5.2	Application Configuration Descriptions	45
5.3	Version Control Procedure	50
5.5	Links Descriptions	71

6.1	Specifications of computer testing	77
6.2	Unit Testing schedule	78
6.3	Ethernet delays	82
6.4	FTP Download Response time	84
6.5	FTP Upload Response time	85
6.6	FTP Traffic Sent	86
6.7	FTP Traffic Receive	87
6.8	Email Download Response time	88
6.9	Email Upload Response time	89
6.10	Email Traffic sent and receive	91
6.11	Print Traffic sent and receive	93
6.12	HTTP Traffic sent and receive	94
6.13	Remote Login Traffic sent and receive	96
6.14	Voice Traffic sent and receive	97
6.15	Test Schedule for IPv4	98
6.16	Test Schedule for IPv6	98
6.17	Overall Percentage of good performance based IP	99

LIST OF FIGURES

TITLE

PAGE

2.1	Network representation in NS-2	13
2.2	Network representation by CNET	14
2.3	Waterfall Approach (classic methodology)	16
3.1	Flow diagram of Logical Design	25
3.2	Logical Design of KKBB	26
3.3	Flow diagram of Physical Design	27
3.4	Network Design Of KKBB using Visio	28
4.1	OPNET Modeler Flow	33
4.2	Overview of KKBB subnet and configuration	34
4.3	Overall network	35
5.1	Application Configuration attribute	41
5.1.1	Database description	41
5.1.2	Email description	42
5.1.3	File transfer description	42

5.1.4	Print description	43
5.1.5	Remote Login description	43
5.1.6	Voice description	44
5.1.7	HTTP description heavy	44
5.1.8	HTTP description light	45
5.2	Profile Configuration attribute	47
5.2.1	The profile configuration for Network administrator	48
5.2.2	The profile configuration for Staff Administrator	48
5.2.3	The profile configuration for Staff	49
5.2.4	The profile configuration for Student	49
5.4	Cisco Router Attribute (IPv4 addressing)	51
5.5	Cisco Router Attribute (IPv6 addressing)	52
5.5.1	Cisco Router Address (IPv6)	52
5.5.2	Cisco Router Address (IPv6)	52
5.6	Email Server Attribute (IPv4 addressing)	53
5.7	Email Server Attribute (IPv6 addressing)	54
5.7.1	Email Server Supported Applications	54
5.8	Database Server Attribute (IPv4 addressing)	55
5.9	Database Server Attribute (IPv6 addressing)	56
5.9.1	Database Server Supported Applications	56

5.10	ITR Server Attribute (IPv4)	57
5.11	ITR Server Attribute (IPv6)	57
5.11.1	ITR Server Supported Applications	58
5.12	WEB Server Attribute (IPv4)	59
5.13	WEB Server Attribute (IPv6)	60
5.13.1	WEB Server Supported Applications	60
5.14	DC Server Attribute (IPv4)	61
5.15	DC Server Attribute (IPv6)	62
5.15.1	DC Server Supported Applications	62
5.16	User in admin staff subnet (IPv4 addressing)	63
5.17	User in admin staff subnet (IPv6 addressing)	63
5.17.1	Supported Profile in admin staff subnet (all addressing)	64
5.17.2	Destination preferences	64
5.18	User in staff subnet (IPv4 addressing)	65
5.19	User in staff subnet (IPv6 addressing)	65
5.19.1	Supported profile staff (all addressing)	66
5.19.2	Destination preferences	66
5.20	User in staff subnet (IPv4 addressing)	67
5.21	User in staff subnet (IPv6 addressing)	67
5.21.1	Supported profile network admin staff (all addressing)	68

5.21.2	Destination preferences	68
5.22	User in student subnet (IPv4 addressing)	69
5.23	User in student subnet (IPv6 addressing)	69
5.23.1	Supported profile student (IPv6 addressing)	70
5.23.2	Destination preferences	70
5.24	Juniper NetScreen 25 Firewall	72
6.1	OPNET Modeler Workflow	75
6.2	Cycle of Model Development and Testing	76
6.3	Ethernet delay	82
6.4	Link Utilization	83
6.5	FTP Download response time	84
6.6	FTP Upload response time	85
6.7	FTP Traffic sent	86
6.8	FTP Traffic receive	87 88
6.9	Email download response time	
6.10	Email upload response time	89
6.11	Email Traffic sent	90
6.12	Email Traffic receive	90
6.13	Database Response time	91
6.14	Print Traffic sent	92
6.15	Print Traffic receive	92

6.16	HTTP Traffic sent	93
6.17	HTTP Traffic receive	94
6.18	Remote Login Traffic sent	95
6.19	Remote Login Traffic receive	95
6.20	Voice Traffic sent	96
6.21	Voice Traffic receive	97

C Universiti Teknikal Malaysia Melaka

CHAPTER I

INTRODUCTION

1.1 Project background

This project is to fulfill the requirement of subject Projek Sarjana Muda (PSM) I and II. Each student that studies in Universiti Teknikal Malaysia Melaka (UTeM) are require to completing PSM before graduate. Through this chapter, it will be detailed explained the introduction of project. The contents of this chapter includes the project background, project objective, project scope, problem statement, project significant, expected output and conclusion of this chapter.

This project is to do the analysis of IPv4 and IPv6 performance in small office home office (SOHO) network. As an analysis project, the network design is needed to fill the requirement of project. For this project, the network design of Kolej Komuniti Bukit Beruang (KKBB) is used as a case study to get the network performance of the both protocol. This organization is under Kementerian Pendidikan Malaysia. It's developing to provide opportunities to all of people that interested to get experience and knowledge. For present time, it is about 230 user are use the network of this organization.

The network simulator is used to make sure this project runs well at a given time and get their result of performance based on project requirement. The current simulator use only support IPv4 address, so to obtain the objectives of this project the simulator that support IPv6 environment are used to make this project obtain their objectives.

Next Generation Internet Protocol or entitle as Internet protocol version 6 (IPv6) is a new version of internet protocol which is designed to replace the previous protocol, IPv4. According to Hinden (2003), IPv6 is a natural increment to IPv4. It can be installed as a normal software upgrade in internet devices and is interoperable with IPv4. It also designed to run well on high performance network like Gigabit Ethernet and ATM but at the same time it still efficient for low bandwidth network like wireless. The transition of IPv6 allows the users to upgrade their hosts to IPv6 and network operators to deploy IPv6 in routers, with very coordination between the two.

1.2 Problem Statement

As an internet growth today, the organizations also increase to support the internet. After few years later, the internet address uses today maybe not enough to cover the growth of organizations. Because of this problem, internet protocol version 6 (IPv6) is developed.

As a new protocol, of course it provides more features rather than current protocol. Nowadays, the technology that support this protocol is publish to the market to make user study how to use it and to make close to user. Mostly user does not know how to use this protocol and how to make it easy, so this project will teach the user how to become familiar with them.

1.3 Objective

The objectives of this project are:-

- 1. To study on Internet Protocol version 6(IPv6).
- 2. To do analysis of IPv4 performance in small office home office (SOHO) network by using KKBB network design.

- To do analysis of IPv6 performance in small office home office (SOHO) network by using KKBB network design.
- 4. To do comparison between IPv4 and IPv6 performance, in order to know which version of Internet Protocol (IP) is better.

1.4 Scope

The main scope for this project is a proof of concept.

- i. IPv6
 As IPv6 is a newly IP, some features maybe not included in IPv4. So, this project is to get the differences arrive in both versions.
- Analysis of IPv4 and IPv6 performance in small office home office (SOHO) network.

- The simulation tool, OPNET Modeler 14.0 will be use to make sure this project obtain their objectives.

iii. Kolej Komuniti Bukit Beruang (KKBB) network design

- The network design of KKBB is use to check the network performance to cover the whole project. About two hundred and thirty (230) users used internet in KKBB network.

iv. Compare protocol

- The comparison is to finds the benefit and limitations and how to solve problem when using both Internet protocol (IP). User also makes a decision when want to choose version of IP.

1.5 Project Significance

Asian countries are moving fastest, at least partly because their need for IPv6's expanded address space is greatest (Geer D. 2005). The major problem exists in IPv4 is limited available number of IP addresses and according to Baker F. (2005) the real problem with IPv4 is the lack of IP address.

IPv6 is a newly protocol or usually describe as next generation protocol design to replace current protocol, IPv4. As a new protocol, IPv6 provides more features rather than current protocol such as auto configuration and routing.

Through this project, it will learn more about this protocol and can share with other people who are interested in this environment. Because this project work in network design of KKBB, so this organization may have benefits such as consider to replace their IP address in IPv4 to IPv6.

1.6 Expected Output

For this project, the main focus and output is to proof the concept of new protocol, IPv6. Using the right tool to check network performance of different protocol is the best way to get the result for this project.

As a network simulation project, the result may vary compare to real environment. But, it depend how the implementation of case study network design is develop in simulation tool. The analysis of network performance for both protocol will be describe after the simulation is complete and the result as expected.